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Abstract：Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar 20 

(PALSAR) HH and HV polarization data were used previously to produce annual, global 25 m forest 21 

maps between 2007 and 2010, and the latest global forest maps of 2015 and 2016 were produced by 22 

using the ALOS-2 PALSAR-2 data. However, annual 25 m spatial resolution forest maps during 2011-23 

2014 are missing because of the gap in operation between ALOS and ALOS-2, preventing the 24 

construction of a continuous, fine resolution time-series dataset on the world’s forests. In contrast, the 25 

MODerate Resolution Imaging Spectroradiometer (MODIS) NDVI images were available globally since 26 

2000. This research developed a novel method to produce annual 25 m forest maps during 2007-2016 by 27 

fusing the fine spatial resolution, but asynchronous PALSAR/PALSAR-2 with coarse spatial resolution, 28 

but synchronous MODIS NDVI data, thus, filling the four-year gap in the ALOS and ALOS-2 time-series, 29 

as well as enhancing the existing mapping activity. The method was developed concentrating on two key 30 

objectives: 1) producing more accurate 25 m forest maps by integrating PALSAR/PALSAR-2 and 31 

MODIS NDVI data during 2007-2010 and 2015-2016; 2) reconstructing annual 25 m forest maps from 32 

time-series MODIS NDVI images during 2011-2014. Specifically, a decision tree classification was 33 

developed for forest mapping based on both the PALSAR/PALSAR-2 and MODIS NDVI data, and a 34 

new spatial-temporal super-resolution mapping was proposed to reconstruct the 25 m forest maps from 35 

time-series MODIS NDVI images. Three study sites including Paraguay, the USA and Russia were 36 

chosen, as they represent the world’s three main forest types: tropical forest, temperate broadleaf and 37 

mixed forest, and boreal conifer forest, respectively. Compared with traditional methods, the proposed 38 

approach produced the most accurate continuous time-series of fine spatial resolution forest maps both 39 

visually and quantitatively. For the forest maps during 2007-2010 and 2015-2016, the results had greater 40 

overall accuracy values (more than 98%) than those of the original JAXA forest product. For the 41 
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reconstructed 25 m forest maps during 2011-2014, the increases in classifications accuracy relative to 42 

three benchmark methods were statistically significant, and the overall accuracy values of the three study 43 

sites were almost universally greater than 92%. The proposed approach, therefore, has great potential to 44 

support the production of annual 25 m forest maps by fusing PALSAR/PALSAR-2 and MODIS NDVI 45 

during 2007-2016. 46 

 47 

Keywords: ALOS PALSAR, ALOS-2 PALSAR-2; Forest mapping; MODIS NDVI; Spatial-temporal; 48 

Downscaling; Super-resolution mapping. 49 
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1. Introduction 51 

Forests store a large amount of terrestrial carbon and provide the natural habitats for almost two-52 

thirds of the Earth’s biodiversity (Gillespie et al. 2008). Despite their importance, the world’s forests are 53 

decreasing at a rate of approximately 7 million ha annually (Canadell and Raupach 2008), including 54 

significant deforestation in the tropics, because of activities such as fuel-wood collection, agricultural 55 

expansion, industrialization and urbanization (Curtis et al. 2018; Foley et al. 2005). Many ecosystem 56 

services and climate-related problems, including accelerated soil erosion, biodiversity losses and 57 

increasing concentrations of atmospheric greenhouse gases, were enhanced by the loss and degradation 58 

of forests (Foley et al. 2005; Pan et al. 2011). Meanwhile, in some parts of the world, for example, due 59 

to the reforestation and afforestation supported by East Asian countries (Fang et al. 2001) and 60 

improvement of forest conditions in European countries (Kauppi et al. 1992), forest areas in these regions 61 

are increasing locally. These new forests have become a substantial sink of atmospheric carbon and 62 

contribute to addressing the problems caused by the loss and degradation of forests (Foley et al. 2005). 63 

With the threat to the World’s forest resources increasing, accurate and timely monitoring of forest cover 64 

change, including both decreases and increases, is needed urgently (Curtis et al. 2018; Sexton et al. 2016). 65 

Given the extensive spatial coverage and frequent revisit capabilities of Earth observation sensors, 66 

remote sensing has become an effective tool for monitoring the Earth’s forest resources. At a regional 67 

scale, a variety of remote sensing datasets have been applied to produce forest maps. For example, Achard 68 

and Estreguil (1995) applied the Advanced Very High Resolution Radiometer (AVHRR) to map forest 69 

cover across Southeast Asia. Morton et al. (2005) applied MODerate resolution Imaging 70 

Spectroradiometer (MODIS) data to assess deforestation in the Brazilian Amazon. Hansen et al. (2008) 71 
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integrated both MODIS and Landsat data to monitor forest cover change in the Congo Basin. Pekkarinen 72 

et al. (2009) applied Landsat Enhanced Thematic Mapper plus (ETM+) data to produce Pan-European 73 

forest maps. Dong et al. (2012) applied a range of datasets, including the Phased Array type L-band 74 

Synthetic Aperture Radar (PALSAR), MEdium Resolution Imaging Spectrometer (MERIS), and MODIS 75 

together with Forest Resources Assessments (FRA), to produce forest maps of Mainland Southeast Asia. 76 

However, given the rapidly expanding number of available remote sensing satellite sensor datasets, it is 77 

of great interest to consider how to provide time-series “wall-to-wall” forest maps, which have a fine 78 

spatial resolution (FR) and are updated at a high temporal frequency, to monitor the world’s forest cover 79 

and its dynamics at the global scale (Motohka et al. 2014). 80 

With the inherent benefits of spatial and temporal consistency, satellite-derived forest cover and 81 

change mapping at the global scale is currently a research priority. Generally, forest cover can be obtained 82 

from satellite-derived global land cover datasets, such as the 1 km Global Land Cover (GLC2000) dataset 83 

(Bartholome and Belward 2005) for 2000, the 1 km Global Land Cover dataset provided by National 84 

Mapping Organizations (GLCNMO) for 2003 (Tateishi et al. 2011), the 300 m Global Land Cover 85 

Product (GlobCover) for 2005, 2006 and 2009 (Bicheron et al. 2011), the 500 m annual MODIS Global 86 

Land Cover type product (MCD12Q1) (Friedl et al. 2002) and the latest 30 m Finer Resolution 87 

Observation and Monitoring-Global Land Cover product (FROM-GLC) (Gong et al. 2013). But these 88 

satellite-derived global land cover products do not focus exclusively on forest cover and, thus, cannot 89 

assure the accuracy of forest cover mapping (Kaptué Tchuenté et al. 2011). 90 

Fortunately, various satellite-derived products focusing on global forest cover have been developed. 91 

The first is annually MODIS Vegetation Continuous Field (VCF) product, which was derived from the 92 

images of MODIS carried on the Terra and Aqua satellites since 2000 (DiMiceli et al. 2011; Hansen et 93 
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al. 2003). The MODIS VCF is currently the only product that can provide annual tree canopy cover since 94 

2000, but many tree cover change occurs in patches have smaller spatial size than the MODIS VCF (Jin 95 

and Sader 2005a). Subsequently, a global continuous field tree cover product (30 m) was produced by 96 

using the Landsat series data for circa 2000, 2005 and 2010 (Sexton et al. 2013). Compared with the 97 

MODIS VCF, Landsat tree cover product has a finer spatial resolution, which supports more accurate 98 

forest cover change assessment. However, due to the relatively infrequent revisit coverage provided by 99 

the Landsat data in combination with cloud cover contamination (Townshend et al. 2012), global mosaics 100 

were produced only for the years 1975, 1990, 2000, 2005 and 2010 (Hansen et al. 2009). Therefore, it is 101 

impossible to produce global wall-to-wall Landsat tree cover maps on an annual basis, and this limits the 102 

application of the Landsat tree cover product for long-term observation and monitoring of global forest 103 

cover change. More recently, a global 30 m forest cover change product was published during 2000-2012 104 

(Hansen et al. 2013). This latest product provided global forest loss per year during 2000-to-2017 through 105 

the application of a statistical sampling approach, but the forest gain was provided for 2012 only and 106 

limited to a specific inter-annual period. It is noteworthy that information on forest gain is crucial for 107 

some studies, but forest cover gain maps cannot be provided on an annual basis for this product (Hansen 108 

et al. 2013). 109 

The Japan Aerospace Exploration Agency (JAXA) launched the Advanced Land Observing Satellite 110 

(ALOS) with the PALSAR in January 2006, and it provided annual global time-series cloud-free 111 

PALSAR data covering all the world’s forests during 2007-to-2010. Numerous studies have 112 

demonstrated that the low-frequency L-band Synthetic Aperture Radar (SAR) (24 cm) is more sensitive 113 

to forest characteristics than other widely used SAR bands (Rosenqvist et al. 2000; Shimada and Isoguchi 114 

2002). With the global ALOS PALSAR mosaics, a new global, annual, wall-to-wall forest map product 115 
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from 2007 to 2010 with a spatial resolution of 25 m, was obtained using a threshold method. Forest in 116 

this product is defined as natural forest patches with the area larger than 0.5 ha and tree canopy cover 117 

over 10% (Shimada et al. 2014), mirroring the Food and Agriculture Organization (FAO) definition (FAO 118 

2010). The ALOS PALSAR forest map products provided the first global annual 25 m fine spatial 119 

resolution forest cover mapping, and are useful for investigating forest cover change, the terrestrial origin 120 

of carbon emissions, and promoting the activity of the Reducing Emissions from Deforestation and forest 121 

Degradation Plus (REDD+) programme. However, the ALOS PALSAR data acquisition ended in April 122 

