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Abstract 71 
 Leaf traits are frequently measured in ecology to provide a ‘common currency’ 72 

for predicting how anthropogenic pressures impact ecosystem function. Here, we 73 

test whether leaf traits consistently respond to experimental treatments across 27 74 

globally distributed grassland sites across four continents. We find specific leaf 75 

area (SLA; leaf area per unit mass), a commonly measured morphological trait to 76 

infer shifts between plant growth strategies, did not respond to up to four years of 77 

soil nutrient additions. Leaf nitrogen, phosphorus and potassium concentrations 78 

did increase in response to the addition of each respective soil nutrient. We found 79 

few significant changes in leaf traits when vertebrate herbivores were excluded in 80 

the short-term. Leaf nitrogen and potassium concentrations were positively 81 

correlated with species turnover, suggesting interspecific trait variation was a 82 

significant predictor of leaf nitrogen and potassium, but not of leaf phosphorus 83 

concentration. Climatic conditions and pre-treatment soil nutrient levels also 84 

accounted for significant amounts of variation in the leaf traits measured. Overall, 85 

we find that leaf morphological traits such as SLA are not appropriate indicators 86 

of plant response to anthropogenic perturbations in grasslands. 87 

 88 

Text: Biodiversity loss is accelerating at an alarming rate, particularly in grasslands 89 

due to eutrophication linked to agricultural intensification and industrial pollution1, 90 

and altered trophic level interactions such as reduced consumption by native 91 

hervivores2,3. These anthropogenic pressures also impact species composition, 92 

potentially selecting for species with particular traits, and thereby affecting ecosystem 93 

function4,5. Functionally relevant traits, rather than species richness, have been 94 

increasingly used as a “common currency” to assess the consequences of biodiversity 95 

loss6,7 on ecosystem functioning 8,9. Leaf traits are commonly used, and considered as 96 
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part of the ‘Holy Grail’6,10 set of traits, to predict plant-animal interactions11, 97 

community composition and ecosystem function in response to perturbations12.  98 

Ecology’s focus on leaf traits is based on strong eco-physiological evidence 99 

that leaves represent important investment strategies for plant growth and survival. 100 

Plants invest photosynthate and mineral nutrients in the construction of leaves, which 101 

capture light to produce more photosynthate13,14. Leaf traits such as specific leaf area 102 

(SLA) and leaf nutrient concentrations are typically used as comparative measures of 103 

how plants capitalize on these investments. SLA, measured as leaf area per unit mass, 104 

represents a trade-off between surface area for capturing photons and thickness 105 

related to structural adaptations for water conservation and herbivore defence.  106 

Indeed, leaf traits correlate across a continuum of fast to slow returns-on-investment, 107 

known as the leaf economic spectrum (LES)14-16.  108 

Fast-growing species, which are adept at resource acquisition and tend to 109 

dominate in regions with high rainfall levels and soils where resource availability is 110 

not limiting, are hypothesized to have higher SLAs and leaf nutrient 111 

concentrations10,17. High SLA is associated with lower costs of leaf construction, and 112 

higher rates of herbivory as tissue becomes more palatable6. Additionally, higher 113 

species turnover and palatability are also positively correlated with leaf nitrogen (N), 114 

phosphorus (P), and potassium (K) concentrations14-16. By contrast, slower-growing 115 

species, which exhibit resource conservation, are hypothesized to have lower SLAs 116 

and leaf nutrient concentrations14-17. As a result, slow-growing species are less 117 

palatable to herbivores, while having a longer leaf life span.  118 

Trade-offs between leaf traits discovered in the LES were shaped over 119 

evolutionary timeframes as successful trait combinations are selected for and 120 

unfavourable combinations are selected against. LES relationships were built from 121 
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comparative relationships among leaves collected across biomes ranging from tundra 122 

to tropical forests14. However, the extent to which rapid changes in structuring forces 123 

such as soil nutrient availability and reduced herbivory result in predictable shifts in 124 

