
Large-Scale Bayesian Computation

Using Stochastic Gradient Markov

Chain Monte Carlo

Jack Baker, B.Sc.(Hons.), M.Res

Submitted for the degree of Doctor of Philosophy at Lancaster

University.

December 2018

Abstract

Markov chain Monte Carlo (MCMC), one of the most popular methods for inference

on Bayesian models, scales poorly with dataset size. This is because it requires one or

more calculations over the full dataset at each iteration. Stochastic gradient Markov

chain Monte Carlo (SGMCMC) has become a popular MCMC method that aims to

be more scalable at large datasets. It only requires a subset of the full data at each

iteration. This thesis builds upon the SGMCMC literature by providing contributions

that improve the efficiency of SGMCMC; providing software that improves its ease-

of-use; and removes large biases in the method for an important class of model.

While SGMCMC has improved per-iteration computational cost over traditional

MCMC, there have been empirical results suggesting that its overall computational

cost (i.e. the cost for the algorithm to reach an arbitrary level of accuracy) is still

O(N), where N is the dataset size. In light of this, we show how control variates can be

used to develop an SGMCMC algorithm of O(1), subject to two one-off preprocessing

steps which each require a single pass through the dataset.

While SGMCMC has gained significant popularity in the machine learning com-

munity, uptake among the statistics community has been slower. We suggest this may

I

II

be due to lack of software, so as part of the contributions in this thesis we provide an R

software package that automates much of the procedures required to build SGMCMC

algorithms. Finally, we show that current algorithms for sampling from the simplex

space using SGMCMC have inherent biases, especially when some of the parameter

components are close to zero. To get around this, we develop an algorithm that is

provably asymptotically unbiased. We empirically demonstrate its performance on a

latent Dirichlet allocation model and a Dirichlet process model.

Acknowledgements

First, I’d like to thank the staff, students and management at the STOR-i Centre

for Doctoral Training. This is such an enjoyable and stimulating atmosphere to do

research in, and I hope the centre stays for a long while to come. I’d like to mention

the directors of STOR-i especially: Jon Tawn, Kevin Glazebrook and Idris Eckley;

whose tireless work has helped build such a great atmosphere at STOR-i. Thanks for

giving me the opportunity to be part of this centre. I’d also like to thank the admin

staff: Kim Wilson, Jennifer Bull and Wendy Shimmin; who make the department run

so smoothly, and for putting up with me. I am very grateful for the financial support

provided by EPSRC.

This work could not have happened without my supervisors: Paul Fearnhead,

Christopher Nemeth and Emily Fox; thank you for all the time and effort you have

put into this PhD project. They have taught me so much, both technical and not.

STOR-i obviously would not be the same without its students, and I’m really

grateful to all of them, both past and present. I’ll remember the laughs, discussions

and advice for a long time to come. There’s no doubt I’ll stay in touch with many of

you. The CSML group members were also invaluable for their wealth of knowledge,

III

IV

discussions and idea sharing.

This work would not have happened without Sorcha, who has offered me so much

support and guidance during the PhD; as well as some much needed hilarity. I am also

very lucky to have such supportive and entertaining friends, who have kept me sane

throughout. Finally I’d like to thank my family. Without their support, guidance

and laughs I wouldn’t have managed to finish school, let alone undertake a PhD.

V

Dedicated to Scampi my wonderful cat.

Declaration

I declare that the work in this thesis has been done by myself and has not been

submitted elsewhere for the award of any other degree.

Jack Baker

VI

Contents

Abstract I

Acknowledgements III

Declaration VI

Contents XI

List of Figures XV

List of Tables XVI

List of Abbreviations XVII

1 Introduction 1

1.1 Bayesian Inference . 1

1.2 Contributions and Thesis Outline . 3

2 Monte Carlo Methods and SGMCMC 7

2.1 Monte Carlo . 8

2.2 Markov Chain Monte Carlo . 9

VII

CONTENTS VIII

2.2.1 Markov Chains and Stochastic Stability 10

2.2.2 Gibbs Update . 14

2.2.3 Metropolis–Hastings Update 15

2.3 Itô Processes for MCMC . 18

2.3.1 Markov Processes and Stochastic Stability 18

2.3.2 Itô Processes and the Langevin Diffusion 21

2.3.3 The Euler–Maruyama Method and ULA 28

2.4 Stochastic Gradient Markov Chain Monte Carlo 32

2.4.1 Background . 33

2.4.2 Comparison to Divide-and-Conquer MCMC 40

3 Control Variates for Stochastic Gradient MCMC 54

3.1 Introduction . 54

3.2 Stochastic Gradient MCMC . 57

3.2.1 Stochastic Gradient Langevin Dynamics 58

3.3 Control Variates for SGLD Efficiency 59

3.3.1 Control Variates for SGMCMC 61

3.3.2 Variance Reduction . 64

3.3.3 Computational Cost of SGLD-CV 68

3.3.4 Setup Costs . 73

3.4 Post-processing Control Variates . 73

3.5 Experiments . 78

3.5.1 Logistic Regression . 79

CONTENTS IX

3.5.2 Probabilistic Matrix Factorisation 81

3.5.3 Latent Dirichlet Allocation . 84

3.6 Discussion . 86

3.7 Acknowledgements . 87

4 sgmcmc: An R Package for Stochastic Gradient Markov Chain

Monte Carlo 88

4.1 Introduction . 88

4.2 Introduction to MCMC and Available Software 91

4.3 Stochastic Gradient MCMC . 95

4.3.1 Stochastic Gradient Langevin Dynamics 96

4.3.2 Stochastic Gradient Hamiltonian Monte Carlo 97

4.3.3 Stochastic Gradient Nosé–Hoover Thermostat 98

4.3.4 Stochastic Gradient MCMC with Control Variates 99

4.4 Brief TensorFlow Introduction . 100

4.4.1 Declaring TensorFlow Tensors 101

4.4.2 TensorFlow Operations . 102

4.5 Package Structure and Implementation 105

4.5.1 Example Usage . 108

4.5.2 Example Usage: Storage Constraints 114

4.6 Simulations . 120

4.6.1 Gaussian Mixture . 121

4.6.2 Bayesian Logistic Regression 125

CONTENTS X

4.6.3 Bayesian Neural Network . 127

4.7 Discussion . 132

5 Large-Scale Stochastic Sampling from the Probability Simplex 134

5.1 Introduction . 134

5.2 Stochastic Gradient MCMC on the Probability Simplex 137

5.2.1 Stochastic Gradient MCMC 137

5.2.2 SGMCMC on the Probability Simplex 139

5.2.3 SGRLD on Sparse Simplex Spaces 140

5.3 The Stochastic Cox-Ingersoll-Ross Algorithm 142

5.3.1 Adapting for Large Datasets 143

5.3.2 SCIR on Sparse Data . 146

5.4 Theoretical Analysis . 147

5.5 Experiments . 149

5.5.1 Latent Dirichlet Allocation . 149

5.5.2 Bayesian Nonparametric Mixture Model 150

5.6 Discussion . 153

6 Conclusions 154

6.1 Discussion . 154

6.2 Future Work . 156

A Appendix to Chapter 3 158

A.1 Computational Cost Proofs . 158

CONTENTS XI

A.2 Post-processing Proofs . 165

A.3 Experiments . 167

B Appendix to Chapter 5 172

B.1 Proofs . 172

B.2 Proofs of Lemmas . 179

B.3 CIR Parameter Choice . 180

B.4 Stochastic Slice Sampler for Dirichlet Processes 180

B.5 Experiments . 185

Bibliography 188

List of Figures

2.4.1 Comparison of method performance for multivariate-t distribution. Con-

tour plots show empirical densities. Box plots show KL-divergence from

the truth. 46

2.4.2 Comparison of method performance for Gaussian mixture. Contour

plots show empirical densities. Box plots show KL-divergence from the

truth. 47

2.4.3 Comparison of method performance for warped Gaussian. Contour

plots show empirical densities. Box plots show KL-divergence from the

truth. 49

2.4.4 Comparison of method performance for Gaussian. Plot of KL-divergence

against dimension for each method. 51

3.5.1 Log predictive density over a test set every 10 iterations of SGLD,

SGLD-CV and SAGA fit to a logistic regression model as the proportion

of data used is varied (as compared to the full dataset size N). 79

XII

LIST OF FIGURES XIII

3.5.2 Plots of the log predictive density of an SGLD-CV chain when ZV post-

processing is applied versus when it is not, over 5 random runs. Logistic

regression model on the cover type dataset (Blackard and Dean, 1999). 80

3.5.3 Log predictive density over a test set of SGLD, SGLD-CV and SAGA

fit to a Bayesian probabilistic matrix factorisation model as the number

of users is varied, averaged over 5 runs. We used the Movielens ml-100k

dataset. 81

3.5.4 Plots of the log predictive density of an SGLD-CV chain when ZV post-

processing is applied versus when it is not, over 5 random runs. SGLD-

CV algorithm applied to a Bayesian probabilistic matrix factorisation

problem using the Movielens ml-100k dataset. 82

3.5.5 Perplexity of SGLD and SGLD-CV fit to an LDA model as the data

size N is varied, averaged over 5 runs. The dataset consists of scraped

Wikipedia articles. 84

4.2.1 KL divergence (left) and run time (right) of the standard Stan algorithm

and the sgldcv algorithm of the sgmcmc package when each are used

to sample from data following a standard Normal distribution as the

number of observations are increased. 93

4.5.1 Log loss on a test set for parameters simulated using the sgldcv algo-

rithm after 1000 iterations of burn-in. Logistic regression problem with

the covertype dataset. 115

LIST OF FIGURES XIV

4.6.1 Plots of the approximate posterior for θ1 simulated using each of the

methods implemented by sgmcmc, compared with a full HMC run,

treated as the truth, for the Gaussian mixture model (4.6.1). 124

4.6.2 Plots of the log loss of a test set for β0 and β simulated using each of

the methods implemented by sgmcmc. Logistic regression problem with

the covertype dataset. 126

4.6.3 Plots of the log loss of a test set for θ simulated using each of the

methods implemented by sgmcmc. Bayesian neural network model with

the MNIST dataset. 131

5.2.1 Boxplots of a 1000 iteration sample from SGRLD and SCIR fit to a

sparse Dirichlet posterior, compared to 1000 exact independent samples.

On the log scale. 141

5.3.1 Kolmogorov-Smirnov distance for SGRLD and SCIR at different mini-

batch sizes when used to sample from (a), a sparse Dirichlet posterior

and (b) a dense Dirichlet posterior. 146

5.5.1 (a) plots the perplexity of SGRLD and SCIR when used to sample from

the LDA model of Section 5.5.1 applied to Wikipedia documents; (b)

plots the log predictive on a test set of the anonymous Microsoft user

dataset, sampling the mixture model defined in Section 5.5.2 using SCIR

and SGRLD. 151

LIST OF FIGURES XV

A.3.1 Log predictive density over a test set every 10 iterations of SGLD (with

a decreasing stepsize scheme), SGLD-CV and SAGA fit to a logistic

regression model as the data size N is varied. 169

A.3.2 Log predictive density over a test set of SGLD (with a decreasing step-

size scheme), SGLD-CV and SAGA fit to a Bayesian probabilistic ma-

trix factorisation model as the number of users is varied, averaged over

5 runs. We used the Movielens ml-100k dataset. 171

List of Tables

4.5.1 Outline of 6 main functions implemented in sgmcmc. 106

4.5.2 Outline of the key arguments required by the functions in Table 4.5.1. 107

A.3.1 Minibatch sizes for each of the experiments in 3.5 (they were fixed for

SGLD, SGLD-CV and SAGA). 168

A.3.2 Tuned stepsizes for the Logistic regression experiment in Section 3.5.1. 168

A.3.3 Tuned stepsizes for the Bayesian probabilistic matrix factorisation ex-

periment in Section 3.5.2. 170

A.3.4 Tuned stepsizes for the Bayesian probabilistic matrix factorisation ex-

periment in Section 3.5.2. 171

B.5.1 Stepsizes for the synthetic experiment 186

B.5.2 Hyperparameters for the LDA experiment 187

B.5.3 Hyperparameters for the Bayesian nonparametric mixture experiment 187

XVI

List of Abbreviations

MCMC Markov Chain Monte Carlo

SGMCMC Stochastic Gradient Markov Chain Monte Carlo

a.s. Almost Surely

a.e. Almost Everywhere

MH Metropolis–Hastings

LD Langevin Diffusion

SDE Stochastic Differential Equation

TV Total Variation

ULA Unadjusted Langevin Algorithm

MALA Metropolis–Adjusted Langevin Algorithm

MSE Mean Square Error

RMSE Root Mean Square Error

HMC Hamiltonian Monte Carlo

SGLD Stochastic Gradient Langevin Dynamics

SGD Stochastic Gradient Descent

SGHMC Stochastic Gradient Hamiltonian Monte Carlo

XVII

LIST OF ABBREVIATIONS XVIII

PDP Piecewise Deterministic Process

CIR Cox-Ingersoll-Ross Process

SCIR Stochastic Cox-Ingersoll-Ross Process

Chapter 1

Introduction

Markov chain Monte Carlo (MCMC), one of the most popular methods for inference

in Bayesian models, is known to scale poorly with dataset size. This has become

a problem due to the growing complexity of practical models in both statistics and

machine learning. This thesis provides contributions for stochastic gradient Markov

chain Monte Carlo, a popular class of MCMC which aims to mitigate this problem.

In this chapter we set up the problem by providing a brief introduction to Bayesian

inference and outlining the inherent scalability problems. This is elaborated on in

Chapter 2, which provides a literature review of Monte Carlo methods and scalability.

We then outline the contributions of this thesis, as well as the structure of the chapters.

1.1 Bayesian Inference

In most statistical and machine learning problems, interest is in an unknown parame-

ter θ. For simplicity, for now we suppose that θ takes values in Rd; but this is relaxed

1

CHAPTER 1. INTRODUCTION 2

in Chapter 2. Suppose relevant data is collected x = {xi}Ni=1, with xi ∈ Rd. Then

Bayesian inference assumes that θ is a random variable, and aims to calculate the

distribution of θ given this new information x, i.e. the distribution of θ |x. We refer

to this distribution as π. Treating θ as a random variable rather than a fixed quan-

tity can alleviate overfitting, which is important for the complex models currently in

popular use.

Suppose the data x depend on a random parameter θ through the density pi(θ) :=

p(xi|θ), here we assume that θ takes values in Rd. We assign θ a prior density p0(θ).

Then, the posterior density p(θ) := p(θ|x) (i.e. the density of π) is given by

p(θ) =

∏N
i=0 pi(θ)

Z
, Z =

∫
Rd

N∏
i=0

pi(θ)dθ, (1.1.1)

where Z is referred to as the normalising constant.

If Z can be calculated, then p(θ) can be calculated analytically, giving a closed form

expression detailing θ |x (though further integration would be required to obtain the

distribution function itself). However, a fundamental problem in Bayesian inference

is that the integration to find Z is rarely tractable. This means typically we only

know the posterior up to the unnormalised density h(θ) :=
∏N

i=0 pi(θ). MCMC gets

around this issue by constructing an algorithm that will converge to sampling from

π; while only needing to evaluate the unnormalised density h (for exact details see

Section 2.2). Most quantities of interest can be written in the form Eπ[ψ(θ)]. This

quantity can then be estimated using the MCMC sample θm, m = 1, . . . ,M by using

the Monte Carlo estimate

Eπ[ψ(θ)] ≈ 1

M

M∑
m=1

ψ(θm).

CHAPTER 1. INTRODUCTION 3

In many modern statistics and machine learning problems, the dataset sizes N are

very large. However, MCMC requires the calculation of h at each iteration. Since

h is a product of N + 1 terms, this is an O(N) calculation and can cause MCMC

to be prohibitively slow for large datasets. This has sparked interest in improving

the computational efficiency of MCMC. One of the most popular methods for doing

so is stochastic gradient MCMC (SGMCMC), which uses a subset of the data at

each iteration of size n. This enables an algorithm to be implemented with O(n)

calculations at each iteration. The main cost for the improved efficiency is that

SGMCMC samples are no longer guaranteed to converge to π.

1.2 Contributions and Thesis Outline

This thesis has focussed on developing three aspects of SGMCMC: efficiency, ease-

of-use, and performance on an important class of problems. Contributions include:

providing a detailed review of SGMCMC, including details of underlying theory and

a comparison to an alternative popular class of scalable MCMC; establishing a frame-

work for SGMCMC which provably improves its overall computational cost; develop-

ing a software package for SGMCMC which enhances its ease of implementation; and

improving the performance of SGMCMC when the method is used to sample from

simplex spaces, an important class of problem.

The material for this thesis is presented in four chapters. Chapter 2 contains a

review of scalable Monte Carlo methods, and Chapters 3, 4 and 5 contain new research

that has been accepted for publication. We now give a brief outline of each chapter.

CHAPTER 1. INTRODUCTION 4

Chapter 2: Monte Carlo Methods and Scalability

This Chapter provides a review of SGMCMC. The chapter first outlines standard

MCMC methods. Then useful background material for SGMCMC is detailed, includ-

ing continuous-time Markov processes and Itô processes. Important methodology in

the SGMCMC literature is outlined based on the background material. Comparisons

between SGMCMC and divide-and-conquer MCMC, an alternative popular class of

scalable MCMC methods, are provided.

Chapter 3: Control Variates for Stochastic Gradient MCMC

This chapter is a journal contribution with co-authors Paul Fearnhead, Emily B. Fox

and Christopher Nemeth. The manuscript has been accepted by the journal “Statistics

and Computing.” The abstract of the publication is given below.

It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly

with dataset size. A popular class of methods for solving this issue is stochastic gra-

dient MCMC (SGMCMC). These methods use a noisy estimate of the gradient of the

log-posterior, which reduces the per iteration computational cost of the algorithm. De-

spite this, there are a number of results suggesting that stochastic gradient Langevin

dynamics (SGLD), probably the most popular of these methods, still has computa-

tional cost proportional to the dataset size. We suggest an alternative log-posterior

gradient estimate for stochastic gradient MCMC which uses control variates to reduce

the variance. We analyse SGLD using this gradient estimate, and show that, under

log-concavity assumptions on the target distribution, the computational cost required

for a given level of accuracy is independent of the dataset size. Next we show that

CHAPTER 1. INTRODUCTION 5

a different control variate technique, known as zero variance control variates, can be

applied to SGMCMC algorithms for free. This post-processing step improves the in-

ference of the algorithm by reducing the variance of the MCMC output. Zero variance

control variates rely on the gradient of the log-posterior; we explore how the variance

reduction is affected by replacing this with the noisy gradient estimate calculated by

SGMCMC.

Chapter 4: sgmcmc: An R Package for Stochastic Gradient Markov Chain

Monte Carlo

This chapter is a journal contribution with co-authors Paul Fearnhead, Emily B. Fox

and Christopher Nemeth. The manuscript has been accepted by the journal “Journal

of Statistical Software.” The abstract of the publication is given below.

This paper introduces the R package sgmcmc; which can be used for Bayesian in-

ference on problems with large datasets using stochastic gradient Markov chain Monte

Carlo (SGMCMC). Traditional Markov chain Monte Carlo (MCMC) methods, such

as Metropolis–Hastings, are known to run prohibitively slowly as the dataset size in-

creases. SGMCMC solves this issue by only using a subset of data at each iteration.

SGMCMC requires calculating gradients of the log likelihood and log priors, which

can be time consuming and error prone to perform by hand. The sgmcmc package

calculates these gradients itself using automatic differentiation, making the implemen-

tation of these methods much easier. To do this, the package uses the software library

TensorFlow, which has a variety of statistical distributions and mathematical opera-

tions as standard, meaning a wide class of models can be built using this framework.

CHAPTER 1. INTRODUCTION 6

SGMCMC has become widely adopted in the machine learning literature, but less so

in the statistics community. We believe this may be partly due to lack of software;

this package aims to bridge this gap.

Chapter 5: Large-Scale Stochastic Sampling from the Probability Simplex

This chapter is conference proceedings appearing in “Advances in Neural Information

Processing Systems” in 2018, with co-authors Paul Fearnhead, Emily B. Fox and

Christopher Nemeth. The abstract of the publication is given below.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a pop-

ular method for scalable Bayesian inference. These methods are based on sampling

a discrete-time approximation to a continuous-time process, such as the Langevin

diffusion. When applied to distributions defined on a constrained space, such as the

simplex, the time-discretisation error can dominate when we are near the boundary

of the space. We demonstrate that while current SGMCMC methods for the simplex

perform well in certain cases, they struggle with sparse simplex spaces ; when many

of the components are close to zero. However, most popular large-scale applications

of Bayesian inference on simplex spaces, such as network or topic models, are sparse.

We argue that this poor performance is due to the biases of SGMCMC caused by

the discretisation error. To get around this, we propose the stochastic CIR process,

which removes all discretisation error, and we prove that samples from the stochastic

CIR process are asymptotically unbiased. Use of the stochastic CIR process within

an SGMCMC algorithm is shown to give substantially better performance for a topic

model and a Dirichlet process mixture model than existing SGMCMC approaches.

Chapter 2

Monte Carlo Methods and

SGMCMC

Many statistical and machine learning problems can be reduced to the calculation of

an expectation with respect to a probability distribution. The main problem that

then needs to be overcome is that these expectations can rarely be calculated ana-

lytically. Monte Carlo methods use the fact that these expectations can be simply

approximated when the probability distribution can be simulated from. In Section

2.1, we explain the Monte Carlo procedure. While this simplifies the problem, often

the underlying probability distribution is difficult to simulate from, especially in the

Bayesian paradigm. In light of this, Section 2.2 details Markov chain Monte Carlo

methods (MCMC), which can be used to simulate from a large class of probability dis-

tributions. The most popular scalable MCMC methods, stochastic gradient Markov

chain Monte Carlo (SGMCMC), are based on continuous-time Itô processes, so in

Section 2.3.2 we provide an introduction to these processes, as well as the numerical

7

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 8

approximation procedure which forms the basis for many of these algorithms. Finally

in Section 2.4 we detail SGMCMC methods, which form the basis for the rest of this

thesis, and are some of the most popular scalable MCMC samplers. We also provide

a comparison of some popular SGMCMC methods to a class of competitor algorithms

known as divide-and-conquer MCMC. This forms the first contribution of this thesis.

Monte Carlo is a large and varied topic, so only the topics necessary for this thesis are

presented here. For a more thorough treatment of standard MCMC, please see Robert

and Casella (2004); Meyn and Tweedie (1993a); for a more thorough treatment of Itô

processes and their approximation we refer the reader to Øksendal (2003); Kloeden

and Platen (1992); Khasminskii (2011).

2.1 Monte Carlo

Many statistical and machine learning problems can be reduced to the calculation

of the expectation of a function. Let θ be a random variable taking values in some

topological space Θ with distribution π (i.e. P(θ ∈ A) = π(A)). Denote the Borel

σ-algebra for Θ by B(Θ). Note we use some simple measure-theoretic concepts (see

e.g. Williams, 1991) to make notation clearer, and this allows us to avoid multiple

definitions on different classes of Θ; but this thesis aims to be light on measure theory.

Most statistical quantities of interest can be reduced to

ψ̄ := Eπ [ψ(θ)] =

∫
Θ

ψ(θ)π(dθ), (2.1.1)

where ψ : Θ→ Rp is some B(Θ)-measurable function, referred to as the test function.

Typically ψ̄ cannot be calculated analytically, and standard numerical approximation

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 9

methods, such as quadrature, suffer from the curse of dimensionality. Monte Carlo

methods get around this issue by assuming we can simulate from π. Let θ1, . . . , θM

be a sequence of independent, identically distributed simulations from π. Then the

Monte Carlo estimate of ψ̄ is defined by

ψ̂M =
1

M

M∑
m=1

ψ(θm). (2.1.2)

This estimate has a number of desirable statistical properties. The strong law of large

numbers can be immediately applied to show that as M →∞, ψ̂M converges almost

surely (a.s.) to ψ̄, i.e.

ψ̂M
a.s.−−→ ψ̄, as M →∞.

Similarly, suppose Var[ψ(θ)] = σ2 <∞, then the central limit theorem can be applied

to show that,

√
M(ψ̂M − ψ̄)

D−→ N(0, σ2), as M →∞ (2.1.3)

where
D−→ denotes convergence in distribution.

2.2 Markov Chain Monte Carlo

The Monte Carlo method assumes that π can simulated from, but often this is not

possible, especially when π is multivariate. Markov chain Monte Carlo (MCMC)

aims to counteract this by introducing a way to produce a stochastic process that

converges to π. The main disadvantage of this method is that the draws from this

stochastic process are no longer independent, but alternative convergence results exist

for these methods (see Meyn and Tweedie, 1993a; Robert and Casella, 2004). Before

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 10

we introduce specific MCMC algorithms, we first need to introduce some results for

Markov chains and stochastic stability.

2.2.1 Markov Chains and Stochastic Stability

Let θm, m = 1, . . . ,M , be a discrete-time stochastic process taking values in Θ. Then

this stochastic process is a Markov chain if it satisfies the Markov property; namely

the future state θm+1 is independent of previous states given the value of the current

state θm = ϑ. For notational convenience it is common to define a quantity known as

the Markov kernel K : (Θ,B(Θ))→ [0, 1] as the following conditional probability

K(ϑ,A) = P(θm+1 ∈ A | θm = ϑ).

Then the Markov property can be stated as follows

K(ϑm, A) = P(θm+1 ∈ A | θm = ϑm) = P(θm+1 ∈ A | θm = ϑm, . . . , θ1 = ϑ1).

We will also use the shorthand that Km(ϑ,A) = K ◦ · · · ◦K︸ ︷︷ ︸
m

(ϑ,A); and that for some

function ψ taking inputs in Θ, Kψ(ϑ) =
∫

Θ
K(ϑ, dθ)ψ(θ)dθ.

Since we eventually wish to construct Markov chains that converge to the desired

π, we need some way of assessing this. Before we can do this, we need some definitions.

A Markov chain is defined to be stationary if the distribution of θm does not depend on

m, i.e. the Markov chain is drawn from a single distribution. An invariant distribution

π of a Markov chain has the property that θm−1 ∼ π =⇒ θm ∼ π. A Markov chain

with kernel K has invariant distribution π if the following condition holds (Meyn and

Tweedie, 1993a; Geyer, 2005) referred to as detailed balance or reversibility∫
B

π(dϑ)K(ϑ,A) =

∫
A

π(dϑ)K(ϑ,B), for all A,B ∈ B(Θ).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 11

Now suppose we have a desired π, and wish to construct a Markov chain with

kernel K that converges to sampling from π. Then we need to check two things: that

the Markov chain converges to stationarity, that the stationary distribution of this

Markov chain is uniquely π. If we know that the Markov chain leaves π invariant, then

there are two further properties that ensure this is the case: Harris recurrence and

aperiodicity. If Harris recurrence holds then this ensures the invariant distribution

is unique. A Markov chain is Harris recurrent if there exists a non-zero, σ-finite

measure ϕ on B(Θ), such that for all for all A ∈ B(Θ), with ϕ(A) > 0; and for all

ϑ ∈ Θ, a chain starting from ϑ will eventually reach A with probability one (Meyn

and Tweedie, 1993a; Geyer, 2005). A Harris recurrent Markov chain is aperiodic if

there does not exist an integer b > 1, and disjoint subsets B1, . . . Bb ∈ B(Θ) such that,

for all i = 1, . . . , b we have ϕ(Bi) > 0 and K(ϑ,Bi) = 1, when ϑ ∈ Bj for j = i − 1

mod b (Meyn and Tweedie, 1993a; Geyer, 2005).

Once it is established that a Markov chain is Harris recurrent and aperiodic, then

desirable properties similar to the results for Monte Carlo presented in the previous

section can be established. Let θ1, . . . , θM be a Harris recurrent, aperiodic Markov

chain. Let ψ̂M be as defined in (2.1.2). Then

ψ̂M
a.s.−−→ ψ̄, as M →∞, (2.2.1)

for any starting distribution λ. A central limit result for MCMC, similar to standard

Monte Carlo, can also be derived (Robert and Casella, 2004; Geyer, 2005).

It can also be shown that the distribution defined by the Markov chain converges

to π. These results are important for deriving convergence bounds for SGMCMC

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 12

methods to the target π, so we will outline these results. First we need to describe

the total variation metric, used to calculate the distance between two probability

measures. A measure can be decomposed into its positive and negative parts for any

set A ∈ Θ as µ(A) = µ+(A)−µ−(A), where µ+(A), µ−(A) are positive measures with

disjoint support. The total variation norm of some measure µ, can then be defined

by

‖µ‖TV = µ+(A) + µ−(A).

If the distribution defined by θm converges in total variation to π given any initial

distribution λ, then it is said to be ergodic; i.e.∥∥∥∥∫ λ(dϑ)KM(ϑ, ·)− π
∥∥∥∥
TV

M→∞−−−−→ 0.

This property holds if θm is Harris recurrent and aperiodic (Meyn and Tweedie, 1993a;

Geyer, 2005).

Results on the convergence of SGMCMC methods require a stronger condition

though, known as geometric ergodicity (Meyn and Tweedie, 1993a; Geyer, 2005).

Geometric ergodicity bounds the non-asymptotic total variation distance. A Markov

chain θm is said to be geometrically ergodic if there exists a function β : Θ → R+,

with β(θ) <∞ π-a.e.1, and a constant ρ < 1, such that

‖Km(ϑ, ·)− π‖TV ≤ β(ϑ)ρm, ϑ ∈ Θ.

Geometric ergodicity can be verified using a ‘drift condition,’ or Lyapunov–Foster

condition. This relies on the existence of a norm-like function V and a petite set

1Given a measure π on B(Θ), a property holds almost everywhere (π-a.e.) if there exists N ∈ B(Θ)

such that π(N) = 0 and the property holds for all ϑ ∈ Θ \N .

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 13

C. The norm-like function V has the properties that V (θ) ≥ 1 and V (θ) → ∞ as

‖θ‖ → ∞. It plays a similar role to Lyapunov functions, introduced in Section 2.3;

which are useful for deriving convergence results for SGMCMC. A set C is petite if

there exists a probability distribution a, defined over N; a constant δ > 0; and a

probability measure Q, defined over θ; such that

∞∑
m=0

a(m)Km(ϑ,A) ≥ δQ(A), ϑ ∈ Θ.

To show a Markov chain is geometrically ergodic we then need a norm-like function

V , a petite set C and constants λ < 1 and b <∞ such that

KV (ϑ) ≤ λV (ϑ) + b1C , ϑ ∈ Θ.

This is known as a geometric drift condition. Drift conditions also exist to ensure a

variety of properties of the Markov chain, including Harris recurrence (see e.g. Meyn

and Tweedie, 1992)

Geometric ergodicity can be used to ensure a central limit theorem (CLT) holds

for the Markov chain, similar to the CLT for Monte Carlo (2.1.3). In particular, let

ψ : Θ → R be some test function of interest, and assume that Eπ[(ψ(θ))2+δ] < ∞

for some δ > 0. If a Markov chain θm with stationary distribution π is geometrically

ergodic, as usual define ψ̄ = Eπ[ψ(θ)], then

1√
M

M∑
m=1

(
ψ(θm)− ψ̄

) D−→ N(0, σ2), as M →∞; (2.2.2)

for some σ2 <∞ (see e.g. Meyn and Tweedie, 1992; Roberts and Rosenthal, 2004).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 14

2.2.2 Gibbs Update

Now that we have covered the Markov chain background required, we introduce some

popular transition kernels K used to sample from a given π. The Gibbs sampler

(Geman and Geman, 1984) is a particularly simple Markov kernel used for multiple

parameter problems. Suppose we are able to divide a multivariate θ ∈ Θ into compo-

nents j = 1, . . . , d, such that θ = (θ1, . . . , θd). For example, if we have interest in the

target π(µ, σ) = N(µ, σI), where I is the identity matrix; then we might divide θ into

two parameters θ = (µ ∈ R2, σ ∈ R) (notice that θj need not necessarily be a scalar).

Then for each component of the partition, j, the Gibbs sampler updates θj as-

suming the rest θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd) is fixed at the previous state ϑ. To

do this it uses the conditional distribution of the desired target, π(· | θ−j = ϑ−j). For

each component j, the Gibbs update kernel can be defined as follows

Kj(ϑ,A) = 1ϑ−j∈A−jπ(Aj | θ−j = ϑ−j),

where A = (A1, . . . , Ad) and A−j = (A1, . . . , Aj−1, Aj+1, . . . , Ad).

To show this update leaves π invariant we can use properties of the conditional

expectation (Geyer, 2005). First notice that Kj(ϑ,A) = 1ϑ−j∈A−jE[1θj∈Aj | θ−j =

ϑ−j] = E[1ϑj∈A−j1θj∈Aj | θ−j = ϑ−j], so that by the law of total expectation

∫
Θ

π(dϑ)K(ϑ |A) = E[E[1ϑ−j∈A−j1θj∈Aj | θ−j = ϑ−j]] = π(A)

We conclude the Gibbs sampler leaves π invariant. A necessary condition for the

Gibbs sampler to be Harris recurrent is that each component j is updated frequently

enough. The two most popular ways of doing this are either to update every j at

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 15

each iteration, but in any order; or to pick a j with probability 1/d, and update

using kernel Kj. Additional conditions on the state space Θ and K ensure the Gibbs

sampler is Harris recurrent (see Meyn and Tweedie, 1993a; Robert and Casella, 2004;

Geyer, 2005, for details). A Harris recurrent Gibbs sampler is always aperiodic.

Gibbs updates require no user tuning, and can make large moves since updating

component j does not depend on θj, just θ−j. However, the Gibbs sampler can mix

slowly when components are highly dependent. Another major disadvantage is that it

requires the calculation of the conditional distributions π(·|θ−j). While there are many

important machine learning and statistical problems where this is possible, there are

also many problems where it is not.

2.2.3 Metropolis–Hastings Update

Commonly the only information we have about π is an unnormalised density. We say

a function h : Θ → R is an unnormalised density if it has the following properties:

h is nonnegative; and 0 <
∫

Θ
h(θ)dµ < ∞, where µ is defined to be the Lebesgue

measure.

An important example where the only information we have about π is its unnor-

malised density is in Bayesian inference. Suppose we have data x = {xi}Ni=1 which

depends on a parameter θ through the density pi(θ) := p(xi|θ). We assign θ a prior

density p0(θ). Then, defining the Lebesgue measure by µ, the posterior density p(θ)

is given by

p(θ) =

∏N
i=0 pi(θ)

Z
, Z =

∫
Θ

N∏
i=0

pi(θ)dµ, (2.2.3)

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 16

where Z is referred to as the normalising constant. A fundamental problem in

Bayesian inference is that the integration to find Z is rarely tractable. This means

typically we only know the posterior up to the unnormalised density h(θ) =
∏N

i=0 pi(θ).

The Metropolis–Hastings algorithm aims to get around this issue by defining a

Markov chain that converges to sampling from π and only relies on being able to

evaluate h, where h is an unnormalised density of π. The Metropolis–Hastings algo-

rithm (MH) was first developed by Metropolis et al. (1953), with an important later

development by Hastings (1970), as well as Green (1995).

The main idea behind MH is to find a distribution Q, that is easy to simulate

from, referred to as a proposal distribution. Then to correct simulations from this

distribution so that the resulting process θm converges to sampling from π. More

formally, suppose the Markov chain is currently at a state θ. A proposal distribution,

Q(·|θ), is used in order to simulate a new proposal state θ′ given the current state

θ. Suppose this proposal distribution admits a density q(θ′|θ) with respect to the

Lebesgue measure µ; then the Metropolis–Hastings algorithm proceeds as follows: a

candidate state θ′ is simulated from Q, this candidate state is then accepted with

probability

α(θ′, θ) = 1 ∧ h(θ′)q(θ|θ′)
h(θ)q(θ′|θ)

,

where c1∧c2 denotes the minimum between numbers c1 and c2. If the candidate value

θ′ is accepted, then the next state in the Markov chain is defined to be θ′. Otherwise

it is discarded and the next state is defined to be θ, the same as the current state of

the chain. Notice that α is invariant to changing h by a multiplicative constant, since

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 17

these constants cancel in the ratio of terms; this is why any unnormalised density of

π can be used to implement this algorithm.

To check the MH algorithm leaves π invariant we will show that the MH kernel

satisfies detailed balance. Because the accept-reject step can lead to the algorithm

staying in the current state, the Markov kernel for the MH algorithm is in the form

of a sum

K(θ, A) =

[
1−

∫
A

q(θ′|θ)α(θ, θ′)µ(dθ′)

]
1(θ ∈ A) +

∫
A

q(θ′|θ)α(θ, θ′)µ(dθ′),

where 1(θ ∈ A) is 1 if θ ∈ A and 0 otherwise. We demonstrate detailed balance

informally by showing p(θ)K(θ, dθ′) = p(θ′)K(θ′, dθ), for a more formal proof see

Robert and Casella (2004). We make use of the following identities, which can easily

be checked: p(θ)q(θ′|θ)α(θ, θ′) = p(θ′)q(θ|θ′)α(θ′, θ), and p(θ)δθ′(θ) = p(θ′)δθ(θ
′). We

can apply these identities to check detailed balance as follows

p(dθ)K(θ, dθ′) = p(dθ) [1− q(θ′|θ)α(θ, θ′)] δθ′(θ) + p(dθ)q(θ′|θ)α(θ, θ′)

= p(dθ′) [1− q(θ|θ′)α(θ′, θ)] δθ(θ
′) + p(dθ′)q(θ|θ′)α(θ′, θ)

= p(dθ′)K(θ′, dθ).

