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Abstract—Vehicular ad hoc networks (VANETs) have a po-
tential to promote vehicular telematics and infotainment ap-
plications, where a key and challenging issue is the design of
robust and efficient vehicular content transmissions to combat
the lossy inter-vehicle links. In this paper, we focus on the robust
optimization of content transmissions over cooperative VANETs.
We first derive a stochastic model for estimation of time-varying
inter-vehicle distance, which is dependent of the vehicle real-time
kinematics and the distribution of the initial space headway. With
this model, we analytically formulate the transient inter-vehicle
connectivity assuming Nakagami fading channels for the physical
(PHY) layer. We also model the contention nature of the medium
access control (MAC) layer, on which we are based to evaluate
the throughput achieved by each vehicle equipped with dedicated
short-range communication (DSRC). Combining these models,
we derive a closed-formed expression for the upper bound of
the probability of failure in intact-content transmissions. Based
upon this theoretical bound, we develop a robust optimization
model for assigning content data traffic among different coop-
erative transmission paths, where the objective is to minimize
the maximum likelihood of unsuccessful content transmissions
over the cooperative VANET. We mathematically transform the
optimization model to another equivalent form, such that it
can be practically deployed. Finally, we validate our theoretical
development with extensive simulations. Numerical results are
also provided to confirm the power of cooperation in boosting
the VANET performance as well as demonstrate the advantage
of the proposed robust optimization in terms of content data
reception reliability.

I. INTRODUCTION

VEHICULAR ad-hoc networks (VANETs) have drawn
considerable research interest, because they are envi-

sioned to support a diverse array of vehicular applications with
different quality of service (QoS) requirements. Different from
short message disseminations in VANETs [1], vehicular con-
tent transmissions aim to achieve bulk data transfer between
fast moving vehicles equipped with DSRC. The content files
may contain different types of information, such as text mes-
sages, images, video and audio data, which can be divided into
a series of data packets in heterogeneous smaller sizes. At this
point, VANETs-based content transmissions representatively
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Fig. 1. A typical scenario of cooperative vehicular content transmissions.

boil down to the process of consecutively routing data packets
of different sizes from a source’s upper-layer applications to
a destination’s [2]–[4]. To guarantee the QoS or the QoE
of vehicle users, their upper-layer multimedia applications
always require the integrity of content data received from their
transmitters [2], [3], [5], [6]. The consecutive deliveries of
data packets may rely on multiple cooperative routing paths
[7]–[10]. However, it is non-trivial to achieve intact-content
transmissions in the inter-vehicle channel. Several common
significant characteristics of cooperative VANETs will make
this design issue a challenging task [11], such as Dynamic and
stochastic topology [12], Fast V2V channel fading [13], [14],
and Serious channel contention [15].

Towards this end, in this work, our focus is on the design
of a reliable and efficient content transmission scheme for co-
operative VANETs, using the robust optimization philosophy
[16]. Our design philosophy exploits the stochastic analysis
from a cross-layer perspective and the maximin mechanism
as a powerful robust modeling tool for the treatment of uncer-
tainty and randomness in cooperative VANETs-based content
transmissions. Specifically, a system model for inter-vehicle
throughput estimation is first developed by combining con-
tention nature in the MAC layer with the stochastic models of
the time-varying inter-vehicle spacing, the channel fading and
the PHY-layer modulation rate adaptation. Then, we present a
stochastic analysis on the throughput performance and derive a



closed-form expression for bounding the possibility of failure
in content transfer through an inter-vehicle link. Finally, we de-
velop a robust optimization model equipped with the adaptive
relay selection, so as to determine the optimal assignment of
heterogeneous-size data packet-level traffic over the feasible
cooperative routing paths as well as the direct transmission
path between the source and its destination. This model aims
to minimize the upper bound of the likelihood of unsuccessful
content transmissions over the whole vehicular routing paths,
meanwhile achieving the optimal payload balance among
these paths. Using mathematical analysis, we derive another
equivalent formation of the optimization model that is more
suitable for implementation. Finally, extensive simulations are
conducted to validate our proposed stochastic models and
prove the effectiveness of our optimization method. To the
best of our knowledge, the proposed framework presents the
first effort in literature to facilitate the robust optimization of
cooperative vehicular content transmissions with consideration
of complex coupled effects arising from vehicle mobility,
channel contentions and fading.

The rest of this paper is organized as follows. In Section
II, we develop different stochastic models and then arrive
at the model for the throughput estimation of cooperative
VANETs. Section III proposes the robust optimization model
for realization of optimal cooperative content transmissions.
Section IV evaluates our theoretical development. Finally,
Section V concludes this paper.

II. SYSTEM MODEL

A. Modeling of time-varying inter-vehicle distance

We consider a common traffic scenario where the vehicles
equipped with wireless communication, i.e., DSRC, and the
unequipped are mixed while they are moving with the ho-
mogeneous kinematic model. We begin our modeling with
assuming that after the connection setup, i.e., after the time
instant t0 = 0, the time-varying inter-vehicle distance between
any two selected transmitter and receiver, vehicles i and j, is
a random variable Si,j(t) as shown in Fig. 1. Let the speeds
of i and j at the initial time t0 be vi and vj , respectively, and
their instantaneous accelerations be Ai and Aj , respectively.
Because of stochastic fluctuations in the traffic flow and noises
in the vehicle dynamics systems such as braking system and
power train system, these accelerations may not be constant.
Considering this reality, we express Ai = ai + ηi and
Aj = aj + ηj where ai and aj are two mean accelerations
during the short-lived connection between i and j, while ηi
and ηj are assumed two independently identically distributed
random noises. Since the duration of vehicular transmissions is
usually much shorter than that of the state transition in traffic
flows, the vehicle’s motion can be approximated by{

Si(t) = vit+
1
2Ait

2,

Sj(t) = vjt+
1
2Ajt

2,
(1)

where Si(t) and Sj(t) are the distances traveled by i and j by
the time t, respectively. It should be noticed that vi, vj , ai and

aj are directional parameters. We assume that the direction of
vehicle j is positive, i.e., vj ≥ 0, so that when i and j are
moving in the same direction, we see vi ≥ 0; otherwise, when
i is moving in the opposite direction, vi < 0. The accelerations
ai and aj are defined positive if and only if they are in the
same direction of vj .