2011 because of a power failure suffered by the satellite. Thus, forest map products were produced only 123 

for the four years: 2007, 2008, 2009 and 2010. Fortunately, the ALOS-2 satellite was launched 124 

successfully in May 2014. As an upgrade of ALOS PALSAR, the PALSAR-2 sensor aboard ALOS-2 125 

started to provide global PALSAR-2 data since 2015. However, because of the gap between the demise 126 

of ALOS-1 and the launch time of ALOS-2, the annual ALOS PALSAR datasets between 2011 and 2014 127 

inclusive do not exist. Therefore, annual ALOS PALSAR forest maps are missing during 2011-to-2014. 128 

To provide a long-term, annual, 25 m forest map product, there is a desire to reconstruct the ALOS 129 

PALSAR forest maps during 2011-2014. Since there is no ALOS PALSAR or ALOS-2 PALSAR-2 130 

dataset during this period, alternative remote sensing satellite sensor datasets need to be utilized during 131 

2011-to-2014. With a large number of freely available satellite sensor datasets available, it is possible to 132 

provide remote sensing datasets at different spatial resolutions during 2011-2014. However, to be suitable, 133 

the remote sensing dataset should satisfy a key criterion; that is, the dataset should be collected at the 134 

global scale and be capable of showing the annual change. The Landsat series datasets, including 135 

Thematic Mapper (TM, Landsat 5), Enhanced Thematic Mapper Plus (ETM+, Landsat 7) and 136 

Operational Land Imager (OLI, Landsat 8), can be acquired free from the USGS since 2008 (Woodcock 137 
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et al. 2008), and are a reasonable choice. However, the relatively infrequent revisit interval makes it 138 

challenging to assemble annual Landsat dataset mosaics at the global scale during 2011-2014. Moreover, 139 

there are almost no available Landsat TM or OLI images in 2012, since Landsat 5 was out of operation 140 

in November 2011 and Landsat 8 was launched in February 2013. Other optical remote sensing satellite 141 

sensor datasets, such as from sensors carried by the SPOT and Advanced Spaceborne Thermal Emission 142 

and Reflection Radiometer (ASTER), have similar problems as those of the Landsat satellites. Although 143 

the Radarsat-2 system can provide cloud-free FR SAR mosaics at the global scale with an interval of one 144 

year for forest mapping (Evans et al. 2010; Maghsoudi et al. 2013), it is not free, which could make the 145 

cost of utilization of Radarsat-2 datasets prohibitive. 146 

In contrast to the fine spatial resolution systems, the moderate spatial resolution remote sensing 147 

satellite systems, such as MODIS and MERIS, are more suitable, as they are freely available at the global 148 

scale and have a daily revisit capability and wide swath width. Since the ENVISAT satellite lost contact 149 

with Earth in April 2012, the MERIS sensor it carried has not been providing data since then. Fortunately, 150 

MODIS can produce a global, timely, wall-to-wall dataset at spatial resolutions of 250 m and 500 m with 151 

less than one-year intervals from 2000 to the present day (Giri et al. 2005). Motivated by this situation, 152 

this research aimed to use the MODIS images as the data source to reconstruct the missing PALSAR 153 

forest maps during 2011-2014, so as to provide an uninterrupted time-series of annual FR forest maps 154 

from 2007-to-2016. Specifically, the 250 m time-series MODIS NDVI product was chosen, because it 155 

contains much phenological information about the spatio-temporal features of different forest types 156 

around the world. Moreover, MODIS NDVI images have been previously used together with PALSAR 157 

datasets to increase the forest cover mapping accuracy in monsoonal Asia in 2010 (Qin et al. 2016) and 158 

South America during 2007-2010 (Qin et al. 2017). 159 
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MODIS NDVI images have a spatial resolution that is coarser than the ALOS PALSAR forest map, 160 

and consequently, MODIS images are often dominated by mixed pixels in spatially heterogeneous areas 161 

(Keshava and Mustard 2002). Spectral unmixing methods are commonly applied to MODIS NDVI data 162 

to estimate fractional forest cover (Beck et al. 2006; Xiao and Moody 2005). Compared with traditional 163 

pixel-based classification schemes, fractional forest cover is able to depict areas of heterogeneous land 164 

cover and estimates the percentage of each land cover within each pixel (Keshava and Mustard 2002). 165 

Although spectral unmixing method extracts sub-pixel information from the mixed pixels of MODIS 166 

NDVI, the outputs are limited to the percentage values and have the same spatial resolution as the input. 167 

Super-resolution mapping (SRM) is a method employed to predict the spatial locations of sub-pixels 168 

for different land cover class fractions obtained from spectral unmixing (Atkinson 1997; Foody 1998). 169 

In this context, the fractional forest map can be used for the SRM model to generate FR forest maps. 170 

Thus, SRM is potentially capable to reconstruct the 25 m ALOS PALSAR forest maps from the MODIS 171 

NDVI images during 2011-2014. In the present case, using only the input of coarse spatial resolution 172 

(CR) proportional land cover images, many SRM algorithms, such as pixel swapping (Atkinson 2005; 173 

Su et al. 2012), Hopfield neural network (Muad and Foody 2012; Tatem et al. 2002), Markov random 174 

field (Kasetkasem et al. 2005), direct mapping (Ge et al. 2009), interpolation (Ling et al. 2013), spatial 175 

attraction (Mertens et al. 2006) and spatial regularization (Mertens et al. 2006; Zhong et al. 2015), are 176 

unlikely to provide satisfactory results (Atkinson 2013), because the scale ratio between the 250 m 177 

MODIS NDVI images and 25 m ALOS PALSAR forest map is large. 178 

Noteworthy is that the above SRM methods are based on mono-temporal CR fractional maps. There 179 

is, however, another kind of SRM that is based on multi-temporal CR proportion images, and can utilize 180 

the prior information contained within previous land cover maps (Foody and Doan. 2007). By integrating 181 
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CR proportion images at the time of prediction and FR land cover map at a previous time, a sub-pixel 182 

land cover change mapping (SLCCM) method was proposed by Ling et al. (2011). Subsequently, Wang 183 

et al. (2015) proposed a fast sub-pixel change detection approach, Li et al. (2014b) proposed a Hopfield 184 

neural network spatial-temporal SRM approach, Wu et al. (2017) proposed a back-propagation neural 185 

network spatial-temporal SLCCM method, and Xu et al. (2017) proposed a sparse representation sub-186 

pixel change detection method. In terms of land cover applications, Li et al. (2017) proposed a novel 187 

fusion model to generate time-series of FR land cover maps, Li et al. (2014a) used 500 m MODIS 188 

reflectance images to generate FR forest maps by developing a Markov Random Field based spatial-189 

temporal SRM approach, and Zhang et al. (2017a) produced FR time-series forest maps from multiscale 190 

MODIS images by proposing a learning-based spatial-temporal SRM method. 191 

It is noteworthy that the existing 25 m PALSAR/PALSAR-2 forest maps during 2007-2010 and 192 

2015-2016 contain much forest cover spatial pattern information. Abovementioned spatial-temporal 193 

SRM methods are, therefore, expected to reconstruct the missing PALSAR forest maps during 2011-194 

2014 from MODIS NDVI images by integrating the prior information in existing 25 m 195 

PALSAR/PALSAR-2 forest maps. However, current, state-of-the-art, spatial-temporal SRM models are 196 

developed based on one (previous) or two (previous and later) FR land cover maps. In fact, all of the 197 

PALSAR/PALSAR-2 forest maps during 2007-2010 and 2015-2016 contain useful prior information, 198 

which may benefit the reconstructed forest maps during 2011-2014. Motivated by this, a novel spatial-199 

temporal SRM model is developed to reconstruct the ALOS PALSAR forest maps during 2011-2014 200 

from MODIS NDVI images by taking advantage of all the PALSAR/PALSAR-2 forest maps during 201 

2007-2010 and 2015-2016. Moreover, to further improve the accuracy of forest mapping from existing 202 

PALSAR/PALSAR-2 data, a decision tree algorithm was used to produce new PALSAR/PALSAR-2 203 
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forest maps during 2007-2010 and 2015-2016. It could not only produce more accurate FR forest maps 204 

during 2007-2010 and 2015-2016, but also improve the reconstructed FR forest maps during 2011-2014, 205 

as the new FR forest maps during 2007-2010 and 2015-2016 are the input of the new spatial-temporal 206 

SRM method. 207 

The major objectives of this research were to: (a) generate more accurate FR forest maps by fusing 208 

PALSAR/PALSAR-2 and MODIS NDVI data during 2007-2010 and 2015-2016; (b) estimate 250 m 209 

forest and non-forest fraction (FNF) maps during 2011-2014 from annual time-series MODIS NDVI 210 

images with kernel ridge regression (KRR); (c) develop a new spatial-temporal SRM model that is based 211 

on all the existing FR forest maps during 2007-2010 and 2015-2016, and apply it to reconstruct FR forest 212 

maps for 2011-2014; (d) produce annual FR forest cover change maps (forest cover increase and decrease) 213 

during 2007-2016 for the selected study sites.  214 
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2. Study area and data 215 

2.1 Study area 216 

To validate the performance of the proposed approach for the world’s various forests, three study 217 

sites located in Paraguay, USA and Russia were selected, as they represent examples of the Earth’s three 218 

main forest types: tropical forest, temperate broadleaf and mixed forest and boreal forest, respectively. 219 

The locations of the three study sites and the corresponding ALOS PALSAR images (RGB: HH, HV and 220 

