
THE NORM CLOSED TRIPLE SEMIGROUP ALGEBRA

E. KASTIS

Abstract. The w∗-closed triple semigroup algebra was introduced by Power and the
author in [21], where it was proved to be reflexive and to be chiral, in the sense of not being
unitarily equivalent to its adjoint algebra. Here an analogous operator norm-closed triple

semigroup algebra AG+

ph is considered and shown to be a triple semi-crossed product for the
action on analytic almost periodic functions by the semigroups of one-sided translations

and one-sided dilations. The structure of isometric automorphisms of AG+

ph is determined

and AG+

ph is shown to be chiral with respect to isometric isomorphisms.

1. Introduction

Let {Mλ : λ ∈ R}, {Dµ : µ ∈ R} and {Vt : t ∈ R} be the unitary operators of
multiplication, translation and dilation respectively, acting on the Hilbert space L2(R),
given by

Mλf(x) = eiλxf(x), Dµf(x) = f(x− µ), Vtf(x) = et/2f(etx).

The first two groups give a celebrated irreducible representation of the Weyl commutation
relations in the form MλDµ = eiλµDµMλ, while the dilation group satisfies the relations

VtMλ = MetλVt and VtDµ = De−tµVt.

Our main results are the determination of the isometric isomorphism group of the norm
closed nonselfadjoint operator algebra Aph, generated by the semigroups for λ, µ, t ≥ 0,
and a chirality property for Aph. The weakly closed operator algebra Aph generated by the
three semigroups was shown in [21] to be reflexive, in the sense of Halmos [33], and to have
the rigidity property of failing to be unitarily equivalent to the adjoint operator algebra
A∗ph. We termed this property a chiral property since, in many other respects the algebras
carry similar properties. In particular, the invariant projection lattices LatAph and LatA∗ph
are naturally order isomorphic with unitarily equivalent pairs of interval projections. That
Aph is chiral contrasts with the parabolic algebra Ap [22], generated by the multiplication
and translation semigroups, as well as with the usual Volterra nest algebra on L2(R) [10].
For related classes of semigroup generated weakly closed algebras see also [1, 23, 24].

In the norm closed case considered here we take advantage of the theory of discrete
semicrossed products. We prove that there are natural identifications

Ap = AAP ×τ R+
d , AZ+

ph = Ap ×v Z+ , A
R+
d

ph = Ap ×v R+
d

where Ap is the norm closed parabolic algebra, AAP is the algebra of analytic almost

periodic functions in L∞(R) and AG
+

ph is generated by Ap and {Vt : t ∈ G+}. The notion

2010 Mathematics Subject Classification. 47L75, 47L35
Key words and phrases: operator algebra, semicrossed products, parabolic algebra, chirality.

1



2 E. KASTIS

of semicrossed products began with Arveson [4] in 1967, and was developed by the studies
of Peters [29] and McAsey and Muhly [27] in the early eighties. Since then, several studies
of semicrossed products of C∗-algebras have been under investigation by various authors
[14, 20, 31]. To avoid categorical issues we define all the semicrossed products algebras
that we consider as subalgebras of their associated C∗-crossed products [28]. Indeed, while
the semicrossed product Ap defined in this way coincides with its “unitary” universal
counterpart, defined as usual in terms of all contractive covariant representations [32], we
do not know if such coincidence of generated subalgebra and universal semicrossed product
algebra persists for the triple semicrossed product algebra. Further results on the relation
between the unitary semicrossed product A×α G+ and its respective full crossed product
C∗env(A)×α G can be found in [12, 20].

While there are many considerations of isomorphisms of semicrossed products in the
case of finitely generated discrete groups (see [13, 31]) we also deal with semigroups of real
numbers with the discrete topology. This case is more subtle since the group C∗-algebra of
R is the algebra of the almost periodic functions, which induces limit characters that arise
from the Bohr compactification of R. Moreover, the introduction of the triple semigroup
semicrossed product makes the identification of the maximal ideal space of the algebra
problematic. To overcome such problems, we identify the isometric automorphism group
of the norm closed parabolic algebra Ap and prove that each isometric automorphism of

AG
+

ph leaves Ap invariant.

2. Preliminaries

2.1. Discrete Crossed Products. Crossed products of C∗-algebras were introduced by
Murray and von Neumann as a tool for studying groups that act on C∗-algebras as auto-
morhisms, since they provide a larger algebra that encodes both the original C∗-algebra
and the group action. The reader may look for more details in [11, 30, 8, 36].

Definition 2.1. A C∗-dynamical system is a triple (A, G, α) that consists of a unital
C∗-algebra A, a group G and a homomorphism

α : G→ Aut(A) : s 7→ αs.

Given a C∗-dynamical system, a covariant representation is a pair (π, U), such that
π is a representation of A on some Hilbert space H and U : s 7→ Us is a unitary
representation of G on the same space, that also satisfies the formula

Usπ(A)U∗s = π(αs(A)), ∀A ∈ A, s ∈ G.

In this section, we will restrict our attention to discrete crossed products, where G is a
discrete abelian group.

We form the complex vector space AG of (generalized) trigonometric polynomials :

AG = span{δs ⊗ A : s ∈ G, A ∈ A}, where δs(t) =

{
1, if t = s

0, if t 6= s

and endow it with ring multiplication and involution given by

(δs ⊗ A) · (δt ⊗B) = (δs+t ⊗ Aαs(B))

(δs ⊗ A)∗ = (δ−s ⊗ α−s(A∗))
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respectively. The algebra AG becomes a normed ∗-algebra with the norm:∥∥∥∥ ∑
s∈F
F⊂⊂G

(δs ⊗ As)
∥∥∥∥
`1

=
∑
s∈F
F⊂⊂G

‖As‖,

where the notation F ⊂⊂ G means that F is a finite subset of G.
Each (π, U) covariant representation induces a ∗-homomorphism on AG, since the linear

map π o U in AG with

(π o U)

 ∑
s∈F
F⊂⊂G

(δs ⊗ As)

 =
∑
s∈F
F⊂⊂G

π(As)Us

is bounded:∥∥∥∥∥(π o U)

 ∑
s∈F
F⊂⊂G

(δs ⊗ As)

∥∥∥∥∥ ≤ ∑
s∈F
F⊂⊂G

‖π(As)‖ ≤
∑
s∈F
F⊂⊂G

‖(As)‖ =

∥∥∥∥∥ ∑
s∈F
F⊂⊂G

(δs ⊗ As)

∥∥∥∥∥
`1

.

We define the C∗-algebra Aoα G as the completion of AG with respect to the norm

‖F‖ := sup{‖(π o U)(F )‖ : (π, U) covariant representation of AG}.
Observe that Aoα G satisfies the universal property :

If (π, U) is a covariant representation of the dynamical system (A, G, α),
then there is a representation π̃ of Aoα G, such that π̃(δs ⊗ A) = π(A)Us.

To prove that the crossed product norm is a C∗-norm and not just a seminorm, we need
a covariant representation that admits a faithful representation of AG. By the Gelfand
Naimark theorem, let π be a faithful representation of A on some Hilbert space H. Define
the covariant representation (π̃,Λ) of (A, G, α), such that

(2.1) π̃ : A→ B(`2(G,H)) : (π̃(A)x)(s) = π(α−s(A))(x(s))

and Λ is the left regular representation on `2(G,H)

(2.2) Λ : G→ B(`2(G,H)) : (Λtx)(s) = x(s− t)
for all s, t ∈ G, A ∈ A, x ∈ `2(G,H). One can easily verify that π̃ is a representation of
A and Λ is a unitary representation of G. Also we have the covariance condition

(Λtπ̃(A)Λ∗tx)(s) = (π̃(A)Λ∗tx)(s− t) = π(αt−s(A))(Λ∗tx(s− t)) =

= π(α−sαt(A))(x(s)) = (π̃(αt(A))x)(s).

Note first that the algebra A is isometrically embedded into the crossed product by the
inclusion map

ι : A→ Aoα G : A 7→ (δ0 ⊗ A).

To prove that ι is an isometry, let δs,ξ be the vector in `2(G,H) that is defined by

δs,ξ(t) := δs,tξ =

{
ξ, if t = s

0, if t 6= s
.
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Then

Λtδs,ξ = δs+t,ξ and π̃(A)δs,ξ = δs,π(α−s(A))ξ,

for every t, s ∈ G,A ∈ A, ξ ∈ H. Calculate

‖(δ0 ⊗ A)‖2 ≥ sup
‖ξ‖=1

‖(π̃ o Λ)(δ0 ⊗ A)δ0,ξ‖2
`2(G,H) = sup

‖ξ‖=1

‖π̃(A)δ0,ξ‖2
`2(G,H) =

= sup
‖ξ‖=1

‖π(A)ξ‖2
H = ‖A‖2.

The opposite inclusion is straightforward from the fact that ‖A‖ = ‖(δ0 ⊗ A)‖`1 .
For every s ∈ G, we denote by Vs the operator

Vs : H → `2(G,H) : ξ 7→ δs,ξ

so its adjoint operator has the form V ∗s : `2(G,H) → H : x 7→ x(s). Given now any
element

∑
s∈F
F⊂⊂G

(δs ⊗ As) ∈ AG and ξ ∈ H we have

V ∗0 (π̃ o Λ)

 ∑
s∈F
F⊂⊂G

(δs ⊗ As)

V0ξ =
∑
s∈F
F⊂⊂G

V ∗0 π̃(As)Λsδ0,ξ =
∑
s∈F
F⊂⊂G

V ∗0 π̃(As)δs,ξ =

=
∑
s∈F
F⊂⊂G

V ∗0 δs,π(α−s(As))ξ =
∑
s∈F
F⊂⊂G

δs,0π(α−s(As))ξ =

= π(A0)ξ.