Further properties on the state space Θ and the proposal distribution ensure that

the Markov chain is Harris recurrent and aperiodic (Meyn and Tweedie, 1993a; Robert

and Casella, 2004; Geyer, 2005). The Gibbs sampler can be seen to be a special case of

the Metropolis–Hastings method. We can see this by implementing the MH algorithm

for each component j of the partition of Θ in turn. If the proposal distribution for

this component Qj is set to be π(·|θ−j), it can be shown that the corresponding

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 18

Metropolis–Hastings update has acceptance probability 1 (Robert and Casella, 2004;

Geyer, 2005).

If our proposal and state space ensure Harris recurrence and aperiodicity then the

MH sample is guaranteed to satisfy the strong law of large numbers result (2.2.1).

For practical purposes though, we only simulate from our chain for a finite amount

of time, so to ensure good properties of the chain we need to choose a good proposal

distribution. The MSE of the chain tends to be controlled by the autocovariance, so

the best proposals lead to chains with low autocovariance. In the next section we

discuss how to construct efficient proposals for the MH algorithm using continuous-

time Markov processes.

2.3 Itô Processes for MCMC

Many MCMC algorithms, including SGMCMC, rely on the theory of continuous-

time Markov processes, in particular Itô diffusions. In this section we review results

about these processes, so that the necessary grounding has been discussed when we

summarise SGMCMC.

2.3.1 Markov Processes and Stochastic Stability

We refer to Markov processes as the analog to Markov chains in continuous-time. Let

{θt, t ∈ R+} be a continuous-time stochastic process taking values in Rd. Define Ft

to be the σ-algebra generated by {θs, 0 ≤ s ≤ t} (this can simply be thought of as all

the possible paths θt could take up to time t); then θt is Markov (see e.g. Khasminskii,

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 19

2011) if, for all A ∈ B(Rd), 0 ≤ s ≤ t,

P(θt ∈ A | Fs) = P(θt ∈ A | θs). (2.3.1)

Our interest will be in Markov processes that are time-homogeneous, meaning P(θt ∈

A | θs) = P(θt−s ∈ A | θ0). This allows us to use the following shorthand for the

transition probability P (θt ∈ A | θ0 = ϑ) = Kt(ϑ,A). Provided it exists, we can define

the transition density pt(ϕ |ϑ) of the Markov process by

Kt(ϑ,A) =

∫
A

pt(ϕ |ϑ)dϕ.

As in discrete-time Markov chains, we are often interested in the behaviour of a

test function ψ under the dynamics of θt. We define

Ktψ(ϑ) =

∫
Kt(ϑ, dy)ψ(y).

This allows us to define the operator known as the generator A (see e.g. Khasminskii,

2011) of the process, applied to a function ψ (provided the limit exists), as

Aψ(ϑ) = lim
t→+0

Ktψ(ϑ)− ψ(ϑ)

t
.

It can be shown the generator fully defines the Markov process (see e.g. Khasminskii,

2011). It can be visualised as describing the infinitesimal evolution of the process.

Similar to discrete-time Markov chains, we are interested in convergence of θt to

a stationary distribution π. Necessary conditions for θt to be stationary are: for

A,B ∈ B(Rd), and for all h > 0, the events {θt ∈ A} and {θt ∈ A, θt+h ∈ B} are

independent of t; that the initial distribution π0 is invariant (see e.g. Khasminskii,

2011); i.e. for every s > 0,

π0(A) =

∫
π0(dϑ)Ks(ϑ,A), θ0 ∼ π0.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 20

The idea behind finding stationary distributions for Markov processes is to again

derive a law of large numbers for θt. Specifically, given some test function ψ, we desire

results of the form

1

T

∫ T

0

ψ(θt)dt
a.s.−−→ ψ̄, T →∞.

Similarly to the law of large numbers for Markov chains, this relies on existence

and uniqueness of the stationary solution to the chain (see e.g. Khasminskii, 2011).

Conditions for this to be the case are investigated for Markov processes in Meyn and

Tweedie (1993b,c). Similarly to Markov chains, a sufficient condition for the existence

and uniqueness of a stationary solution π is Harris recurrence. The definition of Harris

recurrence is the same as for Markov chains, i.e. there exists a measure ν on Θ such

that the probability a chain θt ever hits a set A is one, for all ϑ ∈ Θ and A ∈ B(Θ)

with ν(A) > 0 (Meyn and Tweedie, 1993c). Moreover, if a Markov process θt is

Harris recurrent and time points t1, . . . tM can be chosen such that the Markov chain

θtm is also Harris recurrent, then θt is ergodic, i.e. limt→∞ ‖Kt(ϑ, ·)− π‖TV = 0 for all

ϑ ∈ Θ.

In Meyn and Tweedie (1993c), sufficient conditions are derived for desirable Markov

process properties, such as Harris recurrence and geometric ergodicity, using drift con-

ditions; similar to the geometric drift condition for Markov chains outlined in Section

2.2.1. As for Markov chains, the drift conditions rely on the existence of a norm-

like or Lyapunov function V , satisfying the usual V (ϑ) ≥ 1, for all ϑ ∈ Θ, and

lim‖ϑ‖→∞ V (ϑ) = ∞. The generator A then acts on this function to obtain the drift

conditions2.

2Meyn and Tweedie (1993c) consider an extended generator, but we omit this for brevity.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 21

Many results explored later rely on Markov processes that are geometrically er-

godic; so we outline geometric drift conditions for Markov processes. Meyn and

Tweedie (1993c) show that a Markov process is ergodic (i.e. converges in TV dis-

tance) if the following conditions hold: it is Harris recurrent; there exists time points

t1, . . . , tM , such that all compact sets are petite for the Markov chain θtm ; and the

stationary solution is finite. Geometric ergodicity for Markov processes requires a

stronger norm than the total variation norm, known as the ψ-norm, defined by

‖µ‖ψ = sup|g|≤ψ |µ(g)|, where µ is some measure over B(Θ). This ensures that E[ψ(θt)]

converges to ψ̄ and is bounded. A Markov process is ψ-geometrically ergodic if there

exists ρ < 1 and a function β : Θ→ R+ bounded π-a.e., such that

‖Kt(ϑ, ·)− π‖ψ ≤ β(ϑ)ρt.

Meyn and Tweedie (1993c) show that, given a Markov process θt, if the conditions for

ergodicity hold, and there is a norm-like function V and constants d <∞ and c > 0

such that

AV (ϑ) ≤ −cV (ϑ) + d, ϑ ∈ Θ;

then θt is ψ-geometrically ergodic, with ψ = V + 1.

2.3.2 Itô Processes and the Langevin Diffusion

Many efficient proposals for the MH algorithm rely on Itô processes (see e.g. Roberts

and Rosenthal, 1998; Neal, 2010), which are Markov processes defined as a solution

to a stochastic differential equation. A stochastic differential equation (SDE) is a

differential equation which has at least one term that is a stochastic process (see e.g.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 22

Kloeden and Platen, 1992; Øksendal, 2003). Itô processes are based on a particular

continuous-time stochastic process referred to as a Wiener process. Let {Wt, t ∈ R+}

be a Wiener process, then the following properties hold:

• W0 = 0 with probability 1;

• (independent increments) Wt+s −Wt is independent of Wu for 0 < u < t;

• Wt+s −Wt ∼ N(0, s);

• Wt has continuous paths with t (a.s.).

To setup a differential equation based on this process, we need to be able to

integrate with respect to its derivative. A difficulty of this is that the process is

differentiable nowhere, which leads traditional integration procedures, such as the

Riemann–Stieltjes integral, to fail. The Itô integral gets around this by defining an

alternative integral with respect to the Wiener process (see e.g. Kloeden and Platen,

1992; Øksendal, 2003). Other integrals with respect to the Wiener process exist, for

example the Stranovich integral; but we focus on the Itô integral as the most common

in the MCMC literature. Let {θt, t ∈ R+} be a continuous-time stochastic process,

then the Itô integral of θt with respect to Wt is defined by∫ t

0

θsdWs = lim
M→∞

M∑
m=1

θtm−1 [Wtm −Wtm−1] ,

where 0 = t0 < · · · < tM = t is a partition of [0, t], such that as M → ∞ the gap

between any two consecutive partition points goes to 0. Commonly, interest is in a

d-dimensional Wiener process; this is simply defined as a vector of independent scalar

Wiener processes; the integral is then performed coordinate wise.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 23

We are now able to define the differential form of an Itô process (see e.g. Kloeden

and Platen, 1992; Øksendal, 2003). Define two functions b : Rd → Rd and σ : Rd →

Rd×d, referred to as the drift and diffusion terms respectively. An Itô process is a

continuous-time stochastic process {θt, t ∈ Rd} that takes the following form

θt = θ0 +

∫ t

0

b(θs)ds+

∫ t

0

σ(θs)dWs. (2.3.2)

This means the Itô process is fully specified by three things: the starting point θ0;

the ‘deterministic’ drift term determined by b; and the stochastic diffusion term,

determined by σ. Notice that in an Itô process, the terms b and σ do not depend

directly on the time t. A solution to (2.3.2) does not necessarily exist, so normally

conditions are imposed on b and σ to ensure the solution exists, and that it is unique

(see e.g. Kloeden and Platen, 1992; Øksendal, 2003). Sufficient conditions for an Itô

process to have a unique solution are that there exists a constant C ∈ R+ such that

the following holds:

• (Lipschitz) ‖b(θ)− b(θ′)‖+ ‖σ(θ)− σ(θ′)‖L21
≤ C ‖θ − θ′‖;

• (Linear Growth) ‖b(θ)‖+ ‖σ(θ)‖L21
≤ C(1 + ‖θ‖);

where ‖·‖ is the Euclidean norm; and ‖·‖L21
is the L21 matrix norm. Given a matrix A,

we define the L21 norm as ‖A‖L21
:=
∑d

j=1

[∑d
i=1 a

2
ij

] 1
2
, i.e. the sum of the Euclidean

norms of the columns. An Itô process that satisfies these conditions is often referred to

as an Itô diffusion (Øksendal, 2003). However, these conditions are quite restrictive in

practice, so often these assumptions are relaxed; as a result we will consider general Itô

processes, assuming the solution exists. The SDE whose solution is the Itô process of

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 24

interest (2.3.2) is often written in a shorthand similar to that for ordinary differential

equations,

dθt = b(θt)dt+ σ(θt)dWt.

We now explore some of the properties of the Itô process. An Itô process sat-

isfies the Markov property (2.3.1), so is a Markov process (see e.g. Øksendal, 2003;

Khasminskii, 2011); it is also time homogeneous. Due to the alternative integration

procedure for Wt, an Itô process has its own version of the chain rule. This is re-

ferred to as Itô’s Lemma (see e.g. Øksendal, 2003; Khasminskii, 2011), and we use it

repeatedly.

Lemma 2.3.1. (Itô’s Lemma) Let θt be a 1-dimensional Itô process of the form

(2.3.2). Let ψ : R → R be a twice differentiable function; then ψt := ψ(θt) is also an

Itô process, defined by the following equation

dψt =

[
b(θt)

dψ

dθ
(θt) +

σ2(θt)

2

d2ψ

dθ2
(θt)

]
dt+ σ(θt)

dψ

dθ
(θt)dWt. (2.3.3)

Equivalent versions exist for multi-dimensional diffusions (see e.g. Øksendal, 2003;

Khasminskii, 2011). Even if θt is an Itô diffusion, ψt is only guaranteed to be an Itô

process, not an Itô diffusion (see e.g. Øksendal, 2003). Itô’s Lemma can be used to

derive the generator A for an Itô diffusion in terms of the coefficients b and σ (see e.g.

Øksendal, 2003; Khasminskii, 2011, for details). For a twice differentiable function

ψ : Rd → Rd, the generator has the following form

Aψ(ϑ) =
d∑
i=1

bi(ϑ)
∂ψ

∂ϑi
+

1

2

d∑
i=1

d∑
j=1

(σσT)ij(ϑ)
∂2ψ

∂ϑi∂ϑj
. (2.3.4)

The transition density pt(ϕ |ϑ) of an Itô process, assuming it exists, can be found

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 25

by solving the Fokker-Planck equation (see e.g. Khasminskii, 2011), a partial differ-

ential equation as follows

∂

∂t
pt(ϕ |ϑ) = −

d∑
i=1

∂

∂ϕi
[bi(ϕ)pt(ϕ |ϑ)] +

1

2

d∑
i=1

d∑
j=1

∂2

∂ϕi∂ϕj

[
(σσT)ij(ϕ)pt(ϕ |ϑ)

]
.

(2.3.5)

If a unique stationary distribution π exists, then the Fokker-Planck equation (2.3.5)

can be used to calculate its density exactly, by solving it assuming pt(ϕ|ϑ) := p(ϕ);

i.e. assuming the transition density is independent of time, so that ∂tp(ϕ) = 0.

Unfortunately, the Fokker-Planck equation is rarely solvable, though there are

some important cases where it can which we shall detail later. In these cases, stochas-

tic stability results, such as those detailed in Section 2.3.1, can be used to investigate

existence and uniqueness of a stationary solution. Stochastic stability results specifi-

cally for Itô processes are well studied. Similar to the general results of Section 2.3.1,

the results generally rely on the existence of norm-like functions V referred to as

Lyapunov functions (see e.g. Khasminskii, 2011). Khasminskii (2011) detail sufficient

conditions to ensure existence and uniqueness of the stationary distribution, and show

how to verify them using Lyapunov functions. The conditions are as follows: suppose

there exists a bounded, open domain B ⊂ Rd with regular boundary3 Γ, then the

conditions of Khasminskii (2011) are as follows:

• In the domain, and some neighbourhood of B, the smallest eigenvalue of the

diffusion matrix σσT (θ) is bounded away from 0.

• If ϑ ∈ Rd \ B, the mean time τ for a path from ϑ to the set B is finite and

3A regular boundary is a standard concept in the study of PDEs (see e.g. Petrovskii, 1954).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 26

supθ0∈A E [τ | θ0 = ϑ] <∞ for all compact subsets A ⊂ Rd.

The Langevin Diffusion and Other Important Itô Processes

In this section, we detail important examples of Itô processes which have a known sta-

tionary distribution. An important diffusion in the MCMC literature is the Langevin

diffusion (LD), which forms the basis of one of the most popular SGMCMC sam-

plers (stochastic gradient Langevin dynamics), as well as numerous other MCMC

algorithms (Roberts and Tweedie, 1996). Given a target distribution π, a LD is guar-

anteed to have stationary solution π. This means, provided the process is ergodic,

simulating from the LD will target π. Suppose π admits a density p with respect to

the Lebesgue measure, and define f(ϑ) = − log p(ϑ). Then the Langevin diffusion is

defined by the SDE

dθt = −∇f(θt)dt+
√

2dWt. (2.3.6)

Because of the form of f , this means the density p only needs to be known up to a

normalising constant, which is one of the reasons why LD underlies so many MCMC

algorithms.

We can demonstrate π is a solution of (2.3.6) using the Fokker-Planck equation.

Note that for the Langevin diffusion σσT = 2I, where I is the identity matrix, so that

d∑
i=1

∂θi [bi(θ)p(θ)] =
d∑
i=1

∂θi
[
(∂θif(θ))e−f(θ)

]
=

d∑
i=1

∂2
θi

[e−f(θ)] =
1

2

d∑
i=1

∂2
θi

[
d∑
j=1

(σσT)ij(θ)p(θ)

]
,

which shows that the density p(θ) = e−f(θ) is a solution of the Fokker-Planck equa-

tion. Unfortunately, while it can be easily shown that a stationary solution is π, and

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 27

sufficient conditions can be found to show uniqueness and convergence (see Roberts

and Tweedie, 1996); the transition density cannot be found in general. The lack of

transition density complicates simulating from this process. As a result, there is a

vast literature on approximate simulation of Itô processes, with particular emphasis

on simulating from the Langevin diffusion (see Section 2.3.3).

There are other Itô processes which admit the general distribution π as a stationary

solution. An important example is Hamiltonian dynamics, or underdamped Langevin

dynamics (Wang and Uhlenbeck, 1945). Hamiltonian dynamics augments the state

space by introducing a term ν taking values in Rd, referred to as the momentum

term. This enables Hamiltonian dynamics to incorporate more information about

the geometry of the space which improves the mixing of Hamiltonian based MCMC

algorithms over Langevin based MCMC. Since Hamiltonian dynamics is based on two

parameters ν and θ, it is the solution to a system of SDEs rather than a single SDE

(see e.g. Horowitz, 1991; Chen et al., 2014; Leimkuhler and Shang, 2016). Typically

the density of the augmented target is set to be p(θ, ν) = e−f(θ)− 1
2
νTM−1ν , so that

marginally ν ∼ N(0,M). Here M is a user-specified matrix known as the mass

matrix. The Hamiltonian dynamics are then defined as follows

dθt = M−1νtdt (2.3.7)

dνt = −∇f(θt)dt− βνtdt+
√

2βM
1
2dWt, (2.3.8)

where β is a user-specified constant. Once again, Hamiltonian dynamics cannot be

simulated in general, so there is a lot of interest in approximating these dynamics.

There is an alternative version of Hamiltonian dynamics that is defined by an ordi-

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 28

nary differential equation, rather than a stochastic differential equation (see e.g. Neal,

2010); and it can be shown that these two versions are related (see e.g. Horowitz, 1991;

Leimkuhler and Shang, 2016). This version underlies many efficient samplers known

collectively as Hamiltonian Monte Carlo (see e.g. Neal, 2010). This includes the

sampler NUTS (Hoffman and Gelman, 2014), one of the most popular samplers im-

plemented in the probabilistic programming language STAN (Carpenter et al., 2017).

Apart from Itô processes to simulate from general π, there are also diffusions which

simulate from specific distributions, some of which have known transition densities

meaning they can be simulated exactly. In fact there exist diffusions with known tran-

sition densities for all exponential family distributions (Bibby et al., 2005). Possibly

the most common diffusion in this class is the Ornstein-Uhlenbeck process, which

admits a normal distribution as its stationary distribution (Øksendal, 2003). Another

process in this class, commonly used in the mathematical finance literature is the

Cox-Ingersoll-Ross process (Cox et al., 1985), which me make use of in Chapter 5.

The stationary distribution of this process is the Gamma distribution.

2.3.3 The Euler–Maruyama Method and ULA

As mentioned in the previous section, there are many Itô processes that have a sta-

tionary distribution of π, but cannot be simulated in general; such as the Langevin

and Hamiltonian diffusions. This means there is a lot of interest in approximate

simulation of Itô processes. In this section, we detail how Euler’s method for ODEs

can be adapted to generate an approximate sample path from an Itô process (see e.g.

Kloeden and Platen, 1992). This method forms the basis of most SGMCMC samplers.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 29

Given an Itô process of the form (2.3.2), the Euler–Maruyama method suggests

linearising both the drift and diffusion functions for a small time period h. We will

label the Euler–Maruyama approximation to the process θt at time t = mh to be

θm, for m ∈ {1, . . . ,M}. Using that
∫ h

0
Wsds = N(0, h), this leads to the Euler–

Maruyama approximation having the following form

θm+1 = θm + hb(θm) + σ(θm)
√
hζm, ζm ∼ N(0, 1).

The Euler–Maruyama approximation can be easily implemented provided b and σ can

be evaluated. Provided h is not too large compared to the typical magnitude of b,

the approximation will not diverge to infinity (though this does not guarantee a good

approximation).

Applying the Euler–Maruyama method in the case of the Langevin diffusion leads

to the unadjusted Langevin algorithm (ULA) as follows

θm+1 = θm + h∇f(θm) +
√

2hζm. (2.3.9)

The stationary distribution of this algorithm, πh, will be an approximation to the

desired posterior π. Roberts and Tweedie (1996) investigate the ergodicity of the

Langevin diffusion and ULA. They show, using the results of Meyn and Tweedie

(1993a,b), that even in cases when the diffusion is ergodic, the numerical approxima-

tion need not be. This means the algorithm will not even converge to the stationary

solution πh, or that πh may not even exist. This led the statistics community to

favour the Metropolis-adjusted Langevin algorithm (MALA), which uses (2.3.9) as

a proposal to a Metropolis–Hastings algorithm. This algorithm both has π as its

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 30

stationary distribution, and is ergodic whenever the Langevin diffusion is ergodic

(Roberts and Tweedie, 1996).

Despite the results of Roberts and Tweedie (1996), there has still been interest

quantifying the error of the Euler–Maruyama method, as it forms the basis of more

sophisticated Euler type approximations. We will detail these results as they are

relevant for SGMCMC methods. Kloeden and Platen (1992), detail a number of well

known results on the error of the approximation compared to the diffusion θt. These

results are known as the strong and weak error. However in MCMC, generally more

interest is in the error between ψ̂M := 1
M

∑M
m=1 ψ(θm) and ψ̄ =

∫
Rd ψ(θ)π(dθ), where

ψ is some test function; as well as ergodicity results. For this reason we focus on

outlining results of this form.

Talay and Tubaro (1990), define sufficient conditions for the Euler–Maruyama

scheme to be ergodic and, based on these assumptions, quantify the asymptotic bias

of the Euler–Maruyama method, limM→∞ |ψ̂M − ψ̄|. They find this bias to be O(h).

Mattingly et al. (2002) use Lyapunov–Foster drift conditions detailed in Sections 2.2.1

and 2.3.1 to find when the Euler–Maruyama approximation will be geometrically

ergodic.

Lamberton and Pagès (2002) investigate a Euler–Maruyama scheme with a stepsize

that decreases to 0, making use of the Lyapunov ideas for Itô processes. They show

that when h is decreased to 0, ψ̂M converges to ψ̄ in the limit M →∞. They also find

that when hm is set to decrease with O(m−1/3), then the bias and RMSE (root mean

square error) of ψ̂M are both O(M−1/3). In comparison, standard MCMC methods

such as the MH and MALA algorithms have unbiased ψ̂M and RMSE of O(M−1/2).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 31

Let γ be a solution to the Poisson equation, defined by Aγ = ψ − ψ̄, where A is the

generator of the Itô process of interest. Mattingly et al. (2010) used this equation to

study the non-asymptotic bias and MSE of ψ̂M when the stepsize h is fixed, provided

the Euler–Maruyama scheme is ergodic and a solution to the Poisson equation exists.

They find the bias of ψ̂M to be O(h+ 1
Mh

) and the MSE to be O(h2+ 1
Mh

). Interestingly,

this leads Mattingly et al. (2010) to suggest it is optimal to set h to be O(M−1/3),

leading to both bias and RMSE O(M−1/3); similar to the results of Lamberton and

Pagès (2002).

Despite the results of Roberts and Tweedie (1996), there has been renewed interest

in the ergodicity of ULA. This is possibly because ULA forms the basis for one of

the most popular SGMCMC samplers. In particular, there has been interest in the

non-asymptotic convergence of ULA to the target π. Central to this work is the

assumption that f strongly convex (i.e. the density, p, of π is strongly log-concave)

and smooth. This enables the authors to ensure that ULA is not transient, and derive

geometric ergodicity results for the method. More formally, it is assumed that there

exists constants l, L > 0 such that, for θ, θ′ ∈ Rd,

f(θ)− f(θ′)−∇f(θ′)T (θ − θ′) ≥ l

2
‖θ − θ′‖2

, (2.3.10)

‖∇f(θ)−∇f(θ′)‖ ≤ L ‖θ − θ′‖ . (2.3.11)

The line (2.3.10) corresponds to the assumption that f is l-strongly-convex, while

(2.3.11) corresponds to the assumption f is L-smooth. Dalalyan (2016) derives a non-

asymptotic bound in the TV distance of the distribution defined by a fixed stepsize

ULA and the desired target π; using these assumptions as well as a spectral gap

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 32

argument. Durmus and Moulines (2017a) extend these results by considering both

decreasing and fixed stepsize schemes; as well as deriving tighter bounds on the TV

distance using Foster–Lyapunov conditions detailed in Sections 2.2.1 and 2.3.1. They

also consider the case where f is a sum of two functions f1 + f2, where f1 is strongly

convex and f2 has bounded L∞ norm.

Durmus and Moulines (2017b) consider alternative bounds on the Wasserstein dis-

tance of order 2, which improve dramatically on previous TV bounds. The Wasserstein

distance of order α ≥ 1, Wα, between two measures µ and ν defined on the probability

space (Rd,B(Rd)) is defined by

Wα(µ, ν) =

[
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

‖θ − θ′‖α dγ(θ, θ′)

] 1
α

,

where the infimum is with respect to all joint distributions Γ having µ and ν as

marginals. Cheng et al. (2018) relaxes the strongly log-concave assumption to the

assumption that f is smooth and locally strongly convex (i.e. strongly convex outside

a ball of finite radius); they analyse the W1 distance between the distribution defined

by the ULA approximation and the target distribution under these assumptions.

2.4 Stochastic Gradient Markov Chain Monte Carlo

In this section we detail stochastic gradient Markov chain Monte carlo (SGMCMC),

a popular class of methods which aim to make MCMC methods more scalable to the

large data setting. The rest of this thesis provides various contributions to the SGM-

CMC literature. In this section we also provide a comparison of popular SGMCMC

methods to divide-and-conquer MCMC, another popular scalable MCMC method;

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 33

these comparisons form the first original contribution of this thesis. The compar-

isons generally show SGMCMC methods to be more robust than divide-and-conquer

MCMC; which forms the motivation for us to contribute to SGMCMC methods for

the rest of the thesis.

2.4.1 Background

The basis for SGMCMC is the Euler–Maruyama method. Commonly when inferring

an unknown parameter θ using MCMC, the cost of evaluating p (or f) will be O(N),

where N is the dataset size. For example, consider the setup of Bayesian inference

detailed in Section 2.2, (2.2.3). The unnormalised density of π, h(θ) =
∏N

i=0 pi(θ) is

a product of N + 1 terms. Similarly, defining fi(θ) := −∇ log pi(θ), then ∇f(θ) =∑N
i=0∇fi(θ); a sum of N + 1 terms.

The consequence of this is that when implementing a modern MCMC sampler,

such as MALA or HMC, there are two steps that are O(N): calculating the proposal,

which requires calculating f at the current state; and calculating the acceptance

step, which requires calculating p at the proposed state. This leads to MCMC being

prohibitively slow for large dataset sizes. To reduce this cost in the big data setting,

SGMCMC methods do not calculate an acceptance step, which leads the updates to

be more similar to Euler–Maruyama updates; and replace f with a cheap estimate,

f̂ , which can be evaluated at cost O(n), for n� N . This leads to an algorithm with

per-iteration computational cost of O(n).

SGMCMC algorithms were first introduced Welling and Teh (2011), who consid-

ered using the Langevin diffusion as the underlying process. They referred to the

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 34

algorithm as stochastic gradient Langevin dynamics (SGLD). The SGLD can be de-

rived simply from the ULA algorithm, by replacing f with an unbiased, cheap estimate

f̂ . Let θm, m = 0, . . . ,M denote iterates from the SGLD algorithm; then they are

updated by the following algorithm

θm+1 = θm − h∇f̂(θm) +
√

2hζm, ζm ∼ N(0, 1); (2.4.1)

Welling and Teh (2011) suggested the following estimate of f ,

f̂(θ) = f0(θ) +
N

n

∑
i∈S

fi(θ), (2.4.2)

where S is a random sample from {1, . . . , N} of size n. This algorithm therefore has

two error contributions: bias due to the discretisation by h; and the estimate of f̂ .

As a result, the stationary distribution is just an approximation to the desired target

π. The SGLD algorithm is also highly related to the popular scalable optimisation

aglorithm stochastic gradient descent (SGD, Robbins and Monro, 1951); whose update

is given by θm+1 = −h∇f̂(θm).

A natural extension to SGLD would be to consider SGMCMC algorithms based on

higher order dynamics such as Hamiltonian dynamics introduced earlier. A difficulty

is that replacing ∇f with ∇f̂ in more popular HMC dynamics based on ordinary

differential equations (see e.g. Neal, 2010) leads to the resulting underlying process

having a stationary distribution that is a poor approximation to π. Chen et al.

(2014) get around this by using the alternative SDE dynamics introduced in (2.3.8).

This sampler enables the more efficient Hamiltonian dynamics to be used to sample

approximately from π in the big data setting. The downside is that in order for the

more efficient dynamics to be taken advantage of, either an estimate of the Fisher

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 35

information is required, or the stepsize needs to be set small; Ding et al. (2014) aim

to get around this issue by adaptively estimating the Fisher information within the

dynamics.

Designing SGMCMC algorithms requires two main ingredients: identifying an

underlying Itô process which has π uniquely as its stationary distribution; replacing

f with f̂ in a way that the algorithm still provides a reasonable approximation to

π. To make this process more principled, Ma et al. (2015) provide a general Itô

process which targets π and shows it is complete (i.e. any Itô process that has π as

its stationary distribution can be written in this form). The reason that replacing f

with f̂ can make the approximation poor is that f̂ adds additional, unwanted noise to

the process. In light of this, Ma et al. (2015) also develop an approximate correction

term to counteract this effect.

Theoretical Results

Most of the theoretical results for SGMCMC samplers have focussed on the most

popular algorithm, SGLD. Much of this builds on previous work for Euler–Maruyama

schemes. Sato and Nakagawa (2014) investigate the error of the SGLD algorithm

compared with the underlying Langevin diffusion. Teh et al. (2016) analysed SGLD

with a decreasing stepsize scheme in a similar way to the analysis of Lamberton and

Pagès (2002) on the Euler–Maruyama method. Teh et al. (2016) showed, similar to

the Euler–Maruyama method, the optimal decreasing stepsize scheme is to set hm to

decrease at O(m−1/3). When hm decreases optimally, the bias and RMSE of ψ̂ versus

ψ̄ is O(M−1/3). Similarly, Vollmer et al. (2016) build on the work of Mattingly et al.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 36

(2010), to investigate the non-asymptotic error of ψ̂ when SGLD is implemented with

a fixed stepsize. As in Teh et al. (2016), they find SGLD recovers the same bias

and MSE of the Euler–Maruyama scheme, i.e. a bias of O(h + 1/(Mh)) and MSE of

O(h2 + 1/(Mh)). Vollmer et al. (2016) also builds on the work of Talay and Tubaro

(1990) to find that the asymptotic bias of SGLD is O(h). Chen et al. (2015) extend the

work of Vollmer et al. (2016) to more complex algorithms such as SGHMC. Finally,

Dalalyan and Karagulyan (2017) build on the work of Durmus and Moulines (2017b)

in order to develop W2 bounds for the distance of the distribution defined by SGLD

to π in the strongly log-concave setting.

There has also been considerable interest in SGMCMC algorithms in the optimi-

sation literature. Suppose we have access to i.i.d data x = (x1, . . . , xN)T , where each

data point is a random element from the unknown distribution P ; and interest is in

some function h(θ, x), where θ ∈ Rd. Raginsky et al. (2017) investigate using SGLD

to approximate

H∗ = min
θ∈Rd

H(θ) = min
θ∈Rd

EP [h(θ,X)].

DefineHx(θ) = 1
N

∑N
i=1 h(θ, xi). To approximateH∗ Raginsky et al. (2017) implement

an SGLD algorithm that targets the distribution πx, with density px(θ) ∝ e−βHx(θ),

with update as follows

θm+1 = θm + h∇Ĥx(θ) +
√

2β−1ζm︸ ︷︷ ︸
injected noise

, ζm ∼ N(0, 1), (2.4.3)

where ∇Ĥx := 1
|S|
∑

i∈S∇h(θ, xi), with S ⊂ {1, . . . , N}, is the standard stochastic

estimate of ∇Hx. Here β is a user-specified constant known as the temperature. The

idea is that β is set large enough for e−βHx(θ) to concentrate around the minima of

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 37

Hx; but that β is small enough for the injected noise term to escape local modes, and

so that the algorithm does not overfit to Hx rather than approximating the desired

H∗. Central to the analysis by Raginsky et al. (2017) are the assumptions that h(·, x)

is M -smooth and m-dissipative for all x ∈ X . The dissipative property is a common

assumption in the study of dynamical systems, it states that there exists constants

m > 0, b ≥ 0 such that

〈θ,∇h(θ, x)〉 ≥ m ‖θ‖2 − b, θ ∈ Rd.

The dissipative assumption means that within a ball of radius
√
b/m, the function

can be arbitrarily complicated, with multiple stationary points. As we move outside

this ball though, the gradient points back towards the ball with increasing magni-

tude. Under these assumptions, Raginsky et al. (2017) investigates the population

risk of θm. More formally, they non-asymptotically bound |E[H(θm)]−H∗|, where

the expectation is with respect to the data x and any additional randomness used

by the SGLD algorithm to generate θm. Part of the proof relies on bounding the

2-Wasserstein distance between SGLD and the underlying Langevin diffusion. Simi-

larly, Xu et al. (2018) investigate the non-asymptotic bounds on the empirical risk i.e.

|E[Hx(θ)]−minθ∈Rd Hx(θ)| under this setting. These are important results for opti-

misation. Most results for stochastic optimisation methods in the non-convex setting

before now have only been able to guarantee local minimisation. Both works also

provide interesting theoretical tools for extending the analysis of the convergence of

SGLD to the target distribution in terms of 2-Wasserstein distance to the non-convex

setting.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 38

Theoretical analysis of SGLD, especially the work of Dalalyan and Karagulyan

(2017), makes it clear that the error in SGLD is dominated by the error in the estimate

f̂ . In light of this, recent work has considered variance reduction for f̂ in order to

improve the convergence of SGLD. Dubey et al. (2016) adapt variance reduction

methods for SGD to SGLD, and show that this improves the MSE of the algorithm

using the work of Chen et al. (2015). Nagapetyan et al. (2017), and independently

Baker et al. (2018) contained in Chapter 3 of this thesis, consider improvements to the

computational cost by implementing SGLD with control variates (both in the strongly

log-concave setting). There are a number of empirical results suggesting that, despite

the per iteration computational savings of SGLD, the cost of implementing SGLD

in order to reach an arbitrary level of accuracy for the given metric (for example

W2) is still O(N). Nagapetyan et al. (2017) analyse SGLD with control variates

(SGLD-CV) in order to reach a desired level of accuracy in terms of the MSE of the

average of θM over K independent samples from SGLD. They show that the resulting

implementation has O(log(N)) computational cost. In comparison Baker et al. (2018)

extend the results of Dalalyan and Karagulyan (2017) to derive a W2 distance bound

for SGLD-CV, and find there exists an implementation with arbitrary W2 accuracy

that has O(1) computational cost. There is currently no result proving that the

computational cost of SGLD is O(N). Such a result would require showing that there

is no implementation with sublinear computational cost in N such that SGLD reaches

arbitrary accuracy in the desired distance measure. This requires upper bounds on the

distance measure, which have not yet been derived for SGLD. Chatterji et al. (2018),

again extend the work of Dalalyan and Karagulyan (2017) to derive computational

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 39

cost results and bounds in W2 for the variance reduction methods of Dubey et al.

(2016).

Scalable Samplers Using Piecewise Deterministic Processes

More recently, a number of big data MCMC samplers have been introduced based

on a class of Markov processes known as piecewise deterministic processes (PDP;

Davis, 1984). PDPs cannot be written in terms of Itô diffusions; rather they move

in a deterministic direction until an event occurs determined by an inhomogeneous

Poisson process. When the event occurs the direction of motion is switched. Simi-

larly to the Hamiltonian dynamics of (2.3.8), PDPs augment the state space with a

velocity parameter ν ∈ V ⊂ Rd, which determines the current direction of motion.

Let (θt, νt) be a PDP, then the process can be constructed so that θt has marginal

stationary solution π, for general π (Davis, 1984; Fearnhead et al., 2018). To do

this requires switching direction using a Poisson process with inhomogeneous rate

max(0, νt ·∇f(θt)). Remarkably, provided the Poisson process can be simulated from,

the PDP can be simulated exactly. Also, ∇f can be replaced by ∇f̂ and π remains

the stationary solution (Fearnhead et al., 2018).

These results have been used to develop a number of scalable samplers (Bouchard-

Côté et al., 2018; Bierkens et al., 2018a; Pollock et al., 2016), which target π exactly.

The most popular of these methods are the bouncy particle sampler (BPS) (Bouchard-

Côté et al., 2018) and the zig-zag sampler (ZZ) (Bierkens et al., 2018a). The main

difference between these methods is the way the direction ν is chosen: at each event

time, the direction of BPS is chosen by reflecting the velocity on the hyperplane

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 40

tangential to ∇f(θt); while the direction of ZZ is ±1 in each dimensional component.

