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Due to the subjective responses of different subjects to physical stimuli, emotion recognition
methodologies from physiological signals are increasingly becoming personalized. Existing works
mainly focused on modelling the involved physiological corpus of each subject, without considering
the psychological factors, such as interest and personality. The latent correlation among different
subjects has also been rarely examined. In this paper, we propose to investigate the influence of
personality on emotional behavior in a hypergraph learning framework. Assuming that each vertex
is a compound tuple (subject, stimuli), multi-modal hypergraphs can be constructed based on
the personality correlation among different subjects and on the physiological correlation among
corresponding stimuli. To reveal the different importance of vertices, hyperedges and modalities, we
learn the weights for each of them. As the hypergraphs connect different subjects on the compound
vertices, the emotions of multiple subjects can be simultaneously recognized. In this way, the
constructed hypergraphs are vertex-weighted multi-modal multi-task ones. The estimated factors,
referred to as emotion relevance, are employed for emotion recognition. We carry out extensive
experiments on the ASCERTAIN dataset and the results demonstrate the superiority of the proposed
method, as compared to the state-of-the-art emotion recognition approaches.
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1 INTRODUCTION

Emotion recognition (ER) plays an important role in both interpersonal and human-computer
interaction. Though being studied for years, ER still remains an open problem, which has
to face the fact that human emotions are not expressed exclusively but through multiple
channels, such as speech, gesture, facial expression and physiological signals [10]. Unlike other
signals that can be adopted voluntarily or involuntarily, physiological signals are controlled
by the sympathetic nervous systems, which are generally independent of humans’ will and
cannot be easily suppressed or masked. Therefore, physiological signals may provide more
reliable information for emotions compared to visual cues and audio cues [36]. Meanwhile,
human emotions are a highly subjective phenomenon, as shown in Figure 1, which can be
influenced by a number of contextual and psychological factors, such as interest, personality
and temporal evolution.
In this paper, we focus on personalized emotion recognition (PER) from physiological

signals, which enables wide user-centric applications, ranging from personalized recommender
systems to intelligent diagnosis. For example, comparing the difference of physiological
responses towards specified emotion between normal people and people with depression or
autism can help recognize the patients automatically and contribute to clinical diagnosis.
The emotion we aim to recognize here is perceived emotion. For the difference between
expressed, perceived and induced emotions, please refer to [23]. However, PER is still a
non-trivial problem because of the following challenges:

Multi-modal data. Emotions can be expressed through physiological signals from different
modalities [10], such as Electroencephalogram (EEG), Electrocardiogram (ECG), Galvanic
Skin Response (GSR), respiration and temperature, etc. Different subjects may have different
physiological responses of the same emotion on the same modality signal. Furthermore, the
importance of various physiological signals to emotions differs from each other. Combination
of complementary multi-modal data by fusing strategies would obtain better results.

Multi-factor influence. Besides the physical stimuli, there are many other factors that may
influence the emotion perceptions. Personal interest and personality may directly influence
the emotion perceptions [24, 39]. Viewers’ emotions are often temporally influenced by their
recent past emotions [12]. How a viewer’s emotion is influenced by their friends on social
networks is quantitatively studied in [51].

Incomplete data. Due to the influence of many normal factors in data collection, such as
electrode contact noise, power line interference and sensor device failure [36], physiological
signals may be sometimes corrupted, which results in a common problem - data missing, i.e.
physiological data from some modalities are not available [46].
Existing methods on PER mainly worked on the first challenge by designing effective

fusion strategies, based on the assumption that the signals from all modalities are always
available [10, 34], which is often unrealistic in practice. In this paper, we make the first
attempt at estimating the influence of one psychological factor, i.e. personality, on PER from
multi-modal physiological signals, trying to solve the incomplete data issue simultaneously.
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Fig. 1. Left: the valence and arousal standard deviations (STD) of the 58 subjects on the 36 video clips.
Right: the video distribution with different annotated emotion numbers (7-scale) in the ASCERTAIN
dataset, where “# Emotions” and “# Videos” represent the numbers of annotated emotions and videos,
respectively. These two figures clearly show the emotion’s subjectiveness in this context: the left figure
shows that the valence and arousal STD of most videos are larger than 1, while the right one indicates
that all the videos are labeled with at least 4 emotions by different subjects.

Specifically, we propose to employ the hypergraph structure to formulate the relationship
among physiological signals and personality. A hypergraph1 is a generalization of a graph
in which an edge can join any number of vertices. A hypergraph is often composed of
a set of vertices, and a set of non-empty subsets of vertices called hyperedges. Recently,
hypergraph learning [66] has shown superior performances in various vision and multimedia
tasks, such as image retrieval [20], music recommendation [7], object retrieval [13, 40], social
event detection [60] and clustering [35]. However, traditional hypergraph structure treats
different vertices, hyperedges and modalities equally [66], which is obviously unreasonable,
since the importance is actually different. For example, different vertices have varied rep-
resentation abilities and their importance varies during the learning process. To this end,
we propose a Vertex-weighted Multi-modal Multi-task Hypergraph Learning (VM2HL) for
PER, which introduces an updated hypergraph structure considering the vertex weights,
hyperedge weights and modality weights. In our method, each vertex is a compound tuple
(subject, stimuli). The personality correlation among different subjects and the physiological
correlation among corresponding stimuli are formulated in a hypergraph structure. The
weights of different hypergraphs and both the vertices and hyperedges of each hypergraph
are automatically learned. The vertex weights and hypergraph weights are used to define
the influence of different samples and modalities on the learning process, respectively, while
the hyperedge weights are used to generate the optimal representation. The learning process
is conducted on the vertex-weighted multi-modal multi-task hypergraphs and the estimated
factors, referred as emotion relevance, are used for emotion recognition. As the vertices are
compound ones, which include the information of different subjects, VM2HL can recognize
the emotions of multiple subjects simultaneously. We evaluate the proposed method on the
ASCERTAIN dataset that is labeled with personality and emotion information.