Denoting vi,j = vj − vi and ai,j = aj − ai, we obtain

Si,j(t) = (Sj(t)− Si(t)) + si,j

= vi,jt+
1

2
ai,jt

2 + si,j +
1

2
(ηj − ηi) t

2
(2)

in which si,j is the initial inter-vehicle spacing at t0 between
vehicles i and j. In addition, we assume that the noises are
characterized by a Gaussian distribution with the mean value
µη and the standard ση, i.e., ηi, ηj ∼ N

(
µη, σ

2
η

)
. Let their

PDF be gη(x). By algebraic transformation, we can further
get g−η(y) = gη(−y).

We introduce another random variable Z = ηj − ηi, the
realization of which is z = x + y. Recalling that ηi and
ηj are independent with each other and g−η(y) = gη(−y),
we yield the two-dimensional joint PDF of Z by gZ(x, y) =
gη(x)g−η(y) = gη(x)gη(−y), which results in

gZ(z) =

∫ +∞

−∞
gZ(x, z − x)dx =

∫ +∞

−∞
gη(x)gη(x− z)dx.

(3)
Then, under the assumption of the Gaussian distribution for
the PDF gη(x), the detailed expression of (3) can be

gZ(z) =

∫ +∞

−∞

1

2πσ2
η

exp

{
− (x− µη)

2 + (x− z − µη)
2

2σ2
η

}
dx.

(4)
For simplicity, we represent the deterministic term in (2) by
si,j(t) = vi,jt +

1
2ai,jt

2 + si,j , such that the space headway
Si,j(t) can be re-expressed as Si,j(t) = si,j(t)+

1
2 t

2Z. Using
the result of (4), we further derive the PDF of Si,j(t) over
time t conditioned upon a collection of i’s and j’s kinematic
parameters, θi,j = {vi, vj , ai, aj}, and the initial inter-vehicle
spacing, si,j , as follows

gSi,j(t)(d |θi,j , si,j ) =
2

t2
gZ

(
2

t2
(d− si,j(t))

)
. (5)

From (5), the PDF of the time-varying Si,j(t) indeed incorpo-
rates the impacts of the vehicle mobility and the initial inter-
vehicle spacing distribution.

B. Modeling of vehicular channel fading

We assume that the communication vehicles in a mixed
traffic flow are equipped with DSRC/IEEE802.11p, which
propagate the PHY-layer signal on the licensed spectrum of
75MHz in the frequency band from 5.850 to 5.925 GHz [17]–
[19]. According to much existing literature [6], [13], [15], [19],
we adopt the Nakagami distribution to capture the fast small-
scale fading in vehicular propagation channels. Let P be the
power received at the receiver j from the transmitter i, and the
corresponding received signal envelope from i be

√
P , which



is a random variable following a Nakagami distribution with
the parameters (m,ω). Thus, the PDF of

√
P is

g√P (x |m,ω ) =
2mm

Γ(m)ωm
x2m−1exp

(
−m

ω
x2

)
(6)

where Γ(m) is a Gamma distribution function, i.e., Γ(m) =∫ +∞
0

xm−1e−xdx. m is the channel fading parameter, and ω
is the expected received power in the fading envelope. Based
on equation (6), the CDF of the received power P is

Prob (P ≤ x) =
γ
(
m, m

ω x
)

Γ(m)
(7)

where the Gamma function γ
(
m, m

ω x
)

is represented by
γ
(
m, m

ω x
)
=

∫ m
ω x

0
sm−1e−sds.

To calculate ω, we refer to the measurements reported in
[19]. To be specific, we employ a dual-slope piecewise-linear
model to approximate the signal strength, P (d), received by
j from i given the inter-vehicle distance d = |Si,j(t)|:

P (d) =



P (d0)− 10γ1 log10

(
d
d0

)
+Xσ1 , d0 ≤ d ≤ dc;

P (d0)− 10γ1 log10

(
dc
d0

)
− 10γ2 log10

(
d

dc

)
+Xσ2

, d > dc;

(8)
where γ1 and γ2 are two path loss exponents, while Xσ1 and
Xσ2 are two independently random variables following zero-
mean normal distributions with the standard deviations σ1 and
σ2, respectively. P (d0) is a given signal power received at a
reference distance d0. dc is referred to as the Fresnel distance.
It can be approximated by the formula dc =

4HiHj

λwave
, where

Hi and Hj are the antenna heights of vehicles i and j, re-
spectively, and λwave is the wavelength of the electromagnetic
wave at 5.9GHz [19]. Thus, the expected received power in
the fading envelope given the inter-vehicle distance Si,j(t) is
ω = ω(Si,j(t)) = E [P (d)|d = |Si,j(t)|].

