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Abstract—Web browsing is an important application domain, but it
imposes a significant power burden on mobile devices. While hetero-
geneous multi-cores offer the potential for energy-efficient computing,
existing web browsers fail to exploit the hardware to optimize mobile web
browsing. Our work aims to offer a better way to optimize web browsing
on heterogeneous mobile devices. We achieve this by developing a machine
learning based approach to predict the optimal processor setting for
rendering the web content. The prediction is based on the web content,
the network status and the optimization goal. We evaluate our approach
by applying it to the Chromium browser and testing it on a representative
big.LITTLE mobile platform. We apply our approach to the top 1,000
hottest websites across seven typical networking environments. Our
approach achieves over 80% of the performance delivered by a perfect
predictor. Our approach achieves over 30%, 50%, and 60% improvement
respectively for load time, energy consumption and the energy delay
product when compared to two state-of-the-art approaches.

I. INTRODUCTION

Web is a major information portal on mobile devices [1]. Yet, web
browsing is poorly optimized and continues to consume a significant
portion of battery power on mobile devices [2]. Heterogeneous
multi-cores offer a new way for energy-efficient mobile computing.
However, current mobile web browsers rely on the operating system
(OS) to exploit the heterogeneous cores. Since the OS has little
knowledge of the web workload and the network conditions, its
decision is often sub-optimal. This leads to poor energy efficiency [3],
draining the battery faster than necessary and irritating mobile users.

Our work aims to provide a better way for optimizing mobile
web browsing. Rather than letting the OS make all the scheduling
decisions by passively observing the system’s load, we want the
browser to decide which heterogeneous core and the optimal clock
frequencies to run the rendering engine. We believe such a decision
must consider the web content, the optimization goal, and how
the network affects the rendering process. We achieve our goal
by employing machine learning techniques to automatically build
predictors based on empirical observations gathered from a set of
training examples. The trained models are then used at runtime to
predict the optimal processor configuration for any unseen webpage.

We present a machine-learning-based web rendering scheduler that
can leverage knowledge of the network and webpages. We compare
our approach against two state-of-the-art approaches [4], [5] on
a representative big.LITTLE mobile platform. Experimental results
show that our approach outperforms the state-of-the arts by delivering
over 1.3x improvement across evaluation metrics.

II. MOTIVATION
Consider a scenario for browsing four webpages, starting from the
home page of news.bbc.co.uk on an Odriod Xu3 big.LITTLE
mobile platform with a Cortex-A15 (big) and a Cortex-A7 (little)
processors (see also Section IV-A).

Networking environments. We consider three typical networking
environments: Regular 3G, Regular 4G and WiFi ( Section III-B1).
To ensure reproducibility, web requests and responses are determin-
istically replayed. The web server simulates the download speed and
latency of a given network setting.

Scheduling policies. We schedule the Chromium rendering engine to
run on either the big or the little core under different clock frequencies
to find the best processor configuration per test case. We refer this
best-found configuration as the oracle performance. We use the
interactive CPU frequency governor as the baseline, which is
the default frequency governor on many mobile devices [6]. We also
compare with the best-existing governor found from mainstream CPU
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Table I: The best-existing available governor

Load time Energy consumption  EDP
Regular 3G conservative powersave powersave
Regular 4G ondemand conservative ondemand
WiFi performance ondemand interactive

governors, including the interactive and other four strategies:
performance, conservative, ondemand and powersave.

Motivation results. Table I lists the best existing-CPU-frequency
governor and Figure 1 shows the performance of each strategy for
three lower is better metrics: load time, energy consumption and
the energy delay product (EDP) - calculated as energy times delay.
The widely used interactive governor fails to deliver the best-
available performance for load time, energy consumption and EDP.
Furthermore, running the CPU at the highest frequency (i.e., the
Performance governor) is not always profitable when optimizing
for load time. This is because doing so may lead to frequent
CPU throttling which effectively forces the CPU to run at a lower
frequency to prevent it from overheating. On average, the oracle
outperforms the best-existing governor by 54.6%, 70.6% and 85.4%
respectively for load time, energy consumption and EDP across
networking environments. We also observe that there is no “one-
fits-for-all” best CPU configuration.

