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Abstract

This thesis analyses global agricultural commodity price dynamics, with an
emphasis on the causal factors behind movements and their forecastabil-
ity. The analysis builds upon recent developments in the areas of time se-
ries econometrics, agricultural economics and applied economics to provide
an empirical examination of agricultural commodity price movements. The
main research questions addressed are the following. First, recursive unit
root tests are employed to examine whether global commodity prices ex-
perienced explosive sub-periods which cannot be explained by underlying
economic fundamental movements. Second, a Bayesian Structural VAR is
used to model global wheat prices and decompose the causal factors behind
price movements. Finally, an examination of the forecastability of agricul-
tural commodity price series is conducted using recently developed dynamic
models.
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Chapter 1

Introduction

Rapid price increases in the first decade of the 21st century have led to a renewed interest

in understanding the causal economic factors behind agricultural price dynamics. In the

period up to 2008, corn and wheat prices tripled, and rice traded at five times its previous

level (Von Braun 2008), leading commentators around the world to re-examine food prices

which had been comparatively stable for many years. Particular concern was placed on the

impact of speculation by index investors, as epitomized by the stark testimony of Michael

Masters to a United States Senate Committee convened to figure out what was causing high

food prices:

“If immediate action is not taken, food and energy prices will rise higher still. This could

have catastrophic economic effects on millions of already stressed U.S. consumers. It

literally could mean starvation for millions of the world’s poor.”

Michael W. Masters, May 20081

Although agriculture is a relatively small part of developed world economies, accounting

for approximately 4% of global GDP, for low income countries this rises to a substantial 26%

for Low Income countries (The World Bank 2018). Given the importance that food prices

have on food security and recent evidence that high food price levels have been documented

as leading to riots in 14 African countries (Berazneva & Lee 2013) as well as Europe, Asia

and the Americas (Bellemare 2015).

With this potential for large negative economic and social effects, understanding the

dynamics of agricultural commodity prices and the factors which cause such movements
1Masters (2008a)
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is vital. This thesis is built upon three research questions. First, have recent explosive

dynamics in agricultural commodity prices been driven by economic fundamentals, or have

non-fundamental factors such as rational speculative bubbles been driving food price dynam-

ics? Second, which are the structural economic factors which can explain these, particularly

for global wheat prices? And finally, is there a parsimonious time series model which can

accurately forecast global food prices?

Considering the first question, there has long been an interest in the processes be-

hind asset prices which diverge from their underlying fundamental value. Blanchard (1979)

demonstrates that such periods can be consistent with a rational expectations framework.

Blanchard & Watson (1982) define such periods as rational bubbles, which occur whenever

prices rationally deviate from that implied by their fundamental value. Diba & Grossman

(1988) demonstrate that the presence of a rational bubble induces explosive dynamics to

prices, as asset holders must be compensated for the risk of a crash by increasing prices.

This feature of rational speculative bubbles leads to a direct test for them; if prices are

explosive, and the underlying fundamental price is stationary or integrated of order one

(i.e., they are not explosive), then prices are being driven by a rational bubble. As a re-

sult, there have been several recent developments in the literature for detecting explosive

sub-periods (e.g., Phillips et al. (2011), Phillips et al. (2015a)). However, explosive dynam-

ics in prices alone is insufficient, as the underlying fundamentals driving prices could also

grow exponentially. That is, observed explosive dynamics in prices is a necessary, but not

sufficient, condition for rational speculative bubbles to have been present in food markets.

Consequently, a substantial literature has emerged which investigates agricultural commod-

ity markets in this way (e.g., Gutierrez 2015, Etienne et al. 2017).

However, determining the fundamental price of agricultural commodity markets is a

challenging task as prices are determined globally by supply and demand conditions. Pre-

vious literature utilizes proxies for the fundamental price as it is not directly observable,

leading to a joint hypothesis problem, that both the specified fundamentals are correct and

that bubbles are present. Chapter 2 approaches this difficulty and addresses the first re-

search question by utilizing the recently developed test of Pavlidis et al. (2017) which takes

into consideration agents expectations of the path of prices from futures prices. This leads
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to the construction of a time series which mitigates the fact that the fundamental may

be unobserved and as such we are unable to directly test whether it is I(1). This chapter

then empirically applies the recently developed recursive unit root tests of Phillips et al.

(2011) and Phillips et al. (2015a) to this fundamentals adjusted series as well as the price.

These tests are particularly well-suited to this task as they can both detect the presence

of explosive behavior in a series, whilst also providing a method for date-stamping which

identifies the start and end of any detected explosive behavior. Four major agricultural

commodities; wheat, corn, soybeans and oats, are examined using this strategy. The results

suggest that although wheat, corn and oat prices have undergone explosive sub-periods,

there is no evidence of rational bubbles being present in these markets, when we control for

fundamentals.

Chapter 3 addresses the second research question by conducting a modeling exercise

to understand the relative importance of causal economic factors which may have been

driving agricultural prices. It builds upon the recent development of a Bayesian Structural

Vector Autoregressive (SVAR) model by Baumeister & Hamilton (2015a) for examining the

oil market. This model is adapted and applied to the global wheat market to examine

the impact that important causal factors have had on the global wheat price. This model

allows for the decomposition of the importance of selected economic factors by analyzing

their relative contribution to wheat price movements over time. It has advantages over other

Structural VAR models in that it requires less onerous restrictions for estimation and adopts

a Bayesian framework which allows limited prior information to be transparently imposed

upon parameter estimates. Specifically, these models require explicitly defined Bayesian

priors for identification, rather than implicitly applying informative priors which are never

specified although they may affect the results (Baumeister & Hamilton 2015a). Overall

we find that the majority of wheat price movements over the period under investigation

are due to wheat market specific factors rather than, for instance, increased demand from

India and China pushing price upwards. However, during the period around 2008, shocks to

precautionary demand explain some of the witnessed price rises, suggestive that agents may

have had increased incentives to hold stocks of wheat until supply conditions are resolved

with new crop entering the market.
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Chapters 2 and 3 are predominately in-sample examinations of agricultural commodity

price dynamics. An investigation into the out-of-sample forecast performance of a variety

of models for wheat price series is presented in Chapter 4. This third research question

is motivated by the importance that understanding future movements of food prices has

for policymakers. This chapter analyses which models performed best at forecasting out-

of-sample wheat prices in a period which covers the recent crisis (1990M1:2016M12). To

address this question a battery of parsimonious econometric tests are evaluated for forecast-

ing performance. In addition to these standard tests, dynamic models recently proposed by

Raftery et al. (2010), and introduced to the economic literature by Koop & Korobilis (2012),

are empirically applied. These models have several advantages over previously implemented

forecasting models. They present time-varying model specifications, allowing different mod-

els to be considered at each point in time. They also indicate the probability of parameter

inclusion at each time period, which provides additional analysis of the time-varying impor-

tance of factors which drive wheat price dynamics. The results from the forecasting exercise

suggest that models which are based on futures prices perform poorly during this period.

However, the dynamic model averaging approach provides particularly impressive forecast

performance, besting the random walk benchmark at all horizons and provides a significant

improvement when predicting the direction of the price changes.

These three empirical chapters contribute to the literature by applying new time series

econometric methods to the analysis of the behavior of agricultural commodity price series,

particularly during the recent crisis. The first chapter examines whether speculative bubbles

have been present in agricultural commodity prices and led to a large increase in observed

prices, before subsequently crashing. We find no evidence of rational bubbles playing such a

role in any of the four commodities we investigate, suggesting that agricultural commodity

prices have been driven by fundamentals. To better understand what these fundamentals

are chapter 3 examines a series of factors which have been suggested are driving prices

using a Bayesian Structural VAR. Having found that the majority of the price changes are

down to wheat market specific supply and demand factors, rather than one specific external

factor, we turn to forecast performance to give additional information to agents within these

markets to better inform expectations about the future path they may take. Overall, we
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provide an analysis of agricultural commodities which is important for policymakers, who

wish to form a coherent policy response which is dependent upon the factor driving it, for

instance controls on futures market speculation in the case of speculative bubbles.

The final chapter summarizes the findings and discusses the conclusions presented in the

thesis.
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Chapter 2

Bubbles or Fundamentals? New Evidence

for Agricultural Commodities from Fu-

tures Prices

2.1 Introduction

Global agricultural commodity prices have increased rapidly since 2006, with particu-

larly marked run-ups peaking in 2008 and once again from 2011 onwards (see Figure 2.1).

These rapid price increases disproportionately negatively impact consumers living in de-

veloping countries, as they are more directly exposed to price fluctuations in commodities

in comparison to their developed world counterparts. This effect is channeled through the

consumption effect as increased costs of buying a set bundle of goods reduces consumer

welfare and agricultural commodities make up a large share of the consumption bundle for

developing world consumers. This negative impact is moderated by the increased income

that such consumers receive from higher food prices, however the available evidence sug-

gests that the net effect is negative (De Hoyos & Medvedev 2009). For instance, high food

prices have been correlated with increases in poverty in developing countries, and also with

increased food riots and other social upheavals (Ivanic & Martin 2008, Ivanic et al. 2012,

Bellemare 2015). The World Bank has estimated that high food prices diminished the abil-

ity of countries to meet the Millennium Development Goals most closely related to food

and nutrition, with the 2007-2008 crisis resulting in approximately 105 million people being
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kept below the poverty line1.
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Index prices of Agricultural Commodities since 2000

Figure 2.1: Index price comparison of major agricultural commodity markets from 2000
onwards, (January 2000 = 100).

Given the importance of agricultural markets for social welfare, it is not surprising

that a large literature has developed trying to explain their behavior. This literature has

mainly focused on whether high prices are the result of underlying market fundamentals, or

whether there is some non-fundamental process generating higher prices. With respect to the

latter factor, two key strands of literature have emerged, both of which look for speculative

bubbles in commodity prices. The first searches directly for the impact of speculators on

the price of agricultural commodities. This strand is motivated by the so-called ‘Masters

Hypothesis.’2 Its primary concern is that financial index investors (who historically had held

smaller positions in commodities) entered markets and placed excessive upward pressure on

1‘Global Monitoring Report 2012: Food Prices, Nutrition, and the Millennium Development Goals.’
World Bank, 2012.

2So named due to the testimony of Michael Masters, founder of Masters Capital Management, to the
U.S. Senate in May 2008.
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the prices of commodity futures, beyond anything that was intrinsic to the market itself.

Index traders are investors who wish to gain broad exposure to agricultural markets without

necessarily investing in the underlying commodities directly. They invest in instruments such

as the S&P GSCI (previously, Goldman Sachs Commodity Index) which seek to replicate

the returns of commodity markets. Masters (2008b) suggests that this increased pressure

lead to the creation of large asset bubbles. This hypothesis has been investigated by a series

of papers (e.g., Sanders & Irwin (2010), Irwin & Sanders (2011), Irwin (2013), Sanders &

Irwin (2017)) as well as Hamilton & Wu (2015). Overall, there is little evidence to support

the idea that the positions of index investors impacted upon commodity markets in the way

proposed by the ‘Masters Hypothesis’.

The evidence against specific groups of investors putting upwards pressure on prices

does not preclude the existence of bubbles in agricultural markets due to other factors, such

as self-fulfilling beliefs of future price rises. The second strand of literature investigates

the presence of such speculative bubble episodes by utilizing recent advances in time series

econometrics for non-stationary processes. Among the various methods proposed in the

literature, the recursive unit root tests derived by Phillips et al. (2011), Phillips & Yu

(2011) and further developed by Phillips et al. (2015a) are the most widely used. These

tests are particularly appealing as they display high power in detecting episodes of explosive

dynamics, and can date the origin and collapse of any bubble periods detected.

Recent studies that employ these tests to investigate whether rational bubbles appear to

be present in agricultural commodity times series include Gutierrez (2013), Gilbert (2010),

Etienne et al. (2014, 2015) and Etienne et al. (2017). The first two studies employ cash prices

or near futures prices of agricultural commodities. Gilbert (2010), in particular, utilizes the

test of Phillips et al. (2011) and finds evidence of explosive behavior in soybeans, but little

evidence of such dynamics in wheat, and none for corn. Gutierrez (2013) uses the sieve

bootstrap version of Phillips et al. (2011) and finds evidence for bubbles in wheat, corn

and rice, but minimal evidence for soybeans. Rather than continuous near futures or spot

prices, Etienne et al. (2014) utilize daily prices from individual futures contracts for a broad

cross section of 12 commodities over a long time span (1970-2011). By applying the wild

bootstrap version of the recursive unit root test of Phillips et al. (2015a), they find that all
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twelve investigated markets have experienced brief periods of explosive dynamics. When

investigating the explosive properties of agricultural commodities from 2004 to 2015, Etienne

et al. (2017) find that all of the commodities had undergone explosive behavior, however as

in Etienne et al. (2014) these periods are short lived.

Although the above studies are informative about the presence of explosive dynamics in

agricultural prices they cannot by themselves provide conclusive evidence on the existence of

bubbles. The reason is that explosive dynamics may be induced, rather than from bubbles,

from economic fundamentals that may not be observed by the researcher: the so-called

joint hypothesis problem. For agricultural markets in particular, Bobenrieth et al. (2014)

construct a model for storable agricultural commodities in which the presence of supply

and demand shocks can make price series for storable commodities behave in a bubble-like

manner, even though this is entirely the result of underlying fundamentals. Therefore, the

existence of periods of explosive dynamics is a necessary, but not sufficient, condition for

bubbles.

In this Chapter, we adopt a methodology recently proposed by Pavlidis et al. (2017) that

mitigates this joint hypothesis problem by using futures prices to control for fundamentals.

This methodology is applied to a basket of the most widely traded commodities over a

period longer than previously studied in the literature, including the recent price dynamics.

We find that although prices of wheat, corn and oats display explosive sub-periods there

is no evidence of rational bubbles when controlling for market fundamentals. We find

little evidence of explosiveness in soybeans, which conclusively rules out the presence of a

rational bubble in this series. These findings illustrate that in the absence of a complete

set of fundamentals, caution should be taken when interpreting the time series properties

of price series alone.

We note here that these results cannot comment on the presence of any potential irra-

tional speculative behavior which have been suggested may have influenced agent actions.

Irwin (2013) explicitly suggests that the Master’s hypothesis may represent irrational in-

creases in prices across agricultural commodities due to the flows from index investors,

rather than rational investment behavior. In this way there is the potential analogue of

investor herding behavior or similar, with previous periods of irrational speculative bubbles
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such as the infamous South Sea Bubble, as detailed in Dale et al. (2005). Similarly, recent

experience of so-called crypto-currencies, such as Bitcoin, which have been argued to have

fundamental values of zero, experiencing explosive behavor have been pointed towards ir-

rational behavior taking root (see the analysis of Cheah & Fry (2015) and Hafner (2018),

for example). Due to the difficulties in evaluating such periods, this chapter restricts itself

to analysis of the presence of rational bubble behavior, as many other authors have done

(Blanchard & Watson 1982).

The rest of this Chapter is structured as follows. The next section outlines the theoretical

framework for detecting rational bubbles in commodity prices. Section 3 presents the futures

market dataset utilized in our empirical application and how it is prepared. Section 4

outlines the recursive unit root tests and dating strategy proposed by Phillips et al. (2015a),

and Section 5 presents the results. The final section offers a few concluding remarks.

2.2 Rational Bubbles in Commodity Prices

To analyze whether bubbles occur in storable agricultural commodities, we adopt the

popular discounted present value model for commodity pricing (Pindyck 1993), which has

been widely applied (e.g., Gutierrez 2013). In this model the log spot price of a storable

commodity, st, is equal to the discounted expected future spot price in t+1, and the benefits

to the investor of holding the asset, known as the convenience yield:

st = Et

[
st+1 + ψt+1

1 + r

]
, (2.1)

where Et denotes the expectations operator, ψt represents the convenience yield. r > 0

is a commodity specific, one period discount factor which represents the rate of return an

investor in the commodity would require for holding it (Pindyck 1993). Along with being

positive, this discount factor is also assumed to be constant within this analysis, as in other

literature examining for the presence of bubbles (Engsted & Nielsen 2012). The convenience

yield is analogous to dividends within a financial context, in the sense that it represents any

benefits the holder of the storable commodity receives from possession of the asset, such

as the ability to avoid stock-outs (see Kaldor 1939, 1940, Working 1949). Using the law of
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iterated expectations and recursively substituting k periods into the future:

st = Et

[
k∑
i=1

ψt+i
(1 + r)i

]
+ Et

[
st+k

(1 + r)k
]
. (2.2)

Provided that the transversality condition holds, the second term of the right hand side in

Equation (2.2) converges to 0 as the value of k increases, i.e., limk→∞Et
[
st+k

(1+r)k
]

= 0, and

the current spot price is given by the discounted stream of economic fundamentals, xt:

st = xt = Et

[ ∞∑
i=1

ψt+i
(1 + r)i

]
. (2.3)

In this case where st = xt, spot prices are related to the convenience yield directly, in an

analogous way to the long run relationship between stock prices and their underlying divi-

dends, and house prices and the related to rental yields (Kivedal 2013). If the transversality

condition is not imposed, there are infinitely many solutions to Equation (2.2) of the form:

st = xt + bt, (2.4)

where bt is a rational bubble term which displays the property:

Et[bt+1] = (1 + r)bt, (2.5)

as shown by Diba & Grossman (1988). One of the simplest models for rational bubbles that

periodically collapse which satisfies Equation (2.5) is proposed by Blanchard (1979). This

model has two states. In the first state, the bubble grows exponentially; in the second, the

bubble collapses to a white noise process:

bt+1 =


(1+r)bt

π + εt+1 with prob. π,

εt+1 with prob. 1− π,
(2.6)

where π is the probability of being in the first state and εt ∼ IID(0, σ2
ε). Several other

bubble processes have been proposed in the literature. The procedure we undertake is

robust to more complex bubble models, such as the periodically collapsing bubble of Evans
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(1991), as long as they are rational.