Furthermore, we exploit a distance-based model to evaluate
the channel fading parameter m. According to the real-world
measurements in [19], the fading in vehicular propagation
channel can be characterized with a finite set of different
parameters, {ak, k = 1, 2, . . . ,K}. Each fading parameter ak
corresponds to a certain range of the transmission distance,
Dk = (Sk−1, Sk]. That is, when the inter-vehicle distance,
d, is ranging within Dk, i.e., d ∈ Dk, m can be set to the
corresponding ak, i.e., m = ak (here we set the lower bound
of the first distance interval, D1, by S0 = 0). We notice that
the condition d = |Si,j(t)| ∈ Dk is equivalent to the union
of −Sk ≤ Si,j(t) ≤ −Sk−1 and Sk−1 ≤ Si,j(t) ≤ Sk. Thus,
with the stochastic model (5), we can derive the probability
mass function of the channel fading parameter m conditioned
on d = |Si,j(t)| as follows

Prob (m = ak) =

∫ −Sk−1

−Sk

gSi,j(t) (x |θi,j , si,j ) dx

+

∫ Sk

Sk−1

gSi,j(t) (x |θi,j , si,j ) dx
(9)

for k = 1, 2, . . . ,K.
Now, given the power of the thermal noise at j, I , the SNR

is defined by R = P
I . Using (7), we obtain the CDF of the

SNR level at j given the channel fading parameter m and the
average signal strength ω(Si,j(t))

Prob (R ≤ x|m,ω(Si,j(t))) =
γ
(
m, m

ω(Si,j(t))
Ix

)
Γ(m)

. (10)

Following the result (10), the connectivity of a transmission
pair, defined as the probability pcon that the SNR at the
receiver j is larger than a specified threshold ϕ to correctly
receive information, can be easily determined by

pcon = Prob (R > ϕ|m,ω(Si,j(t))) = 1−
γ
(
m, m

ω(Si,j(t))
Iϕ

)
Γ(m)

.

(11)

C. Modeling of vehicular channel contentions

Let λg represent the overall vehicle density in vehicles per
meter and λe be the market penetration rate, 0 < λe ≤ 1. In
addition, we assume that only a part of vehicles among the
equipped vehicles are willing to serve as cooperative relays,
and let pc denote the cooperation ratio, 0 < pc ≤ 1. A random
variable N denotes the number of the cooperative equipped
vehicles that would contend to access the same channel for
communications. Following much existing literature such as
[1], [6], we assume that the presence of the cooperative
equipped vehicles in a mixed traffic flow follows an inde-
pendent homogeneous spatial Poisson process with intensity
λ = λgλepc. Hence, the probability mass function of N can
be presented by

Prob (N = n) =
(Sλ)

n

n!
exp(−Sλ), (12)

where S is the carrier sensing range of any equipped vehicle.
We assume that the cooperative VANET employs a

contention-based access mechanism in the MAC layer to
resolve the vehicular channel contentions. Specifically, we
consider that the RTS/CTS (Request-to-Send and Clear-to-
Send) scheme is used for eliminating the hidden terminals
as well as the IEEE 802.11 distributed coordination function
(DCF) for MAC-layer scheduling. Denote by W the contention
window size of the backoff process in the MAC layer and τ
the average transmission probability that an equipped vehicle
transmits in an idle slot. Applying the mean approximation
immediately obtains

τ =
2

W + 2
. (13)

Therefore, with (13), the probability of a communication
vehicle encountering an idle slot can be expressed as

pidl = (1− τ)
N
, (14)

and that of success in a transmission is

psuc =

(
N

N − 1

)
τ(1− τ)N−1. (15)



Besides, the probability of a collided transmission occurring
can be determined by pcol = 1− pidl − psuc.

D. Throughput performance of per-transmission link

To evaluate the MAC-layer throughput performance of the
transmission link between the transmitter i and the receiver j,
we denote by Li the average data payload of vehicle i, Lhead

the packet header including the PHY-layer header and the
MAC-layer header, i.e., Lhead = LPHY+LMAC. The unit time
slot in the MAC-layer DCF scheme is denoted by δslot. Addi-
tionally, let δDIFS (the time interval of DCF Interframe Space),
δSIFS (the time interval of Short Interframe Space), δRTS,
δCTS and δACK be the pre-specified time intervals reserved
for the DCF-related operations (such as signallings) and the
transmissions of RTS-, CTS- and ACK- messages. According
to the IEEE 802.11 standard and with these notations, we can
express the average time of collided transmission, δcol, and
that of successful transmission, δsuc, as follows

δcol = δRTS + δDIFS + δslot;

δsuc =δRTS + δDIFS + δCTS + δACK

+ 3δSIFS + 4δslot +
E [L]

E [C]
,

(16)

where E [L] denotes the average packet length of N vehicles
contending the wireless channel and E [C] the average trans-
mission rate among these vehicles.