HH-HV) for 2010 are shown in Fig. 1. 221 

 222 
Fig. 1. Geolocations of the three study sites in this research. (a) Paraguay tropical forest; (b) USA temperate broadleaf and mixed 223 

forest; (c) Russia boreal forest. 224 

Paraguay is situated on the northern part of the plain of La Plata, and the Paraguay river divides it 225 

from north to south into two parts. The eastern side of the Paraguay river comprises hills, marshes, and 226 

plains. It accounts for about one-third of the territory and more than 90% of the country's populations. 227 

The western side of the Paraguay river, referred to Chaco area, is mostly covered by grasslands and 228 

tropical dry forests. The study area in Paraguay was at the province of Boquerón, which is in the 229 

northwest of the Chaco area. During the past few decades, serious deforestation of tropical dry forest 230 

occurred in the Chaco woodlands of Paraguay (Hansen et al. 2013). 231 
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The study site within the USA was located in the southeast of Arkansas, an area covered by 232 

temperate broadleaf and mixed forests. It is noted that there are almost no natural forests in the 233 

southeastern USA, as the forests in this area are often associated with extensive forestry land use (Hansen 234 

et al. 2013; Olson et al. 2001). Short-cycle tree planting and harvesting which may result in forest 235 

increase or decrease is customary for the forest covers in southeastern Arkansas. 236 

As most regions of Siberia belong to the cold climate of sub-arctic coniferous forests, vegetation in 237 

Siberia, Russia is covered mainly by the tundra, forest swamps, Taiga coniferous forests, and forest 238 

grasslands. The study site in Russia was selected in the west of the Yakutsk city of Russia, which is in 239 

the center of Siberia and is covered by boreal forests. Due to frequent forest fires, this region has 240 

experienced significant forest loss of boreal forests, which contribute greatly to global carbon emissions 241 

(Alexander et al. 2014). 242 

2.2 Datasets and preprocessing 243 

The input and validation of the proposed approach include three datasets: PALSAR/PALSAR-2, 244 

MODIS NDVI and reference forest/non-forest points. The MODIS NDVI dataset is based on the 16-day 245 

250 m MODIS NDVI product of MOD13Q1, and it was collected from the NASA Earthdata search 246 

website (https://search.earthdata.nasa.gov/search) as the dataset: “MODIS/Terra Vegetation Indices 16-247 

Day L3 Global 250 m SIN Grid V006”. Details of the PALSAR/PALSAR-2 and MODIS NDVI images 248 

are listed in Table 1. For each of the study sites, there are four scenes of ALOS PALSAR images during 249 

2007-2010, two scenes of ALOS-2 PALSAR-2 images during 2015-2016, and 230 scenes of MOD13Q1 250 

images during 2007-2016 (23 scenes per year). More information about these datasets and the 251 

preprocessing are reported in the following sections. 252 

Table 1. Details of the datasets including PALSAR/PALSAR-2 and MOD13Q1 used in this research. 253 
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Dataset Spatial resolution (m) Area (km2) Track number Years Number 

ALOS PALSAR 25 112.5 × 112.5 

S21W061(Paraguay) 

N34W092(USA) 

N64E126(Russia) 

2007-2010 12 

ALOS-2 PALSAR-

2 
25 112.5 × 112.5 

S21W061(Paraguay) 

N34W092(USA) 

N64E126(Russia) 

2015-2016 6 

MOD13Q1 250 1200 × 1200 

h12v11(Paraguay) 

h10v05(USA) 

h23v02(Russia) 

2007-2016 690 

2.2.1 25 m ALOS PALSAR and ALOS-2 PALSAR-2 254 

JAXA launched the ALOS satellite on Jan. 24, 2006 and it operated until April 2011, but then 255 

stopped working because of a power failure, while the ALOS-2 was launched on May 24, 2014. At the 256 

beginning of 2014, JAXA started to release the annual global 25 m ALOS PALSAR mosaic for 2007-257 

2010 and ALOS-2 PALSAR-2 mosaic since 2015, and it also provided annual global 25 m FNF maps 258 

during 2007-2010 and 2015-2017 by classifying the backscattering intensity values in 259 

PALSAR/PALSAR-2 mosaics (http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm, where the 260 

mosaics were tiled into 1°×1° areas of 4500×4500 pixels). Fine Beam Dual (FBD) modes of PALSAR 261 

and PALSAR-2 are based on the dual polarizations of horizontally transmitted and horizontally (HH) and 262 

horizontally transmitted and vertically (HV). For both PALSAR and PALSAR-2, the digital number 263 

values of original HH and HV polarizations were converted into the normalized gamma-naught radar 264 

backscattering coefficients o  (unit: decibel, dB). Let C be the absolute calibration factor of -83. The 265 

conversion process is expressed as (Rosenqvist et al. 2007): 266 

2

10( ) 10 log DNo dB C    .                           (1) 267 

It is well known that “salt and pepper” noise is generally contained in the PALSAR/PALSAR-2 268 

image. The adaptive Enhanced Lee filter, which is used widely for SAR image despeckling (Yu and 269 

http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
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Acton 2002), was, therefore, applied to the HH and HV images, so as to reduce “salt and pepper” noise, 270 

where the spatial size of the adaptive Enhanced Lee filter was 5×5 pixels. In addition to the HH and HV, 271 

the difference and ratio values between them are also used for forest mapping. Therefore, there were four 272 

layers, including HH, HV, HH-HV and HH/HV, in the merged SAR images. From the false color map of 273 

PALSAR (RGB: HH, HV, and HH-HV) shown in Fig. 2, it is evident that forest cover in all of the study 274 

sites is distinguished from other land covers, such as soil, water and vegetation. 275 

2.2.2 Time-series MODIS NDVI 276 

The MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m composite product (version V006) 277 

of MOD13Q1 was employed in this research, where each value of MOD13Q1 indicates the best quality 278 

pixel value within the observed 16-days period. The NDVI was selected from the two available 279 

vegetation indices (EVI and NDVI) in the MOD13Q1 product. For each year, there are 23 scenes of 280 

MOD13Q1 NDVI images, but it is difficult to ensure that all of the pixels within the NDVI time-series 281 

are of good quality because of the clouds, atmospheric changes, and satellite system errors. To reduce 282 

singular pixels in the MOD13Q1 NDVI images and reconstruct the long-term change trend of vegetation, 283 

the Savitzky-Golay filter (Chen et al. 2004) was applied to the annual time-series NDVI images. As 284 

shown in the third column of Fig. 2, the mean NDVI curves, after application of the Savitzky-Golay filter, 285 

of forest covers in the three study sites are continuous and smooth and, thus, have great potential to 286 

characterize the spatio-temporal features of the three different forest types. The annual maximum NDVI 287 

images (termed as MODIS NDVImax) were calculated from the 23 scenes of 16-days MOD13Q1 NDVI 288 

images of each year, and they can be integrated with the PALSAR/PALSAR-2 images of the years of 289 

2007-2010 and 2015-2016 to increase the classification accuracy of the forest maps (Qin et al. 2017). 290 
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 291 
Fig. 2. PLASAR, MODIS NDVI images and time-series NDVI curves of forest cover at the year of 2010 for three study areas. 292 

(Note: the mean NDVI curves were generated for one forest pixel in each of the study areas) 293 

  294 
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3. Methods 295 

By fusing the time-series PALSAR/PALSAR-2 and MODIS NDVI data, the proposed approach 296 

aims to produce annual 25 m forest maps during 2007-2016. It is noteworthy that this research follows 297 

the same definition of forest cover as used in the JAXA PALSAR/PALSAR-2 FNF maps, where tree 298 

covered land with an area larger than 0.5 ha, height over 5 m and canopy cover over 10%, is defined as 299 

“forest cover” (Shimada et al. 2014), the same as the FAO definition (FAO 2010). In the following 300 

sections 3.1 and 3.4, the collections of the regions of interests (ROIs) for forest and reference ground 301 

forest samples were both based on this definition of “forest cover”, so as to make the generated 25 m 302 

forest maps during 2007-2016 consistent with the adopted definition of “forest cover”. 303 

 304 

Fig. 3. The proposed methodology. 305 
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As shown in Fig. 3, there are three main stages for the proposed approach: 1) generation of more 306 

accurate 25 m forest maps during 2007-2010 and 2015-2016 by integrating PALSAR/PALSAR-2 and 307 

MODIS NDVImax images; 2) estimation of the 250 m FNF fraction maps during 2011-2014 from annual 308 

time-series MODIS NDVI by using the nonlinear spectral unmixing method of KRR; 3) reconstruction 309 

of the 25 m forest maps during 2011-2014 from the annual generated 250 m FNF fraction maps during 310 

2011-2014 and 25 m forest maps during 2007-2010 and 2015-2016 with a new spatial-temporal SRM 311 

method. 312 

3.1 Forest mapping by integrating PALSAR/PALSAR-2 and MODIS NDVI 313 

JAXA released annual global 25 m forest maps during 2007-2010 and 2015-2017 by classifying the 314 

PALSAR/PALSAR-2 mosaic. However, since PALSAR/PALSAR-2 cannot provide phenological 315 

information about the forests, many other land covers (such as bare rock and bush) which have similar 316 

backscattering characteristics as those of forest may be misclassified as forest. To solve this issue, some 317 

studies integrated PALSAR/PALSAR-2 and MODIS NDVImax to produce more accurate forest maps 318 

(Dong et al. 2012; Qin et al. 2016; Qin et al. 2017; Sheldon et al. 2012). Therefore, a decision tree 319 

algorithm based on the PALSAR/PALSAR-2 and MODIS NDVI images was implemented to map forests. 320 

Table 2. Threshold values of the PALSAR and PALSAR-2 merged images to map forest cover for the three study sites. 321 

