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ABSTRACT
We analyse maps of the spatially-resolved nebular emission of ≈1500 star-forming
galaxies at z ≈ 0.6–2.2 from deep KMOS and MUSE observations to measure the av-
erage shape of their rotation curves. We use these to test claims for declining rotation
curves at large radii in galaxies at z ≈ 1–2 that have been interpreted as evidence for
an absence of dark matter. We show that the shape of the average rotation curves, and
the extent to which they decline beyond their peak velocities, depends upon the nor-
malisation prescription used to construct the average curve. Normalising in size by the
galaxy stellar disk-scale length (Rd), we construct stacked position-velocity diagrams
that trace the average galaxy rotation curve out to 6Rd (≈13 kpc, on average). Com-
bining these curves with average Hi rotation curves for local systems, we investigate
how the shapes of galaxy rotation curves evolve over ≈10 Gyr. The average rotation
curve for galaxies binned in stellar mass, stellar surface mass density and/or redshift
is approximately flat, or continues to rise, out to at least 6Rd. We find a correlation
between the outer slopes of galaxies’ rotation curves and their stellar mass surface
densities, with the higher surface density systems exhibiting flatter or less steeply ris-
ing rotation curves. Drawing comparisons with hydrodynamical simulations, we show
that the average shapes of the rotation curves for our sample of massive, star-forming
galaxies at z ≈ 0–2.2 are consistent with those expected from ΛCDM theory and imply
dark matter fractions within 6Rd of at least ≈ 60 percent.

Key words: galaxies: general, galaxies: evolution, galaxies: kinematics and dynamics,
galaxies: star formation

1 INTRODUCTION

Galaxy rotation curves, that describe galaxies’ circular ve-
locity as a function of galactocentric radius, are very well© 2018 The Authors
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studied in the local Universe and provide some of the most
compelling evidence for the existence of dark matter. When
the first systematic measurements of rotation curves were
made, the expectation was that they would reveal Keplerian
dynamics, with their rotation curves initially rising and then
declining at radii beyond that enclosing the visible mass.
However, van de Hulst et al. (1957) used observations of Hi
21 cm emission from M31 to show that its rotation curve
instead remained approximately flat out to ≈ 25 kpc, well
beyond the radii traced by the stars. Schmidt (1957) demon-
strated that this could be explained if M31 has significant
amounts of “dark” mass that extends far beyond the spatial
extent of the visible matter. The existence of dark matter
was later comprehensively recognised in the works of Rubin
and others in the 1970s and 1980s (e.g. Rubin & Ford 1970;
Rubin et al. 1978; Bosma 1978; Rubin et al. 1980, 1982,
1985) who demonstrated the ubiquity of flat rotation curves
in local spiral galaxies, which can be explained by significant
amounts of dark matter residing in a halo which extends well
beyond the extent of the stars.

Many subsequent studies have confirmed the results of
Rubin et al. (e.g. Catinella et al. 2006; Carignan et al. 2006;
de Blok et al. 2008), each contributing to a now overwhelm-
ing body of evidence that shows the ubiquity of dark matter
in the cosmos. This evidence includes observations of strong
and weak gravitational lensing (Walsh et al. 1979; Lynds &
Petrosian 1986; Tyson et al. 1990), as well as the discrep-
ancy between the visible mass of clusters galaxies and that
deduced via their virial motions (Zwicky 1933) or from the
luminosity of X-ray emitting cluster gas in hydrostatic equi-
librium (e.g. Fabricant et al. 1980). Each of which imply the
presence of large amounts of unseen matter within galaxies
or clusters of galaxies.

Today, the Λ-cold dark matter paradigm (ΛCDM), of
which dark matter is the corner stone, is a widely accepted
description of the framework upon which structure forma-
tion is based; it is now well established that dark matter con-
stitutes ≈24 percent of the total energy budget of the Uni-
verse (e.g. Freedman & Turner 2003), a considerably larger
fraction than that of baryonic matter (≈ 4 percent). Colli-
sionless, cold dark matter forms the framework on which cos-
mological simulations are based. These simulations witness
the initial formation of dark matter halos as small primordial
perturbations (in an otherwise smooth matter distribution)
are amplified under gravity. Within these halos the baryonic
matter collapses to form stars and, later, galaxies. These
simulations thus require dark matter as the crucial element
for the formation of structure in the Universe.

Large, hydrodynamical simulations based on ΛCDM,
such as Illustris (Vogelsberger et al. 2014a,b; Genel et al.
2014) and the Evolution and Assembly of GaLaxies and
their Environments simulation (EAGLE; Schaye et al. 2015;
Crain et al. 2015; McAlpine et al. 2015; Schaller et al. 2015b),
have had successes in recreating a universe with many char-
acteristics similar to our own. These successes include the
reproduction of the galaxy stellar mass function and its red-
shift evolution (e.g. Genel et al. 2014; Furlong et al. 2015),
the evolution of the mass-size relation of galaxies (e.g. Fur-

long et al. 2017), and local galaxy scaling relations (such as
the Tully-Fisher relation, Tully & Fisher 1977; Vogelsberger
et al. 2014b; Ferrero et al. 2017).

Whilst there is a general consensus on the need for dark
matter in galaxy evolution theory, recent works have cast
doubt on its relative dominance in galaxies in the distant
past based on the shapes of their rotation curves. Lang et al.
(2017) used stacked Hα emission from K-band Multi-Object
Spectrograph (KMOS) observations to examine the aver-
age outer-kinematics of 101 star-forming galaxies with stel-
lar masses 9.3 . logM∗/M� . 11.5, over a redshift range
0.6 . z . 2.2. The authors employed a novel method to
construct position-velocity diagrams from the stacked flux
that traces the average rotation curve of the galaxies out
to ∼4 times the effective radius (Re = 4.6 kpc, on aver-
age). They report this curve to exhibit a significant decline
in its outer regions, seemingly at odds with the flat or ris-
ing rotation curve expected for local late-type galaxies of
similar stellar mass. The authors conclude that the shape of
the rotation curve in their analysis is consistent with that
expected from a strongly baryon-dominated system, with a
correspondingly small dark matter fraction and high levels
of pressure support in its outer regions.

In a partner study, Genzel et al. (2017) present the indi-
vidual rotation curves of six massive, star-forming galaxies
at 0.9 . z . 2.4, each of which exhibit a decline beyond
their turnover radius. Like Lang et al. (2017), the authors
conclude that their results imply massive galaxies at z ≈1–
2 are both highly turbulent and strongly centrally baryon
dominated with negligible dark matter fractions. These in-
creased baryon fractions could arise in “compaction” scenar-
ios (e.g. Dekel & Burkert 2014; Zolotov et al. 2015) whereby
baryons, that are more efficiently able to cool and condense
than collisionless dark matter, fall to the centres of galaxy
halos where they concentrate. This process may be facili-
tated via a number of potential mechanisms including ex-
treme rates of gas accretion, an increased rate of mergers,
or more secular scenarios involving gravitational disk insta-
bilities – each of which are more likely at earlier cosmic times
around the peak of cosmic star-formation rate density.

These studies also raise the important question of
whether or not such a result is a natural consequence
of a ΛCDM universe, or whether there is some deviation
from this long-standing cosmological consensus. Some re-
cent studies find qualitative consistencies between the ro-
tation curves presented in Lang et al. (2017) and Genzel
et al. (2017) and those predicted for model galaxies with
similar mass and at similar redshifts in ΛCDM cosmolog-
ical, hydrodynamical simulations. Teklu et al. (2017), for
example, select simulated galaxies at z ≈ 2, with stellar
masses similar to those of the Genzel et al. (2017) sample
(M∗ > 5× 1010M�) and with high cold gas mass fractions,
from a 68 Mpc3 volume within the Magneticum Pathfinder
simulations. They find ∼ 40 percent of these model systems
to exhibit significantly declining rotation curves (and with
no signs of merger activity) similar to those presented in
Genzel et al. (2017). Teklu et al. conclude that the declining
curves are a result of significant pressure support in the disk
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of each model galaxy, as well as an abundance of baryonic
matter in their centres that reduces the dark matter fraction
in the central region (rather than a scarcity of dark matter).

The results of Lang et al. (2017) and Genzel et al.
(2017) are potentially significant for galaxy evolution the-
ory, bringing in to question the relative importance of dark
matter at a key period for galaxy growth and evolution (al-
though see Drew et al. 2018). The next step is therefore
to expand the sample to include more galaxies, allowing to
investigate trends with stellar mass and with redshift, as
well as a comprehensive comparison between the observed
shapes of galaxy rotation curves and those predicted from
simulations.

In this paper we exploit integral field spectroscopy ob-
servations of nebular emission from a sample of ≈1500 star-
forming galaxies spanning 0.6 . z . 2.2, along with ob-
servations of extended Hi emission from local galaxies, to
measure the shape of galaxies’ rotation curves over ≈10 Gyr
of cosmic history. We compare the properties of the indi-
vidual rotation curves of galaxies as well as combining the
flux from various galaxy sub-samples to construct average
rotation curves as a function of redshift, stellar mass, and
central stellar mass surface density. To inform our interpre-
tation, and as a means to interrogate ΛCDM theory, we
compare our results to model star-forming galaxies from the
EAGLE simulation.

In § 2 we describe the data used to construct our galaxy
samples, including details of the observations and sample
selection criteria of the constituent surveys from which they
are drawn. In § 3 and § 4 we detail our analysis methods,
including the extraction of velocity maps, individual galaxy
rotation curves, and subsequent stacked rotation curves. We
also explore the biases inherent in different normalisation
prescription used to construct the average rotation curves.
Finally we describe the nebular flux stacking process used to
construct average rotation curves that extend to larger radii
than the observed curves of individual galaxies. In § 5, we
present the results of our analysis and an exploration of the
shapes of galaxy rotation curves as a function of redshift and
galaxy properties. We also include a thorough comparison
of our results to trends for model galaxies in the EAGLE
simulation. We provide concluding remarks in § 6.

2 OBSERVATIONS & DATA

We make use of observations of ionised and neutral gas
emission from star-forming galaxies across a redshift range
0 . z . 2.2. In this section we describe the data correspond-
ing to each redshift. In § 2.1 we describe the main KMOS
samples selected from three large integral field spectroscopy
surveys targeting Hα and [Nii] in star-forming galaxies cov-
ering a redshift range 0.6 . z . 2.2. These include the
KMOS Redshift One Spectroscopic Survey (KROSS, z ≈
0.9; Stott et al. 2016) and the KMOS Galaxy Evolution Sur-
vey (KGES, z ≈ 1.5; Tiley et al., in preparation) samples.
To extend the redshift baseline of our sample to more dis-
tant epochs, and directly compare our results with previous

similar studies, we also compare these with KMOS data for
a sample of galaxies at z ≈ 2.2 from the European South-
ern Observatory (ESO) data archive comprising galaxies ob-
served by the KMOS3D Survey (Wisnioski et al. 2015). We
extend our analysis to lower redshift by including a sample of
96 galaxies observed in their [Oii]λλ3726.2, 3728.9 emission
with the Multi-Unit Spectroscopic Explorer (MUSE; Bacon
et al. 2010, 2015; Swinbank et al. 2017) integral field unit,
which have a median redshift of z = 0.67±0.01. For a z ≈ 0
baseline we exploit Hi rotation curves for galaxies from The
Hi Nearby Galaxy Survey (THINGS; Walter et al. 2008).

In Figure 1, we place each of the samples in context with
one another on the star-formation rate-stellar mass plane,
showing that each sample is comprised of galaxies that typi-
cally fall along the“main sequence”of star-formation at each
epoch. In Figure 2, we show example data for our sample,
including broadband imaging, Hα intensity maps, velocity
maps, and rotation curves.

2.1 KMOS Samples

Here we describe the KMOS galaxy samples used in this
work that comprise star-forming systems in three redshift
slices, with median values ranging 0.9 . z . 2.2, at the
epoch of peak star-formation rate density in the Universe.

2.1.1 KROSS

For galaxies at z ≈ 0.9 we exploit the KROSS sample. For
descriptions of the KROSS sample selection and observa-
tions we refer the reader to Stott et al. (2016) and Harrison
et al. (2017). Briefly, KROSS comprises observations with
KMOS of 795 galaxies at 0.6 . z . 1. The observations tar-
get Hα, [N ii]6548 and [N ii]6583 emission from ionised gas
that falls in the Y J-band (≈ 1.02–1.36µm). Target galaxies
were selected to have KAB < 22.5 with priority (but not ex-
clusivity) given to star-forming galaxies, as defined by a blue
(r−z) < 1.5 colour. Targets were selected in the well-studied
extragalactic fields: the Extended Chandra Deep Field South
(ECDFS), the Ultra Deep Survey (UDS), the COSMOlogi-
cal evolution Survey (COSMOS), and the Special Selected
Area 22 field (SSA22). The ECDFS, COSMOS and parts of
UDS all benefit from extensive HST coverage.

