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Abstract

Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually,

this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science

and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen

science as a source of rigorous information. To engage the public in scientific research, and the research community in the

practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding

specifics of project design and implementation when working with a broad public base. We define a science-based typology

focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes

directly useful in science and natural resource management. Where project intent includes direct contribution to science and the

public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data

quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality

of scientific outcomes). We suggest that high quality science can be produced with massive, largely one–off, participation if data

collection is simple and quality control includes algorithm voting, statistical pruning, and/or computational modeling. Small to

mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training

and well-designed materials, and through independent verification. Both approaches—simplification at scale and complexity

with care—generate more robust science outcomes.

Introduction

On December 22, 2014, Virginia started her sixth beached bird survey near Ocean Shores, Washington.
Trained only 2 months previously, she was still on the learning curve. In fact, she got a lot of practice that
day. Virginia and her survey partner found 425 carcasses in less than a kilometer, and photographed, tagged,
and identified all of them. This single survey marked the peak of the largest marine bird mass mortality event
ever documented in the Pacific Northwest of the United States (Jones et al. 2018). A documentation only
possible because more than 500 trained participants of the BeachCOMBERS, BeachWatch, and COASST
beached bird survey programs conducted over 1650 standardized, effort-controlled surveys at 264 sites from
Morro Bay, CA to Neah Bay, WA. At the same time, program experts verified carcass identification from the
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collected evidence (photographs, standard measurements, foot type). Finally, almost 20 scientists, including
oceanographers, atmospheric scientists, marine ecologists, veterinary pathologists, and seabird biologists
brought their expertise to bear in determining the extent, intensity, and causality of the event. In this story,
citizen science and science are synonymous. Is this the norm, or the exception? In this paper, we examine
the attributes of citizen science leading to rigorous and robust science.

We define citizen science as projects in which members of the public engage directly in research developed by
or with scientists to address particular questions and/or issues (Irwin 1995; Bonney et al. 2009a). Because
the term “citizen” can be politically problematic and the term “volunteer” is not always appropriate, we refer
to individuals directly involved in citizen science projects and not including project staff as “participants.”
Within natural science, fields utilizing citizen science already include: archaeology (Bovy et al. 2016),
astronomy (Fortson et al. 2012), biochemistry (Eiben et al. 2012), ecology (Dickinson et al. 2010), geography
(Goodchild 2007), geology (Powell et al. 2013), and oceanography (Hays et al. 2005). This diversity might
suggest that academic and professional science is broadly accepting of public involvement; however, recent
studies indicate that the mainstream scientific community remains skeptical of the public as a trusted source
of scientific information (Riesch and Potter 2014; Burgess et al. 2017). In many cases, these misgivings are
rooted in the demonstration that non-experts in a citizen science program do not always perform a scientific
task (usually data collection) to the standards desired by researchers. Thus, the evidence that some citizen
science programs produce high quality data of immediate use to science (e.g., Cooper et al. 2014; Swanson
et al. 2016) does not translate into the conclusion that all citizen science programs can.

Defining the goals

Many citizen science projects assert production of data in service to science or resource management as a
goal. Theobald et al. (2015) found that 97% of 388 surveyed biodiversity citizen science projects stated
their primary goal was to contribute to science and/or advance scientific understanding. However, only
12% of projects had demonstrably contributed to a science-focused peer-reviewed publication (one measure
of scientific contribution). Even if this publication rate is underreported due to “cryptic” use of the term
citizen science only outside of the abstract and keywords if at all (Cooper et al. 2014), the discrepancy
suggests that there may be large differences in what project managers, and research scientists, consider
evidence of scientific use. In assessing the potential for bonafide science as an outcome of citizen science,
we invoke the concept of fitness to use or fitness to purpose (Juran 1951), or the degree to which the
quality-related elements or activities of an organization—here a citizen science project—can

result in the declared purpose. Simply put, projects claiming science as a primary goal or “purpose” should
adhere to accepted quality standards within science (Wiggins et al. 2018).

