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Abstract

The majority of the existing work on random vector functional link net-
works (RVFLNs) is not scalable for data stream analytics because they work
under a batched learning scenario and lack a self-organizing property. A
novel RVLFN, namely the parsimonious random vector functional link net-
work (pRVFLN), is proposed in this paper. pRVFLN adopts a fully flexible
and adaptive working principle where its network structure can be config-
ured from scratch and can be automatically generated, pruned and recalled
from data streams. pRVFLN is capable of selecting and deselecting input
attributes on the fly as well as capable of extracting important training sam-
ples for model updates. In addition, pRVFLN introduces a non-parametric
type of hidden node which completely reflects the real data distribution and
is not constrained by a specific shape of the cluster. All learning proce-
dures of pRVFLN follow a strictly single-pass learning mode, which is ap-
plicable for online time-critical applications. The advantage of pRVFLN is
verified through numerous simulations with real-world data streams. It was
benchmarked against recently published algorithms where it demonstrated
comparable and even higher predictive accuracies while imposing the lowest
complexities.
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1. Introduction1

For decades, research in artificial neural networks has mainly investigated2

the best way to determine network-free parameters, which produces a model3

with low generalization error. Various approaches were proposed, but a large4

volume of work is based on a first or second-order derivative approach in5

respect to the loss function. Due to the rapid technological progress in data6

storage, capture, and transmission, the machine learning community has en-7

countered an information explosion, which calls for scalable data analytics.8

Significant growth of the problem space has led to a scalability issue for con-9

ventional machine learning approaches, which require iterating entire batches10

of data over multiple epochs. This phenomenon results in a strong demand11

for a simple, fast machine learning algorithm to be well-suited for deploy-12

ment in numerous data-rich applications [1]. This provides a strong case for13

research in the area of randomness in neural networks [2, 3], which was very14

popular in the late 80s and early 90s. This concept offers an algorithmic15

framework, which allows them to generate most of the network parameters16

randomly while still retaining reasonable performance [3]. One of the most17

prominent examples of randomness in neural networks is the random vector18

functional link network (RVFLN) which features solid universal approxima-19

tion theory under strict conditions [4].20

Due to its simple but sound working principle, randomness in neural net-21

works has regained its popularity in the current literature [5, 6, 7, 8, 9].22

Nonetheless, the vast majority of work in the literature suffers from the23

issue of complexity which makes their computational complexity and mem-24

ory burden prohibitive for data stream analytics since their complexities are25

manually determined and rely heavily on expert domain knowledge. These26

works present a model with a fixed size which lacks of adaptive mechanism27

to encounter changing training patterns in the data streams. The random28

selection of network parameters often causes the network complexity to go29

beyond what is necessary due to the existence of superfluous hidden nodes30

which contribute little to the generalization performance [25]. Although the31

universal approximation capability of such an approach is assured only when32

sufficient complexity is selected, choosing a suitable complexity for a given33

problem entails expert-domain knowledge and is problem-dependent.34
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A novel RVFLN, namely the parsimonious random vector functional link35

network (pRVFLN), is proposed. pRVFLN combines the simple and fast36

working principles of RFVLN where all network parameters but the output37

weights are randomly generated with no tuning mechanism for hidden nodes.38

It characterises the online and adaptive nature of evolving intelligent systems.39

pRVFLN is capable of tracking any variations of data streams no matter how40

slow, rapid, gradual, sudden or temporal the drifts in data streams because it41

can initiate its learning structure from scratch with no initial structure and its42

structure is self-evolved from data streams in the one-pass learning mode by43

automatically adding, pruning and recalling its hidden nodes [10]. Further-44

more, it is compatible for online real-time deployment because data streams45

are handled without revisiting previously seen samples. pRVFLN is equipped46

with a hidden node pruning mechanism which guarantees a low structural47

burden and the rule recall mechanism which aims to address cyclic concept48

drift. pRVFLN incorporates a dynamic input selection scenario which makes49

possible the activation and deactivation of input attributes on the fly and50

an online active learning scenario which rules out inconsequential samples51

from the training process. pRVFLN is a plug-and-play learner where a single52

training process encompasses all learning scenarios in a sample-wise man-53

ner without pre-and/or post-processing steps. pRVFLN offers at least four54

novelties: 1) it introduces the interval-valued data cloud paradigm which is55

an extension of the data cloud in [11]. This modification aims to induce56

robustness in dealing with data uncertainty caused by noisy measurement,57

noisy data, etc. Unlike conventional hidden nodes, the interval-valued data58

cloud is parameter-free and requires no parametrization. It evolves naturally,59

similar to real data distribution; 2) an online active learning scenario based60

on the sequential entropy method (SEM) is proposed. The SEM is derived61

from the concept of neighbourhood probability [12] but here the concept of62

the data cloud is integrated. The data cloud concept simplifies the sample63

selection process because the neighbourhood probability is inferred with ease64

from the activation degree of the data cloud; 3) pRVFLN is capable of au-65

tomatically generating its hidden nodes on the fly with the help of a type-266

self-constructing clustering (T2SCC) mechanism [13, 14]. This rule growing67

process differs from existing approaches because the hidden nodes are cre-68

ated from the rule growing condition, which considers the locations of the69

data samples in the input space; 4) pRVFLN is capable of carrying out an70

online feature selection process, borrowing several concepts of online feature71

selection (OFS) [15]. The original version [15] is generalized here since it72
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is originally devised for linear regression and calls for some modification to73

be a perfect fit for pRVLFN. The prominent trait of this method lies in a74

flexible online feature selection scenario, which makes it possible to select or75

deselect input attributes on demand by assigning crisp weights (0 or 1) to76

input features.77

The efficacy of pRVFLN was thoroughly evaluated using numerous real-78

world data streams and was benchmarked against recently published algo-79

rithms in the literature, with pRVFLN demonstrating a highly scalable ap-80

proach for data stream analytics while retaining acceptable generalization81

performance. An analysis of the robustness of random intervals was per-82

formed. It is concluded that random regions should be carefully selected83

and should be chosen close to the true operating regions of a system being84

modelled. Moreover, we also present a sensitivity analysis of the predefined85

threshold and study the effect of learning components. A supplemental doc-86

ument containing additional numerical studies is also provided in 1 and the87

MATLAB codes of pRVFLN have been made publicly available in 2 to help88

further study. Key mathematical notations are listed in Table 1.89

The rest of this paper is structured as follows: the network architecture of90

pRVFLN is outlined in Section 2; the algorithmic development of pRVFLN is91

detailed in Section 3; proof of concept is outlined in Section 4; and conclusions92

are drawn in the last section of this paper.93

2. Related Work94

The concept of randomness in neural networks was initiated by Broom-95

head and Iowe in their work on radial basis function networks (RBFNs)96

[3]. A closed pseudo-inverse solution can be formulated to obtain the output97

weights of the RBFN and the centres of RBF units can be randomly sampled98

from data samples. This work later was generalized in [16], where the centre99

of the RBF neurons can be sampled from an independent distribution of the100

training data. The randomness in neural networks was substantiated by the101

findings of White [9], who developed a statistical test on hidden nodes. It102

was found that some nonlinear structures in the mapping function can be103

neglected without substantial loss of accuracy. In [9], the input weights of104

1https://www.dropbox.com/s/lytpt4huqyoqa6p/supplemental document.docx?dl=0
2https://www.dropbox.com/sh/zbm54epk8trlnq9/AACgxLHt5Nsy7MISbgXcdkTba?dl=0
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the hidden layers are randomly chosen. It is shown that the input weights105

are not sensitive to the overall learning performance.106

A prominent contribution was made by Pao et al. with the random vector107

functional link network (RVFLN) [17]. This work presents a specific case of108

the functional link neural network [18], which embraces the concept of ran-109

domness in the functional link network. Note that a closed pseudo-inversion110

solution can be also defined for the RVFLN in lieu of the conjugate gradient111

(CG) approach. The universal approximation capability of the RVFLN is112

proven in [4] by formalising the Monte Carlo method approximating a limit-113

integral representation of a function. To attain the universal approximation114

capability, the hidden node should be chosen as either absolutely integrable or115

differentiable function. In practise, the region of random parameters should116

also be chosen carefully and the number of hidden nodes should be sufficiently117

large. There also exists another research direction in this area, namely reser-118