KMOS (Sharples et al. 2013) consists of 24 individual
integral field units (IFUs), each with a 2.′′8×2.′′8 square field-
of-view (FOV), deployable in a 7′ diameter circular FOV.
The resolving power of KMOS in the Y J-band ranges from
R ≈ 3000–4000. The KROSS observations were undertaken
over two years, during ESO observing periods P92–P951.
The median seeing in the Y J-band for KROSS observations
was 0.′′7. Reduced KMOS data results in a “standard” data
cube for each target with 14× 14 0.′′2 spaxels. Each of these
cubes is then re-sampled on to a spaxel scale of 0.′′1 during

1 Programme IDs 092.B-0538, 093.B-0106, 094.B-0061, and

095.B-0035. The full sample also includes science verification data
(60.A-9460; Sobral et al. 2013; Stott et al. 2014)

MNRAS 000, 1–29 (2018)



4 Tiley et al.

9.0 9.5 10.0 10.5 11.0

log ( M∗ / M� )

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

lo
g

(S
F

R
/

M
�

yr
−

1 )

z ≈ 0 (HI)

z ≈ 0.6 ([OII])

z ≈ 0.9 (Hα)

z ≈ 1.5 (Hα)

z ≈ 2.2 (Hα)
z ≈

0.9
z ≈

1.4

z ≈ 0

Figure 1. Star-formation rate as a function of stellar mass for the THINGS (z ≈ 0), MUSE (z ≈ 0.6), KROSS (z ≈ 0.9), KGES (z ≈ 1.5),
and publicly available KMOS3D (z ≈ 2.2) samples. The dashed green and dashed black lines represent the median “main sequence” of

star-forming galaxies at respectively z ≈ 1.4 and z ≈ 0.9 according to Karim et al. (2011). The blue dashed line represents the running

median for star-forming, late-type (sersic indices n ≤ 1.5) SAMI Galaxy Survey (e.g. Bryant et al. 2015) galaxies at z ≈ 0 (Johnson et al.
2018; Tiley et al. 2018). The z ≈ 0.6 points have large scatter, likely the result of the more uncertain conversion between [Oii] luminosity

and star-formation in comparison to the corresponding conversion for Hα. In general the various galaxy samples of this work comprise
“normal” star-forming galaxies with star-formation rates typical of their corresponding epoch.

the data reduction process (Stott et al. 2016; Harrison et al.
2017).

In this work we consider 551 KROSS galaxies with spa-
tially resolved Hα emission (following the selection described
in Harrison et al. 2017) and sufficient pixels in their velocity
maps to measure a rotation velocity (§ 3.3). These galaxies
have a median redshift of z = 0.85 ± 0.04, a median stellar
mass of 1010.0±0.3M�, and a median star-formation rate of
7 ± 3 M� yr−1 (where the uncertainty in each case is the
median absolute deviation from the median itself).

2.1.2 KGES

The z ≈ 1.5 galaxy sample is drawn from the KMOS Galaxy
Evolution Survey (KGES), a recently completed 27 night
GTO programme with KMOS. A detailed description of the
KGES sample selection and observations will be presented

in Tiley et al. (in preparation). In summary, KGES com-
prises KMOS observations of 285 galaxies at 1.3 . z . 1.5
in COSMOS, CDFS, and UDS. The survey targets Hα, [N
ii]6548 and [N ii]6583 from galaxy gas emission, redshifted
into the H-band (≈ 1.46–1.85µm). Target galaxies were
predominantly selected to be bright (K < 22.7) and blue
(I − J < 1.7). The selection also favoured those systems
with a previous Hα detection, where available2. In this work
we consider 228 KGES galaxies detected in Hα and with suf-
ficient pixels in their velocity map to measure a rotation ve-
locity (§ 3.3). The final KGES sample has a median redshift
of z = 1.49 ± 0.07, a median stellar mass of 1010.3±0.3M�,
and a median star-formation rate of 21± 10 M� yr−1.

The KGES observations were undertaken during ESO

2 including galaxies targeted as part of the FMOS-COSMOS Sur-
vey (Silverman et al. 2015; Kashino et al. 2017).

MNRAS 000, 1–29 (2018)
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Figure 2. Example data for galaxies in our sample. The panels from left to right are (1) The Hubble Space Telescope broadband image

with the morphological position angle axis (measured from a two dimensional Gaussian fit to the image) overlaid as an orange dashed
line. (2) The model Hα intensity map constructed by integrating the best fit to the Hα emission line in each spaxel. (3) The observed
line-of-sight velocity map constructed by plotting in each spaxel the Hα peak position from the simultaneous best fit to the Hα and

[N ii] triplet – this in velocity space and with respect to the galaxy systemic velocity. We overlay the kinematic position angle axis
(corresponding to the maximum velocity gradient along a “slit” of width equal to half that of the PSF) as a black solid line. We also

include the morphological position angle, again as an orange dashed line. (4) The observed rotation curve extracted from a “slit” of width
equal to half that of the PSF, in spaxel wide steps. At each radius the observed rotation velocity is taken as the median across the slit.

The black solid curve shows the best fit exponential disk model to the data. Black, dotted vertical lines are displayed at ±3 times the
disk scale radius (Rd). We show the observed velocity extracted at ±3Rd as the red and blue dashed line, respectively.
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observing periods P95–P1003. The resolving power of
KMOS in the H-band ranges from R ≈3570–4555. The me-
dian seeing in the H-band for KGES observations was 0.′′6.

2.1.3 The KMOS 3D Survey

Since we carry out similar analysis to Lang et al. (2017),
it is prudent to test for systematics by examining galaxies
within the same redshift interval as their work. We there-
fore construct a sample of z ≈ 2.2 star-forming galaxies
from the KMOS3D Survey. The data reduction process is
similar to that for KROSS and KGES. For a full description
of KMOS3D see Wisnioski et al. (2015).

In this work we exploit 145 KMOS3D galaxies that fall
in the upper redshift slice of the survey (spanning 1.9 .
z . 2.7), are resolved in Hα, and with sufficient pixels in
their velocity maps to measure a rotation velocity (§ 3.3).
This sample has a median redshift of z = 2.3± 0.1. The K-
band KMOS observations of these systems target the Hα,
[N ii]6548 and [N ii]6583 emission from these galaxies. The
median stellar mass of the targets is 1010.3±0.3M�, and the
median star-formation rate is 32± 14 M� yr−1.

2.2 Lower Redshift Comparison Samples

In this section we describe two lower-redshift comparison
samples of galaxies that we construct in order to inform and
extend our interpretation of the KMOS samples.

2.2.1 THINGS

For a comparison sample of galaxies in the local Universe
we exploit extended Hi-derived rotation curves for z ≈ 0
galaxies from THINGS, which obtained high-quality obser-
vations of the extended Hi emission for 33 nearby galaxies
encompassing a wide range of galaxy morphologies, star-
formation rates, luminosities and metallicities. For this work,
we consider 22 star-forming galaxies from THINGS, with
M∗ & 109M� and star-formation rates & 0.05 M� yr−1, for
comparison with our higher-redshift star-forming samples.

We note here the existence of the Spitzer Photometry
and Accurate Rotation Curves (SPARC) sample that offers
publicly available high-quality Hi and Hα extended rotation
curves for 175 nearby galaxies. In this work, for convenience,
we prefer to exploit THINGS given that tabulated values
of key galaxy properties are readily available. However, we
stress that our results are robust to our choice of z ≈ 0
baseline sample with the shapes of the average THINGS
and SPARCS rotation curves (within 6Rd; § 3) in excellent
agreement.

3 Programme IDs 095.A-0748, 096.A-0200, 097.A-0182, 098.A-
0311, and 0100.A-0134.

2.2.2 MUSE

For an intermediate-redshift sample, we use the star-forming
galaxies from Swinbank et al. (2017), drawn from MUSE
observations of 17 extragalactic fields, including those taken
between February 2014 and February 2015 as part of the
commissioning and science verification stage of the instru-
ment’s construction (see e.g. Richard et al. 2015; Husband
et al. 2015; Contini et al. 2016). For detailed descriptions of
the MUSE sample selection and observations see Swinbank
et al. (2017). Briefly, our MUSE sample comprises observa-
tions of 431 galaxies with spatially resolved [Oii] emission
that falls within the wavelength coverage of MUSE (4777–
9300Å), corresponding to a redshift range of 0.3 . z . 1.5.
For this work we select a sub-sample of 96 of these systems
that are spatially resolved in [Oii], with redshifts z ≤ 0.8,
stellar masses M∗ & 109M� (to match the effective mass cut
of the KROSS galaxies), and sufficient pixels in their velocity
maps to measure their rotation (§ 3.3). The resultant sample
has a median redshift, stellar mass, and star-formation rate
of respectively z = 0.67± 0.09, 109.8±0.5M�, and 3± 2 M�
yr−1.

3 ANALYSIS

The goal of this work is to measure the shape of the rotation
curves of typical star-forming galaxies out to large radii as
a function of redshift, stellar mass, and stellar mass density.
Since the shape of a galaxy’s rotation curve should be in-
timately linked to its mass distribution, and hence its dark
matter content, we aim to infer to what extent the dark
matter fraction of galaxies has evolved over cosmic time and
explore which processes or mechanisms may be driving any
such changes.

The challenge for this work lies in the difficulty in trac-
ing the rotation curves of higher-redshift galaxies out to suf-
ficiently large distances as to begin to reliably probe the
contribution of the dark halo. The rotation curves of local
galaxies have been well constrained out to large radii. To
trace galaxies’ kinematics out to 10’s of kpc these studies
have primarily used bright emission lines from spatially ex-
tended gas in galaxies or atomic hydrogen (Hi) 21 cm emis-
sion lines. Unfortunately, such an approach is not currently
possible for more distant galaxies; Hi is much more diffi-
cult to detect with increasing redshift – routine detections
of 21cm emission from galaxies up to z ≈ 0.8, for example,
will require the complete Square Kilometre Array (SKA, Ab-
dalla et al. 2015; Yahya et al. 2015). And rotation curves at
z & 1 in Hi may only be measured with the capabilities of
the still-hypothetical SKA2.

To reliably trace galaxy kinematics at higher-redshift,
observations, particularly those of a spatially-resolved, inte-
gral field spectroscopy nature, rely on bright nebular emis-
sion lines. The most widely used tracer is Hα (along with the
[Nii]6548,6583 doublet) that traces the warm ionised gas sur-
rounding young stars in galaxies. Several studies have mea-
sured the dynamics of the ionised gas in galaxies at z ≈ 1–3
using near-infrared integral field spectroscopy (e.g. Förster
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Schreiber et al. 2009; Davies et al. 2015; Wisnioski et al.
2015; Stott et al. 2016; Di Teodoro et al. 2016; Beifiori et al.
2017; Turner et al. 2017). However, the integration times
adopted by these surveys only allow the rotation curves of
individual galaxies to be traced out to a few times the galaxy
disk-scale radius, at best (≈ 3Rd, equivalent to ≈ 1.8 times
the half-light radius, Rh or ≈ 7 kpc for a ≈ 1010 M� galaxy
at z ≈ 0.9). This is typically insufficient to repeat the exper-
iments of Rubin et al. at high redshift and robustly probe
the outer regions of a galaxy’s rotation curve, and provides
little diagnostic use in determining total galaxy dark matter
fractions.

To compare to z ≈ 0, in this work we require measure-
ments of the shape of galaxy rotation curves out to ≈ 6Rd

for galaxies at 0.6 . z . 2.2. This will match the typical
measurements of galaxy rotation curves in the local Uni-
verse (e.g. Catinella et al. 2006, 2007) and facilitate direct
comparisons between the epochs. As will be discussed later,
this is also sufficient radial extent to robustly measure the
outer slope of the curves. However, the depths of our integral
field spectroscopy observations mean we only measure indi-
vidual Hα galaxy rotation at ±6Rd for less than 1 percent of
our sample. We must therefore sacrifice the detail that one
gains in considering the rotation curves of individual galax-
ies, and instead combine the signal from many galaxies to
construct average curves.

In this section we describe our measurements of the
properties of individual galaxies that are required as precur-
sors to the construction of average galaxy rotation curves. In
§ 3.1 we provide details on the galaxy stellar masses and star-
formation rates. In § 3.2, we outline methods used to spa-
tially align our KMOS cubes with the available broadband
imaging for each galaxy in our sample, as well as extract-
ing measurements of galaxy sizes from the same imaging. In
§ 3.3 we detail the construction of kinematic maps from the
data cube of each galaxy in our sample, and the subsequent
extraction of rotation curves for each individual galaxy. A
detailed description and exploration of the methods used
to construct the average rotation curves for galaxies in our
sample is presented in § 4.

3.1 Stellar Masses and Star Formation Rates

Stellar masses for the MUSE, KROSS, KGES, and KMOS3D

samples were calculated via comparison of suites of model
spectral energy distributions to broadband photometry for
each galaxy typically spanning the visible and near-infrared
bandpasses, adopting a Chabrier (Chabrier 2003) initial
mass function and allowing for a range of star formation his-
tories, metallicities and dust extinction (Santini et al. 2015;
Swinbank et al. 2017; Harrison et al. 2017). Stellar masses
for THINGS galaxies were calculated via conversion from
their infrared (3.6µm) flux (de Blok et al. 2008; Querejeta
et al. 2015). Where the assumed initial mass function dif-

fers from Chabrier, we convert them appropriately for this
work4.

Star formation rates for galaxies in our sample ob-
served with KMOS are calculated via conversion from their
extinction-corrected Hα luminosities in the manner of Harri-
son et al. (2017). Similarly, star-formation rates for galaxies
observed with MUSE are calculated via conversion of their
extinction corrected [Oii] flux according to the prescription
of Kewley et al. (2004). Star-formation rates for THINGS
galaxies are sourced from Walter et al. (2008), calculated
from published flux values (Leroy et al. 2008).

