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We examine “dynamical similarities” in the Lagrangian framework. These are symmetries of
an intrinsically determined physical system under which observables remain unaffected, but
the extraneous information is changed. We establish three central results in this context:
i) Given a system with such a symmetry there exists a system of invariants which form a
subalgebra of phase space, whose evolution is autonomous; ii) this subalgebra of autonomous
observables evolves as a contact system, in which the friction-like term describes evolution
along the direction of similarity; iii) the contact Hamiltonian and one-form are invariants,
and reproduce the dynamics of the invariants. As the subalgebra of invariants is smaller than
phase space, dynamics is determined only in terms of this smaller space. We show how to
obtain the contact system from the symplectic system, and the embedding which inverts the
process. These results are then illustrated in the case of homogeneous Lagrangians, includ-
ing flat cosmologies minimally coupled to matter; the n-body problem and homogeneous,

anisotropic cosmology.
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I. INTRODUCTION

“Dynamical Similarity” is a term that has come
to mean the intrinsic indistinguishability of so-
lutions in relational theories [1, 2]. In a frame-
work in which the measuring apparatus (rods
and clocks) has to be established in the same
system as the observed physics, there is often a
redundancy that lies in assigning properties to
the rods and clocks that are chosen from within
the system. A real world example is that we de-
clare by fiat that the meter stick in Paris has a
fixed length which is unchanging, and that the
oscillation of a caesium atom has a fixed period.
This is often done for reasons of convenience.
In our everyday physics the ratio of the diam-
eter of the Earth to that of the meter stick is
unchanging, as is the ratio of a the radius of
a hydrogen atom to either of these. Therefore
it appears natural to choose that all these have
trivial evolutions in our models, and use any one
of these elements to define an external parameter
against which we evaluate subsystems. A similar
property holds for caesium oscillations, pendu-
lum clocks and the rotation of the Earth about
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its axis, and orbit around the sun. However, it is
particularly apparent in cosmology, for example,
that this is not a well motivated choice every-
where: If we adopt such a notion of length and
time, in the past such systems have no fixed rods
or clocks according to this definition, since the
gravitational force overwhelms the other forces
keeping these objects fixed. Our goal is to de-
scribe the reduced space of systems modulo this
freedom to make rescalings, as this should not af-
fect the physical observables, but map between
descriptions according to different choices of rod
or clock [3]. In the current paper we will restrict
ourselves to working only with vector fields on
phase space, leaving the couplings fixed. This
is done so that we can establish the mathemati-
cal structure of the theory in a simple setting. In
future work we will expand this to include rescal-
ing also the couplings in a manner such that the
intrinisic physics is unaltered.

Since we are interested in transformations
which preserve the dynamics of our theory, these
transformations must preserve the form of con-
served quantities. In particular, level surfaces
of the Hamiltonian should be mapped onto level
surfaces, hence H can be rescaled but not de-
formed. From the intrinsic perspective, this is to
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be expected, as time is not a direct observable
of our system, but rather must be inferred from
observations of subsystems which we choose as
clocks. A transformation which both halves a
velocity, and the rate of the clock with which
progress is measured creates a dynamical simi-
larity between the two solutions - these have the
same evolution, just with a rescaled time coor-
dinate. A helpful model to keep in mind (which
we will discuss at greater length later) is that
of orbits under a central potential sourcing an
inverse square law. For each orbit with semi-
latus rectum [, there exists a similar orbit with
semi-latus rectum al. Observers on each planet
would term their orbit times to be one ‘year’,
locally defined and related by a change of lapse.
The energies and angular momenta of the orbits
will rescale in a similar manner to the orbital pe-
riod. This retains symmetry at the level of the
action since the initial and final states s; and s9
which limit the integral should be functions of in-
trinsic observables - the interval in ¢ over which
the Lagrangian is to be integrated will vary. It
is important to note at this point that the two
body problem will in fact be insufficient to de-
rive fully relational mechanics: Once the sepa-
ration between the two bodies is employed as a
rod, there is no further relational motion in the
system. Furthermore, even given a fixed back-
ground, any central force law will admit circular
orbits. To discern the inverse square law, as per
Newton, closed elliptical orbits are key. Below
we show explicitly how this comes to happen.

In the following section we will give a precise
definition of the action of dynamical similarity
on phase space. Then, in section [[T]] we show
that the dynamics of the reduced space consist-
ing of the algebra of invariants of the dynamical
similarity behaves as a contact space. Here we
will establish the equivalence between the two
frameworks, and show that the apparently dissi-
pative description in terms of a contact manifold
matches with the idea of an “arrow of time” in
the manner introduced by Barbour et al. This
is generalized beyond the informative examples
of the Newtonian n-body problem to any Hamil-
tonian theory which exhibits a dynamical sim-
ilarity. In section [[V] we give an example class
of Lagrangian systems, those homogeneous in a

configuration variable, which exhibit this simi-
larity, and show explicitly the construction of the
contact system and the resulting dissipative dy-
namics. A particular illustrative example shows
that for a broad class of cosmological models,
the arrow of time introduced points in the direc-
tion of the expansion of space, and the “Janus
points” of qualitative similarity along physical
trajectory correspond to points of bounce or rec-
ollapse. In section |V| we show that the general
n-body system with potential homogeneous in
separation of particles (but of arbitrary power)
is dynamically similar under rescaling. From the
contact description of this we form the shape
space, and show that there is a natural exten-
sion of the results of Barbour et al to generic
potentials. The recent results of the continua-
tion of homogeneous cosmology beyond the big
bang singularity [4] are placed within this con-
text in section [VI[ Here we do not reproduce
the singularity result, but rather focus on how
dynamical similarity reveals the existence of the
autonomous system which remains well defined.
Finally in section [VII] we will remark upon the
significance of the results and future directions.

II. GENERATING DYNAMICAL
SIMILARITIES

We will begin our analysis with an action, the
minimization of which will provide our equations
of motion !. This will consist of the integral of
a Lagrangian one-form over a space of configu-
rations g and their velocities q.
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Throughout this discussion, although we will use
time, t, as a parametrization of a solution curve,
we will only consider (a subset of) the ¢ and ¢ to
be physically observable. Our motivation is that
we want to describe intrinsic, relational physics.
As such observations are not made directly of
time, but of a clock variable which represents

(2.1)
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of this section



time. In a similar fashion, we will choose to con-
sider any dimensionful variable not to be directly
observable, but only to be observable in dimen-
sionless ratios with other variables. Given a con-
figuration space @, the phase space, I' = T*Q,
is the cotangent bundle over the configuration
space. A symplectomorphism is a diffeomor-
phism f :I' — I" whose action is to preserve the
symplectic structure under pull-back: f*w = w.
Consider a vector field V consisting of a flow
¢; generating such diffeomorphisms; its action is
to Lie drag the symplectic structure: £yw = 0.
Such a vector field is called ‘locally Hamiltonian’.
In previous work some of the basic motivation
behind dynamical similarity was examined as an
extension of this to a a non-strictly canonical
transformation [5, 6] f : I' — T under which
ffw = aw for a € R, a is known as the valence
of the transformation. The vector field generat-
ing this on phase space is also referred to as a
‘Liouville vector field’ in the literature [7] 2.

