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The thermal state of polar continental crust plays a crucial role for understanding the stability and 
thickness of large ice sheets, the visco-elastic response of the solid Earth due to unloading when large 
ice caps melt and, in turn, the accuracy of future sea-level rise prediction. Various studies demonstrate 
the need for precise measurements and estimation of geothermal heat flow (GHF) in Antarctica for 
better constrained boundary conditions to enhance the ice sheet model performance. This study provides 
ground-truth for regional indirect GHF estimates in the Amundsen Sea Embayment, which is part of 
the West Antarctic Rift System, by presenting in situ temperature measurements in continental shelf 
sediments. Our results show regionally elevated and heterogeneous GHF (mean of 65 mW m−2) in the 
Amundsen Sea Embayment. Considering thermal blanketing effects, induced by inflow of warmer water 
and sedimentary processes, the estimated GHF ranges between 65 mW m−2 and 95 mW m−2.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The Amundsen Sea Embayment is part of the West Antarctic 
Rift System (WARS, Fig. 1), which is the second largest conti-
nental rift system on earth (LeMasurier, 2008), and a key study 
area for GHF. Young, continental rift systems are regions with 
significantly elevated GHF (Morgan, 1983), because the transient 
thermal perturbation to the lithosphere caused by rifting requires 
∼100 myrs to reach long term thermal equilibrium (McKenzie, 
1978; Jaupart and Mareschal, 2007). GHF strongly influences ice 
flow rates, basal friction, deformation rates, and/or hydrological 
systems, which in turn control ice-bed coupling, and therefore the 
height and dynamics of ice sheets (Hughes, 2009). Over recent 
years several studies adopted different geophysical approaches to 
estimate GHF from local (in situ) to broader scales (regional to 
continental) with in some cases large differences in their results 
(Fig. 1). All these studies have found, that GHF might be higher 
and spatially more variable than expected in previous decades 
(e.g. Llubes et al., 2006). The discovery of numerous subglacial 
lakes (Siegert and Dowdeswell, 1996), which can provide addi-
tional constraints on the basal thermal state of the ice sheet, is 
a strong argument for highly variable GHF (Llubes et al., 2006). 
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Basal ice sheet temperatures are controlled by a basal heat gra-
dient (Siegert and Dowdeswell, 1996) in addition to frictional heat 
generated from ice deformation and basal sliding. The basal heat 
gradient is the sum of heat produced from basal sliding and 
geothermal heat flow (Siegert, 2000). Subglacial lakes where there-
fore correlated to a localized and moderate (50 mW m−2) to 
high (80 mW m−2; >200 mW m−2) GHF (Siegert and Dowdeswell, 
1996; Llubes et al., 2006; Fisher et al., 2015). Fisher et al. (2015)
measured in situ temperature gradients and thermal conductivi-
ties at Subglacial Lake Whillans and estimated a GHF of 285 ±
80 mW m−2. Begeman et al., 2017 followed their methods, de-
ployed the temperature gradient probe 100 km away from SLW 
near the grounding zone of the Whillans Ice Stream and found a 
GHF of 88 ± 7 mW m−2. They explain the spatial variability by 
shallow magmatic intrusions or the advection of heat by crustal 
fluids. A couple of months earlier Seroussi et al. (2017) had con-
cluded that locally high GHF (≥150 mW m−2) below the Whillans 
Ice Stream was required to reproduce the observed subglacial lakes 
in an ice sheet model. Correlating GHF to the underlying geology 
(magmatic and tectonic history) is therefore vital to understand 
its distribution, in particular, when continental rifts such as the 
WARS underlie the ice sheet (Dalziel and Lawver, 2001). The cov-
erage of in situ measurements in Antarctica is poor compared to 
other continents on Earth (Davies, 2013), because most areas are 
shielded by ice and difficult to access. This calls for a need to turn 
towards other methods to estimate heat flow on broader scales. 
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Fig. 1. (A) Compilation of regional geothermal heat flow sites (symbols) and values (color of symbols) superimposing the continental scale GHF models of A) Martos et al.
(2017), B) Shapiro and Ritzwoller (2004) and C) Purucker (2012). Labeled symbols/areas for this study: Large dots represent in situ measurements with very good data quality 
(*** in Table 1) obtained during RV Polarstern expedition PS104 (2017); small diamonds indicate values obtained from the marine heat flow data base (Pollack et al., 1993); 
squares show GHF results from Della Vedova et al. (1992); triangles mark locations, where GHF has been inferred from ice borehole temperatures or temperature gradient 
measurements in the bedrock and sediment, respectively. Numbers correspond to the following studies: 1) Zagorodnov et al. (2012); 2), 3) Nicholls and Paren (1993), 4) Price 
et al. (2002), 5) Gow et al. (1968), 6) Fisher et al. (2015); Begeman et al. (2017), 7) Engelhardt (2004), 8) Decker and Bucher (1982), 9) Risk and Hochstein (1974); Morin et 
al. (2010). MBL – Marie Byrd Land; PIG – Pine Island Glacier; THW – Thwaites Glacier. See Fig. 3 and Fig. 4 for details.
Burton-Johnson et al. (2017) estimate regional scale GHF from ra-
diogenic heat production and found high GHF (81 mW m−2) in 
the east and south of the Antarctic Peninsula (AP), where silicic 
rocks predominate, and 67 mW m−2 in the west and north of the 
Antarctic Peninsula, where volcanic arc and quartzose sediments 
are dominant. They state further that crustal thermal models must 
utilize a heterogeneous upper crust especially with respect to ra-
dioactive heat production. Old and thick sedimentary basins in 
particular could increase GHF significantly by the accumulation of 
radiogenic heat producing (RHP) elements. Schroeder et al. (2014)
use radar echograms to estimate the pattern of basal melting and 
geothermal heat flow in the Thwaites Glacier catchment within the 
WAIS, which correlates locally well with the continental scale GHF 
models of Shapiro and Ritzwoller (2004). Other community-wide 
accepted studies (Fig. 1) use different methods, i.e. mainly seismic 
velocity models as regional indicators and Curie-depth analysis of 
magnetic anomaly data to estimate GHF (Fox Maule et al., 2005; 
Purucker, 2012; Martos et al., 2017). Overall the results do ex-
hibit similarities in general tendencies, but vary significantly in 
regional comparison. Rogozhina et al. (2012) demonstrated in dif-