3.2 Cube Alignment and Stellar Sizes

3.2.1 Cube Alignment

To ensure we consider the same physical regions of galaxies
in both the broadband imaging and the integral field spec-
troscopy data cubes, we spatially align each data cube in our
sample with the highest-quality broadband image. We con-
struct a continuum image from each cube using the median
flux of each spectrum of each spaxel, after masking any line
emission in the cube and performing a 2-σ clip to the spec-
trum to exclude significant sky residuals. This map is then
astrometrically aligned with the broadband image according
to the position of the peak of the continuum (see Harrison
et al. 2017 for a full description).

3.2.2 Stellar sizes

For the size of each galaxy we adopt the stellar disk-scale
radius Rd = 0.59Rh, where Rh is the projected stellar
half-light radius, as measured from the highest resolution
and longest wavelength (optical or near-infrared) broad-
band imaging available for each galaxy sub-sample. For each
galaxy in KROSS and KGES we perform a two-dimensional
Gaussian profile fit to the broadband image to recover the
position angle of the galaxy’s morphological axis, and its ax-
ial ratio. We then construct a curve-of-growth by summing
the image flux within elliptical annuli matched in orientation
and axial ratio to the galaxy, and incrementally increasing
in size. We measure Rh as the semi-major axis of the ellipse
containing 50 percent of the maximum of the summed flux
in the image. We inspect each curve-of-growth to ensure it
asymptotes to a maximum value. To test the validity of this
method, we compare our measure of the half-light radius of
KGES galaxies to those of van der Wel et al. (2012) as mea-
sured from detailed Sérsic model fits to the H-band HST
imaging in the Cosmic Assembly Near-Infrared Deep Ex-
tragalactic Legacy Survey (CANDELS; Grogin et al. 2011).
For those 127 (out of 285) KGES galaxies in our sample that
overlap with galaxies examined by van der Wel et al. (2012),

4 We note that one may expect stellar mass estimates derived via
different methods or spectral energy distribution fitting codes to

typically deviate by ±0.2 dex (Mobasher et al. 2015). We have

verified that the results presented in this work are robust to a
systematic change in stellar mass of ±0.2 dex.
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we find excellent agreement between the two measures with
a median difference of 0.′′0± 0.′′1.

For the stellar sizes of KMOS3D galaxies, we adopt the
effective radius measurements of van der Wel et al. (2012)
that use Sersic fits to the H-band HST image for each galaxy
from CANDELS. We convert these to disk-scale radii with
the same scaling factor as the other samples.

For a measure of stellar size for the THINGS galaxies we
adopt the k r eff Ks-band half-light radius from the 2MASS
Extended Source Catalog. These radii are converted to disk-
scale radii in the same manner as for the other samples.

The stellar sizes for the MUSE galaxies were measured
by Swinbank et al. (2017). For ≈ 60 percent of the total
sample, sizes were measured from HST images, fitting a two-
dimensional Sersic profile to define the galaxy centre and
position angle and then constructing a curve of growth with
ellipses of increasing size, matched in ellipticity and posi-
tion angle to the initial fit. For the remainder of the sample
(those without HST imaging), sizes were measured directly
from the MUSE continuum maps, deconvolving for the PSF.
Once again, half-light radii are converted to disk-scale radii
using the same scaling factor as for the KGES and KROSS
samples.

3.3 Emission Line Maps and Rotation Curves

Hα imaging and kinematic maps were extracted from the
galaxy data cubes in the manner of Stott et al. (2016). Maps
were extracted from the KMOS cubes via a simultaneous
triple Gaussian profile fit to the Hα, [N ii]6548 and [N ii]6583
emission lines in each (continuum-subtracted) spectrum of
each spaxel for each cube. The central velocity and width of
the Hα and [Nii] lines are coupled during the fit. The velocity
dispersions are deconvolved for the instrumental resolution.
If the Hα S/N < 5 for a given spaxel, a larger area of 3× 3
spaxels was considered, and 5 × 5 spaxels, as required. If
at this point the S/N was still less than 5, that spaxel is
excluded from the final maps.

Similarly, maps were extracted from the MUSE cubes
following the same method but instead performing a double
Gaussian profile fit to the [Oii] emission line doublet in each
spaxel of each cube. The widths of each of the emission lines
in the doublet are coupled (and deconvolved to account for
instrumental broadening), and the same adaptive binning
process is employed during the fitting.

To measure the maximum (observed) rotation velocity
of each galaxy we extract a rotation curve along the major
kinematic axis of each. We measure this axis and the position
angle for each of the KMOS and MUSE galaxies by rotating
their line-of-sight velocity maps in 1◦ steps about the con-
tinuum centre. For each step we calculate the velocity gradi-
ent along a horizontal “slit”, centred on the continuum peak
and with width equal to half the full width at half maximum
(FWHM) of the point spread function (PSF). We select as
the position angle the choice that maximises the velocity gra-
dient. We extract the velocity and its uncertainty along the
major kinematic axis as respectively the median and median
absolute deviation velocity along the pixels perpendicular to

the “slit” at each step. Example rotation curves derived in
this manner are shown in Figure 2. We note that whilst these
rotation curves are derived from the galaxy velocity maps,
they agree well with position-velocity diagrams extracted
from the individual integral field spectroscopy cube for each
galaxy (see § 4.2).

We also note that in this work we prefer this direct
method to extract rotation curves in comparison to a more
complex two- or three-dimensional, forward-modelling anal-
ysis of the galaxy kinematics (e.g. Stott et al. 2016; Tiley
et al. 2016; Di Teodoro et al. 2016) since it relies on the
least number of assumptions with regards to the physical
properties of the galaxies in our samples. Of course, as a re-
sult of this simplicity, the rotation curves initially derived via
our direct method will suffer more from the effects of beam
smearing than curves derived from a forward-modelling ap-
proach. However, these affects are addressed and mitigated
(down to a ≈ 3 percent level) at the point at which we nor-
malise the rotation curves in rotation velocity and radius
(see § 4.1). Importantly, this correction takes place before
we interpret the shapes of the curves.

4 CONSTRUCTING AVERAGE GALAXY
ROTATION CURVES

To construct average rotation curves for galaxies we explore
two broad methods: Section 4.1 presents the properties of
the median stacks of the individual galaxy rotation curves,
where each curve is first normalised in size and velocity. The
choice of values by which to normalise the curves is not an
obvious one and is therefore discussed in detail. In § 4.2,
we derive average normalised rotation curves from position-
velocity diagrams constructed from the stacked galaxy emis-
sion, allowing us to extend the average curve out to larger
scale radii than for the median stacks of the individual rota-
tion curves. We describe the construction of the stack, and
the subsequent extraction of the normalised curves. We then
present the resultant curves as a function of redshift and key
galaxy properties.

4.1 Stacking Individual Rotation Curves

We begin by constructing simple median stacks of the indi-
vidual galaxy rotation curves in bins of redshift. To do this
we must first normalise each galaxy’s rotation curve in both
size and velocity. However, the choice of values by which to
normalise the curves is not obvious (since rotation curves
do not represent a linear property of galaxies, characterised
by a single characteristic scale or quantity). As such this
simple analysis provides a convenient means with which to
test the effect of different scaling prescriptions on the prop-
erties of the final average rotation curve. We therefore stack
the curves normalised in two ways. First, we normalise each
curve in radius by the stellar light disk-scale radius (Rd, as
defined in § 3.2) accounting for the point-spread-function
(PSF) beam smearing by adding it in quadrature with the
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Figure 3. Median stacks of the rotation curves extracted individually from each galaxy in the z ≈ 0.6, z ≈ 0.9, z ≈ 1.5, and z ≈ 2.2
samples. For the same data, we employ two normalisation prescriptions. Left column: Median stack normalised by the stellar disk-scale

radius (Rd) and the velocity at 3Rd (v3Rd
). Right column: Median stack normalised by the galaxy turnover radius (Rt i.e. the rotation

curve inflection point) and the velocity at Rt (vRt ). For each median rotation curve (grey points), we also plot the best fit exponential
disk plus dark halo model (solid green line; the dashed green line represents extrapolation of the same model beyond the extent of the

data). The shape of the median average rotation curve for the same galaxies starkly differs depending on the normalisation technique.

width (σ) of the best fit Gaussian to the PSF, and in veloc-
ity by the observed velocity (v3Rd) at three times Rd (with
this radius again added in quadrature with the σ width of
the seeing) that should sample the galaxy rotation curve be-
yond its turnover. For simplicity we refer to these curves as
stellar-scaled.

In addition, to mimic the analysis of Lang et al. (2017),
we also normalise each rotation curve by its dynamical
turnover radius (Rt), and the velocity at this turnover radius
(vRt) as measured from the best fit exponential disk model
to the rotation curve. The model velocity (v) as a function
of radius (r) takes the form

(v(r)− voff)2 =
(r − roff)2πGµ0

h
(I0K0 − I1K1) , (1)

where G is the gravitational constant, µ0 is the peak mass
surface density, h is the disk scale radius, and InKn are
Bessel functions evaluated at 0.5r/h. We include parame-

ters to allow for a global offset of the rotation curve in both
velocity and radius space; voff is the velocity at r = 0, roff is
the radius at which v = 0. Each rotation curve is corrected
for non-zero values of either voff or roff before it is consid-
ered for further analysis. Similarly, once the observed curve
is corrected, we set voff = roff = 0 in the model. The velocity
at the turnover radius, vRt , is equivalent to the velocity at
2.2h or the maximum velocity of the model. Since for this
method we are normalising by a radius measured from the
curves themselves, we call these curves self-scaled.

For each of the two choices of scaling (stellar-scaled, and
self-scaled) we then linearly interpolate all of the individual
curves on to a common radial axis. To construct a median
rotation curve in each case we measure the median velocity
of the re-sampled curves as a function of radius. As a mea-
sure of uncertainty we adopt the median absolute deviation
of the rotation curves (with respect to the median value it-
self). We note that if an individual galaxy rotation curve
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Figure 4. An exploration of the inherent biases associated with the stellar-scaled (left column) and self-scaled (right column) rotation
curve normalisation prescriptions, using the KROSS z ≈ 0.9 sample as an illustration. Starting from the top row downward, Top Row:

The median stacked rotation curves (grey points) with the best fit exponential disk plus dark halo model (solid green line – dashed green

line when extrapolated beyond the data). Second Row: The corresponding number of contributing galaxies to the median curve at each
radius. Third Row: The median (beam smearing corrected) rotation-to-dispersion ratio of galaxies contributing to the rotation curve

at each radius. The dashed blacked line represents the median value for the total sample. Lowest Three Rows: The two-dimensional

density distribution of the individual rotation curves, as measured by the log of the Gaussian kernel density estimate of rotation curve
points (light blue to dark blue for low to high density). The distributions are shown for three different bins in (beam smearing corrected)

intrinsic rotation-to-dispersion ratio (high: median vc/σ0 = 5.8± 0.3, medium: vc/σ0 = 2.69± 0.08, low: vc/σ0 = 1.0± 0.06). For both

normalisation prescriptions we see a reduction in the number of galaxies effectively contributing to the median curve as a function of
increasing multiples of the scale radius. However, this decline occurs more rapidly for the self-scaled curve compared to the stellar-scaled

curve. For the stellar-scaled rotation curve, the median vc/σ0 of the galaxies contributing to the curve remains approximately constant

with increasing scale radius. However, the self-scaled rotation curve is biased toward low vc/σ0 systems at larger radii. From the lowest
three rows it is clear that this bias toward low vc/σ0 systems with increasing radius also drives the shape of the self-scaled curve; only

the lowest vc/σ0 bin contains individual self-scaled rotation curves that significantly extend beyond ±1Rt. The shape of the self-scaled

rotation curve beyond ±1Rt is therefore entirely dictated by a minority of galaxies (only 28 percent of the KROSS galaxies in the stack
fall within the lowest vc/σ0 bin) with very low ratios of rotational-to-dispersive internal motions.

is missing data at a given (scale) radius then by necessity
it does not contribute to the average curve at that point.
Therefore we expect a different number of galaxies to con-
tribute to the average curve at different radii, and for this
number to generally decrease with increasing radius. This is
discussed in further detail in § 4.1.1.

The resultant median rotation curves are presented in
Figure 3. We plot the curves out to radii for which the error

in the velocity is less than 50 percent of the peak for both the
positive and negative halves of the curve for the majority of
the redshift bins. The shape of the median average rotation
curve strongly depends on the normalisation scheme applied
to the individual curves. If they are self-scaled in the manner
of Lang et al. (2017), the resultant average curves exhibit
strong declines beyond their peaks for the radii probed by
the data (agreeing with the steep declines for galaxy rotation
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curves at z ≈ 1–2 measured by Lang et al.). If instead for
the same samples of galaxies the curves are normalised by
the scale of the stellar light (stellar-scaled), they remain flat
or continue to rise out to the maximum radii probed by the
data. This is the case in each of the four redshift bins.

We note here that the individual galaxy rotation curves
are over-sampled, with the spatial sampling (0.′′1 steps)
smaller than the typical seeing (∼ 0.′′7) of the observations.
However, in Appendix B1 we show that the average rota-
tion curves (both stellar-scaled and self-scaled) are robust
to this choice of spatial sampling, demonstrating that their
shapes do not significantly change when the sampling size is
increased by a factor of four (making each spatial bin in the
rotation curve nearly independent).

4.1.1 Investigating Biases in Normalisation Prescriptions

The shape of the average normalised rotation curve for
galaxies differs as a function of the scaling prescription em-
ployed to construct it. This is clearly a concern with respect
to their interpretation in the context of galaxy evolution;
subtle differences in how the individual curves are renor-
malised can result in significant differences in how the final,
average rotation curve may be interpreted.