We will be interested in projecting down un-
der the action of a continuous symmetry on
phase space, we will be considering symmetries
which are generated by flows on phase space.
The Lie derivative along such vector fields is
to propagate the symplectic structure rescaled;
Lgw = Aw. This is a non-strictly canonical
transformation. Since G is a vector field, it is lin-
ear, and thus without loss of generality we can fix
A = 1. This is a quite general construction; con-
sider the flow ¢, such that ¢jw = r(t)w, for some
strictly positive function r(¢). Reparametrizing
the flow we can enforce r(t) = exp(t) and hence
arrive at the result. It is clear from this defini-
tion that non-strictly canonical transformations,
(like their strict counterparts) comprise a group
under addition. A direct evaluation shows the
Lie bracket of any two such transformations of
the same valence is locally Hamiltonian. Due to
Cartan’s identity

Lx =doix +itxod (2.2)
and the fact that the symplectic two form is ex-
act (being the exterior derivative of the symplec-

2 In earlier works this was referred to as a ’scaled sym-
plectomorphism’

tic potential, w = df) evaluating the action of
the symplectic vector field is simply

Low =doigw (2.3)
and hence we know that G is a non-strictly

canonical transformation if tgw = 6 + d¢ for
some exact form d£, and hence we note that

L£agl = doitgb+i1godf =doigh + tgw
= 0+d(E&+ah) (2.4)

In this we have made the derivative term, d(§ +
tgf) explicit to highlight that this only con-
tributes a boundary term to the Lagrangian un-
der Lie dragging by our symmetry generator.
Equivalently, this can be surmised from the com-
mutativity of the Lie and exterior derivatives,
which together with G being locally Hamilto-
nian implies £gf = 0 + x for some exact form
X- In practical circumstances it is often simpler
to verify that the difference between tqw and 6
is a closed form - i.e. doigw = w.

Physics in our system is determined by the
Hamiltonian function H which generates time
evolution. The Hamiltonian flow is determined
by dH = 1x,,w (note that this is unique up to
a constant due to the fibre-wise invertibility of
w, giving the Poisson structure). Consider now
a diffeomorphism ¢g : I' — I' whose inverse f
both rescales the symplectic structure and the
Hamiltonian H alike, and whose flow consists of
a vector field G;

ffo=X f"H=aH (2.5)
As above, the vector field G is non-strictly
canonical, and acts to rescale the Hamiltonian.
We shall call such vector fields the generators of
dynamical similarity for reasons which will be-
come obvious. Following the normalization con-
ventions above;

GH=AH CLow=w (2.6)
Such a transformation acts only to rescale the
Hamiltonian flow:

([ Xy, Gllw = (1x,,£a — Latxy,)w

= (A—1)dH (2.7)



and hence from the non-degeneracy of w;

(X, G] = (A = 1) Xy (2.8)
It is important to note here that since G only
acts on H through its action on phase space vari-
ables, the transformation is only valid in the case
where H is a function of phase space variables
alone. This follows a light generalization of an
argument presented in [5] and [8]. Note that this
will necessarily change the non-zero energy of the
system. This is not unexpected, indeed trans-
forming reference frames between solutions (e.g.
working in center of mass coordinates) alters the
energy of the system by a constant. The role of
the Hamiltonian (i.e. the generator of time evo-
lution) #H in this construction is in fact unimpor-
tant; we could have chosen the generator of any
Hamiltonian vector field (generating a conserved
quantity of the system). For a Hamiltonian vec-
tor field, there is a conserved quantity C, defined
dC = 1yw. These commute with the Hamilto-
nian flow (as they are constant): [Xy, V] = 0.
From Jacobi’s identity;

(2.9)
we see that the first and third terms are iden-
tically zero and hence [V, G] is a Hamiltonian
vector field. Hence the action of G is to map
conserved quantities onto conserved quantities.

Given an invariant s of G we are able to de-
termine the action of G on the one-form dt:

_ ds N (1 — A)LdSXH
fodt = Lo (LdsXH>  (tasX)?
ds
= (1—-A =(1-A)dt (2.10
( )Ldsx?-t ( )dt  (2.10)

Thus we see that the transformation of the one-
form Hdt is simple: L£gHdt = Hdt - it scales
in exactly the same way as the symplectic po-
tential. Therefore we can present a powerful re-
sult: Given a generator of dynamical similarity,
G the Lagrangian L is rescaled by the the Lie
derivative along G. This arises directly as an
application of the above and equation , up
to boundary terms we see:

Lol =2Lcg0—Hdt)=0—-Hdt =L (2.11)

and hence although the action is rescaled by
an overall constant, the conditions that its
minimization places upon the invariants is un-
changed. In other words, the equations of mo-
tion of the invariants of G are unaffected by
the action of G. The boundary term introduced
does not consist of invariants of G.

A direct corollary of this is the autonomy of
invariants of G: Given a set of invariants of G,
the relative evolution of any two invariants is it-
self invariant. Evolution relative to an invariant
is given by the scaled evolution along the Hamil-
tonian vector field Xy .

to () =2 (&) =2 (i) -
dsy 52 Ldsy X

(2.12)
and thus the relational motion must also be an
invariant. The system’s closure is inherited from
the closure of the dynamics of the Lagrangian.
The orbit of the a generator of dynamical sim-
ilarity forms a one dimensional subspace of the
phase space under which invariant dynamics is
unaffected. Since the generator of dynamical
similarity acts to rescale the Lagrangian by an
overall factor, the equations of motion of the
invariants are unaffected, and these invariants
form a closed system. An observer who had ac-
cess to all the invariants of the theory could de-
rive the entire evolution of the system without
ever referencing the non-invariants.

We note from this that not only does the exis-
tence of a dynamical similarity necessarily imply
the existence of an invariant system, but also in-
forms us as to the form of the invariant variables
themselves. These are functions of the coordi-
nates and momenta in phase space, f(g;,p’) such
that £gf = 0. An arbitrary power of an invari-
ant is also invariant, as any linear combination
of invariants. Given any invariant coordinates
(or momenta), the ratio of their conjugate mo-
menta (coordinates) will also be invariant. Fur-
ther, given any two non-invariants basis elements
of phase space, x,y with eigenvalues a, b respec-
tively, the ratio 57 is also invariant. From this
and Leibniz rule, it is apparent that invariants
form an algebra.

Let us here recapitulate the significant results
of this section. We have shown a general form
for a non-strictly canonical transformation which



acts on phase space variables such the the Hamil-
tonian is rescaled. Using this form we estab-
lished that there exists an algebra of invariants,
whose evolution is unaffected by the transforma-
tion and autonomous. Therefore given such a
dynamical similarity, an observer who only had
access to relational degrees of freedom could not
distinguish where along the orbit of the symme-
try they were. An intrinsic observer would iden-
tify the same physics in each situation.

