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31Yale University, New Haven, CT, 06520, USA

We have developed a convolutional neural network (CNN) that can make a pixel-level prediction
of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the
first time. We describe the network design, training techniques, and software tools developed to
train this network. The goal of this work is to develop a complete deep neural network based data
reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network’s
validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is
performed for stopping muon and a νµ charged current neutral pion data samples.

I. INTRODUCTION

LArTPCs are capable of producing high-resolution im-
ages of particle interactions. This is one of the main rea-
sons LArTPCs are the technology of choice for several
current and future neutrino research programs including
the Short Baseline Program [1] (SBN) and Deep Under-
ground Neutrino Experiment [2] (DUNE). The Micro-
BooNE experiment [3], as a part of the SBN program,
studies the νe-like low energy event excess observed by
the MiniBooNE collaboration [4] using a LArTPC detec-
tor and the on-axis Booster Neutrino Beamline [5] (BNB)
at Fermilab as the νµ source.

A LArTPC consists of a homogeneous volume of liquid
argon bounded by a cathode plane and an anode plane.
When a charged particle traverses the sensitive region,
ionization electrons and scintillation light are produced
along its trajectory. The scintillation light is detected
within several nano-seconds by an array of photomul-
tiplier tubes (PMTs), providing a timing measurement.
Ionization electrons take a few milliseconds to drift to-
ward the anode under the applied electric field and are
detected by the anode plane, which is equipped with a set
of wire planes and charge-sensitive readout circuits. The
spatial separation within the wires on the anode plane
determines the spatial resolution of the recorded two-
dimensional (2D) projection images. The speed of drift
electrons along with their longitudinal diffusion, as well
as the electronics response and the sampling frequency
of the signal waveform determine the spatial resolution
along the drift direction.

While the detector is able to capture many of the fine
details that will be useful for physics analysis, parsing
these details using automated reconstruction tools is still
a technical challenge. One particular challenge is the
discrimination between electromagnetic (EM) particles,
namely e−, e+, and photons, and other particle types.
EM particles above the critical energy (≈ 33 MeV in ar-
gon) initiate an electromagnetic cascade of particles and
develop a unique topology that consists of a collection
of branching features. Identifying this topology is a sim-
ple form of particle identification, and is key informa-
tion that can be used to discriminate between νe and
νµ interactions, as shown in Figure 1. For EM parti-
cles below the critical energy, other unique features are
available. One example is low energy electrons (δ rays)
knocked off from argon atoms by a muon traversing the
detector. These add multiple short branches to a muon

FIG. 1. Two examples of νe (a) and νµ (b) events simulated
in the MicroBooNE detector. The pixel color represents the
amount of energy deposited per pixel in the 2D projection
image. The pattern of ionization differs significantly between
νe and νµ.

trajectory. Separating them from a muon helps to iden-
tify the trunk of a muon trajectory. Another example is a
Michel electron trajectory with low energy deposition per
unit length (dE/dx) from the decay of a stopping muon.
That trajectory typically exhibits a pattern of increasing
dE/dx due to an increase in ionization energy-loss as it
comes to rest. Identifying and cleanly separating energy
depositions from Michel electrons in the muon decay al-
lows one to reconstruct the Michel spectrum with high
accuracy. This sample proves to be a valuable energy
calibration source.

In this paper, we demonstrate that EM particles can be
discriminated from other particles at the pixel-level in an
image using a class of machine learning algorithms known
as convolutional neural networks (CNNs). We refer to
EM particles as shower and the others as track particles
in the rest of the paper. Our method uses noise-filtered,
signal shape deconvolved waveforms [6] from the charge-
collection plane organized in 2D image format prior to
a pixel clustering analysis. Having a prediction of each
pixel as track or shower type prior to a pixel clustering
reconstruction stage simplifies the downstream pattern-
recognition algorithms and reduces the need for iterative
reconstruction processes. We use a class of CNNs called
semantic segmentation networks (SSNets) to classify each
pixel of an image into a predefined set of semantics in-
cluding a track, a shower, and a background pixel.

This work was performed as a step towards the de-
velopment of a complete LArTPC event reconstruction
and analysis chain using deep neural networks. It is an
extension of an earlier study in which we demonstrated
the use of image classification and object detection tech-
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FIG. 2. The MicroBooNE detector schematics showing three wire planes and example 2D projections of V and Y plane
waveforms.

niques with CNNs for LArTPC data analysis [7]. The
new contributions in this work include:

• First demonstration of a pixel-level object predic-
tion for LArTPC event reconstruction using a deep
neural network.

• First demonstration of a deep neural network on
real LArTPC detector data.

• Software tools and algorithms capable of generat-
ing a pixel-level label (i.e., semantics) from LAr-
Soft [8] data for supervised training and analysis
of real detector data.

The software is open-source and accessible at Ref. [14].
The deep neural network described here is currently

employed in the data reconstruction chain for the deep-
learning based analysis of the MiniBooNE low-energy ex-
cess by MicroBooNE. The analysis goal is to locate a
neutrino interaction vertex and identify the interaction
type as being νe or νµ for low energy neutrinos (≈ 200 to
600 MeV). Having track/shower separation information
is crucial for vertex reconstruction and particle clustering
algorithms.

High rate environments, as in LArTPCs like the Short
Baseline Near Detector (SBND) and the DUNE near de-
tector, both to be built in the not-too-distant future at

Fermilab, will benefit from sophisticated computer vi-
sion techniques. Such techniques, including pixel label-
ing as provided by the semantic segmentation approach
described here, will be very useful to untangle neutrino-
induced tracks and showers.

