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Anthropogenic activities have greatly perturbed the global nitrogen (N) cycle. Planetary boundaries, 7 

which describe a safe operating space for humanity, have already been exceeded for the N cycle (1). 8 

In some parts of the world the environment has been effected by excess N, with negative impacts on 9 

biological diversity, human health and climate. However, in other parts of the world shortages of N 10 

mean that food needs cannot be met. Nitrogen is an abundant element on earth, it makes up 78.1% 11 

of our atmosphere and is an essential nutrient for all forms of life. Much of this N is in the form of N2 12 

gas and is unreactive and not available for use by the majority of living organisms but a portion of it, 13 

fixed by natural or man-made processes including the Haber-Bosch process, is in a reactive form (Nr 14 

– including NOy, NHx, N20, HNO3 and other organic and inorganic forms) available for use by living 15 

organisms. Over the last century the amount of Nr from anthropogenic activities has increased to 16 

such an extent that it now exceeds natural fixation and has more than doubled global cycling of N 17 

(anthropogenic 210 Tg N yr-1, natural 203 Tg N yr-1) (2). As a consequence of this increase in the 18 

fixation of N, N has become a major cause for concern in many parts of the world, polluting air, 19 

water and soil (Figure 1).  20 

A major cause of N pollution in the developed world is food production. Pollutant Nr, released to the 21 

environment during food production and consumption, stems from a range of issues including the 22 

over-use of relatively low-cost fertilisers, poor management of animal wastes, over consumption of 23 

protein and food waste. Between 1961 and 2007 both N inputs and grain yields increased globally 24 
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but, the amount of added N recovered in the harvested crops remained relatively unchanged at 25 

around 40%. This means that the amount of N lost to the environment has steadily increased. 26 

However, there are considerable inequalities in N use globally. Countries outside the OECD and in 27 

the major emerging economies the amount of N recovered in crops remains low. Not only are there 28 

nutrient deficiencies but the nutrients that are available are often used inefficiently (3). Sub-Saharan 29 

Africa provides a perfect example. Here, nutrient poor soils were yielding an average of 1 t ha-1 for 30 

grain crops in 2012, with fertiliser use averaging 9 kg ha-1 of cultivated land. By contrast, in Asia, crop 31 

yield reached 4.5 t ha-1 but this was achieved with fertiliser application averaging 96 kg ha-1 (4).  32 

Shortages of N clearly lead to large problems in meeting population demands for food, but these 33 

problems are just as intractable as the problems N pollution causes in other parts of the world.  34 

One of the major consequences of increased reactive N availability has been an increase in 35 

atmospheric deposition of Nr. Between 1900 and 1980 levels of oxidised N deposition in Europe 36 

increased by 3-4 times whilst reduced N doubled (5). The concentrations of N in plant tissues, often 37 

been considered an indicator of N status, declined between 1980 and 2017, despite globally 38 

increasing availability of Nr. Examining 38,646 terrestrial plant samples collected from areas that had 39 

not received any fertiliser input, Craine et al. (6) found global declines in foliar N concentrations. The 40 

reduction in N content seems to indicate oligotophication rather than eutrophication, i.e. there is 41 

less N available for the plants than there was in the past. Whilst there have been declines in 42 

deposition in some developed countries since 1980 this is not a global trend making this depletion of 43 

plant N reserves hard to reconcile with increased Nr emissions. The authors suggest that this is 44 

caused by increased levels of CO2 and longer growing seasons, which allows greater levels of 45 

biomass production. The authors also observe a decline in δ15N, although data are highly variable 46 

and changes are small. Since stable isotopes are measured as a ratio of the heavy and light isotopes 47 

in a sample, and atmospherically deposited sources of N would typically be light (the so-called 48 