As well as the advantage of targeting the posterior exactly, geometric ergodicity results

have been derived for both BPS and ZZ (Deligiannidis et al., 2018; Bierkens et al.,

2018b). It has been suggested to use control variates in a similar way to Chapter 3, in

order to reduce the variance of the gradient estimate ∇f̂ when using PDP samplers

(see e.g. Fearnhead et al., 2018). Specifically, it has been shown by Bierkens et al.

(2018a) that this can improve the efficiency of the ZZ sampler.

The main difficulty in implementing these samplers is in simulating from the in-

homogeneous Poisson process with rate max(0, νt · ∇f(θt)). In general, the suggested

procedure to simulate from this is known as thinning (see e.g. Lewis and Shedler); but

this requires a local upper bound of ∂jf(θ), for j = 1, . . . , d, to be calculated. This

upper bound is problem specific, and a significant overhead for these samplers.

2.4.2 Comparison to Divide-and-Conquer MCMC

In this section we present the first contribution of this thesis. The section compares

the two most popular SGMCMC algorithms – SGLD and SGHMC – to some popu-

lar alternative methods known as divide-and-conquer methods. Divide-and-conquer

methods aim to also improve the scalability of MCMC. They achieve this by splitting

the dataset into subsets, and running separate MCMC chains in parallel. The main

challenge is then in combining the information from each of these samples to produce

an MCMC chain that targets an approximation to π. This early work demonstrated

that SGMCMC methods seem more robust than the divide-and-conquer counterparts,

and formed the motivation to develop SGMCMC methods further for the remainder of

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 41

the thesis. However it is worth mentioning that alternative divide-and-conquer meth-

ods have since become more popular (Minsker et al., 2014; Xu et al., 2014; Srivastava

et al., 2015; Minsker et al., 2017; Li et al., 2017; Nemeth and Sherlock, 2018).

Divide-and-conquer methods

We assume the Bayesian setup of Section 2.2, (2.2.3). The divide-and-conquer meth-

ods divide the data into disjoint subsets Bs ⊂ {1, . . . , N} for s = 1, . . . , S. Defining

hBs(θ) := p
1/S
0

∏
Bs
pi(θ), referred to as the (unnormalised) subposterior, the unnor-

malised posterior is given by

h(θ) =
S∏
s=1

hBs(θ) (2.4.4)

This leads to the idea that MCMC can be run to target each subposterior in parallel,

then the chains can be combined to get a chain that approximately targets π. We let

θs1, . . . , θsM , s = 1, . . . , S denote the MCMC sample from subposterior s. In reality,

this recombination step is challenging. We compare SGLD and SGHMC to three

divide-and-conquer methods: Consensus Monte Carlo (Scott et al., 2016), kernel den-

sity estimation Monte Carlo (KDEMC) (Neiswanger et al., 2014) and the Weierstrass

sampler (Wang and Dunson, 2013).

Consensus Monte Carlo

The simplest way to recombine the samples from the subposteriors is to approximate

each subposterior as a Gaussian distribution. The samples can be used to estimate the

mean and variance of each of the subposteriors. Then, conditionally on these estimates

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 42

we can analytically calculate a Gaussian approximation to the full posterior. This

idea was first proposed by Neiswanger et al. (2014). The motivation is that as N gets

large the Bernstein-von Mises theorem states that the posterior will be approximately

Gaussian (Le Cam, 2012).

The consensus Monte Carlo algorithm of Scott et al. (2016) aims to improve on

this. It works by approximating the full posterior as a weighted average of the subpos-

terior samples. The idea behind consensus Monte Carlo is that, if the subposteriors

were Gaussian then this method of combining samples would give us draws from the

true posterior; but if the subposteriors are not Gaussian, Scott et al. (2016) argue

that the weighted averaging procedure is more likely to inherit properties of the sub-

posterior samples themselves, rather than forcing the approximation to be Gaussian.

Scott et al. (2016) propose estimating the full MCMC chain, call this θ̂i, as a

weighted average of the subposterior samples

θ̂i =

(
S∑
s=1

Ws

)−1 S∑
s=1

Wsθsi, (2.4.5)

where Ws ∈ Rd×d is a weight matrix for subposterior s. Scott et al. (2016) suggest

letting Ws = Σ̂−1
s , where Σ̂s is the sample covariance matrix for θs.

KDEMC

Neiswanger et al. (2014) suggest applying kernel density estimation to each subpos-

terior sample θs, in order to estimate the true density of that subposterior. De-

note this estimate p̂Bs(θ). Then by (2.4.4) we can approximate the full posterior by

p̂(θ) =
∏S

s=1 p̂Bs(θ).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 43

If Gaussian kernels are used in the approximation, then p̂(θ) becomes a product

of Gaussian mixtures. This product can be expanded to give another Gaussian mix-

ture with O(SM) components, where M is the number of iterations of the MCMC

chain that are stored, and S is the number of subposteriors. Neiswanger et al. (2014)

suggest sampling from this Gaussian mixture using MCMC. We refer to this algo-

rithm as KDEMC. The number of mixture components increases dramatically with

the number of subsets and subposterior samples. This means KDEMC can be com-

putationally expensive and inefficient, but the algorithm should target more complex

posterior geometries. Neiswanger et al. (2014) also suggest a similar method based

on semiparametric density estimation; but we find this method performs similarly to

consensus Monte Carlo so omit it in the comparisons.

Weierstrass

The Weierstrass method (Wang and Dunson, 2013) is similar to KDEMC, but uses a

Weierstrass transform to approximate the subposterior densities rather than a kernel

density estimate. Using the Weierstrass approximation rather than a kernel density is

associated with a number of better properties, including an improvement when sub-

posteriors do not overlap, and better scalings with dimensionality. To produce draws

from the KDE approximation, Neiswanger et al. (2014) suggest using Metropolis-

within-Gibbs procedure. To avoid the inefficiencies of this sampler, Wang and Dun-

son (2013) develop an approximate, more computationally efficient scheme to produce

draws from the Weierstrass approximation based on rejection sampling.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 44

Experiments

As far as we are aware, there has been limited comparison across stochastic gradient

and divide and conquer methods, and we aim to bridge this gap in the following

experiments. We use simple examples that focus on important scenarios, and hope

to build intuition for where methods should be used. The particular scenarios we

focus on are: (i) heavy tailed posterior, (ii) multi-modal posterior, (iii) posteriors

with complex geometry, and (iv) the impact of parameter dimension.

We compare each method’s performance by measuring the KL divergence between

the approximate sample and a HMC sample, taken to be the truth, using the R

package FNN (Li et al., 2013). The HMC sample is simulated using the NUTS sampler

(Hoffman and Gelman, 2014) implemented in the probabilistic programming language

STAN (Carpenter et al., 2017). The KL divergence is measured over 10 different runs

of the algorithm (using the same dataset) and plotted as boxplots. Contour plots

for one simulation are also provided to help develop the reader’s intuition. The only

method which does not require tuning parameters is the Consensus method, which

is an advantage as this can take a lot of time. For fairness, the other methods are

tuned by minimizing the KL divergence measure which we use to make the boxplots.

The Weierstrass algorithm is implemented using the associated R package (Wang and

Dunson, 2013).

It is quite difficult to implement the algorithms in a way that makes computational

cost similar. For example, KDEMC has computational cost component O(N/S) for

each iteration of a parallel chain; but then O(M) for each iteration of the MCMC dur-

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 45

ing the recombination step, which to get a good approximation will be non-negligible.

As a result, we opt for simulating each algorithm for a fixed number of iterations,

since often problems with the methods are quite obvious even despite the difference

in computational cost. The computational cost of the parallel methods is O(N/S) for

each iteration of parallel MCMC, then the consensus Monte Carlo recombination step

has a one-time O(M) cost; KDEMC and Weierstrass has O(M) cost to produce one

approximate draw from the subposterior chains (KDEMC produces each draw sequen-

tially, as it uses MCMC; while the Weierstrass method can produce multiple draws in

parallel). SGLD has computational cost O(n) for each iteration; while SGHMC has

cost O(Ln) for each iteration, where L is a tuning constant known as the trajectory

which we set to be 3.

Heavy tailed posterior

To compare the methods on a heavy tailed target, we infer the location θ from data x

simulated from a bivariate t-distribution with known scale Σ and degrees of freedom

ν. The density of x is given by

p(x|θ) ∝
[
1 +

1

ν
(x− θ)TΣ−1(x− θ)

]−(ν+2)/2

,

where we assume an uninformative uniform prior on θ. In order to test the algorithms

we use a relatively small dataset size of 800. The number of subposteriors used in the

divide and conquer methods is 20. We use a minibatch size of 50 for the stochastic

gradient MCMC methods.

Figure 2.4.1 gives an illustrative comparison of the methods. The results show that

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 46

consensus kdemc weierstrass sgld sghmc

−0.05

0.00

0.05

0.10

−0.10−0.050.00 0.05 −0.10−0.050.00 0.05 −0.10−0.050.00 0.05 −0.10−0.050.00 0.05 −0.10−0.050.00 0.05
theta1

th
et

a2

type

Exact

Parallel

Stochastic Gradient

●

●

consensus kdemc weierstrass sgld sghmc

0.
00

0.
10

0.
20

Method

K
L−

di
ve

rg
en

ce

●

●

Parallel
Stochastic Gradient

Figure 2.4.1: Comparison of method performance for multivariate-t distribution. Con-

tour plots show empirical densities. Box plots show KL-divergence from the truth.

all methods are equipped to explore this posterior, obtained as a product of heavy

tailed densities. The KDEMC and SGLD algorithms have the poorest approximation

to the posterior. It has been shown in Teh et al. (2016) that the convergence rate of

SGLD is O(T−
1
3), and therefore slower than the standard Monte Carlo rate of O(T−

1
2).

In this scenario SGHMC performs the best in terms of minimizing KL divergence

(though its computational cost is 3 times higher than SGLD), closely followed by

the consensus Monte Carlo algorithm and the Weierstrass sampler. The Weierstrass

sampler does a good job of improving the convergence speed of KDEMC. There is an

additional advantage in using consensus Monte Carlo as it does not require tuning,

and its computational cost for this problem was low, so it is arguably the best choice

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 47

consensus kdemc weierstrass sgld sghmc

−0.2

0.0

0.2

−0.1 0.0 0.1 0.2 −0.1 0.0 0.1 0.2 −0.1 0.0 0.1 0.2 −0.1 0.0 0.1 0.2 −0.1 0.0 0.1 0.2
theta1

th
et

a2

type

Exact

Parallel

Stochastic Gradient

●

●

consensus kdemc weierstrass sgld sghmc

0.
5

1.
0

1.
5

Method

K
L−

di
ve

rg
en

ce

●

●

Parallel
Stochastic Gradient

Figure 2.4.2: Comparison of method performance for Gaussian mixture. Contour

plots show empirical densities. Box plots show KL-divergence from the truth.

for this problem.

Multi-modal posterior

We compare the methods on a multi-modal target where we infer the locations θ1, θ2

from data x simulated from a bimodal, bivariate Gaussian mixture. We assume the

mixture has known common scale Σ, and equal allocation probabilities, leading to the

following density of x

p(x|θ1, θ2) ∝ N (x|θ1,Σ) +N (x|θ2,Σ),

where N (x|θ,Σ) denotes a Gaussian density with mean θ and variance Σ. We assume

the priors on θi are independent Gaussians with mean 0 and a large variance. We use

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 48

a dataset size of 10000. The number of subposteriors used in the divide and conquer

methods is 20. We use a minibatch size of 50 for the stochastic gradient MCMC

methods.

Results given in Figure 2.4.2 show that the consensus algorithm performs poorly

in this setting. The simple weighted average scheme (2.4.5) leads to a unimodal pos-

terior approximation which does not account for the bimodality, suggesting that the

posterior mass lies between the subposterior modes. KDEMC offers an improvement

over the Consensus algorithm with improved posterior coverage, but still does not

capture the bimodality. From investigating the subposteriors it appears that this is a

result of the kernel bandwidth being smaller than the width of the posterior, leading

to density estimates for each subposterior which tail off rapidly outside of the region

where subposterior samples lie. Therefore, the approximation is unimodal in the lo-

cation where most of the subposteriors overlap. The Weierstrass method seems to

encounter similar issues to KDEMC, and its performance is not much better.

The stochastic gradient methods perform better than the divide and conquer ap-

proaches, and are able to explore both modes. Note that while the methods are able

to explore overlapping modes, if the modes are more separated the stochastic gradient

methods will also struggle with exploration. Given a good starting point, SGHMC

performs particularly well. When the starting point is further from the posterior

mass, the algorithm does not appear to explore both modes. Overall SGLD performs

the best at minimising the KL-divergence of this problem, especially considering its

lower computational cost compared with SGHMC.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 49

consensus kdemc weierstrass sgld sghmc

−0.5

0.0

0.5

−0.4 0.0 0.4 −0.4 0.0 0.4 −0.4 0.0 0.4 −0.4 0.0 0.4 −0.4 0.0 0.4
theta1

th
et

a2

type

Exact

Parallel

Stochastic Gradient

consensus kdemc weierstrass sgld sghmc

0
1

2
3

4

Method

K
L−

di
ve

rg
en

ce

●

●

Parallel
Stochastic Gradient

Figure 2.4.3: Comparison of method performance for warped Gaussian. Contour plots

show empirical densities. Box plots show KL-divergence from the truth.

Complex geometry: warped Gaussian

We consider a target with complex geometry known as the warped Gaussian. In this

case, locations θ1 and θ2 are inferred from data x with density

p(x|θ1, θ2) = N (x|θ1 + θ2
2, σx),

where σx is a known scale parameter. We assume the prior for each θi are independent

with density p(θi) = N (θi|0, σθ), where σθ is some known scale parameter. We use

a small dataset size of 800, and the number of subposteriors used in the divide and

conquer methods is 20. We use a minibatch size of 50 for the stochastic gradient

MCMC methods.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 50

The results given in Figure 2.4.3 show that again the consensus algorithm struggles

to approximate the full posterior. The consensus approach uses an average of the

subposterior samples, re-scaled by their covariance. One way of understanding why

the consensus performs poorly in this example is to consider the situation where there

are only two subposteriors, each with approximately the correct warped Gaussian

shape and location as the full posterior. Averaging samples from each subposterior

would lead to some samples located in the the lower tail of subposterior one being

averaged with samples from the upper tail of subposterior two, thus producing an

approximation to the full posterior which lies in the centre, as shown in Figure 2.4.3.

The KDEMC works reasonably well on this example, but underestimates the tails for

the same reason as discussed for the mixture example (Section 2.4.2). The Weierstrass

shows some improvement over KDEMC, though does not perform as well as the

stochastic gradient methods.

Finally, the stochastic gradient methods perform better than the divide and con-

quer algorithms and once again SGHMC is more sensitive to the starting point than

SGLD.

Dimensionality: multivariate Gaussian

The examples considered so far have been in low dimensional parameter spaces. In

this section we explore how these big data MCMC algorithms scale with increasing

the dimension of the posterior. We consider the posterior for θ given x, where x

follows a multivariate Gaussian with known scale Σ. We assume an uninformative

uniform prior for θ. We use a dataset size of 800; the number of subposteriors used

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 51

0.0

0.5

1.0

1.5

2 4 6 8 10
Dimension

K
L−

di
ve

rg
en

ce

method

consensus

kdemc

sgld

sghmc

weierstrass

Figure 2.4.4: Comparison of method performance for Gaussian. Plot of KL-divergence

against dimension for each method.

in the divide and conquer methods is 20; and we use a minibatch size of 50 for the

stochastic gradient MCMC methods.

Figure 2.4.4 gives the KL divergence between the full posterior and the approx-

imate posterior resulting from each of the considered algorithms. Kernel density

methods are well known to scale poorly with dimension and this is shown here. The

Consensus algorithm performs particularly well. This is unsurprising as the consensus

algorithm is exact when each subposterior is Normally distributed. The Weierstrass

method scales much better with dimensionality than its KDEMC counterpart, this

is due to its sequential rejection sampling procedure, which ensures that error accu-

mulates linearly in dimensionality, as opposed to exponentially in dimensionality as

is the case for KDEMC. Both minibatch methods work well, but the trend in Figure

2.4.4 implies that these algorithms may lose some performance in significantly larger

posterior spaces.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 52

Discussion

When considering unimodal posteriors which do not exhibit complex geometry, the

consensus algorithm performs best; as the algorithm does not require any tuning and

scales well in high-dimensional parameter spaces. KDEMC is a natural extension

to the consensus algorithm, which merges the subposterior densities rather than the

subposterior samples. We found through experimentation that, as with the consensus

algorithm, the KDEMC approach tends to underestimate the tails of the full posterior

density, which is particularly an issue when the subposterior densities do not overlap.

The KDEMC algorithm also scales very poorly with dimension. The Weierstrass

sampler, which extends ideas of the KDEMC algorithm, fixes many of these issues.

The algorithm scales well with dimensionality; copes better with posteriors that do not

overlap and converges faster than KDEMC. However the algorithm still struggles with

multimodality, and is not quite up to the standard of the SGMCMC methods when

it comes to more complex geometry. The algorithm requires tuning of an acceptance

step, but the results are not too sensitive to this choice.

Stochastic gradient methods were found to be robust to the geometry of the pos-

terior, and (in relative terms) were more effective for multimodal posteriors. A major

disadvantage of these algorithms is how sensitive they are to the choice of stepsize,

though some work has been done to improve this (Giles et al., 2016; Gorham et al.,

2016). We found in general the extra computational cost of SGHMC did not lead

to vastly improved performance over SGLD. This could be due to sensitivity to the

Fisher information estimate, or to the choice of starting point.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 53

It was hard to compare computational cost directly between the two methods, but

each algorithm was run for the same number of MCMC iterations. For most of the

comparisons, the dataset size was chosen to be about 800, so quite small, designed

to test the methods. In these cases the computational cost between SGLD and the

divide and conquer methods is similar since the divide and conquer methods have a

per iteration cost of 40 (as the number of batches is 20), and the SGLD algorithm

has a per iteration cost of 50 since that was its minibatch size. So the comparisons

certainly demonstrate the slow convergence rate of SGLD for simple examples. But

SGLD demonstrated strength in the more complex geometry of the warped Gaussian.

In the Gaussian mixture example, SGLD has the lowest computational cost by far,

but still performs the best. It is worth noting that the combining step adds to the

computational cost, and for KDEMC this is a particularly slow process.

On the other hand, the trajectory L for SGHMC was chosen to be 3, so that the

momentum parameter was not refreshed at every step. This means the per iteration

computational cost was about 3 times higher than the other methods. For simple

examples, SGHMC did not warrant this extra tuning and computational cost, as

it did not perform much better than consensus Monte Carlo. For more complex

examples, the method again did not warrant the extra cost over SGLD.

Chapter 3

Control Variates for Stochastic

Gradient MCMC

3.1 Introduction

Markov chain Monte Carlo (MCMC), one of the most popular methods for Bayesian

inference, scales poorly with dataset size. This is because standard methods require

the whole dataset to be evaluated at each iteration. Stochastic gradient MCMC

(SGMCMC) is a class of MCMC algorithms that aim to overcome this issue. The

algorithms have recently gained popularity in the machine learning literature. These

methods use efficient MCMC proposals based on discretised dynamics that use gra-

dients of the log-posterior. They reduce the computational cost by replacing the

gradients with an unbiased estimate which uses only a subset of the data, referred to

as a minibatch. They also bypass the acceptance step by making small discretisation

steps (Welling and Teh, 2011; Chen et al., 2014; Ding et al., 2014; Dubey et al., 2016).

54

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 55

These new algorithms have been successfully applied to a range of state of the art

machine learning problems (e.g., Patterson and Teh, 2013; Li et al., 2016). There is

now software available to implement these methods (Tran et al., 2016; Baker et al.,

2018). In particular, Baker et al. (2018) implements the control variate methodology

we discuss in this article.

This paper investigates stochastic gradient Langevin dynamics (SGLD), a popular

SGMCMC algorithm that discretises the Langevin diffusion. There are a number

of results suggesting that while SGLD has a lower per-iteration computational cost

compared with MCMC, its overall computational cost is proportional to the dataset

size (Welling and Teh, 2011; Nagapetyan et al., 2017). This motivates improving the

computational cost of SGLD, which can be done by using control variates (Ripley,

2009). Control variates can be applied to reduce the Monte Carlo variance of the

gradient estimate in stochastic gradient MCMC algorithms. We refer to SGLD using

this new control variate gradient estimate as SGLD-CV.

We analyse the algorithm using the Wasserstein distance between the distribution

defined by SGLD-CV and the true posterior distribution, by adapting recent results by

Dalalyan and Karagulyan (2017). Central to this analysis are the assumptions that the

log-posterior is m-strongly-concave and M -smooth (defined formally in Assumption

3.3.1). This is quite a strong assumption, but has become common for the analysis

of these methods (see e.g., Durmus and Moulines, 2017a; Dalalyan and Karagulyan,

2017; Nagapetyan et al., 2017) since it ensures that errors do not accumulate from one

iteration to the next. We provide an empirical comparison on a wide variety of models

that do not necessarily satisfy these conditions in order to fully explore the results.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 56

If the concave and smoothness conditions do not hold, then provided the posterior

contracts with the number of observations, there should still be some benefit from the

variance reduction; but we leave a full analysis in the nonconvex case for future work.

We get bounds on the Wasserstein distance between the target distribution and the

distribution we sample from at a given step of SGLD-CV. These bounds are in terms

of the tuning constants chosen when implementing SGLD-CV. Under assumptions on

how the posterior changes as we get more data, we are able to show that, after an

initialisation step, the cost of running SGLD-CV to a required level of accuracy does

not grow with the number of data points. The initialistion step involves finding a

centring value θ̂ using optimisation and evaluating the gradient of the log posterior

at this value. Both these are O(N) calculations, where N is the dataset size, but

we show in Section 3.3.4 these each require just a single pass through the dataset.

We also suggest starting the algorithm from the centring value, essentially replacing

the burn-in step of SGLD with the optimisation step. The experiments show this

optimisation step is often more efficient than the burn-in step of SGLD. Our results

in Section 3.3.3 quantify the impact on performance of obtaining a poor centring

value.

The use of control variates has also been shown to be important for other Monte

Carlo algorithms for simulating from a posterior with a cost that is sub-linear in the

number of data points (Bardenet et al., 2017; Bierkens et al., 2018a; Pollock et al.,

2016; Nagapetyan et al., 2017). For previous work that suggests using control variates

within SGLD, see Dubey et al. (2016); Chen et al. (2017). These latter papers, whilst

showing benefits of using control variates, do not show that the resulting algorithm

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 57

can have sub-linear cost in the number of data points. A recent paper, Nagapetyan

et al. (2017), does investigate how SGLD-CV performs in the data limit under similar

log-concavity assumptions on the posterior distribution. They have results that are

qualitatively similar to ours, including the sub-linear computational cost of SGLD-

CV. Though they measure accuracy of the algorithm through the mean squared error

of Monte Carlo averages rather than through the Wasserstein distance.

Not only can control variates be used to speed up stochastic gradient MCMC by en-

abling smaller minibatches to be used; we show also that they can be used to improve

the inferences made from the MCMC output. In particular, we can use post-processing

control variates (Mira et al., 2013; Papamarkou et al., 2014; Friel et al., 2016) to pro-

duce MCMC samples with a reduced variance. The post-processing methods rely on

the MCMC output as well as gradient information. Since stochastic gradient MCMC

methods already compute estimates of the gradient, we explore replacing the true

gradient in the post-processing step with these free estimates. We also show theoret-

ically how this affects the variance reduction factor; and empirically demonstrate the

variance reduction that can be achieved from using these post-processing methods.

3.2 Stochastic Gradient MCMC

Throughout this paper we aim to make inference on a vector of parameters θ ∈ Rd,

with data x = {xi}Ni=1. We denote the probability density of xi as p(xi|θ) and assign a

prior density p(θ). The resulting posterior density is then p(θ|x) ∝ p(θ)
∏N

i=1 p(xi|θ),

which defines the posterior distribution π. For brevity we write fi(θ) = − log p(xi|θ)

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 58

for i = 1, . . . N , f0(θ) = − log p(θ) and f(θ) = − log p(θ|x).

Many MCMC algorithms are based upon discrete-time approximations to continuous-

time dynamics, such as the Langevin diffusion, that are known to have the posterior

as their invariant distribution. The approximate discrete-time dynamics are then used

as a proposal distribution within a Metropolis-Hastings algorithm. The accept-reject

step within such an algorithm corrects for any errors in the discrete-time dynamics.

Examples of such an approach include the Metropolis-adjusted Langevin algorithm

(MALA; see e.g., Roberts and Tweedie, 1996) and Hamiltonian Monte Carlo (HMC;

see e.g., Neal, 2010).

3.2.1 Stochastic Gradient Langevin Dynamics

SGLD, first introduced by Welling and Teh (2011), is a minibatch version of the

unadjusted Langevin algorithm (Roberts and Tweedie, 1996). At each iteration it

creates an approximation of the true gradient of the log-posterior by using a small

sample of data.

The SGLD algorithm is based upon the discretisation of a stochastic differential

equation known as the Langevin diffusion. A Langevin diffusion for a parameter

vector θ with posterior p(θ|x) ∝ exp(−f(θ)) is given by

θt = θ0 −
∫ t

0

∇f(θs)ds+
√

2dBt, (3.2.1)

where Bt is a d-dimensional Wiener process. The stationary distribution of this diffu-

sion is π. This means that it will target the posterior exactly, but in practice we need

to discretise the dynamics to simulate from it, which introduces error. A bottleneck

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 59

for this simulation is that calculating∇f(θ) is an O(N) operation. To get around this,

Welling and Teh (2011) replace the log-posterior gradient with the following unbiased

estimate

∇f̂(θ) := ∇f0(θ) +
N

n

∑
i∈Sk

∇fi(θ) (3.2.2)

for some subsample Sk of {1, . . . , N}, with |Sk| = n representing the minibatch size.

A single update of SGLD is then

θk+1 = θk −
hk
2
∇f̂(θk) + ζk, (3.2.3)

where ζk ∼ N(0, hk).

MALA uses a Metropolis-Hastings accept-reject step to correct for the discretisa-

tion of the Langevin process. Welling and Teh (2011) bypass this acceptance step,

as it requires calculating p(θ|x) using the full dataset, and instead use an adaptive

rather than fixed stepsize, where hk → 0 as k →∞. The motivation is that the noise

in the gradient estimate disappears faster than the process noise, so eventually, the

algorithm will sample the posterior approximately. In practice, we found the algo-

rithm does not mix well when the stepsize is decreased to zero, so in general a fixed

small stepsize h is used in practice, as suggested by Vollmer et al. (2016).

3.3 Control Variates for SGLD Efficiency

The SGLD algorithm has a reduced per iteration computational cost compared to tra-

ditional MCMC algorithms. However, there have been a number of results suggesting

that the overall computational cost of SGLD is still O(N) (Welling and Teh, 2011;

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 60

Nagapetyan et al., 2017). What we mean by this is that in order for the algorithm

to reach a desired distance from the true posterior, the minibatch size n, and the

total number of iterations K, need to be set so that the computational cost Kn is

O(N). The main reason for this result is that in order to control the variance in the

gradient estimate, ∇f̂(θ), we need n to increase linearly with N . Therefore, we would

assume that reducing this variance would lead to an improved computational cost of

the algorithm. A natural choice is to reduce this variance through control variates

(Ripley, 2009).

Control variates applied to SGLD have also been investigated by Dubey et al.

(2016); Chen et al. (2017), who show that the convergence bound of SGLD is reduced

when they are used. Theoretical results, similar and independent to ours, show how

control variates can improve the computational cost of SGLD (Nagapetyan et al.,

2017).

In Section 3.3.1, we show how control variates can be used to reduce the vari-

ance in the gradient estimate in SGLD, leading to the algorithm SGLD-CV. Then

in Section 3.3.3 we analyse the Wasserstein distance between the distribution defined

by SGLD-CV and the true posterior. There are a number of quantities that affect

the performance of SGLD-CV, including the stepsize h, the number of iterations K

and the minibatch size n. We provide sufficient conditions on h, K and n in or-

der to bound the Wasserstein distance. We show under certain assumptions, the

computational cost, measured as Kn, required to bound the Wasserstein distance is

independent of N .

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 61

3.3.1 Control Variates for SGMCMC

Let θ̂ be a fixed value of the parameter, chosen to be close to the mode of the posterior

p(θ|x). The log-posterior gradient can then be re-written as

∇f(θ) = ∇f(θ̂) + [∇f(θ)−∇f(θ̂)],

where the first term on the right-hand side is a constant and the bracketed term on

the right-hand side can be unbiasedly estimated by

[
∇f̂(θ)−∇f̂(θ̂)

]
= ∇f0(θ)−∇f0(θ̂) +

1

n

∑
i∈S

1

pi

[
∇fi(θ)−∇fi(θ̂)

]
where p1, . . . , pN are user-chosen, strictly positive probabilities, S is a random sample

from {1, . . . , N} such that |S| = n and the expected number of times i is sampled is

npi. The standard implementation of control variates would set pi = 1/N for all i.

Yet we show below that there can be advantages in having these probabilities vary

with i; for example to give higher probabilities to sampling data points for which

∇fi(θ)−∇fi(θ̂) has higher variability with respect to θ.

If the gradient of the likelihood for a single observation is smooth in θ then we

will have

∇fi(θ) ≈ ∇fi(θ̂) if θ ≈ θ̂.

Hence for θ ≈ θ̂ we would expect the unbiased estimator

∇f̃(θ) = ∇f(θ̂) + [∇f̂(θ)−∇f̂(θ̂)], (3.3.1)

to have a lower variance than the simpler unbiased estimator (3.2.2). This is because

when θ is close to θ̂ we would expect the terms ∇f̂(θ) and ∇f̂(θ̂) to be positively

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 62

Algorithm 1: SGLD-CV

Input: θ̂, ∇f(θ̂), h.

Set θ0 ← θ̂.

for k = 0, . . . , K − 1 do

Update ∇f̃(θk) using (3.3.1)

Draw ζk ∼ N(0, hI)

θk+1 ← θk − h
2
∇f̃(θk) + ζk

end

correlated. This reduction in variance is shown formally in Lemma 1, stated in Section

3.3.2.

The gradient estimate (3.3.1) can be substituted into any stochastic gradient

MCMC algorithm in place of ∇f̂(θ). We refer to SGLD using this alternative gradient

estimate as SGLD-CV. The full procedure is outlined in Algorithm 1.

Implementing this in practice means finding a suitable θ̂, which we refer to as the

centring value. We show below, under a strongly log-concave assumption, that the

Wasserstein distance between the distribution defined by SGLD-CV and the posterior

distribution can be bounded by some arbitrary constant; and that this can be done

such that the computational cost Kn is O(1). For this to be the case though, we

require both θ̂ and the starting point of SGLD-CV, θ0, to be O(N−
1
2) distance from

the posterior mean. This requires some pre-processing steps: an optimisation step to

find θ̂, and calculating f(θ̂). These steps are both O(N), but we suggest starting the

algorithm from θ̂, meaning the optimisation step essentially replaces the burn-in of

the chain. We find in the experiments that these initial steps are often faster than

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 63

the burn-in of SGLD.

In practice, we find θ̂ using stochastic optimisation (Robbins and Monro, 1951),

and then calculate the full log-posterior gradient at this point ∇f(θ̂). We then start

the algorithm from θ̂. In our implementations we use a simple stochastic optimisation

method, known as stochastic gradient descent (SGD, see e.g. Bottou, 2010). The

method works similarly to the standard optimisation method gradient descent, but at

each iteration replaces the true gradient of the function with an unbiased estimate.

A single update of the algorithm is as follows

θk+1 = θk − hk∇f̂(θ), (3.3.2)

where ∇f̂(θ) is as defined in (3.2.2) and hk > 0 is a small tuning constant referred to

as the stepsize. Provided the stepsizes hk satisfy the following conditions
∑

k h
2
k <∞

and
∑

k hk =∞ then this algorithm will converge to a local maximum (Robbins and

Monro, 1951).

We show in Section 3.3.4, under our assumptions of log-concavity of the posterior,

that finding θ̂ using SGD has a computational cost that is linear in N , and we can

achieve the required accuracy with just a single pass through the data. As we then

start SGLD-CV with this value for θ, we can view finding the centring value as a

replacement for the burn-in phase of the algorithm, and we find, in practice, that the

time to find a good θ̂ is often quicker than the time it takes for SGLD to burn-in.

One downside of this procedure is that the SGD algorithm, as well as the SGLD-CV

algorithm itself needs to be tuned, which adds to the tuning burden.

In comparison to SGLD-CV, the SAGA algorithm by Dubey et al. (2016) also uses

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 64

control variates to reduce the variance in the gradient estimate of SGLD. They show

that this reduces the MSE of SGLD. The main difference is that their algorithm uses

a previous state in the chain as the control variate, rather than an estimate of the

mode. This means that SAGA does not require the additional optimisation step, so

tuning should be easier. However we show in the experiments of Section 3.5, that the

algorithm gets more easily stuck in local stationary points, especially during burn-in.

For more complex examples, the algorithm was prohibitively slow to burn-in because

of this tendency to get trapped. Dubey et al. (2016) also do not show that SAGA has

favourable computational cost results.

3.3.2 Variance Reduction

The improvements of using the control variate gradient estimate (3.3.1) over the

standard (3.2.2) become apparent when we calculate the variances of each. For our

analysis, we make the assumption that the posterior is m-strongly-log-concave and

M -smooth, formally defined in Assumption 3.3.1. These assumptions are common

when analysing gradient based samplers that do not have an acceptance step (Durmus

and Moulines, 2017a; Dalalyan and Karagulyan, 2017). The assumptions imply that

mI 4 ∇2f(θ) 4 MI, for all θ ∈ Rd, where I is the identity matrix, and for two

matrices A1, A2 ∈ Rd×d, A1 4 A2 means that A2 −A1 is positive semi-definite. In all

the following analysis we use ‖·‖ to denote the Euclidean norm.

Assumption 3.3.1. Strongly log-concave and smooth posterior: there exists positive

constants m and M , such that the following conditions hold for the negative log-

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 65

posterior

f(θ)− f(θ′)−∇f(θ′)>(θ − θ′) ≥ m

2
‖θ − θ′‖2

(3.3.3)

‖∇f(θ)−∇f(θ′)‖ ≤M ‖θ − θ′‖ . (3.3.4)

for all θ, θ′ ∈ Rd.

We further need a smoothness condition for each of the likelihood terms in order

to bound the variance of our control-variate estimator of the gradient.

Assumption 3.3.2. Smoothness: there exists constants L0, . . . , LN such that

‖∇fi(θ)−∇fi(θ′)‖ ≤ Li ‖θ − θ′‖ , for i = 0, . . . , N.

Using Assumption 3.3.2 we are able to derive a bound on the variance of the

gradient estimate of SGLD-CV. This bound is formally stated in Lemma 3.3.3.

Lemma 3.3.3. Under Assumption 3.3.2. Let θk be the state of SGLD-CV at the

kth iteration, with stepsize h and centring value θ̂. Assume we estimate the gradient

using the control variate estimator with pi = Li/
∑N

j=1 Lj for i = 1, . . . , N . Define

ξk := ∇f̃(θk) − ∇f(θk), so that ξk measures the noise in the gradient estimate ∇f̃

and has mean 0. Then for all θk, θ̂ ∈ Rd, and all k = 1, . . . , K we have

E ‖ξk‖2 ≤

(∑N
i=1 Li

)2

n
E
∥∥∥θk − θ̂∥∥∥2

. (3.3.5)

Here the expectation is over both the noise in the minibatch choice, as well as the

distribution of θk. All proofs are relegated to the Appendix. It is simple to show that

Assumption 3.3.2 also implies that the log-posterior is M -smooth, with M =
∑N

i=0 Li,

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 66

i.e. condition (3.3.4) in Assumption 3.3.1 holds. This allows us to write

E ‖ξk‖2 ≤ M2

n
E
∥∥∥θk − θ̂∥∥∥2

.

We will use this form of the bound for the rest of the analysis. In many situations, it

is easier to work with a global bound on the smoothness constants, as in Assumption

3.3.4 below, and it is natural to choose pi = 1/N . We use pi = 1/N in all our

implementations in the experiments of Section 3.5.

In order to consider how SGLD-CV scales with N we need to make assumptions

on the properties of the posterior and how these change with N . To make discussions

concrete we will focus on the following, strong, assumption that each likelihood-term

in the posterior is L-smooth and l-strongly-log-concave. As we discuss later, our

results apply under weaker conditions.

Assumption 3.3.4. Assume there exists positive constants L and l such that fi sat-

isfies the following conditions

fi(θ)− fi(θ′)−∇fi(θ′)>(θ − θ′) ≥ l

2
‖θ − θ′‖2

‖∇fi(θ)−∇fi(θ′)‖ ≤ L ‖θ − θ′‖ .

for all i ∈ 0, . . . , N and θ, θ′ ∈ Rd.

Under this assumption the constants, m and M , of the posterior both increase

linearly with N , as shown by the following Lemma.

Lemma 3.3.5. Suppose Assumption 3.3.4 holds. Then f satisfies the following

f(θ)− f(θ′)−∇f(θ′)>(θ − θ′) ≥ l(N + 1)

2
‖θ − θ′‖2

‖∇f(θ)−∇f(θ′)‖ ≤ L(N + 1) ‖θ − θ′‖ .

