Large-Scale Bayesian Computation
Using Stochastic Gradient Markov

Chain Monte Carlo

Jack Baker, B.Sc.(Hons.), M.Res

Lancaster EX¥
University *

Submitted for the degree of Doctor of Philosophy at Lancaster

University.

December 2018

STOR-i

Abstract

Markov chain Monte Carlo (MCMC), one of the most popular methods for inference
on Bayesian models, scales poorly with dataset size. This is because it requires one or
more calculations over the full dataset at each iteration. Stochastic gradient Markov
chain Monte Carlo (SGMCMC) has become a popular MCMC method that aims to
be more scalable at large datasets. It only requires a subset of the full data at each
iteration. This thesis builds upon the SGMCMC literature by providing contributions
that improve the efficiency of SGMCMC; providing software that improves its ease-
of-use; and removes large biases in the method for an important class of model.

While SGMCMC has improved per-iteration computational cost over traditional
MCMC, there have been empirical results suggesting that its overall computational
cost (i.e. the cost for the algorithm to reach an arbitrary level of accuracy) is still
O(N), where N is the dataset size. In light of this, we show how control variates can be
used to develop an SGMCMC algorithm of O(1), subject to two one-off preprocessing
steps which each require a single pass through the dataset.

While SGMCMC has gained significant popularity in the machine learning com-

munity, uptake among the statistics community has been slower. We suggest this may

IT

be due to lack of software, so as part of the contributions in this thesis we provide an R
software package that automates much of the procedures required to build SGMCMC
algorithms. Finally, we show that current algorithms for sampling from the simplex
space using SGMCMC have inherent biases, especially when some of the parameter
components are close to zero. To get around this, we develop an algorithm that is
provably asymptotically unbiased. We empirically demonstrate its performance on a

latent Dirichlet allocation model and a Dirichlet process model.

Acknowledgements

First, I'd like to thank the staff, students and management at the STOR-i Centre
for Doctoral Training. This is such an enjoyable and stimulating atmosphere to do
research in, and I hope the centre stays for a long while to come. I'd like to mention
the directors of STOR-i especially: Jon Tawn, Kevin Glazebrook and Idris Eckley;
whose tireless work has helped build such a great atmosphere at STOR-i. Thanks for
giving me the opportunity to be part of this centre. I'd also like to thank the admin
staff: Kim Wilson, Jennifer Bull and Wendy Shimmin; who make the department run
so smoothly, and for putting up with me. I am very grateful for the financial support
provided by EPSRC.

This work could not have happened without my supervisors: Paul Fearnhead,
Christopher Nemeth and Emily Fox; thank you for all the time and effort you have
put into this PhD project. They have taught me so much, both technical and not.

STOR-i obviously would not be the same without its students, and I'm really
grateful to all of them, both past and present. I'll remember the laughs, discussions
and advice for a long time to come. There’s no doubt I'll stay in touch with many of

you. The CSML group members were also invaluable for their wealth of knowledge,

III

IV

discussions and idea sharing.

This work would not have happened without Sorcha, who has offered me so much
support and guidance during the PhD; as well as some much needed hilarity. I am also
very lucky to have such supportive and entertaining friends, who have kept me sane
throughout. Finally I'd like to thank my family. Without their support, guidance

and laughs I wouldn’t have managed to finish school, let alone undertake a PhD.

Dedicated to Scampi my wonderful cat.

Declaration

I declare that the work in this thesis has been done by myself and has not been

submitted elsewhere for the award of any other degree.

Jack Baker

VI

Contents

Abstract I
Acknowledgements 111
Declaration VI
Contents XI
List of Figures XV
List of Tables XVI
List of Abbreviations XVII
1 Introduction 1
1.1 Bayesian Inference o oL 1
1.2 Contributions and Thesis Outline 3
2 Monte Carlo Methods and SGMCMC 7
2.1 Monte Carlo 8
2.2 Markov Chain Monte Carlo 9

CONTENTS

2.2.1 Markov Chains and Stochastic Stability
222 Gibbs Update
2.2.3 Metropolis-Hastings Update
2.3 It Processes for MCMC
2.3.1 Markov Processes and Stochastic Stability
2.3.2 Ito Processes and the Langevin Diffusion
2.3.3 The Euler-Maruyama Method and ULA
2.4 Stochastic Gradient Markov Chain Monte Carlo
2.4.1 Background

2.4.2 Comparison to Divide-and-Conquer MCMC

Control Variates for Stochastic Gradient MCMC

3.1 Imtroduction

3.2 Stochastic Gradient MCMC
3.2.1 Stochastic Gradient Langevin Dynamics

3.3 Control Variates for SGLD Efficiency
3.3.1 Control Variates for SGMCMC
3.3.2 Variance Reduction
3.3.3 Computational Cost of SGLD-CV
3.34 Setup Costs

3.4 Post-processing Control Variates

3.5 Experiments

3.5.1 Logistic Regression

VIII

10

14

15

18

18

21

28

32

33

40

54

CONTENTS IX

3.5.2 Probabilistic Matrix Factorisation 81
3.5.3 Latent Dirichlet Allocation 84
3.6 Discussion 86
3.7 Acknowledgements 87

4 sgmcmc: An R Package for Stochastic Gradient Markov Chain

Monte Carlo 88
4.1 Introduction 88
4.2 Introduction to MCMC and Available Software 91
4.3 Stochastic Gradient MCMC 95
4.3.1 Stochastic Gradient Langevin Dynamics 96
4.3.2 Stochastic Gradient Hamiltonian Monte Carlo 97
4.3.3 Stochastic Gradient Nosé-Hoover Thermostat 98
4.3.4 Stochastic Gradient MCMC with Control Variates 99
4.4 Brief TensorFlow Introduction 100
4.4.1 Declaring TensorFlow Tensors 101
4.4.2 TensorFlow Operations 102
4.5 Package Structure and Implementation 105
4.5.1 Example Usage oo 108
4.5.2 Example Usage: Storage Constraints 114
4.6 Simulations 120
4.6.1 Gaussian Mixture L 121

4.6.2 Bayesian Logistic Regression 125

CONTENTS X

4.6.3 Bayesian Neural Network 127

A7 DISCUSSION o, 132

5 Large-Scale Stochastic Sampling from the Probability Simplex 134

5.1 Imtroduction 134
5.2 Stochastic Gradient MCMC on the Probability Simplex 137
5.2.1 Stochastic Gradient MCMC 137

5.2.2 SGMCMC on the Probability Simplex 139

5.2.3 SGRLD on Sparse Simplex Spaces 140

5.3 The Stochastic Cox-Ingersoll-Ross Algorithm 142
5.3.1 Adapting for Large Datasets 143

5.3.2 SCIR on Sparse Data 146

5.4 Theoretical Analysiso 147
5.5 Experiments 149
5.5.1 Latent Dirichlet Allocation 149

5.5.2 Bayesian Nonparametric Mixture Model 150

5.6 Discussiono 153

6 Conclusions 154
6.1 Discussion 154
6.2 Future Work oo 156

A Appendix to Chapter 3 158

A.1 Computational Cost Proofs 158

CONTENTS

A.2 Post-processing Proofs

A.3 Experiments

B Appendix to Chapter 5

B.1 Proofs . . .

B.2 Proofs of Lemmas

B.3 CIR Parameter Choice

B.4 Stochastic Slice Sampler for Dirichlet Processes

B.5 Experiments

Bibliography

XI

165

167

172

172

179

180

180

185

188

List of Figures

24.1

24.2

24.3

244

3.5.1

Comparison of method performance for multivariate-t distribution. Con-
tour plots show empirical densities. Box plots show KL-divergence from
the truth.
Comparison of method performance for Gaussian mixture. Contour

plots show empirical densities. Box plots show KL-divergence from the

Comparison of method performance for warped Gaussian. Contour

plots show empirical densities. Box plots show KL-divergence from the

Comparison of method performance for Gaussian. Plot of KL-divergence

against dimension for each method.

Log predictive density over a test set every 10 iterations of SGLD,
SGLD-CV and SAGA fit to a logistic regression model as the proportion

of data used is varied (as compared to the full dataset size N).

XII

46

47

49

o1

79

LIST OF FIGURES XIIT

3.5.2 Plots of the log predictive density of an SGLD-CV chain when ZV post-
processing is applied versus when it is not, over 5 random runs. Logistic
regression model on the cover type dataset (Blackard and Dean, 1999). 80

3.5.3 Log predictive density over a test set of SGLD, SGLD-CV and SAGA
fit to a Bayesian probabilistic matrix factorisation model as the number
of users is varied, averaged over 5 runs. We used the Movielens ml-100k
dataset. 81

3.5.4 Plots of the log predictive density of an SGLD-CV chain when ZV post-
processing is applied versus when it is not, over 5 random runs. SGLD-

CV algorithm applied to a Bayesian probabilistic matrix factorisation
problem using the Movielens ml-100k dataset. 82

3.5.5 Perplexity of SGLD and SGLD-CV fit to an LDA model as the data

size N is varied, averaged over 5 runs. The dataset consists of scraped

Wikipedia articles. 84

4.2.1 KL divergence (left) and run time (right) of the standard Stan algorithm
and the sgldcv algorithm of the sgmeme package when each are used
to sample from data following a standard Normal distribution as the
number of observations are increased. L. 93
4.5.1 Log loss on a test set for parameters simulated using the sgldcv algo-
rithm after 1000 iterations of burn-in. Logistic regression problem with

the covertype dataset. 115

LIST OF FIGURES

4.6.1

4.6.2

4.6.3

5.2.1

5.3.1

5.5.1

Plots of the approximate posterior for 8; simulated using each of the
methods implemented by sgmcme, compared with a full HMC run,
treated as the truth, for the Gaussian mixture model (4.6.1).
Plots of the log loss of a test set for 5y and § simulated using each of
the methods implemented by sgmcme. Logistic regression problem with
the covertype dataset.
Plots of the log loss of a test set for 6 simulated using each of the
methods implemented by sgmceme. Bayesian neural network model with

the MNIST dataset.

Boxplots of a 1000 iteration sample from SGRLD and SCIR fit to a
sparse Dirichlet posterior, compared to 1000 exact independent samples.
On thelogscale.
Kolmogorov-Smirnov distance for SGRLD and SCIR at different mini-
batch sizes when used to sample from (a), a sparse Dirichlet posterior
and (b) a dense Dirichlet posterior.
(a) plots the perplexity of SGRLD and SCIR when used to sample from
the LDA model of Section 5.5.1 applied to Wikipedia documents; (b)
plots the log predictive on a test set of the anonymous Microsoft user
dataset, sampling the mixture model defined in Section 5.5.2 using SCIR

and SGRLD.

XIV

124

126

131

141

146

LIST OF FIGURES

A3.1

A3.2

Log predictive density over a test set every 10 iterations of SGLD (with
a decreasing stepsize scheme), SGLD-CV and SAGA fit to a logistic
regression model as the data size N is varied.
Log predictive density over a test set of SGLD (with a decreasing step-
size scheme), SGLD-CV and SAGA fit to a Bayesian probabilistic ma-
trix factorisation model as the number of users is varied, averaged over

5 runs. We used the Movielens ml-100k dataset.

XV

169

List of Tables

4.5.1

4.5.2

A3.1

A3.2

A.3.3

A34

B.5b.1

B.5.2

B.5.3

Outline of 6 main functions implemented in sgmeme.

Outline of the key arguments required by the functions in Table 4.5.1.

Minibatch sizes for each of the experiments in 3.5 (they were fixed for
SGLD, SGLD-CV and SAGA).
Tuned stepsizes for the Logistic regression experiment in Section 3.5.1.
Tuned stepsizes for the Bayesian probabilistic matrix factorisation ex-
periment in Section 3.5.2.
Tuned stepsizes for the Bayesian probabilistic matrix factorisation ex-

periment in Section 3.5.2.