voir computing (RC), which puts forward a recurrent network architecture in119

order to take into account temporal dependencies between subsequent pat-120

terns and in order to avoid dependencies on time-delayed input attributes121

[19]. RC is constructed with a fixed number of recurrent layers and adopts122

the concept of randomness in neural network where all the parameters are123

randomly generated except the output weight. A comprehensive survey of124

randomness in neural network can be found in [2, 6].125

Since the last decade, RVFLN has transformed into one of the most vi-126

brant fields in the neural network community as evidenced by its numerous127

extensions and variations. The vast majority of RNNs in the literature are128

not compatible with online real-time learning situations because it requires a129

complete dataset to be collected after which it performs a one-shot learning130

process based on a closed pseudo-inverse solution. This issue led to the de-131

velopment of online learning in RVFLNs, which follows a single-pass learning132

concept [20, 21]. Nevertheless, this work still lacks the capability to cope133

with changing training patterns because they are built upon a fixed network134

structure which cannot evolve in accordance with up-to-date data trends.135

Several concepts of dynamic structure were offered in [22] and [8] by putting136

forward the notion of a growing structure. Notwithstanding their dynamic137

natures, concept drift remains an uncharted territory in these works because138

all parameters are chosen at random without paying close attention to the139

true data distribution. RC aims to address temporal system dynamics [19]140

but still does not consider a possible dramatic change of system behaviour.141

To the best of our knowledge, existing RC algorithms still suffers from the142
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Table 1: Key Mathematical Notations

Symbol Description

At ∈ <n The input weight vector

βt The output of expansion layer

Xt ∈ <n The input attribute

Tt ∈ <n The target attribute

xe ∈ <2n+1 The expanded input vector

wi ∈ <2n+1 The output weight vector

Bt The network bias

G̃i,temporal The interval-valued temporal firing strength

q ∈ <m The design factor

λ ∈ <R The recurrent weight vector

µ̃i ∈ <n The interval-valued local mean

Σ̃i ∈ <n The interval-valued mean square length

δi ∈ <n The uncertainty factor

H(N |Xn) The entropy of neighborhood probability

Ic(µ̃i, Xt) The input coherence

Oc(µ̃i, Xt) The output coherence

ζ() The correlation measure

ζ(G̃i,temp, Tt) The mutual information between i− th rule and the target concept

Ψi The output covariance matrix

absence of self-organizing mechanism. The problem of uncertainty is another143

open issue in the existing literature since most work utilises a crisp activation144

function generating certain activation degrees. Such functions lack a degree145

of tolerance against imprecision, inaccuracy and uncertainty in the training146

data. It is worth noting that uncertainty occurs for a number of reasons:147

noisy measurement, noisy data, false sensor reading, etc.148

3. Basic Concepts149

This section outlines the foundations of pRVFLN encompassing the basic150

concept of RVFLN [17], the use of the Chebyshev polynomial as the func-151
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tional expansion block [23] and the concept of data clouds [24].152

3.1. Random Vector Functional Link Network153

The idea of RVFLN was proposed by Pao in [17] and is one of the forms of154

the functional link network combined with the random vector approach [18].155

It starts with the fact that while the network parameters are set as random156

pairings of points, the training set can be still learned very well, although it157

does not remove the inherent nature of random process. It features the en-158

hancement node performing the nonlinear transformation of input attributes159

as well as the direct connection of input attributes to the output node. The160

activation degree of the enhancement node along with the input attributes161

is combined with a set of output weights to generate the final network out-162

put. The RVFLN only leaves the weight vector to be fine-tuned during the163

training process while the other parameters are randomly sampled from a164

carefully selected scope. Suppose that there are J enhancement nodes and165

N input attributes, the size of the output weight vector is W ∈ <(J+N). The166

quadratic optimization problem is then formulated as follows:167

E =
1

2P

P∑
p=1

(t(p) −Btd(p))2 (1)

where B ∈ <(N+J) is the output weight vector containing the N-dimensional168

original input vector also in addition to the weight values. d(p) is the output169

of the enhancement node. The RVFLN is similar to a single hidden layer170

feedforward network except for the fact that the hidden node functions as an171

enhancement of the input feature and there exists direct connection from the172

input layer to the output layer. The steepest descent approach can be used to173

fine-tune the output weight vector. If matrix inversion using pseudo-inverse174

is feasible, a closed-form solution can be formulated. The generalization175

performance of RVFLN was examined in [17] where RVFL can be trained176

rapidly with ease. The RVFLNs convergence is also guaranteed to be attained177

within a number of iterations.178

The RVFL can be modified by incorporating the idea of the functional179

link network [23]. That is, the hidden node or the enhancement node is180

replaced by the functional expansion block generating a set of linearly in-181

dependent functions of the entire input pattern. The functional expansion182

block can be formulated as trigonometric expansion [25], Chebyshev expan-183

sion, legendre expansion, etc. [23] but our scope of discussion is limited to184
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the Chebyshev expansion only due to its relevance to pRVFLN. Given the N -185

dimensional input vector X = [x1, x2, ..., xN ] ∈ <1×N and its corresponding186

m-dimensional target vector Y = [y1, y2, ..., ym] ∈ <1×m, the output of RVFL187

with the Chebyshev functional expansion block is expressed as follows:188

y =
2N+1∑
j=1

Bjφj(ANXN + bN) (2)

where Bj is the output weight vector and φj() is the Chebyshev functional189

expansion mapping the N-dimensional input attribute and the input weight190

vector to the higher 2N + 1 expansion space. As with the original RVFLN,191

the output weight vector can be learned using any optimization method. The192

2N + 1 here results from the utilisation of the Chebyshev series up to the193

second order. The Chebyshev series is mathematically written as follows:194

Tn+1 = 2xTn(x)− Tn−1(x) (3)

If we are only interested in the Chebyshev series up to the second order,195

this results in To(x) = 1, T1(x) = x, T2(x) = 2x2 − 1. The advantage of the196

Chebyshev functional link compared to other popular functional links such as197

trigonometric [25], legendre, power function, etc. [23] lies in its simplicity of198

computation. The Chebyshev function scatters fewer parameters to be stored199

into memory than the trigonometric function, while the Chebyshev function200

has a better mapping capability than the other polynomial functions of the201

same order. In addition, the polynomial power function is not robust against202

an extrapolation case.203

3.2. Data Cloud204

The concept of the data cloud offers an alternative to the traditional205

cluster concept where it is not shape-specific and evolves naturally in ac-206

cordance with the true data distribution. It is also easy to use because it207

is non-parametric and does not require any parameterization. This strat-208

egy is desirable because parameterization per scalar variable often calls for209

complex high-level approximation and/or optimization. This approach was210

inspired by the idea of RDE and was integrated in the context of the TSK211

fuzzy system [11, 24]. Unlike a conventional fuzzy system where a degree212

of membership is defined by a point-to-point distance, the data cloud com-213

putes an accumulated distance of the point of interest to all other points in214
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the data cloud without physically keeping all data samples in the memory215

similar to the local data density. This notion has a positive impact on the216

memory and space complexity because the number of network parameters217

significantly reduces. The data cloud concept is formally written as:218

γik =
1

1 + ||xk − µLk ||
2

+ ΣL
k − ||µLk ||

2 (4)

where γik denotes the i-th data cloud at the k-th observation. The data cloud219

evolves by updating the local mean µLk and square length of i-th local region220

ΣL
k as follows:221

µLk = (
M i

k − 1

M i
k

)µLk−1 +
xk
M i

k

, µL1 = x1 (5)

222

ΣL
k =

M i
k − 1

M i
k

ΣL
k−1 +

||xk||2

M i
k

,ΣL
1 = ||x1||2 (6)

It is worth noting that these two parameters correspond to statistics of the223

i-th data cloud and are computed recursively with ease using standard re-224

cursive formulas. They do not impose a specific optimization or a specific225

setting to be performed to adjust their values.226

4. Network Architecture of pRVFLN227

pRVFLN utilises a local recurrent connection at the hidden node which228

generates the spatiotemporal activation degree. This recurrent connection229

is realized by a self-feedback loop of the hidden node which memorizes the230

previous activation degree and outputs a weighted combination between pre-231

vious and current activation degrees spatiotemporal firing strength. In the232

literature, there exist at least three types of recurrent network structures re-233

ferring to its recurrent connections: global [26, 27], interactive [25], and local234