In summary, the contributions of this paper are three-fold:

1https://en.wikipedia.org/wiki/Hypergraph
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1. To the best of our knowledge, this is the first comprehensive computational study about
the influence of personality on personalized emotion recognition from physiological signals.

2. We propose a novel hypergraph learning algorithm, i.e. vertex-weighted multi-modal
multi-task hypergraph learning (VM2HL), to jointly model the physiological signals and
personality by considering the weighted importance of vertices, hyperedges and modalities.

3. Extensive experiments are conducted on the ASCERTAIN dataset with the conclusion
that the proposed VM2HL obtains significant performance gains over the state-of-the-arts
and can easily handle the challenge of data incompleteness.

One preliminary conference version on investigating the influence of personality on per-
sonalized emotion recognition was first introduced in our previous work [59]. The new
improvement compared with the conference version lies in the following three aspects: (1)
we perform a more comprehensive survey of related works; (2) we provide the motivation
more clearly and detail the algorithm analysis as well as the experimental settings; and (3)
we conduct more comparative experiments and enrich the analysis of the results.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
presents the proposed method in detail, including vertex-weighted multi-modal multi-task
hypergraph construction and corresponding learning procedure. Section 4 describes the
experimental setup, including the datasets, extracted features, baselines and implementation
details. Experimental results and analysis are reported in Section 5, followed by the conclusion
and future work in Section 6.

2 RELATED WORK

In this section, we briefly review related work on emotion recognition from physiological
signals, personality and emotion relationship, and multi-modal learning.

Emotion recognition from physiological signals. As an active research topic for
several years, ER from physiological signals has attracted some attention from both the
academic and industrial communities. Due to the complex expression nature of human
emotions, many ER methods employ a multimodal framework by considering multiple
physiological signals [10]. A survey of the state-of-the-art emotion recognition methods can
be found in [3, 10, 34].
Lisetti and Nasoz [29] employed GSR, heart rate, and temperature signals to recognize

human emotions elicited by movie clips and difficult mathematics questions. Douglas-Cowie
et al. [11] provided 3 naturalistic and 6 induced affective databases from 8-125 participants
in the HUMAINE project. Besides speech, gesture and face descriptors, four physiological
signals are captured: ECG, skin conductance, respiration and skin temperature. Heart
rate, muscle movements, skin conductivity, and respiration changes are used to recognize
emotions induced by music clips [25]. Koelstra et al. [27] analyzed the mapping between
blood volume pressure, respiration rate, skin temperature, Electrooculogram (EOG) and
emotions induced by 40 music videos on the popular DEAP dataset. Soleymani et al. [38]
constructed MAHNOB-HCI, a multimodal dataset with synchronized face video, speech,
eye-gaze and physiological recordings, including ECG, GSR, respiration amplitude, and
skin temperature. User responses are correlated with eye movement patterns to analyze the
impact of emotions on visual attention and memory [41]. The utility of various eye fixation
and saccade-based features is examined for valence recognition [17]. Li et al. [28] employed
the temporal correlation between continuous arousal peaks combined with GSR to detect
induced emotions when watching 30 movies from the LIRIS-ACCEDE database [6]. The
mappings from Magnetoencephalogram (MEG), Electromyogram (EMG), EOG and ECG
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to emotions are studied for both music and movie clips on the DECAF dataset with the
conclusion that emotions are better elicited with movie clips [2]. More recently, Subramanian
et al. [42] investigated binary emotion recognition from physiological features, including GSR,
EEG, ECG and facial landmark trajectories (EMO), on their collected ASCERTAIN dataset.
Miranda-Correa et al. [31] presented a novel dataset, AMIGOS, for multimodal research of
affect, personality traits and mood from neuro-physiological signals. EEG, ECG, GSR, audio,
visual, and depth modalities are fused to recognize affect from two social contexts, one with
individual viewers and the other with groups of viewers. Besides the psychological signals, a
playgame context is also considered to estimate the player experience or emotion [8, 30, 43].
Among the above mentioned methods, both categorical emotion states (CES) and di-

mensional emotion space (DES) are used to represent emotions. Being straightforward
for users to understand and label, CES methods directly map emotions to one of a few
basic categories [29, 38]. More descriptive DES methods employ a 3-D or 2-D space to
represent emotions, such as valence-arousal-dominance (VAD) [27], and valence-arousal
(VA) [2, 11, 17, 38, 41, 42]. Some works also discretize the DES into a few typical scales
to combine the advantages [25, 27, 38, 42]. The authors also represent emotions using the
discretized VA model as in [42].
Affective analysis has also been widely studied in different types of multimedia data,

which are used to evoke human emotions, such as text [15], image [4, 22, 61, 63], music [52],
speech [26], and video [48]. One close work is personalized emotion perception prediction of
social images by considering visual content, social context, temporal evolution, and location
information [62, 64]. Differently, our work aims to recognize personalized emotions from
physiological signals by modelling personality.