Since the structural parameter r is positive, rational bubbles are in expectation ex-

plosive. On this basis, many researchers have tested for speculative bubbles in agricultural

commodity markets by running right-tailed unit root tests on agricultural commodity prices.

However, such tests are not conclusive. To illustrate this point most simply, suppose that

economic fundamentals follow an autoregressive process of order 1:

xt = φxt−1 + µt, (2.7)

where µt ∼ IID(0, σ2
µ). If this process is explosive, i.e., φ > 1, then the spot price may

display explosive dynamics, even in the absence of bubbles. That is, explosive pricing is a

necessary, but not sufficient, condition for bubbles.

To deal with this shortcoming, some researchers have applied unit root tests to observ-

able variables which serve as proxies for fundamentals, for instance storage costs, alongside

commodity prices. For instance, Gutierrez (2013) constructs a series for the convenience

yield utilizing the difference between the nearby future contract and the settlement price of

the next-to-expire futures price, net of storage costs for the difference in maturity dates.

Specifically the approach adopted by Gutierrez (2013) models convenience yields as

follows:

Ψt = Pt − PFt,T e−(i(t,T )(T−t))/365,

where Ψt is the the convenience yield and Pt, the settlement price of a nearby futures

contract. The second term on the right hand side of the above equation is the settlement

price of the next-to-expire futures contract, net of the cost of storage. This storage cost is

computed as the CBOT daily storage cost multiplied by the number of days between the

expiring contract and the next-to-expire futures contract.

If prices are found to be explosive but fundamentals are not, it follows from Equation

(2.4) that bubbles must be present in the market. The problem with this approach is that

researchers do not know the true model for the fundamentals, xt, and therefore cannot

correctly specify an appropriate proxy variable. As argued by several authors, this mis-
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specification may lead to spurious inference in favor of bubbles. To mitigate this issue, we

follow Pavlidis et al. (2017) and utilize information on investors expectations about economic

fundamentals from the futures market.

Under general conditions of risk neutrality, the log futures rate at time t, for delivery

after n periods, ft,n, is given by agents expectations of the spot price n periods into the

future, st+n:

ft,n = Et[st+n] = Et[xt+n] + Et[bt+n]. (2.8)

From Equations (2.5) and (2.7), Equation (2.8) can be rewritten:

ft,n = φnxt + (1 + r)nbt, (2.9)

and bringing Equation (2.4) forward n periods into the future, the spot rate at time t + n

can be expressed:

st+n = xt+n + bt+n. (2.10)

Assuming that the bubble is still extant, recursive substitution of Equations (2.6) and (2.7)

into Equation (2.10) leads to:

st+n = φnxt + (1 + r)n

πn
bt + εt+n, (2.11)

where εt+n is a combination of two moving average processes, εt+n =
∑n
i=1 φ

n−iµt+i +

(1 + r/π)n−i εt+i. When examining Equations (2.9) and (2.11), it can be seen that the future

spot price (st+n), is greater (in expectation) than the forward rate ft,n. This is due to

rational agents attaching a non-zero weight on the possibility that the bubble bursts at

some future point in time. Consequently the actual growth rate, (1 + r)n/πn, exceeds the

expected growth rate, (1 + r)n. By subtracting Equation (2.9) from Equation (2.11) it

follows that:
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st+n − ft,n =
(
φnxt + (1 + r)n

πn
bt + εt+n

)
− (φnxt + (1 + r)nbt)

= (1 + r)n
( 1
πn
− 1

)
bt + εt+n.

(2.12)

Equation (2.12) shows that the difference between the spot price n periods into the future

and its corresponding futures rate, st+n − ft,n, or equivalently the current spot price minus

the associated n period futures rate, st−ft−n,n, is a linear combination of the rational bubble

and two stationary moving average terms. Thus the series is explosive when a bubble is

ongoing. This suggests an empirical strategy where an agricultural commodity market is

tested by running recursive unit root tests on this series directly. As Equation (2.12) does

not feature any fundamental component, xt, this test has a major advantage over traditional

tests on the spot rate alone by mitigating the potential misspecification of the underlying

fundamentals.

2.3 Data

For our empirical application, we use the monthly futures prices of wheat, corn, soybeans

and oats, traded on the Chicago Mercantile Exchange (CME)3. These commodities have

been widely investigated in the literature as grain markets are believed to have been most

susceptible to the effects of index traders and therefore are of the most concern (Etienne

et al. 2017). Prices for each commodity are available at a monthly frequency over a long time

span, from January 1960 for wheat and corn, and January 1970 for soybeans and oats, until

June 2016. This results in 678 observations for both wheat and corn, and 558 for soybeans

and oats, approximately 56 and 46 years, respectively. This time span is much longer than

that has previously been investigated, and includes the most recent pricing episodes as well

as historic dynamics, and utilizes all available data. Table 2.1 details summary statistics

for the four commodities post-2000, showing the rapid increase in prices which has occurred

since the turn of the century. For instance from 2000 prices increased by a factor of 8 for corn

and oats from their post-2000 lows. All commodities underwent well-known comovement

(Pindyck & Rotemberg 1990) during this period and shared similar dynamics until 2008,

3All data were downloaded utilizing the Quandl database API.
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as shown in Figure 2.1. Each commodity experiences multiple peaks and troughs after this

time.

Obs. Annualized Growth Rate Standard Deviation
Wheat 678 7.87 189.98
Corn 678 8.50 168.15
Soybean 558 7.90 350.71
Oats 558 9.30 91.96

Table 2.1: Summary Statistics for the four globally traded commodity monthly dataset.
Annualized growth rates calculated since 2000, full analysis conducted on entire dataset.

For spot prices of agricultural commodities, we follow previous studies and utilize near

futures prices as a proxy for the spot prices of agricultural commodities. This overcomes

two potential confounding issues which affect these markets. First, many authors have

suggested that spot markets for agricultural commodity contracts are not true spot prices,

due to delayed delivery (Fama & French 1987). Second, it avoids any complications arising

due to the recent phenomenon of non-convergence of futures prices to spot prices (Garcia

et al. 2015). One proposed reason for non-convergence of futures prices to spot prices is the

liquidity causes by underlying market structures which affected the conversion of futures

prices into real grain (Adjemian et al. 2013). As this hampers the information aggregation

function of futures markets, spot prices during this period may not fully reflect the full

information set of market participants. This period of non-convergence occurs during the

period of interest when many commentators suggest bubble like behavior has occurred,

therefore a consistent spot price proxy is required throughout the period. The use of near

futures prices as a proxy for the spot price in agricultural commodity markets is widespread,

for instance Gutierrez (2013), apply it to a similar study. We therefore investigate the time

series characteristics of the CME near futures price series for wheat, corn, soybeans and

oats.

We construct a series of constant maturity (3-month) futures prices for each commodity,

capturing agents expectations about the future spot price. A continuous series is required

for the testing methodology of Phillips et al. (2015a) to be implemented. Due to agricultural

commodity futures contracts having fixed maturities spaced unequally throughout the calen-

dar year (e.g., wheat futures contracts mature in five months; March, May, July, September
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and December), we must interpolate between adjacent contracts to obtain a single continu-

ous time series with constant maturity which captures agents evolving expectations. This is

accomplished by taking the price series for every individual contract (280 separate contracts

have been traded since 1960 in the case of wheat and corn) available and utilizing linear

interpolation4 to generate expectations of prices for months when no contract matures.

For instance, to generate a 3 month futures price for a hypothetical wheat contract ma-

turing in April, agents expectations from the two adjacent contracts are used (i.e., those

maturing in March and May of that calendar year). The prices from each neighboring

contract are taken in January and used to produce a futures price which captures agents

expectations of wheat prices in April. From this a series of spot prices minus agents expec-

tations of that spot price can be generated, and on this we can conduct our analysis. The

three series, st, ft and st − ft−3,3 for each of the four commodities is shown in Figure 2.2.

Close inspection of the first two series reveal similar patterns, exhibiting relative stability

with prices roughly doubling between peaks and troughs over multiple years. Then around

2005 all series begin to experience a rapid increase in prices (more than tripling) to around

2008 followed by a sudden drop, and much higher prices than in the earlier period subse-

quently. This latter period has motivated increased scrutiny into the functioning of these

markets.

2.4 Recursive Unit Root Testing

A variety of unit root tests have been employed in the literature to test a time series for

evidence of explosive behavior. In this Chapter, we adopt the recursive unit root methodol-

ogy proposed by Phillips et al. (2015a) as it has two important features which make it well

suited for our purpose. First, in contrast to the standard augmented Dickey-Fuller (ADF )

(Dickey & Fuller 1979) test and others which allow for a single change in persistence, this

methodology is consistent and displays good power properties in the presence of multiple

bubble episodes. Second, it provides an associated date-stamping strategy which allows ex

post identification of the origin and termination dates of explosive dynamics within a time

4The procedure undertaken here is the same as detailed in Alexander (2012), which details a procedure
using linear interpolation for generating constant maturity futures series in the energy market.
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series.

The strategy of Phillips et al. (2015a) is based on a sequence of standard ADF regression

equations:

∆yt = ar1,r2 + γr1,r2yt−1 +
k∑
i=1

ψir1,r2∆yt−i + εt, (2.13)

where yt denotes a generic time series process, εt
iid∼ N(0, σ2

r1,r2), and r1 and r2 are fractions

of the sample size specifying the start and end points of a sub-sample. The null hypothesis

of interest is non-explosive behavior (either stationarity, I(0) or a unit root, I(1)) in yt,

H0 : γr1,r2 = 0, against the alternative of an explosive process, H1 : γr1,r2 > 0. The

corresponding test statistic is given by:

ADF r2
r1 = γ̂r1,r2/s.e.(γ̂r1,r2). (2.14)

To allow for multiple switches between I(1) and explosive dynamics, Phillips et al. (2015a)

propose a recursive procedure which is based on the estimation of the ADF regression equa-

tion on sub-samples of the available data. In particular, the authors propose estimating the

test statistic given by Equation (2.14) for all possible sub-samples of data, for a given min-

imum window size r0. The maximum of all estimated test statistics, called the Generalized

Supremum ADF (GSADF ) test statistic:

GSADF (r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

ADF r2
r1 , (2.15)

is compared to the right-tailed critical value from its (non-standard) limit distribution under

the null:

sup
r2∈[r0,1],r1∈[0,r2−r0]


1/2
rw

[W (r2)2 −W (r1)2 − rw]−
∫ r2
r1
W (r)dr[W (r2)−W (r1)]

r
1/2
w {rw

∫ r2
r1
W (r)2dr − [

∫ r2
r1
W (r)dr]2}1/2

 , (2.16)

where rw = r2 − r1.

If the null hypothesis of a unit root is rejected, an associated dating strategy can be

implemented to date the start and end of periods of explosive behavior. This strategy is
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based on the following Backward Supremum ADF (BSADF ) statistic:

BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADF r2
r1 . (2.17)

Phillips et al. (2015a) define the origin of the explosive episode as the first instance that the

BSADF test statistic sequence exceeds its critical value:

r̂e = inf
r2∈[r0,1]

{r2 : BSADFr2(r0) > scuβTr2 }, (2.18)

and the termination date as the first observation that the BSADF test statistic sequence

falls below its critical value:

r̂f = inf
r2∈[r0,1]

{r2 : BSADFr2(r0) < scuβTr2 }, (2.19)

where βT is the chosen significance level, and scuβTr2 denotes the 100− βT% critical value.

2.4.1 Wild Bootstrap GSADF Test

Many studies provide evidence that suggests movements in commodity prices display

time-varying volatility. To draw inference in the presence of (potentially) heteroskedastic

errors in Equation (2.13), we adopt a wild bootstrap version of the GSADF test, following

several other studies in the literature (e.g., Etienne et al. (2014), Harvey et al. (2016)). The

wild bootstrap procedure deployed consists of five steps:

1. Impose the null of a unit root process, and fit the ADF regression Equation (2.13) to

the actual data.

2. Save the estimated coefficients, ψ̂i, and the fitted residuals, ε̂t.

3. Generate a new series, y∗, according to the data generating process suggested by the

null hypothesis:

y∗t = y∗t−1 +
k∑
i=1

ψ̂i∆y∗t−i + ε∗t , (2.20)
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where ε∗t is constructed by multiplying ε̂t by a random variable, vt, which follows the

Rademacher distribution:

vt =


+1 with prob. π = 0.5,

−1 with prob. 1− π.
(2.21)

Note that, due to the properties of the Rademacher distribution (i.e., Et[vt] = 0;

Et[vt]2 = 1; Et[v3
t ] = 0; and Et[v4

t ] = 1), any heteroskedasticity or symmetric non-

normality in the fitted residuals, ε̂t, is preserved in ε∗t . The Rademacher distribution

is utilized here as it is a convenient way to produce random draws which maintain

the properties of the fitted residuals, other distributions could have been utilized, for

instance, a draw from a standard normal distribution.

4. Compute the GSADF test statistic for y∗t .

5. Repeat steps three and four B times, where B is the desired number of bootstrap

replications, to obtain the bootstrapped distribution.

6. Compare the GSADF test statistic for the actual data to the 100−βT% critical value

of the computed bootstrapped distribution.

The implementation of the above procedure requires the selection of a minimum window

size, r0, and lag length, k. For the former, we follow Phillips et al. (2015a)5 and follow the

rule which determines optimal window size, r0 = 0.01 + 1.8/
√
T . This yields a minimum

window size of 54 monthly observations for wheat and corn, and 48 observations for soybeans

and oats6. With regards to the lag length, we set k = 2, the maximum lag length, to deal

with the potential presence of serial correlation in the error term due to the overlapping

nature of the data. This k therefore captures the serial correlation potentially induced by

construction as each traded contract overlaps sequential contracts by two months.

5For further technical details see the associated technical supplement (Phillips et al. 2015b).
6For all series this corresponds to approximately 8% of the total available observations.
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2.5 Empirical Results

Our empirical analysis starts with an examination of whether there are explosive sub-

periods in the levels of the spot and futures price series for each of the agricultural commodity

markets7. The first row in Table 2.2 reports standard ADF unit root test statistics for each

commodity, the third the GSADF test statistics. Overall, for wheat, corn and oats the

results are in line with those of previous studies; first, test statistics for the spot and forward

series are almost identical, indicating that in each case the two series display very similar

persistence properties. Second, for spot and futures prices for these three commodities,

the GSADF test rejects the null hypothesis of a unit root in favor of explosive dynamics,

but the ADF fails (by a substantial margin) to do so. This discrepancy between tests

is expected since the standard ADF performs poorly in the presence of exponential price

increases followed by a price collapse, such as the ones displayed in Figure 2.1; while the

GSADF has good power properties. Third, a comparison of the last two rows of the table

reveals that the inference procedure may be important. Although the null hypothesis of

a unit root is rejected by the GSADF test in all cases, the fact that the wild bootstrap

yields substantially larger critical values implies that caution should be taken when drawing

inference based on the assumption of homoskedasticity.

The ADF test statistic for soybeans follows a similar pattern to the other three com-

modities, however the GSADF test statistic for soybeans in columns 7 and 8 does not

exceed the associated 95% critical value, therefore there is little evidence that there were

non-stationary episodes for soybeans. This finding is contrary to the previous results of

Gilbert (2010) and Gutierrez (2013), both of which found evidence of explosiveness, pos-

sibly due to the differences in frequency and sample size used in these studies. Both used

higher frequency data with shorter sample sizes, which may explain the differences in the

time series properties between this study and those.

Having rejected the null of a unit root process in three of the commodities, we can

proceed with the identification of the exact periods of explosive dynamics in the markets.