II. MICROBOONE DETECTOR AND
PARTICLE IMAGES

The MicroBooNE LArTPC contains 85 tonnes of liq-
uid argon in the active region, which is defined by a rect-
angular shape with the dimensions 10.36 m in length,
2.32 m in height, and 2.56 m in width along the drift
direction [3], as shown in Figure 2. The anode consists of
three planes of parallel wires. The first and second planes
contain 2,400 wires with orientations of +60 and -60 de-
grees from the vertical, respectively. Ionization electrons
produce bipolar signals on the two induction planes as
they pass through them. The third is called the collec-
tion plane and consists of 3,456 vertical wires. Wires on
the third plane are held at a positive potential and col-
lect ionization electrons. Wires are separated by 3 mm
pitch in all planes, and signal waveforms are digitized at
a 2 MHz sampling rate and recorded for a duration of
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FIG. 3. U-ResNet architecture diagram. Black arrows describe the direction of tensor data flow. Red arrows indicate concate-
nation operations to combine the output of convolution layers from the encoding path to the decoding path. The final output
has the same spatial dimension as the input with a depth of three, representing the background, track and shower probability
of each pixel.

4.8 ms in each event. Combined wire waveforms, aligned
by the digitization time, form 2D projected images of a
three-dimensional (3D) particle trajectory from a differ-
ent projection angle. The digitization time runs along
the vertical axis and the wires run along the horizontal
axis in event displays shown in this paper (e.g. Figure 1).

In this paper we focus on the analysis of image data
recorded by the collection plane, which has a size of 3,456
by 9,600 pixels. The spatial resolution of an image along
the wire axis is 3 mm per pixel. For the analysis, every
6 samples of a digitized waveform are summed together,
corresponding to an approximate spatial resolution along
the time axis of 3.3 mm. The resulting image dimension
is 3,456 by 1,600 pixels.

III. U-RESNET: TRACK/SHOWER
PIXEL-LEVEL SEPARATION NETWORK

In this study we use U-ResNet, a hybrid of the U-
Net [9] and residual network [10] (ResNet) design pat-
tern. U-ResNet takes a single-channel 512 by 512 pixel
image as input and outputs an image of the same spatial
dimension with 3 channels per pixel encoding a probabil-
ity from multinomial logistic regression, or softmax, for a
pixel being a background, track, or shower type. We use
U-Net as the base SSNet architecture design because of

its excellent performance in biomedical images [9] which
resemble those from LArTPCs where information den-
sity is sparse. We replace the convolution layers in the
original U-Net with ResNet modules. ResNet is a generic
CNN design pattern that was invented at the same time
as U-Net and enables the training of deep CNNs. In
our implementation, each ResNet module consists of two
convolution layers of 3-by-3 kernel size, where each con-
volution layer is followed by a batch normalization op-
eration [11] and a rectified-linear unit (ReLU) activation
function. The schematic U-ResNet design is shown in
Figure 3.

The U-ResNet architecture can be interpreted in
two separate sections. The first half of the network
takes an input image, a data tensor with a dimension
of (512,512,1), and repeatedly applies convolution and
down-sampling operations. At the end of the first sec-
tion, the data tensor has a dimension of (16,16,1024).
The goal of this section of the network is to learn a non-
linear, hierarchical representation of image features at
different scales. Since feature information is encoded in
a low spatial resolution tensor at the end of this section
of the network, it is referred to as an encoding path.

The second half of the U-ResNet takes the output of an
encoding path, a tensor with a dimension of (16,16,1024),
and repeatedly applies an up-sampling and convolution
operation. An up-sampling is performed by an operation
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called convolution-transpose which is an interpolation fil-
ter that expands the spatial dimension of a tensor by
a factor of two. By using neurons to incorporate the
interpolation operations, the U-ResNet architecture in-
troduces a learnable interpolation filter optimized for as-
signing object classification to the pixels. This section of
the network does essentially the opposite of the encoding
path, hence it is called a decoding path.

An important and unique design pattern of U-Net is an
additional path to allow the flow of information between
the encoding path and the decoding path. This mitigates
the loss of spatial resolution information in the encoding
path where down-sampling is performed. The idea and
method employed in U-Net is simple and effective; in
the decoding path where high spatial resolution needs to
be recovered, we concatenate the data tensors from the
encoding path where the spatial dimension matches. In
the encoding path, data tensors hold the best possible
spatial resolution at each spatial resolution prior to the
down-sampling operations. Thus a simple concatenation
allows information about spatial resolutions to flow into
the decoding path, allowing U-Net to perform a high-
precision image segmentation.

IV. TRAINING U-RESNET

We train U-ResNet via a supervised learning method
that uses simulated particle interaction images. In this
section we describe techniques employed for the training
and optimization methods.

A. Transfer Learning

We exploit a transfer learning technique by first train-
ing the first-half of U-ResNet for an image classification
task using the identical data set from our previous pub-
lication [7]. This data set contains single particle images
which could be e−, photon, muon, π− or proton. The
network’s weights trained to discriminate between dif-
ferent particle images provide a natural initial state to
perform a pixel-level track/shower separation. When we
subsequently train the whole U-ResNet with pre-trained
weights, we let all network parameters be trained and
fine-tuned.