532 R. Dziadek et al. / Earth and Planetary Science Letters 506 (2019) 530–539
Table 1
Summary of in situ temperature sites and estimated geothermal heat flow.

Station 
ID

Lat 
[DD.xxx ◦S]

Lon 
[DD.xxx ◦W]

Date 
[dd.mm.yy]

Instrument Gradient ±2σ
[◦C km−1]

Heat flow ±2σ
[mW m−2]

Water 
depth 
[m]

Data quality
*poor
** good
***very good

HF1701 −74.931 −101.556 16.02.17 GRAVITY 26.2 ±1.3 30.8 ±1.5 883 **
HF1702 −74.868 −100.711 18.02.17 GRAVITY 30.2 ±2.4 35.4 ±2.8 700 **
HF1703 −74.986 −101.869 18.02.17 GRAVITY 41.3 ±12.1 48.5 ±14.2 980 *
HF1704 −75.031 −101.939 18.02.17 PROBE 4 m 44.6 ±7 52.4 ±8.2 950 ***
HF1705 −74.942 −102.295 18.02.17 PROBE 4 m 51.9 ±7.2 60.9 ±8.4 936 ***
HF1706 −74.684 −101.622 19.02.17 GRAVITY 94.9 – 111.4 – 345 *
HF1707 −74.684 −101.625 19.02.17 GRAVITY – – – – 340
HF1708 −74.838 −101.044 20.02.17 GRAVITY 35.6 – 41.7 – 530 *
HF1709 −74.549 −102.586 20.02.17 GRAVITY 25.2 – 29.5 – 600 *
HF1710 −74.803 −102.344 20.02.17 PROBE 4 m 55 ±3.7 64.5 ±4.3 1000 ***
HF1711 −74.359 −104.747 20.02.17 PROBE 8 m 55.8 ±3.7 65.4 ±4.4 1384 ***
HF1712 −74.355 −104.757 21.02.17 PROBE 8 m 51 ±2.7 59.8 ±3.2 1387 ***
HF1713 −72.768 −107.092 24.02.17 GRAVITY – – – – 707
HF1714 −72.891 −104.099 01.03.17 PROBE 4 m 92.1 – 108.1 – 490 *
HF1715 −74.416 −102.990 02.03.17 PROBE 8 m – – – – 744
HF1716 −74.417 −103.005 02.03.17 PROBE 8 m 97.6 – 114.6 – 740 **
HF1717 −74.416 −103.001 02.03.17 PROBE 8 m 54 ±4.7 63.3 ±5.5 740 ***
HF1718 −74.415 −102.998 02.03.17 PROBE 8 m 57.5 ±4.9 67.5 ±5.7 740 ***
HF1719 −74.414 −102.995 02.03.17 PROBE 8 m 57.4 ±4 67.4 ±4.7 737 ***
HF1720 −74.413 −102.992 02.03.17 PROBE 8 m 59.4 ±0.9 69.7 ±1.1 740 ***
HF1721 −74.412 −102.988 02.03.17 PROBE 8 m 57.7 ±4 67.7 ±4.7 735 ***
HF1722 −74.416 −102.987 02.03.17 PROBE 8 m 65.4 ±0.7 76.7 ±0.8 735 ***
HF1723 −74.330 −104.822 03.03.17 PROBE 8 m 62.1 ±0.3 72.9 ±0.3 1400 ***
HF1724 −74.331 −104.820 03.03.17 PROBE 8 m 57.5 ±1.4 67.5 ±1.7 1395 ***
HF1725 −74.340 −104.799 03.03.17 PROBE 8 m 49.4 ±8.7 58 ±10.2 1388 ***
HF1726 −74.349 −104.721 03.03.17 PROBE 8 m 51.4 ±4.4 60.3 ±5.2 1405 ***
HF1727 −74.355 −104.760 03.03.17 PROBE 8 m 54.1 ±1.9 63.5 ±2.3 1385 ***
HF1728 −74.349 −104.737 04.03.17 PROBE 8 m 51.2 ±2.5 60.1 ±2.9 1453 ***
HF1729 −73.297 −112.330 10.03.17 PROBE 4 m 8.60 – 10.1 – 483 *
ferent model tests for Greenland Ice Sheet evolution against GHF 
reproducibility, that all of the GHF models failed to fit the obser-
vations and that simulations with a simple spatial uniform GHF 
forcing gives a considerably better fit. The ice sheet modeling com-
munity (e.g. Golledge et al., 2015) repeatedly outlined the impor-
tance of better constrained thermal boundary conditions to en-
hance the accuracy of ice sheet model performance for future sea 
level rise predictions. Moreover, Barletta et al. (2018) demonstrate 
that the solid-Earth deformation exerts an important control on 
the possibility of future West Antarctic Ice Sheet (WAIS) collapse. 
The visco-elastic response of a low-strength lithosphere due to un-
loading by a WAIS collapse limits the ice retreat in the Amundsen 
Sea Embayment (ASE) on time scales of several millennia, whereas 
a stiffer lithosphere would yield a collapse due to slower response. 
Lithospheric elastic thickness and strength are controlled primarily 
by temperature (Hyndman et al., 2009). Hence in situ temperature 
measurements, albeit near surface, will help understand the behav-
ior of the anomalously thin crust in West Antarctica (Chaput et al., 
2014; Damiani et al., 2014) that exhibits reduced effective elastic 
lithospheric thickness (0 km < Te < 20 km) (Kalberg et al., 2015;
Chen et al., 2017). Our objective is an assessment of GHF distri-
butions in the Amundsen Sea Embayment derived from in situ 
temperature measurements conducted during RV Polarstern ex-
pedition PS104 in early 2017. We analytically demonstrate that 
temperature variations are likely induced by inflow of warm Cir-
cumpolar Deep Water (CDW) at the sea floor and do not extend 
beyond depths of 4 m below sea floor in the sediment nor dis-
turb our measurements. Ground-truthing for GHF is highly im-
portant since published results vary significantly and exhibit an 
important boundary condition for past and present Glacial Isostatic 
Adjustment, ice sheet models, and future sea level rise predic-
tions.
2. Data and methods