[28], but the local recurrent connection is deemed to be the most compati-235

ble recurrent type in our case because it does not harm the local property,236

which assures stability when adding, pruning and fine-tuning hidden nodes.237

pRVFLN utilises the notion of the functional-link neural network where the238

expansion block is created by the Chebyshev polynomial up to the second239

order. Furthermore, the hidden layer of pRVFLN is built upon an interval-240

valued data cloud [11] where we integrate the idea of an interval-valued local241

mean into the data cloud.242
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Suppose that a pair of data points (Xt, Tt) is received at t-th time instant243

where Xt ∈ <n is an input vector and Tt ∈ <m is a target vector, while n244

and m are respectively the number of input and output variables. Because245

pRVFLN works in a strictly online learning environment, it has no access246

to previously seen samples, and a data point is simply discarded after being247

learned. Due to the pre-requisite of an online learner, the total number of248

data N is assumed to be unknown. The output of pRVFLN is defined as249

follows:250

yo =
R∑
i=1

βiG̃i,temporal(AtXt +Bt), G̃temporal = [G,G] (7)

where R denotes the number of hidden nodes and βi stands for the i-th251

output of the functional expansion layer, produced by weighting the weight252

vector with an extended input vector βi = xTe wi. xe ∈ <(2n+1)×1 is an253

extended input vector resulting from the functional link neural network based254

on the Chebyshev function up to the second order [23] as shown in (3) and255

wi ∈ <(2n+1)×1 is a connective weight of the i-th output node. The definition256

of βi is rather different from its common definition in the literature because257

it adopts the concept of the expansion block, mapping a lower dimensional258

space to a higher dimensional space with the use of certain polynomials. This259

paradigm produces the extended input vector xe as follows:260

νp+1(x) = 2xjνp(xj)− νp−1(xj) (8)

where ν0(xj) = 1, ν1(xj) = xj, ν2(xj) = 2x2j − 1. Suppose that three input261

attributes are given X = [x1, x2, x3], the extended input vector is expressed as262

the Chebyshev polynomial up to the second order xe = [1, x1, ν2(x1), x2, ν2(x2),263

x3, ν(x3)]. Note that the term 1 here represents an intercept of the output264

node to avoid going through the origin, which may risk an untypical gradient.265

At ∈ <n is an input weight vector randomly generated from a certain range.266

Bt is removed for simplicity. G̃i,temporal is the i-th interval-valued data cloud,267

triggered by the upper and lower data cloud Gi,temporal, Gi,temporal. Note that268

recurrence is not seen in (7) because pRVFLN makes use of local recurrent269

layers at the hidden node. By expanding the interval-valued data cloud [29],270

the following is obtained:271

yo =
R∑
i=1

(1− qo)βiGi,temporal +
R∑
i=1

qoβiGi,temporal (9)
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where q ∈ <m is a design factor to reduce an interval-valued function to a
crisp one [29]. It is worth noting that the upper and lower activation func-
tions Gi,temporal, Gi,temporal deliver spatiotemporal characteristics as a result
of a local recurrent connection at the i-th hidden node, which combines the
spatial and temporal firing strength of the i-th hidden node. These temporal
activation functions output the following.

Gt
i,temporal = λiG

t
i,spatial + (1− λi)Gt−1

i,temporal,

G
t

i,temporal = λiG
t

i,spatial + (1− λi)G
t−1
i,temporal (10)

where λ ∈ <R is a weight vector of the recurrent link. The local feedback272

connection here feeds the spatiotemporal firing strength at the previous time273

step G̃t−1
i,temporal back to itself and is consistent with the local learning princi-274

ple. This trait happens to be very useful in coping with the temporal system275

dynamic because it functions as an internal memory component which mem-276

orizes a previously generated spatiotemporal activation function at t − 1.277

Also, the recurrent network is capable of overcoming over-dependency on278

time-delayed input features and lessens strong temporal dependencies of sub-279

sequent patterns. This trait is desired in practise since it may lower the input280

dimension, because prediction is done based on the most recent measurement281

only. Conversely, the feedforward network often relies on time-lagged input282

attributes to arrive at a reliable predictive performance due to the absence283

of an internal memory component. This strategy at least entails expert284

knowledge for system order to determine the suitable number of delayed285

components.286

The hidden node of the pRVFLN is an extension of the cloud-based hidden287

node, where it embeds an interval-valued concept to address the problem of288

uncertainty [30]. Instead of computing an activation degree of a hidden node289

to a sample, the cloud-based hidden node enumerates the activation degree290

of a sample to all intervals in a local region on-the-fly. This results in local291

density information, which fully reflects real data distributions. This concept292

was defined in AnYa [11, 24]. This concept is also the underlying component293

of AutoClass and TEDA-Class [31], all of which come from Angelovs sound294

work of RDE [24]. This paper aims to modify these prominent works to the295

interval-valued case. Suppose that Ni denotes the support of the i-th data296

cloud, an activation degree of i-th cloud-based hidden node refers to its local297
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density estimated recursively using the Cauchy function:298

G̃i,spatial =
1

1 +
Ni∑
k=1

( x̃k−xt
Ni

)

, x̃k = [xk,i, xk,i], G̃i,spatial = [Gi,spatial, Gi,spatial]

(11)
where x̃k is k-th interval in the i-th data cloud and xt is t-th data sample.
It is observed that (11) requires the presence of all data points seen so far.
Its recursive form is formalised in [24] and is generalized here to the interval-
valued case:

Gi,spatial =
1

1 + ||ATt xt − µi,Ni
||2 + Σi,Ni

− ||µi,Ni
||2
,

Gi,spatial =
1

1 + ||ATt xt − µi,Ni
||2 + Σi,Ni

− ||µ
i,Ni
||2

(12)

where µ
i
, µi signify the upper and lower local means of the i-th cloud:

µ
i,Ni

= (
Ni − 1

Ni

)µ
i,Ni−1

+
xi,Ni

−∆i

||Ni||
, µ

i,1
= xi,1 −∆i,

µi,Ni
= (

Ni − 1

Ni

)µi,Ni−1 +
xi,k + ∆i

||Ni,k||
, µi,1 = xi,1 + ∆i (13)

where ∆i is an uncertainty factor of the i-th cloud, which determines the
degree of tolerance against uncertainty. The uncertainty factor creates an
interval of the data cloud, which controls the degree of tolerance for uncer-
tainty. It is worth noting that a data sample is considered as a population
of the i-th cloud when resulting in the highest density. Moreover, Σi,Ni

,Σi,Ni

are the upper and lower mean square lengths of the data vector in the i-th
cloud as follows:

Σi,Ni
= (

Ni − 1

Ni

)Σi,Ni−1 +
||xi,Ni

||2 −∆i

||Ni||
, Σi,1 = ||xi,1||2 −∆i,

Σi,Ni
= (

Ni − 1

Ni

)Σi,Ni−1 +
||xi,Ni

||2 + ∆i

||Ni||
, Σi,1 = ||xi,1||2 + ∆i (14)

Although the concept of the cloud-based hidden node was generalized in299

TeDaClass [32] by introducing the eccentricity and typicality criteria, the300

interval-valued idea is uncharted in [32]. Note that the Cauchy function is301
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depicted in Fig. 1 and 2 respectively. 

Fig. 1 Network Architecture of pRVFLN 

Figure 1: Network Architecture of pRVFLN

asymptotically a Gaussian-like function, satisfying the activation function302

requirement of the RVFLN to be a universal approximator.303

Unlike conventional RVFLNs, pRVFLN puts into perspective a nonlinear304

mapping of the input vector through the Chebyshev polynomial up to the305

second order. Note that recently developed RVFLNs in the literature mostly306

are designed with a zero-order output node [5, 6, 7, 8]. The functional ex-307

pansion block expands the output node to a higher degree of freedom, which308

aims to improve the local mapping aptitude of the output node. pRVFLN309

implements the random learning concept of the RVFLN, in which all pa-310

rameters, namely the input weight A, design factor q, recurrent link weight311

λ, and uncertainty factor Delta, are randomly generated. Only the weight312

vector is left for parameter learning scenario wi. Since the hidden node is313

parameter-free, no randomization takes place for hidden node parameters.314

The network structure of pRVFLN and the interval-valued data cloud are315

depicted in Fig. 1 and 2 respectively.316

5. Learning Policy of pRVFLN317

This section discusses the learning policy of pRVFLN. Section 5.1 out-318

lines the online active learning strategy, which deletes inconsequential sam-319

ples. Samples, selected in the sample selection mechanism, are fed into the320
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learning process of pRVFLN. Section 5.2 deliberates the hidden node growing321

strategy of pRVFLN. Section 5.3 elaborates the hidden node pruning and re-322

call strategy, while Section 5.4 details the online feature selection mechanism.323