This example shows that the best processor configuration depends
on the network and the optimization goal, and the current mainstream
CPU frequency governors are ill-suited for mobile web browsing.
There is a need for a better scheduler that can adapt to the webpage
workload, the networking environment and the optimization goal.

III. OUR APPROACH
A. Overview
Our approach consists of two main components: (i) a network
monitor running as an OS service and (ii) a web browser extension.
The network monitor measures the end to end delay and network
bandwidths when downloading the webpage. The web browser ex-
tension determines the best processor configuration depending on
the network environment and the web contents. At the heart of
our web browser extension is a set of off-line learned predictive
models. The predictor takes in a set of numerical values, or features
values, which describes the essential characteristics of the webpage
and the networking environment. It predicts which core to use to
run the rendering process and at what frequency the heterogeneous
processors should operate. We have implemented our techniques
in the open-sourced Google Chromium web browser. Note that on
modern web browsers, content rendering takes place concurrently
with downloading. Therefore, we want to determine the optimal
processor configuration as soon as possible.

B. Predictive Modeling

Our models for processor configuration prediction are a combi-
nation of Support Vector Machines (SVMs) and Artificial Neural
Network (ANNs). The SVMs are machine learning classifiers, each of
which is specifically tuned for a typical network environment and op-
timization goal and is highly effective for the targeting environment.
Our two ANNs are regression-based models: one for predicting load
time, and the other for predicting energy consumption. They can be
used in any environment — by taking the network latency/bandwidth
and the CPU frequency setting as the model input to produce the
time or energy estimations — but they could be less accurate (see
Section V-F). This combination results in a generalized framework
for any network environment, while provides a high confidence for
typical network environments.
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Figure 1: The achieved load time (a), energy consumption (b) and EDP (c) when browsing four webpages from news.bbc.co.uk.

Table II: Networking environment settings

Uplink bandwidth Downlink bandwidth Delay (ms)
Regular 2G ~ 50kbps 100kbps 1000
Good 2G 150kbps 250kbps 300
Regular 3G 300kbps 550kbps 500
Good 3G 1.5Mbps 5.0Mbps 100
Regular 4G 1.0Mbps 2.0Mbps 80
Good 4G 8.0Mbps 15.0Mbps 50
WiFi 15Mbps 30Mbps 5
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Figure 2: Webpage rendering time w.r.t. content download time when
using the interactive governor.

1) Network Monitoring and Model Selection: Table 1I lists the
networking environments considered in this work. The settings and
categorizations are based on the measurements given by an indepen-
dent study [7]. Figure 2 shows the webpage rendering time with re-
spect to the download time under each networking environment when
using the interactive governor. The download time dominates
the turnaround time for a 2G and a Regular 3G environments; and
by contrast, the rendering time accounts for most of the turnaround
time in a Good 4G or WiFi environment.

We develop a lightweight network monitor to measure the band-
widths and delay between the web server and the device. Measure-
ments are averaged over the measurement window. We calculate the
distance, d, between the current network conditions and the pre-
defined settings in Table II. The distance, d, is calculated as:

d = aldby, — db| + B|ubm — ub| + y|dm — d| (1)

where dby., ubn,, and d,, are the measured downlink bandwidth,

upload bandwidth and delay respectively, db, ub, and d are the

downlink bandwidth, upload bandwidth and delay of a network

category, and «, 3, v are weights. The weights are learned from the

training data, with an averaged value of 0.3, 0.1 and 0.6 respectively
for o, 3, and .