B. Class/Pixel-wise Loss Weighting

Training of the U-ResNet is a process of minimizing
the loss, a measure of an error made by the network,
over many iterations. The loss is computed by summing
over a pixel-wise multinomial logistic loss in each image,
and then averaging over all images in a batch of images.
This definition of loss presents a challenge to training U-
ResNet for LArTPC images where the fraction of pixels
that are background is 99% or more, hence dominating

the total loss. In order to mitigate this challenge, the
authors of the original U-Net paper introduced a class-
wise loss (CL) weighting factor [9] which is a reciprocal
for the number of pixels that belong to each class in an
image.

In this study, we introduce a pixel-wise loss (PL)
weighting factor that is multiplied by a pixel’s loss con-
tribution to the total loss of an image. PL weighting
enables the network’s training to focus on challenging
parts of an image by up-weighting a pixel loss in the
corresponding regions. For the calculation of PL weight-
ing factors, we define four categories of pixels with the
last category separated into particle type instances. The
first category contains background (i.e., zero) pixels that
surround non-background (i.e., non-zero) pixels within 2
pixels. The second category is the rest of background pix-
els in the image that do not belong to the first category.
The third category represents non-zero pixels within 4
pixels of the generated event vertex. Finally, the fourth
category is defined for each particle instance and includes
non-zero pixels that belong to a particle. Therefore the
total number of categories may vary from one event to an-
other. A PL weighting factor is computed per category.
It is the reciprocal of the number of pixels belonging to
each category. A category with fewer pixel counts repre-
sents a rare feature in an image data, and is assigned a
higher weighting factor. Figure 4 shows how pixels are
grouped into the four categories.

C. Optimization

We use the RMSProp [12] with an initial learning rate
of 0.0003 to optimize the U-ResNet. The weights are up-
dated after processing every batch of 60 images. The
training process is monitored using the Incorrectly Clas-
sified Pixel Fraction (ICPF) metric. Figure 5 shows the
loss and the average values of ICPF computed over val-
idation samples as a function of epoch during the train-
ing. Epoch is a measure of time, and one epoch corre-
sponds to the time it takes to consume the same number
of images as the whole training sample. The learning
rate is lowered by an order of magnitude at epoch 14 as
shown in Figure 5. We determine the best performing
network parameters based on the lowest ICPF value on
the validation set which is generated independently from
the data set used for training under the same simula-
tion configuration. The performance of the network is
then quantified using the test set, which is yet another
independent sample generated with the same simulation
configuration. Using the trained network, we find an av-
erage ICPF value of 1.9% using all events in the test set.

The U-ResNet and this training scheme is implemented
using caffe [13], customized to employ the PL weight-
ing scheme [14]. We trained our network using NVIDIA
TitanX [15] GPUs with 12 GB memory.
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FIG. 4. Top: an example image from the training set in which
two protons, one electron, and one muon are produced. The
gaps along the trajectory of an electron and proton on the left
are due to unresponsive wires [6] in the detector. Bottom: the
event from the top image that shows PL weighting categories
indicated in different colors.

V. DATA SAMPLES FOR TRAINING AND
VALIDATION

A. Training Sample Preparation

We prepare training samples using a custom event gen-
erator called MultiPartVertex (MPV), available in
the MicroBooNE software repository, uboonecode [16].
MPV can be configured to randomly generate a single 3D
point in a detector with the emission of multiple charged
particles. Any random process employed by MPV is a
uniform distribution within the specified range in the
configuration. The multiplicity and type of particles to
be generated are configurable parameters as outlined be-
low. Restrictions and ranges for the generation are pre-
sented in the following two paragraphs.

For 80% of the sample, the MPV is configured to gen-
erate events with a random total particle multiplicity be-
tween one and four. One of the generated particles must
be a light lepton (e− or µ−) with kinetic energy rang-
ing from 50 to 1000 MeV. The direction of each particle
is chosen from an isotropic distribution. For the other
generated particles, the MPV is configured to randomly
assign their types to a photon, charged pion, proton, or

FIG. 5. (a) The training loss value as a function of train-
ing time using the validation sample. The red line shows the
average at a given Epoch computed using 200 the neighbor-
ing Epoch points. (b) Incorrectly Classified Pixel Fraction
(ICPF) for the same sample. The sudden drop in both fig-
ures at Epoch 14 is due to lowering of the learning rate by a
factor of 10.

another lepton (e− or µ−). We also set the maximum
multiplicity for leptons and protons to be three and pho-
tons and charged pions to be two. There is no strong
motivation for this configuration. In fact we demonstrate
later in this paper that the network works well on neu-
trino candidate events with a shower particle from real
detector data with multiplicity five.

The remaining 20% of images are generated with a
different configuration. The total multiplicity is set ran-
domly between one and four particles but there is no
restriction to include at least one light lepton. Instead,
particle types are set randomly between showers (e− and
photon) and tracks (µ−, charged pion, and proton). For
each particle type, the maximum multiplicity is set to
two. The ranges for the randomly assigned momentum
are specified as 30 to 100 MeV/c for e− and photon, 85
to 175 MeV/c for µ−, 95 to 195 MeV/c for charged pion,
and 300 to 450 MeV/c for proton. The distribution of
particle directions is isotropic. This 20% fraction is cho-
sen to have a particular focus on the low energy region
where classification of particle types becomes difficult.
The motivation for this is to enhance the networks per-
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formance in this energy region. We generate 140,000 im-
ages, randomly selecting 100,000 for training, 20,000 for
validation, and 20,000 images for testing the network’s
performance, with no image in more than one set.

