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Abstract
State space models (SSMs) provide a flexible framework for modeling complex time series

via a latent stochastic process. Inference for nonlinear, non-Gaussian SSMs is often tackled with
particle methods that do not scale well to long time series. The challenge is two-fold: not only do
computations scale linearly with time, as in the linear case, but particle filters additionally suffer
from increasing particle degeneracy with longer series. Stochastic gradient MCMC methods
have been developed to scale inference for hidden Markov models (HMMs) and linear SSMs
using buffered stochastic gradient estimates to account for temporal dependencies. We extend
these stochastic gradient estimators to nonlinear SSMs using particle methods. We present error
bounds that account for both buffering error and particle error in the case of nonlinear SSMs
that are log-concave in the latent process. We evaluate our proposed particle buffered stochastic
gradient using SGMCMC for inference on both long sequential synthetic and minute-resolution
financial returns data, demonstrating the importance of this class of methods.

1 Introduction
Nonlinear state space models (SSMs) are widely used in many scientific domains for modeling time
series and sequential data. For example, nonlinear SSMs can be applied in engineering (e.g. target
tracking, Gordon et al. [1993]), in epidemiology (e.g. compartmental disease models, Dukic et al.
[2012]), and to financial time series (e.g. stochastic volatility models, Shephard [2005]). To capture
complex dynamical structure, nonlinear SSMs augment the observed time series with a latent state
sequence, inducing a Markov chain dependence structure. Parameter inference for nonlinear SSMs
requires us to handle this latent state sequence. This is typically achieved using particle filtering
methods.

Particle filtering algorithms are a set of flexible Monte Carlo simulation-based methods, which
use a set of samples or particles to approximate the posterior distribution over the latent states.
Unfortunately, inference in nonlinear SSMs does not scale well to long sequences: (i) the cost of
each pass through the data scales linearly with the length of the sequence, and (ii) the number of
particles (and hence the computation per data point) required to control the variance of the particle
filter scales with the length of the sequence.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) is a popular method for scaling
Bayesian inference to large data sets, which replace full data gradients with stochastic gradient
estimates based on subsets of data [Ma et al., 2015]. In the context of SSMs, naive stochastic
gradients are biased because subsampling breaks temporal dependencies in the data [Ma et al., 2017,
Aicher et al., 2018]. To correct for this, Ma et al. [2017] and Aicher et al. [2018] have developed
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buffered stochastic gradient estimators that control the bias. The latent state sequence is marginalized
in a buffer around each subsequence, allowing fewer dependencies to be broken. However, the work
so far has been limited to SSMs where analytic marginalization is possible (e.g. HMMs and linear
dynamical systems).

In this work, we propose particle buffered gradient estimators that generalize the buffered gradient
estimators to nonlinear SSMs. In particular, we show how buffering in nonlinear SSMs can be
approximated with a modified particle filter. Beyond the regular speedup gains from using a
subsequence over a batch, our method also reduces the number of particles required to control
the variance of the particle filter. We provide an error analysis of our proposed estimators by
decomposing the error into buffering error and particle filter error. We also extend the buffering error
bounds of Aicher et al. [2018] to nonlinear SSMs with log-concave likelihoods and show that buffer
error decays geometrically in buffer size, ensuring that a small buffer size can be used in practice.

This paper is organized as follows. First, we review background on particle filtering in nonlinear
SSMs and SGMCMC for analytic SSMs in Section 2. We then present our particle buffered stochastic
gradient estimator and its error analysis in Section 3. Finally, we test our estimator for nonlinear
SSMs on both synthetic and EUR-US exchange rate data in Section 4.

2 Background
2.1 Nonlinear State Space Models for Time Series
State space models are a class of discrete-time bivariate stochastic processes consisting of a latent
state process X = {Xt ∈ Rdx}Tt=1 and a second observed process, Y = {Yt ∈ Rdy}Tt=1. The evolution
of the state variables is typically assumed to be a time-homogeneous Markov process, such that
the latent state at time t, Xt, is determined only by the latent state at time t − 1, Xt−1. The
observed states, Yt, are therefore conditionally independent given the latent states. Given the prior
X0 ∼ ν(x0|θ) and parameters θ ∈ Θ, the generative model for X,Y is thus

Xt|(Xt−1 = xt−1), θ ∼ p(xt|xt−1, θ), (1)
Yt|(Xt = xt), θ ∼ p(yt|xt, θ),

where p(xt|xt−1, θ) is the transition density and p(yt|xt, θ) is the emission density.
Examples of nonlinear SSMs include the stochastic volatility model (SVM) [Shephard, 2005] or

the generalized autoregressive conditional heteroskedasticity (GARCH) model [Bollerslev, 1986]. For
a review of applications of state space modeling, see Langrock [2011].

For an arbitrary sequence {ai}, we use ai:j to denote the sequence (ai, ai+1, . . . , aj). To infer the
model parameters θ, a quantity of interest is the score function, or the gradient of the marginal
loglikelihood, ∇θ log p(y1:T |θ). Using the score function, the loglikelihood can for instance be
maximized iteratively via a (batch) gradient ascent algorithm [Robbins and Monro, 1951], given the
observations, y1:T .

If the latent state posterior p(x1:T |y1:T , θ) can be expressed analytically, we can calculate the
score using Fisher’s identity [Cappé et al., 2005],

∇θ log p(y1:T | θ) = EX|Y,θ[∇θ log p(y1:T , X1:T | θ)]

=
T∑
t=1

EX|Y,θ[∇θ log p(yt, Xt |xt−1, θ)]. (2)

However, if the latent state posterior, p(x1:T |y1:T , θ), is not available in closed-form, we can approxi-
mate the expectations of the latent state posterior. One popular approach is via particle filtering
methods.
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2.1.1 Particle Filtering and Smoothing

Particle filtering algorithms [see e.g. Doucet and Johansen, 2009, Fearnhead and Künsch, 2018] can
be used to create an empirical approximation of the expectation of a function H(X1:T ) with respect
to the posterior density, p(x1:T |y1:T , θ). This is done by generating a collection of N random samples
or particles, {x(i)

t }Ni=1 and calculating their associated importance weights, {w(i)
t }Ni=1, recursively

over time. We update the particles and weights with sequential importance resampling (SIR) [Doucet
and Johansen, 2009] in the following manner.

(i) Resample auxiliary ancestor indices {a1, . . . , aN} with probabilities proportional to the impor-
tance weights, i.e. ai ∼ Categorical(w(i)

t−1).

(ii) Propagate particles x(i)
t ∼ q(·|x

(ai)
t−1 , yt, θ), using a proposal distribution q(·|·).

(iii) Update and normalize the weight of each particle,

w
(i)
t ∝

p(yt|x(i)
t , θ)p(x(i)

t |x
(ai)
t−1 , θ)

q(x(i)
t |x

(ai)
t−1 , yt, θ)

,
∑
i

w
(i)
t = 1 . (3)

The auxiliary variables, {ai}Ni=1, represent the indices of the ancestors of the particles, {x(i)
t }Ni=1,

sampled at time t. The introduction of ancestor indices allows us to keep track of the lineage of
particles over time [Andrieu et al., 2010]. The multinomial resampling scheme given in (i) describes
the procedure by which offspring particles are produced.

Resampling at each iteration is used to mitigate against the problem of weight degeneracy. This
phenomenon occurs when the variance of the importance weights grows, causing more and more
particles to have negligible weight. Aside from the multinomial resampling scheme described above,
there are various other resampling schemes outlined in the particle filtering literature, such as
stratified sampling [Kitagawa, 1996] and residual sampling [Liu and Chen, 1998].

If the proposal density q(xt|xt−1, yt, θ) is the transition density p(xt|xt−1, θ), SIR is also known
as the bootstrap particle filter [Gordon et al., 1993]. By using the transition density for proposals,
the importance weight recursion in Eq. (3) simplifies to w(i)

t ∝ p(yt|x
(i)
t , θ).