Section 5.5 explains the parameter learning scenario of pRVFLN. Algorithm324

1 shows the pRVFLN learning procedure.325

5.1. Online Active Learning Strategy326

The active learning component of the pRVFLN is built on the extended327

sequential entropy (ESEM) method, which is derived from the SEM method328

[12]. The ESEM method makes use of the entropy of the neighborhood prob-329

ability to estimate the sample contribution. The underlying difference from330

its predecessor [12] lies in the integration of the data cloud paradigm, which331

greatly relieves the effort in finding the neighborhood probability because the332

data cloud itself is inherent with the local data density, taking into account333

the influence of all samples in a local region. Furthermore, it handles the334

regression problem which happens to be more challenging than the classifi-335

cation problem because the sample contribution is estimated in the absence336

of a decision boundary. To the best of our knowledge, only Das et al. [33]337

address the regression problem, but they still employ a fully supervised tech-338

nique because their method depends on the hinge error function to evaluate339

the sample contribution. The concept of neighborhood probability refers to340

the probability of an incoming data stream sitting in the existing data clouds:341

P (Xi ∈ Ni) =

Ni∑
k=1

M(Xt,xk)
Ni

R∑
i=1

Ni∑
k=1

M(Xt,xk)
Ni

(15)

where XT is a newly arriving data point and xn is a data sample, associated342

with the i-th rule. M(XT,xk) stands for a similarity measure, which can343

be defined as any similarity measure. The bottleneck is however caused by344

the requirement to revisit already seen samples. This issue can be tackled345

by formulating the recursive expression of (15). In the context of the data346

cloud, this issue becomes even simpler, because it is derived from the idea347

of local density and is computed based on the local mean [11]. (15) is then348

written as follows:349

P (Xi ∈ Ni) =
Λi

R∑
i=1

Λi

(16)
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where Λi is a type-reduced activation degree Λi = (1−q)Gi,spatial+qGi,spatial.350

Once the neighbourhood probability is determined, its entropy is formulated351

as follows:352

H(N |Xi) = −
R∑
i=1

P (Xi ∈ Ni)logP (Xi ∈ Ni) (17)

Algorithm 1. Learning Architecture of pRVFLN353
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Algorithm 1: Parsimonious Random Vector Functional Link Net-
work
Given a data tuple at t − th time instant (Xt, Tt) = (x1, ..., xn, t1, ..., tm),
Xt ∈ <n, Tt ∈ <Rm; set predefined parameters α1, α2

/*Step 1: Online Active Learning Strategy/*
For i=1 to R do
Calculate the neighborhood probability (8) with spatial firing strength (4)
End For
Calculate the entropy of neighborhood probability (8) and the ESEM (10)
IF (34) Then
/*Step 2: Online Feature Selection/*
IF Partial=Yes Then
Execute Algorithm 3
Else IF
Execute Algorithm 2
End IF
/*Step 3: Data Cloud Growing Mechanism/*
For j=1 to n do
Compute ξ(xj, T0)
End For
For i=1 to R do
Calculate input coherence (12)
For o=1 to m do
Calculate ξ(µ̃i, T0)
End For
/*Step 4: Data Cloud Pruning Mechanism/*
For i=1 to R do
For o=1 to m do
Calculate ξ(G̃i,temp, T0)
End For
IF (19) Then
Discard i-th data cloud
End IF
End For
/*Step 5: Adaptation of Output Weight/*
For i=1 to R do
Update output weights using FWGRLS
End For

354
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The entropy of the neighbourhood probability measures the uncertainty355

induced by a training pattern. A sample with high uncertainty should be356

admitted for the model update, because it cannot be well-covered by an357

existing network structure and learning such a sample minimises uncertainty.358

A sample is to be accepted for model updates, provided that the following359

condition is met:360

H ≥ thres (18)

where thres is an uncertainty threshold. This parameter is not fixed dur-361

ing the training process, rather it is dynamically adjusted to suit the learning362

context. The threshold is set as thresN+1 = thesN(1 ± inc), where it aug-363

ments thresN+1 = thesN(1+ inc) when a sample is admitted for the training364

process, whereas it decreases thresN+1 = thesN(1 − inc) when a sample is365

ruled out for the training process. inc here is a step size, set at inc = 0.01.366

This simply follows its default setting in [21].367

368

5.2. Hidden Node Growing Strategy369

pRVFLN relies on the T2SCC method to grow interval-valued data clouds370

on demand. This notion is extended from the so-called SCC method [14, 13]371

to adapt to the type-2 hidden node working framework. The significance of372

the hidden nodes in pRVFLN is evaluated by checking its input and output373

coherence through an analysis of its correlation to existing data clouds and374

the target concept. Let µ̃i = [µ
i
, µi] ∈ <1×n be a local mean of the i-th375

interval-valued data cloud (5),Xt ∈ <n is an input vector and Tt ∈ <n is a376

target vector, the input and output coherence are written as follows:377

Ic(µ̃i, Xt) = (1− q)ζ(µi, Xt) + qζ(µ
i
, Xt) (19)

378

Oc(µ̃i, Xt) = (ζ(Xt, Tt)− ζ(µ̃i, Tt)), ζ(µ̃i, Tt) = (1− q)ζ(µi, Tt) + qζ(µ
i
, Tt)
(20)

where ζ() is the correlation measure. Both linear and non-linear correlation
measures are applicable here. However, the non-linear correlation measure
is rather hard to deploy in the online environment, because it usually calls
for the Discretization or Parzen Window method. The Pearson correlation
measure is a widely used correlation measure but it is insensitive to the scaling
and translation of variables as well as being sensitive to rotation [34]. The
maximal information compression index (MCI) is one attempt to tackle these
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problems and it is used in the T2SCC to perform the correlation measure
ζ()[34]:

ζ(X1, X2) =
1

2
(var(X1) + var(X2)

−
√

(var(X1) + var(X2))2 − 4var(X1)var(X2)(1− ρ(X1, X2)2))
(21)

ρ(X1, X2) =
cov(X1, X2)√

var(X1)var(X2)
(22)

where (X1, X2) are substituted with (µi, Xt), (µt, Xt), (µi, Tt), (µt, Tt), (Xt, Tt)379

to calculate the input and output correlation (19), (20). respectively stand380

for the variance of X, covariance of X1 and X2, and Pearson correlation381

index of X1 and X2. The local mean of the interval-valued data cloud rep-382

resents a data cloud because it represents a point with the highest density.383

In essence, the MCI method indicates the amount of information compres-384

sion when ignoring a newly observed sample. The MCI method features385

the following properties: 1) 0 ≤ ζ(X1, Y2) ≤ 0.5(var(X1) + var(X2)), 2)386

a maximum correlation is given by ζ(X1, X2) = 0, 3) a symmetric prop-387

erty ζ(X1, X2) = ζ(X2, X1), 4) it is invariant against the translation of the388

dataset, and 5) it is also robust against rotation.389

The input coherence explores the similarity between new data and ex-390

isting data clouds directly, while the output coherence focusses on their dis-391

similarity indirectly through a target vector as a reference. The input and392

output coherence formulates a test that determines the degree of confidence393

in the current hypothesis:394

Ic(µ̃i, Xt) ≤ α1, Oc(µ̃i, Xt) ≥ α2 (23)

where α1 ∈ [0.001, 0.01], α2 ∈ [0.01, 0.1] are predefined thresholds. If a hy-395

pothesis meets both conditions, a new training sample is assigned to a data396

cloud with the highest input coherence i∗. Accordingly, the number of in-397

tervals Ni∗, local mean and square length µ̃i∗ , Σ̃i∗ are updated respectively398

with (21) and (22) as well as Ni∗ = Ni∗ + 1. A new data cloud is introduced,399

provided that the existing hypotheses do not pass either condition (23) , that400

is, one of the conditions is violated. This situation reflects the fact that a new401

training pattern conveys significant novelty, which has to be incorporated to402

enrich the scope of the current hypotheses. Note that if a larger α1 is spec-403

ified, fewer data clouds are generated and vice versa, whereas if a larger α2404
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t is also robust against rotation.