Hence it follows readily from the equality ‖π(A0)‖ =

∥∥∥∥V ∗0 (π̃ o Λ)

 ∑
s∈F
F⊂⊂G

(δs ⊗ As)

V0

∥∥∥∥,

that ‖A0‖ ≤ ‖
∑
s∈F
F⊂⊂G

(δs ⊗ As)‖. Therefore, one can define the contractive map

(2.3) E0 : AG→ A :
∑
s∈F
F⊂⊂G

(δs ⊗ As) 7→ A0.

Check also that for every X =
∑
s∈F
F⊂⊂G

(δs ⊗ As) ∈ AG we get E0(XX∗) =
∑
s∈F
F⊂⊂G

AsA
∗
s, so

the map E0 keeps the cone of positive elements of AG invariant. So we have proved the
following

Proposition 2.2. The map E0 is an expectation 1 on AG and extends by continuity to a
map on Aoα G with the same properties.

Define the t-th Fourier coefficient of X ∈ Aoα G by

Et(X) = E0(X(δ−t ⊗ 1)) ∈ A.

1An expectation of a C∗-algebra onto a subalgebra is a positive, unital idempotent map.
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Note that for every element X =
∑
s∈F
F⊂⊂G

(δs⊗As) ∈ AG and t ∈ G, we get Et(X) = At, and

so it follows

X =
∑
s∈F
F⊂⊂G

(δs ⊗ Es(X)).

We can now see that the left regular representation π̃ o Λ of AG is faithful. Given
X =

∑
s∈F
F⊂⊂G

(δs ⊗ As) ∈ AG such that ‖(π̃ o Λ)(X)‖ = 0, then for every t ∈ G we have

‖At‖ = ‖π(At)‖ = ‖V ∗0 (π̃ o Λ)(X(δ−t ⊗ 1))V0‖ ≤ ‖(π̃ o Λ)(X)‖ = 0.

Therefore At = 0 for every t ∈ G, but this yields that X = 0.

Remark 2.3. Since the left regular representation is faithful, we can define the reduced
crossed product norm on AG

‖ · ‖r = ‖(π̃ o Λ)(·)‖.
The norm ‖ · ‖r does not depend on the choice of the faithful representation π (see [8]).
The completion of AG with respect to the reduced crossed product norm gives rise to
the reduced crossed product, denoted by A or

α G. Moreover, repeating the proof of
Proposition 2.2, one can show that the contraction E0 given by the formula (2.3) extends
to an expectation Ẽ0 on Aor

α G.

Remark 2.4. In the general case, the construction via the left regular representation of
G is not sufficient to determine the norm of the crossed product. Although in the special
case that G is discrete abelian, so amenable2, the reduced crossed product equals the full
crossed product. In the following subsection, we will give a proof of this claim in the case
where G is the discrete group of real numbers.

2.2. Crossed Products by Rd. From now on, the group G is either Z or Rd; we use Rd

to denote R equipped with the discrete topology. The theory about crossed products by
Z can be found in [11]. In this section, we develop the theory for Rd.

Proposition 2.5. Let (A,Rd, α) be a C∗-dynamical system. Each X ∈ Aoα Rd has only
a countable number of nonzero Fourier coefficients.

Proof. Let (Yn)n be a sequence of generalized trigonometric polynomials in Aoα Rd such
that

‖X − Yn‖ ≤
1

n
.

We denote by Γn the finite set of indices of nonzero Fourier coefficients of Yn and by Γ the
set

∪n∈NΓn.

The set Γ is countable. Suppose now k /∈ Γ; then

‖Ek(X)‖ ≤ ‖Ek(X)− Ek(Yn)‖+ ‖Ek(Yn)‖ ≤ ‖X − Yn‖ ≤
1

n

2A group G is called amenable if there is a left translation invariant state on L∞(G)
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for every n ∈ N. �

Given a C∗-dynamical system (A,Rd, α), fix λ ∈ T. Then the map U : s 7→ (δs ⊗ λs · 1)
is a unitary representation of Rd , such that

Usι(A)U∗s = (δs ⊗ λs · 1)(δ0 ⊗ A)(δ−s ⊗ λs · 1) = (δ0 ⊗ αs(A)) = ι(αs(A)),

for every A ∈ A. Hence the pair (ι, U) is a covariant representation of (A,Rd, α), and so
the universal property of Aoα Rd induces an automorphism:

φλ : Aoα Rd → Aoα Rd : (δs ⊗ A) 7→ (δs ⊗ λsA).

Moreover, given X ∈ A oα Rd the map t 7→ φeit(X) is norm continuous for every t ∈ R;
indeed, one can check it first on the unclosed algebra of trigonometric polynomials and
extend it to the closure by a standard approximation argument. So, given T > 0, we can
define

ΦT (X) =
1

2T

∫ T

−T
φeit(X)dt.

Check that ‖ΦT (X)‖ ≤ 1
2T

∫ T
−T ‖φeit(X)‖dt = ‖X‖, so ‖ΦT‖ ≤ 1. Given a trigonometric

polynomial Y =
∑
s∈F
F⊂⊂R

(δs ⊗ As) in Aoα Rd, we have

ΦT (Y ) =
1

2T

∫ T

−T
φeit(Y )dt =

=
1

2T

∫ T

−T

∑
s∈F
F⊂⊂R

(δs ⊗ eitsAs)dt =

=
∑
s∈F
F⊂⊂R

(δs ⊗ As)
1

2T

∫ T

−T
(δ0 ⊗ eits · 1)dt.

Compute now the limit lim
T→∞

1
2T

∫ T
−T (δ0 ⊗ eits · 1)dt.

• s = 0.: lim
T→∞

1
2T

∫ T
−T (δ0 ⊗ 1)dt = lim

T→∞
1

2T
· 2T (δ0 ⊗ 1) = (δ0 ⊗ 1);

• s 6= 0.: lim
T→∞

1
2T

∫ T
−T (δ0 ⊗ eits · 1)dt = lim

T→∞
1

2T
eiTs−e−iTs

is
(δ0 ⊗ 1)→ 0, as T →∞.

Hence by the linearity of limits, we obtain that

lim
T→∞

ΦT (Y ) = (δ0 ⊗ A0).

Define now

Φ0(Y ) = lim
T→∞

ΦT (Y ) = lim
T→∞

1

2T

∫ T

−T
φeit(Y )dt.

Since ‖ΦT (Y )‖ ≤ ‖Y ‖ for all T > 0, it follows that ‖Φ0(Y )‖ ≤ ‖Y ‖, for every generalized
trigonometric polynomial Y . So Φ0 can be extended to a linear contraction in A oα Rd.
In addition, since the family of operators {ΦT : T > 0} is uniformly bounded, applying
a simple approximation argument, it follows that Φ0(X) = lim

T→∞
ΦT (X). This proves the

following result.
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Proposition 2.6. Let E0 be the expectation defined in Theorem 2.2 and X ∈ A oα Rd.

Then Φ0(X) = lim
T→∞

1
2T

∫ T
−T φeit(X)dt = ι(E0(X)).

Applying standard arguments for kernels of approximating polynomials (cf. [5, 25]), we
can obtain the analogue of Bochner - Fejer’s theorem.

Given a rationally independent set {β1, . . . , βm} of real numbers and X ∈ AoαRd, one
can define the Bochner-Fejer polynomial
(2.4)

σ(β1,...,βm)(X) =
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1− |ν1|

(m!)2

)
. . .

(
1− |νm|

(m!)2

)
(δ ν1

m!
β1+···+ νm

m!
βm⊗E ν1

m!
β1+···+ νm

m!
βm(X)).

Note that a term of σ(β1,...,βm)(X) in (2.4) differs from zero if and only if the respective
Fourier coefficient of the term is nonzero.

Proposition 2.7. Let K(β1,...,βm) be the Bochner - Fejer kernel for almost periodic func-
tions, given by the formula

K(β1,...,βm)(t) =
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1− |ν1|

(m!)2

)
. . .

(
1− |νm|

(m!)2

)
e−it(

ν1
m!
β1+···+ νm

m!
βm).

Then

σ(β1,...,βm)(X) = lim
T→∞

1

2T

∫ T

−T
φeit(X)(δ0 ⊗K(β1,...,βm)(t))dt.

Proof. Fix n and compute

σ(β1,...,βm)(X) =
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1− |ν1|

(m!)2

)
. . .

(
1− |νm|

(m!)2

)
(δ ν1

m!
β1+···+ νm

m!
βm ⊗ E ν1

m!
β1+···+ νm

m!
βm(X)) =

=
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1− |ν1|

(m!)2

)
. . .

(
1− |νm|

(m!)2

)
(δ0 ⊗ E0(X(δ− ν1

m!
β1−···− νmm!

βm ⊗ 1)))(δ ν1
m!
β1+···+ νm

m!
βm ⊗ 1) =

=
∑

|ν1|<(m!)2
.........

|νm|<(m!)2

(
1− |ν1|

(m!)2

)
. . .

(
1− |νm|

(m!)2

)
Φ0(X(δ− ν1

m!
β1−···− νmm!

βm ⊗ 1))(δ ν1
m!
β1+···+ νm

m!
βm ⊗ 1) =

= lim
T→∞

1

2T

∫ T

−T

∑
|ν1|<(m!)2
.........

|νm|<(m!)2

(
1− |ν1|

(m!)2

)
. . .

(
1− |νm|

(m!)2

)
φeit(X)(δ0 ⊗ e−it(

ν1
m!
β1+···+ νm

m!
βm) · 1)dt =

= lim
T→∞

1

2T

∫ T

−T
φeit(X)(δ0 ⊗K(β1,...,βm)(t) · 1)dt.

�
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Corollary 2.8. For every finite rationally independent set {β1, . . . , βm}, the map σ(β1,...,βm)

is contractive.