At first inspection, there are no strong reasons to prefer
one scaling prescription over the other, except that intu-
itively one might expect that renormalising by galaxies’ ro-
tation curve turn-over radius would give more weight to any
central bulge contribution (that is more Keplerian in its dy-
namics), if it is present. In contrast, renormalising instead by
the spatial extent of the stars provides a radial scale that is
completely independent of the rotation curve (although still
influenced by a dominant bulge contribution). In this case,
one might expect the average rotation curve to more equally
reflect both the bulge and disk components (if present to the
extent that they significantly affect the shape of the rotation
curve). Similarly, if the observed rotation curve remains flat
or continues to rise within the extent of the data, one might
then expect that the turnover radiusRt of the best fitting ex-
ponential disk model will preferentially tend toward a value
close to the maximum radius probed by the data to improve
the goodness of the fit. Normalising in radius by Rt in these
cases would thus compress the entire rotation curve to fall
within ±1Rt. The stellar scaled curves, however, should not
suffer from this effect since Rd is not directly dependent on
the shape of the curve itself.

In Figure 4, we quantitatively test this conjecture on
the merits of each scaling prescription by examining in de-
tail the biases inherent in each. For this test, we use the
KROSS z ≈ 0.9 galaxy sample as an example. We plot both
the median stellar-scaled and self-scaled rotation curves for
the KROSS sample, along with the number of galaxies effec-
tively contributing at each radius. We also show the median
rotation-to-dispersion ratio vc/σ0, where vc and σ0 are re-
spectively the intrinsic circular velocity and the intrinsic
velocity dispersion measurements made in Harrison et al.
2017 and Johnson et al. 2018 for those galaxies. We stress
that both vc and σ0 are corrected for the effects of beam

smearing, according to the methods described in Johnson
et al. 2018. Figure 4 shows that for both the stellar-scaled
and self-scaled curves the number of galaxies contributing
to the average curve declines with increasing (scale) radius.
In other words, more galaxies contribute to the inner parts
of the rotation curves (for which the majority of galax-
ies have sufficiently nebular flux to sample) than the outer
parts (for which only those systems with the brightest and
most spatially-extended nebular emission will be able to con-
tribute). However, this decline is much more rapid for the
self-scaled curve than for the stellar-scaled.

Critically, whilst the average vc/σ0 as a function of ra-
dius remains approximately constant for the stellar-scaled
curve, the self-scaled curve is strongly biased toward low
vc/σ0 systems at large radii. This is potentially problem-
atic as it means that different types of galaxies dictate the
shape of the rotation curve at different radii. The self-scaled
median rotation curve therefore cannot be deemed represen-
tative of the average for the whole sample.

We have demonstrated that the self-scaled normalisa-
tion prescription leads to a bias in the types of galaxies con-
tributing to the median average rotation curve at different
radii. To understand whether this is of importance for our
analysis, we must also understand the origins and effects of
this bias. The lowest three panels of Figure 4 show that the
shape and extent of the self-scaled curves change as a func-
tion of vc/σ0. For galaxies with the lowest values of vc/σ0 we
are able to trace their rotation curves out to larger multiples
of the scale radius (Rt). At the same time, it is only these
low vc/σ0 systems that exhibit an obvious decline in the
outer parts of their (scaled) rotation curves. The self-scaled
rotation curves of galaxies with higher vc/σ0 do not extend
out far enough to tell whether they remain flat or turn over
too, being entirely compressed to within ±1Rt. Thus the
bias in the self-scaled median curve does impact on its shape
at large scale radii. Conversely, the stellar-scaled curves re-
main comparatively constant in both shape (remaining flat
or continuing to rise) and radial extent with changing vc/σ0.

The origin of the bias in the self-scaled curve is straight-
forward to explain: first, we expect galaxies with smaller Rt

to be disproportionately represented in the outer parts of the
curve; if Rt is small then the data are more likely to trace the
rotation curve out to larger multiples of this smaller value.
Second, in Appendix A we show that KROSS galaxies with
the lowest vc/σ0 values also have much smaller sizes than
the median size for the sample. This effect is seen in both
Rt and Rd, but is strongest in Rt. Thus the selection for
low vc/σ0 systems at larger radii in the self-scaled curve is
actually a selection for galaxies with small values of Rt. Fur-
thermore in Appendix A we show that, for a sub-set of 102
KROSS galaxies for which van der Wel et al. (2012) Sérsic
index measurements are available, those galaxies that are
dispersion-dominated (vc/σ0 < 1) have a higher median av-
erage Sérsic index than the median for rotation-dominated
(vc/σ0 > 1) systems, or for the total sub-set.

Having established that the outer shape of the average
self-scaled rotation curve is entirely dictated by small (low
Rt), dispersion-dominated (low vc/σ0) galaxies with higher
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than average Sérsic indices, one might assume then that the
self-scaled prescription preferentially selects for systems with
a more prominent bulge component to contribute toward the
average curve at larger multiples of the scale radius. These
systems would be more likely to exhibit declines in their in-
dividual rotation curves since they do not have high levels
of circular motion and therefore violate the assumption that
the rotation velocity is an effective probe of the dynami-
cal mass. Furthermore, in these cases Rt is anyway small,
so using it as a scaling factor acts to effectively “zoom in”
on a small physical region of the galaxy, despite this region
extending out to larger multiples of Rt. Assuming these sys-
tems are indeed more bulge dominated, the radial scaling
means only a region of the curve that is, by definition, ke-
plarian in its shape is considered.

This “zoom” interpretation is further supported by the
fact that the stellar-scaled curves do not exhibit the same
behavior as the self-scaled curves at low vc/σ0, suggesting
that Rt and Rd are measuring very different physical scales
within a galaxy in the low vc/σ0 regime. Indeed, the median
Rd/Rt for KROSS galaxies in the stack with vc/σ0 < 1 is
45±26 percent larger than the median for the total KROSS
stack sample. This suggests Rd, measured from broadband
imaging rather than the rotation curve itself, is likely less
sensitive than Rt to the presence of a bulge-like component
and better reflects the overall spatial extent of the stellar
light (and thus mass) of the entire galaxy (rather than a
single component).

Now considering instead those galaxies with higher
vc/σ0 (i.e. the majority of the galaxies) one might expect,
given the evidence discussed, that these systems have a less
prominent bulge component or none entirely and thus a more
smoothly rising or flat rotation curve. It is therefore un-
surprising that the best fit Rt for these systems is indeed
preferentially found towards the maximum radial extent of
the data. The result is a compression of the majority of the
scaled curves in the sample to within ±1Rt. Thus our earlier
conjecture on the risks of scaling the rotation curves by Rt

is proved correct.
In summary then the self-scaled scaling prescription

effectively compresses the majority of the scaled rotation
curves in the sample to within ±1Rt, leaving only a minor-
ity of low vc/σ0, small Rt galaxies (with higher than average
Sérsic indices) to dictate the outer shape of the final aver-
age scaled curve. We thus conclude that the stellar-scaled
stacked rotation curves provide a fairer representation of
the typical rotation curve shape than the self-scaled stacked
curves for the galaxy samples. We thus proceed to adopt
the stellar-scaled scaling prescription for the remainder of
our analysis and do not discuss the self-scaled curves any
further.

4.2 Stacking Nebular Emission

Stacking the individual galaxy rotation curves allowed us
to measure the average curve out to ≈ 3–4Rd, equivalent
to ≈ 2.4Rh (≈9 kpc) or a radius containing ≈ 90 percent
of the total stellar mass for a pure exponential disk. The

radial extent of this median curve is limited by the spatial
extent of detected Hα emission in each individual galaxy; for
galaxies to contribute to the median stack at a given radius,
they must individually have detectable levels of Hα emission
at that radius. To overcome this limitation and to extend
our average rotation curve measurements beyond ≈ 4Rd, we
instead stack the galaxies’ nebular emission itself in the form
of position-velocity diagrams normalised in radius, velocity
and flux. In this sub-section we describe the methods used
to construct these position-velocity diagrams for each of the
integral field spectroscopy data cubes in our sample. We
detail how we stack the diagrams and subsequently extract
an average rotation curve from each stack.

The ultimate goal of this work is to measure the average
dark matter fraction within as close as possible to the total
extent of the stellar mass for each of our galaxy samples. In
order to accomplish this goal we aim to measure the average
rotation curve out to at least ≈ 6Rd (≈13 kpc). This should
encompass ≈ 98 percent of the total stellar mass (assuming
a pure exponential disk profile), allowing a measure of the
total dark matter fraction within the spatial extent of the
starlight. This radius is also similar to the maximum radii
of existing Hα rotation curves measured for galaxies in the
local Universe (e.g. Catinella et al. 2006, 2007).

4.2.1 Average Position-Velocity Diagrams

To construct a position-velocity diagram for each galaxy we
first extract a series of spectra along each galaxy’s major
kinematic axis. For each galaxy we identify the major kine-
matic axis (see § 3.3) and extract spectra from the cube by
summing the flux from circular bins placed along this axis,
spaced in multiples of Rd (added in quadrature with the σ
width of the PSF in each case). Each bin has a width equal
to the FWHM of the PSF associated with the cube. For
each spectrum we convert the wavelength axis values, λi in
to line-of-sight velocities as vi = c(λi − λHα)/λHα, where
λHα is the observed central wavelength of the Hα emission
within the central bin as determined from a triple-Gaussian
fit to the Hα and [Nii] emission. This should correspond to
the rest-frame wavelength of Hα multiplied by 1 + z, where
z is the redshift of the galaxy. For the MUSE cubes, we per-
form a double-Gaussian fit to the [Oii] doublet in the central
spectrum, similarly converting the wavelength axis values to
line-of-sight velocities.

For each galaxy we use a linear interpolation to re-
sample the spectra on to a common, uniform grid of nor-
malised radius and velocity to produce a position-velocity
diagram. The radius and velocity scalings are in units of
Rd and v3Rd , respectively. The pixel size of the grid (steps
of 0.25 in Rd, and 0.15 in v3Rd) is chosen as a compro-
mise between maximising the signal-to-noise (S/N) of the
nebular emission in each pixel and the ability to accurately
centre each diagram for stacking. To produce an average
position-velocity diagram we first normalise each individ-
ual diagram by the average of its peak flux at r = ±3Rd.
We self-normalise the flux of the diagrams in this manner
to avoid preferentially biasing the stack towards the bright-
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est galaxies (that will also be the most massive, on aver-
age)5. Furthermore, we choose to normalise by the flux at
3Rd, rather than the central (r = 0) flux, to avoid pref-
erentially biasing the stack toward galaxies that are more
centrally concentrated. Finally, we combine the total set of
normalised diagrams via a median average. To avoid giving
undue weight to noise in the diagrams, we exclude from our
average all those pixels in each individual diagram with a
normalised flux value less than 1 percent.

To increase the signal-to-noise ratio of the nebular emis-
sion in the final stack, we also construct “wrapped” stacked
position-velocity diagrams; we“wrap”or fold each individual
position-velocity diagram about its origin in both radius and
velocity space, taking the median average of the diagrams
either side of the fold. We then median combine the total set
of these wrapped diagrams in the same manner as described
above. The final stacked diagram is median-filtered with a
kernel of five pixels (in line with the methods of Lang et al.
2017).

4.2.2 Extracting Rotation Curves

To extract a rotation curve from each median stacked
position-velocity diagram, we require a measure of the peak
velocity at each radius. We therefore perform a fit to the
flux in the diagram along each pixel column (i.e. to each
spectrum at each radius increment).

For the stacked Hα emission, we parameterise the shape
of the stacked flux by the sum of two Gaussian profiles: a
broad, low-amplitude Gaussian that describes the stack of
any continuum emission present in the individual spectra
(plus any dispersed [Nii] emission); and a second, narrow
and higher amplitude Gaussian to describe the stacked Hα
emission.

For the stacked [Oii] emission, the relative amplitude
of the two doublet lines is much closer to unity than that
of Hα and [Nii] emission. Stacking the [Oii] emission from
different galaxies therefore produces a skewed Gaussian pro-
file, superimposed on the broader, Gaussian-profile contin-
uum emission. We therefore avoid any interpretation of the
MUSE stacked position-velocity diagrams until after they
have been “wrapped”, at which point the skewed Gaussian
shape instead becomes symmetrical and can be described in
the same way as the Hα.

To measure the velocity and its uncertainty in the ex-
tracted rotation curve, we bootstrap the median position-
velocity diagram, repeatedly selecting an equally sized, ran-
dom sample of the individual galaxy position-velocity dia-
grams before median combining them and extracting a ro-
tation curve. We repeat this process 100 times, taking the
median and median absolute deviation (with respect to the

5 Our tests show that normalising the diagrams in this manner

only changes the outer slope of the final rotation curve extracted

from the stacked diagrams by 5 ± 4 percent in comparison to if
no normalisation is applied.

median itself) of each of the 100 extracted curves at each
radius as respectively the velocity and its uncertainty.

4.2.3 Cross-verification of Methods and Further Checks

To check the validity of the rotation curves extracted from
our stacked position-velocity diagrams in comparison to
the median stack of the individual rotation curves, in Ap-
pendix B2 we verify that the former agrees with the latter for
the KROSS sample, showing the two curves agree within un-
certainties. We can therefore be confident in the accuracy of
rotation curves extracted from the stacked position-velocity
diagrams, and that the shape of the average rotation curve
does not significantly differ as a function of the method of
its construction.