After the particle generation stage, the training sam-
ple is run through the detector simulation and waveform
processing scheme of the experiment. The procedure is
similar to that of our previous study [7] but with an up-
dated version of LArSoft [8] and uboonecode [16].
The latter software contains important updates includ-
ing a data-driven detector noise model [6], noise filtering
algorithms, and data-driven TPC charge signal deconvo-
lution kernels [17, 18]. These improvements aim to reduce
the potential discrepancies between data and simulation
samples. Hence, these improvements are important for
the U-ResNet trained purely on simulation to work effec-
tively on real detector data. Further suppression of the
discrepancy between data and simulation for noise with
low amplitude is accomplished by setting the pixel value
to zero for pixels with amplitude below 10. Finally, we
crop the 512 by 512 pixel image from the whole collec-
tion plane image which has the original size of 3,456 by
1,600 pixels. The cropping algorithm (CRA) defines an
axis-aligned 3D rectangular volume within the detector
of a configurable size that contains a set of 3D points,
called constraint points. The location of the 3D box is
set by the algorithm under two conditions. First, the
defined box must contain all given 3D constraint points.
Second, while satisfying the first condition, a range is de-
fined that maximizes the number of non-zero 2D pixels
included in the projection of the rectangular box in the
collection plane. By satisfying these two conditions, the
box location is allowed to float freely. We use the 3D
interaction vertex as the constraint point in this study.
The resulting 512 by 512 pixel images contain the inter-
action point location for each event and the maximum
number of non-zero pixels in the projection.

B. Benchmark Simulation Samples

Separately from the testing set, we generate five addi-
tional simulation samples to benchmark the performance
of U-ResNet. These simulation samples include two types
of neutrino interactions simulated using the GENIE [19]
neutrino event generator within LArSoft [8] and the
MPV generator events generated under three different
generator configurations. The image preparation steps
are identical to those of the training samples except for
the event generation step which is unique to the genera-
tor type and configuration. This brings us to a total of
six simulated samples, consisting of 120,000 events, that
we can analyze with the trained network.

The neutrino samples consist of 20,000 νµ and 20,000
νe events, generated with the Booster Neutrino Beam [5]
(BNB) beam flux information. Each MPV samples in-
cludes 20,000 images of events. One MPV sample is
configured to generate one proton and one electron only

(1e1p). Particles are simulated with a uniform energy
distribution and isotropic momentum direction distribu-
tion. The kinetic energy range is set to be 50 to 500 MeV
for e− and 50 to 300 MeV for protons. In addition, there
are two more MPV samples generated: low energy 1e1p
(1e1p-LE) and low energy 1µ1p (1µ1p-LE) where the lat-
ter is similar to 1e1p except a µ− is generated in place
of an e−. These samples are generated in the low en-
ergy (LE) range. For 1e1p-LE, the e− has momentum
distributed from 30 to 100 MeV/c. For 1µ1p-LE, the
momentum of µ− is distributed from 85 to 175 MeV/c.
For both samples, the momentum of the proton is dis-
tributed from 300 to 450 MeV/c.

C. Benchmark Data Samples

In order to validate the network’s performance on real
data, we prepared two data samples for which we have a
good understanding from the traditional reconstruction
approaches available in LArSoft [20].

The first is a sample of Michel electron events [21], also
used in our first physics result publication. This sample
primarily consists of one track (stopping muon) and one
shower (decay electron) and is identified using a recon-
struction algorithm developed by the collaboration. The
Michel electron images are simple and therefore useful
to study how the network response depends on a limited
amount of image features.

The second data set is a sample of charged-current
νµ candidate interactions with one or more photons pro-
duced, primarily via π0 decay at the interaction ver-
tex. The CCπ0 sample gives a different perspective than
Michel electrons because it primarily consists of higher
energy showers and tracks that make the image more
feature-rich and complicated. Validation of the network
performance on both data sets is crucial.

For the Michel electron sample we use a random subset
of events identified as Michel electron events in Ref [21].
We processed 100 data and 100 simulation events through
the same waveform processing procedures applied to gen-
erate our training sample. Then we use the reconstructed
decay position of the Michel electron as a constraint to
crop with the CRA, which produce 512 by 512 pixel im-
ages containing both a stopping muon and a decay elec-
tron. Next we use the LArCV [14] toolkit to produce
a pixel-level categorization of track and shower pixels
through hand-scanning of images by physicists. In this
process, we ignored pixels that are related neither to a
stopping muon nor a Michel electron. The ignored pixels
are typically due to other cosmic ray muons or secon-
daries produced by them. This allows us to reduce the
number of pixels to be labeled. The disagreement rate
between the physicist-labels and the U-ResNet’s classifi-
cation is then compared between the real data and sim-
ulated data to quantify how the network performance
differs between data and simulation.

For the CCπ0 events, samples of 100 data images are
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identified primarily by an automated reconstruction [20].
Event selection algorithms look for a νµ CC interaction
candidate vertex, namely a muon track with EM-showers
from π0 decay near to that vertex. Such a muon track
must be either contained or associated with a proton
track to reject cosmogenic backgrounds. Selected events
must pass through a subsequent hand-scanning process
by physicists to ensure a high purity. The reconstruc-
tion algorithm in the reconstruction chain provides an
estimate of the interaction vertex position. This recon-
structed vertex is used as a constraint for CRA to pro-
duce 512 by 512 pixel images. For the comparison study,
we simulate events with BNB νµ interactions and cosmic
rays. A total of 100 CCπ0 events are selected based on
simulation information. The neutrino interaction vertex
location from simulation information is used as a con-
straint for CRA to produce the same size images for sim-
ulated events. Data and simulation events are processed
by an identical waveform process chain used to prepare
the training sample. Finally, the pixel-level physicist la-
bels are generated for the CCπ0 sample. The same condi-
tion is applied and the physicists labeled only pixels that
are considered to be related to a neutrino interaction, ig-
noring pixels with cosmic ray induced energy depositions.