trait values within a biome, like grasslands, remains equivocal6. Indeed, in agriculture 125 

the growth-dilution effect postulates that leaf nutrient concentrations may not increase 126 

in response to fertiliser because increased plant growth outpaces nutrient 127 

accumulation in tissue18 128 

SLA and leaf nutrient concentrations are commonly used as surrogate 129 

measures of broad-scale biogeographical differences12. However, leaf trait responses 130 

of individual species are also influenced by short-term local-scale abiotic and biotic 131 

factors. Climatic and edaphic conditions interact with fertilization and changes in 132 

natural disturbance regimes to sculpt community composition and ultimately 133 

ecosystem functioning5,10,11,19,20. Given the complex sets of interactions that may 134 

explain leaf trait responses to short-term environmental change, a modelling approach 135 

is necessary to discern interactions that may otherwise be missed when using 136 

traditional bi-variate analyses21,22.  137 

In a global experimental test, we quantified how leaf traits in grasslands 138 

change in response to the addition of soil nutrients (i.e., N, P and K) and the exclusion 139 

of vertebrate herbivores. We sampled leaf traits from the Nutrient Network (NutNet)23 140 

cross-continental distributed experiment established at 27 sites (Fig. 1, Supplementary 141 

Table 1). This experimental network allowed us to test how commonly measured leaf 142 

traits respond to environmental change across grasslands.  At the majority of sites, we 143 

sampled leaf traits after three to four years of treatment (five sites after two years and 144 

22 of the 27 sites after three to four years; see Supplementary Table 1 for detailed 145 

information on each site).  146 
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At each site, three blocks of ten 5 m x 5 m plots were established, and two 147 

experiments initiated: 1) a full factorial nutrient addition experiment, including the 148 

addition of all factorial combinations of N, P and K+µ, where the subscript +µ refers to 149 

the inclusion of ten other micronutrients in the first application year as part of the K 150 

addition treatment (see Borer et al.23 and Methods for more detail), and 2) a 151 

combination full nutrient addition (NPK+µ addition) and herbivore exclusion 152 

experiment where fences were built to exclude vertebrate herbivores that were larger 153 

in weight than 50 g (for more details  see Methods ).  154 

Relative cover was visually estimated before the experiment began and prior 155 

to the leaf harvest period, when leaf traits were collected from the three to five most 156 

dominant species in each plot. Overall, 243 species were sampled across the 27 sites, 157 

including grasses, forbs and legumes, and 2664 leaf samples were measured for leaf 158 

area, leaf dry weight, and leaf N, P and K concentrations24. Overall the sampled 159 

species accounted for 26% of the total vegetation cover at the time when leaves were 160 

collected. The effect sizes of the mean leaf trait values for all species in response to 161 

the experimental treatments were estimated using multilevel regression models in a 162 

hierarchical Bayesian framework using integrated nested Laplace approximation25, 163 

where the random effect structure included block nested in site nested in species. SLA 164 

values were log-transformed to meet assumptions of normality in the multilevel 165 

regression model. 166 

Results and discussion 167 

We found that SLA did not increase consistently with the treatments. We did, 168 

however, find evidence of a small but significant increase in SLA in the NP (mean 169 

log(SLA) = 8.79 mm2/g) and NPK fertiliser treatments (mean log(SLA) = 8.81 170 

mm2/g) compared to the control (mean log(SLA) = 8.69 mm2/g), suggesting 171 
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simultaneous increases in availability of N and P may be necessary to find consistent 172 

increases in SLA in grasslands (Fig. 2a)26. When we considered the variation 173 

explained by the random effects in the model, SLA showed the highest variability of 174 

any of the measured leaf traits at the site level (Fig. 3: ~75% of the variation in SLA 175 

in response to treatments was explained among sites), suggesting variation in SLA 176 

may be explained by other local abiotic and biotic factors not included in these 177 

models. These results provide a new mechanistic understanding of previous NutNet 178 