  HV HH HH-HV HH/HV 
MODIS 

NDVI 

Paraguay 
PALSAR -11.52~-15.59 -5.68~-10.50 2.51~7.52 0.45~0.80 0.55~1.0 

PALSAR-2 -9.74~-15.75 -2.98~-11.05 2.51~9.62 0.34~0.81 0.55~1.0 

Russia 
PALSAR -9.62~-16.17 -3.83~-10.92 3.35~8.4 0.34~0.71 0.76~1.0 

PALSAR-2 -10.21~-19.13 -4.56~-10.85 3.13~9.37 0.38~0.76 0.76~1.0 

USA 
PALSAR -8.15~-13.36 -2.79~-8.24 1.46~8.73 0.27~0.82 0.72~1.0 

PALSAR-2 -7.90~-14.11 -2.86~-9.60 0.93~8.49 0.32~0.90 0.72~1.0 

As forests in the three study sites have different structural properties, threshold values were 322 

calculated per study site for the decision tree algorithm. Moreover, because satellite sensor differences 323 
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existed between ALOS PALSAR and ALOS-2 PALSAR-2, threshold values were also calculated 324 

individually for the PALSAR and PALSAR-2 merged images. By contrast, as annual HH and HV 325 

backscatter values for PALSAR during 2007-2010 were relatively stable through time (Qin et al. 2017), 326 

threshold values used to distinguish forests for each of the study sites were held constant and calculated 327 

by using the ROIs for forests, which were collected from the Google Earth high resolution images. For 328 

the collection of forest ROIs, it is based on the definition of “forest cover” by FAO (FAO 2010). The 329 

same operation was also applied to PALSAR-2 HH and HV backscatters during 2015-2016. Table 2 330 

reports the threshold values of PALSAR and PALSAR-2 merged images with regard to the three study 331 

sites, and then the 25 m forest maps during 2007-2010 and 2015-2016 were produced based on the 332 

threshold values. 333 

3.2 Estimating forest fraction maps from time-series MODIS NDVI with KRR 334 

Since the world’s forests vary greatly, even within a single region, it is difficult to distinguish diverse 335 

forest types with only one satellite sensor image. Time-series MODIS NDVI contains significant 336 

phenological information about the growth of various vegetation types and has been used widely to 337 

identify crops (Wardlow and Egbert 2008), grasslands (Gu et al. 2007) and forests (Jin and Sader 2005b). 338 

Here, annual time-series MODIS NDVI data (23 scenes per year) were applied to produce forest fraction 339 

maps during 2010-2014 for the distinct forests established at the three study sites. 340 

Instead of directly generating forest fraction maps from the annual MODIS NDVI images by 341 

temporal linear mixture analysis of the NDVI profile (Xiao and Moody 2005), a nonlinear method based 342 

on KRR was used. Nonlinear methods based on machine learning approaches such as support vector 343 

regression, backpropagation neural network and KRR (Bioucas-Dias et al. 2012), have been used widely 344 
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for the estimation of fraction maps, as they can account for the nonlinear mixing of land covers (Keshava 345 

and Mustard 2002). Compared with the temporal linear mixture analysis method, producing a forest 346 

fraction map with KRR can take advantage of existing 25 m forest maps, removing the need to provide 347 

endmembers for the various land covers. Additionally, KRR is composed of training and predicting 348 

models and has only a few parameters (An et al. 2007), helping to achieve stable performance in real-349 

world applications (Kim and Kwon 2010; Zhang et al. 2018). 350 

 351 
Fig. 4. The process of estimating forest fraction maps from time-series MODIS NDVI by using KRR. 352 

Fig. 4 shows the process of estimating forest fraction maps from time-series MODIS NDVI with 353 

KRR. First, existing 25 m forest maps during 2007-2010 and 2015-2016 were averaged spatially to 354 

produce annual 250 m forest fraction maps. The generated 250 m forest fraction maps and corresponding 355 

annual time-series MODIS NDVI images during 2007-2010 and 2015-2016 were then used as the 356 

training dataset for the KRR training model. As the performance of the KRR model may be seriously 357 

impacted if the size of elements in the training dataset is too numerous (Kim and Kwon 2010), the 358 

estimation of forest fraction maps with KRR was completed pixel-by-pixel. As shown in Fig. 4, given a 359 

target pixel (red pixel) in the time-series MODIS NDVI images (at any year during 2010-2014), a vector 360 

that is composed of 23 NDVI values was used as the input to the KRR predicting model. With the same 361 
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location of the target pixel, six vectors can be extracted from the MODIS NDVI images and six 362 

corresponding forest fraction values can be extracted from the forest fraction maps during 2007-2010 363 

and 2015-2016, where the MODIS NDVI values are the input and the forest fraction values are the output 364 

of the KRR training model. However, these six vector pairs (one vector pair is composed of 23 NDVI 365 

values and one corresponding forest fraction value) are inadequate for the KRR training model. To 366 

appropriately increase the size of training dataset, vectors based on the pixels (blue pixels in Fig. 4) that 367 

are around the target pixel were also used in the training dataset. Assume the width of the pixel window 368 

was 3, there will be 3×3×6=54 vector pairs in each training dataset. Once the training model was 369 

completed, it was combined with the KRR predicting model to estimate the forest fraction value of the 370 

target pixel. The whole forest fraction maps during 2007-2010 and 2015-2016 were estimated pixel-by-371 

pixel and year-by-year. After the forest fraction map was estimated, the non-forest fraction map was 372 

produced automatically since the sum of the forest and non-forest fraction values per pixel is one. 373 

The training data (see Fig. 4) used in this section are 250 m forest fraction maps which were 374 

produced by averaged spatially from the existing 25 m forest maps during 2007-2010 and 2015-2016 in 375 

section 3.1. As mentioned above, the generation of 25 m forest maps during 2007-2010 and 2015-2016 376 

was based on the collection of ROIs of forest defined as “tree covered land with an area larger than 0.5 377 

ha, tree height over 5 m and canopy cover over 10%”. Therefore, the definition of “forest cover” in the 378 

training data is consistent with that of the existing 25 m forest maps during 2007-2010 and 2015-2016. 379 

3.3 Reconstructing FR forest maps with a new spatial-temporal SRM method 380 

Let ( )pA t  be the 25 m forest map at the predicting time 
pt , with the aim of the proposed spatial-381 

temporal SRM method being to reconstruct it. Assume that 250 m FNF fraction maps ( )pF t   at the 382 



22 

 

prediction time have been produced with the above KRR algorithm, and ( )iA t  is the existing 25 m forest 383 

map at time 
it . z  is the spatial ratio (scale) between the PALSAR/PALSAR-2 and MODIS images 384 

(where z  is equal to 250m/25m=10). Each of MODIS forest fraction maps includes 
1 2M M  coarse 385 

pixels, such that the FR forest map contains 
1 2( ) ( )M z M z    fine pixels. To provide a solution of 386 

ˆ( )pA t  , a regularization-based framework (Kim and Kwon 2010) was used, and it is formulated as 387 

follows 388 

 ˆ( ) argmin ( ( ), ( ), ) ( ( )) ( ( )& ( ))sm st

p p p p p i
X

A t D A t F t H R A t R A t A t    ,          (2) 389 

where ( ( ), ( ), )p pD A t F t H  is the data fidelity term, which is applied to build the relationship between 390 

the reconstructed ( )pA t  to the input FNF fraction maps ( )pF t , and H indicates an operation of down-391 

sampling. ( ( ))sm

pR A t  is defined as the spatial smoothing regularization term used to make the results 392 

spatially smooth (Ling et al. 2014), while ( ( ) & ( ))st

p iR A t A t   is the spatial-temporal regularization 393 

term used to incorporate prior information from existing FR forest maps (Ling et al. 2011).   and   394 

are two trade-off parameters, and they always used to balance the contribution of different terms. The 395 

optimal fine pixel class label (forest or non-forest) in the resultant FR forest map ( )pA t  is obtained by 396 

the minimum sum values of equation (2). More details about the three terms are provided in the following 397 

sections. 398 

3.3.1 Data fidelity term 399 

( ( ), ( ), )p pD A t F t H   is used as the data fidelity term to measure the difference between the 400 

reconstructed forest map ( )pA t   and the observed FNF fraction map ( )pF t . It is used to make the 401 

estimated ( )pA t  consistent with the observed ( )pF t . The L2 norm estimator (Atkinson 1997) is used to 402 

formulate the data fidelity term 403 
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2

2
( ( ), ( ), ) ( ) ( )p p p pD A t F t H F t HA t  ,                        (3) 404 

where ( )pHA t   indicates the FNF fraction values of the reconstructed FR forest map ( )pA t   and is 405 

spatially degraded from ( )pA t  with a down-sampling operation H. 406 

3.3.2 Spatial smoothness regularization term 407 

( ( ))sm

pR A t  is used as the spatial smoothness regularization term to incorporate sub-pixel scale 408 

spatial prior information into the reconstructed forest map ( )pA t . For the mature forest, it always tends 409 

to be spatially contiguous, at least at some scale, and ( ( ))sm

pR A t  can be used to ensure this is the case 410 

in the predicted map. In general, the spatial smoothness regularization term is always based on the 411 

maximal spatial dependence principle (Atkinson 2005). With this principle, the fine pixel class label in 412 

the reconstructed forest map ( )pA t  is determined by the land cover classes of neighboring fine pixels, 413 

and it is expressed mathematically as 414 

2
1 2

1 1 1 1

( ( )) ( ) ( , )
vOM M z K

sm l l

p k k

l v k j

R A t m v SD v j


   

   ,                    (4) 415 

1  if fine pixel  within  is the land cover class  
( )

0                     otherwise

l

k

v l k
m v


 


,            (5) 416 

Subject to: 
1

( ) 1
K

l

k

k

m v


 ,                           (6) 417 

where K is defined as the number of land cover classes (in the present case equal to 2: forest and non-418 

forest). l  is the coarse pixel and v  denotes a fine pixel within the reconstructed FR forest map. 419 