We also note here that, as described in § 3.2.2, our calcu-
lation of the stellar disk-scale radius is based on the assump-
tion that Rd = 0.59Rh. Of course this is only strictly true
for a pure exponential disk, i.e. with a sersic index n = 1.
However, the median sersic index is 1.1 ± 0.5 for those 356
galaxies in our samples with a van der Wel et al. (2012)
sersic index measurement so this is a reasonable assump-
tion for this work. Nevertheless, we verified that our stacked
position-velocity diagrams are not biased by the inclusion
of galaxies with a sersic index n 6= 1 by dividing those 356
galaxies into four bins of sersic index and producing stacked
position-velocity diagrams and rotation curves for the galax-
ies in each bin. We find no trend, within 1σ uncertainties,
between the outer slopes (the ratio of the velocity at 6Rd to
that at 3Rd; see § 4.2.5) of the extracted rotation curve in
the four bins, nor in comparison to the outer slope of the ro-
tation curve derived from the total stacked position-velocity
diagram of all 356 galaxies.

Similarly, in § 3.2.2 we noted that a subset of (KGES)
galaxies in our sample were also analysed by van der Wel
et al. (2012), and that on average our measurements of
Rh agreed well with theirs, but with a (small) scatter of
±0.′′1. Assuming we may expect a similar level of scatter
in Rh between our samples as a results of slight differences
in methodology, we used the KROSS sample to quantify
how this expected variation may affect our final rotation
curve. For a systematic change of ±0.′′1 in Rh we found
no significant difference in the outer slope of the rotation
curve extracted from the stacked position-velocity diagram
of KROSS galaxies.

4.2.4 Modelling Rotation Curves

To trace the shape of each rotation curve extracted from the
stacked position-velocity diagrams we find the best fit model
to each. To avoid biasing our conclusions as a result of the
choice of model we fit several different functional forms, and
use the Akaike information criterion (AIC; e.g. Akaike 1998)
to select the most appropriate, accounting for the goodness
of fit (i.e. the χ2 value), the number of data points and the
number of free parameters in the model. We determine the
best choice model as the one with the lowest AIC number.
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To each rotation curve we fit three commonly em-
ployed models: the Courteau (1997) arctangent disk model
for galaxy rotation curves, an exponential disk model, and
lastly a model comprising the sum of a normalised expo-
nential disk and a pseudo-isothermal dark matter halo. The
analytical forms of the three models are described in Ap-
pendix C.

Since in all cases we fit to normalised rotation curves,
we do not physically interpret the best fit parameters of any
of the three models but rather use them only as a convenient
means to recover the intrinsic shape of the curves after ac-
counting for the noise, size of the data set and complexity
of the model.

4.2.5 Quantifying the Shape of Rotation Curves

To quantify, and draw comparisons between, the shapes of
the average rotation curves constructed in our analysis, we
devise a simple one parameter measure of the extent to
which each curve declines at large radii. This is simply the
ratio of the velocity measured at 6Rd and that measured at
3Rd, such that the “turnover”, t = v6Rd/v3Rd . In this re-
spect, if a galaxy rotation curve remains flat t = 1, if it is
rising t > 1, and if it is falling t < 1. We choose 6Rd (≈13
kpc, on average) and 3Rd (≈6.5 kpc, on average) as respec-
tively the typical maximum radius that we are able to probe
in our average rotation curves, and the radius that should
be slightly beyond the rotation curve maximum.

We expect this outer slope to be linked to the aver-
age dark matter fraction of the individual galaxies that con-
tribute to the average curve. This is discussed further in
§ 5.3, where we formally link the two via a comparison with
a toy model. However, for the bulk of our analysis we pro-
ceed to compare the shapes of average galaxy rotation curves
in terms of t.

5 RESULTS AND DISCUSSION

In this section we present median, stellar-scaled position-
velocity diagrams and the corresponding normalised rota-
tion curves derived from stacked nebular emission from sam-
ples of star-forming galaxies at z ≈ 0.6 to z ≈ 2.2. As a
baseline for our results, we also include rotation curves con-
structed from the median average Hi-derived rotation curves
from THINGS galaxies at z ≈ 0. We explore the extent to
which the outer slopes of the galaxy rotation curves corre-
late with intrinsic galaxy properties and compare this to the
trends observed for model galaxies in the EAGLE simula-
tion.6 From our results we also calculate an estimate of the

6 We note that, whilst our results and discussion concern only
stellar-scaled rotation curves, in Appendix B3 we show that we are

able to recover a rotation curve that significantly declines at large
scale radii if we adopt the self-scaled normalisation prescription
(in agreement with Figure 5, Lang et al. 2017). However, we do
not interpret these results physically due to the biases inherent
in the self-scaled curves, as discussed in § 4.1.

average dark matter fraction of star-forming galaxies as a
function of redshift since z ≈ 2.2.

5.1 Total Stacks

Figure 5 illustrates the distribution of stacked flux in the
normalised position-velocity plane for our full KMOS sam-
ples. There is no strong decline in rotation velocity appar-
ent at large radii in the position-velocity diagram for any
of the three samples. Before exploring the shapes of the
rotation curves in more detail we first boost the signal in
the final stacks by stacking instead the wrapped position-
velocity diagrams for the galaxies in each sample, as de-
scribed in § 4.2.1. The rotation curves extracted from the
wrapped stacks are shown in Figure 6. Here we also include
the curves constructed from the stacked [Oii] emission from
the total MUSE sample, and from the median average of the
Hi-derived THINGS rotation curves. Each of the wrapped
rotation curves, measured within . 6Rd, either remains flat
or rises slightly with increasing radius (t = 1.00 ± 0.02,
t = 1.14±0.04, t = 1.16±0.01, t = 1.10±0.03, and 1.11±0.03
for respectively the z ≈ 0, z ≈ 0.6, z ≈ 0.9, z ≈ 1.5, and
z ≈ 2.2 average curve).

5.2 Binned Stacks

In § 5.1, we showed that the average rotation curve in each
of our redshift bins either remains flat or continues to rise
out to ≈ 6Rd. Each of these stacks contains a large number
of galaxies, representing the average of many hundreds of
systems. In this sub-section, we investigate whether smaller
sub-samples of galaxies exist with average rotation curves
that decline in their outskirts, or whether flat or rising ro-
tation curves are ubiquitous across our star-forming galaxy
samples across each redshift. We also compare our results to
those for model galaxies from the EAGLE simulation.

5.2.1 EAGLE

To inform our interpretation of the results for our observed
galaxy samples, we compare them to model galaxies from the
EAGLE hydrodynamical cosmological simulation. We select
sub-samples of star-forming (> 1M� yr−1 for a reasonable
comparison to the data) model EAGLE galaxies in bins of
increasing redshift (z = 0.10, 0.50, 1.00, 1.48, and 2.05) cho-
sen to cover a similar range in redshift to our observed galaxy
samples, and with stellar masses logM∗/M� ≥ 9.

We compute the rotation curves of the model EA-
GLE galaxies from the simulation data using the method
of Schaller et al. (2015a), briefly summarised here for com-
pleteness. Haloes are identified in the simulation using a
friends-of-friends algorithm on the dark-matter structures.
Self-bound sub-structures are then extracted using the Sub-
find algorithm (Springel et al. 2001; Dolag et al. 2009). The
stellar component of these bound structures corresponds to
the individual galaxies. We compute their properties (e.g.
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Figure 5. The median normalised position-velocity diagram for the three KMOS samples, constructed via the methods detailed in § 4.2.

The linear colour scale represents the normalised flux intensity from black at the lowest flux values to white at the highest flux values. We

overlay a grey contour corresponding to a signal-to-noise ratio of 5. For each position-velocity diagram we extract the normalised velocity
at each radius via a fit to the spectrum from the corresponding radial bin in the stacked position-velocity diagram (see § 4.2.1). This

curve is represented in each case by white diamond points. Each of the rotation curves either remains approximately flat or continues to

rise with increasing radius out to 6Rd.
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Figure 6. Normalised, wrapped median galaxy rotation curves as a function of redshift for our galaxy samples. For the four right-most

panels, the velocity at each radius is extracted via a fit to the spectrum from the corresponding radial bin in the stacked position-velocity

diagram. For the z ≈ 0 panel, the rotation curve is constructed via a median stack of the wrapped, Hi-derived rotation curves for each
z ≈ 0 galaxy. The best fit model rotation curve to the data in each case is presented via a green solid line (or a green dashed line where

the model is extrapolated beyond the data). Each of the rotation curves either remains flat or continues to rise out 6Rd.

stellar masses and star-formation rates) in spherical aper-
tures of 30 (physical) kpc, a size chosen to match the Pet-
rosian aperture used in SDSS photometry data (Schaye et al.
2015). These quantities have been made publicly available
in the form of a database (McAlpine et al. 2015).

For each model galaxy we construct concentric spheri-
cal shells around the centre of potential of each sub-structure
and obtain the mass enclosed in each shell M(< r). This al-
lows us to construct both a density profile and a circular ve-
locity curve using Vcirc(r) =

√
GM(< r)/r. These rotation

curves have been shown to be an excellent match to low-
redshift observational data (e.g. Schaller et al. 2015a; Lud-
low et al. 2017) over a wide range of galaxy stellar masses.
We stress here that the circular velocities are derived from
the potential, rather than representing directly the velocities
of the matter.

The simulations have been shown to produce converged
stellar masses for all galaxies above 108 M� and converged
sizes and star formation rates for objects with a mass above
109 M� (Schaye et al. 2015). The rotation curves are con-
verged at better than the 10 percent level at radii larger

than 2–3 kpc. Once stacked, this limit shrinks and the rota-
tion curves have been show to be well converged at all radii
larger than 1 kpc (Schaller et al. 2015a). The simulations
are hence well matched to the observational data used in
this work.

5.2.2 Rotation Curve Shape Versus Stellar Mass

First we examine the rotation curves derived from our star-
forming galaxy samples split in to bins of stellar mass
and redshift. In Appendix B4 we show the median stacked
position-velocity diagrams for star-forming galaxies from our
samples separated into bins of stellar mass and redshift to
demonstrate that the position-velocity diagrams are still
well-behaved after having split our sample in to smaller sub-
samples. To boost the signal-to-noise, we again construct
stacks of the wrapped position-velocity diagrams. These are
shown in Figure 7, where we also include the wrapped curves
for the MUSE and THINGS samples.

From Figure 7 we see that all of the rotation curves re-
main flat, or continue to rise, out to ≈ 6Rd, suggesting that
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Figure 7. Average wrapped, normalised rotation curves for samples of galaxies from our analysis separated in to bins of redshift and
mass. The rotation curves were constructed in the same manner as for Figure 6. The green solid line in each panel represents the best fit

model curve. The shape of each rotation curve is consistent, within uncertainties, with remaining flat or continuing to rise out to large
radii.

star-forming galaxies with stellar masses logM∗/M� > 8.5
at all redshifts contain substantial amounts of dark matter
within 6Rd. The average rotation curves in the central mass
bin (9.9 < logM∗/M� < 10.3) for z ≈ 1.5 and z ≈ 0.6 do
qualitatively exhibit declines in their outskirts but with large
scatter. However, after calculating the AIC for the best fit to
the data for each of the three different functional forms de-
scribed in § 4.2.4, we safely reject the possibility that these
declines are real; the preferred best fit model remains ap-
proximately flat or continues to rise in each case.

To quantify the rotation curve shape we calculate the
rotation curve turnover, t = v6Rd/v3Rd (see § 4.2.5) in each
of the stellar mass and redshift bins and plot these values
in Figure 8. In this figure we identify a weak overall trend
between stellar mass and t for our samples, albeit with sig-
nificant scatter. Importantly, there is no evidence to suggest
a significant deviation from a flat or rising rotation curve
within 6Rd in any bin; the weighted average turnover for
our sample with z ≈ 0.6–2.2 is t = 1.14±0.02. This suggests
that the dark matter fraction of massive (logM∗/M� & 9),
star-forming galaxies at each redshift is similar, and does
not vary strongly as a function of their stellar mass.

Of course, one should consider whether we should ex-
pect any trend between rotation curve turnover and stellar
mass (and redshift) in our sample, according to ΛCDM. To
investigate this, we examine the trends for model galaxies

in EAGLE. Unlike our observed samples, for the EAGLE
galaxies we benefit from measurements of the rotation curves
of individual systems out to large radii as well as having de-
tail on their intrinsic properties. We therefore repeat the
same experiment as for the observed galaxies in Figure 8,
but for individual model EAGLE galaxies at each redshift.
In Figure 8, we include the results for star forming EAGLE
galaxies in five different redshift slices, along with the run-
ning median for each slice. In general there is only a very
weak trend between t and stellar mass, although this trend
is stronger for the highest redshift slice (z ≈ 2). The vast
majority of galaxies at all redshifts exhibit either flat or
rising rotation curves (t & 1), with only a small minority ex-
hibiting rotation curves that decline between 3Rd and 6Rd

(t < 1). This minority is comprised mostly of galaxies at
higher redshift (z ≈ 1.5–2) in the EAGLE simulation. Addi-
tionally, it is only the most massive galaxies at these epochs
that exhibit such declining rotation curves.