Let X ∈ Aoα Rd. By the previous lemma we have

‖σ(β1,...,βm)(X)‖ ≤ lim
T→∞

1

2T

∫ T

−T
‖φeit(X)‖‖(δ0 ⊗K(β1,...,βm)(t) · 1)‖dt =

= lim
T→∞

1

2T

∫ T

−T
K(β1,...,βm)(t)dt‖X‖ = ‖X‖.

Let now X ∈ AoαRd and (Yn)n be a sequence of generalized trigonometric polynomials
in Aoα Rd that converges to X. Define Γ = ∪nΓn as in the proof of Proposition 2.5 and
let B = (β1, β2, . . . , βm, . . . ) be a rational basis of Γ.

Theorem 2.9. With the aforementioned notation we have that σ(β1,...,βm)(X)
‖·‖→ X, as

m→∞.

Proof. We first show this for trigonometric polynomials. Fix some n ∈ N. Suppose that
Yn is the trigonometric polynomial

∑
s∈F
F⊂⊂R

(δs ⊗ As). Since B is also a rational basis of the

indices of the nonzero Fourier coefficients of Yn we have

σ(β1,...,βm)(Yn) =

= lim
T→∞

1

2T

∫ T

−T
φeit(Yn)(δ0 ⊗K(β1,...,βm)(t) · 1)dt =

= lim
T→∞

1

2T

∫ T

−T

∑
s∈F
F⊂⊂R

(δs ⊗ eitsAs)(δ0 ⊗K(β1,...,βm)(t) · 1)dt =

=
∑
s∈F
F⊂⊂R

(
(δs ⊗ As)

(
lim
T→∞

1

2T

∫ T

−T
eits(δ0 ⊗K(β1,...,βm)(t) · 1)dt

))

→
∑
s∈F
F⊂⊂R

(δs ⊗ As)(δ0 ⊗ 1) =
∑
s∈F
F⊂⊂R

(δs ⊗ As).

Given now ε > 0, choose trigonometric polynomial Yn0 with ‖X − Yn0‖ < ε/3. Then there
exists m0 ∈ N, such that ‖Yn0−σ(β1,...,βm)(Yn0)‖ ≤ ε/3, for every m > m0. Hence, it follows
from Corollary 2.8 that for all m > m0 we have

‖X − σ(β1,...,βm)(X)‖ ≤ ‖X − Yn0‖+ ‖Yn0 − σ(β1,...,βm)(Yn0)‖+ ‖σ(β1,...,βm)(Yn0 −X)‖ ≤
≤ 2‖X − Yn0‖+ ‖Yn0 − σ(β1,...,βm)(Yn0)‖ ≤ ε.

�

Corollary 2.10. Let X ∈ Aoα Rd, such that Es(X) = 0, for every s ∈ R. Then X = 0.

Proof. Since Es(X) = 0, for every s ∈ R, it follows that Φs(X) = ι(Es(X)) = 0, for every
t ∈ R. Hence the Bochner-Fejer polynomials of X are trivial, so by Theorem 2.9 we have
X = 0. �
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Recall now the left regular representation of the C∗-dynamical system, given by the
formulas (2.1) and (2.2). As we stated in Remark 2.3 the left regular representation gives
rise to the reduced crossed product. The following result comes readily from the previous
theorem.

Proposition 2.11. Let (A,Rd, α) be a C∗-dynamical system. Then the reduced crossed
product Aor

α Rd coincides with the full crossed product Aoα Rd.

Proof. By the universal property of the full crossed product, there is a representation

φ : Aoα Rd → Aor
α Rd : (δs ⊗ A) 7→ π̃(A)Λs.

It suffices to show that φ is faithful. We need first to point out some observations about
these two C∗-algebras.

By Remark 2.3, one can define on Aor
α Rd the contractive maps

Ẽt : Aor
α Rd → A :

∑
s∈F
F⊂⊂R

π̃(As)Λs → π̃(At).

Let now {Φt : t > 0} be the family of contractions on Aoα Rd, given by the formula

(2.5) Φt(X) = Φ0(X(δ−t ⊗ 1)),

where Φ0 is the operator defined in Proposition 2.6. It follows by routine calculations on
the subalgebra of trigonometric polynomials and standard density arguments that Ẽt◦φ =
φ ◦ Φt, for all t ∈ R.

Let now X ∈ A oα Rd, such that φ(X) = 0. Then (Ẽt ◦ φ)(X) = 0 for every t ∈ R,
which implies that (φ ◦ Φt)(X) = 0. Since the left regular representation is a faithful
representation of ARd, it follows that Φt(X) = 0, for every t ∈ R. Hence by Corollary
2.10 we have X = 0. �

As a simple consequence of the above proposition we obtain the following useful in-
equality. Note that it essentially corresponds to the elementary fact that the norm of an
operator matrix dominitates the norm of any of its columns.

Proposition 2.12. Let A be a C∗-algebra acting on a Hilbert space H and ξ be a unit
vector in H. For every X ∈ Aoα Rd and F arbitrarily chosen finite subset of R, we have

‖(ĩdo Λ)(X)‖2 −
∑
s∈F
F⊂⊂R

‖α−s(Es(X))ξ‖2 ≥ 0.

Proof. Applying Proposition 2.11, it suffices to prove the result for the reduced crossed
product norm. Let id be the identity representation of A on H and Y =

∑
s∈F
F⊂⊂R

(δs⊗As) be

a generalized trigonometric polynomial in Aoα Rd. Note first that∥∥∥∥((ĩd o Λ)(X)−
∑
s∈F
F⊂⊂R

(ĩd o Λ)(δs ⊗ As)
)
δ0,ξ

∥∥∥∥2

= ‖(ĩd o Λ)(X)δ0,ξ‖2 +

∥∥∥∥ ∑
s∈F
F⊂⊂R

ĩd(As)δs,ξ

∥∥∥∥2

−
∑
s∈F
F⊂⊂R

〈(ĩd o Λ)(X)δ0,ξ, ĩd(As)δs,ξ〉 −
∑
s∈F
F⊂⊂R

〈ĩd(As)δs,ξ, (ĩd o Λ)(X)δ0,ξ〉
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Since ĩd(As)δs,ξ = δs,α−s(As)ξ = Vs(α−s(As)ξ) and δs,ξ is orthogonal to δt,η for s 6= t, it
follows that∥∥∥∥((ĩd o Λ)(X)−

∑
s∈F
F⊂⊂R

(ĩd o Λ)(δs ⊗ As)
)
δ0,ξ

∥∥∥∥2

= ‖(ĩd o Λ)(X)δ0,ξ‖2 +
∑
s∈F
F⊂⊂R

‖α−s(As)ξ‖2

−
∑
s∈F
F⊂⊂R

〈V ∗s (ĩd o Λ)(X)V0ξ, α−s(As)ξ〉 −
∑
s∈F
F⊂⊂R

〈α−s(As)ξ, V ∗s (ĩd o Λ)(X)V0ξ〉.

One may check that V ∗s (ĩdoΛ)(X)V0 = α−s(Es(X)), so adding and subtracting
∑
s∈F
F⊂⊂R

‖α−s(Es(X))ξ‖2,

we obtain that the above expression is equal to

‖(ĩd o Λ)(X)δ0,ξ‖2 −
∑
s∈F
F⊂⊂R

‖α−s(Es(X))ξ‖2 +
∑
s∈F
F⊂⊂R

‖α−s(Es(X))ξ − α−s(As)ξ‖2.

Note that the last formula takes its lowest value when
∑
s∈F
F⊂⊂R

‖α−s(Es(X))ξ−α−s(As)ξ‖2 =

0, which happens in the case we choose As = Es(X). Since the left hand side is non-
negative, we deduce that

‖(ĩd o Λ)(X)δ0,ξ‖2 −
∑
s∈F
F⊂⊂R

‖α−s(Es(X))ξ‖2 ≥ 0.

�

2.3. Semicrossed products.

Definition 2.13. Let (A, G, α) be a C∗-dynamical system. If B is a unital closed sub-
algebra of A and G+ is a unital semigroup of G, we define the semicrossed product
B ×α G+ as the closed subalgebra of the full crossed product, that is generated by the
elements (δ0 ⊗ b), (δs ⊗ 1), with b ∈ B and s ∈ G+.

Proposition 2.14. Let (A,Rd, α) be a C∗-dynamical system. Then the semicrossed prod-
uct A×α R+

d is equal to the set

AR+

= {X ∈ Aoα Rd : Es(X) = 0, for all s < 0}.

Proof. If X is a trigonometric polynomial in A×α R+
d , then it is trivial to see that X lies

in AR+
. The latter set is closed, since it is the intersection of the kernels kerEs for all

s < 0, so the first inclusion is proved. For the converse inclusion, suppose X ∈ AR+
. If

X = 0, there is nothing to prove. If X 6= 0, then the only nonzero Fourier coefficients of
X have nonnegative indices, so the Fejer-Bochner polynomials of X lie in A×αR+

d . Hence
by Theorem 2.9 we have that X ∈ A×α R+

d . �

The following corollary follows trivially by routine calculations on the generalized trigono-
metric polynomials of the semicrossed product algebra.

Corollary 2.15. Let (A,Rd, α) be a C∗-dynamical system. The restriction of the expec-
tation E0 to A×α R+

d is a contractive homomorphism onto A.
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2.4. An example : the algebra of analytic almost periodic functions. The theory
of almost periodic functions was mainly created in 1925 by Bohr [6] and was substantially
developed during the 1930s by Bochner, Besicovich, Stepanov, amongst others. The reader
can refer to [5, 25] for more details.

We recall that a continuous function f : R → C is almost periodic if and only if for
every ε > 0 the set of ε-translation numbers3 is relatively dense4 in R. We denote by
AP (R) the algebra of almost periodic functions and we equip it with the supremum norm.
Using a standard approximation argument, one can check that AP (R) is a norm closed
selfadjoint subalgebra of Cb(R). Equivalently, we can define AP (R) as the closure of the
set of trigonometric polynomials

p(x) =
n∑
k=1

cke
iλkx, with ck ∈ C, λk ∈ R.