Equation (6) is used to make the fine pixel v  equal to the class of forest or non-forest. 
vO  is the 420 

symmetric neighborhood of fine pixel v   with a window size of W (contains W×W fine pixels). 421 

( , )l

kSD v j  is used to measure the spatial dependence for a fine pixel v  which is labeled as land 422 

cover class k . In general, ( , )l

kSD v j  is viewed as the distance-weighting function and is expressed 423 

as: 424 
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( , ) ( )exp( ( , ) / )l

k kSD v j j d v j   ,                        (7) 425 

Subject to: 
1  if fine pixel  is assigned as land cover class  

( )
0                             otherwise

k

j k
j


 


           (8) 426 

where ( , )d v j  indicates the geometric distance calculated between fine pixels v  and j , and   is 427 

a nonlinear parameter used for the distance decay model. 428 

3.3.3 Spatial-temporal regularization term 429 

( ( ) & ( ))st

p iR A t A t   is used as the spatial-temporal regularization term to introduce prior 430 

information from the existing FR forest maps ( )iA t  into the reconstructed FR forest map ( )pA t , and it 431 

was organized with the spatial-temporal dependence model shown in Fig. 5. There are six FR forest maps 432 

during 2007-2010 and 2015-2016, it is unlikely that any single one of them contains the most 433 

comprehensive prior information about forest features. Thus, six FR forest maps are merged as one 434 

intermediate FR forest map ˆ( )iA t  , which is used as the existing FR forest map in the new spatial-435 

temporal regularization term ˆ( ( ) & ( ))st

p iR A t A t . 436 

 437 
Fig. 5. An indicator of the spatial-temporal dependence model used for the spatial-temporal regularization term. 438 

Because there are only CR FNF fraction maps at the predicting time 
pt  , the merging of 439 

intermediate FR forest map ˆ( )iA t  was completed based on the CR fraction maps patch by patch. Let 440 

( )iF t  be the 250 m FNF fraction maps that are spatially averaged from all existing FR forest maps ( )iA t  441 

during 2007-2010 and 2015-2016, and ( , )pFP t l  and ( , )iFP t l  be the CR image patches (including w442 
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×w coarse pixels) of coarse pixel l within ( )pF t   and ( )iF t  . Correspondingly, ( , )pAP t l   and 443 

( , )iAP t l  are defined as the FR image patches (including w×z×w×z fine pixels) in ( )pA t  and ( )iA t , 444 

and they are fine image patches of CR image patches ( , )pFP t l   and ( , )iFP t l  , respectively. Let 445 

( , )dif i pFP t t l   be the root-mean-square error (RMSE) of fraction values between ( , )pFP t l   and 446 

( , )iFP t l , expressed as: 447 

 
2

( , ) ( , )
( , )=

p i

dif i p

sum FP t l FP t l
FP t t l

w w




.                      (9) 448 

For each CR patch of ( )pFP t , there were six fraction RMSE values of ( , )dif i pFP t t l  calculated 449 

with equation (9); the smallest fraction RMSE value was chosen from them. Meanwhile, the 450 

corresponding FR image patch of ( , )iFP t l   with the smallest ( , )dif i pFP t t l   is regarded as the FR 451 

image patch of ˆ( )iA t . The merged FR forest map ˆ( )iA t  was then generated from the six existing FR 452 

forest maps when all of the CR patches are applied. Therefore, the spatial-temporal temporal term 453 

( ( ) & ( ))st

p iR A t A t  can be transformed as ˆ( ( ) & ( ))st

p iR A t A t  and formulated as: 454 

2
1 2

1 , 1 1 1

ˆ ˆ( ( ) & ( )) ( , ) ( , ) ( ( , ), ( , ))
vi

i

OM M z K
st l l

p i k i k i p i

l v v k j

R A t A t m v v SD v j FP t l FP t l


   

    ,        (10) 455 

1  if fine pixel  and  within  is the land cover class  
( , )

0                     otherwise

il

k i

v v l k
m v v


 


,           (11) 456 

in which ( , )l

k iSD v j  is similar to ( , )l

kSD v j  in equations (7) and (8), and is used to measure the spatial 457 

dependence between fine pixel 
iv  and neighboring fine pixel j  within the symmetric neighborhood 458 

ivO  (contains W×W fine pixels). ˆ( ( , ), ( , ))p iFP t l FP t l  is a land cover change indicator used to measure 459 

the fraction change between CR image patches ( , )pFP t l  and ˆ( , )iFP t l , where ˆ( , )iFP t l  is the lth CR 460 

image patch within the merged FR forest map ˆ( )iA t . ˆ( ( , ), ( , ))p iFP t l FP t l  is expressed as 461 

ˆ6 ( , )ˆ( ( , ), ( , ))= dif i pFP t t l

p iFP t l FP t l e
 

,                       (12) 462 

where ˆ( , )dif i pFP t t l  is the fraction RMSE value between CR image patches ( , )pFP t l  and ˆ( , )iFP t l , 463 
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and it can be calculated with equation (9). 464 

3.3.4 Model optimization 465 

The final FR forest map ( )pA t  is produced by obtaining the minimum value of the global energy 466 

function shown in equation (2). The Iterative Conditional Model (ICM) was used to provide a solution 467 

for the model optimization of the spatial-temporal SRM method (Besag 1986), and it was implemented 468 

by the following main steps (Zhang et al. 2017a): 469 

1) Initialize the FR forest map ( )pA t   with the generated 250 m FNF fraction maps at the 470 

prediction time. 471 

2) Change the class label of the FR forest map, and then calculate the energy values of the data 472 

fidelity, spatial smoothness regularization and spatial-temporal regularization terms in 473 

equations (3), (4) and (10). Compare the global energy values of the pre- and post-change of 474 

class label, and if changing the class label in ( )pA t  achieves a smaller global energy value in 475 

equation (2), the change is then accepted; otherwise, the change is rejected. 476 

3) Stop the iteration when there are less than 0.1% of the fine pixels in ( )pA t  are changed after 477 

two consecutive iterations or the maximal number of iteration is reached; otherwise, return to 478 

step (2). 479 

4) When the iteration in step (3) is stopped, the final FR forest map ˆ( )pA t  was then generated. 480 

3.4 Accuracy assessment 481 

Validation was inspired by visual assessment of the maps obtained together with quantitative 482 

estimates of classification quality, especially for the forest and non-forest classes. Ground data to support 483 

the validation activity were obtained from geo-referenced field photographs, such as from the Global 484 
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Geo-Referenced Field Photo Library, the Global Land Cover Validation Reference Dataset of USGS, and 485 

Google Earth high resolution images (Chen et al. 2018; Dong et al. 2014; Qin et al. 2017). Since there 486 

were limited geo-referenced field photographs for the three study areas, most ground data were generated 487 

from analyses of historical Google Earth images. The collection of reference ground data of forest was 488 

based on the forest definition by FAO. In addition, the ground data of non-forest was chosen mostly from 489 

the land cover classes of bareland, farmland, and grassland. 490 

Table 3. The number of sample cases for each of the three study sites in each year. 491 

Year 
Paraguay USA Russia 

Forest Non-forest Forest Non-forest Forest Non-forest 

2007 434 251 0 0 0 0 

2008 362 286 0 0 0 0 

2009 362 347 0 0 0 0 

2010 369 432 0 0 0 0 

2011 445 561 698 540 443 289 

2012 453 614 610 546 482 378 

2013 489 747 816 494 751 468 

2014 503 765 629 524 655 443 

2015 542 923 0 0 0 0 

2016 549 947 0 0 0 0 

Total 4508 5873 2753 2104 2331 1578 

The quality and quantity of images in Google Earth varied in time constraining the study but did 492 

allow the extraction of a large sample of cases for each class. The approach is not ideal but does provide 493 

a basis to acquire ground reference data over the time period studied to evaluate the accuracy with which 494 

the sample cases are classed as forest or non-forest. In total 19,147 sample cases were used in the 495 

validation activity, and Table 3 indicates the number of cases for each site in each year. The accuracy 496 

with which the FNF maps generated labelled the sample cases for the relevant country and year was 497 

assessed using standard measures. Specifically, the focus was on overall classification accuracy (OA) 498 

and the class-level accuracy expressed as producer’s and user’s accuracy. 499 

To provide benchmarks to aid the evaluation of the proposed approach, three popular classification 500 
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methods, pixel-based hard classification (HC) and two SRM methods of regularization based SRM with 501 

maximal spatial dependence (RMD) (Ling et al. 2014) and spatial-temporal SRM with Hopfield neural 502 

network (STHNN) (Li et al. 2014b) were used and the accuracy of each approach evaluated. 503 

  504 
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4. Results 505 

4.1 Reproduced FR forest maps during 2007-2010 and 2015-2016 506 

As the PALSAR/PALSAR-2 data cannot provide phenological information on various forest types, 507 

there is still potential to increase the accuracies of the annual global forest classifications during 2007-508 

2010 and 2015-2016 published by JAXA. Therefore, a decision tree algorithm based on the integrated 509 

data of annual PALSAR/PALSAR-2 and MODIS NDVImax was applied to reproduce the FR forest maps 510 

of Paraguay during 2007-2010 and 2015-2016. Fig. 6 shows the original PALSAR/PALSAR-2 images 511 

and forest maps produced by JAXA and the decision tree algorithm. Compared with the forest maps 512 

released by JAXA, it is apparent that the decision tree algorithm produced forest maps with more spatial 513 

detail. As shown by the red circle, square and rectangle of Fig. 6, many forest covers were misclassified 514 

as non-forest covers in the JAXA forest maps; however, most of them were correctly classified as forest 515 

in the forest maps produced by the decision tree algorithm. As shown in Table 4, the classifications of 516 

the decision tree algorithm achieved larger OA values (more than 98%), and a significant increase was 517 

also observed for the producer’s and user’s accuracy values. 518 

 519 

Fig. 6. Paraguay PALSAR/PALSAR-2 RGB images and forest maps produced by JAXA and the proposed approach. 520 
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Table 4. Accuracy values of the Paraguay forest classifications produced by JAXA and the proposed decision tree algorithm. 521 