Personality and emotion relationship. Human personality can be described by the
big-five or five-factor model in terms of five dimensions - Extraversion, Neuroticism, A-
greeableness, Conscientiousness and Openness [9]. A comprehensive survey of personality
computing is presented in [45]. As for the personality and emotion relationship, Winter and
Kuiper [50] extensively examined it in social psychology. Van Lankveld et al. [44] proposed
to estimate personality via a player’s game behaviors in a video game. By inserting the
relative score of the Myers-Briggs types, Henriques et al. [19] showed that psychological traits
can increase the emotion recognition performance. Henriques and Paiva [18] defined seven
principles, based on empirical results, for recognizing and describing emotions during affective
interactions from physiological signals. Expressive signal representations are proposed to
correct individual differences and to account for subtle variations, and the integration of
sequential and feature-based models. Abadi et al. [1] and Subramanian et al. [42] recognized
personality and emotion separately using physiological signals without considering their
intrinsic correlation and influence.

Multi-modal learning. In real-world applications, we might have multi-modal data to
describe a target [5], either from different sources [10, 55] or with multiple features (also called
multi-view learning) [13, 56–58, 65]. Typically different modal data can represent different
aspects of the target. Jointly combining them together to explore the complementation may
promisingly improve the performance [5, 10]. Besides the traditional early fusion and late
fusion [16, 37, 47], there are many other multi-modal fusion strategies, such as hypergraph
learning [66], multigraph learning [47] and multimodal deep learning [32].

Motivation of the proposed method. All the above-mentioned ER methods do not
consider any psychological factor besides physiological signals and contextual interaction.
Though personality is believed to affect emotions [24], the interleaved connection between
personality and emotion has not yet been studied comprehensively in a computational
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Fig. 2. The framework of the proposed method for personality-aware personalized emotion recognition
from physiological signals by jointly learning the emotion relevance, hyperedge weight, vertex weight and
modality weight. Each circle represents a compound vertex (subject, stimuli). The filled ones indicate
training samples, while the empty ones are testing samples.

setting. On one hand, this is due to various problems such as invasiveness of sensing
equipment, subject preparation time and the paucity of reliable annotators [42]. On the other
hand, previous works on hypergraph learning treat the hyperedge weight and vertex weight
equally [66], update hyperedge weight [14], or update hyperedge and vertex weights [40],
without jointly learning the optimal weights of vertices, hyperedges and modalities. In this
paper, we employ GSR, EEG, ECG, and EMO for emotion recognition and investigate
the influence of personality on emotions computationally. Specifically, we present Vertex-
weighted Multi-modal Multi-task Hypergraph Learning to make full use of personality and
physiological signals for personalized emotion recognition.

3 THE PROPOSED METHOD

Our goal is to recognize personalized emotions from physiological signals considering per-
sonality and dealing with missing data. We employ a hypergraph structure to formulate
the relationship among physiological signals and personality, taking advantage of the hy-
pergraph on high-order correlation modelling. Considering the fact that the importance of
different vertices, hyperedges and modalities in a hypergraph is different, i.e. the contribution
of different elements to the learning process varies, we propose a novel method, named
Vertex-weighted Multi-modal Multi-task Hypergraph Learning (VM2HL), for PER.

The framework of the proposed method is shown in Fig. 2. First, given the subjects
and stimuli that are used to evoke emotions in subjects, we generate the compound tuple
vertex (subject, stimuli). Second, we construct the multi-modal hyperedges to formulate the
personality correlation among different subjects and the physiological correlation among
corresponding stimuli. Finally, we obtain the PER results after the joint learning of the
vertex-weighted multi-modal multi-task hypergraphs.

3.1 Hypergraph Construction

As stated above, the vertex in the proposed method is a compound one, including the subject
and involved stimuli. We can construct different hyperedges based on the features of each
element of the vertex.
Similar to [9], personality is labelled using the big five model in the ASCERTAIN

dataset [42], i.e. personality is represented by a 5-dimension vector. We employ Cosine
function to measure the pairwise personality similarity between two users 𝑢𝑖 and 𝑢𝑗 as
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follows