However, science is not the only goal of citizen science. Other common goals include education, community
empowerment, and personal fulfillment. Science education and/or increasing science literacy has long been a
major thrust of citizen science programming (Bonney et al. 2009b; Wiggins and Crowston 2011). Community
goals, often related to environmental or social justice issues, are an explicit outcome of community-based,
community-driven, and participant action research projects (Wilderman et al. 2004; Cooper et al. 2007;
Danielsen et al. 2009). And for the individual participant, personal fulfillment can include learning goals,
the desire to contribute to science, or simply engaging in something enjoyable or fun (Raddick et al. 2010;
Wright et al. 2015).

While we recognize the value of citizen science to both personal and societal outcomes, this paper explores
strategies for better ensuring projects can meet declared goals based on scientific outcomes (i.e., optimizing
project fitness to scientific purpose). Here we distinguish between the practice of science (including authentic
science experiences on the part of the participants) and science outcomes (new information or knowledge,
or applied work based on a scientific understanding of how the world works), where the latter must include
the former, but the reverse is not the case. Our goal is to facilitate both acceptance and use of citizen
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science by the professional science community, and intentional design of projects with science as a primary
objective. To that end, we: (1) present a science-focused typology that differentiates projects based on
intent and activity; (2) define a process workflow to help identify design nexus points for science-focused
projects; and (3) discuss quality control approaches to maximize data quality as a function of project scale
and complexity.

A science-based typology of citizen science

Existing typologies of citizen science pivot on the degree to which participants are involved in tasks other
than data collection. Bonney et al. (2009b) posited three points of project design along a continuum of
interaction between scientist and participant. Contributory projects—also referred to as virtual and/or
investigative projects (Wiggins and Crowston 2011), externally-driven monitoring with local data collectors
(Danielsen et al. 2009), or distributed intelligence (Haklay 2013)—are designed by the mainstream science
community with the role of data producer assigned to the public. At the other end of the continuum are co-
created projects which involve participants in all stages of the scientific process, and are often associated with
particular communities and specific concerns such as air or water quality, as in “extreme citizen science”
or community-based participatory science focused on highly marginalized and often remote populations
(Haklay 2013; Stevens et al. 2014). In fact, there are a range of projects which confer increasing power
and project ownership to non-scientist participants including autonomous local monitoring (Danielsen et
al. 2009), community-based participatory research (Wilderman et al. 2004), and more generally “action”
projects (Wiggins and Crowston 2011). What often sets these projects apart is the explicit movement of
project results into the sphere of decision-making and governance. In between these poles are collaborative
projects expanding participants roles beyond data collector, from contributing to iterative versions of data
collection protocols and training of new recruits, to results interpretation and defining the next phase(s) of
the research (Cooper et al. 2007).

What is apparent about most of these typologies is that they are centered on the roles and degree of control
accorded to professional scientists versus other participants. We suggest that a science-focused typology
aimed at classifying projects according to their potential for inclusion in scientific research and science-
based decision-making is also needed to guide the scientific community in identifying projects applicable
to their work. In lieu of a meta-analysis systematically reviewing attributes of all citizen science projects
(e.g., the 1800 projects currently listed in SciStarter.org), we generated our schema through an iterative
process that extended a framework presented at the Waypoints of Science: Scaling Design, Development and
Delivery of Citizen Science for Bonafide Science symposium held at the Citizen Science Association meeting
in 2017. Iterations were tested against: (1) all projects (unique projects 1/4 80) highlighted as examples in
all previous literature proffering a typology or categorization of citizen science (i.e., see references above),
(2) the 388 biodiversity citizen science projects collected in the Theobald et al. (2015) meta-analysis, (3)
projects managed directly by the authors, and projects associated with and/or analogous to or duplicative
of those projects (e.g., all projects focused on beach habitats; projects focused on documenting phenology),
and (4) all projects on data collection platforms managed by the authors (e.g., in the Zooniverse). In total,
over 500 projects were tested against our typology.