2.1. In situ temperature measurements

In situ temperature measurements were conducted at 29 sta-
tions during RV Polarstern expedition PS104 in February and March 
2017. We used Miniaturized Temperature Loggers (MTL) with 
0.001 K resolution and 0.1 K precision (Pfender and Villinger, 
2002), which were mounted on a MTL sensor rod or attached to a 
gravity corer, both with varying lengths between 4 m and 10 m. 
Prior to deployment, the MTL were calibrated for absolute temper-
atures with the ship’s SBE911plus CTD (conductivity, temperature, 
and depth) in the water column. After calibration, the offset be-
tween MTL and CTD was ±0.001 K, which is similar to the overall 
resolution of the MTL. Additional weights were mounted on the 
upper part of the rod to increase penetration into the sediment. 
One MTL was mounted above the probe’s weight and continuously 
measured the temperature in the water column (see Fig. 3a). As 
an example, Fig. 3b shows the temperatures recorded by the MTL 
during the deployment and penetration phase of station HF1702. 
In the first stage, the probe is lowered through the water column 
where we ran the MTLs in a simplified CTD mode to observe the 
water column temperatures. The sampling depths were then es-
timated from the winch speed and the MTL sampling rates. In 
the next phase the probe penetrates the sediment and peak tem-
peratures are seen, due to the frictional heat. Furthermore, the 
frictional heat was an indicator that the individual sensors had en-
tered the sediment. This could be also supported by a brief visual 
inspection of sediment coverage of the probe once it was hoisted 
back on deck. We used an up to 10 min steady-time, where the 
probe rests in the sediment, which allows for the frictional heat 
to decay and the temperatures to adjust to ambient sediment 
temperatures. Stage 3 is marked in red colors and highlights the 
stabilization of the sediment temperatures. The mean temperature 
of the stabilization phase is plotted against the depth below sea 
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Fig. 2. (A) Temperature profile of the water column obtained with our sensors at station HF1723 (see also Fig. 4C). Temperature variations at three different water depths are 
taken from Webber et al. (2017) and approximated by a sinusoidal wave (B). Amplitudes and periodicity vary with depth. (C) Skin depth estimates (Equation (3)) depicting 
the potential influence of temperature changes at the sea floor on sediment temperatures. Effects decrease with increasing water depth.
floor of the sensors (see Fig. 3C). Because we do not have ab-
solute depth information, we shift the sensors upwards until the 
uppermost sensor is at z = 0 m depth (sea floor) and calculate the 
thermal gradient with a linear fit. In the case of station HF1702, 
the sensor that penetrated less than 3 m into the sediment was 
not used for the linear regression to obtain the temperature gradi-
ent. The data collected at the 29 sites are shown in Supplement 1 
according to the temperatures–depth profile described in Fig. 2c. At 
three sites in situ data could not be recovered because the probe 
either fell over (HF1707, HF1715), probably due to the stiffness of 
the sediment, or the logger was lost or damaged (HF1713). At sta-
tions HF1714 and HF1729, consolidated sediments likely prevented 
the entire penetration of the probe. We also attempted to measure 
temperature gradients in one of the MeBo seabed drill sites of this 