III. CONTACT FORMS AND SHAPE

SPACE

Once we have determined the existence of a dy-
namical similarity and identified the algebra of
invariants, our goal is now to describe physics
purely in terms of these invariants. Since these
form an autonomous system within the full sym-
plectic framework, we could express dynamics in
the full framework and project down to the in-
variants, using the unobservable directions like
Wittgenstein’s ladder. However, it is possible
that the extended dynamical system will have
points at which the equations become divergent
due to the behaviour of the unobservables. This
was shown to be the case in Homogeneous cos-
mology recently, where it was found that al-
though singularities exist in the extended frame-
work, there exists an autonomous subset of in-
variant variables whose evolution remains well
defined even at the big bang singularity [4].
Therefore we are motivated to construct our
physical theory directly on the space of invari-
ants and show that this gives equivalent evolu-
tion for the observables to the symplectic system
where the latter remains well defined. This mo-
tivates the introduction of ‘contact dynamics’ -
a counterpart to symplectic dynamics that takes
an odd dimensional space as the basis for physics
[9]. Our goal in this section is to show the equiv-
alence between a symplectic system with a dy-
namical similarity and contact dynamics of the
reduced space of invariants.

We begin with an odd-dimensional manifold,
M with dimension n + 1. A contact form 7
on this space is the odd-dimesional counterpart
to the symplectic potential [I0]. In particular,

n A (dn)™? is a volume form on M. There ex-
ists universally a set of coordinates A,y’,z; for
M, the ‘Darboux coordinates’, in which n =
—dA+y'dz;. Primarily, contact geometry is con-
cerned with the kernel of 1, and hence it is nor-
mally defined up to an overall scale [11]. This
freedom to rescale 7 is important when recover-
ing the symplectic system from which the con-
tact dynamics is derived.

Given a vector field X on M, the contact
Hamiltonian, ¢ is txn [12]. The relationship
with the usual Hamiltonian on an even dimen-
sional space is that the contact Hamiltonian to-
gether with the contact form generate the flow.
In Darboux coordinates the dynamics of the sys-
tem is then given:

LM OHC oA

T Ty T e Y oA

, OHe

A= 25 e 1
Yoy H (3.1)

It can then be easily shown that He = —HE 887;510.
Here we see an important distinction from the
symplectic dynamics - the contact Hamiltonian
is only conserved when it is either independent
of A (and hence % becomes a symmetry of the
system) or zero explicitly. Hence the dynamics
of a contact system is similar to that of a non-
conservative flow, and this system will exhibit
friction-like properties.

The relation with our interest in dynamical
similarity is readily apparent. Treated as a man-
ifold, the set of invariants of a generator of dy-
namical similarity G form a contact manifold

with contact form n = “€% in which p is an
eigenfunction of G with eigenvalue 1. Chosen
in this way, n is an invariant of G:
Lolgw Lap Ladn
(3.2)
wherein we used the facts that L]23 = 0 and

dn = w. Going in the other direction is also quite
simple; the space of contact forms constitutes a
one-dimensional fibre bundle over M, with con-
tact forms related to one another by multipli-
cation by a positive real number. Thus we can
form the symplectification of our contact system
by first expressing the contact form in (local)



Darboux coordinates, and promoting the choice
of scalar to a coordinate. Note that since the
choice of scalar for the contact form is global,
we can unambiguously promote it to a global
coordinate over the contact manifold. Thus ex-
pressed, pn = —pdA + py'dz;. We further iden-
tify coordinates on this even dimensional mani-
fold: p° = A, p' = py’, qo = p, ¢; = x; to obtain a
symplectic potential of the usual form up to an
exact form:

0 = —qodp® + p'dq’ = podq” + p'dq’ — d(p°qo)
(3.3)
which corresponds to (tpw where w = df is the
usual symplectic structure, and

0 )
DZQoiJVpZ

0qo 8pi (3.4)

The contact Hamiltonian is the restriction of
the Hamiltonian to the invariants in a particular
choice of lapse:

HE = 1,Xy = Xy(ppw) = p w ™ (tpw, dH)
= p_ILDdH = ,O_ISDH = p_lAH (3.5)

and hence on such systems the dynamics gener-
ated by the contact Hamiltonian will agree ex-
actly with the dynamics of the invariants of D.
Furthermore, a specific choice of lapse, allows us
to pick a time coordinate such that H¢ o 2t in
which case we see an important result: the con-
tact Hamiltonian belongs to the algebra of in-
variants of D. The operations of differentiation
is closed on the algebra, hence we see that the
derived contact dynamics of this system will in-
deed be simply a function of the invariants alone.
Hence we see that a zero energy Lagrangian sys-
tem with a dynamical similarity is equivalent to
a contact system on the invariants of the dynam-
ical similarity, and vice-versa. The symplectifi-
cation of a contact system results in a dynami-
cal system with the same equations of motion on
invariants and has a dynamical similarity which
can be used to restore the contact system. We
can therefore translate freely between contact
systems and symplectic systems in this frame-
work. An identical result holds when the La-
grangian is homogeneous in one of the variables
- see below.

In the majority of cases the condition that
‘H is constant will allow us to solve for A as a
function of the y* and x;, and the energy of the
system. More precisely, if the surface H¢ = 0
is covered in some local chart by A = g(z,vy)
for some (possibly multivalued) function g, then
this requirement is just that % restricted to
the H¢ = 0 surface is independent of the choice
of branch of ¢g. This is not greatly restrictive
and often will amount to a choice of sign for
a square root, for example. In such a system,
then, the entire dynamics will be expressed only
in terms of the ‘shapes’ x; and their velocities
y', with some initial choice of E. Since time is
only determined up a lapse in the system, this
means that the 2; are only required up to scale;
a point and a direction on the shapes is enough
to determine an evolution.

The contact form determines a volume form
Vol = nAdn™? on the system. In the case where
3,247;; = 0 the evolution of this volume form has a
very simple form. Note that this condition is not
particularly restrictive; in terms of the original
symplectic system it amounts to the kinetic term
being diagonalizable in momenta. Since ¢,Xy; =
H¢ we see that

OHE
SXHW = —8777

(3.6)
Since the Lie and exterior derivatives commute,
we can thus calculated the action on the volume
form, Vol The Lie derivative of this along the
Hamiltonian flow is then [13]

