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ABSTRACT

A number of published models utilizing induced polarization (IP) and nuclear 

magnetic resonance (NMR) measurements for the estimation of permeability of 

hydrocarbon reservoir samples are evaluated. IP and NMR measurements were made 

on 30 samples (clean sands and sandstones) from a Persian Gulf hydrocarbon reservoir. 

The applicability of a mechanistic IP-permeability model and an empirical IP-permeability 

model recently proposed is assessed. The mechanistic model results in a broader range 

of permeability estimates than those measured for sand samples, while the empirical 

model tends to overestimate the permeability of the samples tested here. An NMR 

permeability prediction model that is based on porosity ( ) and the mean of log transverse ϕ

relaxation time ( ) is also evaluated. This model provides reasonable permeability T2ml

estimations for clean sandstones tested here but relies on calibrated parameters. An IP-

NMR permeability model, which is based on the peak of the transverse relaxation time 

distribution, and the formation factor, is also examined. This model consistently T2p 

underestimates the permeability of the samples tested. A new model is then introduced. 
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This model estimates the permeability using the arithmetic mean of log transverse NMR 

relaxation time ( ) and diffusion coefficient of the pore fluid. Using this model, T2ml

estimates of permeability for both sandstones and sand samples is improved. This 

permeability model may offer a practical solution for geophysically-derived estimates of 

permeability in the field, although testing on a larger database of clean granular materials 

is needed. 

INTRODUCTION

One of the oldest, yet still challenging, problems in hydrogeophysics is the 

prediction of permeability of rocks and soils aided by geophysical measurements (e.g. 

Dakhnov et al., 1967; Worthington and Collar, 1984). Permeability is one of the most 

important reservoir properties for designing and managing the recovery operation of 

hydrocarbon reservoirs, as it controls the flow of fluids inside the well during production. 

Consequently, with reliable estimates of permeability, oil reservoir engineers can 
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efficiently manage the production processes of a field.  Fluid transport properties of 

porous media, including permeability, are also important for near-surface environmental 

applications, in particular for groundwater resource management. Conventional borehole-

based hydraulic methods for estimating permeability are expensive and can often involve 

lengthy experimentation. Furthermore, such measurements can be limited to relatively 

small support volumes. Consequently, there has been much interest in the use of 

geophysical methods to assist in permeability estimation. Most notably, nuclear magnetic 

resonance (NMR) and induced polarization (IP) have received considerable attention.

Several studies have been carried out to predict the permeability using IP and 

spectral IP (SIP) methods (Bӧrner et al., 1996; Sturrock et al., 1998, 1999; de Lima and 

Niwas, 2000; Slater and Lesmes, 2002). A number of studies have shown that the IP 

relaxation time is a relevant parameter for permeability estimation (Binley et al., 2005; 

Kemna et al., 2005; Zisser et al., 2010). Revil and Florsch (2010) proposed a mechanistic 

model for the prediction of the permeability of granular media. Their model is based on 

grain polarization expressed in terms of quadrature conductivity ( ). In contrast, Revil et σ"
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al. (2012) established a link between IP relaxation time and pore size which allows an 

alternative permeability estimation approach. Revil et al. (2015) investigated such an 

approach using an extensive data sets including clean and clayey sands and sandstones; 

they found that the predicted permeability using this model is very close to the measured 

permeability for the samples tested. Weller et al. (2015), also working on an extensive 

database of IP measurements of sandstones and sands, developed empirically 

permeability estimation models and demonstrate reasonable predictive capability over a 

range of permeability values. Their models are based on two parameters including an 

electric substitute of effective porosity (the formation factor) and an electrical proxy of 

pore-normalized surface area (the imaginary part of electric conductivity).

The NMR method has been widely used to evaluate and characterize petroleum 

and water resources as it is the only geophysical method that can detect hydrogen 

directly. NMR measurements can be applied in both the laboratory (lab-NMR) and field 

including surface NMR (MRS) and borehole NMR (BNMR). MRS is a non-invasive 

method that is used to characterize aquifer materials (e.g., Hertrich, 2008; Legchenko et 
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al., 2002; Meju et al., 2002; Yaramanci et al., 1999). In the petroleum industry, BNMR is 

used to estimate water and hydrocarbon content, porosity and permeability of a reservoir 

(Banavar and Schwartz, 1987; Kleinberg et al., 1994; Allen et al., 2000). Longitudinal and 

transverse relaxation times (  and , respectively) of materials can be determined using T1 T2

laboratory-based NMR. In order to predict the permeability using NMR methods, a 

relationship is typically developed between the arithmetic mean of log relaxation times (

 or ) and permeability (Coates et al., 1993; Straley et al., 1997; Kenyon, 1997).  A T1ml T2ml

number of studies have shown that the measured relaxation time is related to the surface 

area-to-volume ratio of the pore space ( ) (e.g., Cohen and Mendelson, 1982; Keating Spor

and Knight, 2012) and so this relationship allows the use of NMR data to estimate pore 

sizes (e.g., Timur, 1969; Yaramanci et al., 2002) and permeability (e.g.,Vogeley and 

Moses, 1992; Legchenko et al., 2002). 

There are a few studies that compare IP (or SIP) permeability models with NMR 

permeability models (Weller et al., 2010a; Weller et al., 2014; Osterman et al., 2016). 