expedition (Gohl et al., 2017), but failed due to a stuck tempera-
ture downhole probe.

The thermal conductivity (k) was measured on gravity cores 
taken in the vicinity of or at the sites shown in Supplement 2 with 
a KD2 Pro Thermal Property Analyzer that has an accuracy of ±5% 
from 0.2 to 2 W m−1 K−1. The 6 cm long sensor applies a very 
small amount of heat to the needle, which helps to prevent free 
convection in liquid samples. Because of the sensor’s heat pulse, a 
minimum of 1.5 cm of material parallel to the sensor in all direc-
tions was required to minimize errors. The sampling interval along 
the cores ranged between 10 and 20 cm (see Supplement 2). The 
thermal conductivity is temperature dependent and we corrected 
the influence of ambient laboratory temperatures (∼20 ◦C) by es-
timating the thermal conductivity at 4 ◦C via:

ksediment(4 ◦C) = k · kϕ
Water(4 ◦C)

kϕ
◦

(1)

Water(20 C)
This takes into account the porosity of the sediment (ϕ ∼ 0.65), 
the thermal conductivity of water at 20 ◦C (kWater(20 ◦C) = 0.6 
W mK−1) and 4 ◦C (kWater(4 ◦C) = 0.57 W mK−1), respectively. The 
heat flow was calculated from the product of thermal conductivity 
(k ∼ 1.17 W mK−1) and temperature gradient (Table 1).

2.2. Analytical investigation of sediment temperature disturbances

Heat flow determinations assume that heat is transported ver-
tically in steady state, and thus require no lateral variations in 
surface boundary conditions or physical properties (Jaupart and 
Mareschal, 2007). The upper boundary condition of heat transfer 
in rocks or, as in this study’s case, sediments is given by the tem-
peratures at the sediment/water interface (sea floor) (Chouinard 
and Mareschal, 2007). If the subsurface (rocks or sediments) has 
been exposed to seasonal temperature variations or climate trends 
(warm–cold period), this signal is imprinted in the first few hun-
dreds of meters. Examples are warming events in West Antarctica 
and the temporally changing warm CDW inflow onto the conti-
nental shelves (Hillenbrand et al., 2017). Diurnal or annual cycles 
can be typically seen in depths from a few centimeters to a cou-
ple of meters, whereas variations in the ground temperature of 
the last 200–300 years are recorded in the upper 200 m. Surface 
temperature influence of post-glacial warming is observed down 
to 2500 m. This is because surface temperature oscillations are 
damped over a length scale δ (skin depth)

δ = √
κ/2ω (2)

which depends on their frequency (ω) and thermal diffusivity (κ ) 
(Carslaw and Jaeger, 1959). Borehole temperature depth profiles 
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Fig. 3. (A) Schematic representation of probe geometry with sensors mounted along a metal rod. The numbers of installed sensors varied (sensor x) depending on the 
instrument type deployed (4 m probe, 8 m probe, or gravity corer), sediment coverage and sediment type respectively. (B) Data example of GHF station HF1702 showing 
measured temperatures at the different deployment phases. Please note that the data of the water sensor is not shown in the figure. (C) Geothermal gradient estimation 
using linear transgression based on in situ temperature measurements demonstrated in (C) at the temperature stabilization phase. Please note that only the lower most four 
sensors were used to estimate the geothermal gradient and the GHF. (D) Locations of all GHF sites on the inner Amundsen Sea Embayment shelf listed in Table 1. Detailed 
locations of sites with very high quality (***) are shown in Fig. 4.