To evaluate the average transmission rate of the cooperative
VANET, we resort to the discrete SNR-based channel modula-
tion scheme, in which the vehicular communication terminal is
assumed to support a finite set of Q different PHY-layer modu-
lation rates, {cr, r = 1, 2, . . . , Q}. These modulation rates are
adopted according to the SNR level. That is, each modulation
rate, cr, is triggered when the SNR level, R, is ranging within
a certain range (ϕr, ϕr+1], i.e., R ∈ (ϕr, ϕr+1]. Based on
equations (10) and (11), we can derive the probability of the
selection of the modulation rate cr by

Prob (C = cr|m,ω(Si,j(t))) =
γ
(
m, m

ω(Si,j(t))
Iϕr+1

)
−γ

(
m, m

ω(Si,j(t))
Iϕr

)
Γ(m) , r = 1, . . . , Q− 1;

1−
γ
(
m, m

ω(Si,j(t))
IϕQ

)
Γ(m) , r = Q;

(17)

Hence, we can get the theoretical MAC-layer throughput, ui,j ,

ui,j =
τpsuc(Li + Lhead)

pidlδslot + pcolδcol + psucδsuc
. (18)

Following equation (18), given a limited time interval [0, T ],
the total data volume that can be completely transmitted from
vehicle i to j within the specified time duration T can be
expressed as follows

Ui,j =

∫ T

0

ui,jdt. (19)

III. ROBUST OPTIMIZATION OVER COOPERATIVE
VANETS

A. Analysis of expected per-vehicle throughput

From (18), it can be seen that the throughput Ui,j is a
random variable. This fact renders it impractical to compute
Ui,j from (19). Thus, we would like to evaluate the expected
throughput performance, i.e.,

E [Ui,j ] =

∫ T

0

E [ui,j ] dt. (20)

Next, we derive the main theoretical results.
Result 1: Given the kinematics of the transmitter i and the

receiver j, θi,j , as well as the initial inter-vehicle spacing,
si,j , the expected MAC-layer throughput performance of the
transmission pair from i to j is as follows

E [Ui,j ] =
+∞∑
n=1

K∑
k=1

Q∑
r=1

∫ T

0

∫ +∞

−∞
ui,jp (cr, ak, n, x)dxdt,

(21)

where p (cr, ak, n, x) is defined by

p (cr, ak, n, x) = Prob (C = cr,m = ak, N = n, Si,j(t) = x)

= Prob (C = cr|m,ω(x))

× Prob (m = ak)× Prob(N = n)

× gSi,j (x |θi,j , si,j ) .
(22)

Proof: Result 1 is based on equations (5), (9), (12), and
(17), and naturally follows the mathematical definition of the
conditional expectation and the integral linearity.

Denote by fi,j the size of the content file, i.e., the data
volume, expected to be forwarded from i to j within the given
time duration [0, T ]. We define the negative reliability associ-
ated with the transmission pair (i, j) as Prob (Ui,j ≤ fi,j),
which indicates the possibility of the assigned content file
size exceeding the per-vehicle throughput performance, i.e.,
the likelihood of failing in content transmissions. Thus, we
provide the following theorem to approximate its upper bound.

Theorem 1: Given the kinematics of the transmitter i and
the receiver j, θi,j , the initial inter-vehicle spacing, si,j , as
well as the size of the content file to be transmitted, fi,j , and
fi,j ≤ E [Ui,j ], the probability of a vehicular transmission link,
(i, j), failing to achieve the content transmission within a given
duration [0, T ] has an upper bound Probupper (fi,j |θi,j , si,j ):

Probupper (fi,j |θi,j , si,j ) =
T
∫ T

0
E
[
u2
i,j

]
dt− (E [Ui,j ])

2

T
∫ T

0
E
[
u2
i,j

]
dt− (E [Ui,j ])

2
+ (E [Ui,j ]− fi,j)

2
.

(23)

Proof: The proof can follows the same way in [6].

B. Robust optimization

We follow much current literature to assume that each vehi-
cle equipped with DSRC also deploys a GPS onboard and is
running a routine service to exchange some control messages



among its neighbors. Thus, the other neighbor can access the
kinematics and the real-time location of the host vehicle, and
can evaluate the inter-vehicle distance as well. Certain comput-
ing information used for decision making can also be locally
exchanged through the routine service. Denote the set of coop-
erative relays between i and j by Vi,j , and the set consisting
of all the cooperative two-hop routing paths and the direct
path by Pi,j , i.e., Pi,j = {[(i, j)] , [(i, vp), (vp, j)] , vp ∈ Vi,j}.
i divides the overall content data Fi,j into |Pi,j | data traffic
streams with each being routed over one path in Pi,j . More-
over, we let a fragment of the content file Fi,j , i.e., the data
traffic assigned to a routing path p ∈ Pi,j , be fp ≥ 0 and
the collection of all fp be f = col {fp, ∀p ∈ Pi,j}. Thus, we
can define a cooperation cost function in terms of end-to-end
transmission reliability as

G(f) =
∑

p∈Pi,j

fphp(fp), (24)

where the path-related cost function hp(fp) is formulated as
follows, which quantifies the likelihood of the cooperative path
p failing in transmission of the assigned content data fp:

hp(fp) = 1−
∏
e∈p

(1− Prob (Ue ≤ fp)) . (25)

Here, we use e ∈ p to represent a transmission link
associated with the cooperative routing path p. For example,
given a p = [(i, vp), (vp, j)] ∈ Pi,j , the intermediate relay vp
connects to two links, e1, e2 ∈ p, one of which is e1 = (i, vp)
and the other e2 = (vp, j). Intuitively, the optimization of
dividing the large-data-volume content file into a series of
heterogeneous-size manageable chunks and assigning them to
multiple cooperative routing paths can be modeled as follows

min
f

:G(f) =
∑

p∈Pi,j

fphp(fp)

s.t.


Fi,j =

∑
p∈Pi,j

fp;

fp ≤ 1
β min {E [Ue] , e ∈ p} , p ∈ Pi,j ;

0 ≤ fp, p ∈ Pi,j ,

(26)

where β ∈ (0, 1] is a tunable parameter. For the sake of
simplicity, we denote the set of constraints in (26) by Fi,j .