studies, which found that plant aboveground biomass increased in response to nutrient 179 

enrichment and fencing treatments, with the highest increase being recorded in the 180 

fencing treatments after just three years 27,28. Our results indicate this increase in plant 181 

biomass is not explained by an increase in SLA, but instead may be explained by the 182 

number of leaves, stems and other structural elements produced. 183 

N, P and K leaf concentrations increased significantly when the corresponding 184 

nutrients were applied as fertiliser (Fig. 2). Previous NutNet studies have found 185 

multiple-nutrient constraints on aboveground net primary production, including 186 

increased vegetation cover and biomass29. Leaf N concentration also increased in 187 

leaves with PK+µ fertilization (Fig. 2b), a likely reflection of the increased availability 188 

of N in soils30 and the importance of other nutrient limitations for increasing plant N 189 

uptake. Leaf P showed the opposite trend to leaf N and decreased in concentration 190 

when either N or NK+µ were applied as fertiliser (Fig. 2c). This trend likely reflects 191 

the limited availability of phosphate to plants, because of its high affinity to soil 192 

particles31, as otherwise we may have found an increase in Leaf P when limitations 193 

were lifted by the addition of other essential nutrients26. Leaf K concentration showed 194 

the highest variation associated with ‘species’ random effects (~60%, Fig. 3). The 195 
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fencing treatment did not significantly alter leaf nutrient concentrations only when 196 

soil nutrient addition was combined with the fencing treatment (Fig. 2).  197 

Our findings of an increase in leaf nutrient concentrations in response to the 198 

fertiliser treatments could be explained by intraspecific trait variation (increases 199 

shown by the same species over time) and by interspecific changes in dominant 200 

species following the application of treatments. After treatment initiation, changes in 201 

dominant species were observed at some study sites, whereas little change was 202 

observed at other sites. This difference is important because increases in leaf nutrient 203 

concentrations could be explained by two mechanisms: 1. current species increase 204 

their uptake of nutrients (i.e. intraspecific trait variation)32 and  2. new species are 205 

recruited into the dominant class (i.e. interspecific trait variation) as the increased 206 

nutrient availability favours their growth and establishment33. Therefore, we evaluated 207 

the effects of temporal species turnover on leaf trait responses.  We estimated 208 

temporal species turnover using Bray Curtis dissimilarity for the three to five most 209 

dominant species in each plot comparing pretreatment species composition with 210 

composition when the leaf traits were measured, two to four years later. 211 

Given the global extent of our study sites and the high amounts of variation in 212 

leaf traits found at the site level, particularly for SLA (Fig. 3), we also evaluated the 213 

effects of climatic conditions and pre-treatment soil nutrient levels. We used 214 

structural equation models to examine the influence of these additional possible 215 

drivers (see supplementary material for details on model development including 216 

Supplementary Fig. 1 to 3). Because we did not find evidence of a leaf trait response 217 

to the fencing treatments, we did not further evaluate these treatments, only the 218 

nutrient addition treatments. Overall, the R2 values for each of the leaf nutrient trait 219 

response variables were high, indicating a strong explanatory power of the models; 220 
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leaf K had the highest R2 value and SLA the lowest (leaf N, R2= 0.53; leaf P, R2= 221 

0.32; leaf K, R2= 0.55; SLA, R2 = 0.11). 222 

 All leaf traits varied with climatic and edaphic conditions (Fig. 4 and 223 

Supplementary Fig. 4). The nutrient addition treatments explained considerable 224 

amounts of variation in the leaf nutrient contents but not in SLA. Species temporal 225 

turnover was positively correlated with leaf nitrogen and potassium contents, but 226 

significant correlations were not found with the leaf phosphorus content or SLA. This 227 

result shows that a portion of the increase in the leaf nitrogen and potassium contents 228 

was explained by interspecific variation, suggesting some selection effect of the 229 

addition of these nutrients on species composition; whereas the positive response of 230 