𝑠𝑃𝐸𝑅 (𝑢𝑖, 𝑢𝑗) =
< 𝑝𝑖, 𝑝𝑗 >

‖𝑝𝑖‖ · ‖𝑝𝑗‖
, (1)

where 𝑝𝑖 is the personality vector of user 𝑢𝑖.
A specific emotion perceived in humans usually leads to corresponding changes in different

physiological signals [10]. As in [42], we extract different features from 4 kinds of physiological
signals: ECG, GSR, EEG and EMO. Please refer to Section 4.2 for the detailed extraction
process. Similar to Eq. (1), Cosine function is used to measure the pairwise similarity of
each modality feature extracted from physiological signals. Please note that other similarity
or distance measures can also be used here.
Given the pairwise similarities above, we can formulate the relationship among different

samples in a hypergraph structure. Each time one vertex is selected as the centroid, and one
hyperedge is constructed to connect the centroid and its 𝐾 nearest neighbors in the available
feature space. Please note that we construct personality hyperedges from both inter-subject
and intra-subject perspectives. All the vertices from the same subject are connected by one
hyperedge. Further, for each subject, we select the nearest 𝐾 subjects based on personality
similarity and connect all the vertices of these subjects by constructing another hyperedge.
Suppose the constructed hypergraphs are 𝒢𝑚 = (𝒱𝑚, ℰ𝑚,W𝑚), where 𝒱𝑚 is the vertex

set, ℰ𝑚 is the hyperedge set, and W𝑚 is the diagonal matrix of hyperedge weight for the
𝑚th hypergraph (𝑚 = 1, 2, · · · ,𝑀 , 𝑀 = 5 in this paper, including 4 hypergraphs based
on physiological signals and 1 hypergraph based on personality). We can easily tackle the
missing data challenge by removing the hyperedges of corresponding vertices. For example,
if the EEG is missing for one subject, we just simply do not construct hyperedges based on
EEG for this subject. This still works because the model can learn the emotion relevance by
ECG, GSR, EMO, and personality.
Given the constructed hypergraph 𝒢𝑚, we can obtain the incidence matrix H𝑚 by

computing each entry as,

H𝑚(𝑣, 𝑒) =

{︃
1, if 𝑣 ∈ 𝑒,

0, if 𝑣 ̸∈ 𝑒.
(2)

Different from traditional hypergraph learning method, which simply regards all the vertices
equally, we learn different weights of the vertices to measure their importance and contribution
to the learning process. Suppose U𝑚 is the diagonal matrix of vertex weight. The vertex
degree of vertex 𝑣 ∈ 𝒱𝑚 and the edge degree of hyperedge 𝑒 ∈ ℰ𝑚 are defined as 𝑑𝑚(𝑣) =∑︀

𝑒∈ℰ𝑚
W𝑚(𝑒)H𝑚(𝑣, 𝑒) and 𝛿(𝑒) =

∑︀
𝑣∈𝒱𝑚

U𝑚(𝑣)H𝑚(𝑣, 𝑒). According to 𝑑𝑚(𝑣) and 𝛿𝑚(𝑒),

we define two diagonal matrices D𝑣
𝑚 and D𝑒

𝑚 as D𝑣
𝑚(𝑖, 𝑖) = 𝑑𝑚(𝑣𝑖) and D𝑒

𝑚(𝑖, 𝑖) = 𝛿𝑚(𝑒𝑖).

3.2 Vertex-weighted Multi-modal Multi-task Hypergraph Learning

Given 𝑁 subjects 𝑢1, . . . , 𝑢𝑁 and the involved stimuli 𝑠𝑖𝑗 (𝑗 = 1, · · · , 𝑛𝑖) for 𝑢𝑖, our ob-
jective is to jointly explore the correlations among all involved physiological signals and
the personality relations among different subjects. Suppose the compound vertices and
corresponding labels of the 𝑐th emotion category are {(𝑢1, 𝑠1𝑗)}𝑛1

𝑗=1, · · · , {(𝑢𝑁 , 𝑠𝑁𝑗)}𝑛𝑁
𝑗=1

and y1𝑐 = [𝑦𝑐11, · · · , 𝑦𝑐1𝑛1
]T, . . . ,y𝑁𝑐 = [𝑦𝑐𝑁1, · · · , 𝑦𝑐𝑁𝑛𝑁

]T, where 𝑐 = 1, · · · , 𝑛𝑒, 𝑛𝑒 is the
number of emotion categories, and the to-be-estimated values of all stimuli related to
the specified users of the 𝑐th emotion category, referred to as emotion relevance, are
r1𝑐 = [𝑟𝑐11, · · · , 𝑟𝑐1𝑛1

]T, . . . , r𝑁𝑐 = [𝑟𝑐𝑁1, · · · , 𝑟𝑐𝑁𝑛𝑁
]T. We denote y𝑐 and r𝑐 as

y𝑐 = [yT
1𝑐, · · · ,yT

𝑁𝑐]
T, r𝑐 = [rT1𝑐, · · · , rT𝑁𝑐]

T. (3)
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Let Y = [y1, · · · ,y𝑐, · · · ,y𝑛𝑒
],R = [r1, · · · , r𝑐, · · · , r𝑛𝑒

].
Similar to the regularization framework in [13, 40, 66], the relevance matrix R is learned

from a joint optimization process to minimize the empirical loss and the regularizer on
the hypergraph structure as well as on the weights of vertices, hyperedges and modalities
simultaneously by

argmin
R,W,U,𝛼

{Γ(R) + 𝜆Ψ(R,W,U,𝛼) + 𝜂ℛ(W,U,𝛼)}, (4)

where 𝜆 and 𝜂 are two trade-off parameters, W = {W1, · · · ,W𝑀}, U = {U1, · · · ,U𝑀}
and the three components are defined as follows:

Γ is the empirical loss:

Γ(R) =

𝑛𝑒∑︁
𝑐=1

||r𝑐 − y𝑐||2. (5)

Ψ is the regularizer on the hypergraph structure:

Ψ(R,W,U,𝛼) =
1

2

𝑛𝑒∑︁
𝑐=1

𝑀∑︁
𝑚=1

𝛼𝑚

∑︁
𝑒∈ℰ𝑚

∑︁
𝜇,𝜈∈𝒱𝑚

W𝑚(𝑒)U𝑚(𝜇)H𝑚(𝜇, 𝑒)U𝑚(𝜈)H𝑚(𝜈, 𝑒)

𝛿(𝑒)

(︂
r𝑐(𝜇)√︀
D𝑣

𝑚(𝜇, 𝜇)
− r𝑐(𝜈)√︀

D𝑣
𝑚(𝜈, 𝜈)

)︂2

=

𝑛𝑒∑︁
𝑐=1

rT𝑐

𝑀∑︁
𝑚=1

𝛼𝑚(U𝑚 −Θ𝑚)r𝑐,

(6)

where

𝑀∑︁
𝑚=1

𝛼𝑚 = 1 and

Θ𝑚 = (D𝑣
𝑚)−

1
2U𝑚H𝑚W𝑚(D𝑒

𝑚)−1HT
𝑚U𝑚(D𝑣

𝑚)−
1
2 . (7)

∆ =

𝑀∑︁
𝑚=1

𝛼𝑚(U𝑚 −Θ𝑚) can be viewed as a vertex-weighted fused hypergraph Laplacian.

ℛ is the regularizer on the weights of modalities, vertices and hyperedges and one simple
version is adopted by

ℛ(W,U,𝛼) =

𝑀∑︁
𝑚=1

(tr(WT
𝑚W𝑚) + tr(UT

𝑚U𝑚) + tr(𝛼T𝛼)), (8)

where tr() is the trace of a matrix.
Solution

To solve the optimization task of Eq. (4), we employ an alternative strategy. First, we fix
W,U,𝛼, and optimize R. The objective function of Eq. (4) turns to

argmin
R

{
𝑛𝑒∑︁
𝑐=1

||R(:, 𝑐)−Y(:, 𝑐)||2 + 𝜆RTΔR}, (9)

where 𝜆 > 0. According to [66], R can be solved by

R =
(︀
I+

1

𝜆
∆
)︀−1

Y. (10)
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Second, we fix R,U,𝛼, and optimize W. Since each W𝑚 is independent from each other,
the objective function can be rewritten as

argmin
W𝑚

{𝜆
𝑛𝑒∑︁
𝑐=1

yT
𝑐 𝛼𝑚(U𝑚 −Θ𝑚)y𝑐 + 𝜂tr(WT

𝑚W𝑚)}, (11)

where D𝑣
𝑚(𝑣, 𝑣) =

∑︀
𝑒∈ℰ𝑚

W𝑚(𝑒)H𝑚(𝑣, 𝑒), 𝜂 > 0, and W𝑚(𝑒) ≥ 0. Replacing Θ𝑚 with

Eq. (7), the above optimization task is convex onW𝑚 and can be easily solved via off-the-shelf
quadratic programming methods.
Third, we fix R,W,𝛼, and optimize U. Since each U𝑚 is independent from each other,

the optimization of U is similar to the optimization of W.
Finally, we fix R,W,U, and optimize 𝛼. The objective function of Eq. (4) reduces to

argmin
𝛼

{𝜆
𝑛𝑒∑︁
𝑐=1

yT
𝑐 𝛼𝑚(U𝑚 −Θ𝑚)y𝑐 + 𝜂𝑀tr(𝛼T𝛼)},

s.t.

𝑀∑︁
𝑚=1

𝛼𝑚 = 1, 𝜂 > 0.

(12)

Similar to [13], we employ the Lagrange multiplier to solve the optimization problem and
can derive:

𝛼𝑚 =
1

𝑀
+

𝑛𝑒∑︁
𝑐=1

yT
𝑐

𝑀∑︁
𝑚=1

(U𝑚 −Θ𝑚)y𝑐

2𝜂𝑀2
−

𝑛𝑒∑︁
𝑐=1

yT
𝑐 (U𝑚 −Θ𝑚)y𝑐

2𝜂𝑀
. (13)

The above optimization procedure is repeated until convergence. Intuitively, all the three
components in Eq. (4) are greater than or equal to 0, so the objective function has a lower
bound 0. When updating each of the steps above, the corresponding objective turns to a
quadratic optimization problem, for which an optimal solution can be computed [13, 40, 66],
and thus decreases the overall objective function Eq. (4). Therefore, the convergence of the
alternating optimization is guaranteed.

The computational cost is computed as follows. The complexity of hypergraph construction

is𝑂(

𝑀∑︁
𝑚=1

𝑑𝑚(

𝑁∑︁
𝑖=1

𝑛𝑖)
3 log

𝑁∑︁
𝑖=1

𝑛𝑖). The complexity of emotion recognition is𝑂(𝑇𝑎(

𝑁∑︁
𝑖=1

𝑛𝑖)
2𝑛𝑒𝑇𝑏),

where 𝑇𝑎 and 𝑇𝑏 are the iteration number for the alternating optimization process and the
iteration number of the iterative process (here we assume that the iterations of optimizing
R,W,U are the same), respectively. Please note that the computational cost can be further
reduced by data downsampling [54] and hierarchical hypergraph learning strategy [49], which
remains our future work.