Indeed, (26) is traditionally classified as a probabilistic
optimization model. However, due to the unknown distri-
bution of Ue, i.e., existing uncertainty in each component,
Prob (Ue ≤ fp), of the cooperation cost function G(f) given
above, it is impractical to solve this probabilistic model. In
this situation, it is meaningful to make a robust decision from
the conservative point of view. Hence, we resort to the robust
optimization paradigm, i.e., the dominating paradigm in this
area of robust optimization, to propose a robust counterpart.
Namely, we further formulate the following minimax model

min
f

max
f

:G(f) =
∑

p∈Pi,j

fphp(fp)

s.t.f ∈ Fi,j .

(27)

Based on the result of theorem 1, we can easily see

hp(fp) ≤ 1−
∏
e∈p

[1− Probupper (fp |θe, se )]. (28)

Let the right term of the inequality (28) above be
Hupper (fp |θe, se ). Accordingly, with (28), we transform the
minmax optimization model (27) into

min
f

:W (f) =
∑

p∈Pi,j

fpHupper (fp |θe, se )

s.t.f ∈ Fi,j .

(29)

From (29), it is seen that this robust optimization model
involves both the equality and the inequality constraints. Thus,
it is non-trial to directly solve (29). To cope with (29), we
first consider to solve a subproblem similar to (29) while only
dealing with the equality constraint, i.e.,

min
f

:W1(f) =
∑

p∈Pi,j

fpHupper (fp |θe, se )

s.t.Fi,j − 1Tf = 0,

(30)

where we define 1 as a column vector with size |Pi,j | × 1,
whose entries are all identical to 1, i.e., 1 = col {1, . . . , 1} ∈
R|Pi,j |×1. Now, we present the following theorem based on
the analysis of the submodel (30).

Theorem 2: There exists a nonnegative scalar parameter
α′
1 ≥ 0, such that obtaining a strict local optimal solution

of (30) boils down to solve a strict local minimum point of
the following unconstrained optimization problem:

min
f ,µ1

: L1(f , µ1) =W1(f)− µ1

(
Fi,j − 1Tf

)
+

α1

2

(
Fi,j − 1Tf

)2
,

(31)

under the condition that the factor α1 satisfies α1 > α′
1.

Proof: Let the solution f satisfy the properties of a strict
local optimal solution of the subproblem (30). That is, there
exists a multiplier µ1 that makes the following conditions held{
▽f

(
W1(f)− µ1

(
Fi,j − 1Tf

))
= ▽fW1(f) + µ11 = 0;

Fi,j − 1Tf = 0.
(32)

Besides, according to the strict optimality of f , it satisfies the
second-order sufficient condition:

yT▽2
f

(
W1(f)− µ1

(
Fi,j − 1Tf

))
y = yT▽2

f W1(f)y > 0
(33)

is always held for any nonzero column vector y ∈ R|Pi,j |×1

that satisfies yT▽f

(
Fi,j − 1Tf

)
= −yT1 = 0.

Now, we take the partial derivative of the objective function
in (31) with respect to f so as to get

▽fL1 (f , µ1) = ▽fW1 (f) + µ11− α1

(
Fi,j − 1Tf

)
1.
(34)

Substituting the conditions of (32) into (34) above can obtain
▽fL1

(
f , µ1

)
= 0. Thus, f and µ1 also meet the first-order

condition of the unconstrained optimization model (31).



Next, based on (34), we further yield the Hessian matrix
▽2

fL1 (f , µ1) as follows

▽2
fL1 (f , µ1) = ▽2

fW1 (f) + α111
T. (35)

Recalling α1 > α′
1 ≥ 0, we can easily see that

yT ▽2
f L1

(
f , µ1

)
y = yT

(
▽2

fW1

(
f
)
+ α111

T
)
y

> yT ▽2
f W1

(
f
)
y > 0

(36)

is held due to (33). At this point, the Hessian matrix
▽2

fL1

(
f , µ1

)
at the point f is strictly positively definite when

α1 > 0. Combining the results of ▽fL1

(
f , µ1

)
= 0 and the

strict positive definiteness, we arrive at the conclusion that
f is also a strict local minimum point of the unconstrained
optimization model (31).

Conversely, suppose that a point f̃ meets Fi,j−1Tf̃ = 0 as
well as is a strict local minimum point of (31) with a certain
parameter µ̃1, i.e., ▽fL1

(
f̃ , µ̃1

)
= 0. These conditions

directly lead to

▽fW1

(
f̃ , µ̃1

)
+ µ̃1 ▽f

(
Fi,j − 1Tf̃

)
= 0, (37)

which indicates that f̃ is a Karush-Kuhn-Tucker (KKT) point
of the model (30).

Similar to (35), we can also derive ▽2
fL1

(
f̃ , µ̃1

)
=

▽2
fW1

(
f̃
)
+ α111

T. Due to the strict optimality of f̃ , we

have ỹT▽2
f L1

(
f̃ , µ̃1

)
ỹ > 0 for any nonzero column vector

ỹ, which is equivalent to

ỹT
(
▽2

fW1

(
f̃
)
+ µ̃1 ▽2

f

(
Fi,j − 1Tf̃

))
ỹ > 0. (38)

Therefore, (37) and (38) indicate that f̃ is also a strict local
optimal solution of the model (30).

In summary, the derivations above show that we can solve
a strict local minimum point of the subproblem (31) to obtain
a strict local optimal solution of the model (30).