leaf phosphorus was explained by intraspecific trait variation.  These findings 231 

corroborate other studies that have also found considerable amounts of variation in 232 

leaf chemical traits are explained by intraspecific variation32.  The duration of the 233 

nutrient addition treatments (represented as year in Fig 4 and Supplementary Fig. 4) 234 

was also positively correlated with species temporal turnover, suggesting that sites 235 

with longer treatment durations had higher species turnover. Co-variances among the 236 

leaf nutrient contents were high in the structural equation model, but SLA showed the 237 

lowest co-variation with all leaf nutrient contents (Supplementary Table 2).  238 

Before trait-based ecological studies can scale the responses of leaf traits from 239 

individuals to communities and ecosystems10, a more definitive understanding of 240 

when, where and how to interpret changes in plant trait values is needed. This 241 

includes how to match plant traits to appropriate environmental conditions depending 242 

on the characteristics of specific ecosystems. This necessitates testing plant trait 243 

responses in experimental studies, particularly in relation to local and short-term 244 

environmental changes or disturbances6. We found using a global common 245 
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experimental test of leaf trait responses, that leaf nutrient concentrations responded 246 

consistently to short-term nutrient additions, and this response is explained by both 247 

changes in dominant species and the ability of current dominant species to take up 248 

more nutrients when available. The SLA of the dominant species did not increase 249 

consistently in response to short-term nutrient addition treatments. Our findings 250 

corroborate a recent meta-analysis that found higher intraspecific variation in leaf 251 

nutrients than in morphological traits such as SLA32. Based on these findings, if 252 

species composition within treatment plots continues to turn over, we may find a 253 

clearer response in SLA. 254 

Contrary to expectations, we found little evidence of a consistent short-term 255 

increase in SLA or leaf nutrient concentrations to reduced vertebrate herbivory 256 

(fencing treatment). The lack of consistent response to the fencing treatment might be 257 

due to variation in vertebrate herbivore pressure at these globally distributed grassland 258 

sites. The majority of previous studies that have found a consistent increase in SLA 259 

and leaf nutrient concentrations with the exclusion of vertebrate herbivores focused 260 

on the impacts of cattle and sheep5,35-37, whose grazing pressure tends to be higher and 261 

known for selectivity of plant tissue for increased palatability and nutrition38.  Here, 262 

only eight of our 27 grasslands included a recent or current history of domestic 263 

grazing. Other studies that have excluded wild herbivores have found the strongest 264 

increases in SLA and leaf nutrient concentrations, when invertebrate herbivores were 265 

also excluded11,27,39; where in this experiment we only excluded vertebrate herbivores.  266 

Our findings have implications for how leaf traits are used to infer responses 267 

to local-scale environmental perturbations within grassland ecosystems. SLA should 268 

be interpreted carefully when used as a predictor of functional response to 269 

environmental change within grasslands. SLA has been found to be a reliable 270 
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indicator of plant resource utilization strategies at biogeographical-scales 19. However,  271 

a global-scale experimental test demonstrated that SLA is not a consistent indicator of 272 

the short-term response of plants to increased soil nutrients or the exclusion of 273 

vertebrate herbivores.  274 

Broad-scale biogeographical trait relationships, such as the worldwide leaf 275 

economic spectrum14, do not necessarily correlate as plant functional responses to 276 

short-term disturbance and changing abiotic conditions. Our results show that changes 277 

in individual traits, in the same species or because of species turnover, do not 278 

necessarily represent a ‘common currency’ for comparing ecosystem-level responses 279 

in grasslands to anthropogenic perturbations. When it comes to dominant plant 280 

species, leaf nutrients are responsive to elevated soil nutrients, even across sites 281 

characterized by very different climatic and edaphic conditions, and are potentially 282 

more consistent plant functional response traits than SLA, particularly in the short-283 

term.  284 

Methods  285 

Network of experimental sites 286 

The 27 study sites are part of the Nutrient Network, a cooperative globally 287 

distributed experiment (Fig. 1 and Table S1 in Supporting Information, 288 

http://www.nutnet.org/). Each experimental site had a randomized block design, and 289 

at most sites, three replicate blocks divided of ten 5 m x 5 m plots were established, 290 

resulting in a total of 30 plots per site.  291 

We quantified climatic variables (mean annual temperature, mean annual 292 

precipitation, temperature variation which is a measure of seasonality (calculate as the 293 

standard deviation * 100), precipitation variation which is a measure of seasonality 294 