Stepsizes for the synthetic experiment
Hyperparameters for the LDA experiment

Hyperparameters for the Bayesian nonparametric mixture experiment

XVI

107

168

168

170

171

186

187

187

List of Abbreviations

MCMC

SGMCMC

MH

LD

SDE

TV

ULA

MALA

MSE

RMSE

HMC

SGLD

SGD

SGHMC

Markov Chain Monte Carlo

Stochastic Gradient Markov Chain Monte Carlo
Almost Surely

Almost Everywhere

Metropolis—Hastings

Langevin Diffusion

Stochastic Differential Equation

Total Variation

Unadjusted Langevin Algorithm
Metropolis—Adjusted Langevin Algorithm
Mean Square Error

Root Mean Square Error

Hamiltonian Monte Carlo

Stochastic Gradient Langevin Dynamics
Stochastic Gradient Descent

Stochastic Gradient Hamiltonian Monte Carlo

XVII

LIST OF ABBREVIATIONS XVIII

PDP Piecewise Deterministic Process
CIR Cox-Ingersoll-Ross Process

SCIR Stochastic Cox-Ingersoll-Ross Process

Chapter 1

Introduction

Markov chain Monte Carlo (MCMC), one of the most popular methods for inference
in Bayesian models, is known to scale poorly with dataset size. This has become
a problem due to the growing complexity of practical models in both statistics and
machine learning. This thesis provides contributions for stochastic gradient Markov
chain Monte Carlo, a popular class of MCMC which aims to mitigate this problem.
In this chapter we set up the problem by providing a brief introduction to Bayesian
inference and outlining the inherent scalability problems. This is elaborated on in
Chapter 2, which provides a literature review of Monte Carlo methods and scalability.

We then outline the contributions of this thesis, as well as the structure of the chapters.

1.1 Bayesian Inference

In most statistical and machine learning problems, interest is in an unknown parame-

ter §. For simplicity, for now we suppose that 6 takes values in R?; but this is relaxed

CHAPTER 1. INTRODUCTION 2

in Chapter 2. Suppose relevant data is collected x = {x;}¥ |, with z; € R%. Then
Bayesian inference assumes that 6 is a random variable, and aims to calculate the
distribution of # given this new information x, i.e. the distribution of 6 |x. We refer
to this distribution as w. Treating # as a random variable rather than a fixed quan-
tity can alleviate overfitting, which is important for the complex models currently in
popular use.

Suppose the data x depend on a random parameter 6 through the density p;(6) :=
p(x;]0), here we assume that @ takes values in R?. We assign 6 a prior density py(6).

Then, the posterior density p(f) := p(6|x) (i.e. the density of 7) is given by

N N
p(0) = M 7 = /R gpi(Q)dﬁ, (1.1.1)
where Z is referred to as the normalising constant.

If Z can be calculated, then p(6) can be calculated analytically, giving a closed form
expression detailing 6 | x (though further integration would be required to obtain the
distribution function itself). However, a fundamental problem in Bayesian inference
is that the integration to find Z is rarely tractable. This means typically we only
know the posterior up to the unnormalised density h(f) := [[., pi(6). MCMC gets
around this issue by constructing an algorithm that will converge to sampling from
7; while only needing to evaluate the unnormalised density h (for exact details see
Section 2.2). Most quantities of interest can be written in the form E,[¢)(0)]. This

quantity can then be estimated using the MCMC sample 6,,, m =1, ..., M by using

the Monte Carlo estimate

EL0(0)] % 12 D 6(0n).

CHAPTER 1. INTRODUCTION 3

In many modern statistics and machine learning problems, the dataset sizes N are
very large. However, MCMC requires the calculation of h at each iteration. Since
h is a product of N + 1 terms, this is an O(N) calculation and can cause MCMC
to be prohibitively slow for large datasets. This has sparked interest in improving
the computational efficiency of MCMC. One of the most popular methods for doing
so is stochastic gradient MCMC (SGMCMC), which uses a subset of the data at
each iteration of size n. This enables an algorithm to be implemented with O(n)
calculations at each iteration. The main cost for the improved efficiency is that

SGMCMC samples are no longer guaranteed to converge to 7.

1.2 Contributions and Thesis Outline

This thesis has focussed on developing three aspects of SGMCMC: efficiency, ease-
of-use, and performance on an important class of problems. Contributions include:
providing a detailed review of SGMCMC, including details of underlying theory and
a comparison to an alternative popular class of scalable MCMC; establishing a frame-
work for SGMCMC which provably improves its overall computational cost; develop-
ing a software package for SGMCMC which enhances its ease of implementation; and
improving the performance of SGMCMC when the method is used to sample from
simplex spaces, an important class of problem.

The material for this thesis is presented in four chapters. Chapter 2 contains a
review of scalable Monte Carlo methods, and Chapters 3, 4 and 5 contain new research

that has been accepted for publication. We now give a brief outline of each chapter.

CHAPTER 1. INTRODUCTION 4

Chapter 2: Monte Carlo Methods and Scalability

This Chapter provides a review of SGMCMC. The chapter first outlines standard
MCMC methods. Then useful background material for SGMCMC is detailed, includ-
ing continuous-time Markov processes and I[to processes. Important methodology in
the SGMCMUC literature is outlined based on the background material. Comparisons
between SGMCMC and divide-and-conquer MCMC, an alternative popular class of

scalable MCMC methods, are provided.

Chapter 3: Control Variates for Stochastic Gradient MCMC

This chapter is a journal contribution with co-authors Paul Fearnhead, Emily B. Fox
and Christopher Nemeth. The manuscript has been accepted by the journal “Statistics
and Computing.” The abstract of the publication is given below.

It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly
with dataset size. A popular class of methods for solving this issue is stochastic gra-
dient MCMC (SGMCMC). These methods use a noisy estimate of the gradient of the
log-posterior, which reduces the per iteration computational cost of the algorithm. De-
spite this, there are a number of results suggesting that stochastic gradient Langevin
dynamics (SGLD), probably the most popular of these methods, still has computa-
tional cost proportional to the dataset size. We suggest an alternative log-posterior
gradient estimate for stochastic gradient MCMC which uses control variates to reduce
the variance. We analyse SGLD using this gradient estimate, and show that, under
log-concavity assumptions on the target distribution, the computational cost required

for a given level of accuracy is independent of the dataset size. Next we show that

CHAPTER 1. INTRODUCTION 5

a different control variate technique, known as zero variance control variates, can be
applied to SGMCMC algorithms for free. This post-processing step improves the in-
ference of the algorithm by reducing the variance of the MCMC output. Zero variance
control variates rely on the gradient of the log-posterior; we explore how the variance
reduction is affected by replacing this with the noisy gradient estimate calculated by

SGMCMC.

Chapter 4: sgmcmc: An R Package for Stochastic Gradient Markov Chain

Monte Carlo

This chapter is a journal contribution with co-authors Paul Fearnhead, Emily B. Fox
and Christopher Nemeth. The manuscript has been accepted by the journal “Journal
of Statistical Software.” The abstract of the publication is given below.

This paper introduces the R package sgmcme; which can be used for Bayesian in-
ference on problems with large datasets using stochastic gradient Markov chain Monte
Carlo (SGMCMC). Traditional Markov chain Monte Carlo (MCMC) methods, such
as Metropolis—Hastings, are known to run prohibitively slowly as the dataset size in-
creases. SGMCMC solves this issue by only using a subset of data at each iteration.
SGMCMC requires calculating gradients of the log likelihood and log priors, which
can be time consuming and error prone to perform by hand. The sgmcme package
calculates these gradients itself using automatic differentiation, making the implemen-
tation of these methods much easier. To do this, the package uses the software library
TensorFlow, which has a variety of statistical distributions and mathematical opera-

tions as standard, meaning a wide class of models can be built using this framework.

CHAPTER 1. INTRODUCTION 6

SGMCMC has become widely adopted in the machine learning literature, but less so
in the statistics community. We believe this may be partly due to lack of software;

this package aims to bridge this gap.

Chapter 5: Large-Scale Stochastic Sampling from the Probability Simplex

This chapter is conference proceedings appearing in “Advances in Neural Information
Processing Systems” in 2018, with co-authors Paul Fearnhead, Emily B. For and
Christopher Nemeth. The abstract of the publication is given below.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a pop-
ular method for scalable Bayesian inference. These methods are based on sampling
a discrete-time approximation to a continuous-time process, such as the Langevin
diffusion. When applied to distributions defined on a constrained space, such as the
simplex, the time-discretisation error can dominate when we are near the boundary
of the space. We demonstrate that while current SGMCMC methods for the simplex
perform well in certain cases, they struggle with sparse simplex spaces; when many
of the components are close to zero. However, most popular large-scale applications
of Bayesian inference on simplex spaces, such as network or topic models, are sparse.
We argue that this poor performance is due to the biases of SGMCMC caused by
the discretisation error. To get around this, we propose the stochastic CIR process,
which removes all discretisation error, and we prove that samples from the stochastic
CIR process are asymptotically unbiased. Use of the stochastic CIR process within
an SGMCMC algorithm is shown to give substantially better performance for a topic

model and a Dirichlet process mixture model than existing SGMCMC approaches.

Chapter 2

Monte Carlo Methods and

SGMCMC

Many statistical and machine learning problems can be reduced to the calculation of
an expectation with respect to a probability distribution. The main problem that
then needs to be overcome is that these expectations can rarely be calculated ana-
lytically. Monte Carlo methods use the fact that these expectations can be simply
approximated when the probability distribution can be simulated from. In Section
2.1, we explain the Monte Carlo procedure. While this simplifies the problem, often
the underlying probability distribution is difficult to simulate from, especially in the
Bayesian paradigm. In light of this, Section 2.2 details Markov chain Monte Carlo
methods (MCMC), which can be used to simulate from a large class of probability dis-
tributions. The most popular scalable MCMC methods, stochastic gradient Markov
chain Monte Carlo (SGMCMC), are based on continuous-time It6 processes, so in

Section 2.3.2 we provide an introduction to these processes, as well as the numerical

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 8

approximation procedure which forms the basis for many of these algorithms. Finally
in Section 2.4 we detail SGMCMC methods, which form the basis for the rest of this
thesis, and are some of the most popular scalable MCMC samplers. We also provide
a comparison of some popular SGMCMC methods to a class of competitor algorithms
known as divide-and-conquer MCMC. This forms the first contribution of this thesis.
Monte Carlo is a large and varied topic, so only the topics necessary for this thesis are
presented here. For a more thorough treatment of standard MCMC, please see Robert
and Casella (2004); Meyn and Tweedie (1993a); for a more thorough treatment of It6
processes and their approximation we refer the reader to Oksendal (2003); Kloeden

and Platen (1992); Khasminskii (2011).

2.1 Monte Carlo

Many statistical and machine learning problems can be reduced to the calculation
of the expectation of a function. Let 6 be a random variable taking values in some
topological space © with distribution 7 (i.e. P(€ A) = w(A)). Denote the Borel
o-algebra for © by B(0©). Note we use some simple measure-theoretic concepts (see
e.g. Williams, 1991) to make notation clearer, and this allows us to avoid multiple
definitions on different classes of ©; but this thesis aims to be light on measure theory.

Most statistical quantities of interest can be reduced to

9= B 6(0)] = [0(0)m(a0), (2.11)

where 1 : © — R? is some B(0)-measurable function, referred to as the test function.

Typically ¢ cannot be calculated analytically, and standard numerical approximation

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 9

methods, such as quadrature, suffer from the curse of dimensionality. Monte Carlo
methods get around this issue by assuming we can simulate from 7. Let 01,...,6y
be a sequence of independent, identically distributed simulations from 7. Then the

Monte Carlo estimate of ¢ is defined by

Y = %iw(em). (2.1.2)

This estimate has a number of desirable statistical properties. The strong law of large
numbers can be immediately applied to show that as M — oo, @/A)M converges almost
surely (a.s.) to 1), i.e.

Q@Mﬁm/_), as M — oc.

Similarly, suppose Var[¢)(0)] = 0% < oo, then the central limit theorem can be applied
to show that,

VM —) B N(0,0%), as M — oo (2.1.3)

D e
where — denotes convergence in distribution.

2.2 Markov Chain Monte Carlo

The Monte Carlo method assumes that m can simulated from, but often this is not
possible, especially when 7 is multivariate. Markov chain Monte Carlo (MCMC)
aims to counteract this by introducing a way to produce a stochastic process that
converges to m. The main disadvantage of this method is that the draws from this
stochastic process are no longer independent, but alternative convergence results exist

for these methods (see Meyn and Tweedie, 1993a; Robert and Casella, 2004). Before

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 10

we introduce specific MCMC algorithms, we first need to introduce some results for

Markov chains and stochastic stability.