4 EXPERIMENT SETUP

In this section, we introduce the detailed experimental settings, including the ASCERTAIN
dataset that contains both personality and emotion information with physiological signals,
compared baselines and implementation details.

4.1 Dataset

To the best of our knowledge, ASCERTAIN [42] is the only published and released dataset to
date that connects personality and emotional states via physiological responses. 58 university
students (21 female, mean age = 30) were invited to watch 36 movie clips used in [2] between
51-127s long to evoke emotions. All the subjects were fluent in English and were habitual
Hollywood movie watchers. The movie clips are shown to be uniformly distributed (9 clips
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Table 1. Extracted features for each modality [42], where “#” indicates the dimension of each feature,
and “Statistics” denote mean, standard deviation (std), skewness, kurtosis of the raw feature over time,
and % of times the feature value is abovebelow mean±std.

Modality # Extracted features

ECG 32 Ten low frequency ([0-2.4] Hz) power spectral densities (PSDs), four very
slow response ([0-0.04] Hz) PSDs, IBI, HR and HRV statistics.

EEG 88 Average of first derivative, proportion of negative differential samples, mean
number of peaks, mean derivative of the inverse channel signal, average
number of peaks in the inverse signal, statistics over each of the 8 signal
channels provided by the Neurosky software.

GSR 31 Mean skin resistance and mean of derivative, mean differential for negative
values only (mean decrease rate during decay time), proportion of negative
derivative samples, number of local minima in the GSR signal, average
rising time of the GSR signal, spectral power in the [0-2.4] Hz band, zero
crossing rate of skin conductance slow response ([0-0.2] Hz), zero crossing
rate of skin conductance very slow response ([0-0.08] Hz), mean SCSR and
SCVSR peak magnitude.

EMO 72 Statistics concerning horizontal and vertical movement of 12 motion units
(MUs) specified in [21].

per quadrant) over the VA space. During watching the clips, several sensors were used to
record the physiological signals. After watching each clip, the participators were requested
to label the VA ratings reflecting their affective impression with a 7-point scale, i.e. -3 (very
negative) to 3 (very positive) scale for V, and 0 (very boring) to 6 (very exciting) scale
for A. Personality measures for the big-five dimensions were also compiled using a big-five
marker scale questionnaire [33]. The standard deviations of ENACO are 1.0783, 0.7653,
0.7751, 0.9176, and 0.6479, respectively. Please note that the dataset is incomplete with
missing data. For example, the 13rd, 15th, 27th, and 34th GSR signals of the 3rd student
are missing.

4.2 Extracted Features

Following [42], different features are extracted for the 4 kinds of physiological signals: ECG,
GSR, EEG, and EMO. GSR measures the transpiration rate of the skin, EEG measures
the small changes in the skull’s electrical field produced by neural activity, ECG evaluates
the heart rate characteristics, and EMO calculates the statistical measures of different
landmarks. These features are extracted over the final 50 seconds of stimulus presentation,
owing to (1) the clips are more emotional towards the end, and (2) some employed features
are nonlinear functions of the input signal length. The detailed features are summarized in
Table 1. Please note that in the ASCERTAIN dataset, due to the influence of normal factors
in data collection, one or more modality features are missing for some specified subjects.

4.3 Baselines

To compare with the state-of-the-art approaches for PER, we select the following methods as
baselines: (1) Support Vector Machine with linear kernel (SVM L) [42] and with radial basis
function kernel (SVM R), (2) Naive Bayes (NB) [42], (3) hypergraph learning (HL) [66], and
(4) hypergraph learning with hyperedge weight update (HL E) [14]. As our goal is to recognize
personalized emotions, we need to train one model for each subject using the baselines,
such as SVM and NB. We indeed can take the personality of each subject or the subject
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Table 2. Mann-Whitney-Wilcoxon test of the proposed VM2HL and VM2HL-P with the baselines
measured by p-value (×10−3).

SVM L SVM R NB HL HL E VM2HL-P

VM2HL Valence 3.24 4.83 2.65 3.47 4.16 1.32
Arousal 5.31 6.46 4.15 4.13 6.25 2.82

VM2HL-P Valence 4.35 6.62 3.59 4.61 5.38 -
Arousal 5.62 7.28 5.63 6.75 8.54 -

correlations as input, but it makes no sense or cannot contribute to the model. This is because
for each subject, the personality is always the same, which means that the personality feature
for the training and test samples are identical. Therefore, we do not consider personality
features for these baselines. Late fusion for SVM and NB is implemented as in [42] to deal
with multi-modal physiological signals, which are connected in one hypergraph in HL and
HL E. SVM L, SVM R, and NB are state-of-the-art methods for emotion recognition [31, 42].
HL and HL E are traditional hypergraph learning methods [14, 66].