Another fact revealed in Theorem 2 is that we are allowed
to solve the subproblem (31) for a strict local minima with
any fixed finite parameter α1 > 0. Thus, we can pre-specify
α1 and do not need to ensure α1 → +∞. This makes great
sense in designing an optimization algorithm for (31).

Now, we turn to deal with the original problem (29) under
both the equality and the inequality constraints. Specifically,
we present the following result based on Theorem 2.

Theorem 3: There exists a nonnegative scalar parameter
α′
2 ≥ 0, such that obtaining a strict local optimal solution

of (29) boils down to solve a strict local minimum point of
the unconstrained optimization problem:

min
f ,µ2,π,κ

:L2(f , µ2,π,κ) = W1(f)− µ2

(
Fi,j − 1Tf

)
+

α2

2

(
Fi,j − 1Tf

)2
+

1

2α2

∑
p∈Pi,j

(
(ξ1 (πp, fp))

2 − π2
p

)
+

1

2α2

∑
p∈Pi,j

∑
e∈p

(
(ξ2 (κp,e, fp))

2 − κ2
p,e

)
,

(39)

under the condition α2 > α′
2, where π = {πp, p ∈ Pi,j} and

κ = {κp,e, e ∈ p, p ∈ Pi,j} are two different sets of Lagrange
multipliers. ξ1 (πp, fp) and ξ2 (κp,e, fp) are given by{

ξ1 (πp, fp) = max {α2fp − πp, 0}
ξ2 (κp,e, fp) = max

{
α2

(
1
βE[Ue]− fp

)
− κp,e, 0

}
.

(40)
Proof: To prove this theorem, we introduce two sets

of slack variables, i.e., w1 = {wp, p ∈ Pi,j} and w2 =
{wp,e, e ∈ p, p ∈ Pi,j}, so as to transform the inequality con-
straints in Fi,j into the equality constraints: fp ≥ 0 →
fp−w2

p = 0 for ∀p ∈ Pi,j , and fp ≤ 1
β max {E[Ue], e ∈ p} →

1
βE[Ue]− fp − w2

p,e = 0 for ∀e ∈ p and ∀p ∈ Pi,j . Thus, the
model (29) can be rearranged as

min
f ,w1,w2

:W1(f) =
∑

p∈Pi,j

fpHupper (fp |θe, se )

s.t.


Fi,j − 1Tf = 0;

fp − w2
p = 0, p ∈ Pi,j ;

1
βE[Ue]− fp − w2

p,e = 0, e ∈ p, p ∈ Pi,j .

(41)

Based on Theorem 2, solving (41) is equivalent to solve

min
f

:L̃2(f ,w1,w2, µ2, α2,π,κ) = W1 (f)

− µ2

(
Fi,j − 1Tf

)
+

α2

2

(
Fi,j − 1Tf

)2
−

∑
p∈Pi,j

πp

(
fp − w2

p

)
+

α2

2

∑
p∈Pi,j

(
fp − w2

p

)2
−

∑
p∈Pi,j

∑
e∈p

κp,e

(
1

β
E[Ue]− fp − w2

p,e

)

+
α2

2

∑
p∈Pi,j

∑
e∈p

(
1

β
E[Ue]− fp − w2

p,e

)2

.

(42)

As for (42), we treat it as an unconstrained optimization
problem with respect to {w1,w2}, such that we can solve
it for the minimum points {w̃1, w̃2}. To achieve this, we
mathematically rearrange the cost function in (42) as follows

L̃2(f ,w1,w2, µ2, α2,π,κ) = W1 (f)

− µ2

(
Fi,j − 1Tf

)
+

α2

2

(
Fi,j − 1Tf

)2
+

∑
p∈Pi,j

{
α2

2

[
w2

p −
1

α2
(α2fp − πp)

]2
−

π2
p

2α2

}

+
∑

p∈Pi,j

{
α2

2

[
w2

p,e −
1

α2

(
α2

(
1

β
E[Ue]− fp

)
− κp,e

)]2}

−
∑

p∈Pi,j

∑
e∈p

κ2
p,e

2α2
.

(43)

It is obvious that if and only if wp and wp,e are set to{
w̃2

p = 1
α2

ξ1 (πp, fp) ,

w̃2
p,e =

1
α2

ξ2 (κp,e, fp) ,
(44)



for ∀e ∈ p and ∀p ∈ Pi,j , the cost function (43) attains its local
minimum value, i.e., L̃2(f , w̃1, w̃2, µ2, α2,π,κ). Therefore,
we can set L2(f , µ2, α2,π,κ) = L̃2(f , w̃1, w̃2, µ2, α2,π,κ),
such that the local optimal solution of the model (29)
withe respect to f can be obtained by further minimizing
L2(f , µ2, α2,π,κ). At this point, we complete the proof.

We remark that Theorem 3 indeed provides an equivalent
model for the original robust model (29), which is much easier
to be tackled and more practical for computing. Currently,
there have been many numerical unconstrained optimization
algorithms, such as the steepest descent method, the conjugate
gradient method, and the quasi-newton algorithm, etc., on
which we can rely to solve the equivalent robust model (40)
for an optimal data traffic assignment policy for cooperative
vehicular content transmissions.