Fig. 4. Close up of HF17XX sites where we consider the data quality as very good (***). Please note the heat flow color code is the same as in Fig. 1 and the site locations 
are overlaid on high-resolution bathymetry (100 m) from Nitsche et al. (2013). (A) Shows three successful sites close to the Pine Island Glacier shelf edge. (B) Profile across 
a small basin 1 at ∼740 mbsl and (C) in situ measurements in basin 2 at 1400 mbsl.
can therefore be used to reconstruct surface temperature varia-

tions on centennial time scales (Dahl-Jensen, 1998; Chouinard and 
Mareschal, 2007).

Long-term variations in atmospheric temperatures are similarly 
captured in large ice sheets. The original temperature signal, albeit 
dampened at their base, is still being observed (Engelhardt, 2004). 
This can lead to spatial variations as high as ±5 ◦C at the bottom 
of an ice sheet.

A comparison of this dampening effect can be drawn to the 
marine environment, where ocean bottom currents influence the 
temperature profile of the underlying sediment (e.g. Müller et al., 
2016; Dziadek et al., 2017). Müller et al. (2016) show that the 
large seasonal temperature variations (>10 ◦C) are dampened by 
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∼90% at depths of 3–5 m. The definition of sea floor tempera-
tures requires consideration of long-term variations, such as the 
inflow of warmer CDW (e.g. Nakayama et al., 2013; Webber et al., 
2017) and glacial melt water processes especially in the shallow 
regions of the ASE shelf. During deployment we monitored the 
temperature of the water column (see Fig. 2A and Fig. 3B) to ob-
serve the vertical temperature profile of the water column. This, 
however, only provides a snapshot at the time of our in situ mea-
surements; it does not represent long-term changes, which likely 
disturb sediment temperatures. The iSTAR oceanographic mooring 
stations reveal multi-annual temperature variations with decreas-
ing amplitudes and periodicities with depth (Webber et al., 2017)
throughout the inner ASE shelf. Based on these observed signals 
we simulated temperature signals representing the variations at 
three different water depths: 374, 696 and 930 mbsl (see Fig. 2B). 
Since these depths represent our GHF sampling depths for the 
latter in situ temperature processing steps, we explored potential 
temperature distribution induced by such variations in the upper 
5 m of the sediment. The analytical solution after Lowrie (1997)
demonstrates the principal characteristics of sediment temperature 
changes induced by variations at the sea floor:

T (z, t) = TBW
dT

dz
ze− z

δ α cos

(
ωt − z

δ

)
(3)

Temperature T (z, t) is calculated as a function of depth (z) and 
time (t) for a homogeneous sediment and a constant background 
geothermal gradient (dT dz−1 = 0.0497 ◦C m−1) which represents 
the measured average gradient in the ASE. We further measured 
a mean thermal diffusivity κ (3.977 mm2 s−1) on sediment cores 
that were taken during expedition PS104 (Supplement 2) and var-
ied between 0.218 and 0.776 mm2 s−1. The multi-annual temper-
ature variation in the water column of the ASE by Webber et al.
(2017) (at a site at 106.535◦W/73.813◦S) reveal short periodic os-
cillations in temperature (±0.2 ◦C) with maximum amplitudes of 
∼1 ◦C with short periods. With our analytical solutions for differ-
ent frequencies ω = 2π

n and 6π
n (1 s−1; n = 1 yr) and amplitudes 

we explore the effects of three different scenarios: (1) long-period 
and high amplitude variations, which capture the largest tempera-
ture difference at the sea floor (	T = ∼ 1 ◦C) Webber et al. (2017)
observed, (2) long-period and low amplitude variations, which as 
a first approximation reflect the periodicity observed by Webber 
et al. (2017), and (3) short period and low amplitude variations, 
which are likely to occur in shallow water depths (Fig. 2). On 
the basis of these simulations we would expect that long period 
oscillations (< ±0.2 ◦C) and the high frequency part of the tem-
perature signal does not imprint in the sediment temperatures in 
deeper parts (>700 mbsl) of the inner ASE (see iSTAR A mooring 
at 930 mbsl in Webber et al., 2017). The upper 3 m of the sedi-
ment column of the greater ASE shelf, however, very likely inherit 
bottom water temperature changes. Therefore, we do not use the 
upper most sensors that fall within this range for geothermal gra-
dient determination. At sites with shallow penetration we however 
use the upper sensors.