The right-hand branch of Fig. 1—no/minimal data—is defined by projects for which the primary intent is
not data collection at a level or scale needed to address an issue or question of scientific interest. Education
and awareness projects may well bring members of the public into direct contact with practicing scientists for
the first time, and may provide individuals with authentic scientific experiences, without contributing to the
advancement of science. Examples include the Lost Ladybug Project (Gardiner et al. 2012) which focuses on
youth programs to identify native and invasive ladybugs, and the youth-focused intertidal project Long-term
Monitoring Program and Experiential Training for Students, or LiMPETS (Ballard et al. 2017). In both
of these examples, hundreds of middle school students annually gain authentic science experiences, become
more aware of scientific practice and environmental issues, and may gain agency (permission to act) and
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expand their identity through participation (Ballard et al. 2017). However, standardized, effort-controlled,
verifiable data at a spatio-temporal scale equivalent to questions of scientific interest are rarely produced.
Non-data collection tasks include a broad swath of activities where participants may be deeply engaged in
assistance toward a goal that does not require the collection or processing of information, as in conservation
action and restoration projects (Bruyere and Rappe 2007).

The left-hand branch—data generated—separates out projects where the primary intent is the creation of
information, or data in service of a scientific goal. We define “data” as an abstraction—a measurement, clas-
sification, and/or count that individually or collectively characterizes an object, phenomenon, or state—as
well as the thing itself, as in a sample. First, we divide projects by whether the participant is directly en-
gaged in thinking, or is giving tacit permission for the use of “information and communication technologies”
(Wiggins and Crowston 2011). Passive participation ranges from computation, or the use of networked desk-
tops and laptops to parallel process discrete “work packages” as part of big data projects (e.g., SETI@home,
Rosetta@home, climate-prediction.net), to sensing, defined as personally carrying and/or housing automated
sensors which report data directly (e.g., Quake-Catcher Network, where participants host seismic sensors
on their laptops; Cochran et al. 2009). Although science is clearly being accomplished in both cases, the
participant is passive in the sense of a non-thinking contribution which can be accomplished without specific
understanding of how their participation contributes to science.

Figure 1: A typology of citizen science separating projects according to scientific intent and participant
activities. The first branching separates projects by primary goal: generation of science outcomes (e.g., data
generated) or other goals (e.g., education, community empowerment, or personal fulfillment) for which data
generation is possible but not necessary. Note any single branch point does not define mutually exclusive
space (e.g., awareness/education is possible on the left side of the tree, and deduction can be accomplished
virtually).

By contrast, active participation requires participants to engage directly in one or more of the tasks of the
scientific process. Types of activity can be divided into physical hands-on work and virtual citizen science—
where the latter is conducted entirely through a computer interface, often online, whether that is situated in
a kiosk at a visitor’s center or in a science museum, at home, or on a mobile device. Virtual citizen science
capitalizes on crowdsourcing, a distributed production model that makes an open call for contributions from
a large, undefined network of people (Howe 2006) to achieve both faster task accomplishment and higher
project-wide accuracy with no precondition or expectation of long-term engagement.

Two basic approaches to crowdsourcing in service of science include: multiple independent classifications and
competitive solution formulation. In the former, the accuracy of the individual participant is secondary to the
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“wisdom of the crowd” emerging through the use of voting or aggregation algorithms (Fortson et al. 2012).
Advanced algorithms account for individual performance, assigning additional weight to responses from
participants who are more accurate, and/or who contribute more (e.g., Marshall et al. 2016). Zooniverse—
an online, crowd-source classification platform currently hosting ˜80 projects is the exemplar. Zooniverse
participants can choose to classify everything from camera-trapped mammals in East Africa (Snapshot
Serengeti) to feather color from digital stills of museum specimens (Project Plumage) to leaves on growing
plants (Leaf Targeting). By contrast, competitive solution formulation uses the crowd to find the single best
participant, as in the protein structure game Foldit (Khatib et al. 2011) or the multiple sequence alignment
game Phylo (Kawrykow et al. 2012). Task performance is tied directly to recognition and thus a degree of
competition (e.g., Greenhill et al 2014), and the “game” may become relatively distinct from the underlying
science.