IV. SIMULATIONS AND NUMERICAL RESULTS

A. Simulation scenario and parameters

We consider a linear highway scenario where vehicles
equipped with DSRC and the other unequipped coexist. Ve-
hicles are randomly mixed in a traffic flow, forming a spatial
Poisson point process. To validate our theoretical models pro-
posed before, we develop our simulations using Python-based
object-oriented programming technique. In our simulations,
some basic PHY-layer and MAC-layer simulation parameters
of each vehicle with DSRC are given according to some
current studies [6], [15], [19], as provided in Table I. It
should be noted that the carrier sensing range is set to much
larger than that of the one-hop range so as to suppress the
hidden terminal issue. The time resolution of the mobility
simulation is set to dt = 0.1s, while that of the communi-
cation simulation should be 1µs as specified in IEEE 802.11
standard. Furthermore, we also adopt different distance-based
channel fading parameters m for the Nakagami channels and
different received SNR-based PHY-layer transmission rates C.
We remark that the simulation settings adopted here is for
the sake of demonstration of how to apply our mathematical
models. Nevertheless, our models are independent of a specific
parameter in Table I. Once the PHY-layer or MAC-layer
parameters in other scenarios of interest are appropriately
defined, our model can be implemented as well.

B. Distribution of stochastic inter-vehicle spacing

To validate the stochastic model of inter-vehicle spacing
in (5), we vary the general traffic density λg , i.e., λg ∈
[1/200, 1/100, 1/50]veh/m and fix the market penetration rate
λe = 0.8 and the cooperation ratio pc = 0.9. Thus, the
initial inter-vehicle distance can be set to 1/(λgλepc)m/veh.
In the simulated traffic flow, we select two equipped vehicles,
vehicles i and j, with initial vi = 90/3.6m/s, vj = 95/3.6m/s,
ai = 1.0m/s2, and vj = −1.0m/s2. The mean and the standard
deviation of the distribution of the stochastic acceleration
noise η are ση = 0m/s2 and 0.2(m/s2)2, respectively. We
perform Monte Carlo simulations of the mobility scenario and
then compare the simulation results with the results of our
theoretical model. All the simulations have been performed

TABLE I
BASIC PHY-LAYER AND MAC-LAYER PARAMETERS.

Parameters in the propagation model (8) Values
Path loss exponents γ1, γ2 2.1, 3.8
Standard deviations σ1, σ2 2.6dB, 4.4dB
Critical distance dc 100m
Reference distance d0 38.31m
Reference power P (d0) −38.8325dBm
Parameters in the SNR CDF model (10) Values
Thermal noise power I −96dBm
Parameters in channel contentions Values
Contention window size W 32
Header of PHY-layer frame LPHY 136Bytes
Header of MAC-layer frame LMAC 28Bytes
Unit time slot δslot and ACK slot δACK 13µs, 37µs
RTS and CTS intervals δRTS, δCTS 53µs, 37µs
DIFS and SIFS intervals δDIFS, δSIFS 58µs, 32µs
PDF of the packet payload distribution N

(
500, 83.32

)
Bytes

One-hop communication range 300.0m
Carrier sensing range S 500.0m
Distance interval m
d ∈ (0, 100]m a1 = 1.0
d ∈ (100, 200]m a2 = 0.5
d ∈ (200, 500]m a3 = 0.1

SNR interval C
R ∈ (0, 25]dB c1 = 12.0Mbps
R ∈ (25,+∞)dB c2 = 24.0Mbps

with 200 replications per simulation point (i.e., per si,j), such
that the results corresponding to each si,j are illustrated with
a statistical histogram.

Fig. 2 compares the results of computing the model (5) and
the simulation results when the travel time t is set to t =
20s and the initial inter-vehicle spacing si,j is set to different
values. As can be seen, the PDF curve obtained by the model
(5) can excellently approximate the statistics of the simulation
results. Additionally, Fig. 2 shows that a larger initial inter-
vehicle spacing is more likely to result in a larger inter-vehicle
distance at the time t in the stochastic mobility scenario.

C. Analysis of connectivity probability

In this subsection, we further investigate the connectivity of
the cooperative VANET under the Nakagami Fading Channel.
To achieve this, we set the SNR threshold in the model (11)
by ϕ = 3dB. The traffic density λg and the market penetration
rate λe are as the same as those in Subsection IV-B, while pc
is discretely increased from 0.1 to 1.0 with a step 0.0474.

Fig. 3 shows this experiment outcomes where the markers
denote the mean of simulation results and the curves are
theoretical results. As is demonstrated, we can increase pc or
λg to improve the connectivity probability of a transmission
pair. The comparison between the theoretical results and those
of the simulations can confirm the validity of our theoretical
model. To give an insight into the coupled effects of si,j and
t, we evaluate the mean connectivity denoted by E [pcon], i.e.,
E [pcon] =

∫ +∞
−∞ pcongSi,j(t) (x|θi,j , si,j)dx. The numerical

results are illustrated in Fig. 4. From this figure, we can see
that a smaller inter-vehicle spacing and a shorter travel time
trend to increase the mean connectivity probability. Indeed,
there exists an optimal region of si,j and t where E [pcon]



Fig. 2. PDF of Si,j(t) at t = 20s
under different densities λ.
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Fig. 3. Connectivity probability pcon
under different cooperation ratios pc.
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Fig. 4. Expected connectivity under
different t and different si,j .

Fig. 5. Theoretical E [Ui,j ] and sim-
ulation results under different t.

Fig. 6. Theoretical E [Ui,j ] and sim-
ulation results under different si,j .

Fig. 7. Received data volume with
different schemes under different t.

Fig. 8. Ratio of received data volume
over that needed to be transmitted.