Figures 2.3 and 2.4 show the series of BSADF test statistics and the associated sequence

7Similar results for the st − ft−3,3 series are found if the logarithm of each series is taken.
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of critical values for the spot and futures prices, respectively. It is evident from these fig-

ures that each series exhibits periods of explosive behavior, defined as any period when the

BSADF test statistic exceeds its critical value sequence. The timing of explosive pricing

periods is heterogeneous, both wheat and corn exhibit explosiveness around the time of

previous food crisis from 1973-1974, a period which commentators have compared to recent

price movements (Headey 2011). The more recent period of concern is also captured here

from 2007-2008, particularly for wheat. The oat price has one marked period of explo-

siveness beginning in the second half of the 1990s, and the BSADF test does not identify

any explosive dynamics since then. The finding of explosive dynamics in spot prices is a

result which has led previous studies to conclude that speculative bubbles exist in agricul-

tural markets. However, as shown in Section 2, in the absence of knowledge of the true

fundamentals process, these explosive dynamics in the price series cannot be interpreted as

conclusive evidence for rational bubbles. To accomplish this, analysis must be carried out

on the difference between spot and futures price series, st − ft−3,3.

The third column for each commodity in Table 2.2 shows the unit root test results for the

st−ft−3,3 series. Both the ADF and GSADF 8 test statistics are now below the 95% critical

values, which suggests that there are no sub-periods of explosive dynamics. Since st and ft

are affected by market fundamentals, whereas by construction the st − ft−3,3 series is not,

the documented rapid price rises and falls of agricultural commodities may be attributed

to fundamentals rather than rational bubbles. There are a number of explanatory factors

proposed in the literature that may offer insight into the recent turbulence in commodity

markets, for instance the impact of increased biofuel production for grains (Ajanovic 2011,

Carter et al. 2016). Overall, the above results complement those studies that find little

evidence of bubbles when examining the relationship between index investors positions and

the price of global agricultural commodities.

8For completeness even though identified as stationary by the GSADF test the BSADF test results for
these series are included in Figure 2.5.
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2.6 Conclusion

Recent global food commodity price spikes have been highly disruptive, with a partic-

ularly negative impact on consumers in developing countries. This has led to questions

about the efficiency of global agricultural markets. Many studies have found that agricul-

tural commodity prices experienced periods of explosive pricing during the past decade and

concluded in favor of speculative bubbles. However, due to the unobservable nature of the

fundamentals driving agricultural commodity prices, their findings may be subject to a joint

hypothesis problem. This arises due to the fact that any rejection of the null hypothesis may

occur due to either the presence of bubbles, or the incorrect specification of the underlying

fundamental process.

In this Chapter, we adopt a recently developed methodology which mitigates the joint

hypothesis problem by using information agents expectations of the future. We apply this

methodology to a panel of four globally traded agriculturally commodity prices over a time

span longer than previously examined in the literature. Our findings suggest that although

the spot and futures price series for wheat, corn and oats exhibit episodes of explosive

behavior over the past few decades, there is no evidence for speculative bubbles. In the case

of soybeans, contrary to previous studies we find no evidence of explosive behavior in the

time period examined. This result is indicative of the importance of correctly accounting

for movements in fundamentals when explaining the evolution of commodity prices.
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Figure 2.3: BSADF test results for spot prices, st.
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Figure 2.4: BSADF test results for futures prices, ft.
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Figure 2.5: BSADF test results on the spot minus 3 month futures price, st − ft−3,3.
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Chapter 3

Decomposing Shocks to Global Wheat Prices:

Evidence from a Structural Bayesian VAR

3.1 Introduction

The High Level Panel of Experts on Food Security and Nutrition (Daviron et al. 2011),

convened by the United Nations in the wake of the recent crisis, detailed the disruptive

impact that food price spikes and the associated increased volatility have had on nutritional

outcomes and food security, particularly in the developing world. Sudden and persistent

movements in the price of agricultural commodity prices, such as those witnessed in the

early 2000s (see Figure 3.1), have led to renewed interest in understanding the drivers behind

commodity price movements. Many studies have since investigated different potential causal

economic factors as key drivers of increased food prices (Headey & Fan 2008, 2010). However,

less well understood is the relative contribution each potential factor has had on global

agricultural commodity prices and how this has changed over time. As policymakers must

choose an appropriate response understanding the relative importance of each proposed

factor is crucial to identifying an appropriate policy response.

In this chapter, we assess the relative contribution to wheat price movements of key

economic factors which have been proposed as driving agricultural commodity prices. Wheat

is a staple crop which has the highest land area devoted to its cultivation worldwide (Janzen

et al. 2014) and provides a significant fraction of calories to consumers with (increasingly)

westernized diets (Shewry & Hey 2015). The impact of large-scale commodity price rises has

had a relatively minor effect on developed country consumers due to the highly manufactured
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Figure 3.1: Global Near Futures Wheat Price (cents/bushel) since 2000.

nature of wheat-based products they consume. However, the impact of these price changes

disrupts the economics of producers worldwide, and can also be felt acutely by consumers

in developing countries who are directly exposed to global commodity price movements. As

well as being an important foodstuff, wheat is an essential input into the farming industry

as animal feed. Therefore, understanding the underlying dynamics of wheat prices is key

to explaining agricultural commodity movements as a whole, and correctly identifying the

appropriate response to avert adverse effects globally.

This chapter contributes to an extensive literature which seeks to investigate an extensive

array of factors which can help to explain recent price dynamics. Causal economic factors

which have been considered by the literature include: i) the influence of non-fundamental

factors, such as rational speculative bubbles or explosive dynamics caused by the sudden

entry of index investors (the so-called ‘Masters Hypothesis’) (Sanders & Irwin 2010, Irwin

& Sanders 2011, Irwin 2013, Gutierrez 2013, Etienne et al. 2014), ii) Changes in global

economic activity caused by macroeconomic shifts, for instance increased demand from
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developing countries such as India and China, iii) Increased comovement with other com-

modities (including oil due to stronger linkages from increased bioethanol usage) (Ajanovic

2011, Tang & Xiong 2012) and iv) Trade shocks (Headey 2011).

Typically these factors are looked at in isolation, and we capture the relative impact

the most widely mentioned of these have had on wheat price movements within a struc-

tural model. Specifically, we adopt a Bayesian Structural Vector Autoregressive approach

to model the structural relationships between the economic factors under investigation. The

SVAR approach has been widely adopted across many different fields of applied macroeco-

nomics since first proposed by Sims (1980). Due to the well-known parameter identification

problem, when constructing a structural VAR model a series of restrictions are required to

ensure that the model is correctly identified to form valid inference from impulse response

functions. However, typical exclusion restrictions may not accurately capture the uncer-

tainties surrounding structural relationships and are therefore potentially unappealing from

a theoretical perspective (Kilian 2015).

More recently, a series of models have been proposed using a part-complete set of iden-

tification restrictions, sign restrictions, which were originally applied to the problem of

disentangling the effect of monetary supply shocks to output (Uhlig 2005). This methodol-

ogy, along with recent updates to the procedure (see Rubio-Ramı́rez et al. (2010, 2014)), has

become a standard tool in the empirical macroeconomics literature. Empirical applications

have included examining; monetary policy (Vargas-Silva 2008, Neri et al. 2017), technology

shocks, (Dedola & Neri 2007) and, most similar to this study, oil markets (e.g., Baumeister

& Peersman (2010), Van Robays (2012), Kilian & Murphy (2012, 2014)).

This sign-restricted approach requires sign restrictions to be imposed on the matrix of

contemporaneous impacts between variables. These restrictions should be based on prior

information or theoretical guidance regarding the expected direction (not magnitude) of the

contemporaneous response. This approach allows prior economic information regarding the

direction of a response to be used for identification. For instance, in a model of supply and

demand a supply shock will tend to increase quantity and decrease price, whereas shocks

to demand will tend to increase both. This information from economic theory relates to

the direction of the impact on prices and quantities and can be used to distinguish between
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shocks to supply and demand due to the differential response.

Until recently this approach has been seen as a neutral way of overcoming the parameter

identification problem. However, in a recent contribution, Baumeister & Hamilton (2015a),

show that this methodology is fundamentally Bayesian (as some prior information is uti-

lized to justify the chosen restrictions), although the implicit uncertainty surrounding the

chosen sign restrictions is not acknowledged. Furthermore, Baumeister & Hamilton (2015a)

demonstrate that the procedure as typically implemented implicitly imposes an informative

Cauchy prior on the model. This informative prior is not recognized even though it can

have a large impacted on estimated coefficients. They note that under standard conditions

in a simple supply and demand market VAR that; ‘even if one has available an infinite

sample of data, any inference about the demand elasticity is coming exclusively from the

prior distribution.’

Additional problems arise with ensuring inference is valid if only prior information con-

cerning sign restrictions is used for identification as this results in a model which is only set

identified (Kilian 2015)In this case models which rely entirely on sign restrictions produce

results which are only bound within a set of possible solutions, and the point estimates for

impulse response functions are not unique. Even in the case where an infinite amount of

data were available to estimate even the simplest models (such as the supply and demand

model discussed previously), no point estimates can be produced (Kilian & Lütkepohl 2017).

This difficulty arises because there are potentially many models which satisfy the chosen

sign restrictions. Without additional information or assumptions each model within the set

is equally plausible and there is nothing which indicates which model is most likely to be

correct.

Baumeister & Hamilton (2015a) propose a Bayesian SVAR approach overcoming this

limitation and which explicitly accounts for the uncertainty arising from the underlying

structural relationships, as well as the limited observed data. There are several benefits to

adopting this methodology; first, compared to alternative approaches, it is explicit in how

prior information is imposed on the impulse response functions and how valid inference is

formed. It therefore overcomes the previously mentioned difficulties that the sign restricted

methods as proposed by Uhlig (2005) may encounter, where informative priors are implicitly
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imposed and their effect is unacknowledged. Second, it provides valid inference even in

the case where a system would traditionally be under-identified, allowing the impact of

structural shocks to be historically decomposed. The impulse response functions arising from

the model are also correctly identified, i.e., they are not only set identified. In a forthcoming

paper, Baumeister & Hamilton (2018), apply a Bayesian SVAR approach similar to that

presented here, to disentangle the relative effects of supply and demand shocks on global oil

prices. This chapter is the first to apply this methodology to global agricultural commodity

prices, with an application to a long series of wheat prices.

We find that the majority of observed dynamics can be explained by wheat market

specific idiosyncratic supply and demand shocks. Although widely discussed, there is little

evidence that increasing demand from developing countries such as India and China are

driving global food prices to unprecedented heights. Similarly, much attention has been

focused on the potential impact of a new class of speculators, commodity index traders,

who have attracted widespread concern that their entry into agricultural markets has led

to increased ‘financialization’ and rapid price rises in global food prices. If financialization

were behind recent movements in agricultural commodity price movements, spillovers from

external commodities would be expected (Tang & Xiong 2012). Within our estimated results

we find no evidence of such spillovers which suggests that this was not a causal factor behind

recent commodity price movements.âĂİ During 2008 shocks to precautionary demand help

to explain that rapid spike that wheat prices witnessed, perhaps as a result of agents utilizing

wheat futures markets to deal with expected reductions in future production.

The rest of this chapter is structured as follows. Section 3.2 provides a summary of

the Bayesian approach to SVAR analysis and the identification strategy of Baumeister &

Hamilton (2015a). Section 3.3 presents an overview of recent literature concerning agricul-

tural commodity markets and the key factors our model wishes to capture. A description

of the data sources utilized is presented in Section 3.4. The following section details how

we combine prior information about the impact of factors which influence wheat prices and

outlines our empirical identification strategy and Section 3.6 presents the empirical results

of the model. A few concluding remarks are offered in the Section 3.7.
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3.2 A Bayesian Approach to SVAR models

To analyze the influence a variety of structural factors have had on global wheat prices

we adopt the standard SVAR functional form. This model captures underlying structural

dynamics in a set of n endogenous structural equations:

Ayt = Bxt−1 + ut, (3.1)

where yt is an (n × 1) vector of variables which are observed, A is an (n × n) matrix of

coefficients capturing their contemporaneous impacts, xt−1 is a (k × 1) vector consisting of

a constant and m lags of yt. We follow Baumeister & Hamilton (2015a) and define ut as an

(n × 1) vector of normally distributed structural shocks with variance given by the matrix

D. D is a diagonal matrix such that all cross-correlations equal 0, given that by definition

structural shocks are uncorrelated, a feature well established in the empirical literature.

The values in the matrix of the contemporaneous impact coefficients, A, and the associ-

ated matrices containing coefficients on the lagged variables,B1, . . . ,Bm, are the parameters

of interest. Once these are estimated full insight into the structural dynamics of the esti-

mated model is available. In the empirical example presented these represent the impact

that individual economic factors have on wheat prices.

In addition to the observed data, prior information exists which should be incorpo-

rated into the model to allow identification and captures expectations about the size of the

coefficients of interest. In this model, prior information includes the expected size of con-

temporaneous impacts between the included variables, i.e., the values within the matrix of

contemporaneous coefficients, A, as well as the lag structure and variance of the structural

shocks. These prior beliefs are represented by probability distribution functions:

p(A,D,B) = p(A)p(D | A)p(B | A,D), (3.2)

where p(A) is the arbitrary prior probability density over the individual values of elements in

the (n×n) matrix of contemporaneous coefficients,A. By specifying this probability density,

prior information can be transparently imposed on the coefficients. This information can
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take many forms, for instance, that specific contemporaneous responses are 0, fall within

certain bounds, or have a nonzero probability of taking any real value. Put simply, larger

values of p(A) are associated with values for A which are more likely a priori.

Standard solutions for solving the parameter identification problem such as exclusion

restrictions would be represented in this framework as a dogmatic prior. As has often been

noted in the literature, exclusion restrictions are rarely theoretically justified and may be

difficult to validate, and such models do not acknowledge any uncertainty surrounding this

imposed information. In comparison, the methodology proposed by Baumeister & Hamilton

(2015a) that we present here explicitly acknowledges the uncertainty arising from any prior

information imposed upon the model as it is given by the prior probability distribution

imposed on parameters of interest.

Prior information which takes the form of sign-restrictions on contemporaneous coeffi-

cients are also compatible with this framework. A positive or negative sign restriction would

be associated with a prior, p(A), with a distribution which places a probability of 0 on the

specified contemporaneous response taking either a negative or positive value, respectively.

Standard sign restricted VARs appear to be more general than traditional VAR models based

on exclusion restrictions. The imposed restrictions can typically be motivated directly by

economic theory, which is usually more straightforward than with exclusion restrictions.

Kilian (2015) notes that this appearance of generality (and therefore credibility) is a mis-

perception. Further, he states that sign restricted VAR models do not nest those based upon

exclusion restrictions; by construction they are less restrictive in some dimensions and more

restrictive in others. Additional difficulties arise when ensuring that inference from such

models is valid. This disadvantage of the sign restriction approach occurs as a potentially

large set of models satisfy the given sign restrictions. This set identified approach leads to

a wide variety of possible conclusions all of which are equally plausible given the observed

data. Without additional identifying restrictions, sign restriction priors are not enough to

identify which model in the set is most probable.

The insight of Baumeister & Hamilton (2015a) is that if prior beliefs about B and D can

be expressed using certain natural conjugate distributions then closed form analytic solutions

exist which allow the formation of Bayesian inference. These natural conjugate priors have a
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functional form which arises naturally if they are informed by previously conducted analyses,

a feature which makes them particularly appealing for empirical application. Specifically,

the distributions of the prior beliefs for the matrices of lagged structural coefficients, B, are

given by conditional Gaussian distributions, bi | A,D ∼ N (mi, diiMi):

p(B | A,D) =
n∏
i=1

p(bi |D,A), (3.3)

and

p(bi |D,A) = 1
(2π)k/2 | diiMi |1/2

exp[−(1/2)(bi −mi)′(diiMi)−1(bi −mi)], (3.4)

where mi and Mi summarize prior beliefs surrounding the lagged coefficients in the ith

structural equation. mi is a vector containing the most likely values of the columns of the

matrices of lagged structural impacts, B, and Mi is a matrix that captures the certainty

which surrounds these prior beliefs with larger values of Mi indicative of less certainty

around the prior beliefs.

For the matrix capturing the variance of the structural disturbances, D, an independent

gamma distribution, Γ(κi, τi), is required for the reciprocal of the variance of each of the i

structural equations:

p(D | A) =
n∏
i=1

p(dii | A), (3.5)

where

p(d−1
ii | A) =


τ
κi
i

Γ(κi)(d−1
ii )κi−1 exp(−τid−1

ii ) for d−1
ii ≥ 0,

0 otherwise.
(3.6)

dii is the element of D appearing in the ith row and ith column. κi and τi are parameters

which capture the prior information surrounding the variances of the structural relation-

ships.1 κi/τi represents the prior expectation of d−1
ii , with a distribution having a variance

1In general terms nothing prevents κi and τi being functions of A, however the resulting posterior
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given by κi/τ
2
i . Larger values of κi and τi are indicative of higher confidence in the prior

beliefs represented by these priors.