2.2.1 Markov Chains and Stochastic Stability

Let 6,,, m =1,..., M, be a discrete-time stochastic process taking values in ©. Then
this stochastic process is a Markov chain if it satisfies the Markov property; namely
the future state 6,,.1 is independent of previous states given the value of the current
state 6, = ¢. For notational convenience it is common to define a quantity known as

the Markov kernel K : (©,5(0)) — [0, 1] as the following conditional probability
KW,A) =Pl € AlO, =9).
Then the Markov property can be stated as follows
K, A) =P(lpni1 € Al =90) =P(Opi1 € Al Oy = O,y ..., 00 = Oq).

We will also use the shorthand that K™ (9, A) = K o---o K (1, A); and that for some
—_—
function ¢ taking inputs in ©, K¢ (9) = [4 K(9,d0)(0)d6.
Since we eventually wish to construct Markov chains that converge to the desired
7, we need some way of assessing this. Before we can do this, we need some definitions.
A Markov chain is defined to be stationary if the distribution of #,, does not depend on
m, i.e. the Markov chain is drawn from a single distribution. An invariant distribution
7 of a Markov chain has the property that 6, 1 ~ ™ = 6,, ~ m. A Markov chain

with kernel K has invariant distribution 7 if the following condition holds (Meyn and

Tweedie, 1993a; Geyer, 2005) referred to as detailed balance or reversibility

/ (A9 K (9, A) = / (A9 KW, B), for all A, B € B(O).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 11

Now suppose we have a desired 7, and wish to construct a Markov chain with
kernel K that converges to sampling from 7. Then we need to check two things: that
the Markov chain converges to stationarity, that the stationary distribution of this
Markov chain is uniquely . If we know that the Markov chain leaves 7 invariant, then
there are two further properties that ensure this is the case: Harris recurrence and
aperiodicity. If Harris recurrence holds then this ensures the invariant distribution
is unique. A Markov chain is Harris recurrent if there exists a non-zero, o-finite
measure ¢ on B(©), such that for all for all A € B(©), with ¢(A) > 0; and for all
¥ € ©, a chain starting from ¢} will eventually reach A with probability one (Meyn
and Tweedie, 1993a; Geyer, 2005). A Harris recurrent Markov chain is aperiodic if
there does not exist an integer b > 1, and disjoint subsets By, ... B, € B(©) such that,
for all i = 1,...,b we have ¢(B;) > 0 and K(9,B;) = 1, when ¥ € B; for j =i —1
mod b (Meyn and Tweedie, 1993a; Geyer, 2005).

Once it is established that a Markov chain is Harris recurrent and aperiodic, then
desirable properties similar to the results for Monte Carlo presented in the previous

section can be established. Let 6y,...,60,; be a Harris recurrent, aperiodic Markov

chain. Let 5 be as defined in (2.1.2). Then
U 22 9, as M — oo, (2.2.1)

for any starting distribution A. A central limit result for MCMC, similar to standard
Monte Carlo, can also be derived (Robert and Casella, 2004; Geyer, 2005).
It can also be shown that the distribution defined by the Markov chain converges

to m. These results are important for deriving convergence bounds for SGMCMC

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 12

methods to the target 7, so we will outline these results. First we need to describe
the total variation metric, used to calculate the distance between two probability
measures. A measure can be decomposed into its positive and negative parts for any
set A€ O as u(A) =pu"(A) —pu (A), where ut(A), u~ (A) are positive measures with
disjoint support. The total variation norm of some measure u, can then be defined
by
el = " (A) + 1 (A).

If the distribution defined by 6,, converges in total variation to 7 given any initial

distribution A, then it is said to be ergodic; i.e.

M —o0

H/A(dq?)KM(ﬁ,) 0.

TV

This property holds if 6, is Harris recurrent and aperiodic (Meyn and Tweedie, 1993a;
Geyer, 2005).

Results on the convergence of SGMCMC methods require a stronger condition
though, known as geometric ergodicity (Meyn and Tweedie, 1993a; Geyer, 2005).
Geometric ergodicity bounds the non-asymptotic total variation distance. A Markov
chain 6,, is said to be geometrically ergodic if there exists a function 5 : © — R,

with 3(f) < oo m-a.e.!, and a constant p < 1, such that

IK™(0,) = 7llpy < BD)p™, Fe®.

Geometric ergodicity can be verified using a ‘drift condition,” or Lyapunov—Foster

condition. This relies on the existence of a norm-like function V' and a petite set

LGiven a measure on B(©), a property holds almost everywhere (7-a.e.) if there exists N € B(O)

such that m(N) = 0 and the property holds for all ¥ € © \ N.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 13

C'. The norm-like function V' has the properties that V() > 1 and V() — oo as
|0|| — oo. It plays a similar role to Lyapunov functions, introduced in Section 2.3;
which are useful for deriving convergence results for SGMCMC. A set C' is petite if
there exists a probability distribution a, defined over N; a constant 6 > 0; and a

probability measure @), defined over 6; such that

WE

a(m)K™(®, A) > 6Q(A), €.

3
Il

To show a Markov chain is geometrically ergodic we then need a norm-like function

V', a petite set C' and constants A < 1 and b < oo such that
KV () <AV (9) + blg, ¥ e 0.

This is known as a geometric drift condition. Drift conditions also exist to ensure a
variety of properties of the Markov chain, including Harris recurrence (see e.g. Meyn
and Tweedie, 1992)

Geometric ergodicity can be used to ensure a central limit theorem (CLT) holds
for the Markov chain, similar to the CLT for Monte Carlo (2.1.3). In particular, let
Y 1 © — R be some test function of interest, and assume that E.[(¢(6))?*°] < oo
for some 0 > 0. If a Markov chain 6,, with stationary distribution 7 is geometrically
ergodic, as usual define ¢ = E,[¢)(6)], then

7 (%(0m) —) > N(0,0%), as M — oo (2.2.2)

m=1

2=

for some 02 < co (see e.g. Meyn and Tweedie, 1992; Roberts and Rosenthal, 2004).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 14

2.2.2 Gibbs Update

Now that we have covered the Markov chain background required, we introduce some
popular transition kernels K used to sample from a given w. The Gibbs sampler
(Geman and Geman, 1984) is a particularly simple Markov kernel used for multiple
parameter problems. Suppose we are able to divide a multivariate # € © into compo-
nents j = 1,...,d, such that 6 = (6,...,0,). For example, if we have interest in the
target m(p, o) = N(p,ol), where I is the identity matrix; then we might divide € into
two parameters § = (u € R? o € R) (notice that 6; need not necessarily be a scalar).

Then for each component of the partition, j, the Gibbs sampler updates 0; as-
suming the rest 6_; = (0y,...,60;_1,0;41,...,04) is fixed at the previous state 9. To
do this it uses the conditional distribution of the desired target, (- |6_; = J_;). For

each component j, the Gibbs update kernel can be defined as follows
Kj<197 A) - 119_j€A_]'7T(Aj | 9_]- - 19—]')7

where A = (Ah PN ,Ad) and A_j = (Al, ce ,Aj_l, Aj+1, ce ,Ad).
To show this update leaves 7 invariant we can use properties of the conditional
expectation (Geyer, 2005). First notice that K;(0,A) = 1y_,ca E[lgea, |0_; =

V_j] = E[ly,ea_,1g,ea; |0-; = V_j], so that by the law of total expectation
| @)K 014) = BB e Taen, 10 = 0] = 7(4)
e

We conclude the Gibbs sampler leaves 7 invariant. A necessary condition for the
Gibbs sampler to be Harris recurrent is that each component j is updated frequently

enough. The two most popular ways of doing this are either to update every j at

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 15

each iteration, but in any order; or to pick a j with probability 1/d, and update
using kernel K;. Additional conditions on the state space © and K ensure the Gibbs
sampler is Harris recurrent (see Meyn and Tweedie, 1993a; Robert and Casella, 2004;
Geyer, 2005, for details). A Harris recurrent Gibbs sampler is always aperiodic.
Gibbs updates require no user tuning, and can make large moves since updating
component j does not depend on 6;, just 6_;. However, the Gibbs sampler can mix
slowly when components are highly dependent. Another major disadvantage is that it
requires the calculation of the conditional distributions 7(-|6_;). While there are many
important machine learning and statistical problems where this is possible, there are

also many problems where it is not.

2.2.3 Metropolis—Hastings Update

Commonly the only information we have about 7 is an unnormalised density. We say
a function h : © — R is an unnormalised density if it has the following properties:
h is nonnegative; and 0 < [y h(f)dp < oo, where p is defined to be the Lebesgue
measure.

An important example where the only information we have about 7 is its unnor-
malised density is in Bayesian inference. Suppose we have data x = {z;}%, which
depends on a parameter ¢ through the density p;(6) := p(z;|0). We assign 6 a prior
density po(6). Then, defining the Lebesgue measure by pu, the posterior density p(6)

is given by

poy = LoDz [TTnoyan (22

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 16

where Z is referred to as the normalising constant. A fundamental problem in
Bayesian inference is that the integration to find Z is rarely tractable. This means
typically we only know the posterior up to the unnormalised density h(0) = Hz‘]io pi(6).

The Metropolis—Hastings algorithm aims to get around this issue by defining a
Markov chain that converges to sampling from 7 and only relies on being able to
evaluate h, where h is an unnormalised density of 7. The Metropolis—Hastings algo-
rithm (MH) was first developed by Metropolis et al. (1953), with an important later
development by Hastings (1970), as well as Green (1995).

The main idea behind MH is to find a distribution @), that is easy to simulate
from, referred to as a proposal distribution. Then to correct simulations from this
distribution so that the resulting process 6,, converges to sampling from 7. More
formally, suppose the Markov chain is currently at a state . A proposal distribution,
Q(+0), is used in order to simulate a new proposal state §’ given the current state
6. Suppose this proposal distribution admits a density ¢(¢’|f) with respect to the
Lebesgue measure p; then the Metropolis-Hastings algorithm proceeds as follows: a
candidate state €' is simulated from (), this candidate state is then accepted with
probability

a(f,0) =1/ .

where ¢; A ¢y denotes the minimum between numbers ¢; and ¢y. If the candidate value
0’ is accepted, then the next state in the Markov chain is defined to be 6’. Otherwise
it is discarded and the next state is defined to be #, the same as the current state of

the chain. Notice that « is invariant to changing A by a multiplicative constant, since

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 17

these constants cancel in the ratio of terms; this is why any unnormalised density of
7 can be used to implement this algorithm.

To check the MH algorithm leaves 7 invariant we will show that the MH kernel
satisfies detailed balance. Because the accept-reject step can lead to the algorithm
staying in the current state, the Markov kernel for the MH algorithm is in the form

of a sum

(0, 4) = [1 -/ q<e'|e>a<e,e’>u<d9'>} 10)+ [a@ a0 0)uar),

where 1(f € A) is 1 if § € A and 0 otherwise. We demonstrate detailed balance
informally by showing p(0)K(0,d0") = p(¢')K(#',df), for a more formal proof see
Robert and Casella (2004). We make use of the following identities, which can easily
be checked: p(0)q(0'|0)c(0,6) = p(6')q(0]0") (6, 0), and p(0)de (6) = p(0')de(6'). We

can apply these identities to check detailed balance as follows

p(dO)K (0, d6") = p(df) [1 — q(6'|0) (0, 6)] 0 (0) + p(df)q(6']6)cx(6, 6)
= p(db") [1 — q(6]6") (6", 0)] 64(6") + p(df')q(0]0") (6", 6)

= p(d0) K (6, db).

Further properties on the state space © and the proposal distribution ensure that
the Markov chain is Harris recurrent and aperiodic (Meyn and Tweedie, 1993a; Robert
and Casella, 2004; Geyer, 2005). The Gibbs sampler can be seen to be a special case of
the Metropolis—Hastings method. We can see this by implementing the MH algorithm
for each component j of the partition of © in turn. If the proposal distribution for

this component (); is set to be m(-|f_;), it can be shown that the corresponding

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 18

Metropolis-Hastings update has acceptance probability 1 (Robert and Casella, 2004;
Geyer, 2005).

If our proposal and state space ensure Harris recurrence and aperiodicity then the
MH sample is guaranteed to satisfy the strong law of large numbers result (2.2.1).
For practical purposes though, we only simulate from our chain for a finite amount
of time, so to ensure good properties of the chain we need to choose a good proposal
distribution. The MSE of the chain tends to be controlled by the autocovariance, so
the best proposals lead to chains with low autocovariance. In the next section we
discuss how to construct efficient proposals for the MH algorithm using continuous-

time Markov processes.