Osterman et al. (2016) studied 45 sandstones cores collected from 15 different formations 
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with a broad range of permeability. They used the Katz and Thompson permeability 

model, which is based on the characteristic hydraulic length scale, determined from 

mercury injection capillary pressure (MICP), and the intrinsic formation factor, F. NMR 

measurements of the relaxation time associated with the peak of transverse relaxation 

time distribution ( ) and effective surface relaxivity ( ) were used to estimate the T2p ρ2eff

hydraulic length scale and IP measurements were included to improve estimates of the 

formation factor. Surface relaxivity quantifies the ability of a surface to cause protons to 

relax, which is controlled by the strength of fluid-matrix interactions and the wettability of 

the rock surface (Coates et al., 1999). There is substantial experimental evidence that the 

surface relaxivity is a function of the concentration and mineralogy of paramagnetic 

species on the surface of the pore (Foley et al., 1996; Bryar et al., 2000; Keating and 

Knight, 2007, 2010). Therefore, Osterman et al. (2016) first determined the effective 

surface relaxivity ( ) from a log-linear fit between pore-throat size ( ) and the peak of ρ2eff Λ

transverse relaxation time distribution ( ). Based on the model of Osterman et al. T2p

(2016), permeability is proportional to the square of peak of transverse relaxation time 

distribution,  divided by formation factor, . T2
2p F
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This study builds on the growing literature examining geophysically derived 

permeability by evaluating electrical (IP) models and NMR models for the estimation of 

permeability specifically based on parameters measurable (in theory at least) from field 

geophysical surveys. Two models based on IP measurements (Revil and Florsch, 

2010;Weller et al., 2015), one model based on NMR measurement (Kenyon et al., 1988) 

and one joint IP-NMR model (Osterman et al., 2016) are examined. Then, a new NMR 

model based on the widely known Katz and Thompson permeability model is derived. For 

the implementation of this model, the length scale is considered related to the NMR 

relaxation time and the diffusion coefficient of the saturating fluid; this length scale is then 

substituted into the Katz and Thompson permeability model, which is explained in detail 

later.  Therefore, the current work builds on the work on Osterman et al. (2016) using a 

set of 30 reservoir samples, which includes eight sandstone plugs and 22 sand plugs, all 

with relatively high permeability. The main aim of this study is to assess the validity of 

current IP permeability models, NMR permeability models and IP-NMR models on clean 

granular materials typical of reservoir formations. 
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MATERIAL AND METHODS 

In this study, relationships between hydraulic and electrical properties of 30 plug 

samples, which were provided by the Iranian Offshore Oil Company (a subsidiary of the 

National Iranian Oil Company), are investigated. All plugs used in this study were 

extracted from the original drill cores. The average length and diameter of each plug are 

60 mm and 38 mm, respectively. The samples were obtained from depths between 2174 

m and 2238 m in an oil field located in the Persian Gulf. The samples have high porosity 

and permeability (the average values of porosity and permeability of the investigated 

samples are 0.34 and m2, respectively). 1.01 × 10 ―11 

Experimental procedure 

A series of physical and petrophysical measurements were carried out on the 

plugs, as described below.

1) The grain size distribution was obtained by laser diffraction using a Mastersizer 

2000 laser diffraction particle size analyzer. 
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2) The permeability of all samples was measured using air permeameter 

apparatus. Generally, pore size and their connectivity determine whether the porous 

medium has high or low permeability. 

3) Sample porosity was determined gravimetrically. The core samples were 

weighed at saturation and after having been dried in an oven.

4) Cation exchange capacity (CEC) was obtained by measuring the quantity of a 

specific cation (in this case, sodium) that preferentially bonds to exchange sites. Sodium 

acetate was used as a sodium source and the displaced sodium measured using atomic 

absorption. 

5) Pore surface area was measured using nitrogen gas adsorption,  calculated 

using the 5 point BET (Brunauer et al., 1938). BET analysis provides precise specific 

surface area evaluation of materials by nitrogen multi-layer adsorption measured as a 

function of relative pressure using a fully automated analyzer. Pore surface area was 
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measured only on sand samples. Prior to the measurements, samples were dried. The 

mass of sample used for each measurement is approximately 5g.

6) The intrinsic formation factor was determined by resistivity measurements at 

several salinities using the model in equation Error! Reference source not found.. In this 

study we measured the formation factor by resistivity measurements over four different 

pore fluid salinities (100, 500, 1000 and 6000 mS/m).

SIP and NMR measurements were collected in a fully saturated state for each 

sample. All samples were saturated with a NaCl solution with an electric conductivity of 

100 mS/m. The electrical impedance was measured using a four-point electrode array 

(see Figure 1a). The sample holder used in this study is similar that that designed by 

Binley et al. (2005), with slight modifications to the potential and current electrodes. Two 

silver coils were used as current electrodes to inject an alternating sinusoidal current 

(Figure 1b). The voltage and the phase shift between the applied current and measured 

voltage was determined using (In Vivo Metric, California) Ag-AgCl non-polarizing potential 

electrodes (Figure 1c). Electrical measurements were taken using the ZEL-SIP04-V02 
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impedance meter in a frequency range of 2 mHz to 45 kHz (Forschungszentrum Julich 

GmbH) (Zimmermann et al., 2008). Figure 1 shows the SIP experimental setup. The end 

caps were filled with the same fluid saturating the samples. 