When our target function decomposes into a pairwise sum H(x1:T ) =
∑T
t=1 ht(xt, xt−1) – such

as for Fisher’s identity ht(xt, xt−1) = ∇θ log p(yt, xt |xt−1, θ) – then we only need to keep track of
the partial sum Ht =

∑t
s=1 hs(xs, xs−1) rather than the full list of x1:t during SIR. The complete

particle filtering scheme is detailed in Algorithm 1.

Algorithm 1 Particle Filter
1: Input: number of particles, N , pairwise statistics, h1:T , observations y1:T , proposal density q,
2: Draw x

(i)
0 ∼ ν(x0|θ), set w(i)

0 = 1
N , and H(i)

0 = 0 ∀i.
3: for t = 1, . . . , T do
4: Resample ancestor indices {a1, . . . , aN}.
5: Propagate particles x(i)

t ∼ q(·|x
(ai)
t−1 , yt, θ).

6: Update each w(i)
t according to Eq. (3).

7: Update statistics H(i)
t = H

(ai)
t−1 + ht(x(i)

t , x
(ai)
t−1).

8: end for
9: Return H =

∑N
i=1 w

(i)
T H

(i)
T .

A key challenge for particle filters is handling large T . Not only do long sequences require O(T )
computation, but particle filters require a large number of particles, N , to avoid particle degeneracy:
the use of resampling in the particle filter causes path-dependence over time, depleting the number of
distinct particles available overall. For Algorithm 1, the variance in H scales as O(T 2/N) [Poyiadjis

3



et al., 2011]. Therefore to maintain a constant variance, the number of particles would need to
increase quadratically with T , which is computationally infeasible for long sequences. Poyiadjis et al.
[2011], Nemeth et al. [2016] and Olsson et al. [2017] propose alternatives to Step 7. of Algorithm 1
that trade additional computation or bias to decrease the variance in H to O(T/N). Fixed-lag
particle smoothers provide another approach to avoid particle degeneracy, where sample paths are
not updated after a fixed lag [Kitagawa and Sato, 2001, Dahlin et al., 2015]. All of these methods
perform a full pass over the data y1:T , which requires O(T ) computation.

2.2 Stochastic Gradient MCMC
One popular method to conduct scalable Bayesian inference for large data sets is stochastic gradient
Markov chain Monte Carlo (SGMCMC). Given a prior p(θ), to draw a sample θ from the posterior
p(θ|y) ∝ p(y|θ)p(θ), gradient-based MCMC methods simulate a stochastic differential equation (SDE)
based on the gradient of the loglikelihood gθ = ∇θ log p(y|θ), such that the posterior is the stationary
distribution of the SDE. SGMCMC methods replace the full-data gradients with stochastic gradients,
ĝθ, using subsamples of the data to avoid costly computation.

A fundamental method within the SGMCMC family is the stochastic gradient Langevin dynamics
(SGLD) algorithm [Welling and Teh, 2011]:

θ(k+1) ← θ(k) + ε(k) · ĝθ +N (0, 2ε(k)), (4)

where ε(k) is the stepsize. When ĝθ is unbiased and with an appropriate decreasing stepsize, the
distribution of θ(k) asymptotically converges to the posterior distribution [Teh et al., 2016]. Dalalyan
and Karagulyan [2017] provide non-asymptotic bounds on Wasserstein distance to the posterior after
K steps of SGLD for fixed ε(k) = ε and possibly biased ĝθ.

Many extensions of SGLD exist in the literature, including using control variates to reduce the
variance of ĝθ [Nagapetyan et al., 2017, Baker et al., 2018, Chatterji et al., 2018] and augmented
dynamics to improve mixing [Ma et al., 2015] such as SGHMC [Chen et al., 2014], SGNHT [Ding
et al., 2014], and SGRLD [Girolami and Calderhead, 2011, Patterson and Teh, 2013].

2.2.1 Stochastic Gradients for SSMs

An additional challenge when applying SGMCMC to SSMs is handling the temporal dependence
between observations. Based on a subset S of size S, an unbiased stochastic gradient estimate of
Eq. (2) is ∑

t∈S
Pr(t ∈ S)−1 · EX|Y,θ[∇θ log p(Xt, yt |xt−1, θ)]. (5)

Although Eq. (5) requires only a sum over S terms, it requires taking expectations with respect to
p(x|y1:T , θ), which requires processing the full sequence y1:T . One approach to reduce computation is
to randomly sample S as a contiguous subsequence S = {s+ 1, . . . , s+ S} and approximate Eq. (5)
using only yS ∑

t∈S
Pr(t ∈ S)−1 · E x|yS ,θ[∇θ log p(Xt, yt |xt−1, θ)]. (6)

However, Eq. (6) is biased because the expectation over the latent states xS is conditioned only on
yS rather than y1:T .

To reduce the bias in stochastic gradients while avoiding accessing the full sequence, previous
work on SGMCMC for SSMs proposed buffered stochastic gradients [Ma et al., 2017, Aicher et al.,
2018]1:

ĝθ(S,B) =
∑
t∈S

Pr(t ∈ S)−1 · E x|yS∗ ,θ[∇θ log p(Xt, yt |xt−1θ)] , (7)

1Previous work on inference in general SSMs has shown that the Markov chain displays a forgetting property (see
Chapter 3 of Cappé et al. [2005]). Therefore, conditional on the current value of t, it is sensible to use buffering, as we
expect distant time points to have negligible impact.
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xs−1 xs xs+1 xs+2 xs+3 xs+4 xs+5

ys−1 ys ys+1 ys+2 ys+3 ys+4 ys+5

S S∗

Figure 1: Graphical model of S∗ with S = 3 and B = 1.

where S∗ = {s + 1 − B, . . . , s + S + B} is the buffered subsequence for S (see Figure 1). Note
Eq. (5) is ĝ(S, T ) and Eq. (6) is ĝ(S, 0). As B increases from 0 to T , the estimator ĝθ(S,B) trades
computation for reduced bias.

In particular, when the SSM model and gradient both satisfy a Lipschitz property, the bias
decays geometrically in buffer size B (see Theorem 4.1 of Aicher et al. [2018]). Specifically,

E S‖ĝθ(S,B)− ĝθ(S, T )‖2 = O((Lθ)B/S), (8)

where Lθ is a bound for the Lipschitz constants of the forward and backward smoothing kernels2

~Ψt(xt+1, xt) = p(xt+1 |xt, y1:T , θ),
~Ψt(xt−1, xt) = p(xt−1 |xt, y1:T , θ). (9)

The bound provided in Eq. (8) ensures that only a modest buffer size B is required (e.g. O(log δ−1)
for an accuracy of δ). Unfortunately, neither the buffered stochastic gradient ĝθ(S,B) nor the
smoothing kernels {~Ψt, ~Ψt} have a closed-form for nonlinear SSMs.

3 Method
In this section, we propose a particle buffered stochastic gradient for nonlinear SSMs, by applying
the particle approximations of Section 2.1 to Eq. (7). In addition, we extend the error bounds
of Aicher et al. [2018] to the nonlinear SSM case, guaranteeing that the error decays geometrically in
B, without requiring an explicit form for the smoothing kernels. We also analyze the approximation
error by decomposing the buffering error and the particle filter error.

3.1 Buffered Stochastic Gradient Estimates for Nonlinear SSMs
Let gPF

θ (S,B,N) denote the particle approximation of ĝθ(S,B) with N particles. We approximate the
expectation over p(x|y∗S , θ) in Eq. (7) using Algorithm 1. In particular, the complete data loglikelihood,
log p(yS , xS , θ), in Eq. (7) decomposes into a sum of pairwise statistics H =

∑
t∈S∗ ht(xt, xt−1) where

ht(xt, xt−1) =


∇θ log p(xt, yt |xt−1, θ)

Pr(t ∈ S) if t ∈ S,

0 otherwise.
(10)

We highlight that the statistic is zero for t in the left and right buffers S∗\S. Although Ht is not
updated by ht for t in S∗\S, running the particle filter over the buffers is crucial to reduce the bias
of gPF

θ (S,B,N).
Note that gPF

θ (S,B,N) allows us to approximate the non-analytic expectation in Eq. (7) with
a modest number of particles N , by avoiding the particle degeneracy and full sequence runtime
bottlenecks, as the particle filter is only run over S∗, which has length S + 2B � T .