(calculated as the coefficient of variation) for each site using modelled values sourced 295 
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from the WorldClim Global Climate database (version 1.4; 296 

http://www.worldclim.org). The sites included in this study represented a wide range 297 

of climatic conditions with mean annual temperatures ranging from 0.3 ºC (alpine 298 

grassland in Switzerland) to 18.4 ºC (semi-arid C4 perennial grassland in Australia) 299 

and mean annual precipitation ranging from 262 mm (shrub steppe in the USA) to 300 

1898 mm (montane grassland in the USA). 301 

Nutrient addition experiment 302 

In this experiment, we established a set of nutrient addition treatments that 303 

included a full factorial combination of three essential plant macronutrients (N, P, 304 

K+µ), including a control. The following rates of nutrients, obtained from the same 305 

chemical sources, were applied at all sites: 10 g N m-2 yr-1 as timed-release urea, 10 g 306 

P m-2 yr-1 as triple super phosphate, and 10 g K m-2 yr-1 as potassium sulphate plus a 307 

once-off addition (100 g m-2 yr-1) of macro- and micro-nutrients (i.e., Fe, S, Mg, Mn, 308 

Cu, Zn, B, Mo, Ca). At all sites, N, P, and K fertilisers were applied annually, 309 

whereas micro-nutrients were applied once at the start of the study to avoid toxicity 310 

and only in treatments that included K. Sites entered the NutNet in different years 311 

(2007-2014) and usually measured leaf traits after 3-4 years of nutrient addition 312 

(Table S2). Note that ammonium nitrate was used in 2007 at some sites before 313 

switching to urea because of increasing difficulty in sourcing ammonium nitrate 314 

globally. At a subset of these sites, we tested whether this one-year addition of 315 

ammonium nitrate would influence the outcomes of the plant community responses 316 

and found no significant effect of nitrogen source23.  317 

To quantify soil nutrients during the pre-treatment year, we first removed the 318 

litter and vegetation from the soil surface and then collected two soil cores (2.5 cm in 319 

diameter and 10 cm deep) from each plot. The plot subsamples were composited, 320 

http://www.worldclim.org/
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homogenized, and air-dried. The Ecosystems Analysis Laboratory at the University of 321 

Nebraska assayed the soils to determine C (%) and N (%) using dry combustion GC 322 

analysis (COSTECH ESC 4010 Elemental Analyzer, Costech Analytical 323 

Technologies, Valencia, California, USA). Extractable soil P and K and soil pH were 324 

assayed at A&L Analytical Laboratory (Memphis, TN). Soil pH was measured using 325 

a 1:1 soil to water slurry. 326 

Nutrient addition and herbivore exclusion experiment 327 

The vertebrate herbivore exclusion treatment was established by fencing two 328 

plots within each of the blocks. We designed the fences to exclude large aboveground 329 

mammalian herbivores, including ungulates, across a diverse range of grasslands 330 

characterized by different herbivores23. At most sites, the height of the fences was 180 331 

cm, and the fence design included wire mesh (1-cm holes) across the first 90 cm in 332 

addition to a 30-cm outward-facing flange stapled to the ground to exclude burrowing 333 

animals; climbing and subterranean animals could potentially have accessed these 334 

plots.   335 

Cover sampling within treatment plots 336 

At peak biomass, species areal cover was visually estimated using a modified 337 

Daubenmire method40, where cover is estimated to the nearest 1% within one 1-m2 338 