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 67

Thus the log posterior is M-smooth and m-strongly-concave with parameters M =

(N + 1)L and m = (N + 1)l.

We can see that the bound on the gradient estimate variance in (3.3.5) depends

on the distance between θk and θ̂. Appealing to the Bernstein-von Mises theorem

(see e.g. Le Cam, 2012), under standard asymptotics, and provided h is small enough

(we make this more formal in the analysis to follow, but it must be at most O(1/N)),

we would expect the distance E
∥∥∥θk − θ̂∥∥∥2

to be O(1/N), if θ̂ is within O(N−1/2) of

the posterior mean, once the MCMC algorithm has burnt in. As M is O(N), this

suggests that E ‖ξk‖2 will be O(N).

To see the potential benefit of using control variates to estimate the gradient

in situations where N is large, we now compare this O(N) result for SGLD-CV,

with a result on the variance of the simple estimator, ∇f̂(θ). If we randomly pick

some data point index I and fix some point θ = ϑ, then define Vj(ϑ) to be the

empirical variance of ∂jfI(ϑ) over the dataset x; and set V (ϑ) =
∑d

j=1 Vj(ϑ). Then,

defining ξ̂(θ) = ∇f̂(θ)−∇f(θ), if we assume we are sampling the minibatch without

replacement then

E
∥∥∥ξ̂(ϑ)

∥∥∥2

=
N(N − n)

n
V (ϑ).

Now, suppose that as N → ∞, the posterior converges to some point mass at

θ0 ∈ Rd. Then we would expect that, for ϑ close to θ0, E
∥∥∥ξ̂(ϑ)

∥∥∥2

≈ N2

n
V (θ0), so that

the estimator will be O(N2). More precisely, as N →∞, if we assume we can choose

ε > 0 such that V (ϑ) ≥ σ2 > 0 for all ϑ in an epsilon ball around θ0; then there is a

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 68

constant c > 0 such that

n

N2
E
∥∥∥ξ̂(θ)∥∥∥2

→ c, as N →∞. (3.3.6)

This suggests using the estimate ∇f̃ , rather than ∇f̂ , could give an O(N) reduc-

tion in variance, and this plays a key part in the computational cost improvements

we show in the next section.

3.3.3 Computational Cost of SGLD-CV

In this section, we investigate how applying control variates to the gradient estimate

of SGLD reduces the computational cost of the algorithm.

In order to show this, we investigate the Wasserstein-Monge-Kantorovich (Wasser-

stein) distance W2 between the distribution defined by the SGLD-CV algorithm at

each iteration and the true posterior as N is changed. For two measures µ and ν de-

fined on the probability space (Rd, B(Rd)), and for a real number q ≥ 1, the distance

Wq is defined by

Wq(µ, ν) =

[
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

‖θ − θ′‖q dγ(θ, θ′)

] 1
q

,

where the infimum is with respect to all joint distributions Γ having µ and ν as

marginals. The Wasserstein distance is a natural distance measure to work with for

Monte Carlo algorithms, as discussed in Durmus and Moulines (2017a); Dalalyan and

Karagulyan (2017).

One issue when working with the Wasserstein distance is that it is not invariant

to transformations. For example scaling all entries of θ by a constant will scale the

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 69

Wasserstein distance by the same constant. A linear transformation of the parameters

will result in a posterior that is still strongly log-concave, but with different constants

m and M . To account for this we suggest measuring error by the quantity
√
mW2,

which is invariant to scaling θ by a constant. Theorem 1 of Durmus and Moulines

(2017a) bounds the standard deviation of any component of θ by a constant times

1/
√
m, so we can view the quantity

√
mW2 as measuring the error on a scale that is

relative to the variability of θ under the posterior distribution.

There are a number of quantities that will affect the performance of SGLD and

SGLD-CV. These include the step size h, the minibatch size n and the total number

of iterations K. In the analysis to follow we find conditions on h, n and K that

ensure the Wasserstein distance between the distribution defined by SGLD-CV and

the true posterior distribution π are less than some ε > 0. We use these conditions

to calculate the computational cost, measured as Kn, required for this algorithm to

reach the satisfactory error ε.

The first step is to find an upper bound on the Wasserstein distance between

SGLD-CV and the posterior distribution in terms of h, n, K and the constants m

and M declared in Assumption 3.3.1.

Proposition 3.3.6. Under Assumptions 3.3.1 and 3.3.2, let θK be the state of SGLD-

CV at the Kth iteration of the algorithm with stepsize h, initial value θ0, centring value

θ̂. Let the distribution of θK be νK. Denote the expectation of θ under the posterior

distribution π by θ̄. If h < 2m
2M2+m2 , then for all integers K ≥ 0,

W2(νK , π) ≤ (1− A)KW2(ν0, π) +
C

A
+

B2

C +
√
AB

,

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 70

where

A = 1−
√

2h2M

n
+ (1−mh)2,

B =

√
2h2M2

n

[
E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m

]
,

C = αM(h3d)
1
2 ,

α = 7
√

2/6 and d is the dimension of θk.

The proof of this proposition is closely related to the proof of Proposition 2 of

Dalalyan and Karagulyan (2017). The extra complication comes from our bound on

the variance of the estimator of the gradient; which depends on the current state of

the SGLD-CV algorithm, rather than being bounded by a global constant.

We can now use Proposition 3.3.6 to find conditions on K, h and n in terms of the

constants M and m such that the Wasserstein distance is bounded by some positive

constant ε0/
√
m at its final iteration K.

Theorem 3.3.7. Under Assumptions 3.3.1 and 3.3.2, let θK be the state of SGLD-CV

at the Kth iteration of the algorithm with stepsize h, initial value θ0, centring value

θ̂. Let the distribution of θK be νK. Denote the expectation of θ under the posterior

distribution π by θ̄. Define R := M/m. Then for any ε0 > 0, if the following

conditions hold:

h ≤ 1

m
max

{
n

2R2 + n
,

ε20
64R2α2d

}
, (3.3.7)

Kh ≥ 1

m
log

[
4m

ε20

(
E
∥∥θ0 − θ̄

∥∥2

2
+ d/m

)]
, (3.3.8)

n ≥ 64R2β

ε20
m

[
E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m

]
, (3.3.9)

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 71

where

β = max

{
1

2R2 + 1
,

ε20
64R2α2d

}
,

α = 7
√

2/6, and d is the dimension of θk, then W2(νK , π) ≤ ε0/
√
m.

As a corollary of this result, we have the following, which gives a bound on the

computational cost of SGLD, as measured by Kn, to achieve a required bound on the

Wasserstein distance.

Corollary 3.3.8. Assume that Assumptions 3.3.1 and 3.3.4 and the conditions of

Theorem 3.3.7 hold. Fix ε0 and define

C1 = min

{
2R2 + 1,

64R2α2d

ε20

}
.

and C2 := 64R2β/ε20. We can implement an SGLD-CV algorithm with W2(νK , π) <

ε0/
√
m such that

Kn ≤
[
C1 log

[
mE

∥∥θ0 − θ̄
∥∥2

+ d
]

+ C1 log
4

ε20
+ 1

] [
C2mE

∥∥∥θ̂ − θ̄∥∥∥2

+ C2d+ 1

]
.

The constants, C1 and C2, in the bound on Kn, depend on ε0 and R = M/m. It

is simple to show that both constants are increasing in R. Under Assumption 3.3.4

we have that R is a constant as N increases. Corollary 3.3.8 suggests that provided∥∥θ0 − θ̄
∥∥ < c/

√
m and

∥∥∥θ̂ − θ̄∥∥∥ < c/
√
m, for some constant c; then the computational

cost of SGLD-CV will be bounded by a constant. Since we suggest starting SGLD-

CV at θ̂, then under the conditions of Corollary 3.3.8, we just need this to hold for∥∥∥θ̂ − θ̄∥∥∥. Under Assumption 3.3.4 we have that m increases linearly with N , so this

corresponds to needing
∥∥∥θ̂ − θ̄∥∥∥ < c1/

√
N as N increases. Additionally, by Theorem

1 of Durmus and Moulines (2017a) we have that the variance of the posterior scales

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 72

like 1/m = 1/N as N increases, so we can interpret the 1/
√
N factor as being a

measure of the spread of the posterior as N increases. The form of the corollary

makes it clear that a similar argument would apply under weaker assumptions than

Assumption 3.3.4. We only need that the ratio of the log-concavity constants, M/m,

of the posterior remains bounded as N increases.

This corollary also gives insight into the computational penalty you pay for a poor

choice of θ0 or θ̂. The bound on the computational cost will increase logarithmically

with
∥∥θ0 − θ̄

∥∥ and linearly with
∥∥∥θ̂ − θ̄∥∥∥.

Similar bounds for the computational cost of SGLD have been derived (e.g., Na-

gapetyan et al., 2017; Chatterji et al., 2018). For example, Chatterji et al. (2018)

state the computational cost of SGLD in order to sample from a distribution with

W2 distance that is within ε distance of the target is O(1/ε2). For our required level

of accuracy, ε = ε0/
√
m, this corresponds to a bound on the computational cost that

is O(N), as compared to O(1) for SGLD-CV. However, a formal proof that SGLD is

O(N) requires showing that any implementation of SGLD with Kn that is sublinear

in N cannot reach arbitrary accuracy ε. This requires a lower bound on the W2 dis-

tance, rather than an upper bound. Whilst the result of Chatterji et al. (2018) is just

an upper bound on the W2 distance, there are empirical results that suggest a linear

computational cost for SGLD, including those in Nagapetyan et al. (2017), as well as

our own experiments in Section 3.5.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 73

3.3.4 Setup Costs

There are a number of known results on the convergence of SGD under the strongly

log-concave conditions of Assumption 3.3.1. These will allow us to quantify the setup

cost of finding the point θ̂ in this setting. More complex cases are explored empirically

in the experiments in Section 3.5. Lemma 3.3.9 due to Nemirovski et al. (2009)

quantifies the convergence of the final point of SGD.

Lemma 3.3.9. (Nemirovski et al., 2009) Under Assumption 3.3.1, let θ̂ denote

the final state of SGD with stepsizes hk = 1/(mk) after K iterations. Suppose

E
∥∥∥∇f̂(θ)

∥∥∥2

≤ D2 and denote the true mode of f by θ∗. Then it holds that

E
∥∥∥θ̂ − θ∗∥∥∥2

≤ 4D2

m2K
.

By using a similar argument to (3.3.6), we would expect that D2 is O(N2/n).

This means that under Assumption 3.3.4, we will need to process the full dataset

once before the SGD algorithm has converged to an estimate of the mode θ̂ within

O(N−
1
2) of the posterior mean. It follows that, for these cases there are two one

off O(N) setup costs, one to find an acceptable mode θ̂ and one to find the full

log-posterior gradient at this point ∇f(θ̂).

3.4 Post-processing Control Variates

Control variates can also be used to improve the inferences made from MCMC by

reducing the variance of the output directly. The general aim of MCMC is to estimate

expectations of functions, g(θ), with respect to the posterior π. Given an MCMC

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 74

sample θ(1), . . . , θ(M), from the posterior π, we can estimate E[g(θ)] unbiasedly as

E[g(θ)] ≈ 1

M

M∑
i=1

g(θ(i)).

Suppose there exists a function h(θ), which has expectation 0 under the posterior.

We can then introduce an alternative function,

g̃(θ) = g(θ) + h(θ),

where E[g̃(θ)] = E[g(θ)]. If h(·) is chosen so that it is negatively correlated with g(θ),

then the variance of g̃(θ) will be reduced considerably.

Mira et al. (2013) introduce a way of choosing h(θ) almost automatically by using

the gradient of the log-posterior. Choosing h(·) in this manner is referred to as a zero-

variance (ZV) control variate. Friel et al. (2016) showed that, under mild conditions,

we can replace the log-posterior gradient with an unbiased estimate and still have

a valid control variate. SGMCMC methods produce unbiased estimates of the log-

posterior gradient, and so it follows that these gradient estimates can be applied as

ZV control variates. For the rest of this section, we focus our attention on SGLD, but

these ideas are easily extendable to other stochastic gradient MCMC algorithms. We

refer to SGLD with these post-processing control variates as SGLD-ZV.

Given the setup outlined above, Mira et al. (2013) propose the following form for

h(θ),

h(θ) = ∆Q(θ) +∇Q(θ) · z,

here Q(θ) is a polynomial of θ to be chosen and z = ∇f(θ)/2. ∆ refers to the Laplace

operator ∂2

∂θ21
+ · · · + ∂2

∂θ2d
. This is a good form for h because Eπ[h(θ)] = 0. This

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 75

can be seen in two ways, the first is simply to use integration by parts. The second

is to notice that h(θ) = AQ(θ), where A is the infinitesimal generator of Langevin

diffusion, as defined in (2.3.4). If A is the generator of a continuous-time Markov

process with unique stationary distribution π; then mild conditions onA and Q ensure

that Eπ[AQ(θ)] = 0 (Barbour, 1988). In order to get the best variance reduction, we

simply have to optimize the coefficients of the polynomial Q(·). In practice, first or

second degree polynomials Q(θ) often provide good variance reduction (Mira et al.,

2013). For the rest of this section we focus on first degree polynomials, so Q(θ) = aT θ,

but the ideas are easily extendable to higher orders (Papamarkou et al., 2014).

The SGLD algorithm only calculates an unbiased estimate of∇f(θ), so we propose

replacing h(θ) with the unbiased estimate

ĥ(θ) = ∆Q(θ) +∇Q(θ) · ẑ, (3.4.1)

where ẑ = ∇f̂(θ)/2. By identical reasoning to Friel et al. (2016), ĥ(θ) is a valid

control variate. Note that ẑ can use any unbiased estimate, and as we will show

later, the better the gradient estimate, the better this control variate performs. The

expectation of ĥ is zero because E[h(θ)] = 0, and ẑ is an unbiased estimate of z. See

the Appendix for the full calculation.

As Q(θ) is a linear polynomial aT θ, so our SGLD-ZV estimate will take the fol-

lowing form

ĝ(θ) = g(θ) + aT ẑ. (3.4.2)

Similar to standard control variates (Ripley, 2009), we need to find optimal coefficients

â in order to minimise the variance of g̃(·), defined in (3.4.2). In our case, the optimal

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 76

Algorithm 2: SGLD-ZV

Input: SGLD Output: {θk,∇f̂(θk)}Kk=1

Set zk ← 1
2
∇f̂(θk)

Estimate Vz ← Var(z), Cg,z ← Cov(g(θ), z)

âj ← [Vz]
−1Cg,z

for k = 1 . . . K do

ĝ(θk)← g(θk) + âTzk

end

coefficients take the following form (Friel et al., 2016)

â = Var−1 (ẑ)Cov (ẑ, g(θ)) .

This means that SGLD already calculates all the necessary terms for these control

variates to be applied for free. So the post-processing step can simply be applied

once when the SGLD algorithm has finished, provided the full output plus gradient

estimates are stored. The full details are given in Algorithm 2. For higher order

polynomials, the calculations are much the same, but more coefficients need to be

estimated (Papamarkou et al., 2014).

The efficiency of ZV control variates in reducing the variance of our MCMC sample

is directly affected by using an estimate of the gradient rather than the truth. For

the remainder of this section, we investigate how the choice of the gradient estimate,

and the minibatch size n, affects the variance reduction.

Assumption 3.4.1. Var[g(θ)] <∞ and Var[ĥ(θ)] <∞. Eπ ‖∇fi(θ)‖2 is bounded by

some constant σ for all i = 0, . . . N , θ ∈ Rd.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 77

Theorem 3.4.2. Under Assumption 3.4.1, define the optimal variance reduction for

ZV control variates using the full gradient estimate to be R, and the optimal variance

reduction using SGLD gradient estimates to be R̂. Then we have that

R̂ ≥ R

1 + [σ(N + 1)]−1Eθ|x[ES ‖ξS(θ)‖2]
, (3.4.3)

where ξS(θ) is the noise in the log-posterior gradient estimate.

The proof of this result is given in the Appendix. An important consequence

of Theorem 3.4.2 is that if we use the standard SGLD gradient estimate, then the

denominator of (3.4.3) is O(n/N), so (provided the bound is tight) our variance

reduction diminishes as N gets large. However, if we use the SGLD-CV estimate

instead, then under standard asymptotics, the denominator of (3.4.3) is O(n), so the

variance reduction does not diminish with increasing dataset size. The same holds for

SAGA, and other control variate algorithms that reduce the gradient error to O(N).

It follows that for best results, we recommend using the ZV post-processing step after

running the SGLD-CV algorithm, especially for large N . The ZV post-processing

step can be immediately applied in exactly the same way to other stochastic gradient

MCMC algorithms, such as SGHMC and SGNHT (Chen et al., 2014; Ding et al.,

2014).

It is worth noting that there are some storage constraints for SGLD-ZV. This

algorithm requires storing the full MCMC chain, as well as the gradient estimates at

each iteration. So the storage cost is twice the storage cost of a standard SGMCMC

run. However, in some high dimensional cases, the required SGMCMC test statistic

is estimated on the fly using the most recent output of the chain and thus reducing

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 78

the storage costs. We suggest that if the dimensionality is not too high, then the

additional storage cost of recording the gradients to apply the ZV post-processing step

can offer significant variance reduction for free. However, for very high dimensional

parameters, the cost associated with storing the gradients may preclude the use of

the ZV step.

3.5 Experiments

In the experiments to follow we compare SGLD-CV to SGLD in a number of different

scenarios. We also compare to the method SAGA (Dubey et al., 2016), an alternative

variance reduction method for SGLD discussed at the end of Section 3.3.1. Perfor-

mance is measured by plotting the log predictive density of a held out test set at each

iteration. Some of our examples are high dimensional, so our performance measure

aims to reduce dimensionality while still capturing important quantities such as the

variance of the chain. To empirically demonstrate the scalability advantages, for each

experiment we fit the models with different proportions of the full dataset. For ex-

ample, in the logistic regression experiment we run the algorithms with dataset sizes

0.01N , 0.1N and N ; where N is the full dataset size. The pre-processing steps for

SGLD-CV are included in the plots, as a result we also include the burn-in of SGLD

and SAGA in the plots to contrast with this.

We also provide boxplots of the log predictive density of SGLD-CV at each it-

eration, before and after it has been post-processed using ZV control variates; to

demonstrate the variance reduction after ZV control variates are applied.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 79

0.01N 0.1N N

8

9

10

11

0 25 50 75 100 125 0 50 100 0 100 200 300
Time (secs)

A
ve

ra
ge

 lo
g

pr
ed

ic
tiv

e

method

SGLD

SGLD−CV

SAGA

Figure 3.5.1: Log predictive density over a test set every 10 iterations of SGLD,

SGLD-CV and SAGA fit to a logistic regression model as the proportion of data used

is varied (as compared to the full dataset size N).

A fixed stepsize scheme is used for all methods, and these are tuned using a grid

search (for SGLD-CV, both SGD and SGLD steps are tuned using a grid search).

Full details of the tuning constants, and alternative results using a decreasing stepsize

scheme are given in the Appendix. The minibatch size is fixed across all the dataset

sizes. All results are timed when the algorithms are run on four cores of a 2.3 GHz

Intel Xeon CPU.

3.5.1 Logistic Regression

We examine our approaches on a Bayesian logistic regression problem. The probability

of the ith output yi ∈ {−1,+1} is given by

p(yi|xi, β) =
1

1 + exp(−yiβTxi)
.

We use a Laplace prior for β with scale 1.

We used the cover type dataset (Blackard and Dean, 1999), which has 581012

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 80

●

●●

●

8.5

8.6

8.7

8.8

1 2 3 4 5
Random seed

Lo
g

pr
ed

ic
tiv

e
de

ns
ity

post

Original SGLD−CV

ZV Postprocessed

Figure 3.5.2: Plots of the log predictive density of an SGLD-CV chain when ZV post-

processing is applied versus when it is not, over 5 random runs. Logistic regression

model on the cover type dataset (Blackard and Dean, 1999).

observations, which we split into a training and test set. First we run SGLD, SGLD-

CV and SAGA on the dataset, all with minibatch size 500. The model is run with

three different dataset sizes, from about 1% of the full dataset to the full dataset

size N . The performance is measured by calculating the log predictive density on a

held-out test set every 10 iterations.

The results are plotted against time in Figure 3.5.1. The results illustrate the

efficiency gains of SGLD-CV over SGLD as the dataset size increases, as expected

from Theorem 3.3.8. SAGA outperforms SGLD-CV in this example because SAGA

converges quickly in this simple setting. In the more complicated examples to follow,

we show that SAGA can get stuck in local stationary points.

We also compare the log predictive density over a test set for SGLD-CV with

and without ZV post-processing, averaged over 5 runs at different seeds. We apply

the method to SGLD-CV rather than SGLD due to the favourable scaling results as

discussed after Theorem 3.4.2. Results are given in Figure 3.5.2. The plot shows

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 81

0.1N 0.5N N

1.00

1.25

1.50

0 25 50 75 100 0 50 100 150 0 50 100 150 200
Time (secs)

A
ve

ra
ge

 lo
g

pr
ed

ic
tiv

e

method

SGLD

SGLD−CV

SAGA

Figure 3.5.3: Log predictive density over a test set of SGLD, SGLD-CV and SAGA

fit to a Bayesian probabilistic matrix factorisation model as the number of users is

varied, averaged over 5 runs. We used the Movielens ml-100k dataset.

box-plots of the log predictive density of the SGLD sample before and after post-

processing using ZV control variates. The plots show good variance reduction of the

chain.

3.5.2 Probabilistic Matrix Factorisation

A common recommendation system task is to predict a user’s rating of a set of items,

given previous ratings and the ratings of other users. The end goal is to recommend

new items that the user will rate highly. Probabilistic matrix factorisation (PMF)

is a popular method to train these models (Mnih and Salakhutdinov, 2008). As

the matrix of ratings is sparse, over-fitting is a common issue in these systems, and

Bayesian approaches are a way to account for this (Chen et al., 2014; Ahn et al.,

2015).

In this experiment, we apply SGLD, SGLD-CV and SAGA to a Bayesian PMF

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 82

●●
●●●

●

●
●●

●

●

●

●●●●●●●
●
●●
●●●●●●●●
●●●

●
●●
●●●●●●
●
●●
●●
●
●●●●
●
●

●

●

●

●●●●●●●

●
●●●● ●●●●●●

●●

●
●

●●

●●●●●●●●
●●●●
●●●
●●

●●●●●
●
●
●●●●●●●●

●●
●
●●●
●
●●
●●

●

●
●●●●●
●
●●●●●●●●

●
●●●●
●
●●
●

●
●

●●●
●●●
●

●

●●●●●●●●
●
●●
●●●●●●●
●●●
●
●●●●
●
●●
●

0.9570

0.9575

0.9580

1 2 3 4 5
Random seed

Lo
g

pr
ed

ic
tiv

e
de

ns
ity

post

Original SGLD−CV

ZV Postprocessed

Figure 3.5.4: Plots of the log predictive density of an SGLD-CV chain when ZV post-

processing is applied versus when it is not, over 5 random runs. SGLD-CV algorithm

applied to a Bayesian probabilistic matrix factorisation problem using the Movielens

ml-100k dataset.

(BPMF) problem, using the formulation of Chen et al. (2014). The data for BPMF

is a matrix of ratings R, of size L×M , where L is the number of users and M is the

number of items. Each entry contains a rating of a particular item by that user, with

a lot of missing entries. The aim is to predict the values of the missing entries. This

is done by factorising R into two matrices U and V , so that R ≈ UTV , where U and

V are size D × L and D ×M respectively. Here D is some user specified parameter,

which we choose to be 20. We use the Movielens dataset ml-100k1, which contains

100,000 ratings from almost 1,000 users and 1,700 movies. We use batch sizes of 5,000,

with a larger minibatch size chosen due to the high-dimensional parameter space. As

before, we compare performance by calculating the log predictive density on a held

out testset every 10 iterations. Full details of chosen hyperparameters are detailed in

the Appendix.

1https://grouplens.org/datasets/movielens/100k/

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 83

In this case, we vary the dataset size by limiting the number of users in the dataset,

ranging from 100 users to the full 943. The results are given in Figure 3.5.3. In this

example SAGA converges slowly in comparison even to SGLD. In fact the algorithm

converges slowly in all our more complex experiments. The problem is particularly

bad for large N . This is likely a result of the starting point for SAGA being far from

the posterior mode. Empirically, we found that the gradient direction and magnitude

can update very slowly in these cases. This is not an issue for simpler examples such

as logistic regression, but for more complex examples we believe it could be a sign

that the algorithm is getting stuck in, or moving slowly through, local modes where

the gradient is comparatively flatter. The problem appears to be made worse for large

N when it takes longer to update gα. This is an example where the optimisation step

of SGLD-CV is an advantage, as the algorithm is immediately started close to the

posterior mode and so the efficiency gains are quickly noted. This issue with SAGA

could be related to the starting point condition for SGLD-CV as detailed in Corollary

3.3.8. Due to the form of the Wasserstein bound, it is likely that SAGA would have

a similar starting point condition. It appears that the speed of the burn-in of SGLD

becomes more competetive with the initial SGD step for SGLD-CV as the dataset size

increases. Despite this, a close look at the plots still shows good variance reduction

for SGLD-CV and better log predictive density scores.

Once again we compare the log predictive density over a test set for SGLD-CV

with and without ZV post-processing when applied to the Bayesian PMF problem,

averaged over 5 runs at different seeds. Results are given in Figure 3.5.2. The plot

shows box-plots of the log predictive density of the SGLD sample before and after

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 84

0.1N 0.6N N

700

750

800

850

0 5000 10000 15000 0 20000 40000 60000 0 25000 50000 75000 100000
Time (secs)

P
er

pl
ex

ity

method

SGLD

SGLD−CV

SAGA

Figure 3.5.5: Perplexity of SGLD and SGLD-CV fit to an LDA model as the data size

N is varied, averaged over 5 runs. The dataset consists of scraped Wikipedia articles.

post-processing using ZV control variates. The plots show excellent variance reduction

of the chain.

3.5.3 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is an example of a topic model used to describe

collections of documents by sets of discovered topics (Blei et al., 2003). The input

consists of a matrix of word frequencies in each document, which is very sparse,

motivating the use of a Bayesian approach to avoid over-fitting.

Due to storage constraints, it was not feasible to apply SGLD-ZV to this prob-

lem, so we focus on SGLD-CV. We scraped approximately 80,000 documents from

Wikipedia, and used the 1,000 most common words to form our document-word ma-

trix input. We used a similar formulation to Patterson and Teh (2013), though we

did not use a Riemannian sampler, which should test the methods due to the gradient

instability. We also instead use the expanded-natural parameterisation, since accord-

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 85

ing to empirical results by Patterson and Teh (2013) that was the best performing

parameterisation for the non-Riemannian case. We set the number of topics K to be

20. Full details of hyperparameters are given in the Appendix.

Once again in our comparison of SGLD, SGLD-CV and SAGA, we vary the dataset

size, this time by changing the number of documents used in fitting the model, from

10,000 to the full 81,538. We use batch sizes of 50 documents. We measure the

performance of LDA using the perplexity on held out words from each document, a

standard performance measure for this model, for more detail see Patterson and Teh

(2013). The results are given in Figure 3.5.5. Here the scalability improvements of

using SGLD-CV over SGLD are clear as the dataset size increases. This time the

batch size is small compared to the dataset size, which probably makes the scalability

improvements more obvious. The sudden drop in perplexity for the SGLD-CV plot

occurs at the switch from the stochastic optimisation step to SGLD-CV. This is likely

a result of the algorithm making efficient use of the Gibbs step to simulate the latent

topics.

An interesting aspect of this problem is that it appears to have a pronounced local

mode where each of the methods become trapped (this can be seen by the blip in the

plot at a perplexity of around 850). SGLD-CV is the first to escape followed by SGLD,

but SAGA takes a long time to escape. This is probably due to a similar aspect as

the one discussed in the previous experiment (Section 3.5.2). Similar to the previous

experiment, we find that while SAGA seems trapped, its gradient estimate changes

very little, which could be a sign that the algorithm is moving very slowly through

an area with a relatively flat gradient, such as a local mode. A simple solution would

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 86

be to start SAGA closer to the mode using a stochastic optimisation scheme.

3.6 Discussion

We have used control variates for stochastic gradient MCMC to reduce the variance

in the gradient estimate. We have shown that in the strongly log-concave setting, and

under standard asymptotics, this proposed SGLD-CV algorithm reduces the com-

putational cost of stochastic gradient Langevin dynamics to O(1). Our theoretical

results give results on the computational cost under non-standard asymptotics also,

and show there should be some benefit provided distance between the centring value

θ̂ and the posterior mean inversely depends on N . The algorithm relies on a setup

cost that estimates the posterior mode which replaces the burn-in of SGLD. We have

explored the cost of this step both theoretically and empirically. We have empirically

supported these scalability results on a variety of interesting and challenging prob-

lems from the statistics and machine learning literature using real world datasets. The

simulation study also revealed that SGLD-CV was less susceptible to getting stuck in

local stationary points than an alternative method that performs variance reduction

using control variates, SAGA (Dubey et al., 2016). An interesting future extension

would be to reduce the start-up cost of SGLD-CV, along with introducing automatic

step-size tuning.

We showed that stochastic gradient MCMC methods calculate all the informa-

tion needed to apply zero-variance post-processing control variates. This improves

the inference of the output by reducing its variance. We explored how the variance

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 87

reduction is affected by the minibatch size and the gradient estimate, and show us-

ing SGLD-CV or SAGA rather than SGLD can achieve a better variance reduction.

We demonstrated this variance reduction empirically. A limitation of these post-

processing control variates is they require the whole chain, which can lead to high

storage costs if the dimensionality of the sample space is high. Future work could

explore ways to reduce the storage costs of stochastic gradient MCMC.

3.7 Acknowledgements

The first author gratefully acknowledges the support of the EPSRC funded EP/L015692/1

STOR-i Centre for Doctoral Training. This work was supported by EPSRC grants

EP/K014463/1, EP/R018561/1, EP/S00159X/1 and EP/R01860X/1 and ONR Grant

N00014-15-1-2380 and NSF CAREER Award IIS-1350133.

Chapter 4

sgmcmc: An R Package for

Stochastic Gradient Markov Chain

Monte Carlo

4.1 Introduction

This article introduces sgmcmc, an R package (R Development Core Team, 2008)

for scalable Bayesian inference on a wide variety of models using stochastic gradient

Markov chain Monte Carlo (SGMCMC). A disadvantage of most traditional MCMC

methods are that they require calculations over the full dataset at each iteration;

meaning the methods are prohibitively slow for large datasets. SGMCMC methods

provide a solution to this issue. The methods use only a subset of the full dataset,

known as a minibatch, at each MCMC iteration. While the methods no longer target

the true posterior, they instead produce accurate approximations to the posterior at

88

CHAPTER 4. AN R PACKAGE FOR SGMCMC 89

a reduced computational cost.

The sgmcmc package implements a number of popular SGMCMC samplers includ-

ing stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011), stochas-

tic gradient Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014) and stochastic

gradient Nosé-Hoover thermostats (SGNHT) (Ding et al., 2014). Recent work has

shown how control variates can be used to reduce the computational cost of SGMCMC

algorithms (Baker et al., 2018; Nagapetyan et al., 2017). For each of the samplers

implemented in the package, there is also a corresponding control variate sampler

providing improved sampling efficiency.

Performing statistical inference on a model using SGMCMC requires calculating

the gradient of the log likelihood and log priors. Calculating gradients by hand is often

time consuming and error prone. One of the major advantages of sgmcmc is that gradi-

ents are calculated within the package using automatic differentiation (Griewank and

Walther, 2008). This means that users need only specify the log likelihood function

and log prior for their model. The package calculates the gradients using TensorFlow

(TensorFlow Development Team, 2015), which has recently been made available for

R (Allaire et al., 2016). TensorFlow is an efficient library for numerical computation

which can take advantage of a wide variety of architectures, as such, sgmcmc keeps

much of this efficiency. Both sgmcmc and TensorFlow are available on CRAN, so

sgmcmc can be installed by using the standard install.packages function. Though

after the TensorFlow package has been installed, the extra install tensorflow()

function needs to be run, which installs the required Python implementation of Ten-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 90

sorFlow.1 The sgmcmc package also has a website with vignettes, tutorials and an

API reference.2

SGMCMC methods have become popular in the machine learning literature but

less so in the statistics community. We partly attribute this to the lack of available

software. To the best of our knowledge, there are currently no R packages available

for SGMCMC, probably the most popular programming language within the statistics

community. The only package we are aware of which implements scalable MCMC is

the Python package edward (Tran et al., 2016). This package implements both SGLD

and SGHMC, but does not implement SGNHT or any of the control variate methods.

Section 4.2 introduces MCMC and discusses the software currently available for

implementing MCMC algorithms, we discuss the scenarios where sgmcmc is designed

to be used. In Section 4.3 we review the methodology behind the SGMCMC methods

implemented in sgmcmc. Section 4.4 provides a brief introduction to TensorFlow. Sec-

tion 4.5 overviews the structure of the package, as well as details of how the algorithms

are implemented. Section 4.6 presents a variety of example simulations. Finally, Sec-

tion 4.7 provides a discussion on benefits and drawbacks of the implementation, as

well as how we plan to extend the package in the future.

1More information on installing TensorFlow for R can be found at https://tensorflow.

rstudio.com/.
2sgmcmc website at https://stor-i.github.io/sgmcmc

https://tensorflow.rstudio.com/
https://tensorflow.rstudio.com/
https://stor-i.github.io/sgmcmc

CHAPTER 4. AN R PACKAGE FOR SGMCMC 91

4.2 Introduction to MCMC and Available Soft-

ware

Suppose we have a dataset of size N , with data x = {xi}Ni=1, where xi ∈ X for some

space X . We denote the probability density of xi as p(xi|θ), where θ ∈ Θ ⊆ Rp are

model parameters to be inferred. We assign a prior density p(θ) to the parameters

and the resulting posterior is then p(θ|x) ∝ p(θ)
∏N

i=1 p(xi|θ).

Often the posterior can only be calculated up to a constant of proportionality Z.

In practice Z is rarely analytically tractable; so MCMC provides a way to construct a

Markov chain using only the unnormalized posterior density h(θ) := p(θ)
∏N

i=1 p(xi|θ).

The Markov chain is designed so that its stationary distribution is the posterior p(θ|x).

The result (once the chain has converged) is a sample {θt}>t=1 from the posterior,

though this sample is not independent. A downside of these traditional MCMC algo-

rithms is that they require the evaluation of the unnormalized density h(θ) at every

iteration. This results in an O(N) cost per iteration. Thus MCMC becomes pro-

hibitively slow on large datasets.

The Metropolis-Hastings algorithm is a type of MCMC algorithm. New proposed

samples θ′ are drawn from a proposal distribution q(θ′|θ) and then accepted with

probability,

min

{
1,
p(θ′|x)q(θ|θ′)
p(θ|x)q(θ′|θ)

}
. (4.2.1)

Notice that the normalising constant Z cancels in (4.2.1), so we can interchange the

posterior p(θ|x) with h(θ). The efficiency of the Metropolis-Hastings algorithm is

dependent on the choice of proposal distribution, q.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 92

There are a number of proposals for the Metropolis-Hastings algorithm which

can have a very high acceptance rate. Some examples are the Metropolis-adjusted

Langevin algorithm (MALA; see e.g., Roberts and Rosenthal (1998)) and Hamilto-

nian Monte Carlo (HMC; see Neal (2010)). The reason these proposals achieve such

high acceptance rates is that they approximate a continuous diffusion process whose

stationary distribution is p(θ|x). As an example, consider the MALA algorithm. The

MALA algorithm uses a Euler discretisation of the Langevin diffusion as the proposal,

q(θ′|θ) = N
(
θ′ | θ +

ε

2
∇θ log p(θ|x), εI

)
, (4.2.2)

where N (θ|µ,Σ) denotes a multivariate Normal density evaluated at θ with mean µ

and variance Σ; I is simply the identity matrix; ε is a tuning parameter referred to

as the stepsize. Discretising the diffusion introduces an approximation error, which

is corrected by the Metropolis-Hastings acceptance step (4.2.1). This means that as

ε→ 0, we tend back towards the exact, continuous diffusion and the acceptance rate

is 1. However this would result in a Markov chain that never moves. Thus picking ε

is a balance between a high acceptance rate and good mixing.