2.3. Considerations of further corrections

Changes in topography can distort the temperature field and 
affect the heat flow estimate (Bullard, 1938). Bullard (1938) then 
demonstrated that no corrections to the measured temperature 
gradient need to be performed for shallow boreholes and flat to-
pography. Thermal blanketing caused by sediment accumulation 
in basins of the inner Amundsen Sea Embayment shelf could 
further reduce geothermal surface heat flow by 5% (accumula-
tion rates 100 m myrs−1) and up to 20% (higher accumula-
tion rates 500 m myrs−1) for a thickness of the sedimentary 
layer up to 400 m (Davis et al., 1999; Hutnak and Fisher, 2007;
Witus et al., 2014).

3. Results

3.1. Geothermal heat flow

The results of in-situ geothermal gradient measurements range 
between 8.6 and 97 ◦C km−1 and are presented in Table 1, with 
a confidence interval of 95% (2σ ). We used the mean thermal 
conductivity (k = 1.17 W mK−1), which was measured on gravity 
cores to estimate geothermal heat flow, which varies between 10.1 
and 114.6 mW m−2. Based on our analytical solutions for theoreti-
cal temperature disturbances, penetration depth and water depth 
at the station, we introduce a data quality indicator (Table 1). 
High penetration, linear gradients and minor bottom water influ-
ence (>800 mbsl) are marked with a very good quality indicator 
(***), intermediate water depths (600–800 mbsl) and/or fewer data 
points (>2) to calculate the geothermal gradient are considered 
good data quality (**) and shallow water depths (<600 mbsl), low 
penetration and/or minimal data points (2) are considered as poor 
data quality (*). During the deployment at station HF1706 in close 
proximity to Pine Island Glacier (PIG), we mounted the MTLs onto 
the gravity corer and achieved higher penetration depths. Although 
most of the sensors were damaged during the deployment, we re-
covered data from two sensors (1.7 and 3.5 mbsf) that indicates a 
high gradient (94.9 ◦C km−1) and a resulting GHF (∼111 mW m−2). 
The uncertainties at this site however are large given the low sed-
iment depth and expected temperature variations at the sea floor 
due to its shallow depth (345 mbsl). A similar picture presents 
itself at station HF1714, where we measured 92.1 ◦C km−1. The 
overall data quality at this site is considered poor, because of shal-
low water depths (490 mbsl) and therefore gradient disturbances 
caused by temperature variations at the sea floor and low penetra-
tion depths (1.9 mbsf).

4. Discussion

Our analysis reveals a spatially heterogeneous geothermal heat 
flow distribution on the ASE shelf. Towards Pine Island Glacier, 
estimates of highest GHF (Fig. 4B, HF1722: 76 mW m−2) corre-
late with a presumed volcanic heat production of the Hudson 
Mountain volcanic rocks and other subglacial volcanoes in their 
proximity, which have shown signs of recent activity (Corr and 
Vaughan, 2008). This potentially has implications for contempo-
rary ice dynamics in the glacial system. Although Joughin et al.
(2009) claim that local high GHF does not explain changes in basal 
conditions, it has been shown that the GHF from one subglacial 
volcanic center could produce enough basal meltwater to offset 
the basal energy balance and lubricate parts of an ice sheet bed 
that would otherwise remain frozen (Vogel and Tulaczyk, 2006). 
The measured data lie well within the range of GHF estimates 
for this region, which we present as probability density functions 
(PDF) in Fig. 5. Log-logistic PDFs are thought to realistically cap-
ture the small-scale GFH patterns (Shapiro and Ritzwoller, 2004)
and were calculated with bin sizes of 2.5 mW m−2 for the re-
gion in West Antarctica. The broad distribution of GHF in various 
published studies is a result of the different methods and their 
limitations used. For example, the uncertainties in elastic and in-
elastic parameters for mantle minerals introduce uncertainties in 
temperatures inferred from seismic velocities (Shapiro and Ritz-
woller, 2004). At depths deeper than 400 km compositional effects 
can lead to ±100 ◦C temperature change whereas uncertainties at 
depths shallower than 400 km range around ±250 ◦C, assuming 
the seismic structure is well resolved, and composition known. 
Curie depth estimates, which capture a thermal signal in the crust 



536 R. Dziadek et al. / Earth and Planetary Science Letters 506 (2019) 530–539
Fig. 5. Log-logistic probability density functions that statistically describe GHF distributions for different data sources filtered for West Antarctica. The results of this study 
correlate well with estimates by Fox Maule et al. (2005) and Shapiro and Ritzwoller (2004), and the lower end of GHF ranges of the thermal models presented by Dziadek et 
al. (2017).