sub-plot in each plot. Cover was estimated independently for each species, so the total 339 

summed cover may have exceeded 100% for multilayer canopies. In the year when 340 

leaf traits were measured at each site (usually after three years of treatment), we used 341 

the cover data to identify the top three to five species (although the eight most 342 

dominant species were sampled at one site) in each plot to measure leaf traits. We 343 

chose to identify the most dominant species in each plot rather than across each site 344 
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because we wanted to capture the full range of spatial variation in composition and 345 

responses to the treatments, including species turnover.  346 

Leaf trait collection and trait analyses 347 

For each species selected for leaf trait analysis in each plot, we randomly 348 

selected five fully developed leaves with little to no signs of herbivore damage from 349 

five mature individuals. Sampling followed the standardized protocols detailed by 350 

Cornelissen et al.24. All leaves from each species in each plot were combined to 351 

measure leaf area. Depending on the resources available at each site, leaf area (mm2) 352 

was measured using various leaf area meters or using a flatbed scanner (Epson 353 

perfection V300) and image analysis software ImageJ; 41. Thereafter, all leaves were 354 

dried at 60 ºC for 48 h and then weighed (dry weight; g). SLA was calculated as leaf 355 

area divided by dry weight. SLA was calculated for all five leaves collected from each 356 

species in each plot at every site.  357 

Dried leaves were then ground, bulked per plot and per species and analysed for 358 

leaf nutrient concentrations. The leaf nitrogen content was determined using a LECO 359 

TruMac, which is based on a combustion technique that uses thermal conductivity 360 

relative to pure gas; the leaf nitrogen content is determined and is considered accurate 361 

to within 1%. The leaf potassium, and phosphorus concentrations were determined 362 

using laser ablation ICPMS after Duodu et al.42 with the following exceptions: the 363 

internal standard was not added but was measured C, the most abundant naturally 364 

occurring element was used, and no extra pulverizing was performed beyond that 365 

required for C and N analysis, which consisted of placing a sample and a 2-mm-366 

diameter tungsten carbide ball inside 2-mm plastic centrifuge vials, followed by 367 

grinding for 15 min using a TissueLyser©.  Leaves (approximately 0.2 g) were 368 

compressed in a hydraulic dye, which produced a pellet approximately 5 mm across 369 
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and 2 mm tall. These pellets were glued to a plastic tray in groups of ~100 and were 370 

placed inside the laser chamber. A New Wave 193-nm excimer laser with a True-line 371 

cell was connected to an Agilent 8800 ICPMS. The laser beam was 65 microns in 372 

diameter and was rastered across a length of approximately 500 microns for 373 

approximately 50 seconds, five times per sample with a 30-second washout or 374 

background between rasters. The laser fluence at the laser exit was approximately 2 375 

J/cm2, and the repetition rate was 7 Hz. The reference material was NIST NBS peach 376 

leaves43, and NIST NBS spinach44 was used as a monitoring standard; these were 377 

analysed every three samples (15 rasters) for moderately close sample-standard 378 

bracketing. The average and standard deviation of each element in each sample were 379 

calculated and reported after the method presented by Longerich et al.45 using Iloite  380 

data reduction software.46 381 

Data analyses 382 

Hierarchical Bayesian multilevel regression models  383 

We developed multilevel regression models in a hierarchical Bayesian 384 

framework. All analyses were run using the integrated nested Laplace approximation 385 

(INLA25) interfaced with the R statistical computing package (v. 3.3.2) 47. The default 386 

priors in INLA were used for all analyses, which included the normal distribution 387 

specified as N (mean, precision), fixed effects: intercept = N (0,0), slopes = N 388 

(0,0.001), and variances modelled as log-precision with priors of log-gamma (1, 5e-389 