2We follow Aicher et al. [2018] and consider Lipschitz constant for a kernel Ψ is measured in terms of the
p-Wasserstein distance between distributions of x, x′ and Ψ(x), Ψ(x′). See the Supplement for additional details.
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3.2 SGMCMC Algorithm
Using gPF

θ (S,B,N) as our stochastic gradient estimate in SGLD, Eq. (4), gives us Algorithm 2.3

Algorithm 2 Buffered PF-SGLD
1: Input: data y1:T , initial θ(0), stepsize ε, subsequence size S, buffer size B, particle size N
2: for k = 1, 2, . . . ,K do
3: Sample S = {s+ 1, . . . , s+ S}
4: Set S∗ = {s+ 1−B, . . . , s+ S +B}.
5: Calculate gPF

θ using Algorithm 1 on Eq. (10).
6: Set θ(k+1) ← θ(k) + ε · gPF

θ +N (0, 2ε)
7: end for
8: Return θ(K+1)

Algorithm 2 can be extended and improved by (i) averaging over multiple sequences or varying
the subsequence sampling method [Schmidt et al., 2015, Ou et al., 2018], (ii) using different particle
filters such as those listed in Section 2.1.1, and (iii) using more advanced SGMCMC schemes such as
those listed in Section 2.2.

3.3 Error Analysis
Although defining the particle variant of SGMCMC is relatively straightforward by building on
Aicher et al. [2018], the error analysis presents new challenges. To analyze the error of the SGMCMC
sampler, it is sufficient to bound the bias and variance of our stochastic gradient estimator to the
exact full-data gradient [Dalalyan and Karagulyan, 2017]. We link the error between the full gradient
gθ and gPF

θ (S,B,N) through ĝθ(S,B) and ĝθ(S, T ),

gθ ⇔ ĝθ(S, T ) ⇔ ĝθ(S,B) ⇔ gPF
θ (S,B,N). (11)

Therefore there are three error sources to consider in (11)

(I) Subsequence Error, gθ ⇔ ĝθ(S, T ): the error in approximating Fisher’s identity with a
stochastic subsequence. The error in this term follows the standard stochastic gradient
literature, which depends on the subsequence length S and how subsequences are sampled.
For a random minibatch of size S sampling without replacement, the variance scales O(1/S);
However, for a random contiguous subsequences of size S, the variance scales O( 1+ρ

S(1−ρ) ) where
ρ is a bound on the autocorrelation between terms (see the Supplement for details).

(II) Buffering Error, ĝθ(S, T ) ⇔ ĝθ(S,B): the error in approximating the latent state posterior
p(x1:T | y1:T ) with p(x1:T | y∗S). If the smoothing kernels {~Ψt, ~Ψt} are contractions for all t (i.e.
Lθ < 1), then from Eq. (8) the error in this term scales as O((Lθ)B/S) [Aicher et al., 2018].
In Section 3.3.1, we show sufficient conditions for Lθ < 1.

(III) Particle Error, ĝθ(S,B) ⇔ gPF
θ (S,B,N): the error from the particle smoother Monte-Carlo

approximation. This error depends on the number of particles N and the length of sequence
|S∗| = S + 2B. For the particle filter, Algorithm 1, the asymptotic variance in this term scales
as O((S + 2B)2/N) [Poyiadjis et al., 2011].

The error term (I-III) that dominates depends on the regime (S,B,N). For example, increasing
B, decreases the error in term (II), but increases the error in term (III); therefore, increasing B to
reduce buffering bias will not be effective if N is not sufficiently large to avoid particle degeneracy.

3Python code for Algorithm 2 and experiments of Section 4 is available at https://github.com/aicherc/sgmcmc_
ssm_code.
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3.3.1 Buffering Error for Nonlinear SSMs

To obtain a bound for the buffering error term (II), we require the Lipschitz constant Lθ of smoothing
kernels {~Ψt, ~Ψt} to be less than 1. Typically the smoothing kernels ~Ψt, ~Ψt are not available in closed-
form for nonlinear SSMs and therefore directly bounding the Lipschitz constant is difficult. Instead,
we show that we bound the Lipschitz constant of ~Ψt, ~Ψt in terms of the Lipschitz constant of either
the prior kernels ~Ψ(0)

t , ~Ψ
(0)
t , or the filtered kernels ~Ψ(1)

t , ~Ψ
(1)
t

~Ψ(0)
t := p(xt |xt−1, θ) ~Ψ(1)

t := p(xt |xt−1, yt, θ),

~Ψ
(0)
t := p(xt |xt+1, θ) ~Ψ

(1)
t := p(xt |xt+1, yt, θ). (12)

The prior kernels ~Ψ(0)
t , ~Ψ

(0)
t are defined by the model and therefore usually available. When ~Ψ(1)

t , ~Ψ
(1)
t

are also available, they can be used to obtain even tighter bounds.
We now present our results for the forward kernels ~Ψt; similar arguments can be made for the

backward kernels ~Ψt. These results rely on the transition and emission densities being log-concave in
xt, xt−1.

Theorem 1 (Lipschitz Bound for Log-Concave Models). Assume the prior for x0 is log-concave
in x. If the transition density p(xt |xt−1, θ) is log-concave in (xt, xt−1) and the emission density
p(yt |xt) is log-concave in xt, then

‖~Ψt‖Lip ≤ ‖~Ψ(1)
t ‖Lip ≤ ‖~Ψ

(0)
t ‖Lip. (13)

This theorem lets us bound Lθ with the Lipschitz constant of either the prior kernels or filtered
kernels. The proof of Theorem 1 is provided in the Supplement and is based on Caffarelli’s log-concave
perturbation theorem [Villani, 2008, Colombo et al., 2015]. Examples of SSMs that are log-concave
include the LGSSM, the stochastic volatility model, or any linear SSM with log-concave transition
or emission noise. Examples of SSMs that are not log-concave include the GARCH model or any
linear SSM with a transition or emission noise distribution that is not log-concave (e.g. Student’s t).

4 Experiments
We first introduce the three models: (i) linear Gaussian SSM (LGSSM), a case where analytic
buffering is possible, to assess the impact of the particle filter; (ii) the SVM, where the emissions
are non-Gaussian; and (iii) a GARCH model, where the latent transitions are nonlinear. We then
empirically test the gradient error of our particle buffered gradient estimator on synthetic data for
fixed θ. Finally, we evaluate the performance of our proposed SGLD algorithm (Algorithm 2) on
both real and synthetic data.

4.1 Models
4.1.1 Linear Gaussian SSM

The linear Gaussian SSM (LGSSM) is

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1 , σ
2), (14)

Yt | (Xt = xt), θ ∼ N (yt |xt , τ2), (15)

with X0 ∼ N (x0|0, φ2

1−σ2 ) and parameters θ = (φ, σ, τ).
The transition and emission distributions are both Gaussian and log-concave in x, allowing

Theorem 1 to apply. In the Supplement, we show that the filtered kernels {~Ψ(1)
t , ~Ψ

(1)
t } of the LGSSM

are bounded with the Lipschitz constant Lθ = |φ| · σ2/(σ2 + τ2). Thus, the buffering error decays
geometrically with increasing buffer size B when |φ| < (1 + τ2

σ2 ). This linear model serves as a useful
baseline since the various terms in Eq. (11) can be calculated analytically.
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4.1.2 Stochastic Volatility Model

The stochastic volatility model (SVM) is

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1 , σ
2), (16)

Yt | (Xt = xt), θ ∼ N (yt | 0 , exp(xt)τ2), (17)

with parameters θ = (φ, σ, τ).
For the SVM, the transition and emission distributions are log-concave in x, allowing Theorem 1

to apply. In the Supplement, we show that the prior kernels {~Ψ(0)
t , ~Ψ

(0)
t } of the SVM are bounded

with the Lipschitz constant Lθ = |φ|. Thus, the buffering error decays geometrically with increasing
buffer size B when |φ| < 1.