We shall show that AP (R) is isomorphic as a C∗-algebra to the crossed product C×Rd

(with the trivial action). First observe that C × G ' C∗(G), which is C(Ĝ) when G is
commutative (see [11]). Hence we obtain that C × Rd is isometrically isomorphic with
C(RB), where RB is the Bohr compactification of the real numbers. The latter C∗-algebra
can be identified with AP (R) [34]. In the next proposition we provide a proof, using the
machinery of crossed products.

Proposition 2.16. The commutative C∗-algebras AP (R) and C(RB) are isomorphic.

Proof. It suffices to identify AP (R) with the crossed product C×Rd. Define the covariant
representation (π, U) of the C∗-dynamical system (C,Rd, id) by the formulas

C→ AP (R) : c 7→ c · 1
and

R→ AP (R) : λ 7→ eiλx.

By the universal property of crossed products, we obtain a representation π̃ given by

π̃ : C× Rd → AP (R) :
∑
s∈F
F⊂⊂R

(δs ⊗ as) 7→
∑
s∈F
F⊂⊂R

as e
isx.

Let X ∈ C× Rd, such that π̃(X) = 0. One can check that, as in the proof of Proposition
2.11 that (π̃ ◦ Eλ)(X) = (ελ ◦ π̃)(X), where ελ is given by the formula

ελ(f) = lim
T→∞

1

2T

∫ T

−T
f(t)e−iλtdt.

Hence it follows that Eλ(X) = 0, for every λ ∈ R, so we have by Theorem 2.9 that X = 0.
Thus, π̃ is injective and the proof is complete. �

3Given a function f : R→ C and ε > 0, a real number τ is called an ε-translation number of f , if

sup
t∈R
|f(t+ τ)− f(t)| ≤ ε.

4A set E ⊆ R is called relatively dense if there exists λ > 0 such that any interval of length λ contains
at least one element of E.
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We focus now on the non-selfadjoint algebra of analytic almost periodic functions
AAP (R), that is the norm closed algebra generated by the functions {eiλx : λ ≥ 0}.
Applying Proposition 2.14 and Corollary 2.15, we have the following result.

Proposition 2.17. The algebra AAP (R) is isometrically isomorphic with the semicrossed
product C× R+

d . In particular,

AAP (R) = {f ∈ AP (R) : ελ(f) = 0, for every λ < 0}.
Moreover, the compression of the contractive map ε0 to AAP (R) is multiplicative; hence
it induces a character x∞ that satisfies

x∞

 ∑
λ∈F

F⊂⊂R+

cλe
iλx

 7→ c0.

Let now φc,k be the continuous multiplicative linear map, given by the formula

φc,k(e
iλx) = c(λ)eikλx,

where k > 0 and c : R 7→ T homomorphism (so c ∈ RB). Arens proved in [3] that the set
of continuous automorphisms of AAP (R) is equal to the set {φc,k : c ∈ RB, k ∈ R+}.

Proposition 2.18. Every automorphism φc,k is isometric.

Proof. Fix some c ∈ RB and k ∈ R+. One can check that (ĩd, uc,k), where ĩd : C→ AP (R) :
c 7→ c · 1R and uc,k : Rd → AP (R) : λ 7→ c(λ)eikλx, gives a covariant representation of the
C∗-dynamical system (C,Rd, id). Hence by the universal property, we have a representation
of the C∗-algebra C× Rd ' C(RB) ' AP (R) of almost periodic functions, given by

(2.6) ĩd o uc,k : AP (R)→ AP (R) : eiλx 7→ c(λ)eikλx.

The representation ĩdouc,k is evidently faithful, so it is isometric. Moreover, the restriction

of ĩdouc,k to the invariant subalgebra AAP (R) is equal to φc,k, so the proof is complete. �

3. The norm closed parabolic algebra Ap

Let (AP (R),Rd, τ) be a C∗-dynamical system, where τ induces the group of translation
automorphisms:

(τsf)(x) = f(x− s), f ∈ AP (R).

Our goal in this section, is to prove that the abstract discrete crossed product AP (R)oτRd

is isometrically isomorphic to a concrete C∗-algebra acting on L2(R). A key step in the
proof is to show that the above crossed product is a simple C∗-algebra, i.e. it has no
non-trivial two-sided closed ideals.

The simplicity of crossed product algebras has been studied extensively over the last 50
years (see for example [15, 16]). In particular, Archbold and Spielberg proved in [2] that
given a C∗-dynamical system (A, G, α), with A commutative and G discrete, the crossed
product A oα G is simple if and only if the action of the group on A is minimal5 and

5The action of a group G on a C∗-algebra A is called minimal if A does not contain any non-trivial
G-invariant ideals.
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topologically free6. In the following proposition simplicity of the C∗-algebra AP (R)oτ Rd

can be achieved directly.

Proposition 3.1. The crossed product AP (R) oτ Rd is a simple C∗-algebra.

Proof. Let J be a non-zero two-sided closed ideal. Hence there exists an element X ∈ J ,

such that Φs(X) 6= 0, for some s ∈ R. Using the integral formula Φ0(X) = lim
T→+∞

1
2T

∫ T
−T φeit(X)dt

that we proved in the previous section, we will prove that Φs(X) belongs to J . Since J
is closed, it suffices to prove that φeit(X) ∈ J . Suppose first that X is a generalized
trigonometric polynomial

∑
s∈F
F⊂⊂R

(δs ⊗ fs). Compute the product

(δ0 ⊗ eitx)X(δ0 ⊗ e−itx) =
∑
s∈F
F⊂⊂R

(δs ⊗ eitxfs)(δ0 ⊗ e−itx) =

=
∑
s∈F
F⊂⊂R

(δs ⊗ eitxfsτs(e−itx)) =

=
∑
s∈F
F⊂⊂R

(δs ⊗ eitxfse−it(x−s)) =

=
∑
s∈F
F⊂⊂R

(δs ⊗ eitsfs) = φeit(X).

Hence, it follows by a standard approximation argument that (δ0 ⊗ eitx)X(δ0 ⊗ e−itx) =
φeit(X) for any X ∈ AP (R) oτ Rd.

Similarly, we get Φs(X) = Φ(X(δ−s⊗1)) ∈ J , so there exists some nonzero f ∈ AP (R),
such that (δ0 ⊗ f) ∈ J . Since the action of the group can be described by the product of
the covariant relation, it follows (δ0 ⊗ τs(f)) ∈ J for every s ∈ R.

Claim: We may assume that inf{|f(x)| : x ∈ R} ≥ c > 0.
Since f · f ∗, nf ∈ AP (R) for every n ∈ N, we may assume that f(x) ≥ 0, for every

x ∈ R and ‖f‖ > 2. Let ε = 1
2
. Then there is T = T (ε) > 0, such that for every interval I

of length T , there exists ` ∈ I that satisfies

|f(x+ `)− f(x)| < ε,∀x ∈ R.

On the interval [0, T ], we may assume that f(x) > 1, for every x ∈ [0, T
n

], for some
n ∈ N (otherwise, work with g = τs(f), for suitable s). Then, let fk = τk T

n
(f), for

k = 0, 1, . . . , n− 1 and define

g(x) =
n−1∑
k=0

fk(x), x ∈ R.

Then g(x) > 1, for every x ∈ [0, T ]. In the general case where x ∈ R, there exists
` ∈ [x− T, x], such that |f(x− `)− f(x)| < ε. Since ` gives that bound uniformly for all
x ∈ R, it yields that |fk(x − `) − fk(x)| < ε, for every k ∈ {0, 1, . . . , n − 1}. Therefore,

6An action α on a commutative algebra A is said to be topologically free if for any finite set F ⊆ G\{eG},
the set ∩t∈F {χ ∈M(A)|χ ◦ αt 6= χ} is dense in M(A).
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there exists some k, such that |fk(x)| > 1 − ε = 1
2
. Hence g(x) > 1

2
and that completes

the proof of our claim.
Now, since the value inf{|f(x)| : x ∈ R} is positive, the multiplicative inverse 1/f is a

bounded almost periodic function [5]. Then

(δ0 ⊗ f)(δ0 ⊗ 1/f) = (δ0 ⊗ 1) ∈ J,

so J coincides with the crossed product. �

Definition 3.2. Let Bp be the C∗-algebra that is generated by the set of all the multipli-
cation and translation operators Mλ and Dµ acting on L2(R) respectively. Since the span
of the products MλDµ is closed under the operations of ring multiplication and involution,
we get that

Bp = span{MλDµ : λ, µ ∈ R}
‖·‖
.

Theorem 3.3. The C∗-algebras AP (R) oτ Rd and Bp are isomorphic.

Proof. Define the covariant representation (π,D), where:

π : AP (R)→ B(L2(R)) : eiλx 7→Mλ

and

D : Rd → B(L2(R)) : µ 7→ Dµ.

It is trivial to see that π is a representation of AP (R) and D is a unitary representation,
so it suffices to prove the covariance relation. Compute

Dµπ(eiλx)D∗µ =DµMλD
∗
µ

and

π(τµ(eiλx)) =π(eiλ(x−µ)) = e−iλµπ(eiλx) = e−iλµMλ,

hence the covariant relation holds by the Weyl relations. By the universal property of the
crossed product, this yields a representation between two C∗-algebras

(π oD) : AP (R) oτ Rd → C∗(π(AP (R)), D(Rd)) : (π oD)
∑
s∈F
F⊂⊂R

(δs ⊗ fs) 7→
∑
s∈F
F⊂⊂R

π(fs)Ds.