4.4 Implementation Details

Similar to [42], we dichotomize the valence and arousal affective ratings based on the
median values for binary emotion recognition, since the number of movie clips each subject
watched and labelled is relatively small for fine-grained emotion recognition. We employ the
recognition accuracy (𝐴𝑐𝑐) [42] as evaluation metric. For each subject, 𝐴𝑐𝑐 is defined as
the fraction of correctly recognized emotions among the total test emotions. For each test
run, the overall 𝐴𝑐𝑐 is the average 𝐴𝑐𝑐 of all subjects. 0 ≤ 𝐴𝑐𝑐 ≤ 1 and a larger 𝐴𝑐𝑐 value
indicates better performance. 50% of stimuli and corresponding physiological signals and
emotions of each subject are randomly selected as the training set and the rest constitute the
testing set. The parameters of the baselines are selected by 10-fold cross validation on the
training set. For example, the gamma and C parameters of SVM are selected via grid search,
similar to [42]. Unless otherwise specified, parameter 𝐾 in hyperedge generation is set to
10, and regularizer parameters 𝜆 = 0.1 and 𝜂 = 100 are adopted in experiment. Empirical
analysis on parameter sensitivity is also conducted, which demonstrates that the proposed
VM2HL has superior and stable performance with a wide range of parameter values. The
weights of vertices, hyperedges and modalities are initialized to 1 and optimized by the
proposed method. For fair comparison, we carefully tune the parameters of the baselines and
report the best results. Further, we perform 10 runs and show the average results together
with the standard deviations to remove the influence of any randomness.

5 RESULTS AND ANALYSIS

In this section, we report the results on comparison with the state-of-the-art approaches
and on the influence of different factors in the proposed method.

5.1 Comparison with the State-of-the-art

First, we conduct experiments to compare the performance of the proposed method with the
state-of-the-art approaches for personalized emotion recognition. The results measured by
recognition accuracy are shown in Fig. 3, while the Mann-Whitney-Wilcoxon test results are
given in Table 2. “VM2HL-P” indicates the proposed method without modelling personality.
Please note that the five baselines and VM2HL-P are based on the fusion of all physiological
signals, while the proposed VM2HL jointly models physiological signals and personality.
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Fig. 3. Performance comparison between the proposed method and the state-of-the-art approaches in
terms of recognition accuracy and the standard deviation (%), where “-P” indicates without personality.

From the results, we have the following observations: (1) the proposed method (both
VM2HL-P and VM2HL) significantly outperforms the baselines on both valence and arousal;
(2) the hypergraph learning families achieve better results than traditional SVM and NB
classifiers; (3) NB performs slightly better than SVM; though simple, the linear kernel of
SVM is superior to the RBF kernel; (4) all the methods achieve above-chance (50%) emotion
recognition performance with physiological features; (5) the performance on arousal is better
than valence.

The better performance of the proposed method can be attributed to the following three
reasons. 1. The hypergraph structure is able to explore the complex high-order relationship
among multi-modal features, which leads to the superior performance of hypergraph learning
families over other models. 2. We take personality into account, which connects different
subjects with similar personality values. In this way, the recognition process turns to a
multi-task learning problem for multiple subjects. The latent correlations among different
subjects are effectively explored, which can be deemed as a way to enlarge the training set
for each subject. 3. The different importance or contribution of vertices, hyperedges and
modalities are jointly learned, which can accordingly generate a better correlation.

Comparing the results of VM2HL-P and VM2HL, it is clear that after removing personality,
the performance decreases significantly. Comparing with VM2HL-P, VM2HL achieves 8.48%
and 9.54% performance gains on valence and arousal, respectively. This is reasonable
because personality is the only element that connects different subjects and corresponding
physiological signals. By changing from single-task learning for each subject to multi-task
learning for multiple subjects, the latent information is extensively explored, which has a
similar impact as increasing the number of training samples and thus improves the recognition
performance.

5.2 On Different Physiological Signals

Second, we compare the performance of different uni-modal physiological signals for person-
alized emotion recognition. The results on valence and arousal are reported in Figure 4(a)
and Figure 4(b), respectively.

Comparing the results, we can observe that: (1) fusing multi-modal physiological signals
can obtain better recognition performance than most uni-modal ones for all the methods;
(2) generally, GSR features produce the best performance for both valence and arousal,
while ECG and EEG features are less discriminative; (3) for most physiological signals,
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Fig. 4. Performance comparison between different single physiological signal and the fusion strategy of
different methods in terms of recognition accuracy and the standard deviation (%).
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Fig. 5. Personalized emotion recognition results with and without optimizing vertex, hyperedge and
modality weights in terms of recognition accuracy and the standard deviation (%), where “-V”, “-E” and
“-M” indicate without optimizing vertex weights, hyperedge weights and modality weights, respectively.

the performance comparison of different methods follows the similar order to the above
Subsection. Please note that in these figures, VM2HL considers personality besides different
uni-modal physiological signals.
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Fig. 6. The influence of 𝐾 in the hyperedge generation stage on the emotion recognition performance
of the proposed method in terms of recognition accuracy (%).