OH®

LxVol=—(n/2+1) 9A

Vol

(3.7)

which determines the divergence of any flow.
This is where we find the appearance of dissi-
pation (in the sense parallel to that employed
in statistical mechanics) in our dynamical sys-
tem - the volume occupied by a set of solutions
on this space is not fixed, but evolves over time.
Thus given a volume of a measured set of mi-
crostates compatible with a macrostate at a time
t1, the volume occupied by this set of microstates
at to, a later time, will differ from that at ¢;.
We see that this divergence is exactly zero when
ag:f; = ( - this is a Janus point, a point along
a trajectory where the volume form would turn




around. At this point, the dynamics of the sys-
tem is instantaneously equivalent to that of a
symplectic system in which x and y are a con-
jugate pair evolving under the contact Hamil-
tonian with A treated as a constant. Follow-
ing the arguments employed by Barbour et al.
[14, [15], this is a necessary prerequisite for an
“arrow of time” to emerge in such systems - it’s
the direction of focussing of the contact form.
For an intrinsic system, the notion of time is
complex; it requires the formation of 'records’ -
information about past configurations which is
available to a contemporary observer. As such
these are expected to exist on a lower dimen-
sional subspace of the space of shapes. This is
a subtle issue, with wide-ranging philosophical
implications which is discussed at length in [16l-
19]. Furthermore care should be taken to distin-
guish between a variable which is to be used as
a clock, and one from which chronology can be
established. In general, a chronology is estab-
lished to provide an ordering on a set of events.
A clock further can be used to define a unit of
time. As noted in the introduction, the relevance
of using, he rotation of the Earth as a clock is
that the periodicity of the system is (approx-
imately) proportional to the periodicity of the
orbit of the Earth around the sun. The use of
a massless scalar field in cosmological models,
however, provides a chronology but would be of
little further use as a clock. In establishing a
chronology for our systems, of particular import
is that the contact version of Liouville’s theorem
is details the behaviour of the volume form alone,
any measure expressed in invariants can be used
together with this volume form without qualita-
tively changing the focussing result. Note that
this apparent direction of time may differ from
the configuration time ¢ which we have used as a
parameter along solution curves. When applied
to the universe as a complete system, this has
significant implications for the ‘Past Hypothe-
sis’, which is highly contentious [20]. Since the
odd dimensional form of Liouville’s theorem does
not conserve volume forms, the fact that there
is a state of low entropy in our past is no longer
surprising, but in fact a natural consequence of
the dynamics. The usual arguments regarding
the Past Hypothesis are all based in physics with

conserved volume forms, however as our dynam-
ics will break time symmetry as experienced by
an intrinsic observer, such arguments need to be
reconsidered.

IV. HOMOGENEOUS LAGRANGIANS

It is now easy to describe a simple yet interesting
class of Lagrangians - those which are homoge-
neous in one of the configuration variables. Un-
der a simple canonical transformation ) = ¢" we
see that the degree of homogeneity is immaterial
as such transformations can be used to always
pick a variable in which the degree is 1, for ex-
ample. Such Lagrangians encompass minimally
coupled gravitational systems as example cases
(see the attractor papers for the early work on
this). Therefore suppose that a Lagrangian, Lp,,
is homogeneous of degree 1 in the configuration
variable z, i.e. for some @ € R

E(az‘,am',@@ = aﬁ(x,i,@q;). (4.1)

The Euler-Lagrange equations for the ¢; are un-
affected by this transformation. Within such
a system, x cannot be a member of any shape
space, as the dynamics is insensitive to the value
of x up to this overall choice of scale. A trivial
calculation shows that P*, the momentum con-
jugate to x is unaffected by this change, nor is
the equation of motion for P*. However, the mo-
menta conjugate to the ¢; are rescaled by o~
Therefore we see that at the phase space level,
to reproduce this transformation we must rescale
the symplectic potential by the same factor, c.
Thus the dynamical similarity is
d ; d

F==z . + P Ipi
A simple calculation quickly reveals that this is
indeed a dynamical similarity:

(4.2)

Pidg; — xdP* =0 — d o 1p0
Hp,

LFW =

CrHy = (4.3)

A much more laborious direct calculation reveals
that £p X4 = 0. Further, under the action of F,
P? is an invariant, as are the zP".

In essence this is the reason that the Fried-
mann equation in homogeneous, flat cosmology



is independent of the volume v, but does depend
on its conjugate momentum, which is the Hubble
parameter.

In these systems, the symplectic form on
phase space naturally induces a contact form
on the space of invariants, n = ‘2. Since the
Hamiltonian flow is independent of the position
along the orbit of F', we find the contact Hamil-
tonian is the usual Hamiltonian

pi d?—l)
dP?

Xu(n) = vt <:UdH +

o= dzx

(4.4)

The contact form can be expressed in terms of
the space of invariants of F : {P%, ¢;,p' = %}
In terms of these invariants, n = x(p‘dq; — dP%)
and H = xh(P%, q;,p'). Thus any Lagrangian
which is homogeneous in one of the configuration
variables, X can be naturally associated with a
contact system on the reduced phase space con-
sisting of the conjugate momentum to X, the
remaining configuration variables and their con-
jugate momenta divided by X.

An important subset of these Lagrangians
is are those describing the dynamics of flat
Robertson-Walker cosmologies minimally cou-
pled to matter. Such cosmological models con-
sist of a mini-superspace model in which the only
gravitational degree of freedom corresponds to
the volume v of a fiducial cell. This is usually ex-
pressed through the scale factor a = v!/3. Here
we will remain in the volume representation for
two reasons. The first is that in General Rel-
ativity the Hubble parameter is the conjugate
momentum to volume. The second is that in
these variables it is readily apparent that min-
imal coupling of gravity to matter comprises a
homogeneous Lagrangian. The line element is
then

ds? = —dt? + v(t)*/3 (dz? + dy* + dz*)  (4.5)

and our phase space consists of the geometrical
variables v, PV and the matter degrees of free-
dom ¢;p'. The nature of the gravitational ac-
tion will relate these and provide a Hamiltonian
from which dynamics can be determined. Any
action based solely on geometrical quantities (or
equivalently, one which does not introduce an

external notion of scale) such as the Ricci tensor
must be homogeneous in v since the theory is
independent of the choice of fiducial cell used to
determine v.

These were discussed extensively in [21), 22]
with the existence of attractors established
within the broader framework of the symplectic
structure [23]. The general structure of a grav-
itational action minimally coupled to a matter
Lagrangian £,, with symplectic structure w,, is
in such cases

c=o (1O Lalai) @9
and hence the homogeneity of the Lagrangian in
v is readily apparent. From the dynamical sim-
ilarity of this system we can form the contact
form n = —dP? + P'dq; wherein P’ are the mo-
menta of the matter Lagrangian treated as free
from interaction. Therefore the contact form is
the symplectic potential for the uncoupled mat-
ter system, added to the exact form along the
remaining orthogonal direction, n = 6,, — dP".
The contact Hamiltonian is the Hamiltonian of
the matter component added to a function of the
Hubble parameter which acts as friction:

HE=F(P")+Hm (4.7)
Note that for example in General Relativity,
F(P®) « P"? and H = PV, in Loop Quantum
Cosmology F(P?) o sin®(4-) [24letc. We can
now find the dynamics of our system in terms of
the positions and momenta of the matter system.
Since the contact form is already in Darboux co-
ordinates we find:

. OMp _ OMm ;i OF
= opi ~ 0 apv
Pr=3Y"pP P (4.8)

From which we see a clear physical parallel for
the attractors of this system. The coupling
to gravity makes the matter system behave as
though it were subject to friction terms - it is a
dissipative system on the shape space. The pres-
ence of attractors is therefore unsurprising; the
expansion of the universe removes energy from
the matter system. Since F'is a function which is



independent of the matter degrees of freedom, so
is its derivative with respect to H. Up to a pos-
sible choice of branch, F’ can be inverted, and
solving the Hamiltonian constraint will allow us
to express the frictional term encountered as a
function of the matter degrees of freedom alone.