NMR data were collected using the ARTEC system (a low field NMR system) using 

a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The CPMG pulse sequence is a 

 pulse, followed by a series of refocusing  pulses, separated by the echo spacing.90° 180°

Spectral Induced Polarization (SIP)

The complex conductivity ( ) of a porous medium is determined from σ ∗

measurements of the conductivity magnitude (| |) and phase shift ( ) between the σ φ

injected current and measured potential. Complex conductivity includes two components: 

1) the real part ( ), which corresponds with the transport of free charges or conduction in σ′

the pore space; 2) the imaginary part ( ), which is related to storage of charge or σ"

polarization in the pore space. The conductivity magnitude (| |) and phase shift ( ) can σ φ

be written as follows:

,                                                                                     (1)  |σ| = σ′2 + σ"2  
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.                                                                                          (2)φ = tan ―1[σ"

σ′]

In-phase conductivity (or electric conduction) ( ) in non-metallic rocks occurs through the σ′

pore-filling electrolyte (fluid) and by ionic migration in the electrical double layer (EDL) 

forming at the grain-fluid interface (Slater, 2007). The electrolyte conductivity ( ) and σel

surface conductivity ( ) add in parallel (Vinegar and Waxman, 1984):σ′surf

),                                                           (3)σ′ = σel + σ′surf = (1
F)(σf + σ′surf

where  is the electrical formation factor (unitless),  is the conductivity of the pore-filling F σf

fluid (S/m) and  is the surface conductivity (S/m).σ′surf

Archie (1942) determined the electrical formation factor as a ratio between pore 

fluid conductivity ( ) and bulk conductivity ( ) for a saturated porous medium and stated σf σ′

that , where  is the porosity and  is called the cementation exponent. This F = ϕ ―m ϕ m

relationship is valid for a high salinity pore fluid. For low salinity pore fluid saturation or 

very high surface conductivity there is a significant difference between apparent and 

intrinsic formation factor, which can have a significant impact on permeability estimation 
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(Lesmes and Fridman, 2005) . The intrinsic formation factor can be determined from 

measurements at several salinities using an electrical conductivity model (by fitting the 

slope of equation 3) or estimated from a single salinity measurement using a relationship 

between the surface and quadrature conductivities (Weller et al., 2013) to compensate 

for surface conduction:

 ,                                          (4)F′ =
σf

σ′ ― (σ" l)

  

where  is pore fluid conductivity (0.1 S/m), and  are in-phase and quadrature σf σ ′ σ"

conductivities at 1 Hz (S/m), respectively, and l=0.0421 (unitless), obtained by Weller et 

al. (2013) empirically.

Nuclear Magnetic Resonance (NMR)

Geophysical NMR methods exploit the magnetic dipole moment of hydrogen 

protons in water molecules. Any nuclei with an odd number of protons or neutrons or both 

(like the nucleus of hydrogen), due to their possession of  a nuclear spin angular 

momentum, are suitable for NMR measurements (Coates et al., 1999). In an NMR 
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measurement, the nuclei expose to a static magnetic field,  and then their nuclear spins B0

align with the applied . Therefore, the magnetic moments ( ) of the hydrogen protons B0 M0

in the porous media is formed and then  precess about the static magnetic field with M0

Larmor frequency, , where  is the gyromagnetic ratio, which is a measure of the f =
γB0

2π γ

strength of the nuclear magnetism. For hydrogen,  . Then, an oscillating λ
2π = 42.58MHz

T

magnetic field ( ) perpendicular to the static field ( ) is applied to the nuclei for a short B1 B0

time that it causes nuclei move away and after removing , the nuclear spins relax back B1

to their equilibrium positions. Then, the resonant EM field acquired by nuclei provides a 

measurable signal which is described in terms of two different types of relaxation times: 

longitudinal ( ) and transverse ( ) relaxations. In the recent literature, NMR relaxation T1 T2

in the porous media is well described (Bloch, 1946; Torrey, 1956). In this study, the 

transverse relaxation time ( ), which is consistent with most NMR experimentation, is T2

measured (Keating and Knight, 2007; Grunewald and Knight, 2011). 

Brownstein and Tarr (1979) define three relaxation regimes for the fluid relaxing in 

a single pore: fast, intermediate and slow relaxation. In order to interpret the NMR data, 
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it is often assumed that the relaxation process in the most geologic applications of NMR 

occurs in the fast diffusion regime (Senturia and Robinson, 1970; Grunewald and Knight, 

2009). In the absence of magnetic field inhomogeneities, three independent relaxation 

mechanisms for fluids in porous media contribute: surface relaxation time ( ), bulk fluid T2S

relaxation time ( ) and diffusion relaxation time ( ), which act in parallel. Therefore, T2B T2D

the arithmetic mean of log  ( ) can be written as the harmonic sum of the distribution T2 T2ml

of relaxation times (Brownstein and Tarr, 1979):

 ,                                                                       (5) 
1

T2ml
=

1
T2B

+
1

T2S
+

1
T2D

 

where , ,  are the average values for the entire pore space of the porous T ―1
2B T ―1

2S T ―1
2D

media. 

The bulk relaxation time ( ) is the intrinsic relaxation property of a fluid that can T2B

be controlled by the physical properties of the fluid such as viscosity and chemical 

composition (Coates et al., 1999). Bulk relaxation time is measured by applying the 

CPMG pulse sequence on a sample of pore fluid placed in a large container. It is typically 
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considered that  is considerably greater than , and so << . Thus, it is often T2B T2S T ―1
2B T ―1

2S

assumed that bulk fluid relaxation is negligible (Arns et al., 2005).

Surface relaxation occurs at the interface of fluid and grain, i.e., at the grain surface 

of the porous media, and follow as (Senturia and Robinson, 1970; Brownstein and Tarr, 

1979; Godefroy et al., 2001):

,                                                                        (6) 
1

T2S
= ρ2

S
V = ρ2Spor 

where  is the surface relaxivity of the pore walls (in ms-1) and  is the volume-to-ρ2 Spor

surface ratio of the pores (m-1). 

