Ashtekar, Abhay and Sloan, David (2010) Loop quantum cosmology and slow roll inflation. Physics Letters B, 694 (2). pp. 108-112. ISSN 0370-2693
Full text not available from this repository.Abstract
In loop quantum cosmology (LQC) the big bang is replaced by a quantum bounce which is followed by a robust phase of super-inflation. Rather than growing unboundedly in the past, the Hubble parameter vanishes at the bounce and attains a finite universal maximum at the end of super-inflation. These novel features lead to an unforeseen implication: in presence of suitable potentials all LQC dynamical trajectories are funneled to conditions which virtually guarantee slow roll inflation with more than 68 e-foldings, without any input from the pre-big bang regime. This is in striking contrast to certain results in general relativity, where it is argued that the a priori probability of obtaining a slow roll with 68 or more e-foldings is suppressed by a factor e−204.