2.3 1to Processes for MCMC

Many MCMC algorithms, including SGMCMC, rely on the theory of continuous-
time Markov processes, in particular Ito diffusions. In this section we review results

about these processes, so that the necessary grounding has been discussed when we

summarise SGMCMC.

2.3.1 Markov Processes and Stochastic Stability

We refer to Markov processes as the analog to Markov chains in continuous-time. Let
{6;,t € R} be a continuous-time stochastic process taking values in R¢. Define F;
to be the o-algebra generated by {fs,0 < s <t} (this can simply be thought of as all

the possible paths 6, could take up to time t); then 6, is Markov (see e.g. Khasminskii,

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 19
2011) if, for all A € B(RY), 0 < s <1,

PO, € A| Fs) =P(0, € A|by). (2.3.1)
Our interest will be in Markov processes that are time-homogeneous, meaning P(6; €
AlbOs) = P(0,—s € A|By). This allows us to use the following shorthand for the
transition probability P(6; € A| 0y =) = K;(V, A). Provided it exists, we can define
the transition density p;(p |) of the Markov process by

Ki(0,4) = [nilo |9,
A

As in discrete-time Markov chains, we are often interested in the behaviour of a

test function v under the dynamics of 6;. We define

Kp(v) = /Kt<797 dy)(y).

This allows us to define the operator known as the generator A (see e.g. Khasminskii,

2011) of the process, applied to a function ¢ (provided the limit exists), as

A(9) = Tim Ep(9) — 9(9)

t—+0 t
It can be shown the generator fully defines the Markov process (see e.g. Khasminskii,
2011). It can be visualised as describing the infinitesimal evolution of the process.
Similar to discrete-time Markov chains, we are interested in convergence of 6; to
a stationary distribution m. Necessary conditions for 6; to be stationary are: for
A, B € B(R?), and for all h > 0, the events {0, € A} and {0; € A,0,,, € B} are
independent of t; that the initial distribution 7 is invariant (see e.g. Khasminskii,

2011); i.e. for every s > 0,

7'('0(14) = /Wo(dﬁ)Ks(ﬂ,A), 6)0 ~ T0.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 20

The idea behind finding stationary distributions for Markov processes is to again
derive a law of large numbers for ;. Specifically, given some test function ¢, we desire

results of the form
1 [T _
—/ Y(0)dt 225 4, T — oco.
T Jo

Similarly to the law of large numbers for Markov chains, this relies on existence
and uniqueness of the stationary solution to the chain (see e.g. Khasminskii, 2011).
Conditions for this to be the case are investigated for Markov processes in Meyn and
Tweedie (1993b,c). Similarly to Markov chains, a sufficient condition for the existence
and uniqueness of a stationary solution 7 is Harris recurrence. The definition of Harris
recurrence is the same as for Markov chains, i.e. there exists a measure v on © such
that the probability a chain 6, ever hits a set A is one, for all ¥ € © and A € B(O)
with v(A) > 0 (Meyn and Tweedie, 1993c). Moreover, if a Markov process 0; is
Harris recurrent and time points tq,...t); can be chosen such that the Markov chain
0., is also Harris recurrent, then 6, is ergodic, i.e. limy_,o || K(?,) — 7|, = O for all
¥ e 0o.

In Meyn and Tweedie (1993c), sufficient conditions are derived for desirable Markov
process properties, such as Harris recurrence and geometric ergodicity, using drift con-
ditions; similar to the geometric drift condition for Markov chains outlined in Section
2.2.1. As for Markov chains, the drift conditions rely on the existence of a norm-
like or Lyapunov function V| satisfying the usual V(J) > 1, for all ¥ € ©, and
limy| 00 V' (¥) = 00. The generator A then acts on this function to obtain the drift

conditions?.

2Meyn and Tweedie (1993c) consider an extended generator, but we omit this for brevity.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 21

Many results explored later rely on Markov processes that are geometrically er-
godic; so we outline geometric drift conditions for Markov processes. Meyn and
Tweedie (1993c) show that a Markov process is ergodic (i.e. converges in TV dis-
tance) if the following conditions hold: it is Harris recurrent; there exists time points
t1,...,tum, such that all compact sets are petite for the Markov chain 6, ; and the
stationary solution is finite. Geometric ergodicity for Markov processes requires a
stronger norm than the total variation norm, known as the ¢-norm, defined by
[ll,, = supygi<y [1(g)], Where p is some measure over B(©). This ensures that E[¢(0;)]
converges to 1 and is bounded. A Markov process is ¢-geometrically ergodic if there

exists p < 1 and a function 5 : © — R, bounded m-a.e., such that
IKe(9,7) = 7ll, < B(I)p".

Meyn and Tweedie (1993¢) show that, given a Markov process 6;, if the conditions for
ergodicity hold, and there is a norm-like function V' and constants d < oo and ¢ > 0
such that

AV (9) < =V (9) + d, (VASHCR

then 6, is y-geometrically ergodic, with ¢ =V + 1.

2.3.2 It6 Processes and the Langevin Diffusion

Many efficient proposals for the MH algorithm rely on It processes (see e.g. Roberts
and Rosenthal, 1998; Neal, 2010), which are Markov processes defined as a solution
to a stochastic differential equation. A stochastic differential equation (SDE) is a

differential equation which has at least one term that is a stochastic process (see e.g.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 22

Kloeden and Platen, 1992; Oksendal, 2003). [to processes are based on a particular
continuous-time stochastic process referred to as a Wiener process. Let {W;,t € R, }

be a Wiener process, then the following properties hold:
e Wy = 0 with probability 1;
e (independent increments) W;, s — W; is independent of W, for 0 < u < t;
o Wiy — W~ N(0,5);
e W, has continuous paths with ¢ (a.s.).

To setup a differential equation based on this process, we need to be able to
integrate with respect to its derivative. A difficulty of this is that the process is
differentiable nowhere, which leads traditional integration procedures, such as the
Riemann—Stieltjes integral, to fail. The It0 integral gets around this by defining an
alternative integral with respect to the Wiener process (see e.g. Kloeden and Platen,
1992; Oksendal, 2003). Other integrals with respect to the Wiener process exist, for
example the Stranovich integral; but we focus on the It6 integral as the most common
in the MCMC literature. Let {6;,t € R} be a continuous-time stochastic process,

then the Ito integral of 6; with respect to W, is defined by

t M

/0 0, dW, = A}gﬂoo Z:l 0t,,—1 [th - th—l])
m=

where 0 = tg < -+ < tj)y = t is a partition of [0,¢], such that as M — oo the gap

between any two consecutive partition points goes to 0. Commonly, interest is in a

d-dimensional Wiener process; this is simply defined as a vector of independent scalar

Wiener processes; the integral is then performed coordinate wise.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 23

We are now able to define the differential form of an 1t6 process (see e.g. Kloeden
and Platen, 1992; @ksendal, 2003). Define two functions b : R — R? and o : R —
R4 yeferred to as the drift and diffusion terms respectively. An Ito process is a

continuous-time stochastic process {6;,t € R?} that takes the following form

t t
9t=90+/ b(es)der/ o(0,)dW,. (2.3.2)
0 0

This means the Ito process is fully specified by three things: the starting point 6p;
the ‘deterministic’ drift term determined by b; and the stochastic diffusion term,
determined by o. Notice that in an [t0 process, the terms b and o do not depend
directly on the time ¢. A solution to (2.3.2) does not necessarily exist, so normally
conditions are imposed on b and o to ensure the solution exists, and that it is unique
(see e.g. Kloeden and Platen, 1992; Oksendal, 2003). Sufficient conditions for an It
process to have a unique solution are that there exists a constant C' € R, such that

the following holds:
e (Lipschitz) [[b(0) = b(0")[| + [|o(6) — (&) ,, < C[16 = 0'];
e (Linear Growth) [[6(0)| + [lo(0)][,,, < C(1+[|0]));

where [|-|| is the Euclidean norm; and [|-|[,, is the Ly matrix norm. Given a matrix A,
we define the Lg, norm as [|A[|,, = ijl [Zle afj] %, i.e. the sum of the Euclidean
norms of the columns. An Ito process that satisfies these conditions is often referred to
as an It6 diffusion (Oksendal, 2003). However, these conditions are quite restrictive in

practice, so often these assumptions are relaxed; as a result we will consider general It

processes, assuming the solution exists. The SDE whose solution is the 1to process of

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 24

interest (2.3.2) is often written in a shorthand similar to that for ordinary differential
equations,

We now explore some of the properties of the It6 process. An It6 process sat-
isfies the Markov property (2.3.1), so is a Markov process (see e.g. Oksendal, 2003;
Khasminskii, 2011); it is also time homogeneous. Due to the alternative integration
procedure for W;, an Ito process has its own version of the chain rule. This is re-
ferred to as It6’s Lemma (see e.g. QOksendal, 2003; Khasminskii, 2011), and we use it

repeatedly.

Lemma 2.3.1. (Ito’s Lemma) Let 0, be a 1-dimensional Ité process of the form
(2.3.2). Let ¢ : R — R be a twice differentiable function; then 1y := 1(0;) is also an

Ito process, defined by the following equation

2(0,) &2 d
";)d—;f(et) dt+a(9t)£(et)dwt. (2.3.3)

av = (00 0, +

Equivalent versions exist for multi-dimensional diffusions (see e.g. @ksendal, 2003;
Khasminskii, 2011). Even if 6; is an It6 diffusion, 1, is only guaranteed to be an It
process, not an It diffusion (see e.g. Oksendal, 2003). It6’s Lemma can be used to
derive the generator A for an It6 diffusion in terms of the coefficients b and o (see e.g.
Oksendal, 2003; Khasminskii, 2011, for details). For a twice differentiable function

Y : R — R?, the generator has the following form
d d d
_ g 1 T 0
Ap(0) =" bl(ﬁ)a—?% +5 > (00", (ﬂ)m. (2.3.4)

i=1 i=1 j=1

The transition density p;(¢ |¥) of an It process, assuming it exists, can be found

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 25

by solving the Fokker-Planck equation (see e.g. Khasminskii, 2011), a partial differ-

ential equation as follows

U

) 1 & o2
e |0) = o)) V)] + = Zza 8% o")ii ()Pl 9)] -

i=1 =1 j=1

(2.3.5)
If a unique stationary distribution 7 exists, then the Fokker-Planck equation (2.3.5)
can be used to calculate its density exactly, by solving it assuming p;(]9) = p(p);
i.e. assuming the transition density is independent of time, so that d;p(¢) = 0.
Unfortunately, the Fokker-Planck equation is rarely solvable, though there are
some important cases where it can which we shall detail later. In these cases, stochas-
tic stability results, such as those detailed in Section 2.3.1, can be used to investigate
existence and uniqueness of a stationary solution. Stochastic stability results specifi-
cally for Ito processes are well studied. Similar to the general results of Section 2.3.1,
the results generally rely on the existence of norm-like functions V referred to as
Lyapunov functions (see e.g. Khasminskii, 2011). Khasminskii (2011) detail sufficient
conditions to ensure existence and uniqueness of the stationary distribution, and show
how to verify them using Lyapunov functions. The conditions are as follows: suppose
there exists a bounded, open domain B C R¢ with regular boundary® T, then the

conditions of Khasminskii (2011) are as follows:

e In the domain, and some neighbourhood of B, the smallest eigenvalue of the

diffusion matrix oo’ (6) is bounded away from 0.

o If ¥ € R?\ B, the mean time 7 for a path from ¥ to the set B is finite and

3A regular boundary is a standard concept in the study of PDEs (see e.g. Petrovskii, 1954).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 26

supg,ea E[7] 60 = 9] < oo for all compact subsets A C R%.

The Langevin Diffusion and Other Important It6 Processes

In this section, we detail important examples of It0 processes which have a known sta-
tionary distribution. An important diffusion in the MCMC literature is the Langevin
diffusion (LD), which forms the basis of one of the most popular SGMCMC sam-
plers (stochastic gradient Langevin dynamics), as well as numerous other MCMC
algorithms (Roberts and Tweedie, 1996). Given a target distribution m, a LD is guar-
anteed to have stationary solution 7. This means, provided the process is ergodic,
simulating from the LD will target 7. Suppose 7 admits a density p with respect to
the Lebesgue measure, and define f(¢) = —logp(?¥). Then the Langevin diffusion is
defined by the SDE

0, = =V f(6,)dt + V2dW,. (2.3.6)

Because of the form of f, this means the density p only needs to be known up to a
normalising constant, which is one of the reasons why LD underlies so many MCMC
algorithms.