Observe that C∗(π(AP (R)), D(Rd)) = Bp. Since AP (R) oτ Rd is a simple algebra and
ker(π oD) is a two sided ideal, (π oD) is injective, which yields that it is an isometric
∗-isomorphism. �

Remark 3.4. By the general theory of crossed products, the mapping

En : Bp → Bp :
∑
s∈F
F⊂⊂R

π(fs)Dµs 7→Mfn

is contractive. Moreover, we have a similar expectation for the Dµ operators. By the Weyl
relations, we have the covariant relation (ρ,M)

ρ : AP (R)→ B(L2(R)) : eiλx 7→ Dλ
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and

M : Rd → B(L2(R)) : µ 7→M−µ.

Hence, we have the isomorphism

(ρoM) : AP (R) oτ Rd → Bp : (ρoM)
∑
s∈F
F⊂⊂R

(δs ⊗ fs) 7→
∑
s∈F
F⊂⊂R

ρ(fs)M−s.

Therefore, we have the contractions

Zm : Bp → Bp :
∑
s∈F
F⊂⊂R

ρ(fs)M−λs 7→ Dfm .

Applying the natural isometric isomorphisms Mf 7→ f and Dg 7→ g, we can identify the
range of the maps En and Zm with AP (R).

One may check that (ρ oM) ◦ (π o D)−1 ∈ Aut(Bp), that sends Ds to M−s and Mλ

to Dλ. Since Bp is a concrete operator algebra on L2(R), by the Stone-von Neumann
theorem (ρoM)◦ (πoD)−1 = Ad(F ), where Ad(F ) is the automorphism that is unitarily
implemented by the Fourier-Plancherel transform [26].

The closed subalgebra of Bp generated by {Mλ, Dµ : λ, µ ≥ 0} is called the (norm
closed) parabolic algebra and it is denoted by Ap. Evidently,

(π oD)−1(Ap) = AAP (R)×τ R+
d ,

where AAP (R) is the norm closed algebra of analytic almost periodic functions. Applying
the contractions En, Zm we obtain by the standard Fejer-Bochner argument that

AAP (R)×τ R+
d = {X ∈ AP (R) oτ Rd : En(X) = Zm(X) = 0, for all n,m < 0}.

From now on, we identify Ap with the semicrossed product AAP (R) ×τ R+
d . The first

question to ask for the norm closed algebra is once again the integral domain question,
as in the weak∗-closed case. The question still seems hard to solve, because of the ab-
sence of a first nonzero coefficient. However we can prove that Ap contains no non-trivial
idempotents. The following lemma is the key.

Proposition 3.5. The spectrum of every element X in Ap is connected.

Proof. Let X ∈ AAP (R)×τ R+
d with spectrum Sp(X) = U ∪V , where U, V are non-empty

disjoint compact subsets of C. By the density of generalized trigonometric polynomials
in Ap, there exists an element X0 =

∑
s∈F

F⊂⊂R+

MgsDs, such that Sp(X0) is not connected

(for this standard Banach algebra fact see for example Theorem 1.1 in [17]). Abusing the
notation, we write again that Sp(X0) = U ∪ V , for some non-empty disjoint compact sets
U and V .
Claim: The norm closed commutative algebra generated by a trigonometric polynomial
Z0, denoted by A(Z0), is an integral domain.
Let M > 0 and let Fn be the finite set of positive indices of the nonzero Fourier coefficients
of Zn

0 (so F1 = F\{0}). Since Z0 has only a finite set of nonzero Fourier coefficients, there
exists N > 0, such that for every n > N we have

Fn ∩ [0,M ] = ∅.
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Define F0 = ∪Nn=1Fn ∪ {0}. Then for every t ∈ [0,M ]\F0 and Y =
N∑
n=0

cnZ
n
0 generalized

polynomial we have Et(Y ) = 0. Since the subspace of generalized polynomials is dense in
A(Z0) we obtain by continuity of the maps Et that

Et(Y ) = 0, for all Y ∈ A(Z0).

If Y is a nonzero element in A(Z0), then it has some nonzero Fourier coefficient, say
Et0(Y ). Hence the set of indices of nonzero Fourier coefficients of Y in [0, t0] is finite and
nonempty , so it follows that Y has a first nonzero Fourier coefficient.

Let now Y1, Y2 be two nonzero elements of A(Z0) and let m1 and m2 be the indices
of their respective first nonzero Fourier coefficients. Then m1 + m2 is the first nonzero
Fourier coefficient of the product Y1Y2, since

Em1+m2(Y1Y2) = Em1(Y1)τm1(Em2(Y2))

and Em1(Y1), τm1(Em2(Y2)) are two nonzero elements of the integral domain AAP (R).
Thus, we proved our claim.

On the other hand, since Sp(X0) ⊆ U ∪ V , there are holomorphic functions f, g defined
on U ∪ V , given by f

∣∣
U

= g
∣∣
V

= 1 and f
∣∣
V

= g
∣∣
U

= 0. Therefore it follows by Runge’s
theorem [9] and the holomorphic functional calculus [33] that f(X0), g(X0) ∈ A(X0) and

f(X0)g(X0) = 0,

which contradicts the fact that A(X0) is an integral domain. �

Corollary 3.6. Ap contains no non-trivial idempotents.

3.1. Isometric Automorphisms of Ap. In this section, our goal is to determine the
isometric automorphisms of the norm closed parabolic algebra. Interestingly there is a
richer diversity than in the weak∗-span context. The automorphisms are strongly related
to the characters of the discrete real line and the Arens - Singer theory for analytic almost
periodic functions [7].

Recall that given a unitary map U ∈ B(L2(R)), we can define the automorphism

Ad(U) : B(L2(R))→ B(L2(R)) : T 7→ UTU∗.

For convenience, if Ad(U) keeps a subspace of B(L2(R)) invariant, we denote its restriction
to the subspace by the same notation. The main theorem of this section is the following.

Theorem 3.7. Let Φ be an isometric automorphism of Ap. Then Φ has the form

(3.1) Φ(MλDµ) = c(µ)d(λ) Ad(Vt)(MλDµ), λ, µ ∈ R+

where t ∈ R and c, d are characters of the discrete group of the real numbers. Moreover,
the formula (3.1) gives always a well-defined isometric automorphism of Ap.

Note that in the special case where the characters c, d are continuous in the standard
norm of the reals, then their respective automorphisms are unitarily implemented by
Mλ and Dµ, for some λ, µ ∈ R. The idea of the proof is to work with the induced
homeomorphism of the maximal ideal space of the commutative algebra Ap/Cp, where Cp
is the commutator ideal of Ap. Similar arguments for the case of crossed products by Z+

can be found in [31, 35]. The first step is to identify the commutator ideal Cp. Define the



THE NORM CLOSED TRIPLE SEMIGROUP ALGEBRA 17

contractions En, Zm as in the previous section and the character x∞ of AAP (R), as it was
defined in 2.17.

Lemma 3.8. The commutator ideal Cp is equal to the set

{a ∈ Ap : E0(a) = 0, Z0(a) = 0}.

Proof. If a = xy − yx ∈ Cp, then evidently E0(a) = Z0(a) = 0. On the other hand,
for every λ, s > 0 with λs not equal to 2nπ (n ∈ N), we have eiλx = fs − fs ◦ τs, where
fs = eiλx(1− e−iλs)−1. Hence eiλxDs ∈ Cp, for such λ, s. Since Cp is an ideal it follows that
eiλxDs ∈ Cp for every λ, s > 0. Since these two sets have the same generators (as ideals),
the proof is complete. �

Lemma 3.9. Ap/Cp = {Mf +Dg + Cp : f, g ∈ AAP (R)}.

Proof. It suffices to prove that the RHS is closed. Let (an)n∈N be a sequence, such that
an = Mfn +Dgn + Cp converging to some a ∈ Ap/Cp, that is

inf
u∈Cp
‖an − a+ u‖ → 0, as n→ +∞.

We may assume that E0(Dgn) = 0. Since E0 is contractive we have that

‖E0(an)− E0(a)‖ ≤ ‖an − a+ u‖,∀u ∈ Cp

⇒‖Mfn − E0(a)‖ ≤ inf
u∈Cp
‖an − a+ u‖ → 0, as n→∞.

Similarly, we get that ‖Dgn − [Z0(a) − Z0(E0(a))]‖ → 0, as n → ∞, so ‖an − [E0(a) +
Z0(a)−Z0(E0(a))] + Cp‖ converges to 0, as n goes to infinity. Hence a = E0(a) +Z0(a)−
Z0(E0(a)) + Cp. �

Let now Φ ∈ Aut(Ap). Then Φ induces an automorphism Φ̃ ∈ Aut(Ap/Cp) and a
homeomorphism γ0 between the maximal ideals that contain Cp, defined by

γ0(ζ)(a+ Cp) = ζ(Φ̃(a+ Cp)), ζ ∈M(Ap/Cp).

Here, we use the fact that every maximal ideal that contains the commutator ideal is the
kernel of a character of the algebra. We want to determine these characters. Write AAP1

and AAP2 for the function algebras, both isometrically isomorphic to AAP (R), that are
generated by the multiplication and translation unitary semigroups, respectively. Define
the mapping

M(Ap)→M(AAP1)×M(AAP2) : ζ 7→ (ζ|AAP1 , ζ|AAP2),

where the codomain carries the usual product topology.

Lemma 3.10. This map is a homeomorphism onto the subset

(M(AAP1)× {x∞}) ∪ ({x∞} ×M(AAP2)).

Proof. Let ζ ∈M(Ap), such that ζ(Mλ) 6= 0, for some λ > 0. Then it follows by the Weyl
relations that ζ(Dµ) = 0, for every µ > 0. Similarly with the roles of Mλ and Dµ reversed.
Hence ζ maps into the set. On the other hand, let (z, x∞) be a point in the union set.
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Define on the generalized trigonometric polynomials the multiplicative linear functional ζ
by

ζ

(∑
λ,µ∈F

cλ,µMλDµ

)
=
∑
λ,µ∈F

cλ,µz(Mλ)x∞(Dµ) =

=
∑
λ∈F

cλ,0z(Mλ).