If the distance to a pre-defined environment is less than a thresh-
old, a SVM model specifically tuned for that environment and the
optimization goal will be chosen. Otherwise, the two ANNs will
be chosen to predict the load time and energy consumption for the
current network under a given CPU frequency setting; the predictions
are then used to search for a processor configuration to best satisfy
the optimization constraints. We note that the distance threshold is
automatically learned from training data by varying the network
settings (see also Section V-F).

2) Training: Our models are built offline using a set of training
webpages. In this work, we use 900 webpages for training and 100
unseen webpages for testing. The training webpages are selected
from the landing page of the top 1,000 hottest websites ranked by
alexa.com. We use Netem [8], a Linux-based network enumerator,
to emulate various networking environments to generate the training
data. To collect training data for SVMs, we exhaustively execute

Table III: Raw web feature categories
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Figure 3: The percentage of principal components (PCs) to the
overall feature variance (a), and contributions of the seven most
important raw features in the PCA space (b).

the rendering engine under different processor settings and record
the optimal configuration for each optimization goal and each of
the networking environments that we target. We give each optimal
configuration a unique label. To collect training data for ANNs, we
vary the network bandwidths and delay, as well as the processor
settings for each training webpage, we then record the load time and
energy consumption.

Building the model. The feature values together with the desired
prediction outcomes (categorized labels for SVMs, numerical values
for ANNs) are supplied to a supervised learning algorithm to learn
a SVM or ANN model. Because we target three optimization metrics
and seven networking environments, we have constructed 21 SVM
classifiers in total. The ANNs take five extra feature values, the
download/upload bandwidths, delay, and a label indicating which
processor (big or little) to use and its clock frequency.

3) Web Features: We consider a set of features extracted from
the document object model (DOM) tree. We started from 214 raw
features (grouped into categories in Table III), including the number
of DOM nodes, HTML tags and attributes of different types. Features
collection takes place during runtime parsing prior to rendering. Since
parsing accounts for only 1% of the total web rendering time, it leaves
much room for optimization. To adapt to the change of available
information, we will make a re-prediction if there are significant
changes in the DOM (more than 30% of the DOM nodes), although
this rarely happens in our experiments. The collected feature values
are encoded to a vector of real values.

Feature reduction. To improve the generalization ability of our mod-
els, we reduce some features through applying Principal Component
Analysis (PCA) [9] to the raw feature space. After applying PCA to
the 214 raw features, we choose the top 18 principal components
(PCs) which account for around 95% of the variance of the original
feature space. We record the PCA transformation matrix and use it to
transform the raw features of the new webpage to PCs during runtime
deployment. Figure 3a illustrates how much feature variance that each
component accounts for. It shows that predictions can accurately draw
upon a subset of aggregated feature values.

Feature normalization. Before passing features to a machine learn-
ing model, we need to scale each of the features to a common range



(between 0 and 1) to prevent the range of any single feature being
a factor in its importance. We record the minimum and maximum
values of each feature in the training dataset, and use these to scale
the corresponding features for unseen webpages in deployment.

Feature analysis. Figure 3b shows the top 7 dominant features based
on their contributions to the PCs. Features like the webpage size and
the number of DOM nodes are most important, because they strongly
correlate to the download time and the complexity of the webpage.
Other features like the depth of the DOM tree, and the numbers of
different attributes and tags, are also useful, because they determine
how the webpage should be presented and the rendering cost.