There are a number of general purpose samplers for MCMC that fulfil different

purposes to sgmcmc. The most popular samplers are Stan, BUGS and JAGS (Car-

penter et al., 2017; Plummer, 2003; Lunn et al., 2000). The samplers BUGS and

JAGS implement automated Gibbs sampling. These samplers work with both contin-

uous and discrete parameter spaces and can be highly efficient. However because the

samplers rely on Gibbs sampling, conjugate priors need to be used; also the samplers

are not efficient when there is high correlation between the parameters (Carpenter

CHAPTER 4. AN R PACKAGE FOR SGMCMC 93

0.00

0.05

0.10

10^3 10^4 10^5 10^6
Number of Observations

K
L

di
ve

rg
en

ce

Method

sgmcmc

Stan 20

40

60

10^3 10^4 10^5 10^6
Number of Observations

R
un

 ti
m

e
(s

ec
s)

Method

sgmcmc

Stan

Figure 4.2.1: KL divergence (left) and run time (right) of the standard Stan algorithm

and the sgldcv algorithm of the sgmcmc package when each are used to sample from

data following a standard Normal distribution as the number of observations are

increased.

et al., 2017). The package Stan implements state of the art Hamiltonian Monte Carlo

techniques, which means non-conjugate priors can be used, and that the sampler is

more robust when there is correlation between parameters. However the package can-

not perform inference on discrete parameters, and requires that these are integrated

out of the model.

The sgmcmc package aims to fill a gap when the dataset is large enough that other

general purpose MCMC samplers such as Stan, BUGS and JAGS cannot be run or

run prohibitively slowly. In the packages Stan, BUGS and JAGS, properly speci-

fied models will define a Markov chain whose stationary distribution is the posterior

distribution. However a major problem with these methods are that as the number

of observations gets large the algorithms run slowly. This has become a problem as

dataset sizes have been increasing. The reason these methods are slow when running

on large datasets are because they require a calculation over the full dataset at each

iteration. The methods implemented in sgmcmc aim to account for this issue by only

CHAPTER 4. AN R PACKAGE FOR SGMCMC 94

using a subset of the dataset at each iteration. The main downside being that the

stationary distribution is no longer the true posterior, just a close approximation.

However, as the dataset size increases, the main tuning constant in sgmcmc, known

as the stepsize, can be set smaller and the approximation to the posterior improves.

Compared to Stan, BUGS and JAGS; sgmcmc offers significant computational advan-

tages for Bayesian modelling with large datasets, but like Stan, a downside of sgmcmc

is it requires that discrete parameters are integrated out. The package also requires

more tuning than other general purpose samplers since satisfactory results for tuning

these methods are still under development.

Figure 4.2.1 demonstrates in which scenarios practitioners may find sgmcmc useful.

The standard Stan sampler and the sgldcv algorithm of the sgmcmc package are

used to sample from the posterior of data drawn from a standard Normal with a

N(0, 10) prior. The KL divergence between the MCMC sample and the true posterior

is calculated, and the plots show how this and the run time changes as the number

of observations are increased. Since both Stan and TensorFlow models need to be

compiled, we recompile the models each time they are run to keep the comparison

fair; but it is worth mentioning that the Stan run time is much quicker for the small

observation models if precompiled. We can see the run time of Stan increasing rapidly

as the number of observations is increased, while the run time of the sgmcmc algorithm

increases more slowly. This is a very simple model, used so that the KL divergence

can be calculated exactly. As the model complexity increases the run time of Stan can

quickly become unmanageable for large datasets. On the other hand, we can see that

the KL divergence of the sgmcmc algorithm for this example is poor compared with

CHAPTER 4. AN R PACKAGE FOR SGMCMC 95

Stan for a small number of observations. However as the dataset size increases the

KL divergence for the sgmcmc algorithm becomes much more reasonable compared

with Stan. Thus sgmcmc is best used when the dataset size is slowing down the run

time of the other general purpose algorithms, and practitioners can safely trade-off a

small amount of accuracy in order to gain significant speed-ups.

4.3 Stochastic Gradient MCMC

Many popular MCMC proposal distributions, including HMC and MALA, described

in (4.2.2), require the calculation of the gradient of the log posterior at each iteration,

which is an O(N) calculation. Stochastic gradient MCMC methods get around this

by replacing the true gradient with the following unbiased estimate

̂∇θ log p(θt|x) := ∇θ log p(θt) +
N

n

∑
i∈St

∇θ log p(xi|θt), (4.3.1)

calculated on some subset of the all observations St ⊂ {1, . . . , N}, known as a mini-

batch, with |St| = n.

Calculating the Metropolis-Hastings acceptance step (4.2.1) is another O(N) cal-

culation. To get around this, SGMCMC methods set the tuning constants such that

the acceptance rate will be high, and remove the acceptance step from the algorithm

altogether. By ignoring the acceptance step, and estimating the log posterior gradient,

the per iteration cost of SGMCMC algorithms is O(n), where n is the minibatch size.

However, the algorithm no longer targets the true posterior but an approximation.

There has been a body of theory exploring how these methods perform in different

settings. Similar to MALA, the algorithms rely on a stepsize parameter ε. Some of

CHAPTER 4. AN R PACKAGE FOR SGMCMC 96

the algorithms have been shown to weakly converge as ε→ 0.

4.3.1 Stochastic Gradient Langevin Dynamics

SGLD, first introduced by Welling and Teh (2011), is an SGMCMC approximation

to the MALA algorithm. By substituting (4.3.1) into the MALA proposal equation

(4.2.2), we arrive at the following update for θ

θt+1 = θt +
εt
2

̂∇θ log p(θt|x) + ζt, (4.3.2)

where ζt ∼ N (0, εt).

Welling and Teh (2011) noticed that as εt → 0 this update will sample from the

true posterior. Although the algorithm mixes slower as ε gets closer to 0, so setting

the stepsize is a trade-off between convergence speed and accuracy. This motivated

Welling and Teh (2011) to suggest setting εt to decrease to 0 as t increases. There is

a body of theory that investigates the SGLD approximation to the true posterior (see

e.g., Teh et al., 2016; Sato and Nakagawa, 2014; Vollmer et al., 2016). In particular,

SGLD is found to converge weakly to the true posterior distribution asymptotically

as εt → 0. The mean squared error of the algorithm is found to decrease at best

with rate O(T−1/3). In practice, the algorithm tends to mix poorly when ε is set to

decrease to 0 (Vollmer et al., 2016), so in our implementation we use a fixed stepsize

which has been shown to mix better empirically. Theoretical analysis for this case is

provided in Vollmer et al. (2016). The tuning constant ε, referred to as the stepsize

is a required argument in the package. It affects the performance of the algorithm

considerably.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 97

4.3.2 Stochastic Gradient Hamiltonian Monte Carlo

The stochastic gradient Hamiltonian Monte Carlo algorithm (SGHMC) (Chen et al.,

2014) is similar to SGLD, but instead approximates the HMC algorithm (Neal, 2010).

To ensure SGHMC is O(n), the same unbiased estimate to the log posterior gradient is

used (4.3.1). SGHMC augments the parameter space with momentum variables ν and

samples approximately from a joint distribution p(θ, ν|x), whose marginal distribution

for θ is the posterior of interest. The algorithm performs the following updates at

each iteration

θt+1 = θt + νt,

νt+1 = (1− α)νt + ε ̂∇θ log p(θt+1|x) + ζt,

where ζt ∼ N (0, 2[α − β̂t]ε); ε and α are tuning constants and β̂t is proportional to

an estimate of the Fisher information matrix. In our current implementation, we

simply set β̂t := 0, as in the experiments of the original paper by Chen et al. (2014).

In future implementations, we aim to estimate β̂t using a Fisher scoring estimate

similar to Ahn et al. (2012). Often the dynamics are simulated repeatedly L times

before the state is stored, at which point ν is resampled. The parameter L can

be included in our implementation. The tuning constant ε is the stepsize and is a

required argument in our implementation, as for SGLD its value affects performance

considerably. The constant α tends to be fixed at a small value in practice. As a

result, in our implementation it is an optional argument with default value 0.01.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 98

4.3.3 Stochastic Gradient Nosé–Hoover Thermostat

Ding et al. (2014) suggest that the quantity β̂t in SGHMC is difficult to estimate in

practice. They appeal to analogues between these proposals and statistical physics in

order to suggest a set of updates which do not need this estimation to be made. Once

again Ding et al. (2014) augment the space with momentum parameters ν. They

replace the tuning constant α with a dynamic parameter αt known as the thermostat

parameter. The algorithm performs the following updates at each iteration

θt+1 = θt + νt, (4.3.3)

νt+1 = (1− αt)νt + ε ̂∇θ log p(θt+1|x) + ζt, (4.3.4)

αt+1 = αt +

[
1

p
(νt+1)>(νt+1)− ε

]
. (4.3.5)

Here ζt ∼ N (0, 2aε); ε and a are tuning parameters to be chosen and p is the dimension

of θ. The update for α in (4.3.5) requires a vector dot product, it is not obvious how

to extend this when θ is higher order than a vector, such as a matrix or tensor. In

our implementation, when θ is a matrix or tensor we use the standard inner product

in those spaces (Abraham et al., 1988). The tuning constant ε is the stepsize and

is a required argument in our implementation, as again its value affects performance

considerably. The constant a, similarly to α in SGHMC, tends to be fixed at a small

value in practice (Ding et al., 2014). As a result, in our implementation it is an

optional argument with default value 0.01.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 99

4.3.4 Stochastic Gradient MCMC with Control Variates

A key feature of SGMCMC methods is replacing the log posterior gradient calculation

with an unbiased estimate. The unbiased gradient estimate, which can be viewed as a

noisy version of the true gradient, can have high variance when estimated using a small

minibatch of the data. Increasing the minibatch size will reduce the variance of the

gradient estimate, but increase the per iteration computational cost of the SGMCMC

algorithm. Recently control variates (Ripley, 2009) have been used to reduce the

variance in the gradient estimate of SGMCMC (Dubey et al., 2016; Nagapetyan et al.,

2017; Baker et al., 2018). Using these improved gradient estimates have been shown

to lead to improvements in the MSE of the algorithm (Dubey et al., 2016), as well as

its computational cost (Nagapetyan et al., 2017; Baker et al., 2018).

We implement the formulation of Baker et al. (2018), who replace the gradient

estimate ̂∇θ log p(θ|x) with

˜∇θ log p(θ|x) := ∇θ log p(θ̂|x) + ̂∇θ log p(θ|x)− ̂∇θ log p(θ̂|x), (4.3.6)

where θ̂ is an estimate of the posterior mode. This method requires the burn-in phase

of MCMC to be replaced by an optimisation step which finds θ̂ := argmaxθ log p(θ|x).

There is then an O(N) preprocessing step to calculate ∇θ log p(θ̂|x), after which the

chain can be started from θ̂ resulting in a negligible mixing time. Baker et al. (2018)

and Nagapetyan et al. (2017) have shown that there are considerable improvements to

the computational cost of SGLD when (4.3.6) is used in place of (4.3.1). In particular

they showed that standard SGLD requires setting the minibatch size n to be O(N)

for arbitrarily good performance; while using control variates requires an O(N) pre-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 100

processing step, but after that a batch size of O(1) can be used to reach the desired

performance. Baker et al. (2018) also showed empirically that this particular formu-

lation can lead to a reduction in the burn-in time compared with standard SGLD and

the formulation of (Dubey et al., 2016), which tended to get stuck in local stationary

points. This is because in complex scenarios the optimisation step is often faster than

the burn-in time of SGMCMC. The package sgmcmc includes control variate versions

of all the SGMCMC methods implemented: SGLD, SGHMC and SGNHT.

4.4 Brief TensorFlow Introduction

TensorFlow (TensorFlow Development Team, 2015) is a software library released by

Google. The tool was initially designed to easily build deep learning models; but the

efficient design and excellent implementation of automatic differentiation (Griewank

and Walther, 2008) has made it useful more generally. This package is built on

TensorFlow, and while we have tried to make the package as easy as possible to use,

the requirement for some knowledge of TensorFlow is unavoidable; especially when

declaring the log likelihood and log prior functions, or for high dimensional chains

which will not fit into memory. With this in mind, we provide a brief introduction

to TensorFlow in this section. This should provide enough knowledge for the rest of

the article. A more detailed introduction to TensorFlow for R can be found at Allaire

et al. (2016).

Any procedure written in TensorFlow follows three main steps. The first step is

to declare all the variables, constants and equations required to run the algorithm. In

CHAPTER 4. AN R PACKAGE FOR SGMCMC 101

the background, these declarations enable TensorFlow to build a graph of the possi-

ble operations, and how they are related to other variables, constants and operations.

Once everything has been declared, the TensorFlow session is begun and all the vari-

ables and operations are initialised. Then the previously declared operations can be

run as required; typically these will be sequential and will be run in a for loop.

4.4.1 Declaring TensorFlow Tensors

Everything in TensorFlow, including operations, are represented as a tensor; which is

basically a multi-dimensional array. There are a number of ways of creating tensors:

• tf$constant(value) – create a constant tensor with the same shape and values

as value. The input value is generally an R array, vector or scalar. The most

common use for this in the context of the package is for declaring constant

parameters when declaring log likelihood and log prior functions.

• tf$Variable(value) – create a tensor with the same shape and values as value.

Unlike tf$constant, this type of tensor can be changed by a declared operation.

The input value is generally an R array, vector or scalar.

• tf$placeholder(datatype, shape) – create an empty tensor of type datatype

and dimensions shape which can be fed all or part of a dataset, this is useful

when declaring operations which rely on data which can change. When you have

storage constraints (see Section 4.5.2) you can use a placeholder to declare test

functions that rely on a test dataset. The datatype should be a TensorFlow

data type, such as tf$float32; the shape should be an R vector or scalar, such

CHAPTER 4. AN R PACKAGE FOR SGMCMC 102

as c(100,2).

• operation – an operation declares an operation on previously declared tensors.

These use TensorFlow defined functions, such as those in its math library. This

is essentially what you are declaring when coding the logLik and logPrior

functions. The params input consists of a list of tf$Variables, representing

the model parameters to be inferred. The dataset input consists of a list

of tf$placeholder tensors, representing the minibatch of data fed at each

iteration. Your job is to declare functions that return an operation on these

tensors that define the log likelihood and log prior.

4.4.2 TensorFlow Operations

TensorFlow operations take other tensors as input and manipulate them to reach the

desired output. Once the TensorFlow session has begun, these operations can be run

as needed, and will use the current values for its input tensors. For example, we could

declare a Normal density tensor which manipulates a tf$Variable tensor represent-

ing the parameters and a tf$placeholder tensor representing the current data point.

The tensor could then use the TensorFlow tf$contrib$distributions$Normal ob-

ject to return a tensor object of the current value for a Normal density given the

current parameter value and the data point that’s fed to the placeholder. We can

break this example down into three steps. First we declare the tensors that we re-

quire:

CHAPTER 4. AN R PACKAGE FOR SGMCMC 103

library("tensorflow")

Declare required tensors

loc = tf$Variable(rep(0, 2))

dataPoint = tf$placeholder(tf$float32, c(2))

scaleDiag = tf$constant(c(1, 1))

Declare density operation tensor

distn = tf$contrib$distributions$MultivariateNormalDiag(loc, scaleDiag)

dens = distn$prob(dataPoint)

Here we have declared a tf$Variable tensor to hold the location parameter; a

tf$placeholder tensor which will be fed the current data point; the scale parameter

is fixed so we declare this as a tf$constant tensor. Next we declare the operation

which takes the inputs we just declared and returns the Normal density value. The

first line which is assigned to distn creates a MultivariateNormalDiag object, which

is linked to the loc and scaleDiag tensors. Then dens evaluates the density of

this distribution. The dens variable is now linked to the tensors dataPoint and

scaleDiag, so if it is evaluated it will use the current values of those tensors to

calculate the density estimate. Next we begin the TensorFlow session:

Begin TensorFlow session, initialize variables

sess = tf$Session()

sess$run(tf$global_variables_initializer())

CHAPTER 4. AN R PACKAGE FOR SGMCMC 104

The two lines we just ran starts the TensorFlow session and initialises all the

tensors we just declared. The TensorFlow graph has now been built and no new

tensors can now be added. This means that all operations need to be declared before

they can be evaluated. Now the session is started we can run the operation dens we

declared given current values for dataPoint and loc as follows:

Evaluate density, feeding random data point to placeholder

x = rnorm(2)

out = sess$run(dens, feed_dict = dict(dataPoint = x))

print(paste0("Density value for x is ", out))

Get another random point and repeat!

x = rnorm(2)

out = sess$run(dens, feed_dict = dict(dataPoint = x))

print(paste0("Density value for x is ", out))

Since dataPoint is a placeholder, we need to feed it values each time. In the

block of code above we feed dataPoint a random value simulated from a standard

Normal. The sess$run expression then evaluates the current Normal density value

given loc and dataPoint.

As mentioned earlier, this is essentially what is happening when you are writing

the logLik and logPrior functions. These functions will be fed a list of tf$Variable

objects to the params input, and a list of tf$placeholder objects to the dataset

input. The output of the function will then be declared as a TensorFlow opera-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 105

tion. This allows the gradient to be calculated automatically, while maintaining the

efficiencies of TensorFlow.

TensorFlow implements a lot of useful functions to make building these operations

easier. For example a number of distributions are implemented at tf$contrib$distributions,3

(e.g., tf$contrib$distributions$Normal and tf$contrib$distributions$Gamma).

TensorFlow also has a comprehensive math library which provides a variety of useful

tensor operations.4 For examples of writing TensorFlow operations see the worked

examples in Section 4.5 or the sgmcmc vignettes.

4.5 Package Structure and Implementation

The package has 6 main functions. The first three: sgld, sghmc and sgnht will

implement SGLD, SGHMC and SGNHT, respectively. The other three: sgldcv,

sghmccv and sgnhtcv implement the control variate versions of SGLD, SGHMC and

SGNHT, respectively. All of these are built on the TensorFlow library for R, which

enables gradients to be automatically calculated and efficient computations to be

performed in high dimensions. The usage for these functions is very similar, with the

only differences in input being tuning parameters. These main functions are outlined

in Table 4.5.1

3For full API details see https://www.tensorflow.org/api_docs/python/tf/contrib/

distributions though note this is for Python, so the . object notation needs to

be replaced by $, for example tf.contrib.distributions.Normal would be replaced by

tf$contrib$distributions$Normal.
4See https://www.tensorflow.org/api_guides/python/math_ops.

https://www.tensorflow.org/api_docs/python/tf/contrib/distributions
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions
https://www.tensorflow.org/api_guides/python/math_ops

CHAPTER 4. AN R PACKAGE FOR SGMCMC 106

Function Algorithm

sgld Stochastic gradient Langevin dynamics

sghmc Stochastic gradient Hamiltonian Monte Carlo

sgnht Stochastic gradient Nosé-Hoover thermostat

sgldcv Stochastic gradient Langevin dynamics with control variates

sghmccv Stochastic gradient Hamiltonian Monte Carlo with control variates

sgnhtcv Stochastic gradient Nosé-Hoover thermostat with control variates

Table 4.5.1: Outline of 6 main functions implemented in sgmcmc.

The functions sgld, sghmc and sgnht have the same required inputs: logLik,

dataset, params and stepsize. These determine respectively: the log likelihood

function for the model; the data for the model; the parameters of the model; and the

stepsize tuning constants for the SGMCMC algorithm. The input logLik is a function

taking dataset and params as input, while the rest are defined as lists. Using lists in

this way provides a lot of flexibility: allowing multiple parameters to be defined; use

multiple datasets; and use different stepsizes for each parameter, which is vital if the

scalings are different. It also allows users to easily reference parameters and datasets

in the logLik function by simply referring to the relevant names in the list.

The functions also have a couple of optional parameters that are particularly

important, logPrior and minibatchSize. These respectively define the log prior

for the model; and the minibatch size, as it was defined in Section 4.3. By default,

the logPrior is set to an uninformative uniform prior, which is fine to use for quick

checks but will need to be set properly for more complex models. The logPrior is a

CHAPTER 4. AN R PACKAGE FOR SGMCMC 107

Function inputs Definition

logLik Log-likelihood function taking dataset and params as inputs

dataset R list containing data

params R list containing model parameters

stepsize R list of stepsizes for each parameter

optStepsize R numeric stepsize for control variate optimisation step

logPrior Function of the parameters (on the log-scale); default p(θ) ∝ 1

minibatchSize Size of minibatch per iteration as integer or proportion; default 0.01.

nIters Number of MCMC iterations; default is 10,000.

Table 4.5.2: Outline of the key arguments required by the functions in Table 4.5.1.

function similar to logLik, but only takes params as input. The minibatchSize is

a numeric, and can either be a proportion of the dataset size, if it is set between 0

and 1, or an integer. The default value is 0.01, meaning that 1% of the full dataset is

used at each iteration.

The control variate functions have the same inputs as the non-control variate

functions, with one more required input. The optStepsize input is a numeric that

specifies the stepsize for the initial optimisation step to find the θ̂ maximising the

posterior as defined in Section 4.3.4. For a full outline of the key inputs, see Table

4.5.2.

Often large datasets and high dimensional problems go hand in hand. In these

high dimensional settings storing the full MCMC chain in memory can become an

CHAPTER 4. AN R PACKAGE FOR SGMCMC 108

issue. For this situation we provide functionality to run the chain one iteration at a

time in a user defined loop. This enables the user to deal with the output at each

iteration how they see fit. For example, they may wish to calculate a test function

on the output to reduce the dimensionality of the chain; or they might calculate the

required Monte Carlo estimates on the fly. We aim to extend this functionality to

enable the user to define their own Gibbs updates alongside the SGMCMC procedure.

This functionality is more involved, and requires more knowledge of TensorFlow, so

we leave the details to the example in Section 4.5.2.

For the rest of this section we go into more detail about the usage of the func-

tions using a worked example. The package is used to infer the bias and coefficient

parameters in a logistic regression model. Section 4.5.1 demonstrates standard usage

by performing inference on the model using the sgld and sgldcv functions. Section

4.5.2 demonstrates usage in problems where the full MCMC chain cannot be fit into

memory. The same logistic regression model is used throughout.

4.5.1 Example Usage

In this example we use the functions sgld and sgldcv to infer the bias (or intercept)

and coefficients of a logistic regression model. The sgldcv case is also available as a

vignette. Suppose we have data x1, . . . ,xN of dimension d taking values in Rd; and

response variables y1, . . . , yN taking values in {0, 1}. Then a logistic regression model

with coefficients β and bias β0 will have likelihood

p(X,y|β, β0) =
N∏
i=1

[
1

1 + e−β0−xiβ

]yi [
1− 1

1 + e−β0−xiβ

]1−yi
(4.5.1)

CHAPTER 4. AN R PACKAGE FOR SGMCMC 109

We will use the covertype dataset (Blackard and Dean, 1999) which can be down-

loaded and loaded using the sgmcmc function getDataset, which downloads example

datasets for the package. The covertype dataset uses mapping data to predict the

type of forest cover. Our particular dataset is taken from the LIBSVM library (Chang

and Lin, 2011), which converts the data to a binary problem, rather than multiclass.

The dataset consists of a matrix of dimension 581012× 55. The first column contains

the labels y, taking values in {0, 1}. The remaining columns are the explanatory

variables X, which have been scaled to take values in [0, 1].

library("sgmcmc")

covertype = getDataset("covertype")

Split the data into predictors and response

X = covertype[,2:ncol(covertype)]

y = covertype[,1]

Create dataset list for input

dataset = list("X" = X, "y" = y)

In the last line we defined the dataset as a list object which will be input to the

relevant sgmcmc function. The list names can be arbitrary, but must be consistent

with the variables declared in the logLik function (see below).

When accessing the data, it is assumed that observations are split along the first

axis. In other words, dataset$X is a 2-dimensional matrix, and we assume that

observation xi is accessed at dataset$X[i,]. Similarly, suppose Z was a 3-dimensional

array, we would assume that observation i would be accessed at Z[i,,]. Parameters

CHAPTER 4. AN R PACKAGE FOR SGMCMC 110

are declared in a similar way, except the list entries are the desired parameter starting

points. There are two parameters for this model, the bias β0 and the coefficients β,

which can be arbitrarily initialised to 0.

Get the dimension of X, needed to set shape of params

d = ncol(dataset$X)

params = list("bias" = 0, "beta" = matrix(rep(0, d), nrow = d))

The log likelihood is specified as a function of the dataset and params, which

are lists with the same names we declared earlier. The only difference is that the

objects inside the lists will have automatically been converted to TensorFlow objects.

The dataset list will contain TensorFlow placeholders. The params list will contain

TensorFlow variables. The logLik function should be a function that takes these

lists as input and returns the log likelihood value given the current parameters and

data. This is done using TensorFlow operations, as this allows the gradient to be

automatically calculated.

For the logistic regression model (4.5.1), the log likelihood is

log p(X,y|β, β0) =
N∑
i=1

yi log yest + (1− yi) log(1− yest),

where yest = [1 + e−β0−xiβ]−1, which coded as a logLik function is defined as follows

logLik = function(params, dataset) {

yEst = 1 / (1 + tf$exp(- tf$squeeze(params$bias +

tf$matmul(dataset$X, params$beta))))

logLik = tf$reduce_sum(dataset$y * tf$log(yEst) +

CHAPTER 4. AN R PACKAGE FOR SGMCMC 111

(1 - dataset$y) * tf$log(1 - yEst))

return(logLik)

}

For more information about the usage of these TensorFlow functions, please see

the TensorFlow documentation.5

Next, the log prior density, where we assume each βj, for j = 0, . . . , d, has an

independent Laplace prior with location 0 and scale 1, so log p(β) ∝ −
∑d

j=0 |βj|.

Similar to logLik, this is defined as a function, but with only params as input

logPrior = function(params) {

logPrior = - (tf$reduce_sum(tf$abs(params$beta)) +

tf$reduce_sum(tf$abs(params$bias)))

return(logPrior)

}

The final input that needs to be set is the stepsize for tuning the methods, this

can be set as a list

stepsize = list("beta" = 2e-5, "bias" = 2e-5)

Setting the same stepsize for all parameters is done as stepsize = 2e-5. This

shorthand can also be used for any of the optional tuning parameters which need

5Documentation for TensorFlow for R available at https://tensorflow.rstudio.com/

tensorflow/

https://tensorflow.rstudio.com/tensorflow/
https://tensorflow.rstudio.com/tensorflow/

CHAPTER 4. AN R PACKAGE FOR SGMCMC 112

to specified as lists. The stepsize parameter will generally require a bit of tuning in

order to get good performance, for this we recommend using cross validation (see e.g.,

Friedman et al., 2001, Chapter 7).

Everything is now ready to run a standard SGLD algorithm, with minibatchSize

set to 500. To keep things reproducible we’ll set the seed to 13.

output = sgld(logLik, dataset, params, stepsize,

logPrior = logPrior, minibatchSize = 500, nIters = 10000, seed = 13)

The output of the function is also a list with the same names as the params list.

Suppose a given parameter has shape (d1, . . . , dl), then the output will be an array of

shape (nIters, d1, . . . , dl). So in our case, output$beta[i,,] is the ith MCMC sample

from the parameter β; and dim(output$beta) is c(10000, 54, 1).

In order to run a control variate algorithm such as sgldcv we need one additional

argument, which is the stepsize for the initial optimisation step. The optimisation

uses the TensorFlow GradientDescentOptimizer. The stepsize should be quite sim-

ilar to the stepsize for SGLD, though is often slightly larger. First, so that we can

measure the performance of the chain, we shall set a seed and randomly remove some

observations from the full dataset to form a testset. We also set a short burn-in of

1000.

set.seed(13)

testSample = sample(nrow(dataset$X), 10^4)

testset = list("X" = dataset$X[testSample,], "y" = dataset$y[testSample])

CHAPTER 4. AN R PACKAGE FOR SGMCMC 113

dataset = list("X" = dataset$X[-testSample,], "y" = dataset$y[-testSample])

output = sgldcv(logLik, dataset, params, 5e-6, 5e-6,

logPrior = logPrior, minibatchSize = 500, nIters = 11000, seed = 13)

Remove burn-in

output$beta = output$beta[-c(1:1000),,]

output$bias = output$bias[-c(1:1000)]

A common performance measure for a classifier is the log loss. Given an obser-

vation with data xi and response yi, logistic regression predicts that yi = 1 with

probability

π(xi, β, β0) =
1

1 + e−β0−xiβ
.

Given a test set T of data response pairs (x, y), the log loss s(·), of a binary chain, is

defined as

s(β, β0, T) = − 1

|T |
∑

(x,y)∈T

[y log π(x, β, β0) + (1− y) log(1− π(x, β, β0))] . (4.5.2)

To check convergence of sgldcv we’ll plot the log loss every 10 iterations, using the

testset we removed earlier. Results are given in Figure 4.5.1. The plot shows the

sgldcv algorithm converging to a stationary after a short burn-in period. The burn-in

period is so short due to the initial optimisation step.

iterations = seq(from = 1, to = 10^4, by = 10)

logLoss = rep(0, length(iterations))

Calculate log loss every 10 iterations

for (iter in 1:length(iterations)) {

CHAPTER 4. AN R PACKAGE FOR SGMCMC 114

j = iterations[iter]

beta0_j = output$bias[j]

beta_j = output$beta[j,]

for (i in 1:length(testset$y)) {

piCurr = 1 / (1 + exp(- beta0_j - sum(testset$X[i,] * beta_j)))

y_i = testset$y[i]

logLossCurr = - ((y_i * log(piCurr) + (1 - y_i) * log(1 - piCurr)))

logLoss[iter] = logLoss[iter] + 1 / length(testset$y) * logLossCurr

}

}

Plot output

plotFrame = data.frame("Iteration" = iterations, "logLoss" = logLoss)

ggplot(plotFrame, aes(x = Iteration, y = logLoss)) +

geom_line(color = "maroon") +

ylab("Log loss of test set")

4.5.2 Example Usage: Storage Constraints

Often large datasets and high dimensionality go hand in hand. Sometimes the di-

mensionality is so high that storage of the full MCMC chain in memory becomes an

issue. There are a number of ways around this, including: calculating estimates of the

desired posterior quantity on the fly; reducing the dimensionality of the chain using

a test function; or just periodically saving a the chain to the hard disk and starting

CHAPTER 4. AN R PACKAGE FOR SGMCMC 115

0.5146

0.5148

0.5150

0 2500 5000 7500 10000
Iteration

Lo
g

lo
ss

 o
f t

es
t s

et

Figure 4.5.1: Log loss on a test set for parameters simulated using the sgldcv algo-

rithm after 1000 iterations of burn-in. Logistic regression problem with the covertype

dataset.

from scratch. To deal with high storage costs sgmcmc provides functionality to run

SGMCMC algorithms step by step. This allows users to deal with the output as they

see fit at each iteration.

In this section, we detail how to run SGMCMC chains step by step. To do this

requires more knowledge of TensorFlow, including using TensorFlow sessions and

building custom placeholders and tensors. For more details see the TensorFlow for

R documentation (Allaire et al., 2016). The step by step procedure works similarly

to a standard TensorFlow procedure: TensorFlow variables, tensors and placeholders

are declared; then the TensorFlow session is started and all the required tensors are

initialised; finally the SGMCMC algorithm is run step by step in a user defined loop,

and the user evaluates tensors as required.

To demonstrate this concept we keep things simple and use the logistic regression

example introduced in the previous section. While this example can fit into memory, it

CHAPTER 4. AN R PACKAGE FOR SGMCMC 116

allows us to demonstrate the concepts without getting bogged down in a complicated

model. For a more realistic example, where the output does not fit into memory, see

the Bayesian neural network model in Section 4.6.3.

We start by assuming the dataset, params, logLik, logPrior and stepsize

objects have been created in exactly the same way as in the previous example (Section

4.5.1). Now suppose we want to make inference using stochastic gradient Langevin

dynamics (SGLD), but we want to run it step by step. The first step is to initialise an

sgld object using the function sgldSetup. For every function in Table 4.5.1 there is a

corresponding *Setup function, such as sghmccvSetup or sgnhtSetup. This function

will create all the TensorFlow objects required, as well as declare the dynamics of the

SGMCMC algorithm. For our example we can run the following

sgld = sgldSetup(logLik, dataset, params, stepsize,

logPrior = logPrior, minibatchSize = 500, seed = 13)

This sgld object is a type of sgmcmc object, it is an R S3 object, which is essentially

a list with a number of entries. The most important of these entries for building

SGMCMC algorithms is called params, which holds a list, with the same names as in

the params that were fed to sgldSetup, but this list contains tf$Variable objects.

This is how the tensors are accessed which hold the current parameter values in the

chain. For more details on the attributes of these objects, see the documentation for

sgldSetup, sgldcvSetup, etc.

Now that we have created the sgld object, we want to initialise the TensorFlow

variables and the sgmcmc algorithm chosen. For a standard algorithm, this will ini-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 117

tialise the TensorFlow graph and all the tensors that were created. For an algorithm

with control variates (e.g., sgldcv), this will also find the θ̂ estimates of the parame-

ters and calculate the full log posterior gradient at that point; as detailed in Section

4.3.4. The function used to do this is initSess,

sess = initSess(sgld)

The sess returned by initSess is the current TensorFlow session, which is needed

to run the SGMCMC algorithm of choice, and to access any of the tensors needed,

such as sgld$params.

Now we have everything to run an SGLD algorithm step by step as follows

for (i in 1:10^4) {

sgmcmcStep(sgld, sess)

currentState = getParams(sgld, sess)

}

Here the function sgmcmcStep will update sgld$params using a single update

of SGLD, or whichever SGMCMC algorithm is given. The function getParams will

return a list of the current parameters as R objects rather than as tensors.

This simple example of running SGLD step by step only stores the most recent

value in the chain, which is useless for a Monte Carlo method. Also, for large scale

examples, it is often useful to reduce the dimension of the chain by calculating some

test function g(·) of θ at each iteration rather than the parameters themselves. This

example will demonstrate how to store a test function at each iteration, as well as

CHAPTER 4. AN R PACKAGE FOR SGMCMC 118

calculating the estimated posterior mean on the fly. We assume that a new R session

has been started and the sgld object has just been created using sgldSetup with the

same properties as in the example above. We assume that no TensorFlow session has

been created (i.e., initSess has not been run yet).

Before the TensorFlow session has been declared, the user is able to create their

own custom tensors. This is useful, as test functions can be declared beforehand using

the sgld$params variables, which allows the test functions to be quickly calculated

by just evaluating the tensors in the current session. The test function used here is

once again the log loss of a test set, as defined in (4.5.2).

Suppose we input sgld$params and the testset T to the logLik function. Then

the log loss is actually − 1
|T | times this value. This means we can easily create a tensor

that calculates the log loss by creating a list of placeholders that hold the test set,

then using the logLik function with the testset list and sgld$params as input. We

can do this as follows

testPlaceholder = list()

testPlaceholder[["X"]] = tf$placeholder(tf$float32, dim(testset[["X"]]))

testPlaceholder[["y"]] = tf$placeholder(tf$float32, dim(testset[["y"]]))

testSize = as.double(nrow(testset[["X"]]))

logLoss = - logLik(sgld$params, testPlaceholder) / testSize

This placeholder is then fed the full testset each time the log loss is calculated.

Now we will declare the TensorFlow session, and run the chain step by step. At each

iteration we will calculate the current Monte Carlo estimate of the parameters. The

CHAPTER 4. AN R PACKAGE FOR SGMCMC 119

log loss will be stored every 100 iterations. We omit a plot of the log loss as it is

similar to Figure 4.5.1.

sess = initSess(sgld)

Fill a feed dict with full test set (used to calculate log loss)

feedDict = dict()

feedDict[[testPlaceholder[["X"]]]] = testset[["X"]]

feedDict[[testPlaceholder[["y"]]]] = testset[["y"]]

Burn-in chain

message("Burning-in chain...")

message("iteration\tlog loss")

for (i in 1:10^4) {

Print progress

if (i %% 100 == 0) {

progress = sess$run(logLoss, feed_dict = feedDict)

message(paste0(i, "\t", progress))

}

sgmcmcStep(sgld, sess)

}

Initialise posterior mean estimate using value after burn-in

postMean = getParams(sgld, sess)

logLossOut = rep(0, 10^4 / 100)

Run chain

CHAPTER 4. AN R PACKAGE FOR SGMCMC 120

message("Running SGMCMC...")

for (i in 1:10^4) {

sgmcmcStep(sgld, sess)

Update posterior mean estimate

currentState = getParams(sgld, sess)

for (paramName in names(postMean)) {

postMean[[paramName]] = (postMean[[paramName]] * i +

currentState[[paramName]]) / (i + 1)

}

Print and store log loss

if (i %% 100 == 0) {

logLossOut[i/100] = sess$run(logLoss, feed_dict = feedDict)

message(paste0(i, "\t", logLossOut[i/100]))

}

}

4.6 Simulations

In this section we demonstrate the algorithms and performance by simulating from a

variety of models using all the implemented methods and commenting on the perfor-

mance of each. These simulations are reproducible and available in the supplementary

material and on Github.6 For more usage tutorials similar to Sections 4.5.1 and 4.5.2,

6https://github.com/jbaker92/sgmcmc-simulations

https://github.com/jbaker92/sgmcmc-simulations

CHAPTER 4. AN R PACKAGE FOR SGMCMC 121

please see the vignettes on the package website.7

4.6.1 Gaussian Mixture

In this model we assume our dataset x1, . . . , xN is drawn i.i.d from

Xi | θ1, θ2 ∼
1

2
N (θ1, I2) +

1

2
N (θ2, I2), i = 1, . . . , N ; (4.6.1)

where θ1, θ2 are parameters to be inferred and I2 is the 2×2 identity matrix. We assume

the prior θ1, θ2 ∼ N (0, 10I2). To generate the synthetic dataset, we simulate 103

observations from 1
2
N
(
[0, 0]>, I2

)
+ 1

2
N
(
[0.1, 0.1]>, I2

)
. While this is a small number

of observations, it allows us to compare the results to a full Hamiltonian Monte Carlo

(HMC) scheme using the R implementation of Stan (Carpenter et al., 2017). The

full HMC scheme should sample from close to the true posterior distribution, so acts

as a good surrogate for the truth. We compare each sgmcmc algorithm implemented

to the HMC sample to compare performance. Larger scale examples are given in

Sections 4.6.2 and 4.6.3. We ran all methods for 104 iterations, except SGHMC, since

the computational cost is greater for this method due to the trajectory parameter L.