But then ζ = z ◦E0, so it is bounded and extends to a character of Ap. Similarly, we have
that for every point (x∞, z) corresponds the character z ◦Z0. It remains to show that the
map is injective and homeomorphic, but this is routine. �

Let χ∞ be the preimage of (x∞, x∞). This the ”first coefficient character” on Ap

χ∞

(∑
λ,µ∈F

cλ,µMλDµ

)
= c0,0.

Now, the maximal ideal space of AAP (R) is the compact topological space RB × [0,∞)∪
{∞}, where RB is the Bohr compactification of the real numbers (see Theorem 12.4 in
[7]). Write ∆1,∆2 for the maximal ideal spaces of AAP1 and AAP2, respectively. Hence,
the maximal ideals of Ap that contain Cp form the connected topological space

∆1 tχ∞ ∆2.

Lemma 3.11. The homeomorphism γ0 fixes χ∞. Moreover, either γ0(∆1) = ∆1, or
γ0(∆1) = ∆2.

Proof. Given x ∈ C+ ∪ {∞}, let zx ∈ M(AAP (R)) be the evaluation character at x and
ζx, ηx be the preimage of the points (zx, x∞) and (x∞, zx), respectively. Note that the set

Mev(Ap) = {ζx, ηx : x ∈ C+ ∪ {∞}}
is dense in ∆1 tχ∞ ∆2. Also, with the relative product topology, this is homeomorphic to
the space

(C+ × {∞}) ∪ ({∞} × C+) ∩ {(∞,∞)}.
Since Mev(Ap) is connected, so is the entire character space M(Ap) and its homeo-

morphic space ∆1 tχ∞ ∆2. If we remove the point χ∞, then the character space, with
the relative topology, fails to be connected. We claim that χ∞ is the only point in the
character space with this topological property.

If χ 6= χ∞ is in Mev(Ap), then the set of the remaining evaluation characters, with the
relative topology, remains connected, and it contains χ in its closure. Hence the space
(∆1 tχ∞ ∆2)\{χ} remains connected. If χ is a limit character, then once again the space
(∆1 tχ∞ ∆2)\{χ} contains the dense connected set Mev(Ap), so it is connected.

Hence χ∞ is a fixed point for homeomorphisms.
Consider now the restriction of the homeomorphism γ0 to (∆1 tχ∞ ∆2)\{χ∞}. Since

every homeomorphism maps connected components to connected components, the second
assertion of the lemma follows. �

Hence we have two cases.
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Case 1 : γ0 keeps ∆1 and ∆2 fixed. Let x ∈ R and let ζx, ηx be the characters defined
in the proof of the previous lemma. Since γ0 keeps ∆1 invariant, we have

0 = γ0(ζx)(Dµ) = ζx(Φ̃(Dµ)) = E0(Φ̃(Dµ))(x).

Hence E0(Φ̃(Dµ)) = 0 for every µ > 0. Therefore Φ̃(Dµ + Cp) = Dh + Cp, for some

h ∈ AAP (R). Repeating the argument for Φ̃−1, we have that Φ̃|Z0(Ap/Cp) gives an
automorphism of AAP (R). Thus, it follows by Theorem 2.18 that

Φ̃(Dµ + Cp) = c(µ)Dk1µ + Cp, for some k1 > 0, c(µ) ∈ T.

Applying the same argument on the elements Φ̃(Mλ +Cp), using the ηx characters
this time, we get

Φ̃(Mλ + Cp) = d(λ)Mk2λ + Cp, for some k2 > 0, d(λ) ∈ T.
Hence Φ(Mλ) = d(λ)Mk2λ + A, where A lies in Cp. The following lemma is the
only point of the proof of Theorem 3.7 that we will make use of the fact that Φ is
isometric.

Lemma 3.12. With the abovementioned notation we have Φ(Mλ) = d(λ)Mk2λ.

Proof. First note that

‖Φ(Mλ)‖ = ‖Mλ‖ = 1 = ‖d(λ)Mk2λ‖.
If suffices to prove that every Fourier coefficient of A is zero. We consider the left
regular representation (ĩd,Λ) of the crossed product. Let F be a finite subset of
positive real numbers and ξ a norm one function in L2(R). By Proposition 2.12 we
have

1 = ‖Φ(Mλ)‖2 ≥
∑

s∈F∪{0}

‖τ−s(Es(Φ(Mλ))) · ξ‖2
L2(R) =

= ‖d(λ)eik2λx · ξ‖2
L2(R) +

∑
s∈F

‖τ−s(Es(A)) · ξ‖2
L2(R) =

= 1 +
∑
s∈F

‖τ−s(Es(A)) · ξ‖2
L2(R).

So τ−s(Es(A)) = 0, which implies that Es(A) is the zero function, for every s ∈ F .
Since F was arbitrarily chosen, we obtain by Corollary 2.10 that A = 0. �

Similarly using the left regular representation that corresponds to the (ρ oM)
representation of the crossed product, we obtain Φ(Dµ) = c(µ)Dk1µ.

Now the Weyl relations yield

Φ(MλDµ) = Φ(eiλµDµMλ).

The LHS gives

Φ(MλDµ) = Φ(Mλ)φ(Dµ) = d(λ)Mk2λc(µ)Dk1µ =

= d(λ)c(µ)eiλk1k2µDk1µMk2λ,
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while the RHS is

Φ(eiλµDµMλ) = eiλµc(µ)Dk1µd(λ)Mk2λ = eiλµd(λ)c(µ)Dk1µMk2λ.

Therefore k1k2 = 1 and so the map Φ : MλDµ 7→ Mk2λDk1µ corresponds to the
automorphism Ad(Vt), by taking t = log k1. Each automorphism of the above
form is induced by a covariant respesentation of (AP (R),Rd, τ), so by the universal
property of the crossed product it extends to an algebra automorphism of Bp.

Define on L2(R) the covariant representation (yd,t, wc,t) of the C∗−dynamical
system (AP (R),Rd, τ), where

yd,t : AP (R)→ B(L2(R)) : f 7→Mĩdoud,et (f),

where ĩd o ud,et is given in equation (2.6), and

wc,t : Rd → B(L2(R)) : µ 7→ c(µ)Dµe−t .

Indeed, the pair (yd,t, wc,t) is a covariant representation, since

wc,t(µ)yd,t(e
iλx)wc,t(−µ) = c(µ)Dµe−td(λ)Mλetc(−µ)D−µe−t =

= e−iλµd(λ)Mλet = e−iλµyd,t(e
iλx) = yd,t(τµ(eiλx)).

Hence, by the universal property of the crossed product, we obtain the induced
isometric automorphism yd,t o wc,t of Bp that satisfies

MλDµ 7→ d(λ)c(µ)MλetDµe−t .

It is evident now that the automorphism Φ given in relation (3.1) is of the form
yd,t o wc,t (restricted to Ap), for some t ∈ R and c, d ∈ RB.

Case 2 : γ0 flips ∆1 and ∆2. Repeating the argument of the previous case, we end
up with

Φ(Mλ) = d(λ)Dk1λ and Φ(Dµ) = c(µ)Mk2µ.

Applying again the Weyl commutation relations, we calculate

Φ(Mλ)Φ(Dµ) = eiλµΦ(Dµ)Φ(Mλ)⇔ d(λ)c(µ)Dk1λMk2µ = eiλµd(λ)c(µ)Mk2µDk1λ

⇔ d(λ)c(µ)Dk1λMk2µ = eiλµ(1+k1k2)d(λ)c(µ)Dk1λMk2µ

which implies that k1k2 = −1, but this is impossible, since k1, k2 are both positive
real numbers.

This completes the proof of Theorem 3.7. �

4. Triple semigroup algebras

As described in the previous section, the dilation operators {Vt : t ∈ R} implement
isometric automorphisms of the C∗-algebra Bp. Let G be the discrete group Rd or Z and
(Bp, G, v) be the C∗-dynamical system, where v is the group of automorphisms that are
unitarily implemented by the operators Vt

v : G→ Aut(Bp) : t 7→ vt = Ad(Vt).
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Hence, this enables us to define the crossed product, denoted by Bp ov G. Denote by Hk

the contraction from Bp ov G onto Bp

Hk(
∑

λ,µ,t∈F
F finite

(εt ⊗ cλ,µ,tMλDµ)) =
∑
λ,µ∈F
F finite

cλ,µ,kMλDµ.

Our next goal is to show that the norm closed algebra

BG
ph := ‖ · ‖-alg{Mλ, Dµ, Vt : λ, µ ∈ R, t ∈ G}

is isometrically isomorphic to Bp ov G. By the universal property of the crossed product
we have the representation

((π oD) o V )
∑

λ,µ,t∈F
F finite

(εt ⊗ cλ,µ,tMλDµ) 7→
∑

λ,µ,t∈F
F finite

cλ,µ,tMλDµVt.

The following proposition is the key to prove that the above representation is actually an
isometric isomorphism.

Proposition 4.1. Given t0 ∈ G, the mapping∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt 7→
∑
λ,µ∈F
F finite

cλ,µ,t0MλDµ

is contractive, so it extends to a linear contraction H̃t0 on BG
ph.

Proof. It suffices to prove it for t0 = 0. By Poincare’s recurrence theorem [18], there exists
an increasing unbounded sequence {Mn}n∈N of natural numbers, such that

eiλMn → 1, as n→∞ and for all λ ∈ F.

Since DMnVtD
∗
Mn

WOT→ 0 for every t 6= 0, one can check that

lim
n→∞
〈DMncλ,µ,tMλDµVtD

∗
Mn
f, g〉 =

{
〈cλ,µ,0MλDµf, g〉, if t = 0
0 if t 6= 0

Hence ∑
λ,µ,t∈F
F finite

cλ,µ,tDMnMλDµVtD
∗
Mn

WOT→
∑

λ,µ,t∈F
F finite

cλ,µ,0MλDµ.