5.2.3 Rotation Curve Shape Versus Stellar Mass Surface
Density

There is no strong correlation between an EAGLE model
galaxy’s stellar mass and whether or not its rotation curve
declines at large radii. To investigate whether another intrin-
sic property of the EAGLE model star-forming galaxies is
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Figure 8. Galaxy rotation curve turnover, t = v6Rd
/v3Rd

, as a function of stellar mass. EAGLE data for model galaxies at z =0.1,

0.5, 1.0, 1.48, and 2.01 is displayed in grey. The three-sigma envelope for the EAGLE galaxies is indicated via dotted grey lines. The

running median for each redshift in EAGLE is shown as a coloured dashed line. Overlaid as squares (colour-coded according to the
median redshift) are the measurements for each of the stacked rotation curves shown in Figure 7, where t for each stack (i.e. for each

panel in Figure 7) is measured from the best fit model to the rotation curve. There is only a weak trend in turnover with stellar mass in
either the observed data or for model galaxies in EAGLE, with the two in general agreement within uncertainties. The observed rotation

curves are, in every case, consistent with being flat or continuing to rise between 3Rd and 6Rd. Some EAGLE galaxies do display falling

rotation curves between 3Rd at 6Rd, down to t ≈ 0.8. These are in a minority in each of the EAGLE redshift slices, but they do represent
a larger fraction with increasing lookback time; less than 1 percent of model EAGLE galaxies at z ≤ 0.5 have a t < 0.9, whereas 2–4

percent do at z ≥ 1.

more correlated with t, we also measure the correlations be-
tween respectively the projected half-mass size (R50), the
star-formation rate, and the stellar mass surface density
M∗/R

2
50 and t of the EAGLE samples. The latter was mo-

tivated by the postulate that declining rotation curves (i.e.
low dark matter fractions) may be driven not by an absence
of dark matter but by an abundance of baryonic matter.
Such an abundance should correlate with an increased mea-
sure of stellar surface mass density (e.g Casertano & van
Gorkom 1991).

We find that the rotation curve turnover correlates most
strongly with stellar mass surface density in the model galax-
ies, such that the turnover-surface density correlation ex-

hibits the least scatter at each redshift in EAGLE. This cor-
relation is shown in Figure 9. The scatter in the correlation
is less than that in the stellar mass versus turnover corre-
lation shown in Figure 8, implying that the stellar surface
mass density is more intrinsically connected to the galaxy
rotation curve shape than the stellar mass alone – as one
might expect if the abundance (or scarcity) of baryons was
dominating the shape of the curve. The EAGLE galaxies
with the steepest declines (down to t ≈ 0.8) tend to have
the highest stellar mass surface densities. These high sur-
face density systems are more prevelant at higher redshift
in EAGLE, with the abundance increasing up to z ≈ 2.

To test whether the stellar mass surface density is a
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Figure 9. Galaxy rotation curve turnover, t = v6Rd
/v3Rd

, as a function of stellar mass surface density. EAGLE data for model galaxies

at z ≤ 2.01 is displayed in grey. The median and three-sigma envelope for the EAGLE galaxies are indicated via dotted grey lines. Those

EAGLE galaxies with the highest stellar mass surface density have the strongest turnovers in their rotation curves. Further, those EAGLE
galaxies with the highest surface mass densities (and thus most strongly falling rotation curves) are most frequent at z ≈ 2. Overlaid as

squares (colour-coded according to the median redshift) are the measurements for each of the stacked rotation curves shown in Figure 10,
where t for each stack (i.e. for each panel in Figure 10) is measured from the best fit model to the rotation curve. Measurements of t

measured for the total combined (z & 0.6) KMOS sample split in to three density bins are also shown. The observed trend in turnover

with stellar mass surface density is consistent with the trend from EAGLE, within uncertainties. There is no evidence for any significant
deviation from the expectations of ΛCDM.

good predictor of the extent to which the rotation curves of
observed galaxies decline, we separate our sample in to bins
of redshift and surface density (M∗/R

2
h) and examine the re-

sultant rotation curve shapes. These curves are presented in
Figure 10. The results are overlaid onto the EAGLE points
in Figure 9. Here we make the implicit assumption that the
stellar half-light radii of the observed sample and the stel-
lar half-mass radii of the EAGLE galaxies are an equivalent
measurement. We observe a variety of shapes for the ro-
tation curves across the different redshift and density bins
for our observed samples. Our measurements generally agree
with the trend seen in the EAGLE galaxies, with the vast
majority falling within the three-sigma limits of the EAGLE

population. Notably though, all of the average curves for the
observed galaxies either continue to rise or remain flat out
to large radii.

It is clear that the densities for our observed stacked
measurements are not sufficiently high as to expect a sig-
nificantly declining rotation curve. The stellar mass surface
density bin boundaries were chosen as a compromise be-
tween covering as wide a range of densities as possible whilst
also maintaining sufficient numbers of galaxies in each bin as
to reliably measure an average rotation curve. From Figure 9
it is clear that model galaxies across all redshifts sampled in
EAGLE exhibit a similar median trend between surface den-
sity and rotation curve turnover. We also find similar scatter
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Figure 10. Average wrapped, normalised rotation curves for samples of galaxies from our analysis as a function of redshift (vertical)

and central stellar mass surface density (horizontal). The rotation curves were constructed in the same manner as for Figure 6. The green

solid line in each panel represents the best fit model curve. The line is dashed when the model is extrapolated beyond the data. For all
bins, the rotation curves either remain approximately flat or continue to rise out to the maximum radius probed in each case.

in the relation at each redshift slice in EAGLE. It is thus
apparent that, in EAGLE at least, galaxies follow a relation
between t and surface density that is largely independent of
redshift. We therefore combine galaxies from different red-
shifts in our observed sample to measure the higher surface
density space of Figure 9, where one would expect to see the
strongest decline in galaxy rotation curves (i.e. the lowest
values of t).

We produce average rotation curves extracted from the
median stacked position-velocity diagrams for z & 0.6 star-
forming galaxies in our sample observed with KMOS. These
curves are presented in Appendix D. The measurements
from these curves are shown in Figure 9. As well as a high
density bin, we also measure t for stacks from the same
combined sample in two lower surface density bins, show-
ing them to generally agree with the measurements made
in the individual redshift bins. The average rotation curve
associated with the highest density bin possible to robustly
measure with our observed sample is consistent with being
flat between 3Rd and 6Rd. There is thus little evidence to
suggest in general that galaxies at high redshift have unusu-
ally low central dark matter fractions (within 6Rd), includ-
ing even those systems with higher than average stellar mass
surface densities. Most importantly, all of these combined
measurements are consistent, within uncertainties, with the
trends observed in EAGLE and thus the dark matter prop-
erties expected from ΛCDM theory.

5.3 Implied Dark Matter Fractions

Finally, we more formally discuss our results in the context
of the dark content of star-forming galaxies since z ≈ 2.2. We
quantitatively link our turnover parameter t = v6Rd/v3Rd to
the expected dark matter fractions of galaxies, and examine
the evolution of this quantity with redshift.

5.3.1 Rotation Curve Turnover as a Probe of Dark
Content

The shape of the average galaxy rotation curves constructed
in this work should be linked to the average dark matter con-
tent of the individual galaxies contributing to each average
curve. As a means to quantify this dark matter fraction, we
draw comparisons with a simple toy model for the rotation
velocity such that v2

mod(r) = vdisc(r)2 +v2(r)2, i.e. the bary-
onic exponential disk plus pseudo-isothermal dark matter
halo model described in Equations C2–C5 in Appendix C,
but where we now do not fix h = 1. We use the turnover
parameter, t = v6Rd/v3Rd to compare this model to the ob-
served curves.

To translate the t parameter to a dark matter fraction
we generate 104 instances of our toy model over a wide range
of physical parameters. For each instance we calculate the
dark mass fraction (fD = MH / MH + Md, where MH and
Md are respectively the mass of the halo and the mass of
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Figure 11. Top: Three example instances of the toy model, with numerical labels indicated by coloured stars. In each of three panels
we include the total velocity as a solid blue line, and the contribution from respectively the baryonic disk and dark matter halo as a solid

green line and a solid pink line. The dashed orange lines highlight the positions at which the rotation velocity is measured to calculate t

(i.e. 6Rd and 3Rd). The panels show respectively a falling (top; t < 1), flat (middle; t = 1), and rising (bottom; t > 1) rotation curve.
The position of each example on the fD-t plane is indicated by their corresponding star in the Bottom Left plot. Bottom Left: The dark

mass fraction (fD) within 6Rd as a function of galaxy rotation curve turnover, t = v6Rd
/v3Rd

(where v6Rd
and v3Rd

are the rotation

velocity at respectively 6Rd and 3Rd) according to a simple exponential baryonic disk plus pseudo-isothermal dark matter halo toy
model. The dashed grey lines indicate the bounding envelope for 104 instances of the model generated for a wide range of parameters.

The dark grey line is the best fit polynomial to the running median of the 104 instances. The underlying greyscale histogram represents
the relation between t and dark matter fraction for model galaxies in our EAGLE samples. The relationship between t and fD(< 6Rd) in

our toy model agrees well with that between t and dark matter fraction within 6Rd in model EAGLE galaxies. It is clear that, under the
assumption a galaxy is composed of an exponential baryonic disk and a pseudo-isothermal dark halo, the turnover parameter t may be
used as a diagnostic tool to predict the dark mass fraction of a galaxy (with the intrinsic uncertainty varying depending on the value of
t). Bottom Right: As for Figure 9, but with blue shading indicating the corresponding median fD(< 6Rd) according to the toy model.

The sub-samples all have values of t corresponding to fD(< 6Rd) & 60 percent.

the disk) within 6Rd, and also measure t from the output
curve. In Figure 11 we show the relationship between t and
fD according to our toy model. The link between t and fD is
clear in that the average t increases (albeit non-linearly, and
with increasing uncertainty) as a function of increasing dark
mass fraction within 6Rd. Furthermore, we also show that
the toy model trend is in good agreement with that between

t and the dark matter fraction within 6Rd for model galaxies
in our EAGLE samples.

As an example of the predictive use of the toy model,
in Figure 11 we show the implied dark mass fraction from
our toy model for our observed samples as a function of
stellar mass surface density. For each of our sub-samples at
each redshift, including the combined (z & 0.6) sample in

MNRAS 000, 1–29 (2018)



The Rotation Curves of Star-forming Galaxies 21

the highest surface mass density bin, the implied dark mass
fraction is large (fD(< 6Rd) & 60 percent in all cases).

5.3.2 Dark Matter Fractions as a Function of Redshift

To investigate in more detail to what extent the implied av-
erage dark matter fraction of star-forming galaxies depends
on redshift, and to reduce observational uncertainty from
sub-division of our samples by galaxy properties, we return
to our earlier measurements of the shapes of the average
rotation curves for our total samples at each redshift (Fig-
ure 6).

In the toy model, fD represents the fraction of the total
mass accounted for by the dark matter halo. When consid-
ering observed rotation curves, this dark mass fraction will
encompasses any mass not well-represented by the disk com-
ponent in our model. Assuming all baryons in the galaxy
reside in a disk with a single scale length (as assumed by
our model) then the dark mass fraction is equivalent to the
dark matter fraction (i.e. fD ≡ fDM). However, fD could also
include any baryonic matter present in the galaxy (in par-
ticular atomic or molecular gas) with a large-enough scale
radius such that it is better described by the halo component
of the model within 6Rd.

In Figure 11, we see that our model EAGLE galaxies fol-
low a trend in t-fDM that is well-matched by the t-fD trend
for our more simple model. This suggests that fD ≡ fDM

is a reasonable assumption. However, in the higher-redshift
Universe there is evidence to suggest that the molecular gas
disks of massive, star-forming galaxies are more extended
than the stellar disk (e.g. Ivison et al. 2011; Decarli et al.
2016). Whilst these studies are only based on small samples
of galaxies, they suggest that we should at least account for
the possibility that significant amounts of gas reside beyond
the maximum radii that we are able to probe in this work for
our observed samples. In these cases, the dark matter frac-
tion will be less than the dark mass fraction (i.e. fDM < fD).

We therefore calculate two measures of fDM for our
galaxy samples as a function of redshift, considering in turn
each of two cases: 1) that all the baryons (stars and gas) in
each galaxy in our sample are arranged in a common, sin-
gle disk with a single scale length (i.e. each galaxy obeys
the assumption of our toy model that fD ≡ fDM), or 2) the
extreme assumption that the distribution of the gas in the
galaxies (if present) is sufficiently extended that its entire
contribution to the galaxy rotation curve at a given radius
is well-described by the halo component of our model (i.e.
according to our toy model, it behaves like a dark matter
halo within 6Rd). We proceed with the understanding that
the first calculation is the most appropriate of the two and
our best estimate of fDM. Our second calculation simply pro-
vides an extreme lower bound to our measure of fDM at each
redshift. Of course, the “true” dark matter fraction may fall
somewhere between the two estimates.

For our best estimate, we measure t for the average ro-
tation curve in each (redshift) bin of Figure 6 and calculate
the corresponding median average fD(< 6Rd) for each ac-

cording to our toy model, simply assuming that fDM = fD,
i.e. all of the halo mass component is dark matter.