5.3 On Vertex, Hyperedge and Modality Weights

Third, we investigate the influence of optimal vertex, hyperedge and modality weights by
removing the optimization of just one kind of weight. The results are shown in Fig. 5. We can
see that all the three kinds of weights indeed contribute to the performance of the proposed
method. The performance gains of VM2HL over VM2HL-V, VM2HL-E, and VM2HL-M
are 3.88%, 1.43%, 1.95% on valence, and 3.98%, 1.91%, 2.38% on arousal, respectively.
Please note that VM2HL-M is similar to the multi-task version of the hypergraph learning
method with hyperedge and vertex weights update [40]. Generally, vertex weights give
more contribution to the overall performance, following by modality weights and hyperedge
weights. We can conclude that jointly optimizing the weights of vertices, hyperedges and
modalities would generate more discriminative hypergraph structure and produce better
emotion recognition performance.

5.4 On Hyperedge Generation

Fourth, we evaluate the influence of the selected neighbor number 𝐾 in hyperedge generation
on the performance of the proposed method. The result is shown in Figure 6, with 𝐾 varying
from 2 to 50. It is clear that the performance is relatively steady with a wide range. When
𝐾 becomes too small or too large, the performance turns to be slightly worse. When 𝐾 is
too small, such as 𝐾 = 2, too few vertices are connected in each hyperedge, which cannot
fully explore the high-order relationship among different vertices. However, when 𝐾 is too
large, such as 𝐾 = 50, too many vertices are connected in each hyperedge, which could also
limit the discriminative ability of the hypergraph structure. We can conclude that both too
small and too large 𝐾 values will degenerate the representation ability and thus degrade the
performance.

5.5 On Parameter Sensitivity

There are two regularization parameters in the proposed method that control the relative
importance of different regularizers in the objective function, i.e. 𝜆 which is the regularizer for
the hypergraph structure and 𝜂 which is the regularizer for the weights, verticies, hyperedges
and modalities. To validate the influences of 𝜆 and 𝜂, we first fix 𝜂 as 100 and vary 𝜆, and
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Fig. 7. The influence of regularization parameter 𝜆 on the emotion recognition performance of the
proposed method in terms of recognition accuracy (%).
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Fig. 8. The influence of regularization parameter 𝜂 on the emotion recognition performance of the
proposed method in terms of recognition accuracy (%).

then fix 𝜆 as 0.1 and vary 𝜂, with results shown in Figure 7 and Figure 8, respectively. From
these results, we can observe that (1) the proposed method can achieve steady performances
when 𝜆 and 𝜂 vary in a large range; (2) with the increase of 𝜆, the performance tends to
be stable when 𝜆 ≤ 10, and then turns worse; (3) with the increase of 𝜂, the performance
tends to be better and becomes stable when 𝜂 ≥ 100. Too large or too small values would
either dominate the objective function or have quite little influence on the results, which is
expected. We can conclude that selecting proper 𝜆 and 𝜂 can indeed improve the performance
of emotion recognition, which indicates the significance of the joint exploration of different
regularizers.

5.6 Limitation Discussion

The tested dataset is relatively small. As the only available dataset that connects personality
and emotional states via physiological responses, ASCERTAIN [42] only includes 58 subjects

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1.

Publication date: January 2018.



1:16 S. Zhao et al.

and 36 movie clips. Constructing a large-scale dataset with personality and physiological
signals, and testing the proposed method on large-scale data would make more sense.

The computational efficiency of hypergraph learning would greatly increase when dealing
with large-scale data. To reduce the computational cost, there are two possible solutions:
data downsampling [54] and hierarchical hypergraph learning strategy [49].
Dichotomizing ordinal VA values turns out to yield split criterion biases. The reason

behind is similar to [42], i.e. the number of movie clips each subject watched and labelled is
relatively small. Our method can be easily extended to fine-grained emotion classification if
large-scale data is available. Like other hypergraph learning methods, the proposed method
can only be used for emotion classification, without supporting emotion regression. As shown
in [53], the ordinal labels are a more suitable way to represent emotions. Currently, the
proposed method cannot tackle the ordinal emotions.

6 CONCLUSION

In this paper, we proposed to recognize personalized emotions by jointly modelling personality
and physiological signals, which is the first comprehensive computational study about the
influence of personality on emotion. We presented Vertex-weighted Multi-modal Multi-task
Hypergraph Learning as the learning model, where (subject, stimuli) forms the vertices, and
the relationship among personality and physiological signals is formulated as hyperedges. By
introducing the vertex weights, hyperedge weights and modality weights, our method is able
to jointly explore the importance of different vertices, hyperedges and modalities. The learning
process on a hypergraph is thus more optimal for personalized emotion recognition. Further,
the proposed method can easily handle the data incompleteness issue by constructing
the corresponding hyperedge or not. Experimental results on the ASCERTAIN dataset
demonstrated the effectiveness of the proposed PER method, which can generalize to new
subjects if the personality or physiological signals are known.

For further studies, we plan to combine the multimedia content employed to evoke emotions
and the physiological signals for PER. In addition, we will predict emotion and personality
simultaneously in a joint framework to further explore the latent correlation. Constructing a
reliable large-scale dataset with personality and physiological signals would greatly promote
the research of PER. Recognizing group emotions to balance personalized emotions and
dominant emotions is an interesting and worthwhile topic. How to improve the computational
efficiency of hypergraph learning to deal with large-scale data remains to be discussed.
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