Figure 2: Interval Valued Data Cloud

is specified, larger data clouds are added and vice versa. The sensitivity of405

these two parameters is studied in the section V.E of this paper. Because a406

data cloud is non-parametric, no parameterization is committed when adding407

a new data cloud. The output node of a new data cloud is initialised:408

WR+1 = Wi∗ , ΨR+1 = ωI (24)

where ω = 105 is a large positive constant. The output node is set as the409

data cloud with the highest input coherence because this data cloud is the410

closest one to the new data cloud. Furthermore, the setting of covariance411

matrix ΨR+1 leads to a good approximation of the global minimum solution412

of batched learning, as proven mathematically in [35].413

5.3. Hidden Node Pruning and Recall Strategy414

pRVFLN incorporates a data cloud pruning scenario, termed the type-415

2 relative mutual information (T2RMI) method. This method was firstly416
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developed in [36] for the type-1 fuzzy system. This method is convenient to417

apply here because it estimates mutual information between a data cloud and418

a target concept by analysing their correlation. Hence, the MCI method (21),419

(22) is valid to measure the correlation between two variables. Although this420

method has been well-established [36], to date, its effectiveness in handling421

data clouds and a recurrent structure as implemented in pRVFLN is an open422

question. Unlike both the RMI method that applies the classic symmetrical423

uncertainty method, the T2RMI method is formalised using the MCI method424

as follows:425

ζ(G̃i,temp, Tt) = qζ(Gi,temp, Tt) + (1− q)ζ(Gi,temp, Tt) (25)

where Gi,temp, overlineGi,temp are respectively the lower and upper tempo-426

ral activation functions of the i-th rule. The temporal activation function427

is included in (25) rather than the spatial activation function in order to428

account for the inter-temporal dependency of subsequent training samples.429

The MCI method is chosen here because it possesses a significantly lower430

computational burden than the symmetrical uncertainty method but it is431

still more robust than a linear Pearson correlation index. A data cloud is432

deemed inconsequential, if the following is met:433

ζi < mean(ζi)− 2std(ζi) (26)

where mean(ζi), std(ζi) are respectively the mean and standard deviation434

of the MCI during its lifespan. This criterion aims to capture an obsolete435

data cloud which does not keep up with current data distribution due to436

possible concept drift, because it computes the downtrend of the MCI values437

during its lifespan. It is worth mentioning that mutual information between438

hidden nodes and the target variable is a reliable indicator for changing data439

distributions because it monitors significance of a local region with respect440

to the recent data context.441

The T2RMI method also functions as a rule recall mechanism to cope with442

cyclic concept drift. Cyclic concept drifts frequently happen in relation to the443

weather, customer preferences, electricity power consumption problems, etc.444

all of which are related to seasonal change. This points to a situation where445

a previous data distribution reappears in the current training step. Once446

pruned by the T2RMI, a data cloud is not forgotten permanently and is447

inserted into a list of pruned data clouds R∗ = R∗ + 1. In this case, its local448

mean, square length, population, an output node, and output covariance449
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matrix µ̃R∗ , Σ̃R∗ , NR∗ , βR∗ ,ΨR∗ , are retained in memory. Such data clouds450

can be reactivated in the future, whenever their validity is confirmed by an451

up-to-date data trend. It is worth noting that adding a completely new data452

cloud when observing a previously learned concept catastrophically erases the453

learning history. A data cloud is recalled subject to the following condition:454

max(ζi∗)
i∗=1,...,R∗

> max(ζi)
i=1,...,R

(27)

This situation reveals that a previously pruned data cloud is more relevant455

than any existing ones. This condition pinpoints that a previously learned456

concept reappears again. A previously pruned data cloud is then regenerated457

as follows:458

µ̃R+1 = µ̃R∗ , Σ̃R+1 = Σ̃R∗ , NR+1 = NR∗ , βR+1 = βR∗ ,ΨR+1 = ΨR∗ (28)

Although previously pruned data clouds are stored in memory, all previously459

pruned data clouds are excluded from any training scenarios except (18).460

Unlike its predecessors [10], this rule recall scenario is completely independent461

from the growing process (please refer to Algorithm 1).462

5.4. Online Feature Selection Strategy463

A prominent work, namely online feature selection (OFS), was developed464

in [15]. The appealing trait of OFS lies in its aptitude for flexible feature465

selection, as it enables the provision of different combinations of input at-466

tributes in each episode by activating or deactivating input features (1 or 0)467

in accordance to the up-to-date data trend. Furthermore, this technique is468

also capable of handling partial input attributes which are fruitful when the469

cost of feature extraction is too expensive. OFS is generalized here to fit the470

context of pRVFLN and to address the regression problem.471

We start our discussion from a condition where a learner is provided with472

full input variables. Suppose that B input attributes are to be selected in473

the training process and B < n, the simplest approach is to discard the input474

features with marginal accumulated output weights
R∑
i=1

2∑
j=1

βi,j and maintain475

only B input features with the largest output weights. Note that the second476

term
2∑
j=1

is required because of the extended input vector xe ∈ <(2n+1). The477

rule consequent informs a tendency or orientation of a rule in the target space478

21



which can be used as an alternative to gradient information [35]. Although it479

is straightforward to use, it cannot ensure the stability of the pruning process480

due to a lack of sensitivity analysis of the feature contribution. To correct481

this problem, a sparsity property of the L1 norm can be analyzed to exam-482

ine whether the values of n input features are concentrated in the L1 ball.483

This allows the distribution of the input values to be checked to determine484

whether they are concentrated in the largest elements and that pruning the485

smallest elements wont harm the models accuracy. This concept is actualized486

by first inspecting the accuracy of pRVFLN. The input pruning process is487

carried out when the system error is large enough Tt − yt > κ. Nevertheless,488

the system error is not only large in the case of underfitting, but also in489

the case of overfitting. We modify this condition by taking into account the490

evolution of system error |et + σt| > κ|et−1 + σt−1| which corresponds to the491

global error mean and standard deviation. The constant κ is a predefined492

parameter and fixed at 1.1. The output nodes are updated using the gradient493

descent approach and then projected to the L2 ball to guarantee a bounded494

norm. Algorithm 2 details the algorithmic development of pRVFLN.495

496

Algorithm 2. GOFS using full input attributes
Input : α learning rate, χ regularization factor, B the number of features
to be retained
Output : selected input features Xt,selected ∈ <1×B

For t=1,., T
Make a prediction yt
IF |et + σt| > 1.1|et−1 + σt−1| // for regression ô = max

o=1,...,m
(yo) 6= Tt or //

for classification
βi = βi − χα βi − αχ ∂E

∂βi
, βi = min(1,

1/
√
χ

||βi||2 )βi

Prune input attributes Xt except those of B largest
R∑
i=1

2∑
j=1

βi,j

Else
βi = βi − χαβi
End IF
End FOR

497

498

where α, χ are respectively the learning rate and regularization factor. We499

assign α = 0.2, χ = 0.01 following the same setting [15]. The optimization500

procedure relies on the standard mean square error (MSE) as the objective501
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function and utilises the conventional gradient descent scenario:502

∂E

∂βi
= (Tt − yt)

{
R∑
i=1

(1− q)Gi,temporal +
R∑
i=1

qGi,temporal

}
(29)

Furthermore, the predictive error has been theoretically proven to be bounded503

in [17] and the upper bound is also found. One can also notice that the GOFS504

enables different feature subsets to be elicited in each training observation t.505

A relatively unexplored area of existing online feature selection is a situa-506

tion where a limited number of features is accessible for the training process.507

To actualise this scenario, we assume that at most B input variables can508

be extracted during the training process. This strategy, however, cannot be509

done by simply acquiring any B input features, because this scenario risks510

having the same subset of input features during the training process. This511

problem is addressed using the Bernaoulli distribution with confidence level512

to sample B input attributes from n input attributes B < n. Algorithm 3513

displays the feature selection procedure.514

515
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Algorithm 3. GOFS using partial input attributes
Input : α learning rate, χ regularization factor, B the number of features
to be retained, ε confidence level
Output : selected input features Xt,selected ∈ <1×B

For t=1,., T
Sample γ from Bernaoulli distribution with confidence level ε
IF γt = 1
Randomly select B out of n input attributes X̃t ∈ <1×B

End IF
Make a prediction yt
IF |et + σt| > 1.1|et−1 + σt−1| // for regression ô = max

o=1,...,m
(yo) 6= Tt or //

for classification
X̂t = X̃t

/
(B/nε) + (1− ε)