We can demonstrate 7 is a solution of (2.3.6) using the Fokker-Planck equation.

Note that for the Langevin diffusion co? = 21, where [is the identity matrix, so that
d d
> % [0iO)p(O)] = > 9, [(9s.f(6))e]
=1 i=1

=2 e = ; >_%, [DMT)U(e)p(e)] ,

which shows that the density p() = e~/ is a solution of the Fokker-Planck equa-

tion. Unfortunately, while it can be easily shown that a stationary solution is 7, and

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 27

sufficient conditions can be found to show uniqueness and convergence (see Roberts
and Tweedie, 1996); the transition density cannot be found in general. The lack of
transition density complicates simulating from this process. As a result, there is a
vast literature on approximate simulation of Itd processes, with particular emphasis
on simulating from the Langevin diffusion (see Section 2.3.3).

There are other It6 processes which admit the general distribution 7 as a stationary
solution. An important example is Hamiltonian dynamics, or underdamped Langevin
dynamics (Wang and Uhlenbeck, 1945). Hamiltonian dynamics augments the state
space by introducing a term v taking values in R? referred to as the momentum
term. This enables Hamiltonian dynamics to incorporate more information about
the geometry of the space which improves the mixing of Hamiltonian based MCMC
algorithms over Langevin based MCMC. Since Hamiltonian dynamics is based on two
parameters v and 6, it is the solution to a system of SDEs rather than a single SDE
(see e.g. Horowitz, 1991; Chen et al., 2014; Leimkuhler and Shang, 2016). Typically
the density of the augmented target is set to be p(f,v) = e~ 1O—3r"M™v g that
marginally v ~ N(0,M). Here M is a user-specified matrix known as the mass

matrix. The Hamiltonian dynamics are then defined as follows

do, = M~ v,dt (2.3.7)
dv, = =V £(0,)dt — Brydt + \/28M2dW,, (2.3.8)
where [is a user-specified constant. Once again, Hamiltonian dynamics cannot be

simulated in general, so there is a lot of interest in approximating these dynamics.

There is an alternative version of Hamiltonian dynamics that is defined by an ordi-

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 28

nary differential equation, rather than a stochastic differential equation (see e.g. Neal,
2010); and it can be shown that these two versions are related (see e.g. Horowitz, 1991;
Leimkuhler and Shang, 2016). This version underlies many efficient samplers known
collectively as Hamiltonian Monte Carlo (see e.g. Neal, 2010). This includes the
sampler NUTS (Hoffman and Gelman, 2014), one of the most popular samplers im-
plemented in the probabilistic programming language STAN (Carpenter et al., 2017).

Apart from [to processes to simulate from general 7, there are also diffusions which
simulate from specific distributions, some of which have known transition densities
meaning they can be simulated exactly. In fact there exist diffusions with known tran-
sition densities for all exponential family distributions (Bibby et al., 2005). Possibly
the most common diffusion in this class is the Ornstein-Uhlenbeck process, which
admits a normal distribution as its stationary distribution (Oksendal, 2003). Another
process in this class, commonly used in the mathematical finance literature is the
Cox-Ingersoll-Ross process (Cox et al., 1985), which me make use of in Chapter 5.

The stationary distribution of this process is the Gamma distribution.

2.3.3 The Euler-Maruyama Method and ULA

As mentioned in the previous section, there are many It6 processes that have a sta-
tionary distribution of 7, but cannot be simulated in general; such as the Langevin
and Hamiltonian diffusions. This means there is a lot of interest in approximate
simulation of It6 processes. In this section, we detail how Euler’s method for ODEs
can be adapted to generate an approximate sample path from an It6 process (see e.g.

Kloeden and Platen, 1992). This method forms the basis of most SGMCMC samplers.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 29

Given an Ito process of the form (2.3.2), the Euler-Maruyama method suggests
linearising both the drift and diffusion functions for a small time period h. We will
label the Euler—-Maruyama approximation to the process 6; at time t = mh to be
Om, for m € {1,...,M}. Using that foh Wgds = N(0,h), this leads to the Euler—

Maruyama approximation having the following form
Omsr = O + Bb(0,) + 0(0,) VG, G~ N(0,1).

The Euler-Maruyama approximation can be easily implemented provided b and ¢ can
be evaluated. Provided h is not too large compared to the typical magnitude of b,
the approximation will not diverge to infinity (though this does not guarantee a good
approximation).

Applying the Euler—-Maruyama method in the case of the Langevin diffusion leads

to the unadjusted Langevin algorithm (ULA) as follows
Oms1 = 0m + AV f(0) + V2h(. (2.3.9)

The stationary distribution of this algorithm, 7, will be an approximation to the
desired posterior m. Roberts and Tweedie (1996) investigate the ergodicity of the
Langevin diffusion and ULA. They show, using the results of Meyn and Tweedie
(1993a,b), that even in cases when the diffusion is ergodic, the numerical approxima-
tion need not be. This means the algorithm will not even converge to the stationary
solution 7, or that m, may not even exist. This led the statistics community to
favour the Metropolis-adjusted Langevin algorithm (MALA), which uses (2.3.9) as

a proposal to a Metropolis—Hastings algorithm. This algorithm both has 7 as its

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 30

stationary distribution, and is ergodic whenever the Langevin diffusion is ergodic
(Roberts and Tweedie, 1996).

Despite the results of Roberts and Tweedie (1996), there has still been interest
quantifying the error of the Euler-Maruyama method, as it forms the basis of more
sophisticated Euler type approximations. We will detail these results as they are
relevant for SGMCMC methods. Kloeden and Platen (1992), detail a number of well
known results on the error of the approximation compared to the diffusion #;. These
results are known as the strong and weak error. However in MCMC, generally more
interest is in the error between 1 1= = Z%Zl Y(0,,) and 1 = Jga 0(0)7(df), where
1 is some test function; as well as ergodicity results. For this reason we focus on
outlining results of this form.

Talay and Tubaro (1990), define sufficient conditions for the Euler-Maruyama
scheme to be ergodic and, based on these assumptions, quantify the asymptotic bias
of the Euler-Maruyama method, limp;_, . WAJM —9)|. They find this bias to be O(h).
Mattingly et al. (2002) use Lyapunov—Foster drift conditions detailed in Sections 2.2.1
and 2.3.1 to find when the Euler-Maruyama approximation will be geometrically
ergodic.

Lamberton and Pages (2002) investigate a Euler-Maruyama scheme with a stepsize
that decreases to 0, making use of the Lyapunov ideas for 1t6 processes. They show
that when h is decreased to 0, 1/3 M converges to ¢ in the limit M — oco. They also find
that when h,, is set to decrease with O(m~'/3), then the bias and RMSE (root mean
square error) of ¥ are both O(M~/3). In comparison, standard MCMC methods

such as the MH and MALA algorithms have unbiased ¢, and RMSE of O(M~1/2),

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 31

Let 7 be a solution to the Poisson equation, defined by A~y = ¢ — 1), where A is the
generator of the It6 process of interest. Mattingly et al. (2010) used this equation to
study the non-asymptotic bias and MSE of 1[) m when the stepsize h is fixed, provided
the Euler-Maruyama scheme is ergodic and a solution to the Poisson equation exists.
They find the bias of ¢ to be O(h++77) and the MSE to be O(h*+ 577). Interestingly,
this leads Mattingly et al. (2010) to suggest it is optimal to set h to be O(M~/3),
leading to both bias and RMSE O(M~'/3); similar to the results of Lamberton and
Pages (2002).

Despite the results of Roberts and Tweedie (1996), there has been renewed interest
in the ergodicity of ULA. This is possibly because ULA forms the basis for one of
the most popular SGMCMC samplers. In particular, there has been interest in the
non-asymptotic convergence of ULA to the target m. Central to this work is the
assumption that f strongly convex (i.e. the density, p, of 7 is strongly log-concave)
and smooth. This enables the authors to ensure that ULA is not transient, and derive

geometric ergodicity results for the method. More formally, it is assumed that there

exists constants {, L > 0 such that, for 6,0 € R¢,

£(0) ~ 18~ VF@)' 0~ 0) > 110~ (233.10)

IVFO) = V@) < L6 -0 (2.3.11)

The line (2.3.10) corresponds to the assumption that f is [-strongly-convex, while
(2.3.11) corresponds to the assumption f is L-smooth. Dalalyan (2016) derives a non-
asymptotic bound in the TV distance of the distribution defined by a fixed stepsize

ULA and the desired target m; using these assumptions as well as a spectral gap

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 32

argument. Durmus and Moulines (2017a) extend these results by considering both
decreasing and fixed stepsize schemes; as well as deriving tighter bounds on the TV
distance using Foster-Lyapunov conditions detailed in Sections 2.2.1 and 2.3.1. They
also consider the case where f is a sum of two functions f; + fo, where f; is strongly
convex and fy has bounded L., norm.

Durmus and Moulines (2017b) consider alternative bounds on the Wasserstein dis-
tance of order 2, which improve dramatically on previous TV bounds. The Wasserstein

distance of order a > 1, W, between two measures p and v defined on the probability

space (RY, B(R?)) is defined by

[e3

Wa(u,y):[inf/ 16— 0| dv(6,0)| ",
Rd x R4

YET (1)
where the infimum is with respect to all joint distributions I' having p and v as
marginals. Cheng et al. (2018) relaxes the strongly log-concave assumption to the
assumption that f is smooth and locally strongly convex (i.e. strongly convex outside
a ball of finite radius); they analyse the W distance between the distribution defined

by the ULA approximation and the target distribution under these assumptions.

2.4 Stochastic Gradient Markov Chain Monte Carlo

In this section we detail stochastic gradient Markov chain Monte carlo (SGMCMC),
a popular class of methods which aim to make MCMC methods more scalable to the
large data setting. The rest of this thesis provides various contributions to the SGM-
CMC literature. In this section we also provide a comparison of popular SGMCMC

methods to divide-and-conquer MCMC, another popular scalable MCMC method;

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 33

these comparisons form the first original contribution of this thesis. The compar-
isons generally show SGMCMC methods to be more robust than divide-and-conquer
MCMC; which forms the motivation for us to contribute to SGMCMC methods for

the rest of the thesis.

2.4.1 Background

The basis for SGMCMC is the Euler-Maruyama method. Commonly when inferring
an unknown parameter 6 using MCMC, the cost of evaluating p (or f) will be O(N),
where N is the dataset size. For example, consider the setup of Bayesian inference
detailed in Section 2.2, (2.2.3). The unnormalised density of 7, h(f) = [, pi(6) is
a product of N + 1 terms. Similarly, defining f;(0) := —Vlogp;(#), then Vf(0) =
Zﬁio Vfi(0); a sum of N + 1 terms.

The consequence of this is that when implementing a modern MCMC sampler,
such as MALA or HMC, there are two steps that are O(N): calculating the proposal,
which requires calculating f at the current state; and calculating the acceptance
step, which requires calculating p at the proposed state. This leads to MCMC being
prohibitively slow for large dataset sizes. To reduce this cost in the big data setting,
SGMCMC methods do not calculate an acceptance step, which leads the updates to
be more similar to Euler-Maruyama updates; and replace f with a cheap estimate,
f, which can be evaluated at cost O(n), for n < N. This leads to an algorithm with
per-iteration computational cost of O(n).

SGMCMC algorithms were first introduced Welling and Teh (2011), who consid-

ered using the Langevin diffusion as the underlying process. They referred to the

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 34

algorithm as stochastic gradient Langevin dynamics (SGLD). The SGLD can be de-
rived simply from the ULA algorithm, by replacing f with an unbiased, cheap estimate

f. Let 0,,, m = 0,..., M denote iterates from the SGLD algorithm; then they are

updated by the following algorithm
Omir = Om — WV F(O) + V2hlrn, Gn ~ N(0,1); (2.4.1)

Welling and Teh (2011) suggested the following estimate of f,

A N
F(0) = fo(0) + =D fi(8), (2.4.2)
U
€S
where S is a random sample from {1,..., N} of size n. This algorithm therefore has

two error contributions: bias due to the discretisation by h; and the estimate of f :
As a result, the stationary distribution is just an approximation to the desired target
m. The SGLD algorithm is also highly related to the popular scalable optimisation
aglorithm stochastic gradient descent (SGD, Robbins and Monro, 1951); whose update
is given by 6,1 = —hV f(6,,).