The volume form is dH A Vol,, in which
Vol,, = w is the volume form on the matter
phase space. From equation we see that the
focussing of the volume form comes from the ex-
pansion of the universe, giving a natural volume
weighting [25]:

Vol(ts) = Vol(ty) exp| / Hat) = 2Vol(n)

(4.9)
Thus solutions with the greatest expansion are
attractors. It further follows that any point of
bounce or recollapse of a solution is a Janus
point, regardless of the specific gravitational the-
ory, and that the “arrow of time” in the Bar-
bour sense, must point in the direction of the
expansion of space. The space of solutions to
the contact Hamiltonian constraint is finite for
any given choice of the Hubble parameter, and
thus evades the serious measure problems inher-
ent in non-compact spaces [26]. This is a direct
result of the dynamical similarity, which has re-
duced the space of solution by identifying those
in the symplectic system which are connected
by the orbits of the dynamical similarity. In this
case, the symplectic system is non-compact, as
the choice of volume at any given Hubble param-
eter is restricted to the positive real line. How-
ever, the contact system is insensitive to these
changes, and thus the space of intrinsically dis-
tinguishable solutions is compact, and hence we
avoid significant topological issues. This was
first identified in [27-29] in the context of in-
flationary models in Loop Quantum Cosmology,
wherein the dynamics provided a natural bounce
point at which to evaluate this measure.

V. DILATIONS IN THE N-BODY
SYSTEM

We will here examine the case of dynamical sim-
ilarity within a systems defined by a single La-
grangian with fixed external parameters. For

clarity, as we will be using powers of momenta
and coordinates regularly, we will write both co-
ordinates and momenta with their indices low-
ered henceforth. As we have shown, within such
a system if the phase space is of higher dimen-
sion than the space of physical observables there
will be redundancies in the description. Those
redundancies which generate strictly canonical
transformations are the usual gauge symmetries,
and those which generate their non-strict coun-
terparts are the dynamical similarities. One such
example of a system which has such a dynamical
similarity is the shape space of an N body sys-
tem in d dimensions. Intrinsically, we have no
access to a rod with which to measure the sepa-
ration of any two particles in this system, there-
fore we will identify any two configurations that
are related by a rescaling of all the distances be-
tween particles. Thus the generator of dilations
will act to provide the dynamical similarity. In
particular, consider a systems described in carte-
sian coordinates by

-2

=% _vg,..q) (5.1)

\]

wherein to potential V' is homogeneous of de-
gree v: V(Ag) = A'V(q), and Gallilean in-
variant: V(qi + Z,....,qy + %) = V(qi,...,qn)
wherein 7 is a uniform translation of all the par-
ticle positions (i.e. a change of origin for our
system) and V(Mdi,..., Mqy,) = V(4i,...,qn)
wherein M € O(d) acts on the position vectors of
the particles identically. Potentials, such as the
Coulomb potential, which only depend on par-
ticle separations V' = V(}_,.; Cij|¢ — ¢;|") are
members of this type. It is immediately apparent
that the generators of these transformations, T
and O are symplectomorphisms, and their asso-
ciated Nother charges (momentum and angular
momentum) are often used to reduce the descrip-
tion to center of mass coordinates with zero net
angular momentum. 3

3 Technically it is the continuous transformations of one
of the two subgroups SO(n) that generates angular mo-
mentum, and the Nother charge relies only on the con-
tinuous subgroup. Reflection is a discrete change and
therefore has no associtate Nother current. Other dis-
crete symmetries such as the interchange of two parti-



To form the shape space of this system we
need to identify a (function of a) (subset of the)
coordinate(s) to use as a rod. Ideally this will
be done such that the Hamiltonian flow on phase
space is easy to pull back onto the shape space.
For simplicity of exposition we will assume a
frame in which the system has zero net angular
momentum, but the center of mass of the system
has position . At this point we retain this de-
gree of freedom simply to show the difference be-
tween gauge identifications under the generator
of translations of the system (strictly canonical)
and that of dilations (non-strictly canonical).

The symmetry due to translation of the cen-
ter of mass is A, = %, and we can see clearly
that this generates a canonical transformation
as ta,w = dP, which is clearly exact. Since
the Hamiltonian is independent of the choice of
origin of coordinates, £A,7H = 0. The corre-
sponding freedom of choice frame under chang-
ing the center of mass momentum is generated
by Ap, = alPo which is also a symplectomor-
phism, and acts to shift the Hamiltonian by a
constant. This should be unsurprising as we are
removing energy from the system in transform-
ing to this coordinate basis. Since the change to
the Hamiltonian is a constant, the pullback of
the Hamiltonian flow onto shape space is unal-
tered. We can therefore unambiguously project
our system onto a subspace of the original phase
space defined by o = P, = 0, making the ob-
vious pullbacks of the symplectic structure and
Hamiltonian (noting that the first term in 6 is
trivially zero).

We also need to define a rod. A democratic
choice of such is to define a length scale by
R? = @. Our choice of evolution of scale will
be such that R is fixed in time, and typically we
will choose R = 1. Thus we find that the shape
space has dimension Dy = 2d(N — 2) — 2 and is
the sphere SPs~1. The scaling of the potential is
explicit here: V = R"V; wherein Vy, termed the
shape potential only depends on coordinates on
the shape sphere. If n = 2 we would have a ho-
mogeneous Lagrangian, and this would fall into

cles will be important in defining statistical ensembles
(Fermi vs Bose statistics).
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the category discussed above. If n = —2 the sys-
tem is conformally invariant, and thus dilations
are strictly canonical. The symmetry under di-
lation is already well understood, and thus we
exclude this from further discussion. For con-
venience of making explicit the act of the sym-
metry under choice of R we can express the La-
grangian in terms of this system as
2 2732
r_ R RT
2 2

—R"JT|  (52)

—

wherein we have introduced T'[@, ¢] to represent
the trigonometric functions which describe the
positions on the shape sphere corresponding to
the particle positions. These are the functions

T; = sin(¢q)sin(p2)... cos(¢p;)
Tp, = sin(¢1)sin(p2)...sin(¢p,)

Naturally Y77 = 1, and it is trivial, but te-
dious, to show the T; and their derivatives are
are mutually orthogonal and all are orthogonal
to R. Henceforth we will drop the vector no-
tation from 7T to avoid symbolic clutter. From
our setup we are now ready to perform the usual
Legendre transformation and obtain a Hamilto-
nian form and symplectic structure:

1 < Dy
(5.3)

PR PR
w = dPR AdR+dPr AdT  (5.4)

wherein we have obtained w from the symplectic
potential § = PrdR + PpdT. Dilations of our
system should map rescale R, yet leave the dy-
namics unchanged. The vector field generating
dilations is (up to a choice of scale) thus

1 ) ) )
D- (22 ) Pr—2— 4 nPr—2_
n+2<R8R+(n+ Prgp; T PR G P,
(5.5)

which we see has the correct action on interior
product with the symplectic two-form:

2
and £pH = 2.

The boundary states of our system, s; and
59, will depend only on the shape variables, T;.