VI. NETWORK PERFORMANCE ON
SIMULATION SAMPLES

We benchmark the performance on test simulation
samples using four metrics.

• ICPF mean: the average value of incorrectly clas-
sified pixel fraction per image computed over all
events in a sample. The ICPF metric is a measure
that takes into account false positives and the frac-
tion of labels for the track and shower categories.

• ICPF 90% quantile: the ICPF value below which
90% of events in a sample are present.

• Shower error rate: the average value of the shower
pixel error rate, defined as the fraction of incor-
rectly labeled shower pixels as track pixels in each
image, averaged over all images in a sample.

• Track error rate: the average value of the track
pixel error rate, defined as the fraction of incor-
rectly labeled track pixels as shower pixels in each
image, averaged over all images in a sample.

For all samples, the ICPF distributions are very similar.
We show one example for the test sample in Figure 6.
In general, most images have very low ICPF values, well
below 10% for all test samples.

The results can be found in Table VI. The network is
generalized to perform well on simulated neutrino events
to a level that allows us to apply the technique as a
part of the reconstruction chain. We do not train the

FIG. 6. The binned ICPF distribution over all images in the
test set.

TABLE I. Values of the network performance metrics includ-
ing the average of ICPF mean value, 90% quantile, the av-
erage of incorrectly classified pixel fraction for shower pixels,
and the same for track pixels. The test samples described in
Section V B. Values are shown in percentages.

ICPF ICPF
Sample mean 90% Shower Track
Test 1.9 4.6 4.1 2.6
νe 6.0 13.8 7.6 13.8
νµ 3.9 4.5 14.2 4.3
1e1p 2.2 5.7 2.8 4.0
1µ1p-LE 2.3 2.2 6.2 2.4
1e1p-LE 3.9 11.5 3.8 8.0

network on our signal prediction - neutrino events simu-
lated by GENIE - because this may introduce a model
bias. The benchmark results also demonstrate that the
U-ResNet can classify pixels from the low energy two par-
ticle topologies of 1e1p and 1µ1p into track/shower at the
ICPF mean value of 3.9% and 2.3%, respectively. These
are the two simplest topologies of neutrino interactions,
and it is important for U-ResNet to perform well so that
it can be used to distinguish the two neutrino flavors. In
the 1µ1p-LE sample, despite the fact that no showers are
produced in the primary neutrino interaction, challenges
for the network arise from similarities between muons
and electrons at very low energies and from secondary
interactions like Michel electrons from muon decays.

Figure 7 shows the binned ICPF for the 1e1p and 1e1p-
LE samples as a function of kinematic variables. Fig-
ure 7(a) shows the correlation with the opening angle
between the two particles in 1e1p sample. We expect the
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FIG. 7. The ICPF error rates for U-ResNet labeling track
(proton) and shower (electron) pixels for the benchmark test
set are plotted against initial kinematic variables from simula-
tion information. (a) The opening angle between two particles
from the 1e1p sample. (b) The electron kinetic energy from
the 1e1p-LE sample. (c) The proton kinetic energy from the
1e1p-LE sample.

ICPF value to increase when the two particles are co-
linear and the 2D projections overlap, making it hard to
distinguish the two tracks. When they are back-to-back,
the difficulty to distinguish them arises from the fact that
two trajectories may appear as the trajectory of one par-
ticle. Although it is outside of the scope of this paper,
some of these difficulties could be mitigated if multiple
2D projection information is incorporated.

Figure 7(b) and (c) show the dependence of the perfor-
mance on the kinetic energy of a particle from 1e1p-LE

sample. We observe that the network performs worse
at lower energies. The ICPF value reaches near 15% at
50 MeV proton kinetic energy. A proton at this energy
can only travel a few centimeters in LAr, which trans-
lates into 10 pixels or fewer in the collection plane image.
Such a small amount of information makes the networks
task difficult. A similar trend of decreasing performance
can be also seen for electron kinetic energy, although the
magnitude is much smaller. The critical energy above
which electrons primarily produce bremsstrahlung in LAr
is about 33 MeV. In the low energy region near or below
the critical energy, electrons may not show a geometrical
feature of showers characterized by a cascade of radia-
tion. Thus, the network may struggle identifying them
as showers.

Overall, these kinematic distributions show the trend
we expect, and set milestones to be achieved by future
work on deep neural network development for LArTPC
data reconstruction. A few randomly chosen example
outputs of the networks are shown in the Appendix from
the νe and νµ benchmark set.

VII. NETWORK PERFORMANCE WITH
DETECTOR DATA AND COMPARISON TO

SIMULATION

In this section we report the validation of U-ResNet
on real detector data, in particular Michel electron and
CCπ0 neutrino candidate events. Both data and simu-
lation samples are processed by a physicist and contain
pixel-level prediction labels. We report the comparison
of the network’s disagreement with physicist-applied la-
bels. The details of data preparation steps are described
in the previous sections.