For our lower estimate, we first determine a molecu-
lar gas mass fraction for the galaxies in each redshift bin
according to the empirically-motivated prediction of Sar-
gent et al. (2014) for the molecular gas mass evolution of
an average (5 × 1010M� stellar mass) main-sequence star-
forming galaxy. Gobat et al. (2018) show that the measure-
ments of galaxies’ molecular gas fractions as a function of
redshift from the HERACLES (Leroy et al. 2008), COLD
GASS (Saintonge et al. 2011), PHIBSS (Tacconi et al. 2013),
and EGnoG (Bauermeister et al. 2013) surveys, as well as
those from Daddi et al. (2010) and Geach et al. (2011), are
all well described by this prediction. We then determine a
corresponding estimate of the atomic gas fraction using the
theoretically predicted redshift evolution of the Hi/H2 mass
ratio from Obreschkow & Rawlings (2009). Combining these
for a total (baryonic) gas mass fraction, we then reduce fD

accordingly to calculate fDM.

Our estimates of fDM for galaxies in our sample as a
function of redshift is shown in Figure 12. We stress here that
these are the implied average dark matter fractions, based
on comparison with our toy model and caveat to the valid-
ity of the assumptions discussed. The individual estimates
are generally consistent with one another given their large
uncertainties that encompass the standard error in each of
our two calculations described above. At each redshift the
dark matter fractions within 6Rd (≈ 13 kpc) are moderate
or large (fDM ≥ 67 percent).

There is a suggestion that the implied average dark
matter fraction for local galaxies is lower than that for the
higher redshift population. The estimated fDM for the z ≈ 0
galaxies is fairly modest (fDM ≈ 0.67). This is in agree-
ment with independent, direct measures of the dark mat-
ter fraction (fDM ≈ 0.65–0.70, within six disk-scale radii)
for 19 THINGS galaxies made by de Blok et al. (2008). It
is also in agreement with the average dark matter fraction
(fDM ≈ 0.5) measured within the same radius by Martinsson
et al. (2013) for 30 local, massive spiral galaxies using their
combined Hα and Hi rotation curves. The implied dark mat-
ter fraction for galaxies in each of our higher-redshift bins
(z & 0.6) is larger. However, given the size of the uncertain-
ties there is no significant difference between our estimates
of fDM at z ≈ 0 and z & 0.6. Nor is there any significant
trend between fDM and redshift for our higher-redshift bins.

Each of our estimates is consistent with the correspond-
ing measurement for model EAGLE galaxies with M∗ >
109M� and star-formation rates > 1M� yr−1; we measure
no significant change in their average dark matter fraction
as a function of redshift. The lack of significant redshift
evolution in fDM for both the observed galaxies and model
galaxies in EAGLE is perhaps surprising given the prolific
rates of star-formation, large gas fractions, short depletion
timescales, and high baryonic accretion rates measured for
star-forming galaxies at z ≈ 1–2 (e.g. Wuyts et al. 2016; El-
baz et al. 2007; Salim et al. 2007; Dutton et al. 2010). These
all imply that large amounts of stellar mass should be as-
sembled in galaxies over the last ≈ 10 Gyr. Thus one might
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Figure 12. The implied average dark matter fraction (fDM)

within 6Rd as a function of redshift for our samples, estimated

from comparison with a baryonic disk plus dark matter halo toy
model. Our best estimate assumes that the baryons in each galaxy

are present within a single disk with a single scale radius. The
lower error bar reflects the possibility that different baryonic com-

ponents may have different scale radii, and specifically that a

substantial amount of gaseous mass in each galaxy is sufficiently
extended such that it has the same dynamical effect as a dark halo

within 6Rd. We find no significant evolution in the implied aver-

age dark matter fraction of star-forming galaxies since z ≈ 2.2.
The blue solid line and shaded region represent respectively the

median and the standard deviation of the dark matter fraction

measured within 6Rd for massive (M∗/M� > 109), star-forming
(> 1M� yr−1) model galaxies in EAGLE (where we linearly in-

terpolate between points to better highlight the general trend).

The average trend for model EAGLE galaxies is consistent with
our observational, toy model-based estimates. The universal dark

matter fraction is indicated with a horizontal line.

naively expect a large variation in the implied dark matter
fraction for our samples as a function of redshift as a result
of significant stellar assembly within galaxies.

We note, however, that there is a clear mass depen-
dence on the redshift evolution of the dark matter fractions
of EAGLE model galaxies. Like our observed galaxy sample,
the EAGLE sample considered here is dominated in num-
ber at each redshift slice by a majority of model galaxies
with stellar masses in the range 9 . logM∗/M� . 10.5.
Within this mass range we see only an small increase in the
dark matter fraction within 6Rd with increasing redshift for
model EAGLE galaxies. In contrast, for EAGLE galaxies
with logM∗/M� & 10.5, there is a much more pronounced
redshift evolution in this quantity. Importantly, this evolu-
tion is in the opposite direction to the lower mass galaxies;
at fixed stellar mass fDM(< 6Rd) decreases with increas-
ing redshift. This apparent dichotomy is clearly visible in
Figure 8 for EAGLE. There we see that for EAGLE model
galaxies with logM∗/M� . 10.5 the median rotation curve

turnover, t (= v6Rd/v3Rd), a proxy for the dark matter frac-
tion, evolves very little with redshift. However, for EAGLE
galaxies with logM∗/M� & 10.5, at fixed mass the median
t decreases with increasing redshift. This decrease is, how-
ever, small (∆t ∼ 10 percent in the range 0 . z . 2.2) to
the extent that we are unable to determine whether a simi-
lar trend exists within our samples of real galaxies given the
large uncertainties and observational scatter inherent in our
stacked measurements.

As Figure 9 shows, the galaxies with the lowest t are
also those with the highest stellar mass surface density.
The strong stellar mass dependence in the evolution of
fDM(< 6Rd) in EAGLE can thus be simply explained by
considering that the stellar size-mass relation of galaxies
evolves with redshift; at fixed stellar mass, galaxies at higher
redshift are smaller than those at lower redshift. If there is
not a sufficiently corresponding evolution in the size of the
dark halo then, within 6Rd, the baryons will be effectively
concentrated with respect to the dark matter with increasing
redshift leading to a corresponding increase in fDM(< 6Rd).

In this framework, the mass dichotomy in the redshift
evolution of fDM(< 6Rd) is explained by a similar dichotomy
in the strength of the galaxy size-mass evolution. We note
that Furlong et al. (2017) measure a larger increase in galaxy
size at fixed stellar mass as a function of redshift for EAGLE
galaxies with logM∗/M� & 10.5 than those with lower stel-
lar masses. The authors attribute this to the higher proba-
bility for more massive galaxies to undergo merging events
(Qu et al. 2017), expected to be strongly connected to galaxy
size growth (e.g. Cole et al. 2000; Naab et al. 2006; van der
Wel et al. 2009). Thus, whilst we find no significant depen-
dence of the implied fDM(< 6Rd) on redshift for our ob-
served galaxy sample, for galaxies with stellar masses at the
higher end of the range spanned by our samples, we expect
the dark matter fraction to decrease at fixed mass with in-
creasing redshift.

6 CONCLUSIONS

In this work we have measured the average rotation curves
for thousands of star-forming galaxies at 0 . z . 2.2, tracing
the curves out to six stellar disk-scale lengths (6Rd; ≈13 kpc,
on average). We have shown that the shape of the curves
can depend on the scaling prescription used to construct
them. Using the least biased (i.e. stellar-scaled) prescription,
we measured the average rotation curves for galaxies in our
sample as a function of redshift, stellar mass, and stellar
mass surface density and compared their shape to those of
model star-forming galaxies from the EAGLE simulation.
Lastly, we provided estimates of the implied dark matter
fraction as function of redshift for galaxies in our sample,
calculated via comparison with a baryonic disk plus dark
matter halo toy model. In this section we summarise our
results and present concluding remarks.
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6.1 The Effects of Different Scaling Prescriptions

Using stacks of individual rotation curves for galaxies in the
range 0.6 . z . 2.2, we showed how the shape of the average
galaxy rotation curve depends on the normalisation prescrip-
tion used to rescale the individual curves in the stack. We
demonstrated that:

• Rescaling the individual curves by their dynamical
turnover radius (Rt) measured directly from the curves
themselves via the best fitting exponential disk model, and
the corresponding observed velocity at that radius (vRt) i.e.
adopting the self-scaled scaling prescription of Lang et al.
(2017), results in an average rotation curve that becomes
biased towards smaller, more dispersion dominated systems
at large scale radii. This results in a decline in the average
rotation velocity with increasing radius. This effect is likely
caused or strongly exacerbated by the tendency for the best
fitting Rt to be placed towards the maximum radial extent
of the data for flat or rising curves, meaning the majority of
the individual curves are compressed to within ±1Rt.

• Normalising the individual rotation curves by the stellar
disk-scale radius (Rd) as measured from broadband imaging,
and the velocity at three times this radius (v3Rd) results in
an average curve that does not suffer from a strong bias in
the sample selection as a function of radius, with the average
ratio of rotation-to-dispersion for galaxies contributing to
the curve remaining approximately constant with increasing
scale radius within the regions probed by the data.

The stellar-scaled normalisation prescription gives an
average curve that is more representative of the shape for
the typical galaxy in the sample.

6.2 The Extended Rotation Curves of
Star-forming Galaxies

Using the stellar-scaled scaling prescription, we stacked deep
MUSE and KMOS observations of the spatially-resolved
nebular emission from ≈1500 star-forming galaxies between
z ≈ 0.6–2.2 to measure the shapes of their rotation curves at
large physical radii. We extracted spectra from each galaxy
in bins placed at increasing radii along the galaxy kinematic
major axis, constructing a position-velocity diagram for each
system normalised in radius, velocity, and flux. We median
stacked these position-velocity diagrams in bins of redshift,
stellar mass, and stellar mass surface density. Extracting ro-
tation curves from each stacked diagram, we measured the
extent to which each curve declined in its outer regions.
We quantified this decline using the “turnover” parameter
t = v6Rd/v3Rd . We showed that:

• The average galaxy rotation curves tend to remain flat
(t = 1) or continue to rise (t > 1) out to ≈ 6Rd (≈13 kpc),
with an average turnover ranging from t = 1.0 for galaxies at
z ≈ 0 to t = 1.10–1.16 for galaxies in redshift bins z ≈ 0.6–
2.2.

• The extent to which galaxy rotation curves decline is

most strongly correlated with their stellar mass surface den-
sity, with those systems with higher surface densities exhibit-
ing flatter or less steeply rising rotation curves (Figure 9).
This is in agreement with galaxies in the EAGLE simula-
tion, where we find the same correlation between rotation
curve shape and stellar surface mass density for massive,
star-forming galaxies.

• The average rotation curve for z ≥ 0.6 galaxies with the
highest stellar surface mass densities in our sample (black
points in Figure 9) is consistent with being flat between 3Rd

and 6Rd (t = 0.97± 0.05).

We argued that the observed correlation between galax-
ies’ outer rotation curve slope and surface mass density is
likely the manifestation of an increased (or decreased) cen-
tral baryon density leading to a more negative (or positive)
outer slope in the scaled rotation curve rather than any dif-
ference in the underlying dark matter density between galax-
ies.

6.3 Implied Dark Matter Fractions

Finally, we estimated the implied dark matter fraction (fDM)
for star-forming galaxies in our sample as a function of red-
shift by comparing the turnover of their average rotation
curve to a simple psuedo-isothermal dark matter halo plus
baryonic disk toy model, accounting for the possibility that
a large fraction of the gas mass of each galaxy may reside
beyond the radii that we probe in this work.

From comparison with the toy model, the implied av-
erage dark matter fraction within 6Rd for our samples of
massive, star-forming galaxies is fDM ≥ 0.67. This frac-
tion does not significantly change with redshift, and is con-
sistent with the corresponding measurements for massive
(M∗/M� > 109), star-forming (> 1M� yr−1) galaxies in
the EAGLE simulation.

We noted that, according to EAGLE, we expect some
redshift dependence for the dark matter fractions of galax-
ies more massive than the majority of those in our sample
(logM∗/M� & 10.5). These systems are expected to exhibit
a much stronger size evolution at fixed mass over time due
to an increased frequency of merging events in comparison
to lower mass galaxies.

In summary, we find no observational evidence for any
significant deviation from the rotation curve shapes expected
based on ΛCDM theory, observing the average rotation
curves for massive, star-forming galaxies at 0 . z . 2.2
to either remain flat or continue to rise out to large scale
radii. Accordingly, under reasonable assumptions the impli-
cation is that these galaxies have correspondingly large dark
matter fractions.
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APPENDIX A: THE RELATIONSHIP
BETWEEN GALAXY SIZE, SÉRSIC INDEX,
AND ROTATION-DOMINANCE

In this section we examine the extent to which the size, and
the Sérsic index, of a galaxy correlates with the dominance
of rotation or dispersion in the galaxy’s kinematics. In the
top panel of Figure A1 we show that the median size of
dispersion-dominated galaxies (vc/σ0 . 1) is lower than for
rotation-dominated galaxies. This trend is emphasised when
galaxy size is measured using the dynamical turnover radius
from the best fit exponential disk model the galaxy rota-
tion curve. This suggests that vc/σ0 . 1 galaxies may also

be those systems that are more compact. This has impor-
tant implications for the choice of scaling prescription used
to normalise galaxy rotation curves, as discussed in § 4.1.1.
In particular it demonstrates the bias toward low vc/σ0 sys-
tems at larger radii in the self-scaled curves discussed in that
section is likely partly a symptom of selecting for systems
with small Rt.

The bottom panel of Figure A1 presents the median
Sérsic index (ns; as measured from H-band HST imaging by
van der Wel et al. 2012), available for 102 KROSS galaxies
in CANDELS, as a function of median vc/σ0. It shows that
dispersion-dominated galaxies (vc/σ0 . 1) have a higher me-
dian average Sérsic index than that for rotation-dominated
galaxies (vc/σ0 & 1) or for the total sub-sample.