5), which was specified as log-gamma (shape, inverse-scale). The random effect 390 

structure was constructed to reflect the design of the experiment, and its structure was 391 

fixed for all models, regardless of whether each component explained a significant 392 

source of variability.   393 
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We ran separate models for each of leaf trait (i.e., specific leaf area, leaf N, P 394 

and K concentrations), where yijkl denoted the response, and xjk = (x1jk, x2jk,..., xpjk) 395 

denoted the ith observation from the jth block at the kth site of the lth plant species 396 

(Fig. M1). Specific leaf area was log transformed to meet assumptions of normality. 397 

Models were constructed as follows: 398 

yijkl ~ N(jkl, 2), 399 

where  yijkl = jkl +  ul + vkl + wjkl + eijkl  400 

 jkl = 0 + 1 x1jk + 2 x2jkl + ... + p xpjkl, 401 

ul ~ N(0, 2
u),  402 

vkl ~ N(0, 2
v),  403 

wjkl ~ N(0, 2
w), and  404 

eijkl ~ N(0, 2
e) such that 2

u + 2
v + 2

w + 2
e = 2,   405 

where jkl is the fixed effects associated with species l and block j at site k, 0 is an 406 

estimate of the model intercept, and p represents the slope estimates for each linear 407 

predictor, i.e., xpjkl. In addition, ul is the random effect associated with the lth species, 408 

vkl is the random effect associated with the kth site (within species l), wjkl is the 409 

random effect associated with the jth block (within species l and site k), and eijkl is the 410 

residual error associated with the ith response of block j at site k for species l. 411 
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 412 

Fig. M1: Directed acyclic graph (DAG) used to represent the multilevel regression 413 

models in a hierarchical Bayesian framework for the overall model networks that 414 

were developed for both the nutrient addition experiment, and the nutrient addition 415 

and herbivore exclusion experiment. 416 

Once a model was fit, residual plots were inspected for any potential 417 

relationships in the data that may not have been captured by the model (residuals were 418 

calculated as the observed value of the data minus the posterior mean prediction). 419 

Plots of the cross-validated probability integral transform (PIT48) for each model were 420 

also inspected. PIT values provide estimates of the probability that the prediction is 421 

less than or equal to the corresponding observed data point, conditional on all other 422 

data. A histogram and normal quantile-quantile plot of these values were used to 423 

assess the calibration of out-of-sample predictions49. If the residual and PIT plots 424 

were reasonable, then it was concluded that the model provided a satisfactory fit to 425 

the data.  426 
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Structural equation models  427 

We began with an initial meta-model (Supplementary Fig. 2) based on a priori 428 

expert knowledge and the literature. To correct for the nested experimental design, we 429 

included a stratified independent design with blocks nested within sites as stratified 430 

variables. We used modification indices50 to standardize our decisions of adding 431 

missing paths to the model.  We used the “modindices” function in the lavaan 432 

package50, which provides a list of all missing path regressions between two variables 433 

in the model, as well as the expected effect of the addition on the model data fit (Chi-434 

square value). We used the modification indices in a stepwise approach, adding 435 

ecologically sound paths one at a time, until no modification indices were higher than 436 

2. This incremental process led to the creation of 18 different models. We then 437 

scanned path regressions and pruned all non-significant ones (based on p < 0.05), 438 

generating a final 19th model. Among the 19 competing models, 13 had a significant 439 

model-data fit (estimated by maximum likelihood50). To optimize the information-440 

parsimony trade-off, we compared those 13 models using the Akaike information 441 

criterion51.  442 

The selected best model had an AICc difference > 5 with respect to the closest 443 

model and an AICc weight of 0.77. To correct for the nested experimental design, we 444 

included a stratified independent design with blocks nested within sites as stratified 445 

variables. Using the lavaan.survey package, we extracted a robust test statistic 446 

(pseudo-maximum likelihood = 23.35, 32 model degrees of freedom, and P = 0.867), 447 

indicating a good model-data fit. All analyses were run using R 3.3.2.  448 

 449 

Data availability: The data that support the findings of this study are available from 450 

the corresponding author upon request.  451 
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