Finally, hands-on citizen science is typified by a wide range of projects from laboratory-based work to field-
based environmental science. These projects include both monitoring and experimental studies, all of which
require physical collection of data. Sample collection includes direct contact with the sampled material, as in
SoundCitizen, a water quality project requiring participants to send in water samples for laboratory analysis
(Keil et al. 2011); and/or may simply be a geo-referenced, time-stamped photograph, as in CrowdWater,
which collects hydrological data based on photographs (Seibert et al. 2017). In deduction, a decision is
made based on the original data or evidence collected (e.g., species identification based on morphological
characters), as in the fish identification dive program Reef Environmental Education Foundation Fish Survey
Project (REEF; Thorson et al. 2014). For verifiable deductions, the decision reached by a participant can be
independently verified; that is, an expert can evaluate the collected evidence, as is the case with Earthwatch,
where experts are on-site with participants (Chandler et al. 2012). Non-verifiable deductions can still have
high scientific value, especially when the volume or scale of data collected is high or large, as is the case
for the Christmas Bird Count, or eBird (Sullivan et al. 2014). In virtual projects, verification solutions are
implicit in the crowdsource approach.

Designing for science and citizen science

An increasing body of literature suggests that non-professional participants engaged in hands-on, deductive
citizen science may underperform relative to professionals. For example, project participants tend to under-
report common species and over-report rare species (Kremen et al. 2011; Paul et al. 2014). Participants
over-report easy-to-identify, flashy, brightly colored or especially charismatic species (Ward 2014; Boakes et
al. 2016) and under-report cryptic species (Cox et al. 2015). Non-professionals are less likely to master
non-visual survey methods (e.g., acoustic surveys, scat surveys; Moyer-Horner et al. 2012), and are more
likely to collect information non-systematically across the landscape (Boakes et al. 2016). In contrast, a
meta-analysis of 509 ecological and environmental citizen science projects (Pocock et al. 2017) found that
“best quality of data” was associated with in-person training, production of associated materials (e.g., a
protocol), and the use of specialized equipment for data collection.

For citizen science to become an accepted form of bona-fide science, intentional design with attention to
data quality is essential, including measures of quality assurance (the procedures to enhance data quality
undertaken before and during data collection) and methods of quality control (the processes for improving
quality after data collection). Burgess et al. (2017) found that biodiversity scientists overwhelmingly agreed
on the following quality assurance measures for field-collected data: documentation of sampling location,
time, and date; effort control via known area and/or time envelope of sampling; verifiable data; and data
collection personnel trained by an expert.

We abstracted the scientific process as a series of steps (left side, Fig. 2) from project design through to
publication and use, that can be understood as necessary in both science (flowchart in gray, Fig. 2) and
citizen science (flowchart in white, Fig. 2). The design of any scientific project design involves the selection
of a sampling scale and a level of precision for data collection that match the question or issue
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at hand, as well as selecting a minimum sample size (N floor) that addresses the variability inherent in the
system. Once the data are collected, the post-processing step involves refining an analytic approach suited
to the data and the question. The final step in science is presenting the work in a peer-reviewed publication.

Figure 2: The steps of science (listed sequentially at left) outlined as a flowchart. At each stage, the necessary
elements inherent in all science projects are highlighted in bold print and encased within the gray box across
stages. Additional elements specific to citizen science are highlighted in bold italics, and fall outside the gray
box.