4.1.3 GARCH Model

We finally consider a GARCH(1,1) model (with noise)

Xt | (Xt−1 = xt−1), σ2
t , θ ∼ N (xt | 0, σ2

t ), (18)
σ2
t (xt−1, σ

2
t−1, θ) = α+ βx2

t−1 + γσ2
t−1, (19)

Yt | (Xt = xt), θ ∼ N (yt |xt , τ2), (20)

with parameters θ = (α, β, γ, τ). Unlike the LGSSM and SVM, the noise between Xt and Xt−1 is
multiplicative in Xt−1 rather than additive. This model is not log-concave and therefore our theory
(Theorem 1) does not hold. However, we see empirically that buffering can help reduce the gradient
error for the GARCH in the experiments below and in the Supplement.

4.2 Stochastic Gradient Error
We compare the error of stochastic gradient estimates using a buffered subsequence with S = 16,
while varying B and N on synthetic data from each model. We generated synthetic data of length
T using (φ = 0.9, σ = 0.7, τ = 1.0) for the LGSSM, (φ = 0.9, σ = 0.5, τ = 0.5) for the SVM, and
(α = 0.1, β = 0.8, γ = 0.05, τ = 0.3) for the GARCH model.

Figure 2 displays the mean squared error (MSE) between our particle buffered stochastic gradient
gPF
θ (S,B,N) and ĝθ(S, T ) averaged over 100,000 replications. We evaluate the gradients at θ equal
to the data generating parameters. We vary the buffer size B ∈ [0, 8] and the number of samples
N ∈ {100, 1000, 10000}. For the LGSSM, we also consider N =∞, calculating gPF

θ (S,B,∞) using
the Kalman filter, which is tractable in the linear setting. We calculate ĝθ(S, T ) using the Kalman
filter for the LGSSM, and use ĝθ(S, T ) ≈ gPF

θ (S, 16, 107) for the SVM and the GARCH model,
assuming that N = 107 particles and B = 16 is sufficient for a highly accurate approximation.

Figure 2 demonstrates the trade-off between the buffering error (II) and the particle error (III)
from Section 3.3. For all N , when B is small, the buffering error (II) dominates, and therefore the
MSE decays exponentially as B increases. However for N <∞, the particle error (III) dominates for
larger values of B. In fact, the MSE slightly increases due to particle degeneracy, as |S∗| = S + 2B
increases with B. For N = ∞ in the LGSSM case, we see that the error continues to decreases
exponentially with large B as there is no particle filter error when using the Kalman filter.

Figure 2 also shows that buffering cannot be ignored in these three example models: there is high
MSE for B = 0. In general, buffering has diminishing returns when B is excessively large relative to
N .

4.3 SGLD Experiments
Having examined the stochastic gradient error, we now consider using our stochastic gradient
estimators in SGLD.
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Figure 2: Buffered Stochastic Gradient Estimate Error Plots. (left) LGSSM φ, (middle) SVM φ,
(right) GARCH β

4.3.1 SGLD Evaluation Methods

We assess the performance of our samplers given a fixed computation budget, by measuring both
the heldout and predictive loglikelihoods on a test sequence. Given a sampled parameter value θ(k)

the heldout loglikelihood is

T∑
t=1

log p(yt | y<t, θ) ≈
T∑
t=1

N∑
i=1

w
(i)
t−1 log p(yt |x(i)

t−1, θ), (21)

and the r-step ahead predictive loglikelihood is

T∑
t=1

log p(yt+r | y<t, θ) ≈
T∑
t=1

N∑
i=1

w
(i)
t−1 log p(yt+r |x(i)

t−1, θ), (22)

where {x(i)
t , w

(i)
t }Ni=1 are obtained from the particle filter on the test sequence. For synthetic data,

we also measure the mean-squared error (MSE) of the posterior sample average θ̂(s) =
∑
k≤s θ

(k)/s
to the true parameters θ∗.

We measure the sample quality of our MCMC chains {θ(k)}Kk=1 using the kernel Stein discrepancy
(KSD) given equal computation time [Gorham and Mackey, 2017, Liu et al., 2016]. We choose to
use KSD rather than classic MCMC diagnostics such as effective sample size (ESS) [Gelman et al.,
2013], because KSD penalizes the bias present in our MCMC chains. Given a sample chain (after
burnin and thinning) {θ(k)}K̃k=1, let p̂(θ|y) be the empirical distribution of the samples. Then the
KSD between p̂(θ|y) and the posterior distribution p(θ|y) is

KSD(p̂, p) =
dim(θ)∑
d=1

√√√√√ K̃∑
k,k′=1

Kd0(θ(k), θ(k′)), (23)

where
Kd0(θ, θ′) = 1

p(θ|y)p(θ′|y)∇θd
∇θ′

d
(p(θ|y)K(θ, θ′)p(θ′|y)) (24)

and K(·, ·) is a valid kernel function. Following Gorham and Mackey [2017], we use the inverse
multiquadratic kernel K(θ, θ′) = (1 + ‖θ − θ′‖22)−0.5 in our experiments. Since Eq. (24) requires full
gradient evaluations of log p(θ|y) that are computationally intractable, we replace these terms with
corresponding stochastic estimates using gPF

θ .
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4.3.2 SGLD on Synthetic LGSSM Data

To assess the effect of using particle filters with buffered stochastic gradients, we first focus on SGLD
on synthetic LGSSM data, where calculating ĝθ(S,B) is possible. We generate training sequences
of length T = 103 or 106 and test sequences of length T = 103 using the same parametrization as
Section 4.2.

We consider three pairs of different gradient estimators: Full (S = T ), Buffered (S = 40, B = 10)
and No Buffer (S = 40, B = 0) each with N = 1000 particles using the particle filter and with
N = ∞ using the Kalman filter. To select the stepsize, we performed a grid search over ε and
selected the method with smallest KSD to the posterior on the training set. We present the KSD
results (for the best ε) in Table 1 and trace plots of the metrics in Figure 3.
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Figure 3: SGLD on Synthetic LGSSM data. (top) T = 103, (bottom) T = 106. (left) heldout-
loglikelihood, (right) MSE of estimated posterior mean of φ̂(k) to true φ = 0.9.

From Figure 3, we see that the methods without buffering (B = 0) have lower heldout loglike-
lihoods on the test sequence and have higher MSE as they are biased. We also see that the full
sequence methods (S = T ) perform poorly for large T = 106.

The KSD results further support this story. Table 1 presents the mean and standard deviation on
our estimated log10 KSD for θ. Tables of the marginal KSD for individual components of θ can be
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found in the Supplement. The methods without buffering have larger KSD, as the inherent bias of
ĝθ(S,B = 0) led to an incorrect stationary distribution. The full sequence methods perform poorly
for T = 106 because of a lack of samples that can be computed in a fixed runtime.

Table 1: KSD for Synthetic LGSSM. Mean and SD.

log10KSD
S B N T = 103 T = 106

T – 1000 0.85 (0.08) 4.92 (0.40)
∞ 0.64 (0.17) 4.85 (0.36)

40 0 1000 1.58 (0.03) 4.68 (0.10)
∞ 1.55 (0.03) 4.68 (0.11)

40 10 1000 0.68 (0.25) 3.43 (0.19)
∞ 0.61 (0.21) 3.25 (0.29)

In the Supplement, we present similar results for SGLD on synthetic SVM and GARCH data.
Also in the Supplement, we present results for SGLD on LGSSM in higher dimensions. As is typical
in the particle filtering literature, the performance degrades with increasing dimensions for N fixed.

4.3.3 SGLD on Exchange Rate Log-Returns

We now consider fitting the SVM and the GARCH model to EUR-US exchange rate data at the
minute resolution from November 2017 to October 2018. The data consists of 350,000 observations of
demeaned log-returns. As the market is closed during non-business hours, we further break the data
into 53 weekly segments of roughly 7,000 observations each. In our model, we assume independence
between weekly segments and divide the data into a training set of the first 45 weeks and a test set
of the last 8 weeks. Full processing details and example plots are in the Supplement. Note that our
method (Algorithm 2) easily scales to the unsegmented series; however the abrupt changes between
starts of weeks are not adequately modeled by Eqs. (16)-(17)

We fit both the SVM and the GARCH model using SGLD with four different gradient methods:
(i) Full, the full gradient over all segments in the training set; (ii) Weekly, a stochastic gradient
over a randomly selected segment in the training set; (iii) No Buffer, a stochastic gradient over a
randomly selected subsequence of length S = 40; and (iv) Buffer, our buffered stochastic gradient
for a subsequence of length S = 40 with buffer length B = 10. To estimate the stochastic gradients,
we use Algorithm 1 with N = 1000. To select the stepsize parameter, we performed a grid search
over ε and selected the method with smallest KSD. We present the KSD results in Table 2. Figure 4
are trace plots of the heldout and predictive loglikelihood for the four different SGLD methods, each
averaged over 5 chains.