IV. EXPERIMENTAL SETUP
A. Hardware and Software Platform
Evaluation platform. Our evaluation platform is an Odroid XU3
board with two heterogeneous ARM processors. The board runs
Ubuntu 16.04 with the big.LITTLE enabled scheduler. We use the
on board energy sensors to measure the energy consumption of the
entire system. These sensors have been proven to be accurate [10]. We
implemented our approach in Chromium (v64.0) which is compiled
using GCC (v7.2).
Networking environments. To ensure that our results are repro-
ducible, we use a Linux server to record and replay the server
responses through the Web Page Replay tool [11]. Our mobile test
board and the web server communicate through WiFi, but we use
Netem [8] to control the network delay and server bandwidth to
simulate the seven networking environments defined in Table II. We
injected 60% of variances (normal distribution) to the bandwidths,
delay and packet loss. Note that we ensure that the network variances
are the same during the replay of a test page.
Workloads. We used the mobile version landing page of the top 1,000
hottest websites from alexa. The DOM node and webpage sizes of
our test data range from small (4 DOM nodes and 40 KB) to large
(over 8,000 DOM nodes and 6 MB), and the load time is between 0.13
and 15.4 seconds in a WiFi environment using interactive.

B. Evaluation Methodology

We use 10-fold cross-validation to evaluate our machine learning
models. We report the geometric mean of each metric across evalua-
tion scenarios and cross-validation folds. We compare our approach
with two alternative approaches, a web-aware scheduling mechanism
(termed as WS) [4] and a machine learning based web browser
scheduling scheme (termed as S-ML) [5]. We also compare our
approach against five widely used CPU governors: interactive,
powersave, performance, conservative, and ondemand.

V. EXPERIMENTAL RESULTS
A. Compared to Existing Linux Governors

The box-plot in Figure 4 depicts the improvements of our approach
over the best-performing Linux CPU governor. Figure 4a shows the
improvement of load time. There is minor improvements only in
a fast network like a WiFi environment. In such an environment,
the download speed is no longer a bottleneck and running the CPU
at a high frequency is often beneficial. Nonetheless, our approach
outperforms the best performing Linux governor by 1.32x on average
(up to 1.9x) across network environments and never gives worse per-
formance. Figure 4b compares our approach against other governors
in scenarios where low battery consumption is desired. In this case,
powersave is the best-performing Linux governor in 2G and a
Regular 3G environments, while conservative and ondemand
are the best-performing policies in a faster environment (Good 3G
onwards). On average, our approach outperforms the best-performing
Linux governor by consuming less than 44% to 67% (up to 93%) of
energy across networks. Figure 4c shows the significant improvement
is available in relative slow network like a 2G and 3G environment,
where our approach gives over 55% reduction on EDP.

B. Compared to Alternative Schemes

The violin diagrams in Figure 5 compares our approach against

WS and S-ML and their extensions. We extended WS and S—-ML to

take in network bandwidths/delays as model inputs, which are respec-
tively called WS—-network-aware and S-ML-network-aware.

To evaluate the performance gains by employing a more advanced
machine learning technique compared to the linear model of WS, we
also excluded ANNs and network features from our approach (namely,
ours—network-unaware) . In this experiment, the baseline is the
best-performing Linux governor.

Considering the network environments thus boosts the performance
of WS and S—-ML by 49.8%, 58.6%, and 59.3% respectively for load
time, energy consumption and EDP. This reinforces our observation
that the network conditions should not be ignored when performing
web browsing optimization. The network-aware S-ML extension
achieves the most close performance to our approach if the evaluated
networking environments match the ones the SVM models are trained
for. This is not supervising as both approaches employ SVMs.
However, our approach is able to generalize to a wide range of
environments through the use of ANNs. As a result, our approach
outperforms the network-aware WS and S—ML by at least 32.8% (up
to 49.7%) across evaluation metrics. If we take out the network
features from our models (i.e., ours—network-unaware), the
performance of our approach will drop by 62% albeit it still outper-
forms the vanilla WS (due to the non-linear modeling capability of
SVMs) and S—ML (due to better model features). Considering now the
improvement distribution. There are more data points at the top of the
diagram under our scheme. This means our approach delivers stronger
performance on more webpages than others. Overall, our approach
outperforms all other schemes with an averaged improvement of
32.1%, 56.2% and 62.8% respectively for load time, energy and EDP
over the baseline, and never delivers worse performance.