Therefore, the proof follows by observing that〈 ∑
λ,µ,t∈F
F finite

cλ,µ,tDMnMλDµVtD
∗
Mn
f, g

〉
≤ ‖

∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt‖ ‖f‖ ‖g‖,

for all f, g ∈ L2(R). �

Corollary 4.2. The map (π o D) o V is an isometric ∗-isomorphism of the C∗-algebra
Bp ov Z.
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Proof. Let X ∈ BpovZ, such that ((πoD)oV )(X) = 0. Then by the previous proposition

we get H̃k(((πoD)oV )(X)) = 0, for every k ∈ G. But H̃k ◦((πoD)oV ) = (πoD)◦Hk,
since the equality holds for trigonometrical polynomials. Therefore ((πoD)◦Hk)(X) = 0,
which implies that Hk(X) = 0, so X = 0. Hence the representation (πoD)oV is faithful,
so isometric. �

Definition 4.3. We denote by AG
+

ph the norm closed algebra that is generated by the

semigroups of Mλ, Dµ, Vt, where λ, µ ∈ R+, t ∈ G+. The algebra AZ+

ph is called the par-

tially discrete triple semigroup algebra, while the algebra AR+

ph is called the triple
semigroup algebra.

Let CG
+

ph be the commutator ideal of AG
+

ph . To describe CG
+

ph we need first the following
lemma.

Fix t > 0 and let Jt be the closed ideal of AAP (R) generated by the functions of the
form

eiλx − φ0,et(e
iλx) = eiλx − eiλetx,

for λ > 0.

Lemma 4.4. The ideal Jt is equal to the ideal I0 = {f ∈ AAP (R) : f(0) = x∞(f) = 0}.

Proof. It is clear that I0 contains Jt. To prove the inverse inclusion, note that I0 has
codimension 2, and so it suffices to show that the same holds for Jt. Define the subspace
J̃t = span{a+ ceix : a ∈ Jt, c ∈ C}. We claim that J̃t is closed.

Let {an + cne
ix}n be a convergent sequence, such that an ∈ Jt and cn ∈ C. We claim

that the limit of the sequence, say a, lies in J̃t. Denote by x1 the character of AAP (R)
given by the formula

(4.1) x1(f) 7→ f(0).

Hence an(0) + cn → a(0). However, since an ∈ Jt, it follows that an(0) = 0, for all n ∈ N.
Therefore

cn → a(0) ⇒ cne
ix → a(0)eix, as n→∞.

So an = an + cne
ix− cneix → a− a(0)eix. Since Jt is closed, it contains a− a(0)eix. Hence

a = a− a(0)eix + a(0)eix ∈ J̃t,

so J̃t is closed.
Hence, it suffices to prove that

J̃t = span{eiλx : λ > 0}
‖·‖∞

.

Since Jt is an ideal in AAP (R), we get

ei(κ+λ)x − ei(κ+λet)x − eix ∈ J̃t, for all κ, λ ∈ (0,∞).

Choose κ+ λ = 1, so eiρx ∈ J̃t for every ρ ∈ [1, et). Thus, by induction, we have that

eiρe
(n−1)tx − eiρentx − eiρe(n−1)tx = −eiρentx ∈ J̃t,
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and

eiρe
−ntx − eiρe−(n−1)tx + eiρe

−(n−1)tx = eiρe
−ntx ∈ J̃t,

for every ρ ∈ [1, et) and n ∈ N. Hence eiλx ∈ J̃t, for all λ ∈ (0,∞), and hence the proof is
complete. �

Proposition 4.5. The commutator ideal CG
+

ph is equal to the set
(4.2)

ker(E0 ◦H0) ∩ ker(Z0 ◦H0) ∩
⋂
t∈G+

(ker(χ∞ ◦Ht) ∩ ker(x1 ◦ E0 ◦Ht) ∩ ker(x1 ◦ Z0 ◦Ht)) .

Proof. Let I be the set described in (4.2). Since I is the intersection of kernels of bounded
linear operators, it is closed. One can check that if X =

∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt is a trigono-

metric polynomial in I, then it satisfies

(1) cλ,0,0 = c0,µ,0 = c0,0,t = 0, for all λ, µ ∈ R+, t ∈ G+;
(2)

∑
λ

cλ,0,t =
∑
µ

c0,µ,t = 0, for all t ∈ G+.

It is elementary to show that ifX, Y trigonometric polynomials inAG
+

ph , thenXY−Y X ∈ I.
Since multiplication is jointly continuous with respect to the operator norm, it follows by
the density of trigonometric polynomials in AG

+

ph that XY −Y X ∈ I, for every X, Y ∈ AG+

ph .
Similarly, working first with trigonometric polynomials, we obtain that I is closed under
the ideal operations.

For the converse inclusion, let X ∈ I. By Theorem 2.9, it suffices to show that
Ht(X)Vt ∈ CG

+

ph , for every t ∈ G+. As we proved in Lemma 3.8, one can check that

Ht(X)− E0(Ht(X))− Z0(Ht(X)) + (E0 ◦ Z0)(Ht(X)) ∈ CG
+

ph ,

since it lies in Cp. Moreover, we obtain by the definition of I that (E0 ◦ Z0)(Ht(X)) =
(χ∞ ◦Ht)(X) = 0, so it follows that

Ht(X)Vt − E0(Ht(X))Vt − Z0(Ht(X))Vt ∈ CG
+

ph .

Hence it suffices to show that E0(Ht(X))Vt and Z0(Ht(X))Vt lie in CG
+

ph .
Write E0(Ht(X))Vt = MfVt, for some f ∈ AAP (R). Since X ∈ I, f satisfies the

properties x∞(f) = f(0) = 0. So by the previous lemma there exist gn ∈ AAP (R), n ∈ N,
such that f = lim

n
(gn−φ0,et(gn)), which implies that MfVt = lim

n
(MgnVt−VtMgn), so MfVt

lies in CG
+

ph . Similarly every element DfVt ∈ I belongs to CG
+

ph , so our proof is complete. �

Before this subsection ends, we prove the existence of two more contractive maps, which
will be helpful in the next section.

Proposition 4.6. The maps∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt 7→
∑
λ,t∈F
F finite

cλ,0,tVt

∑
λ,µ,t∈F
F finite

cλ,µ,tMλDµVt 7→
∑
µ,t∈F
F finite

c0,µ,tVt
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are contractive.

Proof. The proof uses similar arguments as in Proposition 4.1, working now with the
WOT-limits ∑

λ,µ,t∈F
F finite

cλ,µ,tV
∗
nMλDµVtVn

WOT→
∑
λ,t∈F
F finite

cλ,0,tVt

∑
λ,µ,t∈F
F finite

cλ,µ,tVnMλDµVtV
∗
n

WOT→
∑
µ,t∈F
F finite

c0,µ,tVt,

as n→∞. �

4.1. The algebra AZ+

ph . We focus now on the partly discrete triple semigroup algebra

AZ+

ph . In order to determine the isometric automorphisms of AZ+

ph , we work again on the
induced homeomorphism of the character space onto itself. Define the characters x1 ∈
M(AAP (R)), such that x1(f) = f(0), and χ∞ = (x∞, x∞) as before. Let also y0 be the
character in the disc algebra A(D) (see [19]), given by y0(f) = f(0).

Proposition 4.7. The mapping

ψ : M(AZ+

ph )→M(AAP1)×M(AAP2)×M(A(D)) : χ 7→ (χ
∣∣
AAP1

, χ
∣∣
AAP2

, χ
∣∣
A(D)

)

is continuous into the union of the following sets:

(i) ∆1 := M(AAP1)× {x∞} × {y0},
(ii) ∆2 := {x∞} ×M(AAP2)× {y0},

(iii) ∆3 := {x1} × {x∞} ×M(A(D)),
(iv) ∆4 := {x∞} × {x1} ×M(A(D)),
(v) ∆0 := {x∞} × {x∞} ×M(A(D)).

Proof. Let χ be a character in M(AZ+

ph ). Then

χ
∣∣
Ap
∈M(Ap) and χ

∣∣
‖·‖-alg{Vt:t∈Z+} ∈M(A(D)).

One can check that if χ
∣∣
Ap

does not correspond to a point in {χ∞, (x1, x∞), (x∞, x1)}, then

by the commutation relations we get that χ(Vt) = 0, for all positive t.
On the other hand, if χ

∣∣
‖·‖-alg{Vt:t∈Z+} 6= 0, then by the commutation relations we have

three cases for χ
∣∣
Ap
∈M(Ap):

(1) χ(Mλ) = 1 and χ(Dµ) = 0, which corresponds to the character (x1, x∞) in M(Ap).
(2) χ(Mλ) = 0 and χ(Dµ) = 1, so we get the character (x∞, x1).
(3) χ(Mλ) = χ(Dµ) = 0, which gives χ∞.

Hence the mapping ψ is well defined. Continuity is evident, so the proof is complete. �

Note that every element in the codomain of ψ corresponds to a multiplicative linear
functional defined on the non-closed algebra of trigonometric generalized polynomials.
If χ is such a multiplicative functional in ∆1 ∪ ∆2, then the contraction H0 yield that
χ is bounded and extends to a character of AZ+

ph . Therefore, any maximal ideal of Ap
corresponding to a point (∆1 tχ∞ ∆2)\{χ∞, (x1, x∞), (x∞, x1)} is contained in a unique

maximal ideal in AZ+

ph . Similarly, by Lemma 4.6 any multiplicative functional of the form
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(x1, x∞, y), (x∞, x1, y), with y ∈M(A(D)), is bounded. Hence it follows that all elements
in ∆3 and ∆4 belong to the image of ψ.