A. Data/Simulation Comparison Using The Michel
Electron Sample

Table II summarizes the analysis results for the Michel
electron sample. The disagreement rate between a
physicist analyzer and the network prediction is be-
low the 3% level on average for both data and simu-
lation. Figure 8(a) shows the distribution of the pixel
fractions where U-ResNet and physicists disagreed on
track/shower categorization over 100 events. The cal-
culated physicist/network labeling for data and simula-
tion agrees within statistical uncertainty. Figure 8 also
shows binned distributions of pixel scores for data and
simulation. The track or shower label for each pixel is
assigned by a physicist analyzer, and is not expected to
be perfect. The score distributions show a similar trend
between data and simulation. The error bars are not
drawn in the score distributions since it is not trivial to
derive an error for a pixel-wise score where we expect
strong inter-pixel correlations. Finally, Table II shows
that the network has a smaller ICPF when using labels
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FIG. 8. (a) Binned distribution of ICPF for track and shower
pixels where the pixel-level labels are produced by a physicist.
The data and simulation distributions are area-normalized
and represent 100 Michel electron events. There is no event
outside the shown range on the horizontal axis. (b) The nor-
malized, binned softmax probability distributions for shower
pixels on data and simulation. (c) The same as (b) for track
pixels.

generated from simulation information. The Appendix
shows four randomly selected examples of Michel elec-
tron events from real data.

Further, we inspected the robustness of the network
against scaling pixel values. Since there is no calibration
applied at the stage of processed waveforms, we expect
a difference in the signal strength between data and sim-
ulation. We run a simple differentiation algorithm to
compare the signal strength between Michel data and

TABLE II. Values of the network performance metrics for
the Michel electron sample. The top row indicates the type
of sample used (simulation or data), the second shows the
source of a label used for analysis, and the third shows the
source of a pixel prediction. The forth and the fifth rows indi-
cate the ICPF mean value over all samples and 90% quantile,
respectively. The bottom two rows show the mean of ICPF
for track and shower pixels, separately. Values are given as
percentages.

Sample Data Simulation Simulation Simulation
Label Physicist Physicist Simulation Simulation
Prediction U-Resnet U-ResNet U-ResNet Physicist
ICPF mean 1.8 2.6 2.5 2.3
ICPF 90% 3.3 4.4 4.5 3.1
Shower 6.2 5.7 4.0 3.9
Track 1.1 1.9 1.6 1.3

FIG. 9. Peak pixel value distribution for Michel electron im-
ages for data and simulation using the 3-pixel differentiation
algorithm described in the text. The vertical axis shows the
pixel counts while the horizontal axis shows the peak pixel
values.

simulation images. The algorithm inspects every pixel in
an image. The algorithm finds peak pixels by comparing
a given pixel with the one before and after it along the
time axis to determine the one with a higher pixel value
than its neighbors. This is the simplest form of a signal
peak amplitude finder algorithm. The distributions for
data and simulation are shown in Figure 9, which shows a
shift between the data and simulation peak positions by
about 20% to 30%. For this study we scale the pixel val-
ues of data images by a constant factor and compare the
performance of the network with different scaling factors.
Figure 10 shows the results of this study. Although we
observe that the ICPF becomes worse when we apply the
scaling factor, the change is within 1% absolute when we
scale pixel values by 25%, which is at the level of current
disagreement rate between simulation and uncalibrated
detector response.
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FIG. 10. The average ICPF in percent for the Michel electron
data versus pixel scaling factor is shown in blue. The pixel-
fraction disagreement between physicist and network catego-
rizations is shown in percent in red for track and shower pixels
separately.

FIG. 11. Three regions for an analysis of the inter-pixel cor-
relation for a Michel in data. Region 1 contains the minimum
ionizing muon trajectory. Region 2 focuses on the end of the
muon trajectory where dE/dx increases. Region 3 contains a
decay Michel electron.

B. Qualitative Analysis of Inter-Pixel Correlations
Using the Michel Electron Sample

We take a qualitative look at the correlation of pixel
scores using the Michel electron image from one of the
real data examples shown in Figure 11. In the following
sections, we focus on three regions shown in the figure.
These correspond to 1) a minimum-ionizing muon track,
2) a portion of the track with high dE/dx near the muon
stopping point, and 3) the low energy Michel electron
shower, respectively.

1. Minimum Ionizing Muon Track

One possible property used to distinguish a minimum
ionizing muon from a low energy electron is the topology
of its trajectory. This is often a long straight line, as
compared to a more “jagged” electron trajectory due to
higher multiple coulomb scattering. We choose subsets
of Region 1 shown in Figure 11 to test this hypothesis by
masking all remaining pixels in the image to zero. Fig-
ure 12 shows the masked images and the corresponding
track vs. shower score distribution of non-zero (i.e., un-
masked) pixels by running the U-ResNet on each image.
In Figure 12 (a) to (d), we show a series of images with
increasing number of unmasked pixels to determine how
the score distribution changes. When we provide only a
5-pixel long minimum ionizing track, separation is weak.
The separation improves as we include more neighboring
pixels, which makes the straight-track shape longer and
longer. We conclude that this confirms our hypothesis
that the network is focusing on the length of a straight
minimum ionizing particle’s trajectory.