We ran SGHMC for 2,000 iterations, using default trajectory L = 5, as this ensures

the overall computational cost of the method is similar to the other methods. We

used a burn-in step of 104 iterations, except for the control variate methods, where

we used 104 iterations in the initial optimisation step, with no burn-in. Again this

ensures comparable computational cost across different methods.

The logLik and logPrior functions used for this model are as follows

7https://stor-i.github.io/sgmcmc

https://stor-i.github.io/sgmcmc

CHAPTER 4. AN R PACKAGE FOR SGMCMC 122

logLik = function(params, dataset) {

Declare Sigma (assumed known)

SigmaDiag = c(1, 1)

Declare distribution of each component

component1 = tf$contrib$distributions$MultivariateNormalDiag(

params$theta1, SigmaDiag)

component2 = tf$contrib$distributions$MultivariateNormalDiag(

params$theta2, SigmaDiag)

Declare allocation probabilities of each component

probs = tf$contrib$distributions$Categorical(c(0.5,0.5))

Declare full mixture distribution given components and probs

distn = tf$contrib$distributions$Mixture(

probs, list(component1, component2))

Declare log likelihood

logLik = tf$reduce_sum(distn$log_prob(dataset$X))

return(logLik)

}

logPrior = function(params) {

Declare hyperparameters mu0 and Sigma0

mu0 = c(0, 0)

Sigma0Diag = c(10, 10)

CHAPTER 4. AN R PACKAGE FOR SGMCMC 123

Declare prior distribution

priorDistn = tf$contrib$distributions$MultivariateNormalDiag(

mu0, Sigma0Diag)

Declare log prior density and return

logPrior = priorDistn$log_prob(params$theta1) +

priorDistn$log_prob(params$theta2)

return(logPrior)

}

The following list determines the stepsizes used for each method, the optStepsize

used for control variate methods was 5e-5.

stepsizeList = list("sgld" = 5e-3, "sghmc" = 5e-4, "sgnht" = 3e-4,

"sgldcv" = 1e-2, "sghmccv" = 1.5e-3, "sgnhtcv" = 3e-3)

We set the seed to be 2 using the optional seed argument and use a minibatch

size of 100. We also used a seed of 2 when generating the data (see the supplementary

material for full details). Starting points were sampled from a standard Normal.

The results are plotted in Figure 4.6.1. The black contours represent the best guess

at the true posterior, which was found using the standard HMC procedure in Stan.

The coloured contours that overlay the black contours are the approximations of each

of the SGMCMC methods implemented by sgmcmc. This allows us to compare the

SGMCMC estimates with the ‘truth’ by eye.

In the simulation, we obtain two chains, one approximating θ1 and the other

CHAPTER 4. AN R PACKAGE FOR SGMCMC 124

sgld sghmc sgnht sgldcv sghmccv sgnhtcv

0.0

0.5

−0.25 0.00 0.25 0.50 0.75−0.25 0.00 0.25 0.50 0.75−0.25 0.00 0.25 0.50 0.75−0.25 0.00 0.25 0.50 0.75−0.25 0.00 0.25 0.50 0.75−0.25 0.00 0.25 0.50 0.75
dim1

di
m

2

truth

truth

sgld

sghmc

sgnht

sgldcv

sghmccv

sgnhtcv

Figure 4.6.1: Plots of the approximate posterior for θ1 simulated using each of the

methods implemented by sgmcmc, compared with a full HMC run, treated as the

truth, for the Gaussian mixture model (4.6.1).

approximating θ2. In order to examine how well the methods explore both modes, we

take just θ1 and compare this to the HMC run for θ1. The results are quite variable,

and it demonstrates a point nicely: there seems to be a trade-off between predictive

accuracy and exploration. Many methods have demonstrated good performance using

predictive accuracy; where a test set is removed from the full dataset to assess how

well the fitted model performs on the test set. This is a useful technique for complex

models, which are high dimensional and have a large number of data points, as they

cannot be plotted, and an MCMC run to act as the ‘truth’ cannot be fitted.

However, this example shows that it does not give the full picture. A lot of the

methods which show improved predictive performance (e.g., control variate methods

and especially sgnht) over sgld appear here to perform worse at exploring the full

space. In this example, sgld performs the best at exploring both components, though

it over-estimates posterior uncertainty. The algorithm sghmc also explores both com-

ponents but somewhat unevenly. We find that sgnht, while being shown to have

better predictive performance in the original paper (Ding et al., 2014), does not do

CHAPTER 4. AN R PACKAGE FOR SGMCMC 125

nearly as well as the other algorithms at exploring the space and appears to collapse to

the posterior mode. The control variate methods, shown in the following sections, and

in Baker et al. (2018), appear to have better predictive performance than sgld, but

do not explore both components either. For example, sgldcv explores the space the

best but over-estimates uncertainty of the first component, since it relies on SGLD

updates which also overestimates uncertainty. In contrast, sgnhtcv collapses to a

posterior mode since it relies on the SGNHT updates which also collapse.

4.6.2 Bayesian Logistic Regression

In this section, we apply all the methods to the logistic regression example in Section

4.5.1. We compare the performance of the methods by calculating the log loss of a

test set every 10 iterations, again as detailed in Section 4.5.1. The standard methods

(sgld, sghmc, sgnht) were run for 104 iterations with an additional 104 iterations of

burn-in; except for sghmc which has 5× the computational cost, so is ran for 2,000

iterations with 2,000 iterations of burn-in. The control variate methods were run for

104 iterations with an additional 104 iterations for the initial optimisation step, and

no burn-in; again except for sghmccv which was run for 2,000 iterations. This means

that all the methods should be somewhat comparable in terms of computation time.

The following list determines the stepsizes used for each method, the optStepsize

used was 1e-6.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 126

Control variate Standard

0.5175

0.5200

0.5225

0.5250

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
Proportion of dataset processed

Lo
g

lo
ss

 o
f t

es
t s

et

sgld

sgld

sghmc

sgnht

sgldcv

sghmccv

sgnhtcv

Figure 4.6.2: Plots of the log loss of a test set for β0 and β simulated using each of

the methods implemented by sgmcmc. Logistic regression problem with the covertype

dataset.

stepsizes = list("sgld" = 5e-6, "sghmc" = 1e-7, "sgnht" = 1e-7, "sgldcv" = 1e-5,

"sghmccv" = 1e-6, "sgnhtcv" = 5e-7)

We set the seed to be 1 for each of the simulations, and when generating the test

data (see the supplementary material for reproducible code) and use a minibatch size

of 500. Starting points are sampled from a standard Normal.

Results are plotted in Figure 4.6.2. All of the algorithms show decent performance.

Methods which use control variates have significantly better predictive performance;

and result in chains with lower variance. sghmc has lower variance than sgld and

sgnht, though this could be related to the high computational cost. One might

envisage setting a lower trajectory L would result in a chain with higher variance.

sgldcv takes longer to burn-in than the other control variate methods. The algorithm

sgld has the highest variance by far; this could be related to our discussion in Section

CHAPTER 4. AN R PACKAGE FOR SGMCMC 127

4.6.1 on exploration versus accuracy.

4.6.3 Bayesian Neural Network

In this simulation we demonstrate a very high dimensional chain. This gives a more

realistic example of when we would want to run the chain step by step. The model is

a two layer Bayesian neural network which is fit to the MNIST dataset (LeCun and

Cortes, 2010). The MNIST dataset consists of 28 × 28 pixel images of handwritten

digits from zero to nine. The images are flattened to be a vector of length 784. The

dataset is available as a standard dataset from the TensorFlow library, with a matrix

of 55,000 training vectors and 10,000 test vectors, each with their corresponding labels.

The dataset can be constructed in a similar way to the logistic regression example of

Section 4.5.1, using the standard dataset in the package mnist.

library("sgmcmc")

mnist = getDataset("mnist")

dataset = list("X" = mnist$train$images, "y" = mnist$train$labels)

testset = list("X" = mnist$test$images, "y" = mnist$test$labels)

We build the same neural network model as in the original SGHMC paper by Chen

et al. (2014). Suppose Yi takes values in {0, . . . , 9}, so is the output label of a digit,

and xi is the input vector, with X the full N × 784 dataset, where N is the number

CHAPTER 4. AN R PACKAGE FOR SGMCMC 128

of observations. The model is then as follows

Yi | θ,xi ∼ Categorical(β(θ,xi)), (4.6.2)

β(θ,xi) = σ
(
σ
(
x>i B + b

)
A+ a

)
. (4.6.3)

Here A, B, a, b are parameters to be inferred with θ = (A,B, a, b); σ(·) is the softmax

function (a generalisation of the logistic link function). A, B, a and b are matrices

with dimensions: 100× 10, 784× 100, 1× 10 and 1× 100 respectively. Each element

of these parameters is assigned a Normal prior

Akl|λA ∼ N (0, λ−1
A), Bjk|λB ∼ N (0, λ−1

B),

al|λa ∼ N (0, λ−1
a), bk|λb ∼ N (0, λ−1

b),

j = 1, . . . , 784; k = 1, . . . , 100; l = 1, . . . , 10;

where λA, λB, λa and λb are hyperparameters. Finally, we assume

λA, λB, λa, λb ∼ Gamma(1, 1).

The model contains a large number of high dimensional parameters, and unless

there is sufficient RAM available, a standard chain of length 104 will not fit into

memory. First, we shall create the params dictionary, and then code the logLik and

logPrior functions. We can sample the initial λ parameters from a standard Gamma

distribution, and the remaining parameters from a standard Normal as follows

Sample initial weights from standard Normal

d = ncol(dataset$X)

params = list()

CHAPTER 4. AN R PACKAGE FOR SGMCMC 129

params$A = matrix(rnorm(10*100), ncol = 10)

params$B = matrix(rnorm(d*100), ncol = 100)

Sample initial bias parameters from standard Normal

params$a = rnorm(10)

params$b = rnorm(100)

Sample initial precision parameters from standard Gamma

params$lambdaA = rgamma(1, 1)

params$lambdaB = rgamma(1, 1)

params$lambdaa = rgamma(1, 1)

params$lambdab = rgamma(1, 1)

logLik = function(params, dataset) {

Calculate estimated probabilities

beta = tfnnsoftmax(tf$matmul(dataset$X, params$B) + params$b)

beta = tfnnsoftmax(tf$matmul(beta, params$A) + params$a)

Calculate log likelihood of categorical distribution with prob. beta

logLik = tf$reduce_sum(dataset$y * tf$log(beta))

return(logLik)

}

logPrior = function(params) {

distLambda = tf$contrib$distributions$Gamma(1, 1)

distA = tf$contrib$distributions$Normal(0, tf$rsqrt(params$lambdaA))

CHAPTER 4. AN R PACKAGE FOR SGMCMC 130

logPriorA = tf$reduce_sum(distA$log_prob(params$A)) +

distLambda$log_prob(params$lambdaA)

distB = tf$contrib$distributions$Normal(0, tf$rsqrt(params$lambdaB))

logPriorB = tf$reduce_sum(distB$log_prob(params$B)) +

distLambda$log_prob(params$lambdaB)

dista = tf$contrib$distributions$Normal(0, tf$rsqrt(params$lambdaa))

logPriora = tf$reduce_sum(dista$log_prob(params$a)) +

distLambda$log_prob(params$lambdaa)

distb = tf$contrib$distributions$Normal(0, tf$rsqrt(params$lambdab))

logPriorb = tf$reduce_sum(distb$log_prob(params$b)) +

distLambda$log_prob(params$lambdab)

logPrior = logPriorA + logPriorB + logPriora + logPriorb

return(logPrior)

}

Similar to Section 4.5.2, we use the log loss as a test function. This time though it

is necessary to update the definition, as the logistic regression example was a binary

problem whereas now we have a multiclass problem. Given a test set T of pairs (x, y),

now y can take values in {0, . . . , K}, rather than just binary values. To account for

this we redefine the definition of log loss to be

s(θ, T) = − 1

|T |
∑
x,y∈T

K∑
k=1

1y=k log βk(θ,x),

where 1A is the indicator function, and βk(θ,x) is the kth element of β(θ,x) as defined

in (4.6.3).

CHAPTER 4. AN R PACKAGE FOR SGMCMC 131

Control Variate Standard

0.24

0.27

0.30

0.33

0 25 50 75 0 25 50 75
Proportion of dataset processed

Lo
g

lo
ss

 o
f t

es
t s

et

sgld

sgld

sghmc

sgnht

sgldcv

sghmccv

sgnhtcv

Figure 4.6.3: Plots of the log loss of a test set for θ simulated using each of the

methods implemented by sgmcmc. Bayesian neural network model with the MNIST

dataset.

As in Section 4.5.2, the log loss is simply − 1
|T | times the logLik function, if we

feed it the testset rather than the dataset. This means the logLoss tensor can be

declared in a similar way to Section 4.5.2

testPlaceholder = list()

testPlaceholder[["X"]] = tf$placeholder(tf$float32, dim(testset[["X"]]))

testPlaceholder[["y"]] = tf$placeholder(tf$float32, dim(testset[["y"]]))

testSize = as.double(nrow(testset[["X"]]))

logLoss = - logLik(sgld$params, testPlaceholder) / testSize

We can run the chain in exactly the same way as Section 4.5.2, and so omit the

code for this. We ran 104 iterations of each of the algorithms in Table 4.5.1, calculating

the log loss for each every 10 iterations. The standard algorithms have 104 iterations

of burn-in while the control variate algorithms have no burn-in, but 104 iterations in

CHAPTER 4. AN R PACKAGE FOR SGMCMC 132

the initial optimisation step. Note that due to the trajectory parameter L, sghmc and

sghmccv will have 5 times the computational cost of the other algorithms. Therefore,

we ran these algorithms for 2,000 iterations instead, to make the computational cost

comparable. We used the following list of stepsizes

list("sgld" = 1e-4, "sghmc" = 1e-5, "sgnht" = 5e-6, "sgldcv" = 5e-5,

"sghmccv" = 1e-5, "sgnhtcv" = 5e-7)

Generally these are the stepsizes which produce the smallest log loss; except when

these chains did not seem to explore the space fully, in which case we increased the

stepsize slightly. We set the seed to be 1 for each of the simulations, and when

generating the test data (see the supplementary material for reproducible code).

The results are plotted in Figure 4.6.3. Again we see improvements in the pre-

dictive performance of the control variate methods. Among the standard methods,

sghmc and sgnht have the best predictive performance; which is to be expected given

the apparent trade-off between accuracy and exploration.

4.7 Discussion

We presented the R package sgmcmc, which enables Bayesian inference with large

datasets using stochastic gradient Markov chain Monte Carlo. The package only re-

quires the user to specify the log likelihood and log prior functions; and any differenti-

ation required can be performed automatically. The package is based on TensorFlow,

an efficient library for numerical computation that can take advantage of many differ-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 133

ent architectures, including GPUs. The sgmcmc package keeps much of this efficiency.

The package provides functionality to deal with cases where the full MCMC chain is

too large to fit into memory. As the chain can be run step by step at each iteration,

there is flexibility for these cases.

We implemented the methods on a variety of statistical models, many on realistic

datasets. One of these statistical models was a neural network, for which the full

MCMC chain would not fit into memory. In this case we demonstrated building

test functions and calculating the Monte Carlo estimates on the fly. We empirically

demonstrated the predictive performance of the algorithms and the trade-off that

appears to occur between predictive performance and exploration.

Many complex models for which SGMCMC methods have been found to perform

well require Gibbs updates to be performed periodically (Patterson and Teh, 2013; Li

et al., 2016). In the future we would like to build functionality for user defined Gibbs

steps that can be updated step by step alongside the sgmcmc algorithms. SGHMC

has been implemented by setting the value β̂t = 0, as in the experiments of the

original paper Chen et al. (2014). In the future, we would like to implement a more

sophisticated approach to set this value, such as using a similar estimate to Ahn et al.

(2012).

Chapter 5

Large-Scale Stochastic Sampling

from the Probability Simplex

5.1 Introduction

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular

method for scalable Bayesian inference (Welling and Teh, 2011; Chen et al., 2014;

Ding et al., 2014; Ma et al., 2015). The foundation of SGMCMC methods is a class

of continuous-time processes that explore a target distribution—e.g., the posterior—

using gradient information; these processes converge to a Markov chain which samples

from the posterior distribution exactly. SGMCMC methods replace the costly full-

data gradients with minibatch-based stochastic gradients, which provides one source of

error. Another source of error arises from the fact that the continuous-time processes

are almost never tractable to simulate; instead, discretizations are relied upon. In the

non-SG scenario, the discretization errors are corrected for using Metropolis-Hastings

134

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 135

corrections. However, this is not (generically) feasible in the SG setting. The result of

these two sources of error is that SGMCMC targets an approximate posterior (Welling

and Teh, 2011; Teh et al., 2016; Vollmer et al., 2016).

Another significant limitation of SGMCMC methods is that they struggle to sam-

ple from constrained spaces. Naively applying SGMCMC can lead to invalid, or

inaccurate values being proposed. The result is large errors near the boundary of

the space (Patterson and Teh, 2013; Ma et al., 2015; Li et al., 2016). A particularly

important constrained space is the simplex space, which is used to model discrete

probability distributions. A parameter ω of dimension d lies in the simplex if it sat-

isfies the following conditions: ωj ≥ 0 for all j = 1, . . . , d and
∑d

j=1 ωj = 1. Many

popular models contain simplex parameters. For example, latent Dirichlet allocation

(LDA) is defined by a set of topic-specific distributions on words and document-

specific distributions on topics. Probabilistic network models often define a link

probability between nodes. More generally, mixture and mixed membership mod-

els have simplex-constrained mixture weights; even the hidden Markov model can be

cast in this framework with simplex-constrained transition distributions. As models

become large-scale, these vectors ω often become sparse–i.e., many ωj are close to

zero—pushing them to the boundaries of the simplex. All the models mentioned have

this tendency. For example in network data, nodes often have relatively few links

compared to the size of the network, e.g., the number of friends the average social

network user has will be small compared with the size of the whole social network.

In these cases the problem of sampling from the simplex space becomes even harder ;

since many values will be very close to the boundary of the space.

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 136

Patterson and Teh (2013) develop an improved SGMCMC method for sampling

from the probability simplex: stochastic gradient Riemannian Langevin dynamics

(SGRLD). The improvements achieved are through an astute transformation of the

simplex parameters, as well as developing a Riemannian (see Girolami and Calder-

head, 2011) variant of SGMCMC. This method achieved state-of-the-art results on an

LDA model. However, we show despite the improvements over standard SGMCMC,

the discretization error of this method still causes problems on the simplex. In par-

ticular, it leads to asymptotic biases which dominate at the boundary of the space

and causes significant inaccuracy.

To counteract this, we design an SGMCMC method based on the Cox-Ingersoll-

Ross (CIR) process. The resulting process, which we refer to as the stochastic Cox-

Ingersoll-Ross process (SCIR), has no discretization error. This process can be used

to simulate from gamma random variables directly, which can then be moved into the

simplex space using a well known, standard transformation. The CIR process has a

lot of nice properties. One is that the transition equation is known exactly, which is

what allows us to simulate from the process without discretization error. We are also

able to characterize important theoretical properties of the SCIR algorithm, such as

the non-asymptotic moment generating function, and thus its mean and variance.

We demonstrate the impact of this SCIR method on a broad class of models. In-

cluded in these experiments is the development of a scalable sampler for Dirichlet

processes, based on the slice sampler of Walker (2007); Papaspiliopoulos (2008); Kalli

et al. (2011). To our knowledge the application of SGMCMC methods to Bayesian

nonparametric models has not been explored, and we consider this a further con-

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 137

tribution of the article. All proofs in this article are relegated to the Supplementary

Material. All code for the experiments will be made available online, and full details of

hyperparameter and tuning constant choices has been detailed in the Supplementary

Material.

5.2 Stochastic Gradient MCMC on the Probabil-

ity Simplex

5.2.1 Stochastic Gradient MCMC

Consider Bayesian inference for continuous parameters θ ∈ Rd based on data x =

{xi}Ni=1. Denote the density of xi as p(xi|θ) and assign a prior on θ with density

p(θ). The posterior is then defined, up to a constant of proportionality, as p(θ|x) ∝

p(θ)
∏N

i=1 p(xi|θ), and has distribution π. We define f(θ) := − log p(θ|x). Whilst

MCMC can be used to sample from π, such algorithms require access to the full data

set at each iteration. Stochastic gradient MCMC (SGMCMC) is an approximate

MCMC algorithm that reduces this per-iteration computational and memory cost by

using only a small subset of data points at each step.

The most common SGMCMC algorithm is stochastic gradient Langevin dynamics

(SGLD), first introduced by Welling and Teh (2011). This sampler uses the Langevin

diffusion, defined as the solution to the stochastic differential equation

dθt = −∇f(θt)dt+
√

2dWt, (5.2.1)

where Wt is a d-dimensional Wiener process. Similar to MCMC, the Langevin diffu-

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 138

sion defines a Markov chain whose stationary distribution is π.

Unfortunately, simulating from (5.2.1) is rarely possible, and the cost of calculat-

ing ∇f is O(N) since it involves a sum over all data points. The idea of SGLD is to

introduce two approximations to circumvent these issues. First, the continuous dy-

namics are approximated by discretizing them, in a similar way to Euler’s method for

ODEs. This approximation is known as the Euler-Maruyama method. Next, in order

to reduce the cost of calculating ∇f , it is replaced with a cheap, unbiased estimate.

This leads to the following update equation, with user chosen stepsize h

θm+1 = θm − h∇f̂(θ) +
√

2hηm, ηm ∼ N(0, 1). (5.2.2)

Here, ∇f̂ is an unbiased estimate of ∇f whose computational cost is O(n) where n�

N . Typically, we set ∇f̂(θ) := −∇ log p(θ) − N/n
∑

i∈Sm ∇ log p(xi|θ), where Sm ⊂

{1, . . . , N} resampled at each iteration with |Sm| = n. Applying (5.2.2) repeatedly

defines a Markov chain that approximately targets π (Welling and Teh, 2011). There

are a number of alternative SGMCMC algorithms to SGLD (Chen et al., 2014; Ding

et al., 2014; Ma et al., 2015), based on approximations to other diffusions that also

target the posterior distribution.

Because the gradient error is typically larger than the discretisation error, recent

work has investigated reducing the error introduced by approximating the gradient

using minibatches (Dubey et al., 2016; Nagapetyan et al., 2017; Baker et al., 2018;

Chatterji et al., 2018). While by comparison, the discretization error is generally

smaller, in this work we investigate an important situation where it degrades perfor-

mance considerably.

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 139

5.2.2 SGMCMC on the Probability Simplex

We aim to make inference on the simplex parameter ω of dimension d, where ωj ≥ 0

for all j = 1, . . . , d and
∑d

j=1 ωj = 1. We assume we have categorical data zi of

dimension d for i = 1, . . . , N , so zij will be 1 if data point i belongs to category j

and zik will be zero for all k 6= j. We assume a Dirichlet prior Dir(α) on ω, with

density p(ω) ∝
∏d

j=1 ω
αj
d , and that the data is drawn from zi |ω ∼ Categorical(ω)

leading to a Dir(α +
∑N

i=1 zi) posterior. An important transformation we will use

repeatedly throughout this article, is that if we have d random gamma variables

Xj ∼ Gamma(αj, 1). Then (X1, . . . , Xd)/
∑

j Xj will have Dir(α) distribution, where

α = (α1, . . . , αd).

In this simple case the posterior of ω can be exactly calculated. However, in the

applications we consider the zi are latent variables, and they are also simulated as part

of a larger Gibbs sampler. Thus the zi will change at each iteration of our algorithm.

We are interested in the situation where this is the case, and N is large, so that

standard MCMC runs prohibitively slowly. The idea of SGMCMC in this situation

is to use sub-samples of the zis to propose appropriate local-moves to ω.

Applying SGMCMC to models which contain simplex parameters is challenging

due to their constraints. Naively applying SGMCMC can lead to invalid values being

proposed. The first work to introduce an SGMCMC algorithm specifically for the

probability simplex was Patterson and Teh (2013), the algorithm is a variant of SGLD

known as stochastic gradient Riemannian Langevin dynamics (SGRLD). Patterson

and Teh (2013) try a variety of transformations for ω which will move the problem

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 140

onto a space in Rd, where standard SGMCMC can be applied. They also build upon

standard SGLD by developing a Riemannian variant (see Girolami and Calderhead,

2011). Riemannian MCMC often improves performance when different dimensional

components of the parameter have different scales, or are highly correlated. These

are both often the case when the parameter lies in the simplex. The parameterisation

Patterson and Teh (2013) find numerically performs the best is ωj = |θj|/
∑d

j=1 |θj|.

They use a mirrored gamma prior for θj, which has density p(θj) ∝ |θj|αj−1e−|θj |. This

means the prior for ω remains the required Dirichlet distribution. They calculate the

density of zi given θ using a change of variables and use an SGLD update to calculate

θ.

5.2.3 SGRLD on Sparse Simplex Spaces

Patterson and Teh (2013) suggested that the boundary of the space is where most

problems occur using these kind of samplers. In many popular applications, such

as LDA and modeling sparse networks, some of the components ωj will be close to

0, referred to as a sparse space. In other words, there will be many j for which∑N
i=1 zij = 0. In fact, this is their main motivation for introducing the Riemannian

ideas to their SGLD algorithm. In order to demonstrate the problems with using

SGRLD in this case, we provide a similar experiment to Patterson and Teh (2013).

We use SGRLD to simulate from a sparse simplex parameter ω of dimension ten with

N = 1000. We set
∑N

i=1 zi1 = 800,
∑N

i=1 zi2 =
∑N

i=1 zi3 = 100, and
∑N

i=1 zij = 0, for

3 < j ≤ 10. The prior parameter α was set to 0.1 for all components. Leading to

a highly sparse Dirichlet posterior, i.e. given the data z, many components of ω will

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 141

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●●●
●

●

●
●●
●●●
●●●●●

●

●
●
●●●●
●●
●
●●●●●
●

1e−26

1e−19

1e−12

1e−05

Exact SCIR SGRLD
Method

O
m

eg
a

Method

Exact

SCIR

SGRLD

Figure 5.2.1: Boxplots of a 1000 iteration sample from SGRLD and SCIR fit to a

sparse Dirichlet posterior, compared to 1000 exact independent samples. On the log

scale.

be close to zero. We will refer back to this experiment as the running experiment.

In Figure 5.2.1 we provide boxplots from a sample of the fifth component of ω using

SGRLD after 1000 iterations with 1000 iterations of burn-in, compared with boxplots

from an exact sample. The method SCIR will be introduced later. We can see from

Figure 5.2.1 that SGRLD rarely proposes small values of ω. This becomes a significant

issue for sparse Dirichlet distributions, since the lack of small values leads to a poor

approximation to the posterior; as we can see from the boxplots.

We hypothesize that the reason SGRLD struggles when ωj is near the boundary

is due to the discretization by h, and we now try to diagnose this issue in detail. The

problem relates to the bias of SGLD, caused by the discretization of the algorithm.

We use the results of Vollmer et al. (2016) to characterize this bias for a fixed stepsize

h. For similar results when the stepsize scheme is decreasing, we refer the reader to

Teh et al. (2016). Proposition 5.2.1 is a simple application of Vollmer et al. (2016,

Theorem 3.3), so we refer the reader to that article for full details of the assumptions.

For simplicity of the statement, we assume that θ is 1-dimensional, but the results

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 142

are easily adapted to the d-dimensional case.

Proposition 5.2.1. (Vollmer et al., 2016) Under Vollmer et al. (2016, Assumptions

3.1 and 3.2), assume θ is 1-dimensional. Let θm be iteration m of an SGLD algorithm

for m = 1, . . . ,M , then the asymptotic bias defined by limM→∞

∣∣∣1/M∑M
m=1 E[θm]− Eπ[θ]

∣∣∣
has leading term O(h).

While ordinarily this asymptotic bias will be hard to disentangle from other sources

of error, as Eπ[θ] gets close to zero, h will have to be set prohibitively small to give

a good approximation to θ. The crux of the issue is that, while the absolute error

remains the same, at the boundary of the space the relative error is large since θ is

small, and biased upwards due to the positivity constraint. To counteract this, in the

next section we introduce a method which has no discretization error. This allows us

to prove that the asymptotic bias, as defined in Proposition 5.2.1, will be zero for any

choice of stepsize h.

5.3 The Stochastic Cox-Ingersoll-Ross Algorithm

We now wish to counteract the problems with SGRLD on sparse simplex spaces.

First, we make the following observation: rather than applying a reparameterization

of the prior for ω; we can model the posterior for θj directly and independently

as θj | z ∼ Gamma(αj +
∑N

i=1 zij, 1). Then using the gamma reparameterization

ω = θ/
∑

j θj still leads to the desired Dirichlet posterior. This leaves the θj in a much

simpler form, and this simpler form enables us to remove all discretization error. We

do this by using an alternative underlying process to the Langevin diffusion. The

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 143

diffusion we use is known as the Cox-Ingersoll-Ross (CIR) process, commonly used in

mathematical finance. A CIR process θt with parameter a and stationary distribution

Gamma(a, 1) has the following form

dθt = (a− θt)dt+
√

2θtdWt. (5.3.1)

The standard CIR process has more parameters, but we found changing these made

no difference to the properties of our proposed scalable sampler and so we omit them

(for exact details see the Supplementary Material).

The CIR process has many nice properties. One that is particularly useful for us

is that the transition density is known exactly. Define χ2(ν, µ) to be the non-central

chi-squared distribution with ν degrees of freedom and non-centrality parameter µ. If

at time t we are at state ϑt, then the probability distribution of θt+h is given by

θt+h | θt = ϑt ∼
1− e−h

2
W, W ∼ χ2

(
2a, 2ϑt

e−h

1− e−h

)
. (5.3.2)

This transition density allows us to simulate directly from the CIR process with no

discretization error. Furthermore, it has been proved that the CIR process is negative

with probability zero (Cox et al., 1985), meaning we will not need to take absolute

values as is required for the SGRLD algorithm.

5.3.1 Adapting for Large Datasets

The next issue we need to address is how to sample from this process when the

dataset is large. Suppose that zi is data for i = 1, . . . , N , for some large N , and

that our target distribution is Gamma(a, 1), where a = α +
∑N

i=1 zi. We want to

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 144

approximate the target by simulating from the CIR process using only a subset of z

at each iteration. A natural thing to do would be at each iteration to replace a in the

transition density equation (5.3.2) with an unbiased estimate â = α + N/n
∑

i∈S zi,

where S ⊂ {1, . . . , N}, similar to SGLD. We will refer to a CIR process using unbiased

estimates in this way as the stochastic CIR process (SCIR). Fix some stepsize h,

which now determines how often â is resampled rather than the granularity of the

discretization. Suppose θ̂m follows the SCIR process, then it will have the following

update

θ̂m+1 | θ̂m = ϑm ∼
1− e−h

2
W, W ∼ χ2

(
2âm, 2ϑm

e−h

1− e−h

)
, (5.3.3)

where âm = α +N/n
∑

i∈Sm zi.

We can show that this algorithm will approximately target the true posterior

distribution in the same sense as SGLD. To do this, we draw a connection between

the SCIR process and an SGLD algorithm, which allows us to use the arguments

of SGLD to show that the SCIR process will target the desired distribution. More

formally, we have the following relationship:

Theorem 5.3.1. Let θt be a CIR process with transition 5.3.2. Then Ut := g(θt) =

2
√
θt follows a Langevin diffusion whose stationary distribution is in the generalized

gamma family, with density p(u) ∝ u2a−1e−u
2/4.

Theorem 5.3.1, allows us to show that applying the transformation g(·) to the

approximate SCIR process, leads to a discretization free SGLD algorithm for a gen-

eralized gamma distribution. Similarly, applying g−1(·) to the approximate target

of this SGLD algorithm leads to the desired Gamma(a, 1) distribution. Full details

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 145

are given after the proof of Theorem 5.3.1. The result means that similar to SGLD,

we can replace the CIR parameter a with an unbiased estimate â created from a

minibatch of data. Provided we re-estimate a from one iteration to the next using

different minibatches, the approximate target distribution will still be Gamma(a, 1).

As in SGLD, there will be added error based on the noise in the estimate â. However,

from the desirable properties of the CIR process we are able to quantify this error

more easily than for the SGLD algorithm, and we do this in Section 5.4.

Algorithm 3 below summarizes how SCIR can be used to sample from the simplex

parameter ω | z ∼ Dir(α +
∑N

i=1 zi). This can be done in a similar way to SGRLD,

with the same per-iteration computational cost, so the improvements we demonstrate

later are essentially for free.

Algorithm 3: Stochastic Cox-Ingersoll-Ross (SCIR) for sampling from the prob-

ability simplex.

Input: Starting points θ0, stepsize h, minibatch size n.

Result: Approximate sample from ω | z.

for m = 1 to M do

Sample minibatch Sm from {1, . . . , N}

for j = 1 to d do

Set âj ← α +N/n
∑

i∈Sm zij.

Sample θ̂mj | θ̂(m−1)j using (5.3.3) with parameter âj and stepsize h.

end

Set ωm ← θm/
∑

j θmj.

end

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 146

0.1

0.2

0.3

0.4

0.001 0.010 0.100

Minibatch Size (log scale)

K
S

 D
is

ta
nc

e

(a)

0.1

0.2

0.3

0.4

0.5

0.001 0.010 0.100

Minibatch Size (log scale)

K
S

 D
is

ta
nc

e Method

Exact

SCIR

SGRLD

(b)

Figure 5.3.1: Kolmogorov-Smirnov distance for SGRLD and SCIR at different mini-

batch sizes when used to sample from (a), a sparse Dirichlet posterior and (b) a dense

Dirichlet posterior.

5.3.2 SCIR on Sparse Data

We test the SCIR process on two synthetic experiments. The first experiment is the

running experiment on the sparse Dirichlet posterior of Section 5.2.3. The second

experiment allocates 1000 datapoints equally to each component, leading to a highly

dense Dirichlet posterior. For both experiments, we run 1000 iterations of optimally

tuned SGRLD and SCIR algorithms and compare to an exact sample. For the sparse

experiment, Figure 5.2.1 shows boxplots of samples from the fifth component of ω,

which is sparse. For both experiments, Figure 5.3.1 plots the Kolmogorov-Smirnov

distance (dKS) between the approximate samples and the true posterior (full details

of the distance measure are given in the Supplementary Material). For the boxplots, a

minibatch of size 10 is used; for the dKS plots the proportion of data in the minibatch

is varied from 0.001 to 0.5. The dKS plots show the runs of five different seeds, which

gives some idea of variability.

The boxplots of Figure 5.2.1 demonstrate that the SCIR process is able to handle

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 147

smaller values of ω much more readily than SGRLD. The impact of this is demon-

strated in Figure 5.3.1a, the sparse dKS plot. Here the SCIR process is achieving

much better results than SGRLD, and converging towards the exact sample at larger

minibatch sizes. The dense dKS plot of Figure 5.3.1b shows that as we move to the

dense setting the samplers have similar properties. The conclusion is that the SCIR

algorithm is a good choice of simplex sampler for either the dense or sparse case.

5.4 Theoretical Analysis

In the following theoretical analysis we wish to target a Gamma(a, 1) distribution,

where a = α +
∑N

i=1 zi for some data z. We run an SCIR algorithm with stepsize h

for M iterations, yielding the sample θ̂m for m = 1, . . . ,M . We compare this to an

exact CIR process with stationary distribution Gamma(a, 1), defined by the transition

equation in (5.3.2). We do this by deriving the moment generating function (MGF)

of θ̂m in terms of the MGF of the exact CIR process. This allows us to quantify

the moments of θ̂m in the analysis to follow. For simplicity, we fix a stepsize h and,

abusing notation slightly, set θm to be a CIR process that has been run for time mh.

Theorem 5.4.1. Let θ̂M be the SCIR process defined in (5.3.3) starting from θ0 after

M steps with stepsize h. Let θM be the corresponding exact CIR process, also starting

from θ0, run for time Mh, and with coupled noise. Then the MGF of θ̂M is given by

Mθ̂M
(s) = MθM (s)

M∏
m=1

[
1− s(1− e−mh)

1− s(1− e−(m−1)h)

]−(âm−a)

, (5.4.1)

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 148

where we have

MθM (s) =
[
1− s(1− e−Mh)

]−a
exp

[
θ0

se−Mh

1− s(1− e−Mh)

]
.