A natural extension to SGLD would be to consider SGMCMC algorithms based on
higher order dynamics such as Hamiltonian dynamics introduced earlier. A difficulty
is that replacing Vf with V f in more popular HMC dynamics based on ordinary
differential equations (see e.g. Neal, 2010) leads to the resulting underlying process
having a stationary distribution that is a poor approximation to w. Chen et al.
(2014) get around this by using the alternative SDE dynamics introduced in (2.3.8).
This sampler enables the more efficient Hamiltonian dynamics to be used to sample
approximately from 7 in the big data setting. The downside is that in order for the

more efficient dynamics to be taken advantage of, either an estimate of the Fisher

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 35

information is required, or the stepsize needs to be set small; Ding et al. (2014) aim
to get around this issue by adaptively estimating the Fisher information within the
dynamics.

Designing SGMCMC algorithms requires two main ingredients: identifying an
underlying [t6 process which has 7 uniquely as its stationary distribution; replacing
f with f in a way that the algorithm still provides a reasonable approximation to
7. To make this process more principled, Ma et al. (2015) provide a general It6
process which targets m and shows it is complete (i.e. any It6 process that has 7 as
its stationary distribution can be written in this form). The reason that replacing f
with f can make the approximation poor is that f adds additional, unwanted noise to
the process. In light of this, Ma et al. (2015) also develop an approximate correction

term to counteract this effect.

Theoretical Results

Most of the theoretical results for SGMCMC samplers have focussed on the most
popular algorithm, SGLD. Much of this builds on previous work for Euler—-Maruyama
schemes. Sato and Nakagawa (2014) investigate the error of the SGLD algorithm
compared with the underlying Langevin diffusion. Teh et al. (2016) analysed SGLD
with a decreasing stepsize scheme in a similar way to the analysis of Lamberton and
Pages (2002) on the Euler-Maruyama method. Teh et al. (2016) showed, similar to
the Euler-Maruyama method, the optimal decreasing stepsize scheme is to set h,, to
decrease at O(m~1/3). When h,, decreases optimally, the bias and RMSE of 1) versus

v is O(M~1/3). Similarly, Vollmer et al. (2016) build on the work of Mattingly et al.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 36

(2010), to investigate the non-asymptotic error of @E when SGLD is implemented with
a fixed stepsize. As in Teh et al. (2016), they find SGLD recovers the same bias
and MSE of the Euler-Maruyama scheme, i.e. a bias of O(h + 1/(Mh)) and MSE of
O(h? +1/(Mh)). Vollmer et al. (2016) also builds on the work of Talay and Tubaro
(1990) to find that the asymptotic bias of SGLD is O(h). Chen et al. (2015) extend the
work of Vollmer et al. (2016) to more complex algorithms such as SGHMC. Finally,
Dalalyan and Karagulyan (2017) build on the work of Durmus and Moulines (2017b)
in order to develop W5 bounds for the distance of the distribution defined by SGLD
to 7 in the strongly log-concave setting.

There has also been considerable interest in SGMCMC algorithms in the optimi-
sation literature. Suppose we have access to i.i.d data x = (x1,...,2x)T, where each
data point is a random element from the unknown distribution P; and interest is in
some function h(6,), where § € R?. Raginsky et al. (2017) investigate using SGLD

to approximate

H* = min H(f) = min Ep[h(0, X)].

9eRr? feRrd
Define Hy(0) = + SN h(8, z;). To approximate H* Raginsky et al. (2017) implement
an SGLD algorithm that targets the distribution 7y, with density py(6) oc e #Hx(9)
with update as follows

Omit = Om + AWV Hy(0) + /26, Cn ~ N(0,1), (2.4.3)
N——

injected noise

where VHy = ﬁzies Vh(0,x;), with S C {1,..., N}, is the standard stochastic
estimate of VH,. Here [is a user-specified constant known as the temperature. The

idea is that 3 is set large enough for e ##x(to concentrate around the minima of

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 37

Hy; but that £ is small enough for the injected noise term to escape local modes, and
so that the algorithm does not overfit to Hy rather than approximating the desired
H*. Central to the analysis by Raginsky et al. (2017) are the assumptions that h(-, x)
is M-smooth and m-dissipative for all x € X. The dissipative property is a common
assumption in the study of dynamical systems, it states that there exists constants

m >0, b > 0 such that
(0. Vh(0,2)) =m||6]* —b, 6 eR™

The dissipative assumption means that within a ball of radius \/b/_m, the function
can be arbitrarily complicated, with multiple stationary points. As we move outside
this ball though, the gradient points back towards the ball with increasing magni-
tude. Under these assumptions, Raginsky et al. (2017) investigates the population
risk of 6,,. More formally, they non-asymptotically bound |E[H(0,,)] — H*|, where
the expectation is with respect to the data x and any additional randomness used
by the SGLD algorithm to generate 6,,. Part of the proof relies on bounding the
2-Wasserstein distance between SGLD and the underlying Langevin diffusion. Simi-
larly, Xu et al. (2018) investigate the non-asymptotic bounds on the empirical risk i.e.
|E[Hx(6)] — mingera Hy(0)| under this setting. These are important results for opti-
misation. Most results for stochastic optimisation methods in the non-convex setting
before now have only been able to guarantee local minimisation. Both works also
provide interesting theoretical tools for extending the analysis of the convergence of
SGLD to the target distribution in terms of 2-Wasserstein distance to the non-convex

setting.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 38

Theoretical analysis of SGLD, especially the work of Dalalyan and Karagulyan
(2017), makes it clear that the error in SGLD is dominated by the error in the estimate
f . In light of this, recent work has considered variance reduction for f in order to
improve the convergence of SGLD. Dubey et al. (2016) adapt variance reduction
methods for SGD to SGLD, and show that this improves the MSE of the algorithm
using the work of Chen et al. (2015). Nagapetyan et al. (2017), and independently
Baker et al. (2018) contained in Chapter 3 of this thesis, consider improvements to the
computational cost by implementing SGLD with control variates (both in the strongly
log-concave setting). There are a number of empirical results suggesting that, despite
the per iteration computational savings of SGLD, the cost of implementing SGLD
in order to reach an arbitrary level of accuracy for the given metric (for example
Wy) is still O(N). Nagapetyan et al. (2017) analyse SGLD with control variates
(SGLD-CV) in order to reach a desired level of accuracy in terms of the MSE of the
average of 0, over K independent samples from SGLD. They show that the resulting
implementation has O(log(/N)) computational cost. In comparison Baker et al. (2018)
extend the results of Dalalyan and Karagulyan (2017) to derive a W5 distance bound
for SGLD-CV, and find there exists an implementation with arbitrary W, accuracy
that has O(1) computational cost. There is currently no result proving that the
computational cost of SGLD is O(N). Such a result would require showing that there
is no implementation with sublinear computational cost in N such that SGLD reaches
arbitrary accuracy in the desired distance measure. This requires upper bounds on the
distance measure, which have not yet been derived for SGLD. Chatterji et al. (2018),

again extend the work of Dalalyan and Karagulyan (2017) to derive computational

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 39

cost results and bounds in W, for the variance reduction methods of Dubey et al.

(2016).

Scalable Samplers Using Piecewise Deterministic Processes

More recently, a number of big data MCMC samplers have been introduced based
on a class of Markov processes known as piecewise deterministic processes (PDP;
Davis, 1984). PDPs cannot be written in terms of It6 diffusions; rather they move
in a deterministic direction until an event occurs determined by an inhomogeneous
Poisson process. When the event occurs the direction of motion is switched. Simi-
larly to the Hamiltonian dynamics of (2.3.8), PDPs augment the state space with a
velocity parameter v € V C R?, which determines the current direction of motion.
Let (0;,1;) be a PDP, then the process can be constructed so that 6; has marginal
stationary solution 7, for general 7 (Davis, 1984; Fearnhead et al., 2018). To do
this requires switching direction using a Poisson process with inhomogeneous rate
max(0, v, -V f(6;)). Remarkably, provided the Poisson process can be simulated from,
the PDP can be simulated exactly. Also, Vf can be replaced by V f and 7 remains
the stationary solution (Fearnhead et al., 2018).

These results have been used to develop a number of scalable samplers (Bouchard-
Coté et al., 2018; Bierkens et al., 2018a; Pollock et al., 2016), which target 7 exactly.
The most popular of these methods are the bouncy particle sampler (BPS) (Bouchard-
Coté et al., 2018) and the zig-zag sampler (ZZ) (Bierkens et al., 2018a). The main
difference between these methods is the way the direction v is chosen: at each event

time, the direction of BPS is chosen by reflecting the velocity on the hyperplane

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 40

tangential to V f(6;); while the direction of ZZ is 1 in each dimensional component.
As well as the advantage of targeting the posterior exactly, geometric ergodicity results
have been derived for both BPS and ZZ (Deligiannidis et al., 2018; Bierkens et al.,
2018b). It has been suggested to use control variates in a similar way to Chapter 3, in
order to reduce the variance of the gradient estimate V f when using PDP samplers
(see e.g. Fearnhead et al., 2018). Specifically, it has been shown by Bierkens et al.
(2018a) that this can improve the efficiency of the ZZ sampler.

The main difficulty in implementing these samplers is in simulating from the in-
homogeneous Poisson process with rate max(0, v, - Vf(6;)). In general, the suggested
procedure to simulate from this is known as thinning (see e.g. Lewis and Shedler); but
this requires a local upper bound of 9;f(f), for j = 1,...,d, to be calculated. This

upper bound is problem specific, and a significant overhead for these samplers.

2.4.2 Comparison to Divide-and-Conquer MCMC

In this section we present the first contribution of this thesis. The section compares
the two most popular SGMCMC algorithms — SGLD and SGHMC — to some popu-
lar alternative methods known as divide-and-conquer methods. Divide-and-conquer
methods aim to also improve the scalability of MCMC. They achieve this by splitting
the dataset into subsets, and running separate MCMC chains in parallel. The main
challenge is then in combining the information from each of these samples to produce
an MCMC chain that targets an approximation to 7. This early work demonstrated
that SGMCMC methods seem more robust than the divide-and-conquer counterparts,

and formed the motivation to develop SGMCMC methods further for the remainder of

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 41

the thesis. However it is worth mentioning that alternative divide-and-conquer meth-
ods have since become more popular (Minsker et al., 2014; Xu et al., 2014; Srivastava

et al., 2015; Minsker et al., 2017; Li et al., 2017; Nemeth and Sherlock, 2018).

Divide-and-conquer methods

We assume the Bayesian setup of Section 2.2, (2.2.3). The divide-and-conquer meth-
ods divide the data into disjoint subsets By C {1,...,N} for s = 1,...,S. Defining
hg,(0) = p(l)/ 11 . Di(0), referred to as the (unnormalised) subposterior, the unnor-

malised posterior is given by

S
h(0) =[] hs.(0) (2.4.4)

This leads to the idea that MCMC can be run to target each subposterior in parallel,
then the chains can be combined to get a chain that approximately targets 7. We let
Os1,...,050, s=1,...,5 denote the MCMC sample from subposterior s. In reality,
this recombination step is challenging. We compare SGLD and SGHMC to three
divide-and-conquer methods: Consensus Monte Carlo (Scott et al., 2016), kernel den-
sity estimation Monte Carlo (KDEMC) (Neiswanger et al., 2014) and the Weierstrass

sampler (Wang and Dunson, 2013).

Consensus Monte Carlo

The simplest way to recombine the samples from the subposteriors is to approximate
each subposterior as a Gaussian distribution. The samples can be used to estimate the

mean and variance of each of the subposteriors. Then, conditionally on these estimates

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 42

we can analytically calculate a Gaussian approximation to the full posterior. This
idea was first proposed by Neiswanger et al. (2014). The motivation is that as N gets
large the Bernstein-von Mises theorem states that the posterior will be approximately
Gaussian (Le Cam, 2012).

The consensus Monte Carlo algorithm of Scott et al. (2016) aims to improve on
this. It works by approximating the full posterior as a weighted average of the subpos-
terior samples. The idea behind consensus Monte Carlo is that, if the subposteriors
were Gaussian then this method of combining samples would give us draws from the
true posterior; but if the subposteriors are not Gaussian, Scott et al. (2016) argue
that the weighted averaging procedure is more likely to inherit properties of the sub-
posterior samples themselves, rather than forcing the approximation to be Gaussian.