βi = βi − χα βi − αχ ∂E
∂βi
, βi = min(1,

1
/√

χ

||βi||2 )βi

Prune input attributes Xt except those of B largest
R∑
i=1

2∑
j=1

βi,j

Else
βi,t = βi,t−1
End IF
End FOR

516

517

As with Algorithm 2, the convergence of this scenario has been theoreti-518

cally proven and the upper bound is derived in [17]. One must bear in mind519

that the pruning process in Algorithm 1 and 2 is carried out by assigning520

crisp weights (0 or 1), which fully reflect the importance of the input features.521

5.5. Random Learning Strategy522

pRVFLN adopts the random parameter learning scenario of the RVFLN,523

leaving only the output nodes W to be analytically tuned with an online524

learning scenario, whereas others, namely At, q, λ,∆, can be randomly gen-525

erated without any tuning process. To begin the discussion, we recall the526

output expression of pRVFLN as follows:527

yo =
R∑
i=1

βiG̃i,temporal(Xt;At, q, λ,∆) (30)
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Referring to the RVFLN theory, the activation function G̃i,spatial should be528

either integrable or differentiable:529 ∫
R

G2(x)dx <∞, or
∫
R

[G′(x)]2dx <∞ (31)

Furthermore, a large number of hidden nodes R is usually needed to ensure530

adequate coverage of data space because hidden node parameters are chosen531

at random [37]. Nevertheless, this condition can be relaxed in the pRVFLN,532

because the data cloud growing mechanism, namely the T2SCC method,533

partitions the input region in respect to real data distributions. The data534

cloud-based neurons are parameter-free and thus do not require any param-535

eterization, which often calls for a high-level approximation or complicated536

optimization procedure. Other parameters, namely At, q, λ,∆, are randomly537

chosen, and their region of randomisation should be carefully selected. Re-538

ferring to [38], the parameters are sampled randomly from the following.539 
b = −w0y0 − µ0

w0 = αw0; w0 ∈ [0; Ω]× [−Ω; Ω]d−1

y0 ∈ Id

µ0 ∈ [−2dΩ, 2dΩ]

(32)

where u,Ω, α are probability measures. Nevertheless, this strategy is im-540

possible to implement in online situations because it often entails a rigorous541

trial-error process to determine these parameters. Most RVFLNs work sim-542

ply by following Schmidt et al.s strategy [9], that is, setting the region of543

random parameters in the range of [-1,1].544

Assuming that a complete dataset Ξ = [X,T ] ∈ <N×(n+m) is observable, a545

closed-form solution of (23) can be defined to determine the output weights .546

Although the original RVFLN adjusts the output weight with the conjugate547

gradient (CG) method, the closed-form solution can still be utilised with548

ease [4]. The obstacle for the use of pseudo-inversion in the original work549

was the limited computational resources in 90’s. Although it is easy to use550

and ensures a globally optimum solution, this parameter learning scenario551

however imposes revisiting preceding training patterns which are intractable552

for online learning scenarios. pRVFLN employs the FWGRLS method [39]553

to adjust the output weight. As the FWGRLS approach has been detailed554

in [39], it is not recounted here.555
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Table 2: Details of Experimental Procedure

Section Mode Number of Runs Benchmark Algo-
rithm

Predefined Parameters Number of Samples Number of Input attributes

A (Nox Emission)
Direct Partition 10 times PANFIS, GENEFIS,

eTS, simpeTS,
DFNN, GDFNN, FAOS-
PFNN, ANFIS, BART-
FIS

α1 = 0.002, α2 = 0.02
826 170

Cross Validation 5 times in each fold DNNE, Online RVFL,
Batch RVFL

α1 = 0.002, α2 = 0.02

B (Tool Condition Monitoring)
Direct Partition 10 times PANFIS, GENEFIS,

eTS, simpeTS, DFNN,
GDFNN, FAOS-PFNN,
ANFIS, BARTFIS

α1 = 0.002, α2 = 0.02
630 12

Cross Validation 5 times in each fold DNNE, Online RVFL,
Batch RVFL

α1 = 0.002, α2 = 0.02

C (Nox Emission, Tool Condition Monitoring) Cross Validation 5 times in each fold N/A α1 = 0.002, α2 = 0.02 As above As above

D (Mackey Glass) Direct Partition 10 times N/A α1 = 0.002, α2 = 0.02 3500 4

E (BJ gas furnace) Direct Partition 10 times N/A N/A 290 2

5.6. Robustness of RVFLN556

The network parameters are usually sampled uniformly within a range of557

[-1,1] in the literature. A new finding of Li and Wang in [22] exhibits that558

randomly generating network parameters with a fixed scope [−α, α] does not559

ensure a theoretically feasible solution or often the hidden node matrix is560

not full rank. Surprisingly, the hidden node matrix was not invertible in all561

their case studies when randomly sampling network parameters in the range562

of [-1,1] and far better numerical results were achieved by choosing the scope563

[-200,200]. This trend was consistent with different numbers of hidden nodes.564

How to properly select scopes of random parameters and its corresponding565

distribution still require in-depth investigation [9]. In practice, a pre-training566

process is normally required to arrive at a decent scope of random parameters.567

Note that the range of random parameters by Igelnik and Pao [4] is still at568

the theoretical level and does not touch the implementation issue. We study569

different random regions in Section 5.5 to see how pRVFLN behaves under570

variations of the scope of random parameters.571

6. Numerical Examples572

This section presents the numerical validation of our proposed algorithm573

using case studies and comparisons with prominent algorithms in the litera-574

ture. Two numerical examples, namely modelling of Nox emissions from a car575

engine and tool condition monitoring in the ball-nose end milling process, are576

presented in this section, and the other three numerical examples are placed577

in the supplemental document 1 to keep the paper compact. Our numerical578

1https://www.dropbox.com/s/lytpt4huqyoqa6p/supplemental document.docx?dl=0
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Table 3: Prediction of Nox emissions Using Time-Series Mode

Model RMSE Node Input Runtime Network Samples

pRVFLN (P) 0.04 2 5 0.24 22 510

pRVFLN (F) 0.05 2 5 0.56 22 515

eT2Class 0.045 2 170 17.98 117304 667

PANFIS 0.052 5 170 3.37 146205 667

GENEFIS 0.048 2 2 0.41 18 667

Simp eTS 0.14 5 170 5.5 1876 667

BARTFIS 0.11 4 4 2.55 52 667

DFNN 0.18 548 170 4332.9 280198+NS 667

GDFNN 0.48 215 170 2144.1 109865 667

eTS 0.38 27 170 1098.4 13797 667

FAOS-PFNN 0.06 6 170 14.8 2216+NS 667

ANFIS 0.15 2 170 100.41 17178 667

studies were carried out under two scenarios: the time-series scenario and the579

cross-validation (CV) scenario. The time-series procedure orderly executes580

data streams according to their arrival and partitions data streams into two581

parts, namely training and testing. Simulations were repeated 10 times and582

numerical results were averaged from 10 runs to arrive at conclusive findings.583

In the time-series mode, pRVFLN was compared against 10 state-of-the-art584

evolving algorithms: eT2Class [40], BARTFIS [41], PANFIS [42], GENEFIS585

[43], eTS [44], simp eTS [45], DFNN [46], GDFNN [47], FAOSPFNN [48],586

ANFIS [49]. The CV scenarios were taken place in our experiment in order587

to follow the commonly adopted simulation environment of other RVFLNs in588

the literature where five runs per each fold were undertaken. pRVFLN was589

benchmarked against the decorelated neural network ensemble (DNNE) [5],590

online and batch versions of RVFL [9]. The pRVFLN MATLAB codes are591

provided in 2 while the MATLAB codes of DNNE and RVFL are available592

online 3,4. Comparisons were performed against five evaluation criteria: accu-593

2https://www.dropbox.com/sh/zbm54epk8trlnq9/AACgxLHt5Nsy7MISbgXcdkTba?dl=0
3http://homepage.cs.latrobe.edu.au/dwang/html/DNNEweb/index.html
4http://ispac.ing.uniroma1.it/scardapane/software/lynx/
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Table 4: Prediction of Nox emissions Using CV Mode