The diffusion relaxation time,  is determined by (Carr and Purcell, 1954; Kleinberg and T2D

Horsfield, 1990; Fantazzini and Brown, 2005):

 ,                                                                (7)
1

T2D
=

D(γGTE)2

12  

where  is diffusion coefficient of water  ( ; Simpson and Carr, 1958), γ D D = 2.46 × 10 ―9 m
2

s

is gyromagnetic gradient and  is the inter-echo spacing used in the CPMG sequence. TE

The diffusion relaxation time is controlled by physical parameters such as viscosity and 
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temperature. By measuring the NMR response of a porous media at multiple echo times, 

the assumption that  is negligible can be examined. If the variations of   versus T2D T ―1
2ml

echo time are small then this assumption is valid (Kleinberg and Horsfield, 1990). If bulk 

and diffusion relaxation times are considered as negligible terms, equation 5 can be 

written as (Senturia and Robinson, 1970; Brownstein and Tarr, 1979; Godefroy et al., 

2001):

,                                                 (8) 
1

T2ml
=

1
T2S

= ρ2Spor = ρ2αR ―1  

where  is the characteristic pore radius and  is a unitless geometric factor that depends R α

on the shape of the pore (  for planar pores,  for cylindrical pores and  for α = 1 α = 2 α = 3

spherical pores). 

PERMEABILITY ESTIMATION MODELS 

Permeability estimation based on Induced Polarization (IP-k models)

SIP-permeability models are based on either relaxation time ( ) or quadrature τ

conductivity ( ). If quadrature conductivity (or phase) spectra have a distinct peak, σ"

models which are based on relaxation time can be used to predict the permeability (e.g., 
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Revil et al., 2012) otherwise models based on quadrature conductivity ( ), are often σ"

considered more appropriate to estimate permeability (e.g., Revil and Florsch, 2010; 

Weller et al., 2015) since a characteristic relaxation time cannot be determined. As 

illustrated in Figure 2, the phase spectra of investigated samples do not show a clearly 

defined peak. Therefore, we adopted the IP permeability models based on quadrature 

conductivity ( ), Furthermore, since it is challenging to obtain a reliable IP data over a σ"

broad frequency range (mHz to  kHz) in the field, a single frequency IP approach is likely 

to have more practical value. In what follows, the IP permeability models based on 

quadrature conductivity ( ) measured at a frequency of 1 Hz is used.σ"

The root mean square error ( ) of measured and modeled permeabilities can 𝑅𝑀𝑆𝐸

be used to assess the goodness of fit.  Using log-transformed permeability, the RMSE is 

expressed as applied to the residual between the predicted permeability provided by 

different models and the measured permeability on a logarithmic scale:

.               (9)  RMSE =
1
n∑n

i = 1(logkpredicted,i ― logkmeasured,i)2          
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Revil and Florsch (2010) IP-permeability model

Development of permeability estimation models based on induced polarization (IP) 

is a result of a link between IP and surface area normalized to pore volume ( ). IP Spor

models based on quadrature conductivity ( ) are appropriate to estimate the permeability σ"

of materials without any distinct peak. 

Revil and Cathles (1999) proposed a relationship between permeability ( ), k

intrinsic formation factor ( ), the mean grain size ( ) and the cementation exponent ( ) F d0 m

as: 

 .                                                                    (10)  k =
d0

2

32m2F(F ― 1)2  

Revil and Florsch (2010) developed a mechanistic IP- k model based on equation 

10. Their model defines permeability ( ) as a function of F and  by using the specific k σ"

surface conductance of the Stern layer,   as follows: Σs

                                                                    (11)Σ𝑆 =
𝜎"𝑑0

4 .
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Substituting equation 11 into equation 10 yields: 

 ,                                                       (12)kIP =
∑s

2m2F(F ― 1)2(σ") ―2

where  is the quadrature conductivity (in S/m) at 1 Hz,  is the cementation factor σ" m

(calculated from ),  is the measured intrinsic formation factor (unitless) and  F = Ф ―m F kIP

is predicted permeability (in m2). This model is similar to the Bӧrner et al. (1996) model, 

which is based on the Kozeny-Carman model.

Weller et al. (2015) IP permeability model  

Weller et al. (2015) studied an extensive dataset of measurements on sandstone 

and unconsolidated sand materials. They compared different models for permeability 

estimation based on two parameters including formation factor and quadrature 

conductivity, which are related to porosity and the surface area normalized to pore 

volume, respectively. They considered empirical models (e.g., Rink and Schopper, 1974; 

Slater and Lesmes, 2002) and mechanistic models (e.g., Revil and Florsch, 2010; Revil, 
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2012). They proposed the following model for permeability prediction for sandstone 

samples:

,                                                                                (13) kSandstone =
2.66 × 10 ―7

F5.35σ"0.66  

and the following for unconsolidated sandy materials:

,                                                                              (14) kSand =
1.08 × 10 ―13

F1.12σ"2.27   

where  is  predicted permeability in m2, F is the measured intrinsic formation ksand/sandstone

factor (unitless) and  is the quadrature conductivity (mS/m) at 1 Hz.σ"

Permeability estimation based on Nuclear Magnetic Resonance (NMR-k models)

Kenyon et al. (1988) NMR permeability model

There are two kinds of NMR-K models: (1) Timur-Coates models, which are related 

to porosity determined from NMR measurements and the ratio of free fluid to bound fluid 

in the measured volume; (2) Schlumberger Doll Research (SDR) models which utilize 

porosity and NMR relaxation time ( ) to estimate  (Seevers, 1966; Timur, 1969; Coates T2 k

and Dumanoir, 1974). SDR models are often used to estimate the permeability of 
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reservoir samples. The SDR permeability model which utilizes the mean of log transverse 

relaxation time ( , it is given in Table 1) and porosity  (Seevers, 1966; Kenyon et al., T2ml ϕ