Baumeister & Hamilton (2015a) provide a methodology which allows the generation of

draws from the posterior distribution, p(A,D,B | Yt), using Markov Chain Monte Carlo

methods. Specifically, a form of the Metropolis-Hastings algorithm is used to select the next

multi-dimensional sample. Any remaining uncertainty surrounding the parameters given the

information provided by the data, Yt = (y′1,y′2, . . . ,yT )′, will be revealed, providing a poste-

rior distribution for the parameters of interest. In addition, they provide recommendations

for values of κi, τi(A), mi(A) as well as the uncertainty matrix, Mi, which we follow in

our empirical application. Applying this methodology to the global wheat market allows

valid inference to be gained from impulse response functions and the associated historical

decompositions of interest. Before discussing the precise parameterization of the model,

we now review the potential structural factors in agricultural commodity markets and the

mechanism through which they impact wheat prices.

distributions become more analytically complex.
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3.3 Review of Structural Factors

Many different economic factors have been proposed as underlying recent wheat price

dynamics. In the wake of the recent spike increased attention has been focused on the

correct policy response to counteract the negative outcomes of rapid price rises. The model

we adopt attempts to parsimoniously include those factors which are most important and

widely discussed in the literature. The historical contribution that each has had on the

global wheat price can then be decomposed, revealing the relative importance that each has

had to wheat price movements over time.

A similar structural analysis was carried out by Janzen et al. (2014), who identify global

economic activity, external commodity comovement and precautionary demand as critical

structural economic factors that should be included within the model. These economic

factors capture the impact of the key drivers thought to be behind recent agricultural price

movements. The influence of increased demand by India and China will be captured by

global economic activity, potential speculation by external commodity comovement. In

addition a precautionary demand shock captures demand arising from market participants

expectations of future supply and demand conditions - a vital function of the price discovery

process. Finally, wheat market specific supply and demand shocks are captured by the

residual variation left unexplained by other factors. This final factor effectively captures

net supply shocks to the wheat market. In common with many agricultural commodities,

once planted various supply shocks, for instance weather shocks like droughts or excess

precipitation, can reduce wheat supply and cause price rises.

Although the model captures the same four structural shocks as Janzen et al. (2014),

we utilize a modified set of variables which extend over a longer timespan. Additionally, a

methodology which does not rely on the change of volatility of wheat prices for identification

purposes is adopted. The remainder of this section reviews each of the shocks that the model

captures and the mechanism through which they impact wheat prices.
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3.3.1 Global Economic Activity

Many commentators have suggested that global economic activity may have impacted

on agricultural commodity prices. Increased demand from developing economies due to

their economic growth is often suggested to have pushed up global demand for agricultural

products and led to higher prices. The transmission mechanism for this movement comes

from the following directions. First, economic growth drives up input prices, such as en-

ergy and other raw materials, leading to higher costs of production and transportation for

agricultural commodities (Janzen et al. 2014).

Second, the transmission mechanism most commonly discussed, is that increases in real

economic activity increase global incomes which raises demand for basic foodstuffs, particu-

larly in developing countries (Rosegrant 2008). A further, higher order, effect of increasing

wages is changing dietary patterns towards a more ‘westernized’ diet which has a higher

proportion of meat in it (Shewry & Hey 2015). As global meat consumption increases,

primary crops, such as wheat, are shifted from human consumption into animal feed. For

an equivalent calorific portion of meat, much more wheat is used, resulting in an increased

overall demand for wheat and other commodities used as feed. In the long run there is some

evidence that this trend will be reversed and that consumers who reach increasingly high

levels of income begin to reduce their meat consumption due to health or environmental

concerns (see Vranken et al. (2014) for a discussion of this relationship).

There is relatively sparse evidence on the actual influence that global economic activity

has had on agricultural commodity pricing. McPhail et al. (2012) find that global demand

is a significant contributing factor to corn price variability, peaking at 16% after six months

in variance decompositions. However, Headey & Fan (2008) find little evidence that global

demand based factors have pushed up food prices. A further difficulty with this proposed

causal factor is that both India and China are largely self-sufficient in wheat consumption

(Timmer 2008), so the mechanism for their impact on global wheat prices cannot be through

increased upward pressure on prices caused by increasing imports. Although this does not

rule out increasing demand from sub-Saharan Africa or the changes in dietary patterns in

these countries having an effect on wheat prices.
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3.3.2 External Commodity Comovement

Critics of agricultural commodity market speculation contend that agents who are not

concerned solely with price discovery (the price which is justified by underlying funda-

mentals) are disrupting the correct functioning of markets. Over recent years, increasing

numbers of traders have entered agricultural commodity markets, leading to a process of

‘financialization’ (Cheng & Xiong 2014), mainly in the form of institutional index investors

wanting to gain exposure to a basket of agricultural commodities. Therefore, a large amount

of attention has been paid to the influence of Commodity Index Traders (CITs), and any

impact they have had on wheat prices, as well as agricultural commodity markets in general.

The potential for these CITs to have unduly increased prices has led to increased scrutiny

of food markets and led to several proposed policy responses.

Excess comovement amongst agricultural commodities is a well-known phenomenon (see,

for instance, the seminal paper of Pindyck & Rotemberg (1990)). A more recent phenomenon

is the increased comovement with external commodities, such as industrial commodities like

oil. Tang & Xiong (2012) propose that this is a mechanism by which the impact of CITs

can be captured, as the correlation between agricultural commodities and other external

commodities increased as CITs became established. The effect found for those included

in agricultural indices, the instrument investors use to expose themselves to agricultural

commodity markets, was larger than for those not listed, similar to the well-known equity

index inclusion effect (Barberis et al. 2005).

This external commodity comovement shock captures the extent to which wheat prices

comove with an external commodity. To capture this shock a global oil price series (see

Section 3.4 for precise details) is included as one of the variables within the SVAR. This

variable captures excess comovement which cannot be explained by the other economic

factors, such as demand shocks from changes in global economic activity. If there is evidence

of increased comovement with an external non-agricultural commodity, it would suggest that

CITs had impacted upon wheat prices.
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3.3.3 Precautionary Demand

Although speculation is typically seen as having a negative influence on agricultural com-

modity markets, with a destabilizing effect on commodity prices, it has an important role to

play in price determination. Storable agricultural commodities allow for investments in fu-

tures markets which can reduce the risk for participants and reduce volatility by minimizing

the impact that fundamental shocks have over time. In agricultural commodities, these fun-

damental shocks are normally shocks to supply from weather and other related phenomena

which reduce yields. Including a factor which captures the precautionary demand motive

allows for the disentanglement of demand shocks for purely speculative purposes (which are

potentially destabilizing) and investments in anticipation of future fundamental conditions

which will drive food prices in the future.

The mechanism that standard models of storable commodities in competitive markets

allow market participants expectations of future supply and demand conditions to influence

prices today is through stockholding behavior (Janzen et al. 2014). If agents expect that

discounted future prices are above the current cash price they increase the size of their

holding. Conversely, if discounted future prices are below the current price inventories are

sold. Buying and selling based on expected future market conditions lead to a source of

demand that is entirely focused on the future, hence ‘precautionary demand.’

The most straightforward way of capturing precautionary demand would be through

the current holdings of wheat. However, this data is not available at either the scale (i.e.,

global wheat stocks) or the frequency (data is unavailable at a monthly level) to be suitable

for use in this analysis. Instead, we rely on the well known link between futures spreads

and inventories known as the ‘Working Curve’ (Working 1933), which relies on the obser-

vation that if futures prices at time t for delivery in n periods is an unbiased estimator

of the spot price t + n then the spread is positively related to inventories. This ‘Working

Curve’ relationship allows for a variable to be constructed which can distinguish shocks to

precautionary demand.
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3.3.4 Net Supply

The final shock the model captures is wheat market specific supply factors. Wheat,

like most agricultural commodities, has well defined growing seasons so that during any

particular crop year supply is effectively perfectly inelastic. Any production shocks will

manifest themselves as increases in wheat prices due to the inability of farmers to quickly

react and produce additional crop. In the empirical example which follows production

shocks are modeled as reductions in net supply, which lead to higher prices. The majority

of wheat production is based in a few specific regions of the world such that local weather

variations can have an outsized impact on global commodity prices. Changing weather

patterns have meant that yield increases have stalled in major producing countries such as

Australia (Hochman et al. 2017), and are likely to continue to be impacted into the future.

During the period before and immediately after 2008 there was a sequence of noteworthy

events which are likely to have impacted global wheat supply. Australia, having had static

yields for the best part of two decades began the 2007 planting season experiencing the

second year of severe drought. Subsequently, there was a reduction in wheat yields of 57%

for 2007, even though planted area fell by just 5% (Australian Bureau of Statistics 2008).

Similarly, in Russia, another major wheat exporter, production fell in 2010 due to drought,

leading to the imposition of an export ban. This resulted in a reduction of wheat exports

from 18.6 to 4 million metrics tons from 2009/10 to 2010/11 (Vocke 2012). These primarily

weather based factors, which are intrinsic to the volatility of the global wheat market, are

captured within the idiosyncratic net supply shock. This shock consists of the residual

variation which is not explained by the other included economic factors and is captured by

the structural shock associated with wheat prices, the final included variable.
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3.4 Data

As we wish to identify the impacts of four identified structural shocks, the model requires

a system of four simultaneous equations in the form of Equation 3.1, and four observed

variables. As previously mentioned we wish to identify the impact of the three structural

shocks from economic activity, comovement and precautionary demand. The final variable,

wheat prices, captures residual variation in the form of idiosyncratic net supply shocks.

As the shocks to real economic activity which we wish to capture are principally focused

on developing economies, any variable used to capture these shocks must incorporate global

changes in real economic activity, rather than any proxy measure based on a particular region

(e.g., macroeconomic conditions in the United States). Due to the inappropriateness of using

such variables, and the lack of any reliable direct measure of global GDP, proxy measures

are required. The Index of Real Economic Activity as proposed in Kilian (2009) is utilized

for the analysis. This index measure is based upon the empirically established link between

industrial production and ocean-going freight rates. As international shipping prices react to

underlying changes in global economic conditions, they are not biased to any one particular

region (or even direction of trade). This measure has been successfully used in several studies

looking primarily at the oil market (e.g., Baumeister & Kilian (2012)). For a discussion of the

benefits of this measure, particularly for modeling commodity market demand, see Kilian &

Zhou (2018), which concludes that the Index of Real Economic Activity is the most suitable

for this purpose when compared to similar measures which are based on steel production

and other related metrics.

If fears of ‘financialization’ are correct, wheat prices will have been increasingly driven

by prices of non-agricultural commodities over time. As Tang & Xiong (2012) show, if this

hypothesis is correct, prices of food crops should increasingly correlate and comove with oil

prices towards the end of the sample period under investigation. To capture excess external

commodity comovement the oil price for West Texas Intermediate (WTI) is included as

one of the variables. This is collected from the Federal Reserve Economic Data (FRED)

database and deflated by the U.S. consumer price index, this series has been widely used

(see, for example, Baumeister & Hamilton (2018)).
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To capture market participants incentives to hold physical inventories of wheat due

to precautionary demand we must make use of a proxy due to the lack of suitable direct

measures. The proxy measure is the spread between the fifth and nearby futures contracts

from the Chicago Board of Trade (CBOT). The fifth futures contract is the contract that has

the maturity date which has the fifth smallest time to maturity out of all traded contracts (as

opposed to the nearby contract which is the closest to maturity). This is based on the well-

known ‘Working Curve’ (Working 1933) which captures the robust relationship between

spreads and storage. This relationship has been recently demonstrated as still being an

accurate characterization of wheat market structure (Joseph et al. 2016). It captures the

incentive that market participants have to hold onto physical inventories until future supply

enters as new crops are harvested. The wheat market spread captures shocks to expectations

about wheat market supply and demand conditions in a future cropping period.

For the final variable of interest, we include the CBOT near futures wheat price. As

is typical for analysis of agricultural commodity market price series, the nearby futures

price is used as a proxy for spot prices due to particular issues with spot price analysis.

Firstly, there has been increased non-convergence between futures prices at expiration and

the cash price during the period of most interest (Garcia et al. 2015). To avoid potential

complications arising from the use of cash prices we follow other analyses (e.g., Gutierrez

(2013)) and utilize the near futures price series. This final variable captures any remaining

variation not captured by the previous three shocks and therefore represents idiosyncratic

net supply shocks.

The data are collected at a monthly frequency beginning in January 1978, the first date

at which all data are available, until December 2014, leading to a total of 433 monthly

observations for each variable. This time span is sufficiently long enough to capture recent

changes in the underlying structural relationships between variables, especially the period

leading up to the crisis in 2008. Both oil and wheat price series enter as the model as first

(log) differences.
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3.5 Empirical Strategy

3.5.1 Model Description

We adopt a similar structural framework to Janzen et al. (2014) with one key modi-

fication: we allow shocks to the external commodity variable to impact global economic

activity. This allows us to analyse the same structural relationships and shocks, whilst not

constraining shocks to the external commodity to having no effect real economic activity.

This alteration is made due to using oil as an external factor, of which there is an extensive

literature which identify the size of the effect that oil price supply and demand shocks have

on the real economic activity (see for instance Kilian (2009), Baumeister & Hamilton (2018).

Any external commodity can be expected to impact on global real economic activity when

subject to unanticipated shocks. Figure 3.2 depicts the underlying structural dynamics that

we wish to capture, with the additional inclusion of external commodity market to real

economic activity spillovers marked in red.

Net Supply Precautionary
Demand Comovement

Global
Economic
Activity

Spot Price Futures
Market Spread

External
Market Price

Economic
Activity
Measure

Figure 3.2: Diagrammatic representation of how unanticipated structural shocks (top row)
are expected to impact on observed variables included in structural model (bottom row).
Additional transmission mechanism from oil to real economic activity is highlighted in red.
Adapted from the US agricultural department report of Janzen et al. (2014).

We now apply the methodology outlined in Section 3.2 to the global wheat market.

We implement a parsimonious four variable structure. The four monthly variables are
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represented in the in the vector yt: (i) real economic activity, rea; (ii) the real price of the

external commodity, ext; (iii) the spread between the fifth futures contract and the near for

wheat, spr; and (iv) the near price of wheat futures, pri. The system therefore consists of

a system of four reduced form equations:

yreat = α11y
rea
t + α12y

ext
t + α13y

spr
t + α14y

pri
t + β′xt−1 + ureat (3.7)

yextt = α21y
rea
t + α22y

ext
t + α23y

spr
t + α24y

pri
t + β′xt−1 + uextt (3.8)

ysprt = α31y
rea
t + α32y

ext
t + α33y

spr
t + α34y

pri
t + β′xt−1 + usprt (3.9)

yprit = α41y
rea
t + α42y

ext
t + α43y

spr
t + α44y

pri
t + β′xt−1 + uprit (3.10)

Which can be written in the familiar structural system:

Ayt = Bxt−1 + ut (3.11)

where xt−1 = (y′t−1,y
′
t−2, . . . ,y

′
t−m, 1)′ and ut is a vector of the four structural shocks

(ureat ,uextt ,usprt ,uprit ). The number of lags included in the system, m, is set as 3 months for

comparability with similar analyses. Other studies have used similar lag specifications, e.g.,

Janzen et al. (2014) utilize m = 3, Baumeister & Hamilton (2018) utilize m = 4, with m = 4

for this study the results are qualitatively the same. As the logarithm of the price series enter

the structural model elements in the matrix of contemporaneous coefficients, A (denoted

aij for the element in the ith row and jth column), can be interpreted as elasticities.

3.5.2 Model Parameters

Many researchers will have strong prior beliefs about several parameters in the system

characterized by Equations (3.7)-(3.10) and typically will assume values when conducting

analysis. We first normalize the elements in the matrix of contemporaneous coefficients, A,

by setting each element in the diagonal equal to 1, capturing the relative effects of structural

shocks to each of the observed variables. This normalization explicitly results in all shocks

producing increases in wheat prices, meaning that a net supply shock (one which impacts
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the wheat price variable) are, by construction, restrictions in the supply of wheat.

Following previous studies such as Janzen et al. (2014), which utilize ordering restric-

tions or exclusion restrictions in their identification strategy, we also set several elements of

A equal to 0. Instead of forming an exclusion restriction, within this Bayesian framework

this is explicitly representative of a strong prior belief that there is no short-run contem-

poraneous effect of certain variables upon each other. The short run impact here is within

the observable frequency of the data, in this case a contemporaneous response is one which

occurs within a single month. For the wheat market model the upper right quadrant is set

equal to 0, corresponding to a strong prior belief that neither precautionary demand shocks

or wheat market specific supply and demand shocks have any observable short-run impact

upon either real economic activity or global oil prices. This has the additional benefit of

reducing the parameter space that must be estimated by the Metropolis-Hasting Random

Walk algorithm. The remaining elements of A that we do not have dogmatic prior beliefs

about (aij) form our parameters of interest:

A =



1 a12 0 0

a21 1 0 0

a31 a32 1 a34

a41 a42 a43 1


(3.12)

We represent prior information around each of the elements of A using a Student t

distribution, with mode ca, scale σa, and νa degrees of freedom. The magnitude of oil price

shock impacts on real economic activity (α12) is expected to be small, due to low ratio of oil

expenditures to total GDP (Hamilton 2013). We follow Baumeister & Hamilton (2018) and

represent this with a negatively truncated Student t prior distribution with mode −0.05,

scale parameter σ = 0.1 and 3 degrees of freedom.