Year Method OA 
Producer’s accuracy User’s accuracy 

Forest Non-forest Forest Non-forest 

2007 
JAXA 84.67% 75.81% 100.00% 100.00% 70.51% 

Proposed 98.98% 98.39% 100.00% 100.00% 97.29% 

2008 
JAXA 89.66% 81.49% 100.00% 100.00% 81.02% 

Proposed 99.23% 99.72% 98.60% 98.90% 99.65% 

2009 
JAXA 92.67% 85.64% 100.00% 100.00% 86.97% 

Proposed 99.58% 99.17% 100.00% 100.00% 99.14% 

2010 
JAXA 99.13% 98.64% 99.54% 99.45% 98.85% 

Proposed 100.00% 100.00% 100.00% 100.00% 100.00% 

2015 
JAXA 94.13% 84.32% 99.89% 99.78% 91.56% 

Proposed 98.23% 99.45% 97.51% 95.91% 99.67% 

2016 
JAXA 96.66% 91.26% 99.79% 99.60% 95.17% 

Proposed 98.53% 99.09% 98.20% 96.97% 99.47% 

4.2 Reconstructed FR forest maps during 2011-2014 522 

FR forest maps for 2011-2014 were obtained to validate the reconstructing ability of the proposed 523 

approach for the ALOS data gap. In this experiment, the PALSAR/PALSAR-2 forest maps, that were 524 

prior to and after the data of prediction, were used to provide prior spatial-temporal information for the 525 

reconstructed time-series FR forest maps. With the input of the previous and later FR forest maps during 526 

2007-2010 and 2015-2016 and generated MODIS FNF fraction maps during 2011-2014, the FR time-527 

series forest maps during 2011-2014 were produced for the three study areas (Figs. 7 and 8). The 528 

corresponding accuracy assessments are listed in Tables. 5 and 6. For the Paraguay study site, the first 529 

row of Fig. 7 reports the generated MODIS forest fraction maps during 2011-2014, while the FR forest 530 

maps produced by HC, RMD and STHNN are also shown to provide a comparison with the proposed 531 

approach. As STHNN is a spatial-temporal SRM method, its implementation was based on the previous 532 

FR forest map of 2010. Zoomed areas of the resultant forest maps are also indicated in Fig. 7, so as to 533 

provide a clearer visual comparison. 534 
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 535 
Fig. 7. MODIS forest fraction maps and reconstructed FR forest maps during 2011-2014 for the study site of Paraguay. 536 

As shown in Fig. 7, it is possible to observe the deforestation process between 2011 and 2014 from 537 

the MODIS fraction maps of forest, especially in the zoomed area. However, many forest cover change 538 

details cannot be represented. For HC, forest feature boundaries in the resulting maps appear as jagged 539 

patches, and many of spatial details are missing, as HC was performed at the coarse pixel scale of the 540 

MODIS image. For RMD, jagged boundaries become spatially smooth and many spatial details about 541 

the forest cover are represented. Although RMD addresses the mixed pixel problem in the MODIS image 542 

and reduces the errors of the input MODIS FNF fraction maps, it is beyond the ability of RMD to produce 543 

forest maps with sufficient spatial detail; for example, many small-sized linear features of forest cover 544 

were misclassified. Compared with RMD, the boundaries of the results of the STHNN are more spatially 545 

smooth; moreover, some linear forest features which were lost in the results of RMD were well 546 
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represented by STHNN. This is because STHNN not only benefits from a relatively slack constraint on 547 

the fraction values of the results, but also from the abundant spatial detail of forest cover in the previous 548 

FR forest map of 2010. However, the boundaries of STHNN results were spatially over-smoothed, and 549 

some linear forest features were mapped as local patches. In contrast, for the results of the proposed 550 

approach, more spatial details are well-represented, and the boundaries represented with appropriate 551 

smoothness. This is because temporal and spatial information was incorporated from all existing FR 552 

forest maps during 2007-2010 and 2015-2016, and they provided a constraint on the reconstructed FR 553 

forest maps. This demonstrates the superiority of the proposed method against others in reconstructing 554 

FR forest maps.  555 

Table 5. Accuracy assessment of the FR forest classifications by different approaches for the study site of Paraguay. 556 

Year Method OA 
Producer’s accuracy User’s accuracy 

Forest Non-forest Forest Non-forest 

2011 

HC 87.57% 97.08% 80.04% 79.41% 97.19% 

RMD 82.80% 94.38% 73.62% 73.94% 94.29% 

STHNN 86.28% 97.08% 77.72% 77.56% 97.09% 

Proposed 92.45% 99.10% 87.17% 85.96% 99.19% 

2012 

HC 84.44% 96.03% 75.90% 74.61% 96.28% 

RMD 79.29% 93.82% 68.57% 68.77% 93.76% 

STHNN 81.44% 97.13% 69.87% 68.77% 97.06% 

Proposed 92.22% 96.91% 88.76% 86.42% 97.50% 

2013 

HC 90.78% 94.89% 88.09% 83.91% 97.50% 

RMD 85.60% 89.16% 83.27% 77.72% 92.15% 

STHNN 86.00% 94.27% 83.27% 76.07% 95.56% 

Proposed 94.01% 97.14% 91.97% 88.79% 98.00% 

2014 

HC 86.44% 97.08% 80.04% 79.41% 97.19% 

RMD 80.84% 94.38% 73.62% 73.94% 94.29% 

STHNN 79.73% 97.08% 77.72% 77.56% 97.09% 

Proposed 93.30% 99.10% 87.17% 85.96% 99.19% 

Table 5 presents a summary of the accuracy assessments for the Paraguay study site. Compared to 557 

other methods, RMD produced forest classifications with the smallest OA values, and the producer’s and 558 

user’s values of forest and non-forest are almost the smallest for different years. Although RMD seems 559 
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able to produce visually more accurate FR forest classifications than the HC, it is a challenge for RMD 560 

to maintain sufficient spatial detail on forest cover while eliminating the spectral unmixing error within 561 

the FNF fraction maps at the same time. With the incorporation of spatial-temporal information from the 562 

FR forest maps in 2010, the accuracy values associated with the use of the STHNN are enhanced relative 563 

to those from RMD. However, from 2011 to 2013, enhancement achievement with STHNN became 564 

smaller, and in 2014, STHNN classification had the lowest accuracy values. This situation arose because 565 

the STHNN has difficulty in dealing well with the land cover change, and the change of forest cover 566 

between the previous time and predicting time becomes increasingly overweight from 2011 to 2014. For 567 

the proposed approach, the classifications not only have the largest OA values (most are larger than 92%), 568 

but also the largest producer’s and user’s values. 569 

 570 
Fig. 8. MODIS forest fraction maps and reconstructed FR forest maps during 2011-2014 for the USA study site. 571 

Figs. 8 and 9 report the time-series forest fraction maps and reconstructed FR forest maps during 572 

2011-2014 for the study sites of the USA and Russia. The corresponding accuracy assessment is provided 573 

in Table 6. With the PALSAR/PALSAR-2 FR forest maps of 2010 and 2015 as shown in Fig. 6, the 574 

changes of forest cover can be visualized over this 5-year period, but it is impossible to observe how the 575 

forest covers changed on an annual scale between 2010 and 2015. By contrast, for both of the study sites 576 
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of USA and Russia, the gradual changes in forest cover between 2010 and 2015 are shown clearly in the 577 

time-series reconstructed forest maps during 2011-2014. As listed in Table 6, OA values of the USA 578 

classifications are more than 94%, while those of Russia are more than 91.50%. Compared with the 579 

temperate broadleaf and mixed forests in the USA, the boreal forests of Russia are sometimes difficult 580 

to distinguish correctly, as they have a more complex spatial pattern. 581 

 582 
Fig. 9. MODIS forest fraction maps and reconstructed FR forest maps during 2011-2014 for the Russia study site. 583 

 584 

Table 6. Accuracy assessment of the FR forest maps reconstructed by the proposed approach for USA and Russia. 585 

Year Method OA 
Producer’s accuracy User’s accuracy 

Forest Non-forest Forest Non-forest 

USA 

2011 95.88% 96.42% 95.19% 96.28% 95.36% 

2012 96.19% 96.56% 95.79% 96.24% 96.14% 

2013 94.58% 94.98% 93.93% 96.27% 91.88% 

2014 95.75% 95.55% 95.99% 96.62% 94.73% 

Russia 

2011 94.00% 97.97% 87.93% 92.54% 96.59% 

2012 91.50% 96.68% 84.88% 89.10% 95.24% 

2013 91.93% 96.66% 84.33% 90.83% 94.02% 

2014 92.34% 95.27% 88.01% 92.17% 92.62% 

 586 
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 587 

Fig. 10. Annual forest cover change maps during 2007-2016 for the three study sites. 588 

4.3 Annual forest cover changes during 2007-2016 589 

With reconstructed FR forest maps during 2011-2014 and improved PALSAR/PALSAR-2 FR forest 590 

maps during 2007-2010 and 2015-2016, annual forest cover change maps during 2007-2016 for the three 591 

study sites were generated (Fig. 10). Specifically, the forest cover change is composed of the forest cover 592 

increase and decrease, and Fig. 10 represents both of them. For Paraguay, the land cover changes were 593 

mainly focused on forest cover decrease, and there was almost no increase of forest cover from 2007 to 594 