Model NRMSE Node Input Runtime Network Samples

pRVFLN (P) 0.12±0.04 2 5 1.1 22 699

pRVFLN (F) 0.12±0.03 2 5 5.98 22 630.7

DNNE 0.14±0 50 170 0.81 43600+NS 744

Online RVFL 0.52±0.02 100 170 0.03 87200 744

Batch RVFL 0.59±0.05 100 170 0.003 87200+NS 744

racy, data clouds, input attribute, runtime, network parameters. The scope594

of random parameters followed Schmidt’s suggestion [9] where the scope of595

random parameters was [-1,1] but we insert the analysis of robustness in596

part C which provides additional results with different random regions and597

illustrates how the scope of random parameters influences the final numerical598

results. The effect of the individual learning component to the end results and599

the influence of user-defined predefined thresholds are analysed in Section D600

and E. Furthermore, additional numerical results across different problems601

are provided in the supplemental document 1. To allow a fair comparison, all602

consolidated algorithms were executed in the same computational resources603

under the MATLAB environment. Details of the experimental procedure are604

tabulated in Table 2.605

6.1. Modeling of Nox Emissions from a Car Engine606

This section demonstrates the efficacy of the pRVFLN in modeling Nox607

emissions from a car engine [50]. This real-world problem is relevant to608

validate the learning performance, not only because it features noisy and609

uncertain characteristics similar to the nature of a car engine, it also char-610

acterizes high dimensionality, containing 170 input attributes. That is, 17611

physical variables were captured in 10 consecutive measurements. Further-612

more, different engine parameters were applied to induce changing the system613

dynamics to simulate real driving actions across different road conditions. In614

the time-series procedure, 826 data points were streamed to consolidated al-615

gorithms, where 667 samples were set as training samples, and the remainder616

were fed for testing purposes. 10 runs were carried out to attain consistent617

1https://www.dropbox.com/s/lytpt4huqyoqa6p/supplemental document.docx?dl=0
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numerical results. In the CV procedure, the experiment was run under the618

10-fold CV, and each fold was repeated five times similar to the scenario619

adopted in [26]. This strategy checks the consistency of the RVFLNs learn-620

ing performance because it adopts the random learning scenario and avoids621

data order dependency. Table 3 and 4 exhibit the consolidated numerical622

results of benchmarked algorithms.623

Table 5: Tool Wear Prediction Using Time Series Mode

Model RMSE Node Input Runtime Network Samples

pRVFLN (P) 0.14 2 8 0.34 34 157

pRVFLN (F) 0.19 2 8 0.15 34 136

eT2Class 0.16 4 12 1.1 1260 320

Simp eTS 0.22 17 12 1.29 437 320

eTS 0.15 7 12 0.56 187 320

BARTFIS 0.16 6 12 0.43 222 320

PANFIS 0.15 3 12 0.77 507 320

GENEFIS 0.13 42 12 0.88 507 320

DFNN 0.27 42 12 2.41 1092+NS 320

GDFNN 0.26 7 12 2.54 259+ NS 320

FAOS-PFNN 0.38 7 12 3.76 1022+NS 320

ANFIS 0.16 8 12 0.52 296+ NS 320

Table 6: Tool wear prediction using CV Mode

Model NRMSE Node Input Runtime Network Samples

pRVFLN (P) 0.16±0.01 1.3±0.2 8 0.2 22.1 245.8

pRVFLN (F) 0.17±0.06 1.92±0.1 8 0.3 32.6 432.1

DNNE 0.11±0 50 12 0.79 3310+NS 571.5

Online RVFL 0.16±0.01 100 12 0.02 1400 571.5

Batch RVFL 0.19±0.04 100 12 0.002 1400+NS 571.5

It is evident that pRVFLN outperformed its counterparts in all the evalua-624

tion criteria except GENEFIS for the number of input attributes and network625
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parameters. It is worth mentioning however that in the other three criteria:626

predictive accuracy, execution time, and number of training samples, the627

GENEFIS was inferior to ours. pRVFLN is equipped with an online active628

learning strategy, which discards superfluous samples. This learning mod-629

ule had a significant effect on predictive accuracy. Furthermore, pRVFLN630

utilizes the GOFS method, which is capable of coping with the curse of di-631

mensionality. Note that the unique feature of the GOFS method is that632

it allows different feature subsets to be picked up in every training episode633

which avoids the catastrophic forgetting of obsolete input attributes, tem-634

porarily inactive due to changing data distributions. The GOFS can handle635

partial input attributes during the training process and results in the same636

level of accuracy as that of the full input attributes. The use of full input637

attributes slowed down the execution time because it needed to deal with638

170 input variables first, before reducing the input dimension. In this case639

study, we selected five input attributes to be kept for the training process.640

Our experiment showed that the number of selected input attributes is not641

problem-dependent and is able to be set as any desirable number in most642

cases. We did not observe significant performance difference when using ei-643

ther the full input mode or partial input mode. On the other hand, consistent644

numerical results were achieved by pRVFLN, although the pRVFLN is built645

on the random vector functional link algorithm, as observed in the CV ex-646

perimental scenario. In addition, pRVFLN produced the most encouraging647

performance in almost all evaluation criteria except computational speed be-648

cause other RVFLNs implement less comprehensive training procedures than649

pRVFLN. Note that although DNNE attained the highest accuracy in the650

CV mode, it imposed considerable memory and space complexities.651

6.2. Tool Condition Monitoring of High-Speed Machining Process652

this section presents a real-world problem from a complex manufacturing653

process (Courtesy of Dr. Li Xiang, Singapore) [51]. The objective of this654

case study is to perform predictive analytics of the tool wear in the ball-655

nose end milling process frequently found in the metal removal process of656

the aerospace industry. In total, 12 time-domain features were extracted657

from the force signal and 630 samples were collected during the experiment.658

Concept drift in this case study resulted from changing surface integrity,659

tool wear degradation as well as varying machining configurations. For the660

time-series experimental procedure, the consolidated algorithms were trained661

using data from cutter A, while the testing phase exploited data from cutter662
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Figure 3: The frequency of input features

B. This process was repeated 10 times to achieve valid numerical results.663

For the CV experimental procedure, the 10-fold CV process was undertaken664

where each fold was undertaken five times to arrive at consistent findings.665

Tables 5 and 6 report the average numerical results across all folds. Fig. 3666

depicts how many times input attributes are selected during one fold of the667

CV process.668

It is observed from Table 5 and 6 that pRVFLN evolved the lowest struc-669

tural complexities while retaining a high accuracy. It is worth noting that670

although the DNNE exceeded pRVFLN in accuracy, it imposed considerable671

complexity because it is an offline algorithm revisiting previously seen data672

samples and adopts an ensemble learning paradigm. The efficacy of the on-673

line sample selection strategy was seen, as it led to a significant reduction of674

training samples to be learned during the experiment. Using partial input675

information led to subtle differences to those with the full input information.676

It is seen in Fig. 3 that the GOFS selected different feature subsets in ev-677

ery training episode. Additional numerical examples, sensitivity analysis of678
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predefined thresholds and analysis of learning modules are given in 1.679

6.3. Analysis of Robustness680

this section aims to numerically validate our claim in section III. E that a681

range [-1,1] does not always ensure the production of a reliable model [22, 51].682

Additional numerical results with different intervals of random parameters683

are presented. Four intervals, namely [0,0.1], [0,0.5], [0,0.8], [0,3], [0,5], [0,10]684

were tried for two case studies in section IV.A and IV.B. Our experiments685

were undertaken in the 10-fold CV procedure as done in previous sections.686

Table 7 displays the numerical results.687

For the tool wear case study, the best-performing model was generated688

by the range [0,0.1]. The higher the range of the model, the more inferior the689

model. It went to the point where a model was no longer stable under the690

range [0,3]. On the other side, the range [0,0.5] induced the best-performing691

model with the highest accuracy while evolving comparable network com-692

plexity for the Nox emission case study. The higher the scope led to the693

deterioration of numerical results. Moreover, the range [0,0.1] did not deliver694

a better accuracy than the range [0,0.5] since this range did not generate695

diverse enough random values. These numerical results are interpreted from696

the nature of pRVFLN a clustering-based algorithm. The success of pRVFLN697

is mainly determined from the compatibility of the zone of influence of hid-698

den nodes to a real data distribution, and its performance worsens when the699

scope is remote from the true data distribution. This finding is complemen-700

tary to Li and Wang [22] where it relies on a sigmoid-based RVFL network,701

and the scope of random parameters can be outside the applicable operating702

intervals. Its predictive performance is set by its approximation capability703

in the output space. It is worth-stressing that network parameters are ran-704

domly generated in a positive range since the uncertainty threshold setting705

the footprint of uncertainty is also chosen at random. Having negative values706

for this parameter causes invalid interval definitions and poor performance707

is returned as a result.708

6.4. Contributions of Learning Components709

This section demonstrates the efficacy of each learning module of the710

pRVFLN and analyses to what extent this learning module contributes to the711

1https://www.dropbox.com/s/lytpt4huqyoqa6p/supplemental document.docx?dl=0
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resultant learning performance. The experiment was undertaken using the712