2. Bragg Peak

A stopping muon increases its energy deposition den-
sity, dE/dx, as it loses momentum and near the stop-
ping point has the highest dE/dx called the Bragg peak.
This increasing dE/dx is a useful signature to identify a
stopping muon [21] and therefore make a decision that
a trajectory is track-like. In Figure 12, we show that
the network struggles with a straight, minimum ioniz-
ing track-like trajectory of relatively few pixels. Fig-
ure 13 shows Region 2 of Figure 11, near the stopping
muon’s Bragg peak point, where we masked the rest of
muon trajectory and the entire electron charge deposi-
tions. Track and shower score distributions are well sep-
arated at all track lengths. This is a distinct feature
from Figure 12. We therefore conclude that the network
is keying on an increasing dE/dx, or a high dE/dx, to
classify a straight-line-like topology into track-like with
high confidence even if the length of such a trajectory is
down to several pixels.

3. Low Energy Electron Shower

One key feature of an electromagnetic shower is its
non-straight line trajectory. To test this hypothesis, we
take a closer look at the Michel electron charge deposition
in Region 3 of Figure 11. In this event a Michel electron
traveled straight for several pixels. Then it started to
scatter off of other electrons before the end of the tra-
jectory. Because of its mass, the Michel electron is min-
imum ionizing for most of its trajectory. We investigate
how the network’s confidence varies if we separate the
initial straight, minimum ionizing trajectory of a Michel
electron from the remaining image.
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FIG. 12. Minimum ionizing muon track in Region 1 of Figure 11 where all pixels in the image are masked except for a small
portion of a muon track shown in the images above. The lower row shows normalized track vs. shower score distributions for
all non-zero pixels in the image.

FIG. 13. Stopping muon track in Region 2 of Figure 11 where all pixels in the image are masked except for the small portion
of the muon track next to its stopping point shown in the images above. The lower row shows normalized track and shower
score distributions for all non-zero pixels in the image.

Figure 14 shows that, where the Michel electron pic-
ture is complete, all pixels are identified strongly as a
shower. We then mask the first several pixels that look
like a track of a minimum ionizing muon (Figure 14(b)).
The network’s confidence remains very strong in this re-
gion. We also show the network’s response to the first
several pixels of a Michel electron (Figure 14(c)). The
network is entirely uncertain whether this is a track or a
shower in this case.

Finally, we investigate the intersection of Region 2 and
3 by adding the final pixels of the Bragg peak of the stop-
ping muon to the first several pixels of the Michel elec-
tron, as shown in Figure 15 We add a heat map which
shows the score for non-zero pixels for the classified cat-
egory. In the heat map we observe the dark-red region,
corresponding to the score value 1, and the other region
in yellow/orange color which corresponds to weaker clas-
sification scores. We also show the track and shower score
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FIG. 14. Michel electron in Region 3 of Figure 11 where all pixels in the image are masked except for a portion of an electron
trajectory shown in the images above. The lower row shows normalized track and shower score distributions for all non-zero
pixels in the image.

FIG. 15. The intersection of Region 2 and 3 of Figure 11 where all pixels in the image are masked except for a small portion
of a Michel electron and the Bragg peak from a stopping muon. The middle histogram shows a normalized track and shower
score distribution for all non-zero pixels in the image. The right figure shows the normalized score value of the classified pixel
category.

distribution of all non-zero pixels. The network’s confi-
dence level remains high on classifying the Bragg peak as
track-like. Secondly, by comparing the score distribution
of Figure 15 and the score distribution in Figure 14(c),
we conclude that the beginning portion of the Michel
electron now has a higher likelihood to be classified as
shower-like. This suggests that the network is using the
presence of the Bragg peak in the image to improve the
classification of the minimum ionizing straight trajectory
that starts from the end of the Bragg peak, which is oth-
erwise ambiguous as track-like or shower-like.

C. Data/Simulation Comparison Using The CCπ0

Sample

The results of running U-ResNet on the CCπ0 image
samples are summarized in Table III. We find a similar
trend as observed in the Michel electron sample, but with

slightly higher disagreement rates. This is expected given
that CCπ0 samples are complex images because of the
higher number of particles and interactions involved. The
top plot in Figure 16 shows the ICPF distribution. As
in the case of the Michel electron sample, data and sim-
ulation are in agreement within statistical fluctuations.
In Figure 16(b,c), we show the score distributions for the
track and shower pixels labeled by a physicist. A sim-
ilar trend is observed between data and simulation in
both pixel categories. Four example images are shown in
the Appendix with the U-ResNet output. The displayed
events are visually selected by a physicist because of their
particularly busy vertex activities.

Following the analysis of the Michel sample, we inves-
tigate how the scaling of pixel values in the data image
affects the network performance. The result is shown in
Figure 17. We find that the ICPF values have small vari-
ation among the scaling factors applied in the study. This
suggests that, although the effect is small, at the 1% level



14

FIG. 16. (a) The binned distribution of ICPF where the pixel-
level labels are produced by a physicist. The Data (black) and
simulation (red) distributions are area-normalized, produced
from 100 CCπ0 events. There is no event outside the shown
range on the horizontal axis. (b) The normalized, binned soft-
max probability distributions for shower pixels by the network
on data and simulation. (c) The same as (b) for track pixels.

for a 25% pixel value scaling factor, mismatched signal
strength in data does affect the network’s response.

D. Disagreement Between U-ResNet and Physicist
Labeling for the CCπ0 Sample

The CCπ0 events present far richer topologies than
the Michel events, and we do not attempt to perform the
pixel-masking and the deduction exercise to learn how

FIG. 17. The ICPF mean in percent for CCπ0 data (blue) for
varying pixel scaling factor shown on the horizontal axis. A
category-wise physicist-network disagreement pixel fraction in
percent is shown in red for track and shower pixels separately.