2016. As a tropical forest area, deforestation was the led cause of forest cover decrease in Paraguay, and 595 

most of the deforestation areas had simple geometric shapes, such as rectangles and squares. For the 596 

USA, both decreasing and increasing forest cover were observed, while with forest cover increases 597 

slightly larger than the decreases, and the increases occurred in the same locality as the decreases. This 598 

is because the land use of the study area is associated with extensive forestry, and tree planting and 599 
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harvesting which may result in forest cover increases and decreases were prevalent in a short-cycle, so 600 

as to maintain a balance between forest cover decreases and increases. For the study area in Russia, 601 

although there were both local decreases and increases of forest cover, the decreases were more frequent 602 

than increases. Moreover, large decreases in forest cover were observed in 2013 and 2014. Areas of forest 603 

decrease often had irregular shapes with a high degree of spatial connectivity between them. This 604 

situation may be due to the frequent forest fires that occurred in this region. 605 

In general, forest cover decrease is caused mainly by rapid deforestation and disturbance, such as 606 

clear cutting, selective logging and forest fire, and it can generally be detected with a high degree of 607 

accuracy (Hansen et al. 2013). Compared with forest cover decreases, increases in forest cover are more 608 

complex, and greater uncertainty exists for their detection (Poorter et al. 2016). Planting and regrowth 609 

are two principle sources of forest cover increases. Planting is associated with extensive forestry; the 610 

increase in forest cover in the USA study site is typical of forest planting. On the other hand, forest 611 

regrowth where trees regrow naturally from some past deforestation and disturbance includes two main 612 

cases: 1) regrowth from forest clear cut (deforestation), where recovery is generally a slow process. This 613 

is one of the reasons why forest cover decrease was small in Paraguay during 2007-2016; 2) regrowth 614 

from forest fire (disturbances). If the fire is sufficiently limited, it can leave the trunks of trees relatively 615 

intact, which opens the possibility for the burnt trees to regrow within a short time (Chu and Guo 2014). 616 

This is why many forest cover decreases were observed in the Russia study site. This issue will be 617 

discussed further in the following section. 618 

  619 
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5. Discussion 620 

5.1 Multi-scale image fusion 621 

This research aimed to produce annual 25 m forest maps by fusing PALSAR/PALSAR-2 and 622 

MODIS NDVI images over the period 2007-2016. As PALSAR/PALSAR-2 and MODIS NDVI images 623 

have different spatial resolutions, the image fusion in this study was implemented with a multi-scale 624 

approach. There are two types of multi-scale operations: the first is the production of FR forest maps 625 

from PALSAR/PALSAR-2 images by integrating MODIS NDVImax; the second is the production of FR 626 

forest maps from MODIS NDVI images by integrating generated PALSAR/PALSAR-2 forest maps. The 627 

first multi-scale image fusion approach focuses on the PALSAR/PALSAR-2 images, where the MODIS 628 

NDVImax was used as additional information in the decision tree algorithm to increase the classification 629 

accuracy. This type of image fusion method has been applied widely to extract forest maps from SAR 630 

images and optical satellite sensor images (Chen et al. 2018; Dong et al. 2012; Qin et al. 2017). The 631 

second multi-scale image fusion method is a full spatial-temporal SRM method, so as to take advantage 632 

of the fine scale information about the forest cover distributions in existing FR forest maps (Li et al. 633 

2014a; Zhang et al. 2017a; Zhang et al. 2017b). Although the output of both these multi-scale image 634 

fusion methods is the FR forest map, there is a downscaling process in the second multi-scale image 635 

fusion method compared with the first one. It is noteworthy that producing FR forest maps from CR 636 

MODIS NDVI images is an ill-posed problem, and there is necessarily uncertainty in the spatial-temporal 637 

SRM method (Atkinson 2013; Ling et al. 2011). From the results shown in sections 4.1 and 4.2, it can 638 

be found that the FR forest maps produced by the first multi-scale image fusion method were more 639 

accurate than those from the second one, as it is a challenge to decrease the uncertainty in the downscaling 640 
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process (Ling et al. 2016). Fortunately, the proposed new spatial-temporal SRM method as described in 641 

section 3.3 can take advantage of all the existing FR forest maps during 2007-2010 and 2015-2016, which 642 

can significantly decrease the uncertainty in downscaling compared with traditional SRM methods. 643 

Despite the factor that the above two multi-scale fusion methods focus on different objectives, it was 644 

necessary to combine them to produce the FR forest maps during 2007-2016. This is because the second 645 

multi-scale image fusion task is highly dependent on the FR forest maps produced by the first multi-scale 646 

image fusion method; therefore, increasing the accuracies of FR forest maps during 2007-2010 and 2015-647 

2016 provided more accurate prior information for the second multi-scale fusion method, and finally the 648 

constructed FR forest maps during 2011-2014, when this is a gap in data from PALSAR systems. 649 

5.2 Advantages and computational efficiency of the proposed approach 650 

Global PALSAR/PALSAR-2 forest maps produced by JAXA contain abundant prior information 651 

about forest cover and forest cover change. The proposed approach aimed to inherit the implicit 652 

advantages associated with the time-series of 250 m MODIS NDVI images and the existing 653 

PALSAR/PALSAR-2 forest maps, and thus, achieve high accuracy in the reconstructed FR forest maps 654 

during 2011-2014 when PALSAR data are unavailable. The superiority and advantages of the proposed 655 

approach were demonstrated in the above experiments. In this research, the experiments focused on three 656 

distinct types of forests, due to their crucial importance in global biogeochemical cycles. However, the 657 

method could be applied anywhere on the Earth's surface, because the MODIS NDVI product and 658 

PALSAR/PALSAR-2 forest maps are now available at the global scale. Generally, the advantages of the 659 

proposed approach are the utilization of the abundant prior information within all existing FR forest maps 660 

during 2007-2010 and 2015-2016, and more specifically: 661 
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1) Integrating PALSAR/PALSAR-2 and MODIS NDVI data to produce more accurate FR forest 662 

maps during 2007-2010 and 2015-2016, thus contributing greatly to the reconstructed FR forest 663 

maps during 2011-2014. 664 

2) Using existing FR forest maps and annual MODIS NDVI images to estimate 250 m FNF 665 

fraction maps during 2011-2014 automatically. Moreover, it is noteworthy that annual time-666 

series MODIS NDVI images contain abundant phenological information about different types 667 

of forests around the world and are, thus, suitable for estimating FNF fraction maps for various 668 

forests. 669 

3) Traditional spatial-temporal SRM models can only use one or two existing FR land cover maps 670 

to build the spatial-temporal regularization term and cannot deal with land cover change 671 

through time (Li et al. 2017; Zhang et al. 2017b). In contrast, the proposed approach applies all 672 

FR forest maps during 2007-2010 and 2015-2016 to construct the spatial-temporal 673 

regularization term, so as to provide more useful prior information for the reconstructed FR 674 

forest maps. 675 

The MATLAB platform (MATLAB R2018a version) on an Intel(R) Core (TM) i7-7700K Processor 676 

at 4.20 GHz was used for the reconstruction and validation of the proposed approach. As described above, 677 

there are three parts (section 3.1, 3.2 and 3.3) to the proposed approach. To assess the computational 678 

efficiency, Table 7 lists the computational cost of the three parts. The total computational time of the 679 

proposed approach for one study site, Paraguay, in this research was 2936.27s, the first two parts spent 680 

little time (less than 5% of the total computation time), but part 3 took up 2812.41s, which is more than 681 

95% of the total computational time. Compared with the first two parts, part 3 is based on an optimization 682 

problem, and iteration is required in the search for the optimal solution. An alternative solution to this is 683 
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replacing the iteration-based optimization problem as a maximum posterior probability (MAP) problem 684 

(Atkinson 2005; Wang et al. 2014), so as to decrease the computational time. On the other hand, given 685 

the great superiority of parallelization (Christophe et al. 2011), it is of major interest to build a platform 686 

based on parallelization to significantly reduce the computational time of the proposed algorithm. 687 

Table 7. Computation cost of different parts in the proposed approach. 688 

 Part 1(section 3.1) Part 2(section 3.2) Part 3(section 3.3) Total 

Paraguay 52.93s 70.93s 2812.41s 2936.27s 

5.3 Effect of existing FR forest maps 689 

For the proposed approach, prior temporal information from existing FR forest maps could be 690 

exploited for the newly generated FR forest map. The proposed approach has the advantage to extract 691 

prior information from all existing FR forest maps, which equate to the PALSAR/PALSAR-2 forest maps 692 

during 2007-2010 and 2015-2016 in this research. Table 8 was used to measure the effect of existing FR 693 

forest maps, and it reports the accuracies of the FR forest maps generated by the proposed approach 694 

based on different numbers of existing FR forest maps for the Paraguay study site. When only one 695 

existing FR forest map (2007) was used for the proposed approach, the result achieved the smallest OA 696 

values, because there was not much prior temporal information in the FR forest map in 2007. However, 697 

with the continuous increase in the number of FR forest maps, the accuracies of the resultant forest maps 698 

increased. In particular, when the FR forest map for 2015 was added, the OA value increased by 6.48% 699 

compared with the result based on FR forest maps during 2007-2010. This is because serious forest cover 700 

changes that happened during 2013-2015 and the later FR forest map in 2015 was able to provide more 701 

prior information about the process of forest change. When the FR forest map in 2016 was added, a 702 

further increase in accuracy was observed, with the largest OA (94.01%) values, which demonstrates that 703 

existing FR forest maps (both previous and later) could have a positive effect on the result of the proposed 704 
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approach. It is suggested that both previous and later FR forest maps are added when applying the 705 

proposed approach to reconstruct FR forest maps. 706 

Table 8. Accuracy assessment of the FR forest maps generated by the proposed approach based on different numbers of existing 707 