‘Haber-Bosch effect’ (7)), the observed decline in δ15N may therefore indicate increased atmospheric 49 

deposition. Indeed, a recent modelling study has indicated increases in isotopically light N in global 50 



oceans (7), confirmed by a study of coral at a remote reef (8). Combined with the global deposition 51 

trends, this would suggest that Craine’s findings (6) may be even more pressing because the declines 52 

in plant N concentration are occurring despite a signal of increasing atmospheric deposition. 53 

Craine et al. (6) use the results to question whether humanity has exceeded a true planetary 54 

boundary for N availability because plant tissue N is falling. However, the extensive damage done to 55 

ecosystems supports the argument that we have indeed exceeded a planetary boundary. 56 

Atmospheric deposition of N has become a major driver of plant productivity globally (9) and is an 57 

important driver of species richness and composition at a continental scale (10). Considerable 58 

damage has already been done and many field experiments with simulated deposition have 59 

demonstrated considerable inertia in the recovery of soil chemistry and species composition when 60 

levels of N addition are reduced. For example, in an alpine grassland in the Rocky Mountains, USA, 61 

12 years of simulated Nr deposition had resulted in significant changes in species composition, 62 

including the decline of a previously dominant sedge and increases in other species. The study also 63 

found changes in fungal to bacterial ratio, nitrification in the soil, soil pH, toxic metal concentrations 64 

and cation concentrations. Nine years after applications of N were ceased many of these soil 65 

variables had not returned to baseline levels and nor had biota (11). This type of finding is not 66 

uncommon and it is possible, given the lack of recovery observed in some communities, that 67 

alternative stable states may have been reached in some habitats. 68 

Realisation of the extent of the damage caused by N deposition together with co-benefits from other 69 

areas of environmental policy is beginning to result in reductions in emissions and deposition of N. 70 

Deposition of oxidised N peaked in Europe in the 1980s and has since declined but there have been 71 

much smaller declines in reduced N deposition (5). Similar trends have been observed in the USA 72 

with recent reductions in deposition driven by reductions in emissions of oxidised N (12). However, if 73 

we are to reduce the creation of Nr further we need wide ranging changes to agricultural practices 74 

and our attitude to food. A recent paper highlighted the environmental pressures that the food 75 



production system places on the environment and the need to make changes to our diet, combined 76 

with technological improvements and reductions in food waste, if we are to stay within planetary 77 

boundaries, including the boundary for N. The paper includes scenarios around dietary change 78 

towards a healthier plant-based dietary pattern and not exceeding global dietary guidelines (13). 79 

Meat consumption is particularly important in terms of driving our N footprint because of the large 80 

amounts of Nr lost to the environment during meat production. Interestingly, in some countries, our 81 

relationship with N in our diet is already beginning to change, whether we are aware of it or not. 82 

Globally meat consumption continues to grow but there is some evidence that in some high-income 83 

countries meat consumption per capita is beginning to decline (14).   84 

Our N cycle has been hugely perturbed at a global scale and there is an urgent need to address the 85 

problem of excess Nr in our environment. There are many potential approaches that can be taken 86 

such as technical solutions to agricultural and industrial emissions and changes in practice in 87 

polluting sectors, but these need to be widely adopted and supported with legislative limits. There is 88 

also a need to address the lack of Nr in many regions of the world to ensure that food production is 89 

sufficient to meet requirements. This is a complex problem with many societal considerations and 90 

there is considerable debate around the role inorganic fertilisers should play (4). Balancing these two 91 

contrasting issues presents a big challenge to the communication of Nr as an environmental problem 92 

to the public and is one which can only be addressed through interdisciplinary collaboration 93 

between a range of scientists, social scientists, governments and non-governmental organisations. 94 

Nr excesses and shortages are set to continue to be major environmental issues into the future so 95 

increasing awareness, changing behaviours and increasing regulation, particularly to reduce N 96 

emissions, must all come together to address this global problem. 97 
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Figure 1. Problems associated with excess and insufficient nitrogen in terrestrial systems. 117 

Information on the probnlems associated with insufficient nitrogen is based on (3). 118 