Thus our time parameter ¢ must be constructed

from the orbits of these. We note that Pp = R2T

and thus we know that
RZ

dt = —dT 5.7
= .7
for any T chosen from the 7T;. Since these are
shape variables, D does not act upon them, and
thus we calculate

R? 2 —
Sodt = im0 d(5-dT) = +g

dt  (5.8)

and hence we see that the Hamiltonian as a one-
form is Lie dragged exactly, using Leibniz rule:

2

2
" dt +
n -+ 2

n

LpHdt =

—n
— Mt = Hdt (5.9)

We will now construct the invariants from which
the autonomous dynamics of the system can be
expressed directly. Since we have not specified
V', and have explicitly chosen D to be orthogonal
to the coordinates T, these will constitute one of
the invariants. We note that p = %HR% is an
eigenfunction of D with eigenvalue 1, hence can
be used to to find the invariants. By focussing
on the action of D on R we then see that a con-
struction of the two remaining invariants from R
and the momenta Pr and Pr gives us our com-
pete set:

PR . (n+2) Pr

A= =
Rn/2 2 ni?

(5.10)

wherein we have chosen the prefactor of B such
that the invariants are Darboux coordinates for

J
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the contact form n:

LDW

In this formulation, the contact Hamiltonian is
then, up to a choice of lapse:

A? 2\ B2
I p— — s 12
[ 2 +<n+2> Z 2 V. (5.12)

(2

from which we obtain the contact equations of
motion:

/ _ 2 2 2
A _<n+2> ZBi

7 81—;

9 2
= () ®
n+ 2

Let us here point out explicitly that A is mono-
tonically increasing, and outside a set of measure
zero under the measure induced by the contact
form in which B; = 0 for all ¢ on constant po-
tentials, there will be a unique point at which
A = 0 on each trajectory. Per our earlier defini-
tion, this is the Janus point of the system, the
point where % = 0. From the conservation
of the contact Hamiltonian we can eliminate A
from the system, and render the complete dy-
namics as a set of second order ordinary differ-
ential equations, one for each angular position
T;:

AB;

(5.13)

.. . n-+2 2 . 9 2 28‘/:9
TZ-+T1-\/—(2VS+< 5 )ZT]-)+<n+2> 5 ="

which makes clear that dynamics is determined
by a point and a direction in shape space.

Let us now establish the relationship between
the description here, and the shape space de-
scription given by Barbour et al. In their semi-

(5.14)

(

nal work, they established the shape dynamics
of an N-body system subject to a Newtonian
potential. In our terminology, this is the case
in which n = -1 and Vs = =%, _,(To — Tp) "
In this case, the Janus point was identified at



the point at which the dilatational momentum
vanishes. This dilatational momentum corre-
sponds to A, and we see that the Janus point
that we have identified is exactly that described;
T —0—A=0.

To understand the eventual behaviour of our
system first note that since A is monotonically
non-decreasing on solutions, the form of the con-
tact Hamiltonian means that a solution must be
either slowing (327 < 0) or heading down the
potential. There exists a stationary configura-
tion: Bi =0 = TZ- wherein the particles are
all equidistant from one another on shape space,
and thus g;,/f_ = 0 The systems split into two
groups depeﬁding on the sign of n; if this is pos-
itive the stationary solution is stable. However
if n is negative then the stationary solution is
unstable to small perturbations. In this case the
solution will always seek out the (infinitely deep)
wells of the potential which correspond to local,
isolated, trapped systems.

VI. HOMOGENEOUS COSMOLOGY

In recent work [4] the shape dynamics of a
Bianchi IX system was examined. It was shown
that there is an autonomous subsystem of dy-
namics that arises in terms of the shape vari-
ables, and that this system remains determinis-
tic through the singularity. Here we will show
that this is achieved in part due to the dy-
namical similarity that is present in such sys-
tems; as we have already established the exis-
tence of such a similarity implies the existence
of the autonomous subsystem. One key differ-
ence from the dynamics of General Relativity is
that the volume of the universe (and its conju-
gate momentum, the Hubble parameter) is not a
member of the algebra of invariants. Therefore
in constructing a geometrical representation of
the theory, further external inputs are required
which play no role in the evolution of the in-
variants. Thus, although the geometrical picture
breaks down at a singularity, it was found that
the dynamics of these invariants does not, and
beyond the point at which GR is singular a ge-
ometrical picture can be redeveloped from the
invariants. A similar phenomenon in the evolu-
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tion of geodesics through a Schwarzschild black
hole has been recently discussed [30, [31] which is
indicative that this may be a more general prop-
erty of Einstein’s equations.

In this section we will show how dynamical
similarity leads to an autonomous system in cos-
mology. The metric for a homogeneous (but pos-
sibly anisotropic) space-time can be expressed in
terms of the translation invariant one-forms o;
on the spatial manifold, X

ds? = —dt? + v exp(7;)do; (6.1)

wherein v labels a choice of volume of the X,
and the ~y; are anisotropy parameters. These are
constrained such that their sum is zero, and thus
can be spanned by the two Misner parameters:

"= —Q1/\/6— C]2/\f2
Y2 —q1/V6+ q2/V2

\F
3C]2

Matter in the form of a massless scalar field
(¢, m) is simple to add to the system through
minimal coupling. The symplectic structure is
then:

V3 = (6.2)

w =dp; Ndg; + dm AN dp + dt A dv (6.3)

and the ADM Hamiltonian is given:
8309, 9, 0, T 4
H = gV +p1+p2+7+v3vs((haf12) (6.4)

Wherein V; is the shape potential, and v*/3V is
the Ricci scalar of X, which in turn is determined
by the algebra of commutativity of the ;. In
the case of a flat space-time (Bianchi I), Vs =0,
and the dynamics is quite simple. However in
general the 3-geometry can be more complex,
with topologies of e.g. 3 (Bianchi IX) or S! x $2
(Kantowski-Sachs), in which case V; has a more
complicated form. Therefore we will restrict our
analysis to vector fields that leave ¢; and g2 (and
hence V) invariant. A simple direct application
shows that

0 o 710

G=p— _—
p8p¢+7r87r 201

is a dynamical similarity. Hence there is an au-
tonomous subsystem of invariants of G. Since

3v 0

> 50 (6.5)



we explicitly chose G to preserve the Misner co-
ordinates, g1 and g¢o, these are two of the invari-
ants of G. Similarly, since H is independent of
¢ (which is an invariant), 7 is a constant, and
the value of ¢ does not affect dynamics. From
the scaling of v, we can form a set of invariants:

bi

o 1/3
¥i= s

Yy = # o = gn} (6.6)
Note that these variables differ slightly from
those used in [4] - we have chosen these such
that the contact system is simple to write in Dar-
boux coordinates. Thus we have a 7 dimensional
space of invariants whose dynamics close. Fur-
ther, the value of ¢ does not contribute to the
dynamics of the other invariants, as the Hamil-
tonian is independent of ¢, and the Hamiltonian
constraint can be used to eliminate a further in-
variant, hence a set of 5 invariants, independent
of ¢, form a closed dynamical system. The con-
tact form is then:
LGw

n=—mz = Vidg; + Vydp — d®

= (6.7)

and the contact Hamiltonian is

U2 p2
He =2+ 02+ 7¢ = T Vslae) (638)

Note that our contact Hamiltonian contains six
variables, however it is a constrained to be ex-
actly zero, and hence there is only a five dimen-
sional space of solutions. The equations of mo-
tion for our system in terms of the invariants are
then:

. . oV
=V, U, =—
o ¢ a;

OV, & =207 4205+ U]

20,

T, = (6.9)
Thus we have constructed the autonomous sys-
tem of invariants which describes homogeneous
cosmology. In [4] this system is shown to remain
predictive beyond the singularity. The analysis
there requires some coordinate transformations,
and a direct investigation of the regularity of the
differential equations to show that they are pre-
dictive at the singularity.
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VII. DISCUSSION

In this work, we have established three funda-
mental facts about dynamical similarity. These
are: the existence of a vector field on phase space
which generate the symmetry, the closure of the
system of invariants and the relationship with
contact dynamics on the space of invariants.