TABLE III. Values of the network performance metrics for the
CCπ0 sample. The top row indicates the type of a sample used
(simulation or data), the second shows the source of a label
used for analysis, and the third shows the source of a pixel
prediction. The forth and the fifth rows indicate the ICPF
mean value over all samples and 90% quantile, respectively.
The bottom two rows show the mean of ICPF for track and
shower pixels, separately. Values are given as percentages.

Sample Data Simulation Simulation Simulation
Label Physicist Physicist Simulation Simulation
Prediction U-ResNet U-ResNet U-ResNet Physicist
ICPF mean 3.4 2.5 1.8 2.0
ICPF 90% 9.0 5.7 4.6 4.8
Shower 4.8 3.4 3.0 2.6
Track 2.7 2.4 2.2 2.9

the network works in this sample. Instead, we study the
CCπ0 data events where the disagreement between physi-
cist and network labeling is largest. Four such events are
identified and shown in Figure 18. The four events shown
are ordered by level of disagreement rates of 0.166, 0.166,
0.162, and 0.125, respectively. In the example shown on
the top of the figure, the disagreement is mainly in a long
track-like trajectory originating from the interaction ver-
tex. While a physicist analyzer decided this is a track,
it could also be a minimum ionizing electron that should
be classified as a shower. The second display from the
top shows the network’s attempt to separate a track-like
trajectory that is present inside a high energy shower. In
the third image, a large portion of particle trajectory is
invisible due to unresponsive region of the detector run-
ning vertically toward the right of this image. This makes
it difficult to analyze the remaining particle trajectories
where the U-ResNet mixes track and shower pixel de-
cisions for the same trajectory. Finally, in the bottom
image, the network predicts two track-like trajectories
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FIG. 18. Four example CCπ0 events with highest ICPF values using physicist generated pixel labels. Left: input images to the
network. Middle: track (yellow) and shower (cyan) using physicist generated labels. Right: track (yellow) and shower (cyan)
labels predicted by the network.
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coming from the interaction vertex while the physicist
analyzer merged two tracks into one near the vertex. The
region around the interaction vertex is complicated by en-
ergy deposition from a shower, which makes it difficult to
determine which decision is correct. The performance of
the network for these maximal disagreement events sup-
plements our understanding from the qualitative Michel
data analysis and documents some of the ways that the
network fails in categorizing pixels.

VIII. CONCLUSION

In this paper we have presented the first application
of a deep semantic segmentation network, U-ResNet, to
perform track/shower separation at the pixel-level for
LArTPC images. We explore training techniques in-
cluding transfer learning and pixel-wise error weighting
methods. Our software tools and algorithms to store
and apply the pixel-level labeling are made available in
Refs [14, 16].

U-ResNet achieved an average ICPF of 6.0% and 3.9%
benchmarked with 20,000 images of νe and νµ inter-
actions, respectively, simulated with realistic neutrino
beam information. The same network achieved an av-
erage ICPF of 3.9% for 1e1p-LE events in which elec-
trons have a uniform momentum distribution from 30 to
100 MeV/c, and protons from 300 to 450 MeV/c. The
average ICPF is found to be 2.3% for 1µ1p-LE events
which include protons with the same uniform momen-
tum distribution and momentum range, and muons in a
momentum range of 85 to 175 MeV/c.

We quantified and validated U-ResNet, trained purely
on simulated image samples, on LArTPC images from
real detector data. We calculated the fraction of incorrect
pixel labeling between U-ResNet and a physicist analyzer
and found an average disagreement fraction of 1.9% and
3.4% for Michel electron data and CCπ0 data, respec-
tively. The same analysis was performed using simula-
tion samples, and we found that the level of disagree-
ment is consistent for data and simulation samples. This
is the first time such validations have been shown on real
LArTPC data. From a qualitative analysis on the Michel
electron data we conclude that the network is focusing on
intuitively reasonable physics features in the image. The
successful application of a semantic segmentation net-
work on LArTPC data is an important milestone toward
developing a full LArTPC data reconstruction chain us-
ing a deep neural network.
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APPENDIX

In this appendix we show example event displays of
simulation and data. Figure 19 shows simulated νe and
νµ interactions. Figure 20 shows a stopping muon with
a decay Michel electron. Figure 21 shows “busy” CCπ0

candidate events visually selected including those with a
particle multiplicity greater than 4. In all of these event
displays, gaps in tracks and showers are due to unrespon-
sive wires. Overall, we observe good agreement between
the simulation information and output from the network
track-shower pixel labeling in diverse event types.
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FIG. 19. Event displays of νe (upper two rows) and νµ interactions (lower two rows). The left column images are inputs to the
network. The middle column shows labeled images based on simulation information. Track pixels are masked in yellow and
shower pixels are in cyan. The right column shows the output of the network.
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FIG. 20. Michel electron event displays from real detector data. Left: input images to the U-ResNet. Middle: track (yellow)
and shower (cyan) physicist labels. Right: track (yellow) and shower (cyan) labels predicted by the network.
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FIG. 21. Neutrino event displays from CCπ0 candidate detector data selected based on activity around the interaction vertex.
Left: input images to the network. Middle: track (yellow) and shower (cyan) physicist labels. Right: track (yellow) and shower
(cyan) labels predicted by the network.
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