Table 2: KSD for SGLD on exchange rate data. Mean and SD over 5 chains each.

log10KSD
Method SVM GARCH

Full 4.03 (0.14) 2.84 (0.30)
Weekly 3.87 (0.08) 2.81 (0.21)
No Buffer 4.48 (0.01) 2.09 (0.09)
Buffer 3.56 (0.08) 2.19 (0.05)

For the SVM, we see that buffering improves performance on both heldout and predictive
loglikelihoods, Figure 4(top), and also leads to more accurate MCMC samples, Table 2(left). In
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(b) GARCH
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Figure 4: SGLD plots on exchange rate data. (top) SVM, (bottom) GARCH, (left) heldout-
loglikelihood, (right) 3-step ahead predictive loglikelihood.

particular, the samples from SGLD without buffering have smaller φ, τ2 and a larger σ2, indicating
that its posterior is (inaccurately) centered around a SVM with larger latent state noise. We also
again see that the full sequence and weekly segment methods perform poorly due to the limited
number of samples that can be computed in a fixed runtime.

For the GARCH model, Figure 4(bottom) and Table 2(right), we see that the subsequence
methods out perform the full sequence methods, but unlike in the SVM, buffering does not help with
inference on the GARCH data. This is because the GARCH model that we recover on the exchange
rate data (for all gradient methods) is close to white noise β ≈ 0. Therefore the model believes the
observations are close to independent, hence no buffer is necessary. Although buffering performs
worse on a runtime scale, here, it is leading to a more accurate posterior estimate (less bias) in all
settings.

5 Discussion
In this work, we developed a particle buffered stochastic gradient estimators for nonlinear SSMs.
Our key contributions are (i) combining buffered stochastic gradient MCMC with particle filtering
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for nonlinear SSM (Algorithm 1), (ii) decomposing the error of our proposed gradient estimator into
parts due to buffering and particle filtering, and (iii) generalizing the geometric decay error bound for
buffering to nonlinear SSMs with log-concave likelihoods (Theorem 1). We evaluated our proposed
gradient estimator with SGLD for three models (LGSSM, SVM, GARCH) on both synthetic data
and EUR-US exchange rate data. We find that our stochastic gradient methods (Algorithm 2) are
able to out perform batch methods on long sequences.

Possible future extensions of this work include relaxing the log-concave restriction of Theorem 1,
extensions to Algorithm 2 as discussed at the end of Section 3.2, and applying our particle buffered
stochastic gradient estimates to other applications than SGMCMC, such as optimization in variational
autoencoders for sequential data [Maddison et al., 2017, Naesseth et al., 2018].
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Supplement
This Supplement is organized as follows. In Section A, we provide additional details for the error

analysis. In particular, we provide the proof of Theorem 1 in Section A.2.3 and applications of it
to the LGSSM and SVM in Section A.3. In Section B, we provide additional particle filter and
gradient details for the models in Section 4.1. In Section C, we provide additional details and figures
of experiments.

A Error Analysis Supplement
A.1 Stochastic Subsequence Error
We are interested in the (mean-squared) error between the full gradient gθ and the unbiased stochastic
gradient estimate ĝθ(S, T ), specifically for the case of randomly sampling a contiguous subsequence
S. Because ĝθ(S, T ) is unbiased, this reduces to calculating the variance of ĝθ(S, T ) with respect to
the sampling distribution of the subsequence S. For simplicity, we consider the 1-D case and assume
Pr(t ∈ S) = S/T .

Let ft = E x1:T |y1:T ,θ[∇ log p(yt, xt |xt−1, θ)], thus

gθ = E x1:T |y1:T ,θ

[
T∑
t=1
∇ log p(yt, xt |xt−1, θ)

]
=

T∑
t=1

ft, (A.1)

ĝθ(S, T ) = E x1:T |y1:T ,θ

[∑
t∈S

Pr(t ∈ S)−1 · ∇ log p(yt, xt |xt−1, θ)
]

= T
S

∑
t∈S

ft. (A.2)

Consider the uniform random variable t̂ over {1, . . . , T}. To bound the variance of ĝθ(S, T ), we
additionally assume |Corr(ft̂, ft̂+s)| ≤ ρs, that is the correlation between gradients decays with time.
This assumption is reasonable when both the observations Y1:T and posterior latent states X1:T |Y1:T
are ergodic (i.e. exhibit a exponential forgetting property) [Cappé et al., 2005]. Let V = Var(ft̂) be
the variance and recall the following covariance formula CoV(X,Y ) ≤ |Corr(X,Y )|

√
Var(X) Var(Y ).

Then we have

Var(ĝθ(S, T )) = T 2

S2 ·Var
[∑
t∈S

ft

]
, (A.3)

= T 2

S2 ·

[
S ·Var(ft̂) +

S−1∑
s=1

2(S − s) CoV(ft̂, ft̂+s)
]
, (A.4)

≤ T 2

S2 ·

[
S · V +

S−1∑
s=1

2(S − s) · V ρs
]
, (A.5)

= T 2

S2

[
S · V + V · 2ρ(ρS + S(1− ρ)− 1)

(1− ρ)2

]
= O

(
T 2 · V
S

· 1 + ρ

1− ρ

)
. (A.6)

Note that without the decaying correlation assumption (i.e. if ρ = 1), there is no decay in the
covariance terms, and thus the variance of ĝθ(S, T ) does not necessarily decay with increasing S.

A.2 Proof of Theorem 1
Theorem 1 states that if the prior distribution for x0, the transition distribution p(xt |xt−1, θ) and
the emission distribution p(yt |xt) are log-concave, then we can bound the Lipschitz constant of ~Ψt

in terms of ~Ψ(0)
t and ~Ψ(1)

t .
We first briefly review Wasserstein distance, random mappings, and Lipschitz constants of

kernels [Aicher et al., 2018, Villani, 2008]. Then we review Caffarelli’s log-concave perturbation
theorem, the main tool we use in our proof. Finally, we present the proof in Section A.2.3.
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A.2.1 Wasserstein Distance and Random Mappings

The p-Wasserstein distance with respect to Euclidean distance is

Wp(γ, γ̃) :=
[
inf
ξ

∫
‖x− x̃‖p2 dξ(x, x̃)

]1/p
(A.7)

where ξ is a joint measure or coupling over (x, x̃) with marginals
∫
x̃
dξ(x, x̃) = dγ(x) and

∫
x
dξ(x, x̃) =

dγ̃(x).
To bound the Wasserstein distance, we first must introduce the concept of a random mapping

associated with a transition kernel.
Let Ψ : U → V be a transition kernel for random variables u and v, then for any measure µ(u)

over U , we define the induced measure (µΨ)(v) over V as (µΨ)(v) =
∫

Ψ(u, v)µ(du).
A random mapping ψ is a random function that maps U to V such that if u ∼ µ then ψ(u) ∼ µΨ.

For example, if Ψ(u, v) = N (v |u, 1), then a random mapping for Ψ is the identity function plus
Gaussian noise ψ(u) = u + ε, where ε ∼ N (0, 1). Note that if ψ is deterministic (µΨ)(v) is the
push-forward measure of µ through the mapping ψ; otherwise it is the average (or marginal) over ψ
of push-forward measures [Villani, 2008].

We say the kernel (and random mapping) has Lipschitz constant L with respect to Euclidean
distance if

‖Ψ‖Lip = ‖ψ‖Lip = L ⇔ sup
u,u′

{
E ψ[‖ψ(u)− ψ(u′)‖2]

‖u− u′‖2

}
≤ L (A.8)

Note that is L is an upper-bound on the expected value of Lipschitz constants for random instances
of ψ.