We have given a prescription for finding the
invariant dynamics of a symplectic system with
a dynamical similarity. Such symmetries are re-
vealed by the existence of a non-strictly canoni-
cal transformation that is also Hamiltonian scal-
ing. The existence of such symmetries should
not in fact be surprising; in many cases they
correspond to simply an arbitrary choice of, for
example, a unit of length within a system. It
is therefore to be expected that altering this
choice of unit should not affect the intrinsic, re-
lational dynamics. Thus there is a redundancy
in the phase space description corresponding to
this choice. This is similar in many ways to
other symmetries of such systems. The freedom
to choose a reference frame in particle systems
also does not affect intrinsic dynamics. Likewise,
the remaining phase space variables form an au-
tonomous system; their relational evolution can
be expressed without referring to the choice of
frame. However within the Hamiltonian formal-
ism, such choices correspond to symplectomor-
phisms and are strictly canonical, which in turn
contribute boundary terms to the action. The
key difference for dynamical similarities is that
these also rescale the symplectic structure. Thus
we see that such transformations may alter the
conserved quantities of a system. However, this
indicates that to an observer who only has access
to the intrinsic observables of the system such
the changes resulting from such transformations
are not measurable.

A complementary approach to that discussed
here is developed in [32], in which the theory
is directly constructed taking the intrinsic ob-
servables as fundamental. This begins from two
fundamental postulates. The first is that the
phase space of the system consists of the small-
est possible set of geometric parameters required
to close an equation describing a curve through
shape space. The second is that the equation of



state of the curve arises from the (unit) tangent
bundle over this phase space. In such a con-
struction one begins with intrinsic observations
and forms equations of motion directly, arriving
at the contact systems which were discussed in
section [[TIl This is done explicitly in the case of
the three body problem, which is the simplest
system which has non-trivial intrinsic dynamics.
To see this directly, consider that the two body
problem can be expressed in center-of-mass co-
ordinates, and reduces to a single body in an
external potential. Once the separation of the
two bodies is used to define a rod, there can be
no further dynamics of the system.

In the case of Newtonian gravity, the con-
struction is made explicit, and it is shown how
the experienced space-time can be reconstructed
by an observer who makes certain necessary
choices of scales in order to embed the relational
system within a system with absolute notions of
scale. The emergence of isolated systems (par-
ticularly Kepler pairs) which can be used as de-
facto rods and clocks is shown explicitly. This
construction is entirely compatible with that ex-
pressed in this paper, and the embedding within
a symplectic system in essence is the promotion
of the scale to a dynamical variable. Thus by
construction the resultant system will have a
dynamical similarity which corresponds to the
choice of such scale, and the processes outlined
here will necessarily recover the original rela-
tional system.

We have shown that dynamical similarity re-
veals the underlying structure of a symplectic
system, which is a contact system which yields
dynamics in terms of the invariants of the trans-
formation alone. The expression of dynamics in
these terms was a key part of the continuation
past singularities in [4], and the principle fac-
tor behind showing that there was a physically
well determined volume form on which measures
could be based in [25]. The existence of an in-
trinsically defined arrow of time necessarily re-
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quires some degree of focussing of dynamics such
that records can be formed. The friction-like
terms which arise in this formalism are central
to this realisation, as under the dynamical flow
the volume form is not conserved. Thus dynam-
ical similarity within a symplectic system pro-
vides some of the ingredients from which a full
intrinsic theory can be constructed.

In the present construction we have taken
into account only the dynamical similarities
which are generated by acting on phase space
variables. This was done so that the basic math-
ematical structure was direct to establish, both
in terms of the vector fields that generate them,
and the contact structure which was found to un-
derlie the intrinsic dynamics of invariants. How-
ever, a more general formulation will also in-
clude the effect of altering coupling coefficients
in the systems themselves. In formulating a La-
grangian, the strengths of couplings must be
given explicitly in the construction of the the-
ory. However, in practice these values are estab-
lished by fitting observations of relational vari-
ables. Therefore the values of the couplings
themselves must be determined from instrinsic
physics. In later work we will show how this in-
troduces further freedom in the formulation of
dynamical similarity, and show that there are
classes of Lagrangians which are intrinsically in-
distinguishable. That is, to an observer subject
to their dynamics and only given access to rela-
tional variables, there are many possible choices
of couplings that give rise to the same observable
physics.

Acknowledgements

The author is grateful to Julian Barbour, José
Cariniena, Sean Gryb and Tim Koswlowski for
a number of useful discussions and comments in
the preparation of this work.

[1] F. Mercati, (2014), arXiv:1409.0105 [gr-qc] .
[2] H. Gomes and T. Koslowski, Found. Phys. 43,
1428 (2013), larXiv:1211.5878 [gr-qc] .

3] C. Wetterich, Phys. Rev. D90, 043520 (2014),
arXiv:1404.0535 [gr-qc] .

[4] T. A. Koslowski, F. Mercati, and D. Sloan,


http://arxiv.org/abs/1409.0105
http://dx.doi.org/10.1007/s10701-013-9754-0
http://dx.doi.org/10.1007/s10701-013-9754-0
http://arxiv.org/abs/1211.5878
http://dx.doi.org/10.1103/PhysRevD.90.043520
http://arxiv.org/abs/1404.0535

Phys. Lett. B778, 339 (2018), arXiv:1607.02460
[gr-qc] .

J. F. Carinena, F. Falceto, and M. F. Ranada,
(2013), arXiv:1303.6225 [math-ph] .

J. F. Carinena, I. Gheorghiu, E. Martinez,
and P. Santos, J. Phys. A47, 465206 (2014),
arXiv:1410.2032 [math-ph] .

H. Geiges, Topology 36, 1193 (1997).

J. F. Carinena, F. Falceto, and M. F. Ranada,
Journal of Physics A Mathematical General 45,
395210 (2012), |arXiv:1209.4584 [math-ph] .

V. L. Arnold and S. P. Novikov, Dynamical sys-
tems IV. Symplectic geometry and its applica-
tions, 2nd, expanded and revised ed. Berlin,
New York: Springer, 2001, 335 p. Encyclopae-
dia of mathematical sciences, wvol. 4, ISBN
8540626352. Original Russian edition published
by VINITI, Moscow, 1985 (VINITI, 2001).