Quality assurance in citizen science

Citizen science as a method of science is not different, but requires additional attention to aspects of quality
assurance. During project design, intentional recruitment of target audiences can be key to success. Indi-
viduals are differentially attracted to projects based on personal values and shared goals (Evans et al. 2005;
Rotman et al. 2012). Thus, making project goals explicit allows individuals who may have different, even
antithetical, goals to consider whether their needs are being met, perhaps selecting another project more
closely aligned to their own world-view. Attention to ability, or level of content knowledge and skill devel-
opment as novice participants, is also essential. Projects are variably accessible relative to physical ability,
economic status, and time available among other features (Pandya 2012). Whether recruits can accomplish
the work will also vary as a function of their “distance” from the content and the complexity of the tasks
(Jung et al. 2005; Kosmala et al. 2016). For instance, while some projects attract hobbyists with a high
degree of skill and little need of formal training (e.g., birders, amateur astronomers—Jones et al. 2017a),
many projects attract a broad swath of interested non-experts with little-to-no a priori training (Kelling et
al. 2015).

Within the realm of citizen science, project development follows from the intersection of participant ability
and the sampling precision required by the project, and includes two types of interaction with participants:
training and participant-specific materials. While scientists prefer citizen science data collected by projects
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with in-person expert training (Burgess et al. 2017), online trainings can also be effective (Masters et al.
2016), and may be the only way to scale projects beyond local-to-regional geographies. Project materials
include, at a minimum, a well-developed protocol outlining all of the steps needed to perform tasks success-
fully, and project-specific tools (e.g., measuring equipment, data sheets). Parrish et al. (2017) suggest serial
refinement of project materials—(in this case, a field key to beached birds) by non-professional, non-experts
in the target audience in collaboration with project scientists—to identify and replace or explain jargon and
otherwise clarify materials. Co-creation and/or refinement of the training, protocol, and associated data col-
lection materials among scientists, project staff, and project participants can improve both data quality and
participant retention (Kim et al. 2011). Attention to cost-effectiveness, including both the price of provided
materials and their durability, is important because the scaled success of a project— recruiting thousands
of participants—should not cause its financial failure nor exclude potential participants in disadvantaged
circumstances.

In the delivery of the project, quality assurance can be affected through participant testing and attention
to sampling. Testing participant knowledge can be used to ensure that trainings are successful in delivering
both content and skill (e.g., pre-post testing surrounding a training), as well as to ensure continued quality
as participants engage in the practice of project tasks; that is, do the work. For online image classification
projects, inserting a certain proportion of images where the answer is already known can create an accuracy
baseline for each participant. Such evaluation built directly into the normal flow

of activities (i.e., embedded assessment) can also support timely feedback. For participants, understanding
what they are doing incorrectly and how to correct it, as well as recognition of correctly accomplished
tasks, can be empowering and lead to increased retention (Haywood et al. 2016). For project designers,
understanding process breakdowns is essential for adaptively managing project training and materials to
maximize data quality, as well as to understand the types and levels of error resulting from hundreds
to thousands of data collectors. Although minimum sample size is set by system variability, maximum
sample size (N ceiling) should be set relative to what individual participants can reasonably be expected to
contribute, multiplied by the number of participants (minimally) in the program. Because citizen science is,
by definition, the work of the many, attending to the sampling error inherent in this design is important,
and may further increase sampling needs depending on whether participants are collecting deductive data
that is (or isn’t) backed up by evidence.

Data ingestion is automatic in some projects (e.g., all passive participation and some virtual, and sample
collection projects) such that transcription error is non-existent. Virtual projects focused on classification
(e.g., projects within the Zooniverse) minimize transcription error via the crowdsource design of multiple,
independent classifiers for each task. However, hands-on projects may provide participants with the oppor-
tunity to input data they collect, introducing another source of error in the data. Mobile technologies may
offer solutions by automatically logging some data (e.g., date, time, location, limited environmental data,
and photographic evidence).