1988; Straley et al., 1997; Kenyon, 1997):

,                                                          (15)kNMR = bT2ml
cϕd

where  is in ms and  is predicted permeability in mD. ,  and  are empirically T2ml kNMR b c d

derived constants. The relaxation time exponent (c) is a result of dimensional analysis 

which considers the relationship between pore radius and relaxation time (Weller et al., 

2014). However, the porosity exponent is a result of empirical studies (Coates et al., 1999; 

Dunn et al., 2002). Kenyon et al. (1988) proposed the following equation:

.                                                                (16)kNMR = bT2ml
2ϕ4

The constant  in equation 16 is referred to as the lithologic constant, and is considered b

to fall within the range 4 to 5 mD/(ms)2 from laboratory studies on sandstones (Morris et 
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al., 1996; Straley et al., 1997; Kenyon, 1997). The factor b for the sand samples tested 

was determined using measured and predicted permeability using equation 16 and 

minimizing the root mean square error ( ) defined as equation 9.RMSE

Permeability model derived from Johnson et al. (1986) 

Johnson et al. (1986) reformulated the Katz and Thompson (1986) permeability 

model by introducing a parameter  (in m) as an effective surface area normalized to pore Λ

volume, or interconnected pore size and presented the following permeability model:

 .                                                                              (17) k =
Λ2

8F 

The relationship between a length scale (grain radius or pore radius), SIP 

relaxation time and the diffusion coefficient of the counterions in the Stern layer of the 

electrical double layer ( ) can be expressed as:DS

 ,                                                           (18)l = 2Dsτ   
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where  is the SIP relaxation time (in s) and the diffusion coefficient of the counterions in τ

the stern layer for clean materials. Assuming that this length scale is Ds = 1.29 × 10 ―9 m2s ―1

equivalent to  in equation 17, then substituting equation 18 into equation 17 gives (Revil Λ

et al., 2012):

.                                                                     (19)k =
Dsτ
4F  

In a similar way, the length scale can also be considered related to the NMR 

relaxation time and the diffusion coefficient of the saturating fluid,  (Einstein, 1905; e.g.  D

Keating and Falzone, 2013; Behroozmand et al., 2015):

,                                                                (20)l = 6DT   

where  is the arithmetic mean of log longitude or transverse relaxation time (  and T T1ml

 respectively). The diffusion coefficient of fluids in the porous media depends on the T2ml

viscosity and temperature of the fluids. The samples analyzed here were saturated with 

0.01M NaCl solution and the diffusion coefficient of sodium chloride solution is  1.619 ×

at 25°C (Guggenheim, 1954). If it is assumed the length scale in equation 20 10 ―9 m2s ―1 
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is equivalent to in equation 17, then substituting equation 20 into equation 17 gives (in Λ 

terms of ):T2ml

 .                                                                 (21) k =
3DT2ml

4F  

Induced Polarization-Nuclear Magnetic Resonance-Permeability Model (IP-NMR-k model)

Osterman et al. (2016) IP-NMR permeability model  

Osterman et al. (2016) recently studied the permeability of sandstone samples 

using NMR and IP measurements. Their model is effectively an NMR-k model but utilizes 

IP measurements to determine a better estimate of the intrinsic formation factor, F, from 

an apparent formation factor observed at low salinities. They proposed a model based on 

the Johnson et al. (1986) reformulated Katz and Thompson (1986) permeability model 

(equation 17). The pore radius  can be determined from of the mean (or peak) NMR Λ

transverse relaxation time:

,                                                                             (22)Λ = ρ2effT2p 

Page 27 of 74 Geophysics Manuscript, Accepted Pending: For Review Not Production



Geophysics 28

where  is the peak of NMR transverse relaxation time (in s),  is the effective T2p ρ2eff = αaρ2

surface relaxivity (in m/s) and a is 0.43 (see Osterman et al., 2016). Substituting equation 

22 into equation 17 yields the following equation for permeability:

,                                                                            (23)k =
(ρ2effT2p)2

8F′  

where is the IP-estimated intrinsic formation factor (equation 4). 𝐹′

RESULTS

Summary of properties

Table 1 shows the summary of physical properties obtained from all samples 

(sandstones and sands) along with measured IP and NMR parameters. The measured 

permeability of the samples spans over two orders of magnitude from  m2 for 4.84 × 10 ―3

sample 14-30H to  m2 for sample 13-31H. The median grain size of the 2.56 × 10 ―11

samples ( ) varies between 106.3 μm (for sample 14-34H) to 409.6 μm (for sample 13-d50

23H). Figure 2 shows example SIP and NMR responses of two samples: a sandstone 

(sample 15-10H) and a sand (sample 14-9H). Note that the SIP phase angle spectra do 

not show clearly defined peaks, indicating that a distinct dominant grain size is difficult to 
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resolve. Note also the low values of phase angles (and quadrature conductivity – spectra 

not shown) that are consistent with the clean (low clay content) nature of the samples. 

This was examined further by measuring the specific surface area ( ) and the cation Ss

exchange capacity (CEC). The small values of specific surface area ( ) (which results in Ss

the small values of surface area to volume ratio ( )) and cation exchange capacity Spor

(CEC) for the samples is again consistent with a low clay content (see Table 1). The 

apparent formation factor, (  at 100mS/m) is noticeably smaller than the intrinsic Fa = σf/σ′

formation factor, F, and for some cases unrealistically low (see Table 1). As can be seen 

in Table 1, the predicted formation factor using equation 4, , is similar to apparent F′

formation factor, . That is, the correction factor proposed by Weller et al. (2013) does Fa

not appear to account well for the surface conductivity effect on the formation factor, for 

the samples analyzed here. 