These definitions are useful for proving bounds in Wasserstein distance. For example, we
can show the kernel Ψ induces a contraction in p-Wasserstein distance if ‖Ψ‖Lip < 1. That is
Wp(µΨ, µ̃Ψ) ≤ ‖Ψ‖Lip · Wp(µ, µ̃)

Proof.

Wp(µΨ, µ̃Ψ)p = inf
ξ(µΨ,µ̃Ψ)

∫
‖v − ṽ‖p2 dξ(v, ṽ) (A.9)

≤ inf
ξ(µ,µ̃)

∫
‖ψ(u)− ψ(ũ)‖p2 dξ(u, ũ)dfK

≤ inf
ξ(µ,µ̃)

∫
‖Ψ‖pLip · ‖u− ũ‖

p
2 dξ(u, ũ) = ‖Ψ‖pLip · Wp(µ, µ̃)p .

A.2.2 Caffarelli’s Log-Concave Perturbation Theorem

Caffarelli’s log-concave perturbation theorem allows us to connect Lipschitz constants between
kernels that are log-concave perturbations of one another.

Theorem A.1 (Caffarelli’s). Let γ(x) be a log-concave measure for x and suppose `(x) is a log-
concave function such that γ′(x) = `(x)γ(x) is a probability measure over x. Then there exists a
1-Lipschitz mapping T : X → X such that if x ∼ γ(x) then T (x) ∼ γ′(x).

We can think of γ(x) as a prior distribution p(x), `(x) as a normalized conditional likelihood
p(y|x)/p(y) and γ′(x) as the posterior p(x|y). Because `(x) is log-concave, we call γ′(x) a log-concave
perturbation of γ.

The original version of Caffarelli’s theorem [Colombo et al., 2015, Saumard and Wellner, 2014]
requires the prior γ(x) to be strongly log-concave (e.g. a Gaussian) to show that the mapping T
is a strict contraction ‖T‖Lip < 1; however this weaker version, Theorem A.1 in [Villani, 2008], is
sufficient for our purposes.
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A.2.3 Proof of Theorem 1

Using Theorem A.1, we can now prove Theorem 1 from Section 3.3.1.

Proof of Theorem 1. Let ~ψt, ~ψ
(0)
t , ~ψ

(1)
t be random mappings associated with the forward kernels

~Ψt, ~Ψ(0)
t , ~Ψ(1)

t respectively. Because the transition and emission distributions are log-concave,
p(yt:T , xt:T |xt) and p(yt:T |xt) are also log-concave (recall log-concavity is preserved under products
and marginalization [Saumard and Wellner, 2014]).

Since p(yt:T |xt) is log-concave, we can write ~Ψt as a log-concave perturbation of ~Ψ(0)
t ,

~Ψt = p(xt |xt−1, yt:T , θ) ∝ p(yt:T |xt)p(xt |xt−1, θ) = p(yt:T |xt) · ~Ψ(0)
t . (A.10)

Therefore, there exists T (0)
t with ‖T (0)

t ‖Lip ≤ 1 such that ~ψt = (T (0)
t ◦ ~ψ(0)

t ). Thus,

‖~Ψt‖Lip = ‖T (0)
t ‖Lip · ‖~Ψ

(0)
t ‖Lip ≤ ‖~Ψ

(0)
t ‖Lip. (A.11)

Similarly, we can write ~Ψt as a log-concave perturbation of ~Ψ(1)
t using p(y>t |xt), thus ‖~Ψt‖Lip ≤

‖~Ψ(1)
t ‖Lip.

Note the assumptions for equivalent results in the backward smoothers ~Ψt are almost identical.
Note that log-concavity in p(xt |xt+1, θ) is implied from log-concavity inboth p(xt |xt−1, θ) and the
prior p(xt).

A.3 Bounds for Specific Models
We now provide specific bounds for the buffering error for models we consider in Section 4.

For both the LGSSM and SVM, we assume the prior ν(x0|θ) = N (0, σ2/(1 − φ2)). Then the
latent state transitions are p(xt |xt−1, θ) = N (xt |φxt, σ2) and p(xt |xt+1, θ) = N (xt |φxt+1, σ

2),
which are both Gaussian and therefore log-concave.

Similarly, the emissions for the LGSSM and SVM are also log-concave:

• For the LGSSM, p(yt |xt, θ) ∝ exp(−(yt − xt)2/(2σ2) is log-concave,

• For the SVM, p(yt |xt, θ) ∝ exp(−y2
t /(2σ2) · exp(−x)− x/2) is log-concave (as exp(−x) + x is

convex).

A.3.1 Contraction Bound for LGSSM

We assume the prior ν(x0|θ) = N (0, σ2/(1− φ2)). For the LGSSM, the filtered kernels are

~Ψ(1)
t (xt |xt−1) = p(xt |xt−1, yt, θ) ∝ N (xt|φxt−1, σ

2) · N (yt|xt, τ2), (A.12)

~Ψ
(1)
t (xt |xt+1) = p(xt |xt+1, yt, θ) ∝ N (xt|0, σ2/(1− φ2)) · N (yt|xt, τ2) · N (xt+1|φxt, σ2). (A.13)

Therefore,

~Ψ(1)
t (xt |xt−1) = N

(
xt

∣∣∣ σ2yt + φτ2xt−1

σ2 + τ2 ,
σ2τ2

σ2 + τ2

)
, (A.14)

~Ψ
(1)
t (xt |xt+1) = N

(
xt

∣∣∣ σ2yt + φτ2xt+1

σ2 + τ2 ,
σ2τ2

σ2 + τ2

)
. (A.15)

18



The associated random mapping are,

~ψ
(1)
t (xt |xt−1) = σ2yt

σ2 + τ2 + φτ2

σ2 + τ2 · xt−1 +N
(

0 , σ2τ2

σ2 + τ2

)
, (A.16)

~ψ
(1)
t (xt |xt+1) = σ2yt

σ2 + τ2 + φτ2

σ2 + τ2 · xt+1 +N
(

0 , σ2τ2

σ2 + τ2

)
. (A.17)

Since these maps are linear, we have ‖~Ψ(1)
t ‖Lip = ‖ ~Ψ

(1)
t ‖Lip = |φ| · τ2

σ2+τ2 . Applying Theorem 1,
we obtain

Lθ ≤ max
t
{‖~Ψ(1)

t ‖, ‖ ~Ψ
(1)
t ‖} = |φ| · (1 + σ2/τ2)−1. (A.18)

Therefore Lθ < 1 whenever |φ| < 1 + σ2/τ2.

A.3.2 Contraction Bound for SVM

We assume the prior ν(x0θ) = N (0, σ2/(1− φ2)). For the SVM, the prior kernels are,

~Ψ(0)
t (xt |xt−1) = p(xt |xt−1, θ) ∝ N (xt|φxt−1, σ

2), (A.19)

~Ψ
(0)
t (xt |xt+1) = p(xt |xt+1, θ) ∝ N (xt|0, σ2/(1− φ2)) · N (xt+1|φxt, σ2). (A.20)

Therefore,
~Ψ(0)
t (xt |xt−1) = N

(
xt |φxt−1 , σ

2) , (A.21)

~Ψ
(0)
t (xt |xt+1) = N

(
xt |φxt+1 , σ

2) . (A.22)

The associated random mapping are
~ψ

(0)
t (xt |xt−1) = φ · xt−1 +N

(
0 , σ2) , (A.23)

~ψ
(0)
t (xt |xt+1) = φ · xt+1 +N

(
0 , σ2) . (A.24)

Applying Theorem 1, we obtain Lθ ≤ |φ|.

B Model Details Supplement
B.1 Linear Gaussian State Space Model (LGSSM)
The LGSSM used in this paper is a scalar AR(1) model,

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1 , σ
2), (B.1)

Yt | (Xt = xt), θ ∼ N (yt |xt , τ2), (B.2)

with parameters θ = (φ, σ, τ).