Although there has been a large body of work looking at the impacts of a wide variety

of causes behind the movements in wheat prices, there is surprisingly little consensus on the

quantitative magnitude of these impacts. This makes the specification of the priors in the

matrix of contemporaneous coefficients more difficult. For instance, a large body of work

has investigated the impact of oil prices on wheat which should influence our choice of prior
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capturing the effect of external commodity comovement on wheat (a42). However, very few

studies report elasticities which we can be used to guide the choice of a prior distribution.

Using annual data, Baffes & Dennis (2013), find statistically significant estimates of the

elasticity of wheat prices with respect to oil prices ranging from 0.22 to 0.28. In a more

recent study Fernandez-Perez et al. (2016) find an effect of 0.0795, however when they

try and find the difference between high oil price regimes, and low ones, the effects are

statistically insignificant. Similarly, the income elasticity for international wheat prices has

been estimated as -0.14 and -0.12, albeit without statistical significance, by Baffes & Dennis

(2013), 0.001 by Ai et al. (2006) and also insignificantly estimated as 0.03 by Frankel &

Rose (2010).

Therefore, for all of the other potential contemporaneous effects, for which there is

apparently very little prior information available in the literature, we adopt a neutral view

on the contemporaneous impacts between the variables. We utilize prior distributions which

capture our reasonable prior belief that as these coefficients capture elasticities; they should

be relatively small and centered at 0, we represent these prior beliefs with t distributions

with mode 0, scale parameter σ = 0.3 and 2 degrees of freedom. Table 3.1 details the

specification of each element in A which is used for the rest of our empirical investigation.

These priors have the standard characteristics of a t distribution; they have a finite mean,

infinite variance and the majority of the probability mass is focused around 0. Each column

details the specified mode, ca, the standard deviation, σa, the degrees of freedom , νa. The

final column details whether the t distribution is truncated such that its values are negative,

(-), positive (+) or has no truncation ( ). Each of the prior distributions are represented as

solid red lines in Figure 3.3.

For priors for the coefficients capturing the impact of lagged values, bi | A,D ∼

N (mi, diiMi) we use the specification of Baumeister & Hamilton (2015a), who implement

a prior adapting the well known Minnesota prior of Doan et al. (1984) with a modification

of the specification proposed by Sims & Zha (1998). Effectively our prior expectation is

that each of the variables follows a random walk process, achieved by setting the elements

of mi corresponding to the first lag equal to the value of the ith row of A and all other

elements to 0. This prior expectation can be justified on the basis that if markets are (at
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ca σa νa Sign Restriction

a12 -0.05 0.1 3 (-)
a21 0.0 0.3 2 ()
a31 0.0 0.3 2 ( )
a32 0.0 0.3 2 ( )
a34 0.0 0.3 2 ( )
a41 0.0 0.3 2 ( )
a42 0.2 0.3 2 ( )
a43 0.0 0.3 2 ( )

Note: for each variable we specify a prior mode, ca, variance, σa, degrees of freedom in the Student t
distribution, νa and whether the distribution is truncated to be positive (+), negative (-) or no sign restriction
is imposed ( ).

Table 3.1: Specification of prior distributions for unknown elements in A

least weakly) efficient, then no other additional factor can help predict future movements,

leading to variables that follow a random walk process. The diagonal matrix which captures

the variance, Mi, has progressively smaller values applied to elements corresponding to lags

of a higher order. The choice of the value of τi is dependent upon the scale of the data, and

particularly the prior mode of p(A). This captures the well known stylized fact that the

time series properties of commodities exhibit a great deal of persistence (Deaton & Laroque

1992).

For the final parameters required for implementation of the Metropolis-Hastings ran-

dom walk we follow the recommendations of Baumeister & Hamilton (2015a,b) and call on

standardized values. We set λ0, which captures the overall confidence in the prior equal to

0.2. λ1 captures the confidence on lags of higher order than 1, represents how quickly our

expectation that very distant lags will no longer have an effect on the current observation

(i.e., the rate at which the prior for these lagged coefficients tends towards 0 as the lag order

increases). For reference, setting λ1 = 0, would mean giving all m lags in the model an

equal weighting. Finally, we set λ3 = 100 and make the prior on the constant term in the

four structural equations irrelevant.
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3.6 Empirical Results

We now turn to the results of the empirical application of the model. All results are

generated using 200000 draws, with a burn-in sample of the first half of the draws, fol-

lowing the derivation of the random walk Metropolis-Hastings algorithm to generate draws

from p(A | Yt) presented in Baumeister & Hamilton (2015a). One beneficial aspect of

this Bayesian implementation of SVAR analysis is that graphical representations of the esti-

mated coefficients are available, and demonstrate to what extent parameters are being driven

by the imposed prior distributions. Posterior distributions for the eight contemporaneous

coefficients are plotted as solid blue histograms in Figure 3.3, with prior distributions repre-

sented as solid red curves. For seven of the eight parameters of interest the data are highly

informative (as evidenced by relatively tight posterior distributions) but relatively uninfor-

mative about the impact of wheat prices on wheat spreads (a34). Figure 3.3 demonstrates

that our prior beliefs about the coefficients can be revised substantially in this context and

coefficients (and therefore the associated IRFs and historical decompositions) are not being

driven by the imposed prior distributions. After the SVAR has been estimated, simulations

are conducted to generate valid impulse response functions and historical decompositions

from the fitted lag structure.

Figure 3.4 plots impulse-response functions. Median values from the posterior distribu-

tion are plotted as solid lines for each time horizon. Shaded regions represent 95% posterior

credibility regions which include the uncertainty generated from having access to only a

limited set of data and that arising from underlying uncertainty about the true structural

model. Each subplot summarizes the response of each variable to one of the four shocks and

traces the response path out over 20 months. Due to the nature of the normalization used

a net supply shock causes wheat prices to rise, and is therefore indicative of a reduction in

the overall supply of wheat. This captures the empirical fact that shocks to wheat supply

are reductions in supply, and therefore tend to increase the price of wheat. These graphs

allow us to ascertain what the response of each variable is to each shock and providing a

check on the validity of the utilized prior, indicated by the response to shocks occurring in

the correct direction.
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Figure 3.3: Prior and Posterior Distributions of elements of A

The final row of the panel presents the response of wheat prices to shocks to global

economic activity, external commodity price (comovement), precautionary demand and net

supply. Contrary to many expectations there is a relatively muted response to each of the

first three shocks and a highly persistent response to wheat net supply shocks. Shocks

to global economic activity initially cause wheat prices to rise marginally; however, they

quickly return to baseline levels. This suggests that the principal factor behind the majority

of observed wheat dynamics during our sample period, which includes the rapid rise up to

2008, are wheat market specific, idiosyncratic shocks. Historical decompositions allow us to

examine whether there have been any periods when any of the factors became more or less

important in wheat price dynamics.

Figure 3.5 decomposes wheat price movements into contributions by different structural
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shocks from 1983 until 2014. Red dashed lines in the panel denote the realized deviation

of wheat price from its mean over the entire sample.2 The solid blue line in each subplot

is the calculated impact of the real economic activity, comovement, precautionary demand

and net supply shocks, respectively. 95% posterior credibility regions are represented by the

shaded areas - Baumeister & Hamilton (2015b) note that these are rarely presented in the

partially-identified VAR literature - giving additional insight into the impact and importance

of each factor. The vast majority of wheat price dynamics are explained as shocks to net

supply, with neither real economic activity or external commodity comovement driving price

movements. This is particularly evident during the 2008 price rise where neither of these

two factors appears to be playing a role in driving prices higher. However, there is some

evidence from the third subplot that precautionary demand shocks may have contributed

to the rapid price rise seen during this period. The majority of historical price movements

over the past 30 years have been driven by idiosyncratic wheat market specific supply and

demand factors.

Average contributions from individual shocks are computed using variance decomposi-

tions. Table 3.2 presents the fraction of the mean-squared error (MSE) of a 12 month ahead

forecast that shocks to real economic activity, the external commodity price, precautionary

demand and net supply contribute to each of the four observed variables. 95% credibility

intervals are reported below. The fourth row presents the results for wheat prices. 72% of

the variance of wheat prices in our sample period is explained by net supply shocks, and

the majority of the remaining variation is contributed by shocks to precautionary demand.

These results are qualitatively similar to the findings of other studies. For instance, variance

decompositions during a forecasting exercise conducted by Delle Chiaie et al. (2017) also

find that 72% of wheat price variability is idiosyncratic. McPhail et al. (2012) find 64%

of variability for corn market prices after six months is explained by corn market specific

shocks. Both real economic activity and excess commodity comovement are significantly

less important in the variability of wheat prices, explaining 5% and 2% respectively. This

second result suggests that external factors were not driving prices. This is especially im-

portant given the widely held fear that ‘financialization’ had led to speculation on the part

2Appendix 3.8 presents equivalent diagrams decomposing the remaining observed variables.
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of external commodity index funds which drove prices higher. If such activity were driving

global wheat prices, it would be expected that a larger portion of wheat price variability

would be explained by shocks to the external commodity price.

Although not the focus of this chapter, results are also reported for the decompositions

of real economic activity, the external commodity and the wheat price spread. The decom-

position of the external commodity, in this application oil prices, are of interest as there is

a large literature devoted to the deconstruction of shocks that impact world oil prices. Of

particular note is the relatively small portion of the WTI oil price that appears to be driven

by shocks to global economic activity, seen as demand shocks, which within this model ex-

plain just 5% of the variability of oil price, suggesting factors other than heightened demand

from real economic activity drive oil prices.

This result is contrary to previous evidence suggesting that shocks to global economic

activity drive real oil prices (see for instance, Kilian (2009)). Specifically, the period around

2003, which Kilian (2009), ascribe oil price rises as a response to unanticipated global de-

mand shocks, does not occur significantly within Figure 3.7, suggestive that alternative

explanations may be behind such price changes, for instance oil supply, which is not cap-

tured by this model. Additionally, contrary to previous findings where real economic ac-

tivity shocks result in large, significant and long-lasting effects on oil prices, the response

within this model is muted and does not persist. This result supports recent evidence from

Baumeister & Hamilton (2018), which uses a similar Bayesian SVAR as that used here and

find qualitiatively similar result: shocks to demand appearing to be relatively less important

than shocks to supply.

Tables 3.3 and 3.4 present variance decompositions for 6 month and 18 month horizons,

respectively. These results allow further examination into the relative importance of the

investigated structural shocks to wheat prices and whether these relationships are robust

over different horizons. We can see that the estimated contributions made by each of

the variables are relatively stable over time. Examining the fourth row in Tables 3.2 - 3.4,

shows that there is some variation, for instance, shocks to global economic activity appear to

strengthen marginally over time. However, all of the results lie within overlapping credibility

intervals indicating that the variance contributed by each shock is the same at different
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horizons.

Overall the results from the model estimated demonstrate that the majority of wheat

market price movements during the recent past can be explained by supply and demand

factors specific to the wheat market. There is little evidence that two factors that were

subject to a great deal of speculation, increasing demand from developing economies and

speculation by commodity index traders entering markets, have had any notable impact on

wheat prices over recent times. The impacts of global economic activity, external commodity

comovement and precautionary demand shocks are dwarfed by the impact that this factor

has - although during 2008 there is some evidence that shocks to precautionary demand

may have resulted in wheat prices reaching their crisis levels.
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3.7 Conclusion

In this chapter, we present an evaluation of the relative magnitude of the impact of the

most widely discussed economic factors which drive global wheat price dynamics. To do

so, we construct a structural model including four of the most important economic factors;

global economic activity, speculation pressures through external commodity comovement,

precautionary demand and net supply shocks. We utilize a recently developed Bayesian

structural econometric model to provide valid inference. We apply this model to a long

dataset which encompasses the recent volatile price movements leading up to 2008 and the

subsequent period of raised prices and higher volatility.

Forming inference from structural models is impossible without imposing some prior

information onto the model, which we may not know with any certainty. This chapter is

the first to our knowledge to implement a Bayesian SVAR model with incomplete prior

information and apply it to agricultural commodity markets. This methodology has two

key advantages; first, any prior information which is informative to our results has been

explicitly acknowledged, and the uncertainty surrounding such information accounted for,

second, we can form valid inference from this scenario which is traditionally seen as under-

identified. For our application to agricultural markets, this strategy allows more insight to

be gained into the relative impact that economic factors have had on prices, in a transparent

fashion.

We find that the majority of wheat price movements over the past three decades can be

explained by wheat market specific net supply shocks. During 2008, a period of particular

concern, there is some evidence that precautionary demand shocks may have contributed to

wheat price rises, perhaps as a result of agents utilization of the futures markets to deal with

expected future supply tightness. Although widely discussed, given that shocks to global

real economic activity appear to have minimal contributions to global food price rises, there

is little evidence that increasing demand from developing countries such as India and China

are driving global food prices to unprecedented heights. Similarly, much attention has been

focused on the potential impact of a new class of speculators, commodity index traders,

who have attracted widespread concern that their entry into agricultural markets has led to

57



increased ‘financialization’ and rapid price rises in global food prices. The spillovers from an

external commodity market which would indicate such are not present within our estimated

results.

3.8 Appendix A

This appendix contains the historical decompositions of the other three variables con-

tained within the system, global real economic activity, external commodity price and wheat

market spread.
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Figure 3.5: Actual changes in wheat prices (red dashed lines) and historical contribution of
separate structural shocks with 95% posterior credibility regions (blue and shaded).
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Figure 3.6: Actual changes in global real economic activity (red dashed lines) and historical
contribution of separate structural shocks with 95% posterior credibility regions (blue and
shaded).
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Figure 3.7: Actual changes in the WTI oil price (red dashed lines) and historical contribution
of separate structural shocks with 95% posterior credibility regions (blue and shaded).
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Figure 3.8: Actual changes in wheat futures market spreads (red dashed lines) and historical
contribution of separate structural shocks with 95% posterior credibility regions (blue and
shaded).
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Chapter 4

Forecasting Global Wheat Prices

4.1 Introduction

Given the negative social impact that rapid changes in agricultural commodities have,

predicting future movements of such price series is essential. Given the long lead times

associated with production decisions and realized prices, accurate forecasts are vitally im-

portant to inform both producers and economic policies. There has been a large literature

examining the performance of futures prices at predicting spot prices (see, for example,

Fama & French (1987), Reichsfeld & Roache (2011), Ahumada & Cornejo (2016b)), and we

contribute to this literature and extend it by examining the comparative performance of

models based on futures prices and those of more complex dynamic models.

Given the importance of food prices to general welfare, forecasting agricultural com-

modities has been a topic of interest since the earliest formal attempts at forecasting (see,

for example, the early forecasts of Working (1927)). Many of the initial analyses of the per-

formance of futures markets were made on agricultural commodity markets, as these were

some of the first to have these traded. More recently analysis has focussed on the ability of

futures markets to accurately forecast agricultural commodity markets compared to other

methodologies, with mixed results Fama & French (1987). This has led to another large

literature which examines the predictive content of futures prices in agricultural commodity

markets (see for example, Just & Rausser (1981), Tomek (1997)). This analysis investigates

the preditive power or forecasts based not only on futures prices themselves but a variety

of other forecasts derived from them, such as spread (Alquist et al. 2013).

In this chapter we conduct a pseudo out-of-sample forecasting exercise (Stock & Watson
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2003), with the evaluation period of 1990M1:2016M12. The forecasting evaluation evaluates

the performance of models which are fitted on an initial training set and evaluated on ob-

servations which are held back from the model fitting. Conducting the forecast evaluation

in this way ensures that models are only using current and past observations of variables

to form forecasts, as would be done by practitioners forming forecasts of the future path of

commodity prices. This hold out sample encompasses both the initial period of relative sta-

bility throughout the 1990s as well as subsequent volatile price movements. The target series

considered include both the nominal and real price of wheat. We present the performance

of a variety of parsimonious econometric models, including futures price performance, fol-

lowing Alquist et al. (2013) who examine the oil market. Additionally we present the results

for Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS), two recently

developed dynamic models which allow for changes in both model variables and parameter

estimates (Koop & Korobilis 2012).

Our forecasting exercise yields two key findings: first, parsimonious econometric models

do not perform well at forecasting wheat prices during the sample period under investigation

when compared to a benchmark of a random walk. Second, dynamic models which capture

the volatile nature of wheat prices perform very well, with DMA in particular providing

the best forecast model, exceeding the performance of the benchmark at all horizons under

consideration. DMA is also the only model able to consistently predict the direction of the

future price change at all horizons, with most other forecast strategies performing no better

than random chance.

Additionally, DMA analysis also reveals there is no single variable that leads to per-

formance that is superior to the no-change forecast, and gives insight into the relative im-

portance of the included variables at predicting future wheat prices. Consistently with the

results of the previous chapter, there is no evidence that real economic activity (a proxy for

increased demand from developing economies) has been driving food prices higher. However,

during the rapid increase of wheat prices, grain prices are increasingly likely to be included

in predictive models, suggesting that comovement has increased, at least during periods of

heightened activity in the wheat market.