In order to assess the potential use of the IP-k models first the applicability of the 

modified Kozeny-Carman relationship i.e., the relationship between measured 

permeability and  ( ) is examined. Figure 3a shows a negative linear Spor 𝑘 =
𝑎

𝐹𝑆𝑏
𝑝𝑜𝑟
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relationship (as expected) between  and  for measurements on the sand samples Spor kF

(pore surface area data were not collected for the sandstones).

In order to utilize the IP-k models which are based on linking the quadrature 

conductivity to surface area (e.g. Bӧrner et al., 1996; Revil and Florsch, 2010)  the link 

between IP and  is examined. As can be seen in Figure 3b, there is a significant Spor

positive relationship between  and , although it is noted that the quadrature σ" Spor

conductivities of samples tested here are smaller than those shown in the relationship of 

Weller et al. (2010b), who reported a trend in the form of  . Since σ" = 1.03 × 10 ―5Spor
0.992

Niu et al. (2016) observed that  is correlated with  instead of , the relationship σ" 𝑆𝑝𝑜𝑟 𝐹 Spor

between  and  is tested (Figure 3c), although the correlation coefficient does not 𝜎"𝐹 Spor

show improvement. With a significant positive relationship between quadrature 

conductivity ( ) and , a negative relationship between measured permeability and , σ" Spor  σ"

is expected, and confirmed in Figure 3d.  
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Revil and Florsch (2010) permeability model (IP-k model) 

The Revil and Florsch (2010) model (equation 12) applied to measurements made 

on the sand and sandstone samples was examined. Figure 4 compares measured 

permeability with estimated permeability using this model. As can be seen from the Figure 

4, there are some discrepancies between modeled and measured permeability values for 

some samples (particularly sand samples). The permeability model leads to a broader 

range of predicted permeability than that observed from the direct measurements of k.

Weller et al. (2015) permeability model (IP-k model) 

The potential of the empirical models proposed by Weller et al. (2015) was tested. 

They proposed different models for sandstone and sandy materials (equations 13 and 

14). They found that the formation factor is the most important term for prediction of 

sandstone permeability while the quadrature conductivity is significant in the estimation 

of permeability of sandy materials. As shown in Figure 5, the models show consistency 

in the overall trend but they tend to overestimate the permeability of the samples tested  

(  and ). RMSESandstone = 1.63 RMSESand = 2.45
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Kenyon et al. (1988) permeability model (NMR-k model) 

In order to estimate the permeability from NMR relaxation measurements, the 

Kenyon et al. (1988) permeability model (equation 16) was examined on the sands and 

sandstones investigated in this study. The factor b in equation 16 was fitted to minimize 

the misfit in equation 9 and resulted in the value: 81.58 mD/(ms)2 for sand samples. 

Following previous studies (discussed earlier)  a value of 5 mD/(ms)2 for  for the 𝑎

sandstone samples was adopted. Figure 6 shows that this model provides accurate 

permeability estimations for samples tested (  and ) RMSESandstone =  0.39 RMSESand = 0.69

but the model is clearly calibrated for the sand samples. 

The permeability model derived from Johnson et al. (1986)

The result from using the NMR model in equation 21 is shown in Figure 7a. The 

misfit between modeled and measured permeability, expressed as , is 0.99 for 𝑅𝑀𝑆𝐸

sandstone and 0.64 for sand samples. This model appears applicable for the samples 

tested here and performance is significantly better than other models tested (IP or NMR). 

Given a principal aim here is to establish a relationship suitable for prediction of  in a k

practical setting and given that  may, in theory, be estimated using IP measurements F
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(as discussed earlier), it is useful to examine the performance of equation 21 with the 

intrinsic value of  replaced with that estimated value using IP ( ).  The model’s F F′

performance is still generally good (  1.06 for sandstone and 0.6 for sand), with 𝑅𝑀𝑆𝐸 =

estimates, on average, falling within one order of magnitude of measured  (Figure 7b).  𝑘

Clearly, for these samples, IP plays little role in correcting the apparent formation factor 

(as discussed above), however, adopting an IP correction may broaden the applicability 

to samples with higher clay content.

Osterman et al. (2016) model (IP-NMR-k model) 

Osterman et al. (2016) derived relationships between (IP and NMR) geophysical 

parameters and the hydraulic parameters of the Katz and Thompson (1986) permeability 

model. Their model utilizes a predicted formation factor using IP parameters (real and 

quadrature conductivity measured at 1 Hz) through equation 4. Figure 8 shows some 

significant deviation between the formation factor estimated from and   using a single σ ′ σ"

salinity measurement (equation 4) and the intrinsic formation factor obtained from multi-

salinity measurements. In fact, because of the low quadrature conductivities observed in 

the investigated samples here, the correction term in equation 4 has limited effect. 
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Despite these discrepancies in estimated formation factor, the model of Osterman et al. 

(2016) (equation 23) is examined. As can be seen in Figure 9, this model generally 

underestimates the permeability of the sandstone and sand samples (𝑅𝑀𝑆𝐸Sandstone

 and ). =  1.81 RMSESand = 1.95

The discrepancies between measured and modeled permeability using the 

Osterman et al. (2016) model may be partially due to errors in the calculated formation 

factor ( ). However, as the values of  tend to underestimate the true formation factor its F′ F′

effect will be an overestimation of permeability.  