The proof of this result follows by induction from the properties of the non-central

chi-squared distribution. The result shows that the MGF of the SCIR can be written

as the MGF of the exact underlying CIR process, as well as an error term in the

form of a product. Deriving the MGF enables us to find the non-asymptotic bias and

variance of the SCIR process, which is more interpretable than the MGF itself. The

results are stated formally in the following Corollary.

Corollary 5.4.2. Given the setup of Theorem 5.4.1,

E[θ̂M] = E[θM] = θ0e
−Mh + a(1− eMh),

so that, since Eπ[θ] = a, then limM→∞ | 1
M

∑M
m=1 E[θ̂m] − Eπ[θ]| = 0 and SCIR is

asymptotically unbiased. Similarly,

Var[θ̂M] = Var[θM] + (1− e−2Mh)
1− e−h

1 + e−h
Var[â],

where Var[â] = Var[âm] for m = 1, . . . ,M and

Var[θM] = 2θ0(e−Mh − e−2Mh) + a(1− e−Mh)2.

The results show that the approximate process is asymptotically unbiased. We be-

lieve this explains the improvements the method has over SGRLD in the experiments

of Sections 5.3.2 and 5.5. We also obtain the non-asymptotic variance as a simple

sum of the variance of the exact underlying CIR process, and a quantity involving

the variance of the estimate â. This is of a similar form to the strong error of SGLD

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 149

(Sato and Nakagawa, 2014), though without the contribution from the discretization.

The variance of the SCIR is somewhat inflated over the variance of the CIR process.

Reducing this variance would improve the properties of the SCIR process and would

be an interesting avenue for further work. Control variate ideas could be applied for

this purpose (Nagapetyan et al., 2017; Baker et al., 2018; Chatterji et al., 2018) and

they may prove especially effective since the mode of a gamma distribution is known

exactly.

5.5 Experiments

5.5.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA, see Blei et al., 2003) is a popular model used to

summarize a collection of documents by clustering them based on underlying topics.

The data for the model is a matrix of word frequencies, with a row for each document.

LDA is based on a generative procedure. For each document l, a discrete distribution

over the K potential topics, θl, is drawn as θl ∼ Dir(α) for some suitably chosen

hyperparameter α. Each topic k is associated with a discrete distribution φk over

all the words in a corpus, meant to represent the common words associated with

particular topics. This is drawn as φk ∼ Dir(β), for some suitable β. Finally, for each

word in document l, a topic k is drawn from θl; then the word itself is drawn from φk.

LDA is a good example for this method because φk is likely to be very sparse,

there are many words which will not be associated with a given topic at all. The

code is an adaption of the code released by Patterson and Teh (2013), which we

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 150

apply to a dataset of scraped Wikipedia documents. At each iteration a minibatch

of 50 documents is sampled in an online manner. We use the same vocabulary set

as in Patterson and Teh (2013) which consists of approximately 8000 words. The

exponential of the average log-predictive on a held out set of 1000 documents is

calculated every 5 iterations to evaluate the model. This quantity is known as the

perplexity, and use a document completion approach to calculate it (Wallach et al.,

2009). The perplexity is plotted for five runs using different seeds, which gives an

idea of variability. Similar to Patterson and Teh (2013), for both methods we use a

decreasing stepsize scheme of the form hm = h[1 + m/τ]−κ. The results are plotted

in Figure 5.5.1a. While the initial convergence rate is similar, SCIR keeps descending

past where SGRLD begins to converge. This experiment serves as a good example

for the impact that removing the discretization error has for this problem. Further

impact would probably be seen if a larger vocabulary size were used, leading to sparser

topic vectors. In real-world applications of LDA, it is quite common to use vocabulary

sizes above 8000.

5.5.2 Bayesian Nonparametric Mixture Model

We apply SCIR to sample from a Bayesian nonparametric mixture model of cate-

gorical data, based on Dunson and Xing (2009). To the best of our knowledge, the

development of SGMCMC methods for Bayesian nonparametric models has not been

considered before, so we deem this to be another contribution of the work. In partic-

ular, we develop a truncation free, scalable sampler based on SGMCMC for Dirich-

let processes (DP, see Ferguson, 1973). For more thorough details of DPs and the

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 151

1500

1600

1700

1800

0 10000 20000 30000 40000

Number of Documents

P
er

pl
ex

ity

(a)

12.000

12.025

12.050

12.075

12.100

0 250 500 750 1000

Iteration

Te
st

 L
og

 P
re

di
ct

iv
e

Method

SCIR

SGRLD

(b)

Figure 5.5.1: (a) plots the perplexity of SGRLD and SCIR when used to sample from

the LDA model of Section 5.5.1 applied to Wikipedia documents; (b) plots the log

predictive on a test set of the anonymous Microsoft user dataset, sampling the mixture

model defined in Section 5.5.2 using SCIR and SGRLD.

stochastic sampler developed, the reader is referred to the Supplementary Material.

The model can be expressed as follows

xi | θ, zi ∼ Multi(ni, θzi), θ, zi ∼ DP(Dir(a), α). (5.5.1)

Here Multi(m,φ) is a multinomial distribution with m trials and associated discrete

probability distribution φ; DP(G0, α) is a DP with base distribution G0 and concen-

tration parameter α. The DP component parameters and allocations are denoted by

θ and zi respectively. We define the number of observations N by N :=
∑

i ni, and

let L be the number of instances of xi, i = 1, . . . , L. This type of mixture model is

commonly used to model the dependence structure of categorical data, such as for

genetic or natural language data (Dunson and Xing, 2009). The use of DPs (Ferguson,

1973) means we can account for the fact that we do not know the true dependence

structure. DPs allow us to learn the number of mixture components in a penalized

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 152

way during the inference procedure itself.

We apply this model to the anonymous Microsoft user dataset (Breese et al.,

1998). This dataset consists of approximately N = 105 instances of L = 30000

anonymized users. Each instance details part of the website the user visits, which is

one of d = 294 categories (here d denotes the dimension of xi). We use the model

to try and characterize the typical usage patterns of the website. Since there are a

lot of categories and only an average of three observations for any one user, these

data are expected to be sparse. To infer the model, we use an novel algorithm,

which is a minibatched version of the slice sampler (Walker, 2007; Papaspiliopoulos,

2008; Kalli et al., 2011). We assign an uninformative gamma prior on α, and this

is inferred similarly to Escobar and West (1995). We minibatch the users at each

iteration using n = 1000. For multimodal mixture models such as this, SGMCMC

methods are known to get stuck in local modes (see Section 2.4.2), so we use a fixed

stepsize for both SGRLD and SCIR. Once again, we plot runs over 5 seeds to give an

idea of variability. The results are plotted in Figure 5.5.1b. They show that SCIR

consistently converges to a lower log predictive test score, and appears to have lower

variance than SGRLD. SGRLD also appears to be producing worse scores as the

number of iterations increases. We found that SGRLD had a tendency to propose

many more clusters than were required. This is probably due to the asymptotic bias

of Proposition 5.2.1, since this would lead to an inferred model that has a higher α

parameter than is set, meaning more clusters would be proposed than are needed. In

fact, setting a higher α parameter appeared to alleviate this problem, but led to a

worse fit, which is more evidence that this is the case.

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 153

5.6 Discussion

We presented an SGMCMC method, the SCIR algorithm, for simplex spaces. We

show that the method has no discretization error and is asymptotically unbiased.

Our experiments demonstrate that these properties give the sampler improved per-

formance over other SGMCMC methods for sampling from sparse simplex spaces.

Many important large-scale models are sparse, so this is an important contribution.

A number of useful theoretical properties for the sampler were derived, including the

non-asymptotic variance and moment generating function. Finally, we demonstrate

the impact of the sampler on a variety of interesting problems including a novel scal-

able Dirichlet process sampler. An interesting line of further work would be reducing

the non-asymptotic variance, which could be done by means of control variates.

Chapter 6

Conclusions

6.1 Discussion

This thesis has addressed the problem of making MCMC scalable to large datasets.

Stochastic gradient MCMC, which aims to cheaply approximate Itô processes that

target the posterior exactly, has become a popular scalable MCMC algorithm. The

method has substantial theoretical foundation in the form of Itô processes and the

Euler–Maruyama method. However, the methods no longer target the posterior ex-

actly, and more work needs to be done to improve the error introduced using these

methods.

While SGLD has improved per-iteration cost, there are many empirical results

suggesting the method still has O(N) overall computational cost (Welling and Teh,

2011; Nagapetyan et al., 2017). Here by computational cost we mean the number

of observations the algorithm needs to process in order to reach a given arbitrary

accuracy. This means the scalability of SGLD will grow linearly with the dataset size.

154

CHAPTER 6. CONCLUSIONS 155

In Chapter 3 we demonstrate how this phenomenon can be avoided using control

variates. We introduce the algorithm SGLD-CV, which subject to two one-off passes

through the dataset, leads to an algorithm with overall computational cost O(1).

We also investigate the usage of post-processing control variates within SGMCMC

algorithms, including the variance reduction achieved by SGMCMC.

SGMCMC has received a lot of attention from the machine learning community,

but less so from the statistics community. We propose this may be due to lack of

computational tools, especially for the programming language R, favoured by many

statisticians. In light of this we develop the R software package sgmcmc. Chapter 4

details a background to the package and its usage.

Typical implementations of SGLD on simplex spaces (i.e. sampling from Dirichlet

distributions) result in an unstable gradient. Patterson and Teh (2013) get around

this by using judicious transformations of the parameters. However, in Chapter 5 we

show that this method still has large biases on sparse simplex spaces, where many of

the components are zero, due to discretisation of the underlying Langevin diffusion.

This is an important problem, as many vital, large-scale models such as network and

natural language models rely on sampling from sparse simplex spaces. To counteract

this, we develop a scalable algorithm for sampling from the probability simplex that is

discretisation free. We show this removes the large biases caused by the discretisation

error.

CHAPTER 6. CONCLUSIONS 156

6.2 Future Work

Scalable MCMC, and more specifically SGMCMC, is still an active and open area

of research. An important problem that needs to be addressed is that SGMCMC

methods still have quite high error, compared to, for example ULA, due to the noise

in the gradient estimate. Therefore, more sophisticated variance reduction methods

than those introduced in Chapter 3, especially those that do not require setup costs,

could prove fruitful. On the other hand, work that allows the piecewise deterministic

process samplers of Bierkens et al. (2018a); Bouchard-Côté et al. (2018) to be applied

more simply could be more valuable to the community still; since these methods are

known to be exact.

Chapter 5 potentially opens up quite a few extensions. There are a number of dif-

fusions whose transition densities are known, which could be exploited in similar ways

to the Cox-Ingersoll-Ross process. The normalisation of Gamma random variates in

order to simulate from Dirichlet distributions has connections to Bayesian nonpara-

metrics, where Gamma processes can be normalised to create Dirichlet processes.

Recently, it has been shown that many traditional models based on exchangeability

of the adjacency matrix, such as the stochastic block model, are not able to model

sparsity (Caron and Fox, 2017). This leads Caron and Fox (2017) to suggest modelling

networks using Bayesian nonparametric models; one Bayesian nonparametric model

that has particularly good properties for this case is the generalised Gamma process.

Let X be a Gamma distributed random variable, then Xa for a ∈ R+ is generalised

Gamma distributed, with full flexibility over the distribution parameters. This means

CHAPTER 6. CONCLUSIONS 157

the SCIR process could be used to develop scalable samplers from generalised Gamma

processes, and hopefully this modern class of network model.

Appendix A

Appendix to Chapter 3

A.1 Computational Cost Proofs

Proof of Proposition 3.3.6

Proof. Let π be the invariant distribution of the underlying dynamics, so that it has

density e−f(θ) = p(θ|x), and define W2(νk, π) to be the Wasserstein distance between

νk and π. Define ξk to be the SGLD-CV gradient noise term. Then we can write a

single step of SGLD-CV as

θk+1 = θk + h∇f(θk) + hξk +
√

2hζk,

We have that θk ∼ νk, and follow similarly to the proof of Dalalyan and Karagulyan

(2017, Proposition 2). First define Y0 to be a draw from the invariant distribution π,

such that the joint distribution of Y0 and θk minimises E ‖Y0 − θk‖2. Here ‖.‖ denotes

the Euclidean distance for Rd. It follows that E ‖Y0 − θk‖2 = W 2
2 (νk, π).

Let Bt be a d-dimensional Wiener process, independent of θk, Y0 and ξk but which

158

APPENDIX A. APPENDIX TO CHAPTER 3 159

we couple to the injected noise ζk so that Bh =
√
hζk. Now let Yt, t > 0, follow the

diffusion

Yt = Y0 +

∫ t

0

∇f(Ys)ds+
√

2Bt. (A.1.1)

Let ∆k = Y0 − θk and ∆k+1 = Yh − θk+1. Since we started the process Yt from

Y0 ∼ π, then it follows that Yt ∼ π for all t > 0. Also since W 2
2 (νk+1, π) minimises the

expected squared distance between two random variables with marginals νk+1 and π

then it follows that W 2
2 (νk+1, π) ≤ E ‖∆k+1‖2.

Let us define

U = ∇f(θk + ∆k)−∇f(θk), (A.1.2)

V =

∫ h

0

[∇f(Yt)−∇f(Y0)] dt. (A.1.3)

Then by the unbiasedness of the gradient estimation, ξk has mean 0 regardless of the

value of θk. Thus

E ‖∆k+1‖2 = E ‖∆k + hU + V ‖2 + E ‖hξk‖2

≤ [E ‖∆k − hU‖+ E ‖V ‖]2 + h2E ‖ξk‖2 .

We can then apply Lemmas 2 and 4 in Dalalyan and Karagulyan (2017), stated below

in Lemmas A.1.1 and A.1.2, as well as applying the gradient noise bound in Lemma

3.3.3, to obtain a bound on W 2
2 (νk+1, π) given W 2

2 (νk, π).

Lemma A.1.1. With U as defined in (A.1.2), if h < 2m/(2M2+m2), then ‖∆k − hU‖ ≤

(1−mh) ‖∆k‖.

The original lemma by Dalalyan and Karagulyan (2017) assumed h < 2/(m+M),

but this holds when h < 2m/(2M2 +m2) as m ≤M .

APPENDIX A. APPENDIX TO CHAPTER 3 160

Lemma A.1.2. Under Assumption 3.3.1. Let V be as defined in (A.1.3), then

E ‖V ‖ ≤ 1

2
(h4M3d)

1
2 +

2

3
(2h3d)

1
2M.

Finally we can apply Lemma 3.3.3, as stated in the main body, to get

E ‖ξk‖2 ≤ M2

n
E
∥∥∥θk − θ̂∥∥∥2

≤ 2M2

n
E ‖θk − Y0‖2 +

2M2

n2
E
∥∥∥Y0 − θ̂

∥∥∥2

≤ 2M2

n
W 2

2 (νk, π) +
2M2

n
E
∥∥∥Y0 − θ̂

∥∥∥2

Using Theorem 1 of Durmus and Moulines (2017b)

E
∥∥∥Y0 − θ̂

∥∥∥2

≤ E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m
. (A.1.4)

It follows that

E ‖ξk‖2 ≤ 2M2

n
W 2

2 (νk, π) +
2M2

n

[
E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m

]
. (A.1.5)

Now using that W 2
2 (νk+1, π) ≤ E ‖∆k+1‖2 we get the following

W 2
2 (νk+1, π) ≤

[
(1−mh)W2(νk, π) + αM(h3d)

1
2

]2

+
2h2M2

n
W 2

2 (νk, π)+
2h2M2

n

[
E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m

]
,

where α = 7
√

2/6. Gathering like terms we can further bound W 2
2 (νk+1, π) to get the

following recursive formula

W 2
2 (νk+1, π) ≤ [(1− A)W2(νk, π) + C]2 +B2

where

A = 1−
√

2h2M2

n
+ (1−mh)2

B =

√
2h2M2

n

[
E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m

]
C = αM(h3d)

1
2 .

APPENDIX A. APPENDIX TO CHAPTER 3 161

We can now apply Lemma 1 of Dalalyan and Karagulyan (2017), as stated below to

solve this recurrence relation.

Lemma A.1.3. Let A, B and C be non-negative numbers such that A ∈ (0, 1).

Assume that the sequence of non-negative numbers xk, k = 0, 1, . . . , satisfies the

recursive inequality

x2
k ≤ [(1− A)xk + C]2 +B2

for every integer k > 0. Then for all integers k ≥ 0

xk ≤ (1− A)kx0 +
C

A
+

B2

C +
√
AB

To complete the proof all that remains is to check A ∈ (0, 1) so that Lemma A.1.3

can be applied. Clearly A < 1, since n ≥ 1 we have

A ≥ 1−
√

2h2M2 − (1−mh)2,

and the RHS is positive when h ∈ (0, 2m/(2M2 +m2)).

Proof of Theorem 3.3.7

Proof. Starting from Proposition 3.3.6, we have that

W2(νK , π) ≤ (1− A)KW2(ν0, π) +
C

A
+

B2

C +
√
AB

. (A.1.6)

where

A = 1−
√

2h2M2

n
+ (1−mh)2, B =

√
2h2M2

n

[
E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m

]
, C = αM(h3d)

1
2 ,

APPENDIX A. APPENDIX TO CHAPTER 3 162

Suppose we stop the algorithm at iteration K. Using (A.1.6), the following are

sufficient conditions that ensure W 2
2 (νK , π) < ε0/

√
m,

(1− A)KW2(ν0, π) ≤ ε0
2
√
m
, (A.1.7)

C

A
≤ ε0

4
√
m
, (A.1.8)

B2

C +
√
AB
≤ ε0

4
√
m
. (A.1.9)

The starting point θ0 is deterministic, so from Theorem 1 of Durmus and Moulines

(2017b)

W 2
2 (ν0, π) ≤ E

∥∥θ0 − θ̄
∥∥2

+
d

m
. (A.1.10)

If we rewrite

h =
γ

m

[
2n

2R2 + n

]
, (A.1.11)

where γ ∈ (0, 1) is some constant and R := M/m as defined in the theorem statement,

then it follows that we can write

A = 1−
√

1− 2mh(1− γ). (A.1.12)

Since we have the condition

h ≤ 1

m

[
n

2R2 + n

]
,

then γ ≤ 1
2
.

Now suppose, using (A.1.12), we set

Kh ≥ 1

m
log

[
4m

ε20

(
E
∥∥θ0 − θ̄

∥∥2

2
+ d/m

)]
(A.1.13)

Then using the result for the deterministic starting point θ0 (A.1.10), we find that

APPENDIX A. APPENDIX TO CHAPTER 3 163

(A.1.13) implies that

ε0
2
√
m
≥ exp [−mhK/2]

√
E
∥∥θ0 − θ̄

∥∥2
+
d

m

≥ [1−mh]
K
2 W2(ν0, π)

≥ (1− A)KW2(ν0, π),

Using (A.1.12) and that our conditions imply γ < 1/2. Hence (A.1.7) holds.

Using that for some real number y ∈ [0, 1],
√

1− y ≤ 1− y/2, we can bound A by

A ≥ 1−
√

1− 2mh(1− γ) ≥ mh(1− γ) := A0. (A.1.14)

As γ ≤ 1/2, for (A.1.8) to hold it is sufficient that

ε0
4
√
m
≥ C

A0

,

where C/A0 ≥ 2αM
√
hd/m. This leads to the following sufficient condition on h,

h ≤ 1

m

[
ε20

64R2α2d

]
(A.1.15)

Similarly for (A.1.9) it is sufficient that

ε0
4
√
m
≥ B√

A0

Now

B√
A0

≥
2
√
hM

√
E
∥∥∥θ̂ − θ̄∥∥∥2

+ d/m
√
mn

Leading to the following sufficient condition on n

n ≥ 64hM2

ε20

[
E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m

]
.

APPENDIX A. APPENDIX TO CHAPTER 3 164

Now due to the conditions on h, define

β := max

{
1

2L2 + 1
,

ε20
64L2α2d

}
.

Then (A.1.9) will hold when

n ≥ 64L2β

ε20
m

[
E
∥∥∥θ̂ − θ̄∥∥∥2

+
d

m

]
(A.1.16)

Proof of Lemma 3.3.3

Proof. Our proof follows similarly to Dubey et al. (2016),

E ‖ξk‖2 = E
∥∥∥∇f̃(θk)−∇f(θk)

∥∥∥2

= E

∥∥∥∥∥∇f0(θk)−∇f0(θ̂) +
1

n

∑
i∈Sk

1

pi

[
∇fi(θk)−∇fi(θ̂)

]
−
[
∇f(θk)−∇f(θ̂)

]∥∥∥∥∥
2

≤ 1

n2
E
∑
i∈Sk

∥∥∥∥[∇f(θk)−∇f(θ̂)
]
−
(
∇f0(θk)−∇f0(θ̂) +

1

pi

[
∇fi(θk)−∇fi(θ̂)

])∥∥∥∥2

.

Where the third line follows due to independence. For any random variable R, we

have that E ‖R− ER‖2 ≤ E ‖R‖2. Using this, the smoothness results of Assumption

3.3.2 and our choice of pi, gives the following, where EI refers to expectation with

respect to the sampled datum index, I,

E ‖ξk‖2 ≤ 1

n
EI
(

1

pI

∥∥∥∇fI(θk)−∇fI(θ̂)∥∥∥2
)

≤ 1

n

N∑
i=1

∑N
j=1 Lj

Li

(
Li

∥∥∥θk − θ̂∥∥∥)2

=
1

n

{
N∑
i=1

(
N∑
j=1

Lj

)
Li

}∥∥∥θk − θ̂∥∥∥2

,

from which the required bound follows trivially.

APPENDIX A. APPENDIX TO CHAPTER 3 165

Proof of Lemma 3.3.5

Proof. Smoothness condition: By the triangle inequality

‖∇f(θ)−∇f(θ′)‖ ≤
N∑
i=0

∥∥∥∥∥∇fi(θ)−
N∑
i=0

fi(θ
′)

∥∥∥∥∥
≤ (N + 1)L ‖θ − θ′‖ .

Strong convexity: We have that

f(θ)− f(θ′)−∇f(θ′)>(θ − θ′) =
N∑
i=0

[
fi(θ)− fi(θ′)−∇fi(θ′)>(θ − θ′)

]
≥ (N + 1)l

2
‖θ − θ′‖2

2 .

A.2 Post-processing Proofs

Proof that E[ĥ(θ)] = 0

Proof due to Friel et al. (2016). Let S ⊂ {1, . . . , N} be the minibatch chosen to

estimate ẑ, then using the law of total expectation

E[ĥ(θ)] = E [∆Q(θ) +∇Q(θ) · E[ẑ|S]]

= E [∆Q(θ) +∇Q(θ) · z] = E[h(θ)] = 0.

APPENDIX A. APPENDIX TO CHAPTER 3 166

Proof of Theorem 3.4.2

Proof. We start from the bound in Theorem 6.1 of Mira et al. (2013), stating for some

control variate h, the optimal variance reduction R is given by

R =

(
Eθ|x [g(θ)h(θ)]

)2

Eθ|x [h(θ)]2
,

so that in our case we have

R̂ =

(
Eθ|x

[
g(θ)ĥ(θ)

])2

Eθ|x
[
ĥ(θ)

]2

=

(
Eθ|x [g(θ)h(θ)]

)2

Eθ|x [h(θ)]2 + 1
4
Eθ|x [a · ξS(θ)]2

=
R

1 +
1
4
Eθ|x[a·ξS(θ)]2

Eθ|x[h(θ)]2

.

Then we can apply Lemmas A.2.1, A.2.2, defined in Section A.2, to get the desired

result

R̂ ≥ R

1 + [σ(N + 1)]−1Eθ|xES ‖ξS(θ)‖2 . (A.2.1)

Lemmas

Lemma A.2.1. Define A =
∑d

i=1 a
2
i , and let ξS(θ) = ̂∇ log p(θ|x) − ∇ log p(θ|x) be

the noise in the gradient estimate. Then

Eθ|x [a · ξS(θ)]2 ≤ AEθ|xES ‖ξS(θ)‖2 .

APPENDIX A. APPENDIX TO CHAPTER 3 167

Proof. We can condition on the gradient noise, and then immediately apply the

Cauchy-Schwarz inequality to get

Eθ|x [a · ξS(θ)]2 = Eθ|xES [a · ξS(θ)]2

≤

(
d∑
i=1

a2
i

)
Eθ|xES ‖ξS(θ)‖2

Lemma A.2.2. Under Assumption 3.4.1, define A =
∑d

i=1 a
2
i . Then Eθ|x [h(θ)]2 ≤

Aσ(N + 1)/4.

Proof. Applying the Cauchy-Schwarz inequality

Eθ|x [h(θ)]2 ≤ 1

4

(
d∑
i=1

a2
i

)
Eθ|x ‖∇f(θ)‖2

≤ A(N + 1)

4
σ

A.3 Experiments

Minibatch Sizes

The minibatch sizes were kept fixed for each of the dataset sizes. They are given in

the following table:

Stepsize Tuning and Hyperparameters

When tuning the experiments, initially a wide grid search was used to obtain a stepsize

to first order. Then, if convergence was insufficient, a more precise grid search was

APPENDIX A. APPENDIX TO CHAPTER 3 168

Model Minibatch Size

Logistic Regression 500

Probabilistic Matrix Factorisation 5000

LDA 50

Table A.3.1: Minibatch sizes for each of the experiments in 3.5 (they were fixed for

SGLD, SGLD-CV and SAGA).

used. In the tables to follow, we detail the optimal stepsizes found in the different

experiments. For SGLD-CV we list two sets of stepsizes: SGD and SGLD-CV. SGD

corresponds to the stepsizes for the initial optimisation step, SGLD-CV corresponds

to the stepsizes for the SGLD-CV algorithm itself.

Logistic Regression

Method 0.01N 0.1N N

SGLD 5× 10−4 5× 10−5 5× 10−6

SGLD-CV 5× 10−4 5× 10−5 5× 10−6

SGLD-CV (SGD) 7× 10−5 5× 10−5 5× 10−6

SAGA 1× 10−3 1× 10−4 1× 10−5

Table A.3.2: Tuned stepsizes for the Logistic regression experiment in Section 3.5.1.

Alternative results using a decreasing stepsize scheme of the form hk = h(1+k/a)−b

are given in Figure A.3.1. We use the optimal value of b = .33 (Teh et al., 2016). We

again tune using a grid search and find optimal h values are the same for the fixed

APPENDIX A. APPENDIX TO CHAPTER 3 169

0.01N 0.1N N

8

9

10

11

0 25 50 75 100 125 0 50 100 0 100 200 300
Time (secs)

A
ve

ra
ge

 lo
g

pr
ed

ic
tiv

e

method

SGLD

SGLD−CV

SAGA

Figure A.3.1: Log predictive density over a test set every 10 iterations of SGLD (with

a decreasing stepsize scheme), SGLD-CV and SAGA fit to a logistic regression model

as the data size N is varied.

case, and a = 1000 is the best for all dataset sizes.

Matrix Factorisation

We use the formulation of BPMF as in Chen et al. (2014, Section H.2). We set

λU , λV , λa, λb ∼ Gamma(1, 300) and τ = 3. This formulation has two matrix parame-

ters U , V and two vector parameters a and b that are learnt by the chosen SGMCMC

algorithm. We found these parameters tend to have quite different scales, so setting

one global tuning parameter for all mixed poorly. However having four separate step-

sizes would also prove difficult to tune. We opted instead to set one global tuning

parameter h, detailed in Table A.3.3, and then scale each of the stepsizes based on

the relative size of E [∇f(θ)]. The scaling we opted for, for each parameter θ was

E
[∥∥∥∇f̂(θ)

∥∥∥2

/d

]
for SGLD and SGD; E

[∥∥∥∇f̃(θ)2
∥∥∥ /d] for SGLD-CV; and for SAGA

it was equivalent with the corresponding variance reduced gradient. Here, for a given

matrix A, ‖A‖ corresponds to the Frobenius norm. The expectation was estimated

APPENDIX A. APPENDIX TO CHAPTER 3 170

using stochastic optimisation, for example at each iteration k the scaling Sk for SGLD

would be estimated by

Sk =
1

k

∥∥∥∇f̂(θk)

∥∥∥2

d
− Sk−1

 .
Then the local stepsize hθ for parameter θ would be set to hθ = h/

√
Sk. The global

stepsizes are detailed in the table below.

Method 0.1N 0.5N N

SGLD 1× 10−3 5× 10−3 5× 10−3

SGLD-CV 5× 10−7 1× 10−6 1× 10−6

SGLD-CV (SGD) 1× 10−2 1× 10−2 1× 10−2

SAGA 5× 10−3 1× 10−2 1× 10−2

Table A.3.3: Tuned stepsizes for the Bayesian probabilistic matrix factorisation ex-

periment in Section 3.5.2.

Alternative results using a decreasing stepsize scheme of the form hk = h(1+k/a)−b

are given in Figure A.3.2. We use the optimal value of b = .33 (Teh et al., 2016). We

again tune using a grid search and find optimal h values are the same for the fixed

case, and a = 1000 is the best for all dataset sizes.

Latent Dirichlet Allocation

We used the LDA formulation of (Patterson and Teh, 2013), integrating out η, but

without the Riemannian information, and using the expanded-natural parameterisa-

tion. We use uninformative hyperparameters α = β = 1.

APPENDIX A. APPENDIX TO CHAPTER 3 171

0.1N 0.5N N

1.00

1.25

1.50

0 25 50 75 100 0 50 100 150 0 50 100 150 200
Time (secs)

A
ve

ra
ge

 lo
g

pr
ed

ic
tiv

e

method

SAGA

SGLD

SGLDCV

Figure A.3.2: Log predictive density over a test set of SGLD (with a decreasing step-

size scheme), SGLD-CV and SAGA fit to a Bayesian probabilistic matrix factorisation

model as the number of users is varied, averaged over 5 runs. We used the Movielens

ml-100k dataset.

Method 0.1N 0.6N N

SGLD 8× 10−4 8× 10−5 5× 10−5

SGLD-CV 8× 10−4 8× 10−5 5× 10−5

SGLD-CV (SGD) 7× 10−4 1× 10−4 1× 10−4

SAGA 5× 10−4 5× 10−5 5× 10−5

Table A.3.4: Tuned stepsizes for the Bayesian probabilistic matrix factorisation ex-

periment in Section 3.5.2.

Appendix B

Appendix to Chapter 5

B.1 Proofs

Proof of Proposition 5.2.1

Proof. Define the local weak error of SGLD, starting from θ0 and with stepsize h,

with test function φ by

E
∣∣φ(θ1)− φ(θ̄h)

∣∣ ,
where θ̄h is the true underlying Langevin diffusion (5.2.1), run for time h with starting

point θ0. Then it is shown by Vollmer et al. (2016) that if φ : Rd → R is a smooth

test function, and that SGLD applied with test function φ has local weak error O(h),

then

E

∣∣∣∣∣ lim
M→∞

1/M
M∑
m=1

φ(θm)− Eπ[φ(θ)]

∣∣∣∣∣
is also O(h). What remains to be checked is that using such a simple function for

φ (the identity), does not cause things to disappear such that the local weak error

172

APPENDIX B. APPENDIX TO CHAPTER 5 173

of SGLD is no longer O(h). The identity function is infinitely differentiable, thus is

sufficiently smooth. For SGLD, we find that

E[θ1|θ0] = θ0 + hf ′(θ0).

For the Langevin diffusion, we define the one step expectation using the weak Taylor

expansion of Zygalakis (2011), which is valid since we have made Assumptions 3.1

and 3.2 of Vollmer et al. (2016). Define the infinitesimal operator L of the Langevin

diffusion (5.2.1) by

Lφ = f ′(θ) · ∂θφ(θ) + ∂2
θφ(θ).

Then Zygalakis (2011) shows that the weak Taylor expansion of Langevin diffusion

(5.2.1) has the form

E[θ̄h|θ0] = θ0 + hLφ(θ0) +
h2

2
L2φ(θ0) +O(h3).

This means when φ is the identity then

E[θ̄h|θ0] = θ0 + hf ′(θ0) +
h2

2
[f(θ)f ′(θ) + f ′′(θ)] +O(h3).

Since the terms agree up to O(h) then it follows that even when φ is the identity,

SGLD still has local weak error of O(h). This completes the proof.

Proof of Theorem 5.3.1

Proof. Suppose we have a random variable U∞ following a generalized gamma poste-

rior with data z and the following density

f(u) ∝ u2(α+
∑N
i=1 zi)−1e−u

2/4.

APPENDIX B. APPENDIX TO CHAPTER 5 174

Set a := 2(α +
∑N

i=1 zi), Then ∂ log f(u) = (2a − 1)/u − u/2, so that the Langevin

diffusion for U∞ will have the following integral form

Ut+h |Ut = Ut +

∫ t+h

t

[
2a− 1

Us
− Us

2

]
ds+

√
2

∫ t+h

t

dWt.

Applying Ito’s lemma to Ut to transform to θt = g−1(Ut) = U2
t /4 (here g(·) has

been stated in the proof), we find that

θt+h | θt = θt +

∫ t+h

t

[a− θs] ds+

∫ t+h

t

√
2θtdWt.

This is exactly the integral form for the CIR process. This completes the proof.

Now we give more details of the connection between SGLD and SCIR. Let us

define an SGLD algorithm that approximately targets U∞, but without the Euler

discretization by

U(m+1)h |Umh = Umh +

∫ (m+1)h

mh

[
2âm − 1

Us
− Us

2

]
ds+

√
2

∫ (m+1)h

mh

dWt, (B.1.1)

where âm is an unbiased estimate of a; for example, the standard SGLD estimate

âm = α+N/n
∑

i∈Sm zi; also h is a tuning constant which determines how much time

is simulated before resampling âm.

Again applying Ito’s lemma to Umh to transform to θmh = g(Umh) = U2
mh/4, we

find that

θ(m+1)h = θmh +

∫ (m+1)h

mh

[âm − θs] ds+

∫ (m+1)h

mh

√
2θtdWt.

This is exactly the integral form for the update equation of an SCIR process.

Finally, to show SCIR has the desired approximate target, we use some properties

of the gamma distribution. Firstly if θ∞ ∼ Gamma(a, 1) then 4θ∞ ∼ Gamma(a, 1
4
),

APPENDIX B. APPENDIX TO CHAPTER 5 175

so that U∞ = 2
√
θ∞ will have a generalized gamma distribution with density propor-

tional to h(u) ∝ u2a−1e−u
2/4. This is exactly the approximate target of the discretiza-

tion free SGLD algorithm (B.1.1) we derived earlier.

Proof of Theorem 5.4.1

First let us define the following quantities

r(s) =
se−h

1− s(1− e−h)
, r(n)(s) = r ◦ · · · ◦ r︸ ︷︷ ︸

n

(s).

Then we will make use of the following Lemmas:

Lemma B.1.1. For all n ∈ N and s ∈ R

r(n)(s) =
se−nh

1− s(1− e−nh)
.

Lemma B.1.2. For all n ∈ N, s ∈ R, set r(0)(s) := s, then

n−1∏
i=0

[
1− r(i)(s)(1− e−h)

]
=
[
1− s(1− e−nh)

]
.

Both can be proved by induction, which is shown in Section B.2.

Suppose that θ1|θ0 is a CIR process, starting at θ0 and run for time h. Then we

can immediately write down the MGF of θ1, Mθ1(s), using the MGF of a non-central

chi-squared distribution

Mθ1(s) = E
[
esθ1|θ0

]
=
[
1− s(1− e−h)

]−a
exp

[
sθ0e

−h

1− s(1− e−h)

]
.

APPENDIX B. APPENDIX TO CHAPTER 5 176

We can use this to find E
[
esθM | θM−1

]
, and then take expectations of this with respect

to θM−2, i.e. E
[
E
[
esθM | θM−1

]
| θM−2

]
. This is possible because E

[
esθM |θM−1

]
has the

form C(s) exp[θM−1r(s)], where C(s) is a function only involving s, and r(s) is as

defined earlier. Thus repeatedly applying this and using Lemmas B.1.1 and B.1.2 we

find

MθM (s) =
[
1− s(1− e−Mh)

]−a
exp

[
sθ0e

−Mh

1− s(1− e−Mh)

]
. (B.1.2)

Although this was already known, we can use the same idea to find the MGF of the

SCIR process.

The MGF of SCIR immediately follows using the same logic as before, as well as

using the form of MθM (s) and Lemmas B.1.1 and B.1.2. Leading to

Mθ̂M
(s) =

M∏
m=1

[
1− r(m−1)(s)(1− e−h)

]−âm
exp

[
θ0r

(M)(s)
]

= MθM (s)
M∏
m=1

[
1− s(1− e−mh)

1− s(1− e−(m−1)h)

]−(âm−a)

Proof of Theorem 5.4.2

Proof. From Theorem 5.4.1, we have

Mθ̂M
(s) = MθM (s)

M∏
m=1

[
1− s(1− e−mh)

]−(âm−a)

︸ ︷︷ ︸
e0(s)

M∏
m=1

[
1− s(1− e−(m−1)h)

]−(a−âm)

︸ ︷︷ ︸
e1(s)

.