When applying the particle filter, Algorithm 1, to the LGSSM, we consider two proposal densities
q(·|·):
• The prior (transition) kernel

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1, σ
2), (B.3)

where the weight update, Eq. (3), is

w
(i)
t ∝

1√
2πτ2

exp
(
−(yt − x(i)

t )2

2τ2

)
. (B.4)
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• The ‘optimal instrumental kernel’

Xt | (Xt−1 = xt−1, Yt = yt), θ ∼ N
(
xt

∣∣∣ τ2φxt−1 + σ2yt
σ2 + τ2 ,

σ2τ2

σ2 + τ2

)
, (B.5)

where the weight update, Eq. (3), is

w
(i)
t ∝

1√
2π(σ2 + τ2)

exp
(
−(yt − φx(ai)

t−1)2

2(σ2 + τ2)

)
. (B.6)

In our experiments with the LGSSM, we use the optimal instrumental kernel.
For this model, the (elementwise) complete data loglikelihood is

log p(yt, xt |xt−1, θ) = log(2π)− log(σ)− (xt − φxt−1)2

2σ2 − log(τ)− (yt − xt)2

2τ2 . (B.7)

The gradient of the complete data loglikelihood is then,

∇φ log p(yt, xt |xt−1, θ) = (xt − φxt−1) · xt−1

σ2 , (B.8)

∇σ log p(yt, xt |xt−1, θ) = (xt − φxt−1)2 − σ2

σ3 , (B.9)

∇τ log p(yt, xt |xt−1, θ) = (yt − xt)2 − τ2

τ3 . (B.10)

We reparametrize the gradients with σ−1 and τ−1 to obtain,

∇σ−1 log p(yt, xt |xt−1, θ) = σ2 − (xt − φxt−1)2

σ
, (B.11)

∇τ−1 log p(yt, xt |xt−1, θ) = τ2 − (yt − xt)2

τ
. (B.12)

To complete the SGMCMC scheme, the prior distributions of the parameters θ are given as follows:
φ ∼ N (0, 100 · σ2), σ−1 ∼ Gamma(1 + 100, 1

1+100 ), and τ−1 ∼ Gamma(1 + 100, 1
1+100 ). The initial

parameter values for synthetic experiments were drawn from: φ ∼ N (0, 1 ·σ2), σ−1 ∼ Gamma(2, 0.5)
and τ−1 ∼ Gamma(2, 0.5).

B.2 Stochastic Volatility Model (SVM)
The SVM used in this paper is given by,

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1 , σ
2), (B.13)

Yt | (Xt = xt), θ ∼ N (yt | 0 , exp(xt)τ2), (B.14)

with parameters θ = (φ, σ, τ). In this model, the observations, y1:T , represent the logarithm of
the daily difference in the exchange rate and X is the unobserved volatility. We assume that the
volatility process is stationary (such that 0 < φ < 1), where φ is the persistence in volatility and τ is
the instantaneous volatility.

For the particle filter, we use the prior kernel as the proposal density q

Xt | (Xt−1 = xt−1), θ ∼ N (xt |φxt−1, σ
2), (B.15)
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with weight update

w
(i)
t ∝

1√
2πτ2

exp
(

−y2
t

2 exp(x(i)
t )τ2

)
. (B.16)

The elementwise complete data loglikelihood is given by,

log p(yt, xt |xt−1, θ) = log(2π)− log(σ)− (xt − φxt−1)2

2σ2 − log(τ)− 0.5xt −
(yt)2

2 exp(xt)τ2 . (B.17)

The gradient of the complete data loglikelihood is then,

∇φ log p(yt, xt |xt−1, θ) = (xt − φxt−1) · xt−1

σ2 , (B.18)

∇σ log p(yt, xt |xt−1, θ) = (xt − φxt−1)2 − σ2

σ3 , (B.19)

∇τ log p(yt, xt |xt−1, θ) = y2
t / exp(xt)− τ2

τ3 . (B.20)

We parametrize with σ−1 and τ−1 to obtain,

∇σ−1 log p(yt, xt |xt−1, θ) = σ2 − (xt − φxt−1)2

σ
, (B.21)

∇τ−1 log p(yt, xt |xt−1, θ) = τ2 − y2
t / exp(xt)
τ

. (B.22)

The prior distributions and initializations of the parameters θ are taken to be the same as in the
LGSSM case.

B.3 Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
Model

The GARCH(1,1) model (with noise) used in this paper is given by,

Xt | (Xt−1 = xt−1), σ2
t , θ ∼ N (xt | 0, σ2

t ), (B.23)
σ2
t (xt−1, σ

2
t−1, θ) = α+ βx2

t−1 + γσ2
t−1, (B.24)

Yt | (Xt = xt), θ ∼ N (yt |xt , τ2), (B.25)

where parameters are θ = (logµ, logitφ, logitλ, τ) for α = µ(1 − φ), β = φλ, γ = φ(1 − λ). Note
that σ2

t = µ(1− φ) + φ(λx2
t−1 + (1− λ)σ2

t−1).

We consider two proposal densities q(·|·) for the GARCH model:

• The prior kernel[
Xt

σ2
t

] ∣∣∣ [Xt−1 = xt−1
σ2
t−1

]
, θ ∼

[
N (xt | 0, α+ βx2

t−1 + γσ2
t−1)

δ(σ2
t |α+ βx2

t−1 + γσ2
t−1)

]
. (B.26)

where the weight update, Eq. (3), is

w
(i)
t ∝

1√
2πτ2

exp
(
−(yt − x(i)

t )2

2τ2

)
. (B.27)

21



• The optimal instrumental kernel[
Xt

σ2
t

] ∣∣∣ [Xt−1 = xt−1
σ2
t−1

]
, (Yt = yt), θ ∼

[
N (xt |σ2

t yt/(σ2
t + τ2), σ2

t τ
2/(σ2

t + τ2))
δ(σ2

t |α+ βx2
t−1 + γσ2

t−1)

]
. (B.28)

where the weight update, Eq. (3), is

w
(i)
t ∝

1√
2π((σ(i)

t )2 + τ2)
exp

(
−y2

t

2((σ(i)
t )2 + τ2)

)
. (B.29)

In our experiments with the GARCH model, we use the optimal instrumental kernel.
The elementwise complete data loglikelihood is

log p(yt, xt, σ2
t |xt−1, σ

2
t−1, θ) =− 0.5 log(2π)− 0.5 log(α+ βx2

t−1 + γσ2
t−1)− x2

t

2(α+ βx2
t−1 + γσ2

t−1)

− 0.5 log(2π)− log(τ)− (yt − xt)2

2τ2 . (B.30)

Let Lt = log p(yt, xt, σ2
t |xt−1, σ

2
t−1, θ). Then the gradient of the complete data log-likelihood ∇Lt is

∇τLt = (yt − xt)2 − τ2

τ3 , (B.31)

∇logµLt = x2
t − σ2

t

2σ4
t

· (1− φ) · µ, (B.32)

∇logitφLt = x2
t − σ2

t

2σ4
t

· (λx2
t−1 + (1− λ)σ2

t−1 − µ) · φ(1− φ), (B.33)

∇logitλLt = x2
t − σ2

t

2σ4
t

· (φx2
t−1 − φσ2

t−1) · λ(1− λ). (B.34)

The SGMCMC scheme is completed by setting the prior distributions for the parameters as
follows: (φ+ 1)/2 ∼ Beta(10, 1.5), µ ∼ U(0, 2), (λ+ 1)/2 ∼ Beta(20, 1.5) and τ2 ∼ IG(2, 0.5).

C Experiment Supplement
We first present additional SGLD results on synthetic data for the LGSSM in higher dimensions, the
SVM and the GARCH models. We then present some additional details for the SGLD experiment
on the EUR-US exchange rate data.

C.1 SGLD on Synthetic Data
C.1.1 LGSSM

Figure C.1 presents extra MSE plots for the parameters not presented in the main paper. Tables C.1
and C.2 present the full KSD results for each sampled variable.

C.1.2 Higher Dimensional LGSSM

We generate synthetic LGSSM data for Xt, Yt ∈ R d using φ = 0.9 · Id, σ = 0.7 · Id, and τ = Id for
dimensions d ∈ {5, 10}. Figure C.2 presents the trace plot metrics for d = 5 and Figure C.3 for
d = 10. Table C.3 presents the KSD tables for both.