DISCUSSION

The main aim of this study is to test the applicability of different permeability models 

that incorporate IP and NMR parameters to predict the permeability of hydrocarbon 

reservoir samples. In order to evaluate the quality of the fit between measured and 

predicted permeability the root mean square error between predicted and measured 

permeability and average deviation ( ) are calculated: d
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                                  (24)d =
1
n ∑n

i = 1|logkpredicted,i ― logkmeasured,i|,      

where  is the number of sample tested (  for sandstone and  for sand), n n = 8 n = 22

 is the estimated permeability of samples using current permeability equations kpredicted

and  is the measured value of permeability of samples. Table 2 summarizes the kmeasured

results.

These statistics (  and ) provide a quantitative evaluation of the predictive RMSE d

quality for different models. A value of  indicates an average deviation of one order d = 1

of magnitude. The lowest value of  and  for the sandstones tested is from the RMSE d

Kenyon et al. (1988) model (  and 4), but it is noted that the factor a in RMSE = 0.39   d = 0.3

the model, for the sands samples, was calibrated to minimize the  and thus it is not RMSE

surprising that this model performs best. The model based on Johnson et al. (1986) 

(equation 21) gives the lowest value of  and d for sand (  and ). RMSE RMSE = 0.57 d = 0.51

Application of this model also reveals a significant correlation between measured and 

predicted permeabilities (  and ). The estimation of the 𝑅2
𝑆𝑎𝑛𝑑𝑠𝑡𝑜𝑛𝑒 = 0.49 𝑅2

𝑆𝑎𝑛𝑑 = 0.68

permeability of samples investigated here using the Revil and Florsch (2010) model 
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provides a low value for , but a weak correlation coefficient between measured and d

predicted permeabilities of sand samples ( ). The empirical model of Weller et 𝑅2
𝑆𝑎𝑛𝑑 = 0.02

al. (2015) and Osterman et al. (2016) result in the highest root mean square error and 

average deviation and so the lowest predictive quality for sand and sandstone sample 

types, respectively. As noted earlier, the Weller et al. (2015) model overestimates the 

permeability of samples tested here (see Figure 5); however, the Osterman et al. (2016) 

model underestimates the permeability of samples investigated in this study. It may be 

that their empirical models are more applicable to clayey sands and sandstones. 

From the comparison between IP-k models (Figures 4 and 5) and the NMR-k 

model (Figure 6) it is seen that the NMR-k model predicts the permeability of investigated 

samples better, but the factor a needs to be derived from a calibration process (for the 

sand samples) and thus the comparison of performances is somewhat biased. The 

Osterman et al. (2016) model uses the NMR parameter ( ) and IP parameters T2p

(formation factor based on real and imaginary conductivity,  and ) to estimate the σ′ σ"

permeability. As observed in Figure 9, the performance of the Osterman et al. (2016) 
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model  for sandstone and sand samples is poor and errors vary over one order of 

magnitude (this model underestimates the permeability of samples), however a significant 

relationship between the measured and estimated permeabilities is observed (𝑅2
𝑆𝑎𝑛𝑑𝑠𝑡𝑜𝑛𝑒

 and ). The derived model based on Johnson et al. (1986) (assuming = 0.57 𝑅2
𝑆𝑎𝑛𝑑 = 0.68

a relationship between length scale and NMR relaxation time) gives an improved model 

that appears applicable for tested sand and sandstone samples. The model was 

examined with the calculated formation factor ( ):  this model appears applicable, in F′

particular for the sand samples. In order to evaluate of the validity of the derived model 

(equation 21), further tests are needed on a wider dataset of measurements on clean and 

clayey sands and sandstones. 

Given the low surface conductivity of the samples tested here it is useful to 

examine the tested models with a simpler approach based on real conductivity ( ) , e.g., 𝜎′

a property directly obtainable from DC resistivity surveys.  To do this we used the 

empirical model proposed by Purvance and Andricevic (2000):

  ,   (25)𝑘 = 𝑎(𝜎′)𝑏
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where  and  are calibration parameters, which we evaluated separately for the two 𝑎 𝑏

sample types. As can be seen in Figure 10, this model provides a reliable permeability 

prediction for the samples tested but requires calibration of model parameters for 

samples. Therefore, the values of  and  may vary for different datasets. It would appear 𝑎 𝑏

that if calibration is necessary for NMR-k or SIP-k models (e.g. the Kenyon et al., 1988 

model) then, for these samples, a simpler approach based on real conductivity may be 

more effective. However, results from the application of a model based on Johnson et al. 

(1986) utilizing NMR data in an uncalibrated fashion show greater promise.

For the samples tests, and the models compared, NMR measurements appears 

to offer greater value in estimating permeability. The IP-based models predict a range of 

permeability that is broader than the two orders of magnitude measured on the samples. 

Furthermore, attempts to correct the apparent formation factor demonstrated little, if any, 

additional information in the IP measurements. Many previous IP models for permeability 

estimation have, understandably, investigated samples with a wide range of 

permeabilities, however, when focusing on a narrow range (as here) the resolution 
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limitations of such models may be revealed. Under such cases site specific calibrations, 

i.e. local empirical models, may be the most effective means of utilizing geophysical data 

for permeability estimation.   

CONCLUSIONS

Many different models have been developed to estimate the permeability, k,  of 

rocks and soils using IP and NMR measurements. A set of IP and NMR measurements 

on 22 sand and eight sandstone samples were used to evaluate the applicability of 

different IP, NMR and IP-NMR models to predict the permeability. Two IP-k models, 

based on the quadrature conductivity,  show reasonable capacity to predict the trend in 

observed permeability but accurate estimation of permeability for a given sample is weak.  