Fig. 6. Modeled geothermal gradient evolution over 100 years (Equation (6)). After 5 iterations (5 years) the upper temperature boundary is increased by 2 ◦C to simulate 
the inflow of Circumpolar Deep Water. This simulation demonstrates the transition of an initially elevated gradient (70 ◦C km−1) towards lower geothermal gradients which 
correlate with the measured data at e.g. station HF1725–28. The effect of temperature variations at the sea floor in this model are observed to depths exceeding 100 mbsf.
assume an homogeneous distribution of magnetic minerals, the 
main magnetic source being magnetite and thus with a Curie tem-
perature of 580 ◦C (Fox Maule et al., 2005; Dziadek et al., 2017;
Martos et al., 2017). This assumption neglects the compositional 
variability in plutonic rocks that lead to Curie temperature ranges 
between 300 ◦C and 680 ◦C, and in cases of magnetic assemblages 
of Fe–Ni–Co–Cu metal alloys up to 620 ◦C to 1084 ◦C (Haggerry, 
1978). Without further constraints and validations these assump-
tions remain our best guess, especially in sparsely sampled regions 
like Antarctica, but introduce uncertainties of several kilometers in 
Curie Depths and hence GHF estimates. The distribution of inferred 
GHF values presented in Dziadek et al. (2017) at the lower range 
of distributions shown in Fig. 5 is attributed to the biases implied 
by the sampling strategy imposed by the temperature probe length 
and the variability in bottom water temperatures.

5. CDW induced gradient transition

In this study, we consider the effect of the warmer CDW on 
geothermal gradients by exploring the geotherm transitions ana-
lytically. Fourier’s law for heat diffusion is derived by a statement 
for the conservation of energy

ρcp
δT

δt
= −∇Tq + s = −

[
δ

δx

δ

δy

][
qx

qy

]
+ s (4)

and a general anisotropic constitutive relationship

q =
[

qx

qy

]
= −

[
kxx kxy

kyx kyy

][
δ
δx
δ
δy

]
T = −D∇T (5)

to yield:

ρcp
δT

δt
= −∇T(D∇T ) + s (6)

This equation (e.g. Crank, 1975) governs transient heat conduc-
tion in two-dimensions with a source term s(x, y), the dependent 
variable is temperature T , the independent variables time t and 
distance x and kij(x, y) are the components of the thermal con-
ductivity tensor, ρ(x, y) is density and cp(x, y) is heat capacity. 
We determined numerical finite element method (FEM) solutions 
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of equation (6) for geothermal gradients to illustrate the potential 
thermal gradient transitions if the temperature at the sea floor in-
creased by 2 ◦C (Fig. 6). The mixed evidence and limited historical 
data make it difficult to pinpoint the onset of CDW inflow onto the 
Amundsen shelf (Jacobs and Comiso, 1997). The driver for changes 
in CDW delivery to Pine Island Bay on decadal time scales is linked 
to stronger westerly winds over the Southern Ocean (Thoma et al., 
2008; Hillenbrand et al., 2017). This strong atmospheric variabil-
ity is thought to be influenced by, for example warm (El Niño) 
conditions in the central Pacific, which might have increased CDW 
incursion as early as the early 1940s (Schneider and Steig, 2008;
Hillenbrand et al., 2017; Jenkins et al., 2017). We therefore investi-
gate a thermal gradient transition over 100 years with initial con-
ditions of an elevated geothermal gradient (70 ◦C km−1) in thermal 
steady-state condition. After 5 iterations (5 years) the temperature 
at the sea floor (z = 0) is increased by 2 ◦C to simulate the inflow 
of warm CDW. This model shows, that a gradient transition to-
wards lower gradients fits our observed gradients, for example at 
stations HF1725–HF1728. Hypothetically this implies that our re-
sults represent transient geothermal heat flow and might be biased 
towards lower values. The sparsity of the available data however 
does not provide a basis for any further reasonable corrections. 
Although this is beyond the scope of this study, our water col-
umn snap shots (Supplement 3) could help tune models for sim-
ulated bottom potential temperatures, especially when attempting 
to resolve ice–ocean interaction for small ice shelves in regions 
such as the Amundsen Sea Embayment (e.g. Assmann et al., 2013;
Nakayama et al., 2014).