We clearly have MθM (0) = e0(0) = e1(0) = 1. Differentiating we find

e′0(s) =
M∑
i=1

(âi − a)(1− e−ih)
[
1− s(1− e−ih)

]−1
e0(s),

similarly

e′1(s) =
M∑
i=1

(a− âi)(1− e−(i−1)h)
[
1− s(1− e−(i−1)h)

]−1
e1(s).

APPENDIX B. APPENDIX TO CHAPTER 5 177

It follows that, labeling the minibatch noise up to iteration M by BM , and using the

fact that Eâi = a for all i = 1, . . . ,M we have

Ê̂θM = E
[
E
(
θ̂M |BM

)]
= E

[
M ′

θ̂M
(0)
]

= E
[
M ′

θM
(0)e0(0)e1(0) +MθM (0)e′0(0)e1(0) +MθM (0)e0(0)e′1(0)

]
= EθM .

Now taking second derivatives we find

e′′0(s) =
M∑
i=1

(âi − a)(âi − a− 1)(1− e−ih)2
[
1− s(1− e−ih)

]−2
e0(s)

+
∑
i 6=j

(âi−a)(âj−a)(1−e−ih)(1−e−jh)
[
1− s(1− e−ih)

]−1 [
1− s(1− e−jh)

]−1
e0(s).

Now taking expectations with respect to the minibatch noise, noting independence of

âi and âj for i 6= j,

E [e′′0(0)] =
M∑
i=1

(1− e−ih)2Var(âi).

By symmetry

E [e′′1(0)] =
M∑
i=1

(1− e−(i−1)h)2Var(âi).

We also have

E [e′0(0)e′1(0)] = −
M∑
i=1

(1− e−ih)(1− e−(i−1)h)Var(âi).

APPENDIX B. APPENDIX TO CHAPTER 5 178

Now we can calculate the second moment using the MGF as follows, note that

E(e′0(0)) = E(e′1(0)) = 0,

Eθ̂2
M = E

[
M ′′

θ̂M
(0)
]

= E
[
M ′′

θM
(0)e0(0)e1(0) +MθM (0)e′′0(0)e1(0) +MθM (0)e0(0)e′′1(0) + 2MθM (0)e′0(0)e′1(0)

]
= Eθ2

M +
M∑
i=1

(1− e−ih)2Var(âi) +
M∑
i=1

(1− e−(i−1)h)2Var(âi)− 2
M∑
i=1

(1− e−ih)(1− e−(i−1)h)Var(âi)

= Eθ2
M + Var(â)

[
e−2Mh − 1 + 2

M∑
i=1

(
e−2(i−1)h − e−(2i−1)h

)]

= Eθ2
M + Var(â)

[
e−2Mh − 1 + 2

2M−1∑
i=0

(−1)ie−ih

]

= Eθ2
M + Var(â)

[
e−2Mh − 1 +

2− 2e−2Mh

1 + e−h

]
= Eθ2

M + Var(â)(1− e−2Mh)

[
1− e−h

1 + e−h

]

APPENDIX B. APPENDIX TO CHAPTER 5 179

B.2 Proofs of Lemmas

Proof of Lemma B.1.1

Proof. We proceed by induction. Clearly the result holds for n = 1. Now assume the

result holds for all n ≤ k, we prove the result for n = k + 1 as follows

r(k+1)(s) = r ◦ r(k)(s)

= r

(
se−kh

1− s(1− e−kh)

)
=

se−kh

1− s(1− e−kh)
· e−h(1− s(1− e−kh))

1− s(1− e−kh)− se−kh(1− e−h)

=
se−(k+1)h

1− s(1− e−(k+1)h)
.

Thus the result holds for all n ∈ N by induction.

Proof of Lemma B.1.2

Proof. Once again we proceed by induction. Clearly the result holds for n = 1. Now

assume the result holds for all n ≤ k. Using Lemma B.1.1, we prove the result for

n = k + 1 as follows

k∏
i=0

[
1− r(i)(s)(1− e−h)

]
=
[
1− s(1− e−kh)

] [
1− se−kh(1− e−h)

1− s(1− e−kh)

]

=
[
1− s(1− e−kh)

] [1− s(1− e−(k+1)h)

1− s(1− e−kh)

]
=
[
1− s(1− e−(k+1)h)

]
Thus the result holds for all n ∈ N by induction.

APPENDIX B. APPENDIX TO CHAPTER 5 180

B.3 CIR Parameter Choice

As mentioned in Section 5.3, the standard CIR process has more parameters than

those presented. The full form for the CIR process is as follows

dθt = b(a− θt)dt+ σ
√
θtdWt, (B.3.1)

where a, b and σ are parameters to be chosen. This leads to a Gamma(2ab/σ2, 2b/σ2)

stationary distribution. For our purposes, the second parameter of the gamma sta-

tionary distribution can be set arbitrarily, thus it is natural to set 2b = σ2 which leads

to a Gamma(a, 1) stationary distribution and a process of the following form

dθt = b(a− θt)dt+
√

2bθtdWt.

Fix the stepsize h, and use the slight abuse of notation that θm = θmh. The process

has the following transition density

θm+1 | θm = ϑm ∼
1− e−bh

2
W, W ∼ χ2

(
2a, 2ϑm

e−bh

1− e−bh

)
.

Using the MGF of a non-central chi-square distribution we find

MθM (s) =
[
1− s(1− e−Mbh)

]−a
exp

[
sθ0e

−Mbh

1− s(1− e−Mbh)

]
.

Clearly b and h are unidentifiable. Thus we arbitrarily set b = 1.

B.4 Stochastic Slice Sampler for Dirichlet Processes

Dirichlet Processes

The Dirichlet process (DP) (Ferguson, 1973) is parameterised by a scale parameter

α ∈ R>0 and a base distribution G0 and is denoted DP (G0, α). A formal definition

APPENDIX B. APPENDIX TO CHAPTER 5 181

is that G is distributed according to DP (G0, α) if for all k ∈ N and k-partitions

{B1, . . . , Bk} of the space of interest Ω

(G(B1), . . . , G(Bk)) ∼ Dir(αG0(B1), . . . , αG0(Bk)).

More intuitively, suppose we simulate θ1, . . . θN from G. Then integrating out G

(Blackwell and MacQueen, 1973) we can represent θN conditional on θ−N as

θN | θ1, . . . , θN−1 ∼
1

N − 1 + α

N−1∑
i=1

δθi +
α

N − 1 + α
G0, (B.4.1)

where δθ is the distribution concentrated at θ.

An explicit construction of a DP exists due to Sethuraman (1994), known as the

stick-breaking construction. The slice sampler we develop in this section is based on

this construction. For j = 1, 2, . . . , set Vj ∼ Beta(1, α) and θj ∼ G0. Then the stick

breaking construction is given by

ωj := Vj

j−1∏
k=1

(1− Vk) (B.4.2)

G ∼
∞∑
j=1

ωjδθj , (B.4.3)

and we have G ∼ DP (G0, α).

Slice sampling Dirichlet process mixtures

We focus on sampling from Dirichlet process mixture models defined by

Xi | θi ∼ F (θi)

θi | G ∼ G

G | G0, α ∼ DP (G0, α).

APPENDIX B. APPENDIX TO CHAPTER 5 182

A popular MCMC algorithm for sampling from this model is the slice sampler, origi-

nally developed by Walker (2007) and further developed by Papaspiliopoulos (2008);

Kalli et al. (2011). The slice sampler is based directly on the stick-breaking con-

struction (B.4.2), rather than the sequential (Pólya urn) formulation of (B.4.1). This

makes it a more natural approach to develop a stochastic sampler from; since the

stochastic sampler relies on conditional independence assumptions. The slice sampler

can be extended to other Bayesian nonparametric models quite naturally, from their

corresponding stick breaking construction.

We want to make inference on a Dirichlet process using the stick breaking con-

struction directly. Suppose the mixture distribution F , and the base distribution

G0 admit densities f and g0. Introducing the variable z, which determines which

component x is currently allocated to, we can write the density as follows

p(x|ω, θ, z) ∝ ωzf(x|θz).

Theoretically we could now use a Gibbs sampler to sample conditionally from z, θ

and ω. However this requires updating an infinite number of weights, similarly z is

drawn from a categorical distribution with an infinite number of categories. To get

around this Walker (2007) introduces another latent variable u, such that the density

is now

p(x|ω, θ, z, u) ∝ 1(u < ωz)f(x|θz),

so that the full likelihood is given by

p(x|ω, θ, z,u) ∝
N∏
i=1

1(ui < ωzi)f(xi|θzi). (B.4.4)

APPENDIX B. APPENDIX TO CHAPTER 5 183

Walker (2007) shows that in order for a standard Gibbs sampler to be valid given

(B.4.4), the number of weights ωj that needs to be sampled given this new latent

variable is now finite, and given by k∗, where k∗ is the smallest value such that∑k∗

j=1 ωj > 1− ui.

The Gibbs algorithm can now be stated as follows, note we have included an

improvement suggested by Papaspiliopoulos (2008), in how to sample vj.

• Sample the slice variables u, given by ui | ω, z ∼ U(0, ωzi) for i = 1, . . . , N .

Calculate u∗ = min u.

• Delete or add components until the number of current components k∗ is the

smallest value such that u∗ < 1−
∑k∗

j=1 ωj.

• Draw new component allocations zi for i = 1, . . . , N , using

p(zi = j|xi, ui, ω, θ) ∝ 1(ωj > ui)f(xi|θ).

• For j ≤ k∗, sample new component parameters θj from

p(θj|x, z) ∝ g0(θj)
∏

i : zi=j
f(xi|θj)

• For j ≤ k∗ calculate simulate new stick breaks v from

vj | z, α ∼ Beta
(

1 +mj, α +
∑k∗

l=j+1 ml

)
. Here mj :=

∑N
i=1 1zi=j.

• Update ω using the new v: ωj = vj
∏

l<j(1− vj).

Stochastic Sampler

The conditional independence of each update of the slice sampler introduced in Section

B.4 makes it possible to adapt it to a stochastic variant. Suppose we update θ and

APPENDIX B. APPENDIX TO CHAPTER 5 184

v given a minibatch of the z and u parameters. Then since the z and u parameters

are just updated from the marginal of the posterior, only updating a minibatch of

these parameters at a time would leave the posterior as the invariant distribution.

Our exact MCMC procedure is similar to that in the R package PReMiuM (Liverani

et al., 2015), though they do not use a stochastic sampler. First define the following:

Z∗ = max z; S ⊂ {1, . . . , N} is the current minibatch; u∗ = min uS; k∗ is the smallest

value such that
∑k∗

j=1 ωj > 1− u∗. Then our updates proceed as follows:

• Recalculate Z∗ and S (note this can be done in O(n) time since only n z values

changed).

• For j = 1, . . . , Z∗ sample vj stochastically with SCIR from

vj | z, α ∼ Beta(1 + m̂j, α +
∑k∗

l=j+1 m̂l). Here m̂j = N/n
∑

i∈S 1zi=j.

• Update ωj using the new v: ωj = vj
∏

l<j(1− vj).

• For j = 1, . . . , Z∗ sample θj stochastically with SGMCMC from

p(θj|x, z) ∝ g0(θj)
∏

Sj
f(xi|θj). Here Sj = {i : zi = j and i ∈ S}.

• For i ∈ S sample the slice variables ui |ω, z ∼ U(0, ωzi).

• Sample α if required. Using Escobar and West (1995), for our example we as-

sume a Gamma(b1, b2) prior so that α | v1:Z∗ ∼ Gamma(b1+Z∗, b2−
∑K∗

j=1 log(1−

vj)).

• Recalculate u∗. Sample additional ωj from the prior, until k∗ is reached. For

j = (Z∗ + 1), . . . , k∗ sample additional θj from the prior.

APPENDIX B. APPENDIX TO CHAPTER 5 185

• For i ∈ S, sample zi, where P(zi = j|ui, ω, θ,x) ∝ 1(ωj > ui)f(xi|θj).

Note that for our particular example, we have the following conditional update for

θ (ignoring minibatching for simplicity):

θj | zj,x ∼ Dirichlet

a+
∑
i∈Sj

xi1, . . . , a+
∑
i∈Sj

xid

 .

B.5 Experiments

Synthetic

We now fully explain the distance measure used in the synthetic experiments. Sup-

pose we have random variables X taking values in R with cumulative density func-

tion (CDF) F . We also have an approximate sample from X, X̂ with empirical

density function F̂ . The Kolmogorov-Smirnov distance dKS between X and X̂ is de-

fined by dKS(X, X̂) = supx∈R

∥∥∥F̂ (x)− F (x)
∥∥∥ . However the Dirichlet distribution is

multi-dimensional, so we measure the average Kolmogorov-Smirnov distance across

dimensions by using the Rosenblatt transform (Rosenblatt, 1952).

Suppose now that X takes values in Rd. Define the conditional CDF of Xk =

xk|Xk−1 = xk−1, . . . , X1 = x1 to be F (xk|x1:(k−1)). Suppose we have an approximate

sample from X, which we denote x(m), for m = 1, . . .M . Define F̂j to be the empirical

CDF defined by the samples F (x
(m)
j |x

(m)
1:(j−1)). Then Rosenblatt (1952) showed that if

X̂ is a true sample from X then F̂j should be the uniform distribution and independent

of F̂k for k 6= j. This allows us to define a Kolmogorov-Smirnov distance measure

APPENDIX B. APPENDIX TO CHAPTER 5 186

across multiple dimensions as follows

dKS(X, X̂) =
1

K

K∑
j=1

sup
x∈R

∥∥∥F̂j(x)− Fj(x)
∥∥∥ .

Where here applying Rosenblatt (1952), Fj(X) is just the uniform distribution.

The full posterior distributions for the sparse and dense experiments are as follows:

ωsparse | z ∼ Dir [800.1, 100.1, 100.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] ,

ωdense | z ∼ Dir [112.1, 119.1, 92.1, 98.1, 95.1, 96.1, 102.1, 92.1, 91.1, 103.1] .

For each of the five random seeds, we pick the stepsize giving the best dKS for SGRLD

and SCIR from the following options:

Method h

SCIR 1.0 5e-1 1e-1 5e-2 1e-2 5e-3 1e-3

SGRLD 5e-1 1e-1 5e-2 1e-2 5e-3 1e-3 5e-4 1e-4

Table B.5.1: Stepsizes for the synthetic experiment

Latent Dirichlet Allocation

As mentioned in the main body, we use a decreasing stepsize scheme of the form

hm = h(1 +m/τ)−κ. We do this to be fair to SGRLD, where the best performance is

found by using this decreasing scheme (Patterson and Teh, 2013; Ma et al., 2015); and

this will probably reduce some of the bias due to the stepsize h. We find a decreasing

stepsize scheme of this form also benefits SCIR, so we use it as well. Notice that we

find similar optimal hyperparameters for SGRLD to Patterson and Teh (2013). Table

B.5.2 fully details the hyperparameter settings we use for the LDA experiment.

APPENDIX B. APPENDIX TO CHAPTER 5 187

Method h τ κ α β K n Gibbs Samples

CIR 0.5 10. .33 0.1 0.5 100 50 200

SGRLD 0.01 1000. .6 0.01 0.0001 100 50 200

Table B.5.2: Hyperparameters for the LDA experiment

Bayesian Nonparametric Mixture

For details of the stochastic slice sampler we use, please refer to Section B.4. Figure

B.5.3 details full hyperparameter settings for the Bayesian nonparametric mixture

experiment. Note that hθ corresponds to the stepsizes assigned for sampling the θ

parameters; while hDP corresponds to the stepsizes assigned for sampling from the

weights ω for the Dirichlet process.

Method hθ hDP a K n

CIR 0.1 0.1 0.5 20 1000

SGRLD 0.001 0.005 0.001 30 1000

Table B.5.3: Hyperparameters for the Bayesian nonparametric mixture experiment

Bibliography

R. Abraham, J. E. Marsden, and R. Ratiu. Manifolds, Tensor Analysis, and Appli-

cations, volume 2. Springer-Verlag, 1988.

Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling

via stochastic gradient Fisher scoring. In Proceedings of the 29th International

Conference on Machine Learning, pages 1591–1598, 2012.

Sungjin Ahn, Anoop Korattikara, Nathan Liu, Suju Rajan, and Max Welling. Large-

scale distributed Bayesian matrix factorization using stochastic gradient MCMC.

In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 9–18, 2015.

JJ Allaire, Dirk Eddelbuettel, Nick Golding, and Yuan Tang. TensorFlow: R Interface

to TensorFlow, 2016. URL https://github.com/rstudio/tensorflow.

Jack Baker, Paul Fearnhead, Emily B. Fox, and Christopher Nemeth. Control variates

for stochastic gradient MCMC. Statistics and Computing, 2018. URL https:

//doi.org/10.1007/s11222-018-9826-2. To Appear.

188

https://github.com/rstudio/tensorflow
https://doi.org/10.1007/s11222-018-9826-2
https://doi.org/10.1007/s11222-018-9826-2

BIBLIOGRAPHY 189

A. D. Barbour. Stein’s method and poisson process convergence. Journal of Applied

Probability, 25:175–184, 1988.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On markov chain monte carlo

methods for tall data. Journal of Machine Learning Research, 18(47):1–43, 2017.

Bo Martin Bibby, Ib Michael Skovgaard, and Michael Sørensen. Diffusion-type models

with given marginal distribution and autocorrelation function. Bernoulli, 11(2):

191–220, 2005.

Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The zig-zag process and super-

efficient sampling for Bayesian analysis of big data. The Annals of Statistics, 2018a.

To Appear.

Joris Bierkens, Gareth Roberts, and Pierre-Andr Zitt. Ergodicity of the zigzag process.

Available at https://arxiv.org/abs/1712.09875, 2018b.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural net-

works and discriminant analysis in predicting forest cover types from cartographic

variables. Computers and electronics in agriculture, 24(3):131–151, 1999.

David Blackwell and James B. MacQueen. Ferguson distributions via Polya urn

schemes. The Annals of Statistics, 1(2):353–355, 1973.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

https://arxiv.org/abs/1712.09875

BIBLIOGRAPHY 190

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-

ceedings of the 19th International Conference on Computational Statistics, pages

177–187. Springer, 2010.

Alexandre Bouchard-Côté, Sebastian J. Vollmer, and Arnaud Doucet. The Bouncy

Particle Sampler: A nonreversible rejection-free Markov chain Monte Carlo method.

Journal of the American Statistical Association, 113(522):855–867, 2018.

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference

on Uncertainty in Artificial Intelligence, pages 43–52, 1998.

François Caron and Emily B Fox. Sparse graphs using exchangeable random measures.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(5):

1295–1366, 2017.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich,

Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.

Stan: A probabilistic programming language. Journal of Statistical Software, 76

(1), 2017.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-

chines. ACM Transactions on Intelligent Systems and Technology, 2(3):1–27, 2011.

URL http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Niladri S Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L Bartlett, and Michael I

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY 191

Jordan. On the theory of variance reduction for stochastic gradient Monte Carlo.

Available at https://arxiv.org/abs/1802.05431v1, 2018.

Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic

gradient MCMC algorithms with high-order integrators. In Advances in Neural

Information Processing Systems 28, pages 2278–2286, 2015.

Changyou Chen, Wenlin Wang, Yizhe Zhang, Qinliang Su, and Lawrence Carin. A

convergence analysis for a class of practical variance-reduction stochastic gradient

MCMC. Available at https://arxiv.org/abs/1709.01180, 2017.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte

Carlo. In Proceedings of the 31st International Conference on Machine Learning,

pages 1683–1691, 2014.

Xiang Cheng, Niladri S. Chatterji, Yasin Abbasi-Yadkori, Peter L. Bartlett, and

Michael I. Jordan. Sharp convergence rates for Langevin dynamics in the non-

convex setting. Available from https://arxiv.org/abs/1805.01648, 2018.

John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross. A theory of the term

structure of interest rates. Econometrica, 53(2):385–407, 1985.

Arnak S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and

log-concave densities. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 79(3):651–676, 2016.

Arnak S Dalalyan and Avetik G Karagulyan. User-friendly guarantees for the

https://arxiv.org/abs/1802.05431v1
https://arxiv.org/abs/1709.01180
https://arxiv.org/abs/1805.01648

BIBLIOGRAPHY 192

Langevin Monte Carlo with inaccurate gradient. Available at https://arxiv.

org/abs/1710.00095, 2017.

Mark HA Davis. Piecewise-deterministic markov processes: A general class of non-

diffusion stochastic models. Journal of the Royal Statistical Society. Series B (Sta-

tistical Methodology), pages 353–388, 1984.

George Deligiannidis, Alexandre Bouchard-Côté, and Arnaud Doucet. Exponential

Ergodicity of the Bouncy Particle Sampler. Annals of Statistics, 2018. To Appear.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hart-

mut Neven. Bayesian sampling using stochastic gradient thermostats. In Advances

in Neural Information Processing Systems 27, pages 3203–3211, 2014.

Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos,

Alexander J Smola, and Eric P Xing. Variance reduction in stochastic gradient

Langevin dynamics. In Advances in Neural Information Processing Systems 29,

pages 1154–1162. Curran Associates, Inc., 2016.

David B Dunson and Chuanhua Xing. Nonparametric Bayes modeling of multivariate

categorical data. Journal of the American Statistical Association, 104(487):1042–

1051, 2009.

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the un-

adjusted Langevin algorithm. The Annals of Applied Probability, 27(3):1551–1587,

2017a.

https://arxiv.org/abs/1710.00095
https://arxiv.org/abs/1710.00095

BIBLIOGRAPHY 193

Alain Durmus and Eric Moulines. High-dimensional Bayesian inference via

the unadjusted Langevin algorithm. 2017b. Available at https://hal.

archives-ouvertes.fr/hal-01304430/.

Michael D Escobar and Mike West. Bayesian density estimation and inference using

mixtures. Journal of the American Statistical Association, 90(430):577–588, 1995.

Paul Fearnhead, Joris Bierkens, Murray Pollock, and Gareth O. Roberts. Piecewise

deterministic Markov processes for continuous-time Monte Carlo. Statistical Sci-

ence, 33(3):386–412, 2018.

Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. The

Annals of Statistics, 1(2):209–230, 1973.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical

Learning, volume 1. Springer-Verlag, 2001.

Nial Friel, Antonietta Mira, and Chris Oates. Exploiting multi-core architectures for

reduced-variance estimation with intractable likelihoods. Bayesian Analysis, 11(1):

215–245, 2016.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, PAMI-6(6):721–741, 1984.

Charles J Geyer. Markov chain Monte Carlo lecture notes, 2005. Unpublised lecture

notes. Available from http://www.stat.umn.edu/geyer/f05/8931/n1998.pdf.

https://hal.archives-ouvertes.fr/hal-01304430/
https://hal.archives-ouvertes.fr/hal-01304430/
http://www.stat.umn.edu/geyer/f05/8931/n1998.pdf

BIBLIOGRAPHY 194

Mike Giles, Tigran Nagapetyan, Lukasz Szpruch, Sebastian Vollmer, and Konstanti-

nos Zygalakis. Multilevel Monte Carlo for scalable Bayesian computations. Avail-

able from https://arxiv.org/abs/1609.06144, 2016.

Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 73(2):123–214, 2011.

Jack Gorham, Andrew B Duncan, Sebastian J Vollmer, and Lester Mackey. Measuring

sample quality with diffusions. Available from https://arxiv.org/abs/1611.

06972, 2016.

Peter J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82(4):711–732, 1995.

Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Tech-

niques of Algorithmic Differentiation, volume 2. SIAM, 2008.

W. K. Hastings. Monte Carlo sampling methods using Markov Chains and their

applications. Biometrika, 57(1):97–109, 1970.

Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively

setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning

Research, 15:1593–1623, 2014.

Alan M. Horowitz. A generalized guided Monte Carlo algorithm. Physics Letters B,

268(2):247 – 252, 1991.

https://arxiv.org/abs/1609.06144
https://arxiv.org/abs/1611.06972
https://arxiv.org/abs/1611.06972

BIBLIOGRAPHY 195

Maria Kalli, Jim E Griffin, and Stephen G Walker. Slice sampling mixture models.

Statistics and Computing, 21(1):93–105, 2011.

Rafail Khasminskii. Stochastic stability of differential equations, volume 66. Springer-

Verlag, 2011.

Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential

Equations, volume 1. Springer-Verlag, 1992.

Damien Lamberton and Gilles Pagès. Recursive computation of the invariant distri-

bution of a diffusion. Bernoulli, 8(3):367–405, 2002.

Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer, 2012.

Yann LeCun and Corinna Cortes. MNIST Handwritten Digit Database, 2010. URL

http://yann.lecun.com/exdb/mnist/.

B. Leimkuhler and X. Shang. Adaptive thermostats for noisy gradient systems. SIAM

Journal on Scientific Computing, 38(2):A712–A736, 2016.

P. A. W Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes

by thinning. Naval Research Logistics Quarterly, 26(3):403–413.

Cheng Li, Sanvesh Srivastava, and David B. Dunson. Simple, scalable and accurate

posterior interval estimation. Biometrika, 104(3):665–680, 2017.

S Li, A Beygelzimer, S Kakadet, J Langford, S Arya, and D Mount. FNN: fast nearest

neighbor search algorithms and applications. R package version 1.1. Available at

https://cran.r-project.org/web/packages/FNN/, 2013.

http://yann.lecun.com/exdb/mnist/
https://cran.r-project.org/web/packages/FNN/

BIBLIOGRAPHY 196

Wenzhe Li, Sungjin Ahn, and Max Welling. Scalable MCMC for mixed membership

stochastic blockmodels. In Proceedings of the 19th International Conference on

Artificial Intelligence and Statistics, pages 723–731, 2016.

Silvia Liverani, David Hastie, Lamiae Azizi, Michail Papathomas, and Sylvia Richard-

son. PReMiuM: An R package for profile regression mixture models using Dirichlet

processes. Journal of Statistical Software, 64(7):1–30, 2015.

David J. Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. WinBUGS -

A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics

and Computing, 10(4):325–337, 2000.

Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient

MCMC. In Advances in Neural Information Processing Systems 28, pages 2917–

2925. 2015.

J. Mattingly, A. Stuart, and M. Tretyakov. Convergence of numerical time-averaging

and stationary measures via Poisson equations. SIAM Journal on Numerical Anal-

ysis, 48(2):552–577, 2010.

J.C. Mattingly, A.M. Stuart, and D.J. Higham. Ergodicity for SDEs and approxima-

tions: locally Lipschitz vector fields and degenerate noise. Stochastic Processes and

their Applications, 101(2):185 – 232, 2002. ISSN 0304-4149.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equation of state calculations by fast computing ma-

chines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

BIBLIOGRAPHY 197

Sean P. Meyn and R. L. Tweedie. Stability of Markovian processes I: criteria for

discrete-time chains. Advances in Applied Probability, 24(3):542574, 1992.

Sean P Meyn and Richard L Tweedie. Markov Chains and Stochastic Stability, vol-

ume 1. Springer-Verlag, 1993a.

Sean P Meyn and Richard L Tweedie. Stability of Markovian processes II: Continuous-

time processes and sampled chains. Advances in Applied Probability, 25(3):487–517,

1993b.

Sean P Meyn and Richard L Tweedie. Stability of Markovian processes III: Foster–

Lyapunov criteria for continuous-time processes. Advances in Applied Probability,

25(3):518–548, 1993c.

Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David Dunson. Scalable and

robust Bayesian inference via the median posterior. In Proceedings of the 31st

International Conference on Machine Learning, volume 32, pages 1656–1664, 2014.

Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David B. Dunson. Robust

and scalable Bayes via a median of subset posterior measures. Journal of Machine

Learning Research, 18(124):1–40, 2017.

Antonietta Mira, Reza Solgi, and Daniele Imparato. Zero variance Markov chain

Monte Carlo for Bayesian estimators. Statistics and Computing, 23(5):653–662,

2013.

Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic matrix factorization. In

Advances in Neural Information Processing Systems 20, pages 1257–1264, 2008.

BIBLIOGRAPHY 198

Tigran Nagapetyan, Andrew Duncan, Leonard Hasenclever, Sebastian J Vollmer,

Lukasz Szpruch, and Konstantinos Zygalakis. The true cost of stochastic gradi-

ent Langevin dynamics. Available at https://arxiv.org/abs/1706.02692, 2017.

Radford M Neal. MCMC using Hamiltonian Dynamics. In Handbook of Markov Chain

Monte Carlo. Chapman & Hall, 2010.

Willie Neiswanger, Chong Wang, and Eric P. Xing. Asymptotically exact, embar-

rassingly parallel MCMC. In Proceedings of the 30th Conference on Uncertainty in

Artificial Intelligence, pages 623–632. AUAI Press, 2014.

Christopher Nemeth and Chris Sherlock. Merging MCMC subposteriors through

Gaussian-process approximations. Bayesian Analysis, 13(2):507–530, 2018.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation

approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–

1609, 2009.

Bernt Øksendal. Stochastic Differential Equations, volume 6. Springer-Verlag, 2003.

Theodore Papamarkou, Antonietta Mira, Mark Girolami, et al. Zero variance differ-

ential geometric Markov chain Monte Carlo algorithms. Bayesian Analysis, 9(1):

97–128, 2014.

Omiros Papaspiliopoulos. A note on posterior sampling from Dirichlet mixture mod-

els. Technical Report. Available at http://wrap.warwick.ac.uk/35493/1/WRAP_

papaspliiopoulos_08-20wv2.pdf, 2008.

https://arxiv.org/abs/1706.02692
http://wrap.warwick.ac.uk/35493/1/WRAP_papaspliiopoulos_08-20wv2.pdf
http://wrap.warwick.ac.uk/35493/1/WRAP_papaspliiopoulos_08-20wv2.pdf

BIBLIOGRAPHY 199

Sam Patterson and Yee Whye Teh. Stochastic gradient Riemannian Langevin dy-

namics on the probability simplex. In Advances in Neural Information Processing

Systems 26, pages 3102–3110, 2013.

I G Petrovskii. Lectures on Partial Differential Equations. GITTL, Moscow (1950).

English translation. Interscience, New York, 1954.

TensorFlow Development Team. TensorFlow: Large-Scale Machine Learning on Het-

erogeneous Systems, 2015. URL http://tensorflow.org.

Martyn Plummer. JAGS: A program for analysis of Bayesian graphical models using

Gibbs sampling, 2003. URL http://mcmc-jags.sourceforge.net/.

Murray Pollock, Paul Fearnhead, Adam M Johansen, and Gareth O Roberts. The

scalable Langevin exact algorithm: Bayesian inference for big data. Available at

https://arxiv.org/abs/1609.03436, 2016.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via

stochastic gradient Langevin dynamics: a nonasymptotic analysis. In Proceedings

of the 2017 Conference on Learning Theory, volume 65, pages 1674–1703, 2017.

R Development Core Team. R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, 2008. URL http://www.R-project.

org.

Brian D Ripley. Stochastic simulation. John Wiley & Sons, 2009.

http://tensorflow.org
http://mcmc-jags.sourceforge.net/
https://arxiv.org/abs/1609.03436
http://www.R-project.org
http://www.R-project.org

BIBLIOGRAPHY 200

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals

of Mathematical Statistics, 22(3):400–407, 1951.

Christian Robert and George Casella. Monte Carlo Statistical Methods, volume 2.

Springer-Verlag, 2004.

Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling of discrete approximations

to Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 60(1):255–268, 1998.

Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov chains and

MCMC algorithms. Probability Surveys, 1:20–71, 2004.

Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of Langevin

distributions and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

Murray Rosenblatt. Remarks on a multivariate transformation. The Annals of Math-

ematical Statistics, 23(3):470–472, 1952.

Issei Sato and Hiroshi Nakagawa. Approximation analysis of stochastic gradient

Langevin dynamics by using Fokker–Planck equation and Ito process. In Pro-

ceedings of the 31st International Conference on Machine Learning, pages 982–990.

PMLR, 2014.

Steven L. Scott, Alexander W. Blocker, Fernando V. Bonassi, Hugh A. Chipman,

Edward I. George, and Robert E. McCulloch. Bayes and big data: The consensus

Monte Carlo algorithm. International Journal of Management Science and Engi-

neering Management, 11(2):78–88, 2016.

BIBLIOGRAPHY 201

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica,

4(2):639–650, 1994.

Sanvesh Srivastava, Volkan Cevher, Quoc Dinh, and David Dunson. WASP: Scalable

Bayes via barycenters of subset posteriors. In Proceedings of the 18th International

Conference on Artificial Intelligence and Statistics, volume 38, pages 912–920, 2015.

Denis Talay and Luciano Tubaro. Expansion of the global error for numerical schemes

solving stochastic differential equations. Stochastic Analysis and Applications, 8(4):

483–509, 1990.

Yee Whye Teh, Alexandre H Thiéry, and Sebastian J Vollmer. Consistency and fluc-

tuations for stochastic gradient Langevin dynamics. Journal of Machine Learning

Research, 17(7):1–33, 2016.

Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and

David M. Blei. Edward: A library for probabilistic modeling, inference, and criti-

cism. Available at https://arxiv.org/abs/1610.09787, 2016.

Sebastian J Vollmer, Konstantinos C Zygalakis, et al. (Non-) asymptotic properties

of stochastic gradient Langevin dynamics. Journal of Machine Learning Research,

17(159):1–48, 2016.

Stephen G Walker. Sampling the Dirichlet mixture model with slices. Communications

in Statistics, 36(1):45–54, 2007.

Hanna M Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation

https://arxiv.org/abs/1610.09787

BIBLIOGRAPHY 202

methods for topic models. In Proceedings of the 26th International Conference on

Machine Learning, pages 1105–1112, 2009.

Ming Chen Wang and George Eugene Uhlenbeck. On the theory of the Brownian

motion ii. Reviews of Modern Physics, 17(2-3):323, 1945.

Xiangyu Wang and David B Dunson. Parallelizing MCMC via Weierstrass sampler.

Available at https://arxiv.org/abs/1312.4605, 2013.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dy-

namics. In Proceedings of the 28th International Conference on Machine Learning,

pages 681–688, 2011.

David Williams. Probability with Martingales. Cambridge University Press, 1991.

Minjie Xu, Balaji Lakshminarayanan, Yee Whye Teh, Jun Zhu, and Bo Zhang. Dis-

tributed Bayesian posterior sampling via moment sharing. In Advances in Neural

Information Processing Systems 27, pages 3356–3364. 2014.

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of Langevin

dynamics based algorithms for nonconvex optimization. In Advances in Neural

Information Processing Systems 31, pages 3126–3137. 2018.

K. C. Zygalakis. On the existence and the applications of modified equations for

stochastic differential equations. SIAM Journal on Scientific Computing, 33(1):

102–130, 2011.

https://arxiv.org/abs/1312.4605

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Bayesian Inference
	Contributions and Thesis Outline

	Monte Carlo Methods and SGMCMC
	Monte Carlo
	Markov Chain Monte Carlo
	Markov Chains and Stochastic Stability
	Gibbs Update
	Metropolis–Hastings Update

	Itô Processes for MCMC
	Markov Processes and Stochastic Stability
	Itô Processes and the Langevin Diffusion
	The Euler–Maruyama Method and ULA

	Stochastic Gradient Markov Chain Monte Carlo
	Background
	Comparison to Divide-and-Conquer MCMC

	Control Variates for Stochastic Gradient MCMC
	Introduction
	Stochastic Gradient MCMC
	Stochastic Gradient Langevin Dynamics

	Control Variates for SGLD Efficiency
	Control Variates for SGMCMC
	Variance Reduction
	Computational Cost of SGLD-CV
	Setup Costs

	Post-processing Control Variates
	Experiments
	Logistic Regression
	Probabilistic Matrix Factorisation
	Latent Dirichlet Allocation

	Discussion
	Acknowledgements

	sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
	Introduction
	Introduction to MCMC and Available Software
	Stochastic Gradient MCMC
	Stochastic Gradient Langevin Dynamics
	Stochastic Gradient Hamiltonian Monte Carlo
	Stochastic Gradient Nosé–Hoover Thermostat
	Stochastic Gradient MCMC with Control Variates

	Brief TensorFlow Introduction
	Declaring TensorFlow Tensors
	TensorFlow Operations

	Package Structure and Implementation
	Example Usage
	Example Usage: Storage Constraints

	Simulations
	Gaussian Mixture
	Bayesian Logistic Regression
	Bayesian Neural Network

	Discussion

	Large-Scale Stochastic Sampling from the Probability Simplex
	Introduction
	Stochastic Gradient MCMC on the Probability Simplex
	Stochastic Gradient MCMC
	SGMCMC on the Probability Simplex
	SGRLD on Sparse Simplex Spaces

	The Stochastic Cox-Ingersoll-Ross Algorithm
	Adapting for Large Datasets
	SCIR on Sparse Data

	Theoretical Analysis
	Experiments
	Latent Dirichlet Allocation
	Bayesian Nonparametric Mixture Model

	Discussion

	Conclusions
	Discussion
	Future Work

	Appendix to Chapter 3
	Computational Cost Proofs
	Post-processing Proofs
	Experiments

	Appendix to Chapter 5
	Proofs
	Proofs of Lemmas
	CIR Parameter Choice
	Stochastic Slice Sampler for Dirichlet Processes
	Experiments

	Bibliography