This median value has comparatively large uncertainty,
due to the small number of galaxies per bin as only a sub-set
of KROSS galaxies fall within the CANDELS fields. Never-
theless, this trend and the corresponding decrease in size
for dispersion-dominated galaxies shown in the top panel
of Figure A1 together suggest that these small, dispersion-
dominated systems with above average Sérsic indices, that
dominate the outskirts of the self-scaled average rotation
curves presented in Figures 3 and 4, are in fact less disk-
like than those larger, more-rotation dominated systems con-
tributing to the inner regions of the self-scaled curves.

If true, this would suggest that the decline in the aver-
age, self-scaled rotation curve seen in the stacked curves may
actually be the result of a conspiracy between a more promi-
nent (pseudo-)bulge component (pseudo-bulges should have
n . 2 e.g. Fisher & Drory 2008) in the individual galaxy ro-
tation curves and the application of a common radial scaling
of each curve, meaning only a region of the curve that is, by
definition, Keplarian in its shape is considered.

APPENDIX B: ROTATION CURVES:
FURTHER CHECKS

B1 The effect of spatial binning on rotation curve
shape

In Figure B1 we demonstrate that the spatial sampling of the
galaxy velocity maps makes no significant difference to the
shape of the median average of the rotation curves extracted
from them, and thus that the result presented in Figure 3
and discussed in § 4.1 (i.e. that the shape of the average of
the individual galaxy rotation curves is strongly dependen-
dent on the normalisation technique used to construct it) is
robust to our initial choice of sampling.

B2 Stacked rotation curves versus stacked
position-velocity diagrams

In this work we present average rotation curves constructed
either by taking a median average of individual galaxy rota-
tion curves (§ 4.1), or by median-averaging individual galaxy
position-velocity diagrams (§ 4.2). In this sub-section we ver-
ify that the shape of the average rotation curve does not dif-
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Figure A1. Top: The median size of the KROSS galaxies as a
function of vc/σ0 and with respect to the overall median size

of the sample. We include the trends for both the dynamical

turnover radius measured from the galaxy rotation curves (Rt),
and the stellar disk-scale radius (Rd), measured from broadband

imaging. Both measures of size remain approximately constant

within uncertainties for vc/σ0 & 1, but decrease with respect to
the overall median of the sample for vc/σ0 . 1. This effect is seen

most strongly for the Rt size measurement. Bottom: The median
Sérsic index (as measured from H-band HST imaging by van der
Wel et al. 2012) as a function of median vc/σ0 for a sub-set of 102

KROSS galaxies within the CANDELS fields. The black dashed
line and grey shaded region represent respectively the median

Sérsic index for the total sample and its standard uncertainty.

Dispersion-dominated systems (vc/σ0 . 1) have a larger median
Sérsic index (despite a large associated uncertainty) than that for

rotation-dominated systems (vc/σ0 & 1) or for the total sub-set.

fer as a function of the method of construction. We compare
the shape of the average rotation curve extracted from the
stacked KROSS (z ≈ 0.9) position-velocity diagrams to that
of the median of the individual rotation curves for the same
galaxies. In Figure B2, we show that the rotation curves de-
rived using either method agree well, within uncertainties,
verifying that the shape of the average rotation curve is not
dependent on its method of construction. We find similar
results for galaxies in our sample at other redshifts.

B3 Recovering a turnover

In this sub-section we demonstrate that adopting the scal-
ing prescription of Lang et al. (2017) leads to us recovering
an average galaxy rotation curve from the median stack of
individual galaxy position-velocity diagrams that declines in
its outer regions to the same extent as the average curves
presented in Lang et al. (2017).

In Figure B3 we present average rotation curves for the
combined z ≈ 1.5 and z ≈ 2.2 KMOS samples presented
in this work. We select these galaxies to match as closely
as possible the redshift for the stacking sample in Lang
et al. (2017), whilst also maintaining a reasonable number
of galaxies to maintain as strong a signal as possible when
stacking their nebular emission. In the right panel of the
figure, we present the rotation curve derived from stacked
position-velocity diagrams in the manner described in § 4.2
but normalising the position-velocity diagrams in radius and
velocity using respectively the turnover radius (Rt, as deter-
mined from the best fit exponential disc model (Equation 1)
to the individual galaxy rotation curve), and the maximum
observed rotation velocity (vmax) to match the adopted pre-
scription of Lang et al.. We also include the average rotation
curve from Figure 5 of that work. The two curves follow the
same shape, exhibiting identical declines at large fractional
radii. In the left panel of the figure we demonstrate that, for
the same galaxies (i.e. our combined z ≈ 1.5 and z ≈ 2.2
KMOS sample), the stellar-scaled rotation curve remains flat
out to large scale radii. This is in agreement with our find-
ings presented in § 4.1, that the shape of the rotation curve
is dependent on the scaling prescription adopted in its con-
struction.

We conclude that the decline in the self-scaled curve
is driven by the scaling prescription and is not a robust
measure of the rotation curve shape for typical star-forming
galaxies at high redshifts.

B4 Position-velocity diagrams after binning
within a redshift slice

In this sub-section we verify that we are able to extract ro-
tation curves from stacks of individual position-velocity di-
agrams from our star-forming galaxies after simultaneously
binning the galaxies by two parameters. In Figure B4 we
present the position-velocity diagrams for our galaxy sam-
ple binned in both redshift and and stellar mass. At first in-
spection there is no obvious decline in the rotation velocity
with increasing radius out to ≈ 6Rd for the majority of the
rotation curves, regardless of redshift or stellar mass. The ex-
ception is the lowest stellar mass bin for the z ≈ 1.5 row, for
which the rotation curve does appear to significantly decline
beyond its peak. However, this decline is not symmetrical
(one side of the curve declines much more strongly than the
other) and it is clear that the signal is weaker in this particu-
lar position-velocity diagram. To address this, before consid-
ering the shapes of the average curves in detail, in the main
text we boost the signal in the average position-velocity dia-

MNRAS 000, 1–29 (2018)



The Rotation Curves of Star-forming Galaxies 27

3 2 1 0 1 2 3

r/Rd

1.0
0.5
0.0
0.5
1.0

v/
v 3
R

d

z≈ 0. 9

stellar-scaled

3 2 1 0 1 2 3

r/Rt

1.0
0.5

0.0
0.5
1.0

v/
v R

t

0. ′′1 RCs

0. ′′4 RCs

self-scaled

Figure B1. The median-average z ≈ 0.9 (KROSS) stellar-scaled rotation curve (left panel) and the corresponding self-scaled curve (right
panel) constructed from individual galaxy rotation curves extracted from velocity maps (as described in § 3.3) sampled with either 0.′′1
or 0.′′4 spaxels. The two different samplings result in curves that are in good agreement, within uncertainties, although the average of the

0.′′4-sampled stellar-scaled curves is slightly shallower than the corresponding 0.′′1-sampled average curve. Most importantly, for either
choice of spatial sampling, we draw the same conclusion - that the shape of the median average rotation curve for the same galaxies

starkly differs depending on the normalisation technique.
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Figure B2. A comparison between the median-average of the
individual z ≈ 0.9 (KROSS) stellar-scaled rotation curves (grey

points; see § 4.1) and the corresponding rotation curve for the

same galaxies derived from stacked galaxy Hα emission using the
method outlined in § 4.2. The two curves are in good agreement,
within uncertainties (despite the latter rising slightly more slowly

in its inner regions than the former) thus verifying the validity of
our methods.

gram by first folding the individual galaxy position-velocity
diagrams about their own axes before stacking them.

APPENDIX C: ROTATION CURVE FITTING
FUNCTIONS

To trace the intrinsic shape of the normalised, average rota-
tion curves presented in this work, we find the best fit to the

data for three commonly employed models. First, we fit the
arctangent disk model for galaxy rotation curves (Courteau
1997) that gives the rotation velocity as a function of radius
as

v(r) =
2

π
vmax arctan

r

rdyn
, (C1)

where vmax is the rotation velocity at infinite radius, and
rdyn is the characteristic radius associated with the arct-
angent turnover. Second we fit the exponential disk model
described in Equation 1 (where we now fix voff = 0). Finally,
we fit a model with contributions from a scaled, exponen-
tial disk (normalised in radius by the disk scale length and
in velocity by its maximum) and a pseudo-isothermal dark
matter halo such that the rotation velocity as a function of
radius v2(r) = v2

1(r) + v2
2(r), where

vdisc(r)2 =
r2πGµ0

h
(I0K0 − I1K1) , (C2)

and

v1(r) = A× vdisc , (C3)

where A is a scaling factor. The shape of the rotation curve
for a purely exponential disk will always take exactly the
same form when normalised in radius and velocity. Since we
fit the model to observed rotation curves that are themselves
normalised, we therefore set h = 1 (since r is in units of
h in the normalised curves) to fix its shape but allow it
to vary in amplitude. Any deviation from this shape seen
in the observed data must then be described by the halo
component of the model. In this manner we prevent the disk
component in the best fit from accounting for any aspect of
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Figure B3. A demonstration of our ability to recover a declining rotation curve from stacked position-velocity diagrams adopting the

self-scaled (Rt,vmax) normalisation prescription of Lang et al. (2017). The grey points represent the median rotation curve extracted from
the stacked position-velocity diagrams of the combined z ≈ 1.5 and z ≈ 2.2 KMOS samples. This combined sub-sample is designed to be

large enough to reduce the effects of noise in the resultant average rotation curve whilst also comprising those galaxies best matched in

redshift to the stacking sample in Lang et al. (2017). The median stellar mass of the combined sample is logM∗/M� = 10.3± 0.3, where
the uncertainty is the median absolute deviation from the median. The green points represent the average rotation curve as constructed

by Lang et al. (2017) and presented in Figure 5 of that work. Left: The stellar-scaled rotation curve for the combined z ≈ 1.5 and

z ≈ 2.2 KMOS samples remains flat. Right: The two self-scaled curves exhibit the same shape, including a strong decline in velocity at
large fractional radii. For the same galaxies (i.e. the grey points in each panel), the rotation curve either remains flat (stellar-scaled) or

turns over (self-scaled), depending on the normalisation prescription.
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Figure B4. Median-averaged normalised position-velocity diagrams for samples of galaxies from our analysis separated in to bins of

redshift and mass. The position-velocity diagrams are derived from stacked Hα emission. We overlay a grey contour corresponding to a
signal-to-noise ratio of 5. The white diamonds in each panel represent the peak position of the best fit to the spectrum corresponding

that radial column. The majority of the curves remain flat or continue to rise out to large radii.
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the shape of the observed normalised rotation curve that
can in reality only be due to the presence of a second, non-
exponential disk (i.e. halo) component.

The halo rotation velocity component is given as

v2
2(r) = GMh(r)/r . (C4)

The halo mass within r is given as

Mh(r) =

∫
4πp0r

2

1 + (r/r0)α
dr , (C5)

where p0 is the central halo density, r0 is the halo scale
radius, and α = 2 is the slope of the density profile at large
radii.

APPENDIX D: ROTATION CURVES FOR A
COMBINED HIGHER-REDSHIFT SAMPLE

In Figure D1 we present the average rotation curves ex-
tracted from the median stacked position-velocity diagrams
for z & 0.6 star-forming galaxies in our sample observed
with KMOS. We split the combined sample into three stellar
mass surface density bins, constructing an average rotation
curve for the galaxies in each bin. These curves are pre-
sented in Figure D1. With increasing stellar surface mass
density, the average galaxy rotation curves become flatter
i.e. the turnover (t = v6Rd/v3Rd) reduces. This is in agree-
ment, within uncertainties, with the trend of decreasing t
with increasing surface density observed in EAGLE. The
corresponding turnovers measured for each curve are pre-
sented in Figure 9.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure D1. Average wrapped, normalised rotation curves for z & 0.6 galaxies observed with KMOS, separated in to bins of stellar mass

surface density. The rotation curves were constructed in the same manner as for Figure 6. The green solid line in each panel represents

the best fit model curve. The line is dashed where the model extrapolates beyond the data. The rotation curves generally become flatter
with increasing stellar mass surface density.

MNRAS 000, 1–29 (2018)


	1 Introduction
	2 Observations & Data
	2.1 KMOS Samples
	2.2 Lower Redshift Comparison Samples

	3 Analysis
	3.1 Stellar Masses and Star Formation Rates
	3.2 Cube Alignment and Stellar Sizes
	3.3 Emission Line Maps and Rotation Curves

	4 Constructing Average Galaxy Rotation Curves
	4.1 Stacking Individual Rotation Curves
	4.2 Stacking Nebular Emission

	5 Results and Discussion
	5.1 Total Stacks
	5.2 Binned Stacks
	5.3 Implied Dark Matter Fractions

	6 Conclusions
	6.1 The Effects of Different Scaling Prescriptions
	6.2 The Extended Rotation Curves of Star-forming Galaxies
	6.3 Implied Dark Matter Fractions

	A The relationship between galaxy size, Sérsic index, and rotation-dominance
	B Rotation Curves: Further Checks
	B1 The effect of spatial binning on rotation curve shape
	B2 Stacked rotation curves versus stacked position-velocity diagrams
	B3 Recovering a turnover
	B4 Position-velocity diagrams after binning within a redshift slice

	C Rotation Curve Fitting Functions
	D Rotation Curves for a Combined Higher-Redshift Sample