J. B. Etnyre, (2001), arXiv:0111118 [math] .
H. Geiges, An introduction to contact topology,
Vol. 109 (Cambridge University Press, 2008).
A. Bravetti, H. Cruz, and D. Tapias, An-
nals of Physics 376, 17 (2017), arXiv:1604.08266
[math-ph] .

A. Bravetti and D. Tapias, Journal of Physics
A Mathematical General 48, 245001 (2015),
arXiv:1412.0026 [math-ph] .

J. Barbour, T. Koslowski, and F. Mercati, Phys.
Rev. Lett. 113, 181101 (2014)} jarXiv:1409.0917
[gr-qc] -

J. Barbour, T. Koslowski, and F. Mercati,
(2013), arXiv:1310.5167 [gr-qc] .

H. Gomes, S. Gryb, and T. Koslowski,
Class. Quant. Grav. 28, 045005 (2011),
arXiv:1010.2481 [gr-qcl| .

S. Gryb and K. Thebault, Brit. J. Phil. Sci. 67,
663 (2016), larXiv:1408.2691 [gr-qc] .

[18]

[19]

[30]

[31]
32]

15

H. d. A. Gomes,
[quant-phl| .

P. W. Evans, S. Gryb, and K. P. Y.
Thébault, |Stud. Hist. Phil. Sci. B56, 1 (2016),
arXiv:1606.07265 [gr-qc] .

J. Earman, Studies in History and Philosophy
of Science Part B: Studies in History and Phi-
losophy of Modern Physics 37, 399 (2006), the
arrows of time, 2006.

A. Corichi and D. Sloan, Class. Quant. Grav.
31, 062001 (2014), arXiv:1310.6399 [gr-qc]| .

D. Sloan, Class. Quant. Grav. 31, 245015
(2014), arXiv:1407.3977 [gr-qc| .

D. Sloan, | (2016), 10.21105/astro.1602.02113,
arXiv:1602.02113 [gr-qc] .

A. Ashtekar, Proceedings, 3rd Quantum Geom-
etry and Quantum Gravity School: Zakopane,
Poland, February 28-March 13, 2011, |Lect.
Notes Phys. 863, 31 (2013), arXiv:1201.4598
[gr-qc] -

D. Sloan and J. Silk, Phys. Rev. D93, 104030
(2016), arXiv:1505.01445 [gr-qcl| .

E. Curiel, (2015), arXiv:1509.01878 [gr-qc]| .
A. Ashtekar and D. Sloan, Phys.Lett. B694, 108
(2010)}, arXiv:0912.4093 [gr-qc]| .

A. Corichi and A. Karami, |Phys.Rev. D83,
104006 (2011), arXiv:1011.4249 [gr-qc]| .

A. Ashtekar and D. Sloan, General Relativity
and Gravitation 43 (2011), 10.1007/s10714-
011-1246-y, http://dx.doi.org/10.1007/
s10714-011-1246-y.

E. Bianchi, M. Christodoulou, F. D’Ambrosio,
C. Rovelli and H. M. Haggard, (2018),
arXiv:1802.04264 [gr-qc| .

F. D’Ambrosio and C. Rovelli, (in preparation).
T. Koslowski, (in preparation).

(2016), larXiv:1603.01574


http://dx.doi.org/10.1016/j.physletb.2018.01.055
http://arxiv.org/abs/1607.02460
http://arxiv.org/abs/1607.02460
http://arxiv.org/abs/1303.6225
http://dx.doi.org/10.1088/1751-8113/47/46/465206
http://arxiv.org/abs/1410.2032
http://dx.doi.org/https://doi.org/10.1016/S0040-9383(97)00004-9
http://dx.doi.org/10.1088/1751-8113/45/39/395210
http://dx.doi.org/10.1088/1751-8113/45/39/395210
http://arxiv.org/abs/1209.4584
http://arxiv.org/abs/0111118
http://dx.doi.org/10.1016/j.aop.2016.11.003
http://dx.doi.org/10.1016/j.aop.2016.11.003
http://arxiv.org/abs/1604.08266
http://arxiv.org/abs/1604.08266
http://dx.doi.org/10.1088/1751-8113/48/24/245001
http://dx.doi.org/10.1088/1751-8113/48/24/245001
http://arxiv.org/abs/1412.0026
http://dx.doi.org/10.1103/PhysRevLett.113.181101
http://dx.doi.org/10.1103/PhysRevLett.113.181101
http://arxiv.org/abs/1409.0917
http://arxiv.org/abs/1409.0917
http://arxiv.org/abs/1310.5167
http://dx.doi.org/10.1088/0264-9381/28/4/045005
http://arxiv.org/abs/1010.2481
http://dx.doi.org/10.1093/bjps/axv009
http://dx.doi.org/10.1093/bjps/axv009
http://arxiv.org/abs/1408.2691
http://arxiv.org/abs/1603.01574
http://arxiv.org/abs/1603.01574
http://dx.doi.org/10.1016/j.shpsb.2016.10.005
http://arxiv.org/abs/1606.07265
http://dx.doi.org/https://doi.org/10.1016/j.shpsb.2006.03.002
http://dx.doi.org/https://doi.org/10.1016/j.shpsb.2006.03.002
http://dx.doi.org/https://doi.org/10.1016/j.shpsb.2006.03.002
http://dx.doi.org/10.1088/0264-9381/31/6/062001
http://dx.doi.org/10.1088/0264-9381/31/6/062001
http://arxiv.org/abs/1310.6399
http://dx.doi.org/10.1088/0264-9381/31/24/245015
http://dx.doi.org/10.1088/0264-9381/31/24/245015
http://arxiv.org/abs/1407.3977
http://dx.doi.org/10.21105/astro.1602.02113
http://arxiv.org/abs/1602.02113
http://dx.doi.org/ 10.1007/978-3-642-33036-0_2
http://dx.doi.org/ 10.1007/978-3-642-33036-0_2
http://arxiv.org/abs/1201.4598
http://arxiv.org/abs/1201.4598
http://dx.doi.org/10.1103/PhysRevD.93.104030
http://dx.doi.org/10.1103/PhysRevD.93.104030
http://arxiv.org/abs/1505.01445
http://arxiv.org/abs/1509.01878
http://dx.doi.org/10.1016/j.physletb.2010.09.058
http://dx.doi.org/10.1016/j.physletb.2010.09.058
http://arxiv.org/abs/0912.4093
http://dx.doi.org/10.1103/PhysRevD.83.104006
http://dx.doi.org/10.1103/PhysRevD.83.104006
http://arxiv.org/abs/1011.4249
http://dx.doi.org/10.1007/s10714-011-1246-y
http://dx.doi.org/10.1007/s10714-011-1246-y
http://dx.doi.org/10.1007/s10714-011-1246-y
http://dx.doi.org/10.1007/s10714-011-1246-y
http://dx.doi.org/10.1007/s10714-011-1246-y
http://arxiv.org/abs/1802.04264

	Introduction
	Generating Dynamical Similarities
	Contact Forms and Shape Space
	Homogeneous Lagrangians
	Dilations in the n-body system
	Homogeneous Cosmology
	Discussion
	Acknowledgements
	References