The rest of this chapter is structured as follows. Section 4.2 discusses the data used
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and variables included in the forecasting exercises. An overview of the various testing

methodologies and how they are to be applied is presented in Section 4.3. The following

section examines the forecasting power of each of the proposed forecasting models, and

examines the number of variables dynamic models select to include at each point in time, and

the selected drivers of agricultural commodity price movements over the past two decades.

A few concluding remarks are offered in Section 4.5.

4.2 Data

4.2.1 Correct Specification of Futures Prices

It is important that the futures price series which are used to compute their predictive

power are correctly specified. This is so because misspecification could lead to a bias due

to inclusion of information which was not available to market participants at the time they

were forming expectations about the future. The empirical analysis presented here is based

on monthly prices of wheat futures traded on CME (Chicago Mercantile Exchange) from the

data provider Quandl. Near futures prices obtained from the wheat futures (W1) contract

continuous series is used as a proxy for wheat spot prices. Therefore we restrict our analysis

to forecasts with a horizon of at least h = 3 months. Contracts are standardized at 5000

bushels (just over 136 metric tons), of a specified grade. Computing the correct futures price

for wheat is more difficult in comparison to other commodities (e.g., crude oil) as wheat

contracts are delivered non-sequentially thoughout the year (compared to oil contracts which

mature every calendar month). Delivery dates for wheat contracts are March, May, July,

September and December (contracts denominated H, K, N, U and Z, respectively). To create

a regularly spaced futures price series, we take the prices of all futures contracts traded in a

given month and linearly interpolate between the traded horizons to construct any desired h-

month ahead contract. This procedure is undertaken as wheat futures with fixed maturities

are not traded at all times throughout the year, and due to the irregularly spaced contracts

maturities, missing contract prices must be created. The approach taken mitigates the

previously mentioned issues and follows Alquist et al. (2013) in creating a consistent end-

of-month time series of wheat futures prices of different maturities. This allows uniform
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matching of computed wheat futures prices of a given maturity with associated spot (or

near futures) prices for computing predictive performance.

4.2.2 Variables Included in Dynamic Models

For the DMA analysis, we utilize nine variables that have been proposed in the literature

as potential drivers of agricultural commodity prices over the past two decades. Following

the findings of Ahumada & Cornejo (2016a) that other commodities are important predictors

of agricultural commodities, three of the variables are log-differenced prices of other key

grains, namely corn, soybean and oats.

These will capture any changes in the relationship between different agricultural com-

modity prices, which could indicate whether patterns of comovement have changed over the

sample period, due to factors such as the finanicalization of commodity markets. We also

include three real effective exchange rate series, motivated by the findings of Chen et al.

(2010), who suggest that changes in exchange rates have driven movements in agricultural

commodity prices. These are the real effective exchange rate series for USA, Canada and

Australia, as compiled by the Bank for International Settlements. Finally, similar to (Ahu-

mada & Cornejo 2016a) two additional macroeconomic indicators, T-Bills and M2 Money

supply are included. These U.S. macro variables are included to capture the impact that the

prevailing monetary and financial environment, which has been suggested may impact com-

modity prices. Several commentators have suggested that relatively loose monetary policy

may have been an explanatory factor in agricultural price rises and evaluated the impact

that US macro variables have had (see for instance, Frankel & Rose (2010) and Ahumada

& Cornejo (2015)).

For the construction of real prices, we deflate nominal series by the U.S. CPI. All series

are in constant 1984 U.S. dollars. U.S. CPI figures were obtained from the FRED database

which are collected by the U.S. Bureau of Labor Statistics.
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4.3 Methodology

To explore the forecastability of wheat prices, we follow Alquist et al. (2013) who evaluate

the performance of various models for forecasting oil prices and employ a similar structure.

We utilize three different target series, nominal wheat prices, real wheat prices and wheat

returns (log-differences).

4.3.1 Forecasts Based on Wheat Futures

The first models evaluated investigate the performance of wheat futures prices at fore-

casting future spot prices. Futures prices are denoted F (h)
t , which is the price at a time t for

a wheat contract which matures in h periods time. St is todays realized spot price, Et[St+h]

is the expectations of the wheat price at a time t+h, given all information available at time

t.

To compare forecast performance a benchmark model for comparative purposes is re-

quired. The most parsimonious of these is the driftless random walk model, otherwise known

as a no-change forecast. This model suggests that no additional information can improve

forecast performance (i.e., changes in spot prices are effectively random disturbances). Im-

plicitly this can be interpreted as agricultural commodity markets being efficient (at least

weakly), in the sense that they incorporate all available public information, with no addi-

tional factor able to improve forecastability. This implies that the best forecast of the of

the spot price at any point in the future is the current spot price:

Ŝt+h|t = St. (4.1)

The first model which utilizes futures prices suggests that the best available predictor

of future spot prices is the futures price for a contract which matures in h periods:

Ŝt+h|t = F
(h)
t . (4.2)

A related set of models, widely examined in agricultural commodity markets (see Fama

& French (1987)) and other commodities (see Alquist & Kilian (2010)), utilizes the current

68



spread (the difference between spot and futures price) as a predictor of future spot prices.

If futures prices correctly encapsulate agents expectations of the spot price in h periods

time, then the spread will equal the expected change in the spot price over h periods. The

corresponding prediction is given by:

Ŝt+h|t = St(1 + ln(F (h)
t /St)). (4.3)

Given that the spread may be a biased predictor, the zero intercept assumption can be

relaxed:

Ŝt+h|t = St(1 + α̂+ ln(F (h)
t /St)), (4.4)

and also the proportionality restriction (i.e., that the slope coefficient is equal to unity):

Ŝt+h|t = St(1 + β̂ ln(F (h)
t /St)). (4.5)

The final forecasting model relaxes both the intercept and slope restrictions:

Ŝt+h|t = St(1 + ln(F (h)
t /St)). (4.6)

4.3.2 Parsimonious Econometric Forecasts

There are many parsimonious econometric forecasting techniques which have been em-

ployed widely in the literature. We consider each of these models and assess their ability

to forecast nominal wheat prices. The first specification under consideration is the double-

differenced model of Hendry (2006):

Ŝt+h|t = St(1 + ∆st)h, (4.7)

where ∆st is the percentage change in spot price since the previous period. This model builds

on the insight that when forecasting time series with rare changes in trend, an improved

forecast can be made by extrapolating from the most recent growth rate. Put another way,
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this can be seen as a random walk forecast applied to the growth rate of wheat prices rather

than the level. Given the relative frequency of rapid changes in wheat prices in the sample

period, this method has the potential to perform well.

A further method similar to that proposed by Hendry (2006) in Equation (4.7) utilizes

locally estimated drifts from rolling regressions:

Ŝt+h|t = St(1 + ∆s−(h)
t ), (4.8)

where ∆s−(h)
t is the recent difference over the previous h months for the spot price. The

intuition is that agents are backwards looking when they form expectations about future

spot prices. In this case the recent growth over the forecast horizon is extrapolated forward

to inform the spot price. This model therefore encapsulates the ability of “short-term”

forecasts to model localized trends in wheat prices for predictive purposes.

The final parsimonious models we test are based on the findings of Chen et al. (2010),

and use recent percentage changes in bilateral exchange rates of selected exporters of wheat:

Ŝt+h|t = St(1 + ∆eit)h, (4.9)

where ∆eit is the percentage change in the bilateral exchange rate for country i. In our

empirical study we examine i ∈ {Australia, Canada}, which were the third and fourth

largest exporters of wheat in 2017. We do not include the second largest (Russia) due to

difficulties obtaining comparable exchange rate data.

4.3.3 Unrestricted AR, ARMA and VAR models

To examine the forecastability of real prices of wheat out-of-sample, we utilize stan-

dard AR(p) and ARMA(p, q) iterative methods. For comparative purposes we evaluate all

ARMA based forecasting models twice, once on log levels, and once on log differences where

we in essence impose a unit root. We note that after imposing the unit root the AR(p) lag

order is reduced by 1, i.e., a AR(12) model in log-levels corresponds to a AR(11) model in

differences. The ARMA(p, q) model is the most general of these and nests the AR(p):
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yt = α+
p∑
i=1

φiyt−i +
q∑
j=1

θiεt−j + εt, (4.10)

where p is the autoregressive lag order and q is the moving average order.

The previously described models are effectively limited to past values of the real price of

wheat. For comparison purposes an unrestricted Vector Autoregressive model is constructed

containing the same variables as in the previous Chapter. This V AR model includes the

log-differenced wheat price, oil price, real economic activity indicator and the futures spread.

All of the iterative models are estimated from 1980M1 and the evaluation period is

1990M1 - 2016M12 to allow direct comparison with the other methods presented. Although

these methods produce iterative forecasts, for comparison purposes and forecast error eval-

uation we utilize ŷt+h with h ∈ {3, 6, 9, 12}.

4.3.4 Dynamic Model Averaging and Dynamic Model Selection

We now turn attention to Dynamic Model Averaging (DMA) and Dynamic Model Se-

lection (DMS) and the application of them to the log difference of wheat prices. DMA

was initially introduced by Raftery et al. (2010) and introduced to the economic literature

by Koop & Korobilis (2012). These methods have since gained broad acceptance in the

applied macroeconomic literature and subsequently have been applied widely to a variety of

areas of interest. These include forecasting oil (Drachal 2016, Naser 2016), copper (Buncic

& Moretto 2015) and gold (Aye et al. 2015) prices.

To examine how DMA operates we begin by examining a single model equation, before

building to the multiple forecasting model framework. If yt is the log-differenced wheat

price, with several exogenous predictor variables we are interested in a class of models:

yt = θ1t + θ2tyt−1 + θ3tyt−2 + θ4txt−1 + · · ·+ θhtzt−1 + εt, εt ∼ N(0, Vt). (4.11)

For tractability we will simplify the above model and write it in state-space form for estima-

tion using the Kalman Filter. With no uncertainty regarding the correct forecasting model

for t = 1, . . . , T the standard specification can be written:
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yt = ztθt + εt, (4.12)

θt = θt−1 + ηt. (4.13)

For our empirical example zt = [1, zt−h], the 1 × m vector of predictive variables for log-

differenced wheat price changes and θt is a m×1 vector of coefficients (the states) which can

vary over time. The errors, εt
iid∼ N(0, Ht) and ηt

iid∼ N(0, Qt), are assumed to be mutually

independent of all leads and lags.

The model is estimated recursively using the Kalman Filter. If Ft−1 is all available

information available at a time t− 1 then:

θt−1 | Ft−1 ∼ N(θ̂t−1|t−1,Σt−1|t−1), (4.14)

where Σt−1|t−1 is the state covariance matrix which updates according to the standard

formula:

Σt|t−1 = Σt−1|t−1 +Qt. (4.15)

Prediction is done according to the following expression:

θt−1 | Ft−1 ∼ N(θ̂t|t−1,Σt−1|t−1). (4.16)

However, to complete this procedure, Qt in Equation (4.15) needs to be specified. Raftery

et al. (2010) propose replacing Equation (4.15) by using a forgetting factor. Such forgetting

factors have been utilized often throughout the state-space literature. We note here that

this simplification means that we no long need to estimate Qt, resulting in the substantially

simpler:

Σt|t−1 = 1
λ

Σt−1|t−1. (4.17)

This implies that the state error covariance matrix Qt is directly related to the forgetting
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factor, λ:

Qt = 1− λ
λ

Σt−1|t−1. (4.18)

Therefore when λ = 1, Qt = 0, Σt|t−1 = Σt−1|t−1, and there is no variation in the parameter

estimates over time1. Specifying values of λ < 1 introduces time variation in the parameter

estimates by controlling the effective sample size under consideration. For example, in a

monthly context if λ = 0.99 then observations 1 year ago receive approximately 88% as much

weight as the previous periods observation, whereas λ = 0.95 places a weight of 54% on an

observation 12 months previously. Lower values of λ correspond to significantly increased

parameter instability. For this reason it is recommended that values of λ are restricted

to near unity (Koop & Korobilis 2012). We consider multiple values of λ in our empirical

application as discussed below.

The tth iteration is updated according to the updating equation:

Σt | yt ∼ N(θ̂t|t,Σt|t) (4.19)

where:

θ̂t|t = θ̂t|t−1 + Σt|t−1z
>
t (Ht + ztΣt|t−1z

>
t )−1(yt − ztθ̂t|t−1), (4.20)

and

Σt|t = Σt|t−1 − Σt|t−1z
>
t (Ht + ztΣt|t−1z

>
t )−1ztΣt|t−1. (4.21)

This leaves Ht, the error covariance matrix, unspecified. Various proposals for dealing

with Ht exist, with Koop & Korobilis (2012) proposing an Exponentially Weighted Moving

Average specification. We follow the original suggestion of Raftery et al. (2010), who suggest

replacing Ht with a consistent estimate H∗t :

H∗t = 1
t

T∑
r=1

[
(yt − ztθ̂t|t−1)2 − z>t Σt|t−1zt

]
. (4.22)

1As discussed later, this result is referred to as Bayesian Model Averaging (BMA), see Koop & Korobilis
(2012).
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This is consistent as H∗t → Ht as t → ∞. However as it is not guaranteed that H∗t > 0,

Raftery et al. (2010) define a recursive moment estimator:

Ĥt =


H∗t , if At > 0,

Ĥt−1, otherwise,
(4.23)

where:

At =
(
t− 1
t

)
Ĥt−1 + 1

t
((yt − ztθ̂t|t−1)2 − z>t Σt|t−1zt)). (4.24)

We can now generate one-step-ahead forecasts recursively using the predictive distribution:

yt | Ft−1 ∼ N
(
ztθ̂t−1, Ht + ztΣt|t−1z

>
t

)
. (4.25)

So far we have limited our analysis to a single forecasting model. Parameter estimates

have been allowed to vary over time, however the model itself has been fixed. DMA and

DMS relax this restriction and allow model specification to vary over time, with k =

1, . . . ,K potential model specifications. With n predictive variables there are K = 2n

potential models, each containing a different subset of the available predictive variables.

For our empirical application K = 512. If K is restricted to 1 as in Equations (4.12) -

(4.25), DMA collapses to the well-known Time-Varying parameter methodology.

We generalize Equations (4.12) and (4.13) to the multiple model case as follows:

yt = z
(k)
t θ

(k)
t + ε

(k)
t , (4.26)

and

θ
(k)
t = θ

(k)
t−1 + η

(k)
t . (4.27)

θ
(k)
t is the vector of parameters for the variables within a particular model k, ε(k)

t ∼

N(0, H(k)
t ) and η

(k)
t ∼ (0, Q(k)

t ). In the multiple model case, the Kalman Filter Equations

(4.14), (4.16) and (4.19) generalize to:
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Θt−1 | Lt−1 = k, Ft−1 ∼ N(θ̂(k)
t−1|t−1,Σ

(k)
t−1|t−1), (4.28)

Θt | Lt = k, Ft−1 ∼ N(θ̂(k)
t|t−1,Σ

(k)
t−1|t−1), (4.29)

and

Θt | Lt = k, Ft−1 ∼ N(θ̂(k)
t|t ,Σ

(k)
t|t ). (4.30)

Where Lt = k, is the particular model specification which holds at time t and Θt is the vector

of all coefficients (i.e, Θt = (θ(1)>
t , . . . , θ

(K)>
t )>). θ̂(k)

t|t , Σ(k)
t|t and Σ(k)

t|t−1 are effectively the same

as in the single model case, with (k) indicating the particular model k, and are obtained using

Equations (4.17), (4.20) and (4.21). The above specification suggests that, conditional on

Lt = k, information from the prediction and updating equations will not provide information

on the entirety of Θt, they only provide information on the model specific θ(k)
t . To achieve

unconditional results (i.e., not conditional on a particular model, Lt = k), a transition

matrix which governs the evolution of Lt, P = (pkl), where pkl = P [Lt = l | Lt−1 = k],

is required. Computationally calculating P with a large number of models is onerous and

empirically undesirable due to the excessive number of parameters (Koop & Korobilis 2012).

Analogously with Qt, Raftery et al. (2010), propose an elegant solution to this issue using

a second forgetting factor, α, for the state equation for the models.

To see how this forgetting factor greatly aids computation we need the multi-model

analogue of Equation (4.14), using the simplification that πt|s, l = p(Lt = l | Fs):

p(Θt−1 | Ft−1) =
K∑
k=1

p
(
θ

(k)
t−1 | Lt−1 = k, Ft−1

)
× πt−1|t−1, k, (4.31)

where p
(
θ

(k)
t−1 | Lt−1 = k, Ft−1

)
is given by Equation (4.28). The probability that a partic-

ular model k should be used to predict wheat price changes is:

πt|t−1, k =
K∑
l=1

πt−1|t−1, lpkl, (4.32)

where pkl is an element from the unrestricted transition matrix P . To avoid specification of
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this transition matrix Raftery et al. (2010) replace Equation (4.32) with:

πt|t−1, k =
παt−1|t−1, k∑K
l=1 πt−1|t−1, l

, (4.33)

where α is a parameter slightly below 1. To allow interpretation of this forgetting parameter

we can investigate the weight which DMA places upon a particular model at a point in time:

πt|t−1, k ∝
[
πt−1|t−2, kpk(yt−1 | Ft−2)

]α
(4.34)

=
t−1∏
i=1

[pk(yt−i | Ft−i−1)]α
i

, (4.35)

where the predictive density for a model l is given by pl(yt | Ft−1) which is given by updating

the distribution from Equation (4.25), N
(
z

(l)
t θ̂

(l)
t−1, H

(l)
t + z

(l)
t Σ(l)

t|t−1z
(l)>
t

)
. The weight that

a model k will receive at time t therefore depends on whether it has performed well at

forecasting in the recent past. The definition of ‘recent past’ exponentially decays at the

rate αi for observations i periods into the past, the same rate of decay as the previous

forgetting factor, λ. For a value of α = 0.99, performance one year ago receives around

88% of the weight as forecast performance last period (when using monthly data), whilst

if α = 0.95 forecast performance one year ago receives approximately 54% as much weight.