C. Compared to Oracle Performance

Figure 6 compares our approach with the oracle predictor,
showing how close our approach is to the theoretically perfect
solution. Our approach achieves 85%, 94% and 92% of the oracle
performance for load time, energy consumption and EDP respectively.

D. Overhead

Figure 7 shows the overhead of our approach (already included
in our experimental results). Our approach introduces little overhead
to the turnaround time and energy consumption, less than 1% and
3% respectively. The majority of the time and energy are spent on
network monitoring for measuring the network delay and bandwidths.
The overhead incurred by the browser extension and the runtime
scheduler, which include task migration, feature extraction, making
prediction and setting processor frequencies, is less than 0.8%, with
task migration (around 10ms) accounts for most of the overhead.

E. Prediction Accuracy

Our approach gives correct predictions for 85.1%, 90.1% and
91.2% of the webpages for load time, energy consumption and EDP
respectively. For webpages that our approach does not give the best
configuration, the resulting performance is not far from the optimal.

FE Impact of Model Selection Threshold

Figure 8 compares the prediction accuracy for using SVMs and
ANNs alone by changing the model selection threshold, d (see
Section III-B1). The percentage on the top of each bar shows how
often a SVM or ANN model is chosen under a distance threshold
across 1,000 different network environments. In this evaluation, we
show the prediction accuracy when optimizing for load time, but
we observe similar behaviors for the other two metrics. The model
selection threshold, d, is calculated as the percentage to the averaged
distance, [, among any of the two environments in Table II using
Equation 1. The larger the threshold is, the more likely the SVM
models will be chosen. For example, if d is set to 30%, it means that
we only use a SVM if the distance between the current network to
one of the environments listed in Table II is within 30% of . This
diagram shows that SVMs are more effective (with an accuracy of
around 90%) if the current network is similar (when d is set to less
than 20% of [) to the ones they are trained for, but ANNs are able
to pick up the rest environments with an accuracy of at least 80%.
The results show that our approach can generalize to a wide range of
network environments, while providing good performance in typical
networks by employing network-specific SVM models.
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Figure 4: Improvement achieved by our approach over the best-performing Linux CPU governor for load time, energy reduction and EDP.
The min-max bars show the range of performance improvement across webpages.
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VII. CONCLUSIONS

This article has presented an automatic approach to optimize web
rendering on heterogeneous mobile platforms. We achieve this by
using machine learning to develop predictive models to predict which
processor core to use to run the web rendering process and the optimal
frequency of the processors. As a departure from prior work, our
approach considers of the network status, web workloads and the
optimization goals. We evaluate our approach by applying it to the
Chromium browser on a big. LITTLE mobile platform using the top
1000 hottest websites. Experimental results show that our approach
outperforms the state-of-the arts by 1.32x , 1.56x and 1.62x for load
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VI. RELATED WORK

Techniques have been proposed to optimize web browsing,
through e.g. prefetching [12] and caching [13] web contents, or
re-constructing the browser workflow [14]. Most of the prior work
target homogeneous systems and do not optimize across networking
environments. The work presented by Zhu et al. [4] and our prior
work [5] were among the first attempts to optimize web browsing
on heterogeneous mobile systems. Both approaches use statistical
learning to estimate the optimal configuration for a given web
page. However, they do not consider the impact of the networking
environment, thus miss massive optimization opportunities. Bui et
al. [15] use analytical models to determine which processor core to
use to run the rendering process. The drawback of using an analytical
model is that the model needs to be manually re-tuned for each
individual platform to achieve the best performance. Our approach
avoids the pitfall by automatically learning how to best schedule
rendering process. There are also works use statistical modeling or
control theories to optimize energy efficiency on mobiles [16], [17],
[18], [19], [20], [21]. While not specific to web browsing, these
studies demonstrate the advantages and needs for adaptive system-
level optimizations.

time, energy consumption and EDP respectively.
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