Mackey-Glass time series problem, a control model of the production of white713

blood cells. This problem features the chaotic characteristic, whose nonlinear714

oscillations are well-accepted as a model of most psychological processes.715

This problem is described by the following mathematical model:716

dx(t)

dt
=

ax(t− τ)

1 + x10(t− τ)
− bx(t) (33)

where a = 0.2, b = 0.1 and τ = 85. The chaotic characteristic is attributed717

by τ ≥ 17. The nonlinear dependence of this problem is built upon the718

series-parallel identification model as follows:719

x(t+ 85) = f(x(t), x(t− 6), x(t− 12), x(t− 18)) (34)

3000 training data from the range of [201,3200] and 500 testing data from720

the range of [5001,5500] were generated using the fourth order Range-Kutta721

method. The effect of each learning component was investigated by studying722

the learning performance of pRVFLN under five learning configurations: A)723

this configuration refers to pRVFLN with a feedforward network architec-724

ture; B) the online active learning part is deactivated; C) we switch off the725

online feature selection; D) pRVFLN is executed with the absence of hidden726

node pruning and recall mechanisms. The numerical results are summarised727

in Table 8. As with previous case studies, the learning performance was ex-728

amined against five learning criteria: NDEI, hidden nodes, execution time,729

training samples, and input attributes. Our simulation was done under the730

time-series mode with 10 runs.731

It is obvious from Table 6 that each learning module played a critical732

role in the learning performance of pRVFLN. Without the recurrent connec-733

tion, the predictive accuracy of pRVFLN slightly deteriorated and this also734

increased the number of training samples to be seen in the training process.735

The difference in performance was negligible and imposed pRVFLN to see all736

the samples when the active learning strategy was shelved for the training737

process. This fact substantiates the efficacy of the active learning scenario in738

extracting important data points for the training process. The absence of the739

hidden node pruning mechanism triggered the increase of hidden nodes to740

be evolved during the training process and only minimally affected the pre-741

dictive accuracy. Moreover, pRVFLN was capable of learning data streams742

with partial input information as well as with full input information.743
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6.5. Sensitivity Analysis of Predefined Thresholds744

This section examines the impact of two predefined thresholds, namely745

α1, α2, on the overall learning performance of pRVFLN. Intuitively, one can746

envisage that the higher the value of α1, the fewer the data clouds are added747

during the training process and vice versa, whereas the higher the value of748

α2, the higher the number of data clouds are generated. To further confirm749

this aspect, the sensitivity of these parameters is analysed using the box750

Jenkins (BJ) gas furnace problem. The BJ gas furnace problem is a popular751

benchmark problem in the literature, where the goal is to model the CO2752

level in off gas based on two input attributes: the methane flow rate u(n),753

and its previous one-step output t(n−1). From the literature, the best input754

and output relationship of the regression model is known as ŷ(n) = f(u(n−755

4), t(n − 1)). 290 data points were generated from the gas furnace, 200 of756

which were assigned as the training samples, and the remainder were utilised757

to validate the model.α1 was varied in the range of [0.002,0.004,0.006,0.008],758

while α2 was assigned the values of [0.02,0.04,0.06,0.08]. Two tests were759

carried out to test their sensitivity. That is, α1 was fixed at 0.002, while760

setting different values of α2, whereas α2 was set at 0.02, while varying α1.761

Moreover, our simulation followed the time-series mode with 10 repetitions762

as aforementioned. The learning performance of pRVFLN was evaluated763

against four criteria: non-dimensional error index (NDEI), number of hidden764

nodes, execution time, number of training samples, and number of network765

parameters. The results are reported in Table 9.766

Referring to Table 9, it can be observed that pRVFLN can achieve satis-767

factory learning performance while demanding very low network, computa-768

tional, and sample complexities. Allocating different values of α1, α2 did not769

cause significant performance deterioration, where the NDEI, runtime and770

the number of samples were stable in the range of [0.27,0.38], [0.5,0.79], and771

[10,30] respectively. Note that the slight variation in these learning perfor-772

mances was attributed to the random learning algorithm of pRVFLN. On the773

other hand, the number of hidden nodes and parameters remained constant774

at 2 and 10 respectively and were not influenced by a variation of the two775

predefined thresholds. It is worth mentioning that the data cloud-based hid-776

den node of pRVFLN incurred modest network complexity because it did not777

have any parameters to be memorised and adapted. In all the simulations778

in this paper, α1 and α2 were fixed at 0.02 and 0.002 respectively to ensure779

a fair comparison with its counterparts and to avoid a laborious pretraining780

step in finding suitable values for these two parameters.781
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7. Conclusion782

A novel random vector functional link network, namely the parsimonious783

random vector functional link network (pRVFLN), is proposed. pRVFLN784

aims to provide a concrete solution to the issue of data stream by putting785

into perspective a synergy between adaptive and evolving characteristics and786

fast and easy-to-use characteristics of RVFLN. pRVFLN is a fully evolv-787

ing algorithm where its hidden nodes can be automatically added, pruned788

and recalled dynamically while all network parameters except the output789

weights are randomly generated with the absence of any tuning mechanism.790

pRVFLN is fitted by the online feature selection mechanism and the online791

active learning scenario which further strengthens its aptitude in processing792

data streams. Unlike conventional RVFLNs, the concept of interval-valued793

data clouds is introduced. This concept simplifies the working principle of794

pRVFLN because it neither requires any parameterization per scalar vari-795

ables nor follows a pre-specified cluster shape. It features an interval-valued796

spatiotemporal firing strength, which provides the degree of tolerance for un-797

certainty. Rigorous case studies were carried out to numerically validate the798

efficacy of pRVFLN where pRVFLN delivered the most encouraging perfor-799

mance. The ensemble version of pRVFLN will be the subject of our future800

investigation which aims to further improve the predictive performance of801

pRVFLN.802
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Table 7: Analysis of Robustness

Scope Criteria Tool Wear Nox emission

[0,0.1]

RMSE 0.13±0.008 1.9±0

Node 1.8±0.25 1

Input 8 5

Runtime 0.2±0.1 0.1±0.02

Network 30.9 11

Samples 503.1 1

[0,0.5]

RMSE 0.14±0.02 0.1±0.01

Node 1.92±0.2 1.98±0.14

Input 8 5

Runtime 0.18±0.008 5.7±0.3

Network 32.6 21.8

Samples 571.5 743.4

[0,0.8]

RMSE 0.47±0.42 0.18±0.3

Node 1.4±0.05 1.96±0.19

Input 8 5

Runtime 0.19±0.13 5.56±0.96

Network 23.8 21.6

Samples 385.1 711.24

[0,3]

RMSE

Unstable Unstable

Node

Input

Runtime

Network

Samples

[0,5]

RMSE

Unstable Unstable

Node

Input

Runtime

Network

Samples

[0,10]

RMSE

Unstable Unstable

Node

Input

Runtime

Network

Samples
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Table 8: Analysis of Learning Components

ALGORITHMS HIDDEN NODES INPUT RUNTIME PARAMETERS NDEI TRAINING SAMPLES

pRVFLN 1 2 0.7 5 0.46 2474.3

(A) 1.1 2 0.7 5.5 0.51 2480.1

(B) 1 2 0.7 5 0.46 3000

(C) 1 2 0.7 5 0.47 2474.3

(D) 1 2 0.7 5 0.51 2348.1

Table 9: Sensitivity Analysis

PARAMETERS NDEI HN RUNTIME NP

α1 = 0.002 0.3 19.3 0.52 96.5

α1 = 0.004 0.3 19.3 0.49 96.5

α1 = 0.006 0.3 35.9 0.67 179.5

α1 = 0.008 0.3 7.3 0.4 36.5

α2 = 0.02 0.3 17 0.44 85

α2 = 0.04 0.31 143 1.41 715

α2 = 0.06 0.32 196.3 2.01 981.5

α2 = 0.08 0.32 196.3 2.01 981.5
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