Quality control in citizen science

Within citizen science, post-processing prior to analysis offers many possibilities for post-hoc improvement to
data via quality control procedures, even in cases where quality assurance has been relatively weak. In Fig.
3, we conceptualize citizen science projects from those featuring relatively simple tasks requiring little-to-no
deductive reasoning on the part of the participant (e.g., collecting a water sample, collecting a photograph
sample) to those requiring participants to engage in complicated work requiring advanced training, deductive
reasoning, mastery through practice, and/or a mental model of the system (e.g., species identification,
performing chemical analyses on water quality samples). Orthogonal to the axis of task complexity, we array
projects as a function of scale, from local projects with relatively few participants to projects that span
regions (e.g., large marine ecosystems, countries, or continents) up to— at least theoretically—the globe.
While not completely interchangeable, projects with a larger geographic extent also tend to be those with
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higher participant numbers (Theobald et al. 2015). Virtual projects, which are effectively aspatial, can
similarly scale in participant numbers and total tasks completed.

For simple tasks (left side of Fig. 3), data quality can be improved by “outsourcing” the thinking to
scientists, that is, restricting citizen involvement to straightforward sample collection tasks while scientists
receive, verify, catalog, and analyze the samples and the resulting data (i.e., do the thinking). In the
case of virtual projects with numbers of participants (upper left quadrant of Fig. 3), data quality can
be improved via crowdsourcing tasks to multiple individuals, with task completion automatically based on
algorithm voting or consensus metrics (e.g., species identification projects on the Zooniverse platform). For
example, Swanson et al. (2016) found that crowdsourced (>10 people classifying an image) identifications of
images in Snapshot Serengeti were slightly (97.9%) more accurate than even expert identifications (96.6%).
Algorithms can also identify individual players who are particularly adept, or inept, and assign coefficients
accordingly (Hines et al. 2015), creating more accurate data (Marshall et al. 2016)—akin to statistical
pruning. While outsourcing is constrained by scientific resource time to smaller projects, crowdsourcing
supports very large projects with millions of images to be processed (e.g., Lintott et al. 2008). Here, even
inaccurate answers can prove valuable information if a given participant’s bias is systematic (Masters et al.
2016).

Figure 3: Approaches to quality control in citizen science as a function of the scale and complexity of the
task(s) performed by participants. Shading is used to visually highlight the different approaches. Regions of
overlap indicate intersections of task complexity and sample size within which multiple solutions might be
found.

As task complexity increases at small project scales (lower right quadrant of Fig. 3), options for quality
control shift toward expert intervention. On-site expert facilitation and mentoring is exemplified by Earth-
watch where scientists train, mentor, and remain on-site with participants throughout the tenure of the
project (Chandler et al. 2017). In independent record verification, participants’ deductions are subsequently
verified via photographs or specimens. For example, in the COASST program all species identifications
(marine birds) are independently verified by experts via participant-collected primary evidence (foot type,
standardized measurements, scaled dorsal, and ventral photographs), a process that improves identification
to species level from 83% (participant rate) to 92% (Parrish et al. 2017). Verification can also proceed at the
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local phenomenological level, as in tracking the invasion front of the Asian tiger mosquito (Aedes albopictus)
in Spain, where participant reports via the Mosquito Alert app were independently verified via ovitrapping
(Palmer et al. 2017).

As project scales increase to continental and beyond (upper right quadrant of Fig. 3), quality control of
individual data points may be less practical as volume prohibits comprehensive expert review, but statistical
pruning, flagging, and other post hoc techniques can weed out anomalous data points (e.g., mixed effect
models and machine learning: Bird et al. 2014; false-positive occupancy models: Pillay et al. 2014),
or computational models can be used to create smoothed, interpolated versions of the original data (e.g.,
spatiotemporal exploratory models: Hochachka et al. 2012). In between, participant profiling (e.g., trust
metrics: Hunter et al. 2013; occupancy-detection-experience model: Hochachka et al. 2012) can be used
to winnow or weight data based on participants’ known performance levels; however, this approach can
introduce difficult decisions about the ethics of selective data use.