FR forest maps for Paraguay. 708 

Existing FR forest maps used OA 

2007 82.12% 

2007/2008 83.01% 

2007/2008/2009 84.55% 

2007/2008/2009/2010 86.89% 

2007/2008/2009/2010/2015 93.37% 

2007/2008/2009/2010/2015/2016 94.01% 

5.4 Forest cover change in the study site of Russia 709 

In Fig. 9, it is observed that some pixels of forest cover disappeared and re-appeared from 2012 to 710 

2014 (clearly illustrated by the red ellipse of Fig. 11). Generally, it is physically impossible for forest 711 

cover to remove and re-appear within a very short time (Chazdon 2003; Nguyen et al. 2018). If a tree is 712 

clearly cut in one year, it will be impossible for it to regrow into a mature tree in the next year (which is 713 

the “case 1” in Fig. 11), because recovery from forest clear cutting is a slow process (Nguyen et al. 2018). 714 

In the real situation, besides forest clear cutting (case 1 in Fig. 11), forest disturbances, such as forest fire 715 

(case 2 in Fig.11), can also result in a reduction of forest cover. However, unlike forest clear cutting, 716 

some forest fire can leave the complete trunks of trees, which make recovery to large trees in the next 717 

year possible (Chu and Guo 2014; Lhermitte et al. 2011). To find out the cause of forest cover change 718 

(in the red oval) during 2012-2014 for the study site of Russia, the corresponding annual Google Earth 719 

images were illustrated. From the Google Earth images, it can be seen that a large area of forest fire 720 

occurred across the study site in 2013, reducing the forest cover; but in 2014, some of the lost forest 721 

cover exhibited a good recovery and regrew as forest cover again. This suggests that the forest cover 722 

disappearance and re-appearance in the study site of Russia belong to “case 2”, and is reasonable. 723 
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Meanwhile, as shown in Fig. 11, it can be observed that most of the forest covers and time-series changes 724 

reconstructed by the proposed method were consistent with the Google Earth images, which demonstrate 725 

further the efficiency of the proposed method. 726 

 727 

Figure 11. Forest cover change during 2012-2014 for the study site of Russia. 728 

5.5 Uncertainty in forest cover increase 729 

Forest cover decreases caused by deforestation and disturbance always occur rapidly and could be 730 

identified with a high degree of accuracy (Curtis et al. 2018; Hansen et al. 2013). However, forest cover 731 

increase, in particular from deforestation, is a lengthy recovery process and is generally detected with 732 
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greater uncertainty (Bullock et al. 2018; Nguyen et al. 2018). For the case of forest clear cutting, it is 733 

impossible for a lost forest cover to recover (increase) within 1-to-2 years, and a constraint is needed for 734 

the proposed algorithm to prevent rapid "switching" from one class to another within a short time. 735 

However, for the case shown in Section 5.4, the rapid "switching" is reasonable for recovery from forest 736 

fire, and in this case, a constraint on rapid "switching" would lead to additional errors. In real applications, 737 

it is difficult to separate the two cases of forest cover increase (recovery) shown in Fig. 11. Therefore, 738 

uncertainty exists for forest cover increases in the time-series forest maps reconstructed by the proposed 739 

method. 740 

For monitoring of forest cover recovery processes, simply defining the pixel as forest or non-forest 741 

is not sufficient. For example, the tree canopy cover for a pixel in 2012 was 60%, and then the pixel was 742 

defined as forest cover. In 2013, the tree canopy cover for the pixel increased to 80% and the pixel was 743 

also defined as forest cover. If we just focused on the class labels of the pixel, there would be no changes 744 

from 2012 to 2013 (“forest” to “forest”), but the canopy cover increased from 60% to 80%. Therefore, 745 

instead of simply using the class labels of forest and non-forest to monitor the forest cover recovery 746 

process, some other continuous variables, such as tree canopy cover (Sexton et al. 2013), forest 747 

proportion (Zhang et al. 2018), aboveground biomass (Foody et al. 2001), and the Normalized 748 

Degradation Fraction Index (NDFI) (Bullock et al. 2018), may be a better choice. Moreover, although 749 

remote sensing has contributed a lot to the detection of successive processes related to forest recovery, 750 

ground sample plots remain indispensable due to the uncertainty related to forest recovery processes 751 

(Chazdon 2003; Chazdon et al. 2016; Poorter et al. 2016). 752 
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5.6 Error sources and future research 753 

Reconstructing FR forest maps during 2011-2014 by fusing ALOS PALSAR and MODIS NDVI 754 

data is an ill-posed problem. The proposed approach aims to decrease the uncertainty in the fusion 755 

process by taking advantages of prior information within the pre- and post- PALSAR/PALSAR-2 FR 756 

forest maps. However, uncertainty caused by different error sources is present, especially in the spatial-757 

temporal SRM model (Atkinson et al. 2008; Turner et al. 2003). When applying the proposed approach, 758 

three main error sources may impose a considerable negative effect on the results. Firstly, since the 759 

proposed approach is based on the annual time-series MODIS NDVI and PALSAR/PALSAR-2 forest 760 

maps, data quality may impact directly the accuracy of the reconstructed forest maps. As MODIS is an 761 

optical satellite sensor, the quality of the MODIS NDVI images is affected by cloud cover, especially in 762 

tropical rain forest areas where cloud-free images are rare (Friedl et al. 2002; Montesano et al. 2009; 763 

Platnick et al. 2003). The Savitzky-Golay filter was, thus, applied to the time-series MODIS NDVI 764 

images to decrease the influence of abnormal pixel values caused by cloud cover. Moreover, the quality 765 

of the FR forest map extracted from the integrated PALSAR and MODIS NDVImax images varies from 766 

place-to-place, because the PALSAR data cannot capture all of the complex spatial features of the diverse 767 

forest covers on the Earth’s surface (Shimada et al. 2014; Walker et al. 2010). Therefore, it is challenging 768 

to ensure that all of the reconstructed FR forest maps have the same high accuracy values, and this was 769 

indicated in the above results of the three study sites. The second error source is the estimation of the 770 

MODIS FNF fraction maps from time-series MODIS NDVI images. KRR was used as a nonlinear 771 

regression method to predict the FNF fraction maps, because KRR is a robust method and there are a few 772 

parameters to be set. However, besides KRR, alternative methods such as deep learning approaches 773 

(Dong et al. 2016; Zhang et al. 2016) could be used. The third source of uncertainty is the parameter 774 
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values in the proposed approach. For example, the two trade-off parameters   and   shown in 775 

equation (2) is important for the reconstruction of FR forest maps, and automatic method is suggested to 776 

predict the optimal values of the two parameters (Li et al. 2012). 777 

  778 
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6. Conclusions 779 

The global, annual 25 m PALSAR/PALSAR-2 forest maps produced during 2007-2010 and 2015-780 

2016 represent the first satellite-derived, annual, global forest map product. However, PALSAR forest 781 

maps between 2011 and 2014 are missing. This research demonstrated a new approach that has great 782 

potential for reconstructing the missing FR PALSAR forest maps and producing more accurate FR 783 

PALSAR forest classifications based on synchronous MODIS NDVI and asynchronous 784 

PALSAR/PALSAR-2 images, opening up the potential for a wide range of applications using these data. 785 

This is significant because the world’s forests represent a unique natural resource that is under threat 786 

(Hansen et al. 2013). The world’s forests represent a crucial life support system, not least in relation to 787 

an increasing global population generally, and the ecosystem services that forests provide are 788 

fundamental to the survival of local human populations across most parts of the world where forests exist 789 

(Foley et al. 2005). It is, thus, crucial that tools are designed for the precise monitoring of forests globally 790 

(Curtis et al. 2018). The failure of ALOS PALSAR communication was unfortunate, but the method 791 

proposed here can fill the resulting four-year gap, crucially allowing continuous time-series, fine spatial 792 

resolution, global forest monitoring going back to 2007 and extending into the future via PALSAR-2. 793 

This paper developed a novel integrated method to produce annual PALSAR forest maps during 794 

2007-2016, inheriting the advantages from both the CR, but synchronous MODIS NDVI images and the 795 

FR, but asynchronous PALSAR/PALSAR-2 forest maps. In the first stage, more accurate FR forest 796 

classifications during 2007-2010 and 2015-2016 were generated from the integrated PALSAR/PALSAR-797 

2 and MODIS NDVI images with a decision tree algorithm. In the second stage, annual MODIS FNF 798 

fraction maps between 2011 and 2014 were estimated using the nonlinear regression method of KRR. 799 
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Finally, a new spatial-temporal SRM model was developed to produce the missing annual FR forest maps 800 

during 2011-2014. Compared to three benchmark methods, the proposed approach produced FR forest 801 

classifications with the greatest visual and quantitative quality and was able to capture annual FR forest 802 

cover changes during the entire period 2007-2016 for all three study sites, which represent the world’s 803 

three main forest types: tropical forest, temperate broadleaf and mixed forest and boreal forest. 804 

Some key possibilities can be pursued in future research to further improve the accuracy of the 805 

method. Firstly, it would be possible to use some open access and cloud-free FR satellite sensor images, 806 

including the ASTER multispectral images (with a spatial resolution of 15 m) and Landsat series images 807 

during 2011-2014, as additional datasets to produce the FR forest maps within some local regions. 808 

Secondly, for places where open access and cloud-free fine spatial resolution satellite sensor images are 809 

available, the corresponding FR forest maps can be regarded as a new starting point to reconstruct the 810 

FR forest maps. 811 
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