6. Conclusion

Newly acquired GHF measurements extend existing datasets in 
the Amundsen Sea Embayment (Dziadek et al., 2017). After careful 
examination of potential disturbances in sediment temperatures 
induced by variations of bottom water temperatures, we conclude 
the following: The temperature distribution of the water column 
on the Amundsen Sea shelf is strongly variable, hence we use ex-
amples for our analytical solutions and not only in situ data, as 
they do not cover the entire sampling area. Sediments in shallow 
parts (<350 m) of the shelf are likely to be exposed to stronger, 
annual (	T =∼ 1 ◦C) temperature variations leading to larger er-
rors in GHF estimates. Decadal dynamics of the ambient water 
temperature at the sea floor cannot be neglected either when col-
lecting geothermal gradient data at shallow depths. In the wider 
sense, for any scenario, for instance gradient measurements be-
low the ice sheet, the knowledge of thermal history at the bed 
rock–ice interface is critical for accurate estimates. We improved 
the temperature processing method described by Dziadek et al.
(2017) for a 2010 campaign in the ASE, where in situ temperature 
measurements in shallow critical depths were not considered. We 
discussed hypothetical gradient transitions, which yield implica-
tions for the observations and models of the visco-elastic response 
of the lithosphere in the broader Amundsen Sea sector. High, non-
uniform uplift rates due to recent ice-mass changes (Groh et al., 
2012) could be linked to high geothermal gradients, which in turn 
have potential influence on the understanding of the ice sheet dy-
namics in the region. The mean estimated geothermal heat flow 
of 65 mW m−2 is likely a result of CDW overprinting and thermal 
blanketing by sedimentary processes, particularly within the basins 
since the last glacial maximum. These processes could cause a re-
duction of up to 20% of the GHF. By correcting for this factor, the 
GHF would range between 65 mW m−2 and 95 mW m−2. In parts 
of the WARS, however, where sediments are almost entirely absent, 
we would suspect, that GHF values might lie well above our mea-
sured estimates. This would have crucial significance for models 
long-term ice sheet dynamics and related sea level rise predic-
tions. The results of this study also show the increasing need to 
drill onshore and offshore for collecting deeper in situ tempera-
tures, which are less exposed to surface temperature variations.
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ship, D.D., Jakobsson, M., 2014. Meltwater intensive glacial retreat in polar 
environments and investigation of associated sediments: example from Pine Is-
land Bay, West Antarctica. Quat. Sci. Rev. 85, 99–118. https://doi .org /10 .1016 /j .
quascirev.2013 .11.021.

Zagorodnov, V., Nagornov, O., Scambos, T.A., Muto, A., Mosley-Thompson, E., Pet-
tit, E.C., Tyuflin, S., 2012. Borehole temperatures reveal details of 20th cen-
tury warming at Bruce Plateau, Antarctic Peninsula. Cryosphere 6 (3), 675–686. 
https://doi .org /10 .5194 /tc -6 -675 -2012.

https://doi.org/10.1073/pnas.0803627105
https://doi.org/10.1073/pnas.1405184111
https://doi.org/10.1002/2017JB014423
https://doi.org/10.1016/j.epsl.2004.04.011
http://refhub.elsevier.com/S0012-821X(18)30654-X/bib53696532303030s1
https://doi.org/10.1017/S0022143000003488
https://doi.org/10.1029/2008GL034939
http://refhub.elsevier.com/S0012-821X(18)30654-X/bib5665646574616C31393932s1
http://refhub.elsevier.com/S0012-821X(18)30654-X/bib5665646574616C31393932s1
http://refhub.elsevier.com/S0012-821X(18)30654-X/bib5665646574616C31393932s1
https://doi.org/10.1029/2006GL027345
https://doi.org/10.1038/ncomms14507
https://doi.org/10.1016/j.quascirev.2013.11.021
https://doi.org/10.5194/tc-6-675-2012
https://doi.org/10.1073/pnas.1405184111
https://doi.org/10.1038/ncomms14507
https://doi.org/10.1016/j.quascirev.2013.11.021

	Elevated geothermal surface heat ﬂow in the Amundsen Sea Embayment, West Antarctica
	1 Introduction
	2 Data and methods
	2.1 In situ temperature measurements
	2.2 Analytical investigation of sediment temperature disturbances
	2.3 Considerations of further corrections

	3 Results
	3.1 Geothermal heat ﬂow

	4 Discussion
	5 CDW induced gradient transition
	6 Conclusion
	Acknowledgements
	Appendix A Science Team of Expedition PS104
	Appendix B Supporting information
	References