Scott et al. (2016) propose estimating the full MCMC chain, call this él-, as a

weighted average of the subposterior samples

s -1 5
6, = (Z WS> > Wb, (2.4.5)
s=1 s=1

where W, € R%4 is a weight matrix for subposterior s. Scott et al. (2016) suggest

letting W, = 23_1, where 3, is the sample covariance matrix for 6,.

KDEMC

Neiswanger et al. (2014) suggest applying kernel density estimation to each subpos-
terior sample 6, in order to estimate the true density of that subposterior. De-

note this estimate pp, (#). Then by (2.4.4) we can approximate the full posterior by

p0) =TT2_, pr.(9).

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 43

If Gaussian kernels are used in the approximation, then p(6) becomes a product
of Gaussian mixtures. This product can be expanded to give another Gaussian mix-
ture with O(SM) components, where M is the number of iterations of the MCMC
chain that are stored, and S is the number of subposteriors. Neiswanger et al. (2014)
suggest sampling from this Gaussian mixture using MCMC. We refer to this algo-
rithm as KDEMC. The number of mixture components increases dramatically with
the number of subsets and subposterior samples. This means KDEMC can be com-
putationally expensive and inefficient, but the algorithm should target more complex
posterior geometries. Neiswanger et al. (2014) also suggest a similar method based
on semiparametric density estimation; but we find this method performs similarly to

consensus Monte Carlo so omit it in the comparisons.

Weierstrass

The Weierstrass method (Wang and Dunson, 2013) is similar to KDEMC, but uses a
Weierstrass transform to approximate the subposterior densities rather than a kernel
density estimate. Using the Weierstrass approximation rather than a kernel density is
associated with a number of better properties, including an improvement when sub-
posteriors do not overlap, and better scalings with dimensionality. To produce draws
from the KDE approximation, Neiswanger et al. (2014) suggest using Metropolis-
within-Gibbs procedure. To avoid the inefficiencies of this sampler, Wang and Dun-
son (2013) develop an approximate, more computationally efficient scheme to produce

draws from the Weierstrass approximation based on rejection sampling.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 11

Experiments

As far as we are aware, there has been limited comparison across stochastic gradient
and divide and conquer methods, and we aim to bridge this gap in the following
experiments. We use simple examples that focus on important scenarios, and hope
to build intuition for where methods should be used. The particular scenarios we
focus on are: (i) heavy tailed posterior, (ii) multi-modal posterior, (iii) posteriors
with complex geometry, and (iv) the impact of parameter dimension.

We compare each method’s performance by measuring the KL divergence between
the approximate sample and a HMC sample, taken to be the truth, using the R
package FNN (Liet al., 2013). The HMC sample is simulated using the NUTS sampler
(Hoffman and Gelman, 2014) implemented in the probabilistic programming language
STAN (Carpenter et al., 2017). The KL divergence is measured over 10 different runs
of the algorithm (using the same dataset) and plotted as boxplots. Contour plots
for one simulation are also provided to help develop the reader’s intuition. The only
method which does not require tuning parameters is the Consensus method, which
is an advantage as this can take a lot of time. For fairness, the other methods are
tuned by minimizing the KL divergence measure which we use to make the boxplots.
The Weierstrass algorithm is implemented using the associated R package (Wang and
Dunson, 2013).

It is quite difficult to implement the algorithms in a way that makes computational
cost similar. For example, KDEMC has computational cost component O(N/S) for

each iteration of a parallel chain; but then O(M) for each iteration of the MCMC dur-

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 45

ing the recombination step, which to get a good approximation will be non-negligible.
As a result, we opt for simulating each algorithm for a fixed number of iterations,
since often problems with the methods are quite obvious even despite the difference
in computational cost. The computational cost of the parallel methods is O(NN/S) for
each iteration of parallel MCMC, then the consensus Monte Carlo recombination step
has a one-time O(M) cost; KDEMC and Weierstrass has O(M) cost to produce one
approximate draw from the subposterior chains (KDEMC produces each draw sequen-
tially, as it uses MCMC; while the Weierstrass method can produce multiple draws in
parallel). SGLD has computational cost O(n) for each iteration; while SGHMC has
cost O(Ln) for each iteration, where L is a tuning constant known as the trajectory

which we set to be 3.

Heavy tailed posterior

To compare the methods on a heavy tailed target, we infer the location 6 from data x
simulated from a bivariate t-distribution with known scale ¥ and degrees of freedom
v. The density of x is given by
1 —(v+2)/2
p(x]0) x |1+ ;(X -0’y (x—0) :

where we assume an uninformative uniform prior on #. In order to test the algorithms
we use a relatively small dataset size of 800. The number of subposteriors used in the
divide and conquer methods is 20. We use a minibatch size of 50 for the stochastic

gradient MCMC methods.

Figure 2.4.1 gives an illustrative comparison of the methods. The results show that

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 46

consensus weierstrass sgld sghmc

type
=== Exact

theta2

=== Parallel

Stochastic Gradient

-0110-0.050.00 0.05 -0.10-0.050.00 0.05 ~-0.10-0.050.00 0.05 ~0.10-0.050.00 0.05 ~0.10-0.050.00 0.05
thetal

o

< | Parallel

o « Stochastic Gradient
(0]
[}
2 .
[
2
[o
R
T o
)
¥4 | _—

|

S —— —

S e —

<] T T T T T

consensus kdemc weierstrass sgld sghme
Method

Figure 2.4.1: Comparison of method performance for multivariate-t distribution. Con-

tour plots show empirical densities. Box plots show KL-divergence from the truth.

all methods are equipped to explore this posterior, obtained as a product of heavy
tailed densities. The KDEMC and SGLD algorithms have the poorest approximation
to the posterior. It has been shown in Teh et al. (2016) that the convergence rate of
SGLD is O(T~3), and therefore slower than the standard Monte Carlo rate of O(T~2).
In this scenario SGHMC performs the best in terms of minimizing KL divergence
(though its computational cost is 3 times higher than SGLD), closely followed by
the consensus Monte Carlo algorithm and the Weierstrass sampler. The Weierstrass
sampler does a good job of improving the convergence speed of KDEMC. There is an
additional advantage in using consensus Monte Carlo as it does not require tuning,

and its computational cost for this problem was low, so it is arguably the best choice

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 47

=== Parallel

Stochastic Gradient

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
-0.1 00 01 02 -01 00 01 02 -01 00 01 02 -01 00 01 02 -01 00 01 02

thetal

—
2 _| — Para”el
« Stochastic Gradient
(0]
[}
c
[o
S °
[
=
7 —
g 9 [—] _—
© [] ”] ' —
—_— ———
— == =
pr—r—
T T T T T
consensus kdemc weierstrass sgld sghme
Method

Figure 2.4.2: Comparison of method performance for Gaussian mixture. Contour

plots show empirical densities. Box plots show KL-divergence from the truth.

for this problem.

Multi-modal posterior

We compare the methods on a multi-modal target where we infer the locations 6, 6y
from data x simulated from a bimodal, bivariate Gaussian mixture. We assume the
mixture has known common scale ¥, and equal allocation probabilities, leading to the

following density of x
p(x\@l, 92) X N(X|01, E) +N(X|92, E),

where N (x|0, X) denotes a Gaussian density with mean 6 and variance ¥.. We assume

the priors on #; are independent Gaussians with mean 0 and a large variance. We use

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 48

a dataset size of 10000. The number of subposteriors used in the divide and conquer
methods is 20. We use a minibatch size of 50 for the stochastic gradient MCMC
methods.

Results given in Figure 2.4.2 show that the consensus algorithm performs poorly
in this setting. The simple weighted average scheme (2.4.5) leads to a unimodal pos-
terior approximation which does not account for the bimodality, suggesting that the
posterior mass lies between the subposterior modes. KDEMC offers an improvement
over the Consensus algorithm with improved posterior coverage, but still does not
capture the bimodality. From investigating the subposteriors it appears that this is a
result of the kernel bandwidth being smaller than the width of the posterior, leading
to density estimates for each subposterior which tail off rapidly outside of the region
where subposterior samples lie. Therefore, the approximation is unimodal in the lo-
cation where most of the subposteriors overlap. The Weierstrass method seems to
encounter similar issues to KDEMC, and its performance is not much better.

The stochastic gradient methods perform better than the divide and conquer ap-
proaches, and are able to explore both modes. Note that while the methods are able
to explore overlapping modes, if the modes are more separated the stochastic gradient
methods will also struggle with exploration. Given a good starting point, SGHMC
performs particularly well. When the starting point is further from the posterior
mass, the algorithm does not appear to explore both modes. Overall SGLD performs
the best at minimising the KL-divergence of this problem, especially considering its

lower computational cost compared with SGHMC.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 49

consensus kdemc weierstrass sgld sghmc

05-

type
0.0- = Exact
=== Parallel
Stochastic Gradient

-0.5-

theta2

.
-04 00 04 -04 00 04 -04 0.0 04 -04 0.0 04 -04 00 04
thetal

< 7 e Parallel
« Stochastic Gradient

KL-divergence
2

consensus kdemc weierstrass sgld sghme
Method
Figure 2.4.3: Comparison of method performance for warped Gaussian. Contour plots

show empirical densities. Box plots show KL-divergence from the truth.

Complex geometry: warped Gaussian

We consider a target with complex geometry known as the warped Gaussian. In this

case, locations #; and 6y are inferred from data x with density

p(x]01,02) = N (2|0, + 63, 0,),

where o, is a known scale parameter. We assume the prior for each 6; are independent
with density p(6;) = N(60;]0,04), where oy is some known scale parameter. We use
a small dataset size of 800, and the number of subposteriors used in the divide and
conquer methods is 20. We use a minibatch size of 50 for the stochastic gradient

MCMC methods.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 20

The results given in Figure 2.4.3 show that again the consensus algorithm struggles
to approximate the full posterior. The consensus approach uses an average of the
subposterior samples, re-scaled by their covariance. One way of understanding why
the consensus performs poorly in this example is to consider the situation where there
are only two subposteriors, each with approximately the correct warped Gaussian
shape and location as the full posterior. Averaging samples from each subposterior
would lead to some samples located in the the lower tail of subposterior one being
averaged with samples from the upper tail of subposterior two, thus producing an
approximation to the full posterior which lies in the centre, as shown in Figure 2.4.3.
The KDEMC works reasonably well on this example, but underestimates the tails for
the same reason as discussed for the mixture example (Section 2.4.2). The Weierstrass
shows some improvement over KDEMC, though does not perform as well as the
stochastic gradient methods.

Finally, the stochastic gradient methods perform better than the divide and con-
quer algorithms and once again SGHMC is more sensitive to the starting point than

SGLD.

Dimensionality: multivariate Gaussian

The examples considered so far have been in low dimensional parameter spaces. In
this section we explore how these big data MCMC algorithms scale with increasing
the dimension of the posterior. We consider the posterior for 6 given x, where x
follows a multivariate Gaussian with known scale >. We assume an uninformative

uniform prior for 8. We use a dataset size of 800; the number of subposteriors used

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC o1

15-

method
I consensus
g 1.0-
=) E] kdemc
)
= sgld
£ =k
L sghmc
N4

weierstrass

o
3
[

0.0-

Dimension

Figure 2.4.4: Comparison of method performance for Gaussian. Plot of KL-divergence

against dimension for each method.

in the divide and conquer methods is 20; and we use a minibatch size of 50 for the
stochastic gradient MCMC methods.

Figure 2.4.4 gives the KL divergence between the full posterior and the approx-
imate posterior resulting from each of the considered algorithms. Kernel density
methods are well known to scale poorly with dimension and this is shown here. The
Consensus algorithm performs particularly well. This is unsurprising as the consensus
algorithm is exact when each subposterior is Normally distributed. The Weierstrass
method scales much better with dimensionality than its KDEMC counterpart, this
is due to its sequential rejection sampling procedure, which ensures that error accu-
mulates linearly in dimensionality, as opposed to exponentially in dimensionality as
is the case for KDEMC. Both minibatch methods work well, but the trend in Figure
2.4.4 implies that these algorithms may lose some performance in significantly larger

posterior spaces.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 52

Discussion

When considering unimodal posteriors which do not exhibit complex geometry, the
consensus algorithm performs best; as the algorithm does not require any tuning and
scales well in high-dimensional parameter spaces. KDEMC is a natural extension
to the consensus algorithm, which merges the subposterior densities rather than the
subposterior samples. We found through experimentation that, as with the consensus
algorithm, the KDEMC approach tends to underestimate the tails of the full posterior
density, which is particularly an issue when the subposterior densities do not overlap.
The KDEMC algorithm also scales very poorly with dimension. The Weierstrass
sampler, which extends ideas of the KDEMC algorithm, fixes many of these issues.
The algorithm scales well with dimensionality; copes better with posteriors that do not
overlap and converges faster than KDEMC. However the algorithm still struggles with
multimodality, and is not quite up to the standard of the SGMCMC methods when
it comes to more complex geometry. The algorithm requires tuning of an acceptance
step, but the results are not too sensitive to this choice.