As with the range of the parameter λ, Koop & Korobilis (2012) suggest limiting the range

to α ∈ [0.95, 1].

Finally, the model probabilities can be updated each period according to:

πt|t, k =
πt|t−1, kpk(yt | Ft−1)∑K
k=1 πt|t−1, lpl(yt | Ft−1)

. (4.36)

We implement a two stage procedure for the Kalman Filter. First, we calculate the prob-

ability that any particular model, Lt = k, should be used for forecasting at a time period

t, from Equation (4.33). Then conditional on Lt = k, the predicted vector of regression

coefficients, θ̂(k)
t|t−1 is computed using Equation (4.29). Following this updating Equations

(4.30) and (4.36) are used to update the parameter estimates and the model probabilities,

respectively.
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Recursive forecasts can then be calculated by taking the weighted average of the pre-

dicted results for wheat price changes from all models, using πt|t−1, k as weights:

ŷDMA
t = E [yt | Ft−1] =

K∑
k=1

πt|t−1, kz
(k)
t θ̂

(k)
t−1. (4.37)

DMA therefore presents a model which allows us to deal with uncertainty surrounding

the underlying population regression function. It essentially deals with both model uncer-

tainty and parameter uncertainty in a cohesive way by using model combinations to produce

forecasts. As previously mentioned DMS selects the model with the highest inclusion prob-

ability, k∗. Therefore DMS results are given by:

ŷDMS
t = z

(k∗)
t θ̂

(k∗)
t|t−1, (4.38)

i.e., the optimal variable set multiplied by the computed parameter estimates. Therefore,

DMS presents the results of the model with the highest probability at each point in time,

as opposed to the weighted average across all models presented by DMA. Empirically,

we evaluate DMA and DMS forecasting with a variety of forgetting parameter values; (i)

λ = α = 0.95, which allows rapid changes in both the model and parameter estimates, (ii)

λ = α = 0.99, which implies less volatile parameter estimates and less rapid model switching

and (iii) λ = 1, α = 0.95, which allows relatively rapid model selection, but fixed parameter

estimates. The final case under consideration is BMA and BMS, which are effectively

special cases of DMA and DMS, with both forgetting factors set to 1. This implies that

there is no updating of the parameter estimates or model selection.

To initialize the model we follow Koop & Korobilis (2012) and assume that in the initial

period all models are equally likely (π0|0, k = 1/K for k ∈ 1, . . . ,K). All estimates are

obtained using the R package eDMA (Catania & Nonejad 2017).

4.3.5 Forecast Evaluation Methodology

For comparative purposes, ratios of Mean Squared Predictive Errors (MSPEs) between

the model under evaluation and the benchmark no-change forecast are reported. Ratios

below one indicate that the model under evaluation has exceeded the performance of the
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benchmark in predicting spot prices. To test the significance of any out-performance we

construct p-values based on the Clark & West (2007) test. This procedure examines the

difference between σ̂2
1 and σ̂2

2, the sample mean squared predictive errors. Specifically, the

proposed test uses adjusted MSPEs (i.e., examining σ̂2
1 − (σ̂2

2 − adj), where adj indicates

the adjusted MSPE), due to the fact that an upward bias exists in the MSPE produced

by estimating parameters which are equal to zero under the null hypothesis (Clark & West

2007).

If yt+h is the realized change in wheat prices h periods into the future and ŷRW, t, t+h and

ŷi, t, t+h are the predicted values for change in wheat prices at a horizon h for the benchmark

random walk forecast and the forecast model under evaluation (i), then we can compute:

f̂t+h = (yt+h − ŷRW, t, t+h)2 −
[
(yt+h − ŷi, t, t+h)2 − (ŷRW, t, t+h − ŷi, t, t+h)2)

]
. (4.39)

σ̂2
1 − (σ̂2

2 − adj) is the average of f̂t+h so a test statistic can be generated by regressing f̂t+h

on a constant. Testing that this coefficient is equal to zero leads to a test which is normally

distributed (Clark & West 2007). Standard tests for parameter estimates can be used to

perform hypothesis testing and we reject the null of equal performance if the computed

statistic exceeds 1.645 at the 5% level. p-values are constructed from the test statistics and

shown below relative MSPEs in all forecasting exercises. The null hypothesis of the resulting

test is that of equal MSPEs, compared to an alternative that a particular model is able to

outperform the benchmark.

As an additional test we also examine the performance of the models at correctly pre-

dicting the direction of the change in wheat prices. This is for two related reasons: first the

assessment of the performance of the forecasting model is based upon the loss function of the

user of the forecasts (see Elliott & Timmermann (2008)) and as such squared forecast errors

may not always be appropriate. Several alternative measures of forecast performance have

been tested, showing standard performance indicators may be sub-optimal for calculating

economic evaluations in commodity markets (Gerlow et al. 1993). Second, economic profits

from forecasts have been shown to have a significantly stronger relationship with directional
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accuracy than other measures of forecast performance (Leitch & Tanner 1991). Pesaran &

Timmermann (1992), provide a simple non-parametric test of directional accuracy which

we perform for all forecast models under consideration.

The realized series of interest is given by yt, with a forecast given by ŷt, t = 1, . . . , T and

we define π1 = p(yt > 0) and π2 = p(ŷt > 0). p1 and p2 are the sample proportions for the

times that the realized value of yt is positive, and the forecast ŷt is positive, respectively.

Under a null hypothesis that the forecast and realized values are independently distributed

(i.e., there is no predictive power from the forecast values), the number of correct sign

predictions follows a binomial distribution, with T trials. The success probability is given

by:

π∗ = π1π2 + (1− π1)(1− π2). (4.40)

The sample proportions can be used to estimate π1 and π2:

p∗ = p1p2 + (1− p1)(1− p2), (4.41)

where p∗ represents the expected proportion of direction forecasts accurately predicted by

the forecast in the sample under the null hypothesis. Finally, let p be the actual number of

times the sign of yt is predicted. When p is presented as a percentage it is the Hit Ratio.

The test statistic is given by:

Sn = (p− p∗) [ ˆvar(p)− ˆvar(p∗)]0.5 , (4.42)

where ˆvar(p) and ˆvar(p∗) are given by:

ˆvar(p) = T−1p∗(1− p∗), (4.43)

and

ˆvar(p∗) = T−1(2p1−1)2p2(1−p2)+T−1(2p2−1)2p1(1−p1)+T−24p1p2(1−p1)(1−p2). (4.44)
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Pesaran & Timmermann (1992) show that the test statistic in this scenario converges to a

normal distribution under the null that the forecast series is unable to predict the series of

interest. From this appropriate p-values can be constructed.
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4.4 Results

4.4.1 Comparison of Forecasts based on Futures Prices

We start our empirical analysis with the evaluation of nominal wheat price forecasts

generated by the variety of econometric models that utilize monthly future prices. The fore-

cast evaluation period under consideration is 1991M1-2016M12. Table 4.1 presents relative

ratios of the MSPE from the proposed model to the MSPE to the random walk without drift

benchmark model. Additionally, the hit ratio, the relative frequency with which any model

correctly identifies the direction of the change in the price, is reported. p-values, based

upon Clark & West (2007) test statistics, are reported in parentheses below the respective

relative MSPE. In addition p-values are reported for the hit ratio test using test statistics

from the Pesaran & Timmermann (1992) test. In cases where the null that a given model

is equally accurate as the benchmark no-change forecast is rejected at the 5% level they

are highlighted in bold. Similarly, cases when the null that the model is unable to forecast

the target series is rejected at the 5% level when directional forecasting is analyzed are also

highlighted in bold.

The results of the second row of Table 4.1 demonstrate the forecast ability of the model

with futures as a single predictor and demonstrates that futures prices are unable to signif-

icantly outperform the benchmark except at a forecasting horizon of three months. Futures

forecasts do not provide additional information about the expected change in direction of

wheat prices either, while horizons of 3, 6 and 9 months all have relative frequency’s worse

than would be expected by random chance.

Turning to the result for spread based forecasts, Rows (3) to (6), we observe an im-

provement with respect to futures prices. Specifically, the simplest model (Row (6)) shows

predictive gains of between 2 and 10% over the no-change forecast. However, we do not find

significant gains in forecasting the direction of movements in nominal wheat prices.

Overall, the above results suggest relatively modest forecasting gains from using fore-

casts based on futures prices, with the best performing model utilizing spreads showing

improvements of 10% at the longest horizon under investigation. Forecasters particularly
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Table 4.1: Forecast Error Diagnostics for the Nominal Price of Wheat from Parsimonious
Econometric Models

Ŝt+h|t
h = 3 h = 6 h = 9 h = 12

MSPE HR MSPE HR MSPE HR MSPE HR

St 5819.32 N.A. 10822.3 N.A. 16820.66 N.A. 21532.9 N.A.

F
(h)
t

0.98 0.47 0.99 0.46 1.00 0.49 1.00 0.55
(0.04) (0.84) (0.14) (0.61) (0.41) (0.75) (0.44) (0.15)

St(1 + α̂+ β̂ ln(F (h)
t /St))

0.99 0.48 0.96 0.52 0.97 0.48 0.92 0.53
(0.06) (0.74) (0.01) (0.26) (0.01) (0.71) (0.02) (0.14)

St(1 + α̂+ ln(F (h)
t /St))

1.49 0.50 2.61 0.57 2.04 0.52 2.19 0.48
(0.07) (0.39) (0.05) (0.01) (0.01) (0.23) (0.01) (0.70)

St(1 + β̂ ln(F (h)
t /St))

1.00 0.47 1.01 0.49 1.03 0.49 0.96 0.52
(0.21) (0.82) (0.07) (0.61) (0.04) (0.62) (0.02) (0.18)

St(1 + ln(F (h)
t /St))

0.98 0.47 0.96 0.49 0.97 0.49 0.90 0.53
(0.04) (0.84) (0.01) (0.66) (0.00) (0.66) (0.01) (0.15)

St(1 + ∆st)h
6.69 0.51 20.98 0.44 67.29 0.51 254.99 0.53

(0.90) (0.28) (0.74) (0.98) (0.91) (0.27) (0.94) (0.12)

St(1 + ∆s−ht ) 2.39 0.51 2.69 0.50 3.67 0.49 4.00 0.50
(0.79) (0.37) (0.69) (0.53) (0.98) (0.64) (0.99) (0.48)

St(1 + ∆eAUSt )h 1.58 0.48 2.06 0.47 2.79 0.50 3.84 0.47
(0.80) (0.76) (0.50) (0.81) (0.70) (0.42) (0.78) (0.85)

St(1 + ∆eCANt )h 1.22 0.51 1.77 0.48 2.16 0.47 3.01 0.54
(0.35) (0.33) (0.93) (0.77) (0.79) (0.82) (0.77) (0.05)

Note: MSPE results are presented as ratios relative to the MSPE of the no-change forecast model, for which
the level of the MSPE is reported. The evaluation period under consideration is 1990M1:2016M12. The
training set for initial estimation is 1980M1:1989M12. p-values are presented in parentheses with a null of
equal predictive accuracy as the benchmark forecast from Clark & West (2007) tests. The Hit Ratio, HR,
is defined as the percentage of forecasts which correctly identify the direction of movement in the price of
wheat. p-values from Pesaran & Timmermann (1992) are provided beneath.

interested in the future direction of nominal wheat prices would be best served by utilizing

the no change model, as in many instances these models performed worse than random

chance. The above results are consistent with findings for wheat from previous studies such

as Fama & French (1987) and agricultural commodity markets more generally where per-

formance of futures prices has been mixed (Just & Rausser 1981). Next we examine the

performance of other parsimonious econometric models under investigation.
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4.4.2 Comparison of Forecast Performance for other Parsimonious Econo-

metric models

The results of the double differenced model of Hendry (2006) are presented in Row

(7) of Table 4.1. As is evident, this model performs particularly poorly, especially at long

horizons where forecast errors are many times larger in magnitude than the benchmark

model. This result is unsurprising given that large monthly movements in wheat prices

were witnessed during the evaluation period and this model effectively extrapolates these

changes over many periods into the future. The double differenced specification does not

offer any improvements in directional forecasting either.

Row (8) presents results for the local drift model based upon extrapolating recent per-

formance in spot prices using rolling regressions. The forecasts from this model are not as

erratic as those of Hendry (2006). However, MSPEs are still large, in some cases twice the

magnitude of the driftless random walk forecast. Once again, no significant performance in

identifying the sign of the change in wheat prices is found.

Finally, we evaluate the performance of forecasts using changes in exchange rates of major

exporting nations building on from the results of Chen et al. (2010). Rows (9) and (10)

present results for Australia and Canada, respectively. At no horizon does inclusion of the

bilateral exchange rate improve forecast performance. Similarly, no additional performance

benefit at forecasting future changes of direction in wheat prices is observed.

To summarize, no-change forecasts are as accurate as those based upon simple econo-

metric models or those which include bilateral exchange rates. These results are consistent

with other commodities which are equally difficult to find simple models which significantly

outperform no-change forecasts. We note two general observations from the results of fore-

casting nominal wheat prices. First, MSPEs of random walk forecasts are very large in

comparison to previous studies of forecasting commodity prices, for instance oil (Alquist

& Kilian 2010). This finding results from large fluctuations wheat prices have undergone

during the evaluation period under consideration. Second, in general parsimonious econo-

metric models perform poorly at outperforming no change forecasts of nominal monthly

wheat prices.
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4.4.3 Forecasting Performance of unrestricted AR, ARMA and VAR mod-

els for the Real Price of Wheat

We now turn to forecasting performance of real wheat prices, investigating the perfor-

mance of AR and ARMA models for prices in both log levels and log differences. In both

cases the evaluation is performed recursively with an evaluation period of 1990M1:2016M12,

with forecast performance evaluated against no-change benchmark. The information set

available for forecasting is effectively limited to past values of the deflated price of wheat.

We present a variety of model specifications, some using fixed lag specifications corre-

sponding to one or two years of past observations, 12 and 24 lags, respectively. Other models

utilize information criterion measures for appropriate lag selection. Both Schwarz-Bayesian

information criterion (BIC) and Akaike information criterion (AIC) are also implemented

for appropriate lag order selection (Marcellino et al. 2006). In both cases AR(p) coefficients

are evaluated for p ∈ {0, . . . , 12} using step-wise selection.

The top half of Table 4.2 presents results on the log levels, the bottom half the log

differenced results. We take the forecast for h periods ahead from each model and and

evaluate it as if it was a direct forecast, utilizing the Clark & West (2007) test statistics to

generate p-values. (It should be noted that there are no theoretical results in the forecasting

literature of how to evaluate ARMA based models to a no-change forecast so these are

computed for direct comparability with the previous results and results yet to be presented.)

The upper panel of Table 4.2 suggests that forecasts based on AR(p) models with the

relevant lag order being determined recursively improve forecast performance compared to

the no-change forecast for real wheat prices. Contrary to what might be expected, forecast

performance improves with longer horizon forecasts. Performance on differenced series is

practically indistinguishable from no-change benchmark forecasts, with no improvements

found. Interestingly, in the case where lag selection is determined by the Schwartz-Bayesian

Information Criterion the model selects the random walk forecast (i.e., ARMA(0, 1, 0) is

chosen).