In contrast, an established NMR-k model that is based on porosity ( ) and the arithmetic ϕ

mean of log transverse relaxation time ( ) provides a better permeability prediction for T2ml

the samples but requires calibration of a model coefficient for sand samples. Application 

of a recently proposed IP-NMR-k model reveals consistent underestimation of the 

permeability of the sandstone and sand samples tested.
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Building on earlier studies, a new NMR-k model was derived.  This model predicts 

well the permeability of samples tested here. Substituting the intrinsic formation factor 

with a single salinity estimate enhanced by IP measurements to account for surface 

conductivity, provides a reasonable permeability prediction for sand samples but leads to 

some deterioration in performance of the permeability model for the sandstone samples.  

However, the overall performance from these initial tests appears good and worthy of 

further testing. In order to validate and generalize this model, there is a need to test it on 

data sets from samples of different lithologies including clayey sands and sandstones. 

Geophysical estimation of permeability remains a key challenge in 

hydrogeophysics.  Several models have been proposed and new ones develop. Through 

continued appraisal of these models with new datasets, such as those described here, 

may lead to reliable and robust techniques that can exploit the potential of geophysical 

measurements for improved in-situ permeability characterization. Although some models 

may appear to perform relatively poorly, being able to estimate permeability within one 

order of magnitude through geophysical measurements is often likely to be extremely 
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valuable. The key challenge is ensuring universal applicability of models, for reliable 

estimation.  Such a challenge can only be addressed through model testing, as done 

here.
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Table 1. Summary of physical properties and measured IP and NMR parameters of sandstone 

and sand samples.

Parameter Min Max Mean

Porosity, φ (%) 27.65 41.00 34.69

Intrinsic formation 

factor, F (from multi-

salinity measurements)

2.74 9.84 4.62

Apparent formation 

factor, Fa (measured at 

100mS/m)

1.43 7.22 4.1

Predicted formation 

factor, F’ (using equation 

4)

1.44 7.31 4.16

Surface area-to-volume 

ratio,  Spor (μm-1)
0.46 11.78 2.04

Permeability, k (m2) 4.84x10-13 2.56 x10-11 1.01 x10-11

Median grain diameter, 

d50 (μm)
106.27 409.57 242.51

Cation exchange 

capacity (meq/100g) 
0.19 1.79 0.50

Quadrature 

conductivity, σ” (S/m)
2.16 x10-6 1.16x10-4 1.50 x10-5

NMR transverse 

relaxation time, T2 (s)
0.0093 0.74 0.25
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Table 2. The root mean square error ( ) and average deviation (d) between measured and RMSE

predicted permeability for different models. RMSE is defined in equation (9) and d is defined in 

equation 24.  Both RMSE and d are based on the logarithm of permeability in units of m2.

Permeability Model RMSESandstone RMSESand dSandstone dSand

Revil and Florsch (2010) 

IP-k model

 (equation 12)

0.54 1.05 0.42 0.84

Weller et al. (2015) model

(equation 13 and 14)
1.63 2.45 1.58 2.38

Kenyon et al. (1988) NMR-

k model, a=5

(equation 16)

0.39 - 0.34 -

Kenyon et al. (1988) NMR-

k model, a=88.43

(equation 16)

- 0.69 - 0.55

NMR model derived from 

Johnson et al. (1986) 

model (equation 21)

0.99 0.57 0.96 0.51

IP-NMR model derived 

from Johnson et al. (1986) 

model (equation 21 with 

F’)

1.06 0.60 1.04 0.55

Osterman et al. (2016) 

IP_NMR-k model

(equation 23)

1.81 1.95 1.73 1.67
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Figure 1. (a) Sample holder arrangement for SIP measurements on sandstone and sand samples, (b) 
current electrode (Ag coil) and (c) potential electrode (Ag-AgCl). 
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Figure 2. (a) Example SIP response of two samples (sandstone sample 15-10H and sand sample 14-9H). (b) 
Example NMR response of two samples (sandstone sample 15-10H and sand sample 14-9H). 
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Figure 3. (a) The relationship between the product of measured permeability and the formation factor (kF) 
and S_por. (b) The relationship between quadrature conductivity (σ") and S_por. (c) The relationship 
between the product of quadrature conductivity and the formation factor (σ^" F) and S_por. (d) The 

relationship between the product of measured permeability and the formation factor (kF) and quadrature 
conductivity (σ"). 

Page 67 of 74 Geophysics Manuscript, Accepted Pending: For Review Not Production



 

Figure 4. IP modeled permeability versus measured permeability based on the Revil and Florsch (2010) 
model. R_Sandstone^2=0.33 and  R_Sand^2=0.02. 

199x191mm (96 x 96 DPI) 
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Figure 5. IP modeled permeability versus measured permeability based on the Weller et al. (2015) models. 
R_Sandstone^2=0.36 and  R_Sand^2=0.46. 
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Figure 6.  NMR predicted permeability versus measured permeability based on the Kenyon et al. (1988) 
model. R_Sandstone^2=0.58 and  R_Sand^2=0.73. 
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Figure 7. Predicted permeability versus measured permeability using equation 21. (a) using the intrinsic 
formation factor, F, calculated from multi-salinity measurements  (R_Sandstone^2=0.49 and 

R_Sand^2=0.68). (b) using the formation factor, F', estimated from equation 4 (R_Sandstone^2=0.53 and 
R_Sand^2=0.55). 
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Figure 8. The relationship between intrinsic formation factor calculated from multi-salinity measurements (F) 
and calculated formation factor from equation 4 (F'). 
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Figure 9. The relationship between measured and predicted permeability using the Osterman et al. (2016) 
model. R_Sandstone^2=0.57 and  R_Sand^2=0.68. 
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Figure 10. The relationship between measured and predicted permeability using the resistivity model 
proposed by Purvance and Andricevic (2000). 
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