The pursuit of the continuity of the remaining multiplicative functionals (on the dense
subalgebra) that correnspond to the points (x∞, x∞, y) ∈ ∆0 is more subtle and it remains
unclear to the author if this formula can generate a bounded character of AZ+

ph .

Remark 4.8. It is trivial to show that given an element u of the commutator ideal of a
commutative Banach algebra A, then χ(u) = 0 for every character χ of A. The opposite
direction is not true in the case that A contains quasinilpotent elements. A complication
with AZ+

ph is that we cannot determine if the elements of the form Vt −MλVt − DµVt +

CZ+

ph , λ, µ ∈ R+, t ∈ Z+ are quasinilpotent, a property which turns out to be equivalent to
the continuity of specific elements in ∆0.

We now obtain a partial identification of the character space of AZ+

ph , which is sufficient
for our main results in the next section. See Figure 1.

∆3 ∆1 ∆0 ∆2 ∆4

Figure 1. The topological space ∆0 t∆1 t∆2 t∆3 t∆4.

Proposition 4.9. The character space M(AZ+

ph ) has the form ∆̃0 t ∆1 t ∆2 t ∆3 t ∆4,

where ∆̃0 is either the point {x∞, x∞, y0} or a closed disc in ∆0.

Proof. If there is no continuous character of M(AZ+

ph ) in ∆0, apart from {x∞, x∞, y0}, then
there is nothing to prove. Assume now that χ is a continuous character in ∆0, so χ(Vt) = zt

for some z 6= 0 in the unit disk. Hence

|
∑
t

χ(at)z
t| ≤ ‖

∑
t

atVt‖ , at ∈ Ap.

Applying the dual automorphisms φeiθ of Ap ov Z+ for any θ ∈ (0, 2π), it follows that

|
∑
t∈N

χ(at)(ze
iθ)t| ≤ ‖

∑
t∈N

eiθtatVt‖ = ‖
∑
t∈N

atVt‖.

Therefore, by the maximum principle, each multiplicative linear functional of the form
atVt 7→ χ(at)w

t, where |w| ≤ |r|, is continuous. �

Theorem 4.10. The isometric isomorphisms of AZ+

ph are of the form

(4.3) Φ(Mλ) = Mk1λ, Φ(Dµ) = Dk2µ and Φ(Vt) = c(t)Vt,

where k1k2 = 1 and c : t 7→ c(t) is multiplicative.
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Proof. Let Φ be an isometric isomorphism of AZ+

ph . Once again we consider the induced
homeomorphism

γ : M(AZ+

ph )→M(AZ+

ph ) : χ 7→ χ ◦ Φ−1.

It follows by Proposition 4.9 that γ fixes the subset of characters ∆p = ∆1 t(x∞,x∞,y0) ∆2.
Hence the ideal I = ∩χ∈∆pkerχ is fixed by Φ. By Proposition 4.1 it follows that the

quotient algebra AZ+

ph /I is isomorphic to Ap/Cp. So the naturally induced automorphism

Φ̃ of the quotient algebra satisfies

Φ̃(Mλ + I) = d(λ)Mk1λ + I

Φ̃(Dµ + I) = c(µ)Dk2µ + I

where k1k2 = 1 and c, d are characters of the discrete group of the real numbers. Applying
the same argument as in Lemma 3.12 we get that Φ(Mλ) = d(λ)Mk1λ and Φ(Dµ) =
c(µ)Dk2µ. Now, since the characters in ∆3 are continuous, by the commutation relations
we get that

Φ(Vt)Φ(Mλ) = Φ(Mλet)Φ(Vt)⇒ d(λ) = d(λet)

Since d is a character of the full group we obtain that d(λ(et − 1)) = 1, for all λ > 0 and
t ∈ Z+. As every positive real can be written in such a way, then d|R+

d
= 1. Similarly,

using the continuity of the characters in ∆4, we get that c(µ) = 1, for every µ > 0.
The argument to determine the image of the dilation operators is developed entirely on

L2(R). Since Φ(Vt)Mk1λ = Mk1λetΦ(Vt), if we right multiply both sides by V ∗t , we get

(4.4) Φ(Vt)V
∗
t Mk1λet = Mk1λetΦ(Vt)V

∗
t .

Hence Φ(Vt)V
∗
t commutes with everyMλ, λ ∈ R, so it lies in the multiplication algebra Mm,

since this algebra is maximal abelian. Mimicking the same argument for the commutation
relation with the translation operator, we get that Φ(Vt)V

∗
t is also in the translation algebra

Dm. But the intersection of these two algebras is the multiples of the identity operator,
so Φ(Vt) = c(t)Vt. Moreover, the restriction of Φ in the norm closed algebra generated
by the Vt operators preserves the dense set of generalized trigonometric polynomials, so
by continuity it can be identified with an automorphism of the disc algebra. Since every
automorphism of the disc algebra is isometric [19], we obtain that c(t) ∈ T. Hence
c(t) = eiθt, for some θ ∈ [0, 2π) independent of t. We proved that Φ satisfies Φ(Mλ) =
Mk1λ, Φ(Dµ) = Dk2µ,Φ(Vt) = c(t)Vt, where k1k2 = 1. By the universal property of the
crossed product, any such mapping can extend to an isometric isomorphism of Ap ov

Z+. �

Theorem 4.11. The algebra AZ+

ph is chiral.

Proof. It suffices to prove that AZ+

ph is not isometrically isomorphic to its conjugate algebra

(AZ+

ph )∗. If Φ was such an isomorphism, then following the same proof as in the previous
theorem we get that Φ(Mλ) = M−k1λ and Φ(Dµ) = D−k2µ. But then again, we can prove

that Φ(Vt)V
∗
t = c(t)I, so Φ(Vt) = c(t)Vt /∈ (AZ+

ph )∗. �
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4.2. The algebra AR+

ph . The approach to the triple semigroup algebra is similar to the case

of AZ+

ph . Note that the algebra generated by the unitary semigroup {Vt}t≥0 is isometrically
isomorphic to AAP (R). Writing AAP3 for this algebra, we obtain that the mapping

M(AR+

ph )→M(AAP1)×M(AAP2)×M(AAP3) : χ 7→ (χ
∣∣
AAP1

, χ
∣∣
AAP2

, χ
∣∣
AAP3

)

is continuous into the union of the following sets:

(i) ∆1 := M(AAP1)× {x∞} × {x∞},
(ii) ∆2 := {x∞} ×M(AAP2)× {x∞},

(iii) ∆3 := {x1} × {x∞} ×M(AAP3),
(iv) ∆4 := {x∞} × {x1} ×M(AAP3),
(v) ∆0 := {x∞} × {x∞} ×M(AAP3).

Note now that each disk is homeomorphic to the topological space RB × [0,∞) ∪ ∞.
Again, the continuity of the characters in ∆1,∆2,∆3 and ∆4 follows from Propositions 4.1
and 4.6, while it is unknown to the author if the multiplicative linear functionals in ∆0 are
continuous. Moreover, it remains also unclear if Proposition 4.9 holds in this case, since
we may have continuous limit characters in ∆0. Nonetheless, let χz be the multiplicative
functional in ∆0, that evaluates a function in AAP3 to the point z of the upper half
plane of C. If χz was continuous, then mimicking the proof of 4.9, we would get that any
multiplicative functional of the form χw, where Im(w) ≥ Im(z), is continuous. Moreover,
any limit character in the closure of the set {χw : Im(w) ≥ Im(z)} would be continuous.

Theorem 4.12. The isometric isomorphisms of AR+

ph are of the form

Φ(Mλ) = Mk1λ, Φ(Dµ) = Dk2µ and Φ(Vt) = c(t)Vt,

where k1k2 = 1 and c : t 7→ c(t) is multiplicative. Furthermore, the algebra AR+

ph is chiral.

Proof. Given the isometric isomorphism Φ of AR+

ph , define the induced homeomorphism,

say γ, of the character space M(AR+

ph ) onto itself. Since the set of limit characters has
empty interior, it follows from our comments above that γ permutes the discs. Hence it
fixes the set ∆p of characters that map the family of the dilation operators {Vt}t>0 to zero.
This is the closure of the set of characters of the norm closed parabolic algebra that are
extended uniquely in the triple semigroup algebra. Hence, applying similar arguments as
in the proof of Theorem 4.10, we have Φ(Mλ) = Mk1λ and Φ(Dµ) = Dk2µ, for all λ, µ > 0.

Indeed, the quotient algebra AR+

ph /I, where I = ∩χ∈∆1t(x∞,x∞,x∞)∆2kerχ, is isomorphic to

Ap/Cp, so it follows again that Φ(Mλ) = d(λ)Mk1λ and Φ(Dµ) = c(µ)Dk2µ with d, c char-
acters of the group Rd. By the continuity of the characters in ∆3 and by the commutation
relations we obtain that d(λ) = d(λet), for all λ, t > 0. Since d is a character of the full
group we have d(λ) = 1 for all λ > 0. In addition, continuity of the characters in ∆4 yields
that c(µ) = 1, for every µ > 0.

Observe now that by equation (4.4) Φ(Vt)V
∗
t commutes with every element in the mul-

tiplication algebra, so it is a multiplication operator Mm itself. Similarly, we have that
Φ(Vt)V

∗
t lies also in the translation algebra Dm, hence it is of the form

(4.5) Φ(Vt) = c(t)Vt,

where c(t) is multiplicative. Moreover, the equation (4.5) generates a unique continuous
automorphism of AAP3, so |c(t)| = 1.
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Chirality follows in the same manner as in Theorem 4.11. �

Remark 4.13. It was shown in [21] that the unitary automorphisms of the weak∗-closed
triple semigroup algebra Aph are of the form Ad(Vt). It is still unknown if these are
also the isometric isomorphisms of the algebra. In particular, it remains unclear to the
author if the dual automorphisms of the norm closed algebra AR+

ph can be extended to its
weak∗-closure.
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