The unrestricted V AR model results are presented in the final two rows of Table 4.2. The

variables included are the log-differenced real price of wheat, the log-differenced price of oil,
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Table 4.2: Relative MSPE Ratios and Forecast Error Diagnostics for Real Wheat Prices
from Autoregressive Models

h = 3 h = 6 h = 9 h = 12

MSPE HR MSPE HR MSPE HR MSPE HR

st

AR(12) 1.04 0.51 1.05 0.48 1.04 0.49 1.02 0.55
(0.07) (0.29) (0.54) (0.74) (0.37) (0.68) (0.16) (0.04)

AR(BIC) 0.99 0.48 0.98 0.48 0.96 0.50 0.95 0.54
(0.01) (0.77) (0.00) (0.79) (0.00) (0.48) (0.00) (0.09)

AR(AIC) 0.99 0.47 0.98 0.48 0.97 0.50 0.96 0.54
(0.03) (0.83) (0.00) (0.79) (0.00) (0.48) (0.00) (0.09)

ARMA(1, 1) 0.99 0.47 0.98 0.48 0.97 0.50 0.96 0.54
(0.02) (0.84) (0.01) (0.79) (0.00) (0.49) (0.00) (0.09)

∆st

AR(11) 1.05 0.51 1.07 0.48 1.06 0.49 1.05 0.55
(0.15) (0.28) (0.75) (0.74) (0.65) (0.59) (0.42) (0.04)

AR(BIC) - - - - - - - -
(-) (-) (-) (-) (-) (-) (-) (-)

AR(AIC) 1.01 0.48 1.02 0.47 1.03 0.50 1.03 0.55
(0.95) (0.77) (1.00) (0.87) (0.99) (0.43) (0.98) (0.05)

ARMA(0, 1) 1.00 0.48 1.00 0.48 1.00 0.50 1.00 0.54
(0.16) (0.77) (0.22) (0.79) (0.15) (0.49) (0.35) (0.09)

V AR(12) 1.17 0.54 1.14 0.52 1.06 0.52 1.03 0.53
(0.06) (0.11) (0.20) (0.21) (0.08) (0.23) (0.04) (0.17)

Note: MSPE results are presented as ratios relative to the MSPE of the no-change forecast
model. The evaluation period under consideration is 1990M1:2016M12. The training set for
initial estimation is 1980M1:1989M12. AIC and BIC are implemented with an upper limit of
12 lags. p-values are presented in parentheses with a null of equal predictive accuracy as the
benchmark forecast from Clark & West (2007) tests. The Hit Ratio, HR, is defined as the
percentage of forecasts which correctly identify the direction of movement in the price of wheat.
p-values from Pesaran & Timmermann (1992) are provided beneath.

the measure of global real economic activity and the spread. We utilize the same recursive

framework as has been previously utilized for AR and ARMA models. These results show

that the V AR does not perform well at forecasting out-of-sample, and increasing the lag

length reduces performance. Some caution must be taken to interpret p-values for Table 4.2,

as the p-values may overstate the significance of short-horizon MSPE reductions (Alquist

et al. 2013). This can be seen that one of the results in Table 4.2, appears to be significant

with a relative MSPE greater than 1. (Alquist et al. 2013) suggest interpreting marginally

significant values with caution.
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Furthermore with few exceptions, there is no systematic improvement in performance

for identifying the future change in the real price of wheat across all models and all specifi-

cations. However there are two interesting findings, (i) forecasting in log levels appears to

provide superior performance as compared to log-differences, and (ii) models with optimal

lag-lengths chosen by information criterion outperform those of fixed lag specification.

4.4.4 Forecasting Real Wheat Price Changes using Dynamic Model Av-

eraging and Dynamic Model Selection

Our final results in Table 4.3 examine the performance of Dynamic Models to forecast

log differenced real wheat prices. Forecasts are evaluated under the same conditions as

AR and ARMA specifications for easy comparison. Relative MSPEs are computed over an

evaluation period from 1990M1:2016M12, with p-values based upon Clark & West (2007)

presented in parentheses.2 The Hit Ratio as previously described is also presented.

The results for DMA with both forgetting factors set to 0.95 is presented in Row (3). As

can been seen from the Table, this is the best performing model specification, with significant

predictive gains at all horizons under evaluation. This specification places relatively more

weight on recent observations and allows for more rapid changes in both model specification

and parameter estimates over time. Notably, DMAα=λ=0.95 is the only method evaluated

which also presents improvements over the benchmark no change for direction testing, with

significant gains above 10% for all but the three quarter ahead forecast. The performance

improvement in the MSPE is around 15% for horizons of 3, 6 and 9 months and 5% for 12

months.

To illustrate the improvements that DMAα=λ=0.95 provides over the no-change forecast,

Figure 4.4.4 presents the realized log returns of wheat, compared to the forecast from the

benchmark no-change and DMAα=λ=0.95 predicted values. We can see that DMAα=λ=0.95

captures some of the complex dynamics that wheat returns have undergone over the past

two decades, particularly during the crisis period c.2008.

In comparison to DMA which averages across potential forecast models, DMS which

selects the most promising candidate from all combinations at each point of time, performs

2Clark & West (2007) test statistics are correct here as DMA produces direct forecasts.
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Table 4.3: Relative MSPE Ratios and Forecast Error Diagnostics for Wheat Returns from
Dynamic Models

h = 3 h = 6 h = 9 h = 12

MSPE HR MSPE HR MSPE HR MSPE HR

DMAα=λ=0.99 0.99 0.54 0.98 0.55 0.97 0.58 1.00 0.53
(0.11) (0.06) (0.05) (0.05) (0.01) (0.00) (0.22) (0.11)

DMSα=λ=0.99 1.06 0.44 1.03 0.49 1.02 0.5 1.04 0.46
(0.85) (0.98) (0.96) (0.70) (0.85) (0.57) (0.74) (0.89)

DMAα=λ=0.95 0.84 0.66 0.85 0.63 0.86 0.59 0.95 0.61
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DMSα=λ=0.95 1.19 0.49 1.15 0.47 1.19 0.46 1.16 0.50
(0.59) (0.58) (0.87) (0.87) (0.97) (0.90) (0.40) (0.57)

DMAα=0.95, λ=1 1.01 0.55 0.98 0.52 0.96 0.56 1.00 0.52
(0.15) (0.05) (0.01) (0.14) (0.00) (0.00) (0.20) (0.16)

BMA
1.01 0.51 1.00 0.49 1.00 0.47 1.00 0.47

(0.90) (0.40) (0.13) (0.71) (0.22) (0.84) (0.35) (0.88)

BMS
1.00 0.50 1.00 0.52 1.00 0.51 1.01 0.47

(0.47) (0.49) (0.34) (0.27) (0.81) (0.31) (0.82) (0.84)
Note: MSPE results are presented as a ratio relative to the MSPE of the no-change forecast
model. The evaluation period under consideration is 1990M1:2016M12. The training set for
initial estimation is 1980M1:1989M12. p-values are presented in parentheses with a null of
equal predictive accuracy as the benchmark forecast from Clark & West (2007) tests. The Hit
Ratio, HR, is defined as the percentage of forecasts which correctly identify the direction of
movement in the price of wheat. p-values from Pesaran & Timmermann (1992) are provided
beneath.

poorly. Regardless of the specification of forgetting factors, DMS performs worse than its

DMA counterpart, and never outperforms the no-change forecast.

Comparison for Dynamic Model Averaging with alternative specifications shows that

increasing λ to 1 (i.e., we allow for no variation in parameter estimates) reduces perfor-

mance, as does increasing both α and λ (i.e., we allow reduced variation in both parameter

estimates and model selection). This finding suggests that as wheat prices have exhibited

high volatility over the past two decades, models which place relatively more weight on the

most recent observations can significantly outperform models which have more stability in

both model specification and parameter estimates.

Leading on from the previous results, variants of this methodology which do not allow

for parameters or model specifications to vary over time perform poorly. BMA and BMS

(equivalent to DMAα=λ=1 and DMSα=λ=1, respectively), do not allow the model to adjust
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Figure 4.1: Predicted values from DMA with both forgetting factors set to 0.95 compared
to the actual value and the no-change forecast.

to the volatile nature of wheat prices. The results for these are presented in Rows (6) and (7)

of Table 4.3. In all cases these specifications underperformed compared to their equivalents

with lower forgetting factors and the benchmark model.

4.4.5 Evaluation of variables included within Dynamic Model Averaging

DMA, with appropriate forgetting factors, appears to perform particularly well at fore-

casting wheat returns, given that it has time-varying parameters and the ability to modify

the variables included in a forecasting model at each time period. In principle these benefits

come from its ability to select parsimonious models which include fewer predictors. Here

we follow Koop & Korobilis (2012) to determine how many and which of the variables are

included in the DMA procedure. This allows greater insight into which variables are most

important for forecasting the future path of wheat prices.

Let Size(i)
t be the number of chosen predictive variables, other than constant and other
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variables which are common to all models, in model i at time t. If the posterior probability

that this model i should be included for forecasting at time t, conditional on the available

information Ft, is p(Mi | Ft), then the expected number of predictive variables at each point

in time is given by:

E [Sizet] =
k∑
i=1

Size
(i)
t p(Mi | Ft). (4.45)

Figure 4.2 plots the expected size of DMAα=λ=0.95 for horizons of 3, 6, 9 and 12 months

ahead. These plots give an indication of the shrinkage whichDMA undergoes and show that;

(i) the average model size is relatively stable across the evaluation period with one notable

exception and (ii), DMA selects relatively parsimonious models with a strong preference

for models with between 4 and 6 of the potential explanatory variables at all time periods.

Notably during the crisis period around 2008 there is a rise in the number of included

predictive variables which is most pronounced in the one-quarter ahead forecasts, but also

appears in the longest horizon forecasts of one year.

However these plots do not reveal which variables are the most important, nor how they

vary over time. The posterior inclusion probabilities for each variable can be computed

to allow further insight into the variables which are most important for forecasting wheat

prices, and how they vary across time and forecast horizon. As described in Koop & Korobilis

(2012) and Catania & Nonejad (2018) for each predictor the posterior inclusion probability

can be calculated as the weight that DMA assigns to models containing a given predictor,

i.e., for each time t, the posterior probability of inclusion is given by:

k∑
i=1

1(i⊂m)p(Mi | Ft), (4.46)

where 1(i⊂m) is an indicator function taking the value of either 0 or 1 and m, m ∈ {1, . . . , n}

is the mth predictor. To look at the variables included in both short and long-term forecasts,

Figures (4.3) and (4.4) present the posterior inclusion probabilities for all variables for 3

and 12 months ahead, respectively. These figures demonstrate why dynamic models which

vary model specification outperform those models with restrictive fixed model specifications.

Over time the included model variables varies widely and the posterior inclusion probability
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Figure 4.2: Expected size of model at each time period.

changes. A few key conclusions can be drawn from these graphs.

First examining Figure 4.3, we see that most variables are relatively stable with their

inclusion probabilities for the first half of the out of sample evaluation period. The period

around 2008 has a notable increase in the probability of inclusion for a number of vari-

ables. The other included agricultural commodities suddenly become much more likely to

be included. First corn, then oats and finally soybeans become increasingly important for

predicting wheat returns during this time horizon during the period when prices suddenly

increased rapidly. That agricultural commodities comove has long been known as mentioned

in previous chapters, however this sudden increase in predictive power captures the hugely

increased comovement during this crisis time period. Another interesting result is the rapid

increase in likelihood that one of the monetary measures, t-bills, is included in the forecast-

ing models. Post crisis we see that the inclusion probabilities of all variables returns closer

to a baseline level.

Turning to the longer forecast horizon results presented in Figure (4.4), a slightly differ-
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ent picture emerges. Other commodity prices are driving long horizon wheat prices through-

out the mid-2000s. This result may be indicative that comovement played an increasing roll

in price determination during this early period, potentially as a result of increased ‘finan-

icalization’. Once again during the crisis period there is a sudden, and sustained, increase

in the posterior probability of inclusion of two of the three agricultural commodity returns,

corn and soybeans. From these results it appears that particularly during crisis periods

there is a herding effect and that other commodities played a large roll in determining the

price of wheat during this period.

Also of note from these diagrams is that at no point do the real effective exchange rates of

either of the major exporting countries included in our sample become important. Similarly,

Real economic activity never increases during the crisis period. This later result particularly

is additional evidence that increased global real economic activity, a proxy trying to capture

increased demand from developing countries such as India and China, did not have a large

impact on wheat prices during the period 2007-2008.

4.5 Conclusion

This chapter has provided an extensive evaluation of how forecastable wheat prices

have been over the past two decades. This has been accomplished by implementing a wide

variety of parsimonious and dynamic econometric techniques to global wheat price series. As

the evaluation period considered covers January 1990 until December 2016, it also covers

the recent crisis period where prices underwent increased volatility and rapidly rose and

fell. Forecasting future wheat prices during these periods will be of particular interest to

producers, consumers and policymakers due to the potential negative impacts unexpected

movements of food prices may have.

We present a few key results. First, in common with other commodity prices, simple

approaches perform particularly poorly in comparison to random walk forecasts which are

used as a benchmark. These models struggle to capture volatile dynamics, including periods

of explosive behavior, which have characterized agricultural commodity markets in the recent

past. However, dynamic models which allow for variation in both the variables included in
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Figure 4.3: Inclusion probabilities from DMA with both forgetting factors set to 0.95 for a
3-month horizon.

the underlying linear specification, and time-varying parameters for these variables, provide

superior forecast performance in comparison to other models. The DMA model with values

on both forgetting parameters which are relatively low performs particularly well, as it

significantly outperforms a no-change forecast at all tested horizons. The low values of both

forgetting factors implies that the structure of recent market dynamics has been turbulent

and so both parameter estimates and model structure must respond accordingly to improve

forecast performance. This superior performance continues when examining the performance

of models for predicting the future direction of wheat price changes.

The poor performance of parsimonious forecasts is not unexpected, particularly given

the rapid change in prices that agricultural commodity prices have undergone in the sample

period under investigation. We add to the literature which has found mixed performance of

futures markets predictive content. Within this time frame futures markets were not able to

consistently outperform a naive benchmark. Interestingly, all futures market models were
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Figure 4.4: Inclusion Probabilities from DMA with both forgetting factors set to 0.95 for a
12-month horizon.

no better than random chance at predicting the direction of movement of wheat prices.

Dynamic model averaging has presented excellent forecast performance in other applica-

tions and its ability to capture the underlying market dynamics lead to improvements over

benchmark models.

The DMA results also allow insight into factors which have driven global wheat prices

over the past two decades. During the sudden increase around 2008, changes in other

grain prices become increasingly likely to be included in forecasting models, particularly

for short horizons. This suggests that comovement among the asset class increased, which

is in line with the view that financialization has had an impact on agricultural markets in

general. Before the crisis these factors were no more likely than others to increase forecast

performance. Our results also show that other factors which have been suggested as driving

recent high commodity prices, such as global real economic activity, appear to have little

predictive power. Overall, there is no one predictive variable which has a consistently high
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probability of inclusion within the dynamic model for it’s out of sample forecast performance.

Additionally we can analyze the shrinkage characteristics of the model over time. Relatively

parsimonious models are preferred, with the optimal number of parameters remaining very

stable, though it does rise during the period when prices peaked.

The best models for predicting global wheat prices are those which can adjust both the

predictors which they include within the models, and the predicted estimates. These findings

are important as this class of models appears to be the only one which can consistently

produce out-of-sample performance which exceeds that of the random walk, in terms of

both error size and directionality.
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Chapter 5

Concluding Remarks

This thesis investigates the features and time series properties of global agricultural

commodity prices. To do so the principle research areas examined include: (i) examining

the explosive properties of global agricultural commodity prices and investigating for the

presence of rational speculative bubbles; (ii) construction of a Bayesian structural vector

autoregressive model and applying it to agricultural commodity prices; (iii) examining the

relative importance of economic factors to wheat price dynamics and (iv) forecasting wheat

price movements using a variety of econometric methods.

The first topic is examined in Chapter 2. This chapter analyses the behavior of four

global agricultural commodity markets, utilizing the recently developed recursive unit root

testing techniques of Phillips et al. (2011) and Phillips et al. (2015a). To overcome a

joint hypothesis problem which arises due to the unobserved underlying fundamentals, a

new time series is constructed following Pavlidis et al. (2017). Two key conclusions arise

from this analysis, (i) global agricultural commodities have experienced explosive dynamics

during the crisis period and (ii) contrary to previous findings in the literature, there is little

evidence of rational speculative bubbles, when testing within a framework which controls

for the underlying fundamental. This finding is suggestive that the rapid price changes

witnessed in these markets were driven by some (unobserved) fundamental factor(s), and not

by speculative bubbles. This finding further motivates Chapters 3 and 4 which investigate

causal factors driving wheat price movements.

The second and third points are addressed by Chapter 3, where a Bayesian Structural

VAR as proposed by Baumeister & Hamilton (2015a) is constructed for global wheat prices.

The principle finding is that the majority of observed wheat price movements are not ex-
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plained by either external commodity comovement (oil prices), or from increased global

economic activity. These are two key contributory explanatory factors which have been pre-

viously proposed by the literature. This finding is suggestive that global wheat prices were

not driven upwards by either index investors increasing demand for commodities, or that

increased demand from India and China drove prices higher. The majority of wheat price

movement is driven by residual wheat market specific supply and demand factors. However,

during 2008 some of the rapid movements can be explained by precautionary demand.

Finally, Chapter 4 investigates the ability of different econometric models to forecast

wheat prices over the past two decades and provides further insight into particular variables

which may have contributed to wheat price dynamics. This chapter makes the follow-

ing contributions; first, modern dynamic methodologies which allow for both time-varying

parameters and model specifications significantly outperform almost all parsimonious mod-

eling techniques, including the random walk. Second, when analyzing which variables are

included over time, there is no single factor which has a particularly large probability of

inclusion and therefore stands out as a key contributing factor to wheat price movements

during the period under consideration.
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