Use beyond science

For most academics, the ultimate step is dissemination of results into the scientific literature (i.e., ”pub-
lication/use” step in Fig. 2), simultaneously validating the work through review by scientific peers while
daylighting the work to the larger scientific community. However, long-term maintenance of a citizen science
project requires two additional and on-going steps: demonstrating that science is applied as promised, and
sharing the results with participants (Cox et al. 2015). For some projects, taking results directly into “real
world” decision-making processes (e.g., conservation, resource management) is the social contract that con-
tributors make as a precondition for participation (Haywood et al. 2016). For place-based, environmental
justice projects, such decision-making is the primary, even exclusive, goal (Haklay 2013).

Finally, returning “results-at-scale” to participants in suitable text and graphical forms (i.e., data storification
and visualization, Fig. 2) can be essential to participant retention (Cox et al. 2015). Species migration (e.g.,
eBird—Sullivan et al. 2014), the timing of spring flowering (e.g., National Phenology Network—Rosemartin
et al. 2014), the occurrence and location of extreme weather (e.g., CoCoRaHS—Gochis et al. 2015), the
spread of disease across a population (e.g., Sea Star Wasting— Montecino-Latorre et al. 2016), the extent
of a marine bird mass mortality event (e.g., COASST—Jones et al. 2017b)—these “data stories” are all
patterns that transcend the ability of a single participant to directly observe the emergent pattern. Without
these stories, participants cannot “see” their own data as contributing to the greater whole, and may be
unaware of actual data uses. With these stories, participants refer to the work as “purposeful and powerful”
and may be energized to take action, from continued engagement to calling for conservation stewardship or
other resource management outcomes (Haywood et al. 2016).

Conclusions

Citizen science progresses through the actions of the many. The collective work of hundreds to hundreds-of-
thousands creates datasets that bound phenomena and address issues of scientific and management interest
at spatio-temporal scales otherwise unattainable (Theobald et al. 2015). With this promise comes respon-
sibility:

• from the scientific community to erase or at least understand bias and to embrace well-designed, scale-,
and content-appropriate projects as a valid source of information;

• from project designers to attend to the specifics of quality assurance and quality control needed to
produce rigorous, high quality data, if science is the primary goal;

• from project owners and managers to honestly advertise the type of project, depth of participant
engagement, and quality and limitations of project data, and to ensure fitness to declared purpose;
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• from participating scientists to follow through on data use and data stories providing both the scientific
community and the participant corps and their communities with results-at-scale;

• and from participants to choose projects wisely according to their values and goals, to contribute as
much and as well as they can, and to hold project managers to their declarations of purpose or intent.

Without judgment, we suggest the use of a science-based typology to sort existing projects will increase the
“honest signaling” needed to help the mainstream science community see and understand citizen science
as a bonafide method for generating legitimate scientific outcomes. Furthermore, the degree to which the
individual participant: (1) understands and values the precision and accuracy required of the task(s) they
are performing; (2) applies “thinking” skills requiring mastery of simple tasks to successfully perform more
complex ones (e.g., species identification); and (3) can literally “see” their work (data collection or otherwise)
within the larger context defined by the science at scale, will structure their degree of engagement and will
impact data quality. Because task performance is often dependent on accrued experience within a project
(Kelling et al. 2015; Kosmala et al. 2016), the strategies we have outlined herein (i.e., Fig. 2) support
the “learning curve” and improve retention by providing transparency about project goals and data quality
processes that match fitness to purpose (Juran 1951). Pocock et al. (2017) found that the recent 10%
per annum growth rate in ecological and environmental citizen science has primarily been realized through
online projects with mass, often short-term, participation in low-complexity data collection. Growth in field-
based, hands-on approaches is more difficult, but can return data on global change impacts from climate to
disease to invasions and ecosystem change (Theobald et al. 2015). Thus, we argue that both approaches—
simplification at scale, and complexity with care—are valid and valuable strategies for citizen science projects
to generate rigorous and robust science outcomes.
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