Fig. 9. Received data volume with
different schemes under different pc.

can be maintained at a high level. For example, when t does
not exceed about 30.0s and si,j is smaller than about 200.0m,
E [pcon] always holds E [pcon] ≥ 0.8. Another interesting fact
shown in Fig. 4 is that when si,j is large, e.g., si,j > 300m, a
smaller t, e.g., t < 12s, cannot guarantee a good connectivity.
As can be seen from Fig. 4, at a large si,j > 300m, E [pcon] is
changed from a lower region to a higher region, and again falls
into a much lower region as t increases from 0.1s to 60.0s.
The main reason is that Si,j(t) is directional. Namely, as t
increases, |Si,j(t)| decreases to 0 and then becomes larger than
0, such that the connectivity experiences both an increasing
and a decreasing trends.

D. Transmission pair throughput

Next, we conduct simulations to validate the theoretical
evaluation of the expected throughput performance (21). In
the experiment, we set λg = 1/50veh/m while pc = 0.9 and
λe = 0.8. We also select two transmission pair i and j for
observation, whose speed, acceleration and acceleration noise
are set in the same way in Subsection IV-B. The data payload
of a packet is assumed to be 1000Bytes.

We vary t from 5s to 50s with an increment step of 5s. At
each point of t, the simulations have been carried out with 200
replications, and the results are shown with their mean value.
Fig. 5 compares the results obtained by computing (21) with
those of the simulations. As can be observed, (21) provides a
good approximation to the simulation results. Furthermore, we
can also see that increasing t can increase the mean transmitted
data volume, while the increment rate is reduced. This is
because the connectivity probability of the pair would reduce
when t increases, as illustrated in Fig. 4. In Fig. 6, with
t = 15s, we investigate the variation of the mean data volume

transmitted under different si,j . The theoretical results can also
appropriately approximate those of the simulations.

E. Performance of robust optimization

Finally, we compare the proposed method (denoted by
“Robust”) with some other schemes, including the direct trans-
mission scheme (“Direct”) that performs the content trans-
missions without cooperation, the uniform assignment scheme
(“Uniform”) that uniformly assigns the content data traffic
of the same volume to each cooperative path, the stochastic
assignment scheme (“Stochastic”) that randomly generates an
assignment solution. It is noted that except for “Direct”, the
others schemes exploit the cooperation mechanism.

We randomly select a transmission pair i and j from a
vehicle flow with λg = 1/50veh/m. We set λe = 0.9, pc = 0.8,
β = 0.1 and ση = 0.1m/s2. The speeds of all the vehicles
are uniformly randomly generated from [90/3.6, 95/3.6]m/s,
and their accelerations from [−1, 1]m/s2. The time duration
t is discretely varied from 5s to 30s, and the size of the
total content file, Fi,j , is generated from [4, 14]Mb. Fig. 7 and
Fig. 8 illustrate the performance with different mechanisms,
showing that our method can achieve the largest volume of
content data received by the destination as well as the best
reception ratio. In addition, Fig. 9 shows the results under
two different cooperation conditions, pc = 0.1 and pc = 1. In
Fig. 9, the ratio of data volume received by the destination is
expressed as the percentage attached above the corresponding
bar chart. In these two situations, we fix t = 15s and
Fi,j = 2Mb, 9Mb, respectively. As can be found, using the
cooperation can boost the received data volume by about 10%
on average under pc = 0.1, while the received data volume is
increased by about 72% on average under pc = 1. To examine



Fig. 10. Received data volume with
different schemes under different ∆v.

Fig. 11. Received data volume with
different schemes under different ση .

how the mobility impacts on the performance, we further
set the speed interval, denoted by ∆v, within which vehicle
speed is randomly uniformly distributed, to different cases,
∆v1 = [30/3.6, 35/3.6]m/s, ∆v2 = [60/3.6, 65/3.6]m/s, and
∆v3 = [90/3.6, 95/3.6]m/s. In each case, let t = 15s and
pc = 0.8. The experimental results are compared in Fig.
10, indicating that higher mobility would reduce the received
data volume. Besides, we show the effects of different ση

on the performance in Fig. 11. We fix the uniform speed
interval as [90/3.6, 95/3.6]m/s, Fi,j = 6Mb, and ση as
ση ∈ [4/50, 4/30, 4/10]m/s2. From Fig. 7 to Fig. 11 above, it
can be confirmed that the VANET can gain respectable benefit
from the cooperation among transmitters, and the proposed
method can always perform the best among the schemes with
and without cooperation at all the simulation points.

V. CONCLUSION

In this paper, we use the advantage of cooperation among
interacting vehicles to form a cooperative VANET for vehic-
ular content file transmissions. To guarantee the performance
of the cooperative VANET, we develop a robust optimization
framework for effective and reliable realization of coopera-
tive vehicular content transmissions. Comprehensive effects
of the vehicle mobility, contentions and fading in the inter-
vehicle propagation channel are considered in our theoretical
development. The proposed robust optimization method is
theoretically analyzed and proved to benefit the cooperative
VANET through extensive comparative simulations. Notably,
this work bridges the divide between the complex coupled
impacts, which arise from vehicle mobility and vehicular
communications, and the robust optimization of content trans-
mission performance in cooperative VANETs. In the future,
we would like to investigate the performance of the proposed
robust optimization in real-world situations by conducting field
tests. Moreover, it is also expected to incorporate other more
complex driving behaviors, e.g., car-following dynamics, in
the inter-vehicle spacing model, and to extend the robust
optimization model to the car-following scenarios.
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