We find that the Kalman filter N =∞ is able to much more rapidly mix compared to the particle
filter with N = 1000. This is both due to the increased particle filter variance in higher dimensions
and the longer computation required for sampling particles in higher dimensions. However in both
cases, we again see that buffering is necessary to avoid bias.
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Figure C.1: Additional metrics for SGLD on LGSSM: (left) MSE of σ for T = 103, (center-left) MSE
of τ for T = 103, (center-right) MSE of σ for T = 106, (right) MSE of τ for T = 106

Table C.1: KSD results for Synthetic LGSSM with T = 103

log10KSD
S B method φ σ τ total

103 – Gibbs 0.09 (0.25) -0.02 (0.01) -0.16 (0.48) 0.51 (0.13)
KF 0.01 (0.57) 0.07 (0.09) 0.20 (0.28) 0.64 (0.17)
PF 0.38 (0.26) 0.10 (0.16) 0.44 (0.19) 0.85 (0.08)

40 0 KF 1.53 (0.03) -0.08 (0.07) -0.04 (0.16) 1.55 (0.03)
PF 1.55 (0.03) -0.04 (0.13) 0.10 (0.26) 1.58 (0.03)

40 10 KF 0.18 (0.27) 0.02 (0.07) 0.04 (0.44) 0.61 (0.21)
PF 0.27 (0.46) 0.09 (0.13) -0.11 (0.53) 0.68 (0.25)

Table C.2: KSD results for Synthetic LGSSM with T = 106

log10KSD
S B method φ σ τ total

106 – Gibbs 3.91 (0.80) 3.43 (1.07) 3.52 (0.73) 4.23 (0.74)
KF 4.51 (0.48) 4.21 (0.50) 3.65 (0.55) 4.85 (0.36)
PF 4.77 (0.39) 4.11 (0.57) 3.55 (0.95) 4.92 (0.40)

40 0 KF 4.64 (0.14) 3.25 (0.21) 2.83 (0.61) 4.68 (0.11)
PF 4.64 (0.13) 3.19 (0.35) 3.12 (0.45) 4.68 (0.10)

40 10 KF 3.04 (0.39) 1.57 (0.50) 2.68 (0.20) 3.25 (0.29)
PF 3.26 (0.17) 1.70 (0.38) 2.87 (0.33) 3.43 (0.19)
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Figure C.2: SGLD Results for LGSSM X ∈ R 5: (left) heldout loglikelihood, (center-left) MSE of φ,
(center-right) MSE of σ, (right) MSE of τ .
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Figure C.3: SGLD Results for LGSSM X ∈ R 10: (left) heldout loglikelihood, (center-left) MSE of φ,
(center-right) MSE of σ, (right) MSE of τ .

Table C.3: KSD results for Synthetic LGSSM in higher dimensions

log10KSD

Dim Grad Est. N φ σ τ Total

5 No Buffer 1000 1.78 (0.04) 1.97 (0.26) 1.44 (0.45) 2.28 (0.20)
∞ 1.74 (0.01) 2.09 (0.02) 1.64 (0.02) 2.35 (0.01)

Buffer 1000 1.18 (0.17) 1.74 (0.25) 1.44 (0.03) 2.01 (0.13)
∞ 0.84 (0.03) 1.97 (0.03) 1.40 (0.05) 2.10 (0.03)

10 No Buffer 1000 1.84 (0.01) 2.40 (0.06) 2.26 (0.13) 2.71 (0.06)
∞ 1.79 (0.01) 2.13 (0.04) 2.12 (0.01) 2.52 (0.02)

Buffer 1000 1.60 (0.13) 2.37 (0.04) 2.20 (0.04) 2.64 (0.04)
∞ 1.04 (0.06) 2.08 (0.04) 2.07 (0.01) 2.39 (0.02)
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C.1.3 SVM

Figure C.4 presents the trace plot metrics for SGLD on the synthetic SVM data T = 1000 and
Table C.4 presents the KSD for each sampled chain.

We find that buffering performs best (as measured by KSD). From Figure C.4 we see that not
buffering leads to bias, while the full sequence method is nosier (fewer larger steps) compared to the
buffer method.
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Figure C.4: SGLD results for synthetic SVM data: (left) heldout loglikelihood, (center-left) MSE of
φ, (center-right) MSE of σ, (right) MSE of τ .

Table C.4: KSD results for Synthetic SVM

log10KSD

Grad Est. φ σ τ Total

Full 0.68 (0.28) 0.38 (0.40) 0.44 (0.54) 1.12 (0.22)
No Buffer 1.49 (0.05) -0.01 (0.23) 0.09 (0.35) 1.53 (0.05)
Buffer 0.35 (0.33) 0.23 (0.29) 0.21 (0.40) 0.81 (0.22)

C.1.4 GARCH

Figure C.5 presents the trace plot metrics for SGLD on the synthetic GARCH data T = 1000 and
Table C.5 presents the KSD for each sampled chain.

We again find that buffering performs best (as measured by KSD). From Figure C.5 we see that
not buffering leads to bias in sampling µ and λ. The full sequence method encounters high particle
error and therefore requires a much longer runtime with a much smaller stepsize to reduce bias.
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Figure C.5: SGLD results for synthetic SVM data: (left) heldout loglikelihood, (center-left) MSE of
log(µ), (center-right) MSE of logitφ, (right) MSE of logitλ.
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Table C.5: KSD results for Synthetic GARCH

log10KSD

Grad Est. logµ logitλ logitφ τ Total

Full 0.29 (0.59) 0.04 (0.03) 0.18 (0.34) 0.55 (0.11) 0.97 (0.05)
No Buffer 0.07 (0.08) -0.38 (0.09) -0.15 (0.10) 0.56 (0.10) 0.77 (0.08)
Buffer -0.27 (0.24) -0.72 (0.19) -0.69 (0.17) 0.12 (0.19) 0.39 (0.09)

C.2 SGLD on Exchange Rate
The EUR-US exchange rate data was fulled from the https://www.finam.ru website for the time
period from November 2017 to October 2018 at the minute resolution. The demeaned log-returns are
calculated by taking the difference of the log-closing price (at each minute) and removing the mean,
as done in the stochvol package in R [Kastner, 2016]

ỹt = log(yt/yt−1)− 1
T

∑
t′

log(yt′/yt′−1) . (C.1)

The data is plotted in Figure C.6.

Figure C.6: EUR-US Exchange Rate Data (top) raw data (bottom) demeaned log-returns

C.2.1 SVM

For the SVM, we initialized each chain at φ = 0.9, σ = 1.73 and τ = 0.1 for all SGLD methods. The
full KSD results are presented in Table C.6.

C.2.2 GARCH

For the GARCH model, we initialized each chain at logµ = −0.4, logitφ = 1.7, logitλ = 2.7 and
τ = 0.1 for all SGLD methods. The full KSD results are presented in Table C.7.
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Table C.6: KSD results for SVM on exchange rate data.

log10KSD

Grad Est. φ σ τ Total

Full 3.63 (0.30) 3.76 (0.07) 1.46 (0.38) 4.03 (0.14)
Weekly 3.86 (0.08) 2.18 (0.28) 0.67 (0.39) 3.87 (0.08)
No Buffer 4.48 (0.01) 1.84 (0.15) 1.21 (0.14) 4.48 (0.01)
Buffer 3.53 (0.11) 2.32 (0.13) 1.23 (0.05) 3.56 (0.10)

Table C.7: KSD results for GARCH on exchange rate data.

log10KSD

Grad Est. logµ logitλ logitφ τ Total

Full 2.18 (0.67) 2.18 (0.07) 2.19 (0.61) 2.07 (0.06) 2.84 (0.30)
Weekly 2.17 (0.51) 2.21 (0.03) 2.31 (0.29) 1.85 (0.19) 2.81 (0.21)
No Buffer 1.76 (0.06) 1.43 (0.46) 1.31 (0.09) 1.58 (0.08) 2.09 (0.09)
Buffer 1.76 (0.03) 2.01 (0.08) 1.11 (0.07) 1.87 (0.07) 2.19 (0.05)
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