Stochastic gradient methods were found to be robust to the geometry of the pos-
terior, and (in relative terms) were more effective for multimodal posteriors. A major
disadvantage of these algorithms is how sensitive they are to the choice of stepsize,
though some work has been done to improve this (Giles et al., 2016; Gorham et al.,
2016). We found in general the extra computational cost of SGHMC did not lead
to vastly improved performance over SGLD. This could be due to sensitivity to the

Fisher information estimate, or to the choice of starting point.

CHAPTER 2. MONTE CARLO METHODS AND SGMCMC 23

It was hard to compare computational cost directly between the two methods, but
each algorithm was run for the same number of MCMC iterations. For most of the
comparisons, the dataset size was chosen to be about 800, so quite small, designed
to test the methods. In these cases the computational cost between SGLD and the
divide and conquer methods is similar since the divide and conquer methods have a
per iteration cost of 40 (as the number of batches is 20), and the SGLD algorithm
has a per iteration cost of 50 since that was its minibatch size. So the comparisons
certainly demonstrate the slow convergence rate of SGLD for simple examples. But
SGLD demonstrated strength in the more complex geometry of the warped Gaussian.
In the Gaussian mixture example, SGLD has the lowest computational cost by far,
but still performs the best. It is worth noting that the combining step adds to the
computational cost, and for KDEMC this is a particularly slow process.

On the other hand, the trajectory L for SGHMC was chosen to be 3, so that the
momentum parameter was not refreshed at every step. This means the per iteration
computational cost was about 3 times higher than the other methods. For simple
examples, SGHMC did not warrant this extra tuning and computational cost, as
it did not perform much better than consensus Monte Carlo. For more complex

examples, the method again did not warrant the extra cost over SGLD.

Chapter 3

Control Variates for Stochastic

Gradient MCMC

3.1 Introduction

Markov chain Monte Carlo (MCMC), one of the most popular methods for Bayesian
inference, scales poorly with dataset size. This is because standard methods require
the whole dataset to be evaluated at each iteration. Stochastic gradient MCMC
(SGMCMC) is a class of MCMC algorithms that aim to overcome this issue. The
algorithms have recently gained popularity in the machine learning literature. These
methods use efficient MCMC proposals based on discretised dynamics that use gra-
dients of the log-posterior. They reduce the computational cost by replacing the
gradients with an unbiased estimate which uses only a subset of the data, referred to
as a minibatch. They also bypass the acceptance step by making small discretisation

steps (Welling and Teh, 2011; Chen et al., 2014; Ding et al., 2014; Dubey et al., 2016).

o4

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 95

These new algorithms have been successfully applied to a range of state of the art
machine learning problems (e.g., Patterson and Teh, 2013; Li et al., 2016). There is
now software available to implement these methods (Tran et al., 2016; Baker et al.,
2018). In particular, Baker et al. (2018) implements the control variate methodology
we discuss in this article.

This paper investigates stochastic gradient Langevin dynamics (SGLD), a popular
SGMCMC algorithm that discretises the Langevin diffusion. There are a number
of results suggesting that while SGLD has a lower per-iteration computational cost
compared with MCMC, its overall computational cost is proportional to the dataset
size (Welling and Teh, 2011; Nagapetyan et al., 2017). This motivates improving the
computational cost of SGLD, which can be done by using control variates (Ripley,
2009). Control variates can be applied to reduce the Monte Carlo variance of the
gradient estimate in stochastic gradient MCMC algorithms. We refer to SGLD using
this new control variate gradient estimate as SGLD-CV.

We analyse the algorithm using the Wasserstein distance between the distribution
defined by SGLD-CV and the true posterior distribution, by adapting recent results by
Dalalyan and Karagulyan (2017). Central to this analysis are the assumptions that the
log-posterior is m-strongly-concave and M-smooth (defined formally in Assumption
3.3.1). This is quite a strong assumption, but has become common for the analysis
of these methods (see e.g., Durmus and Moulines, 2017a; Dalalyan and Karagulyan,
2017; Nagapetyan et al., 2017) since it ensures that errors do not accumulate from one
iteration to the next. We provide an empirical comparison on a wide variety of models

that do not necessarily satisfy these conditions in order to fully explore the results.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 56

If the concave and smoothness conditions do not hold, then provided the posterior
contracts with the number of observations, there should still be some benefit from the
variance reduction; but we leave a full analysis in the nonconvex case for future work.

We get bounds on the Wasserstein distance between the target distribution and the
distribution we sample from at a given step of SGLD-CV. These bounds are in terms
of the tuning constants chosen when implementing SGLD-CV. Under assumptions on
how the posterior changes as we get more data, we are able to show that, after an
initialisation step, the cost of running SGLD-CV to a required level of accuracy does
not grow with the number of data points. The initialistion step involves finding a
centring value 6 using optimisation and evaluating the gradient of the log posterior
at this value. Both these are O(N) calculations, where N is the dataset size, but
we show in Section 3.3.4 these each require just a single pass through the dataset.
We also suggest starting the algorithm from the centring value, essentially replacing
the burn-in step of SGLD with the optimisation step. The experiments show this
optimisation step is often more efficient than the burn-in step of SGLD. Our results
in Section 3.3.3 quantify the impact on performance of obtaining a poor centring
value.

The use of control variates has also been shown to be important for other Monte
Carlo algorithms for simulating from a posterior with a cost that is sub-linear in the
number of data points (Bardenet et al., 2017; Bierkens et al., 2018a; Pollock et al.,
2016; Nagapetyan et al., 2017). For previous work that suggests using control variates
within SGLD, see Dubey et al. (2016); Chen et al. (2017). These latter papers, whilst

showing benefits of using control variates, do not show that the resulting algorithm

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 57

can have sub-linear cost in the number of data points. A recent paper, Nagapetyan
et al. (2017), does investigate how SGLD-CV performs in the data limit under similar
log-concavity assumptions on the posterior distribution. They have results that are
qualitatively similar to ours, including the sub-linear computational cost of SGLD-
CV. Though they measure accuracy of the algorithm through the mean squared error
of Monte Carlo averages rather than through the Wasserstein distance.

Not only can control variates be used to speed up stochastic gradient MCMC by en-
abling smaller minibatches to be used; we show also that they can be used to improve
the inferences made from the MCMC output. In particular, we can use post-processing
control variates (Mira et al., 2013; Papamarkou et al., 2014; Friel et al., 2016) to pro-
duce MCMC samples with a reduced variance. The post-processing methods rely on
the MCMC output as well as gradient information. Since stochastic gradient MCMC
methods already compute estimates of the gradient, we explore replacing the true
gradient in the post-processing step with these free estimates. We also show theoret-
ically how this affects the variance reduction factor; and empirically demonstrate the

variance reduction that can be achieved from using these post-processing methods.

3.2 Stochastic Gradient MCMC

Throughout this paper we aim to make inference on a vector of parameters 6 € R,
with data x = {x;}&,. We denote the probability density of z; as p(z;]0) and assign a
prior density p(6). The resulting posterior density is then p(0|x) o< p(6) Hf\il p(x]0),

which defines the posterior distribution . For brevity we write f;(6) = — log p(x;|6)

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 58

fori=1,...N, fo(8) = —logp(f) and f(0) = —log p(0|x).

Many MCMC algorithms are based upon discrete-time approximations to continuous-
time dynamics, such as the Langevin diffusion, that are known to have the posterior
as their invariant distribution. The approximate discrete-time dynamics are then used
as a proposal distribution within a Metropolis-Hastings algorithm. The accept-reject
step within such an algorithm corrects for any errors in the discrete-time dynamics.
Examples of such an approach include the Metropolis-adjusted Langevin algorithm
(MALA,; see e.g., Roberts and Tweedie, 1996) and Hamiltonian Monte Carlo (HMC;

see e.g., Neal, 2010).

3.2.1 Stochastic Gradient Langevin Dynamics

SGLD, first introduced by Welling and Teh (2011), is a minibatch version of the
unadjusted Langevin algorithm (Roberts and Tweedie, 1996). At each iteration it
creates an approximation of the true gradient of the log-posterior by using a small
sample of data.

The SGLD algorithm is based upon the discretisation of a stochastic differential
equation known as the Langevin diffusion. A Langevin diffusion for a parameter

vector 0 with posterior p(0|x) o exp(—f(0)) is given by
t
0, = 0, —/ Vf(0,)ds + v2dB,, (3.2.1)
0

where By is a d-dimensional Wiener process. The stationary distribution of this diffu-
sion is . This means that it will target the posterior exactly, but in practice we need

to discretise the dynamics to simulate from it, which introduces error. A bottleneck

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 59

for this simulation is that calculating V f(6) is an O(NN) operation. To get around this,

Welling and Teh (2011) replace the log-posterior gradient with the following unbiased

estimate
- N
V(0) =V ol6) + — > V) (3.2.2)
1€SK
for some subsample Sy, of {1,..., N}, with |Sy| = n representing the minibatch size.

A single update of SGLD is then

hy,

?Vf(ek) + Chy (3.2.3)

9k+1 = ek -

where ¢ ~ N(0, hy).

MALA uses a Metropolis-Hastings accept-reject step to correct for the discretisa-
tion of the Langevin process. Welling and Teh (2011) bypass this acceptance step,
as it requires calculating p(6|x) using the full dataset, and instead use an adaptive
rather than fixed stepsize, where hy — 0 as kK — co. The motivation is that the noise
in the gradient estimate disappears faster than the process noise, so eventually, the
algorithm will sample the posterior approximately. In practice, we found the algo-
rithm does not mix well when the stepsize is decreased to zero, so in general a fixed

small stepsize h is used in practice, as suggested by Vollmer et al. (2016).

3.3 Control Variates for SGLD Efficiency

The SGLD algorithm has a reduced per iteration computational cost compared to tra-
ditional MCMC algorithms. However, there have been a number of results suggesting

that the overall computational cost of SGLD is still O(N) (Welling and Teh, 2011;

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 60

Nagapetyan et al., 2017). What we mean by this is that in order for the algorithm
to reach a desired distance from the true posterior, the minibatch size n, and the
total number of iterations K, need to be set so that the computational cost Kn is
O(N). The main reason for this result is that in order to control the variance in the
gradient estimate, V f(6), we need n to increase linearly with N. Therefore, we would
assume that reducing this variance would lead to an improved computational cost of
the algorithm. A natural choice is to reduce this variance through control variates
(Ripley, 2009).

Control variates applied to SGLD have also been investigated by Dubey et al.
(2016); Chen et al. (2017), who show that the convergence bound of SGLD is reduced
when they are used. Theoretical results, similar and independent to ours, show how
control variates can improve the computational cost of SGLD (Nagapetyan et al.,
2017).

In Section 3.3.1, we show how control variates can be used to reduce the vari-
ance in the gradient estimate in SGLD, leading to the algorithm SGLD-CV. Then
in Section 3.3.3 we analyse the Wasserstein distance between the distribution defined
by SGLD-CV and the true posterior. There are a number of quantities that affect
the performance of SGLD-CV, including the stepsize h, the number of iterations K
and the minibatch size n. We provide sufficient conditions on h, K and n in or-
der to bound the Wasserstein distance. We show under certain assumptions, the
computational cost, measured as Kn, required to bound the Wasserstein distance is

independent of N.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 61

3.3.1 Control Variates for SGMCMC

Let 6 be a fixed value of the parameter, chosen to be close to the mode of the posterior

p(0]x). The log-posterior gradient can then be re-written as

VI(0) =Vf0)+[VI0O)— VD),

where the first term on the right-hand side is a constant and the bracketed term on

the right-hand side can be unbiasedly estimated by

. A 1 1 A
[VF©O) = VFO)] = Vol0) = VIo(0) + ~ > ~[V1i(0) = V£i(0)]
ies
where pq, ..., py are user-chosen, strictly positive probabilities, .S is a random sample
from {1,..., N} such that |S| = n and the expected number of times i is sampled is

np;. The standard implementation of control variates would set p; = 1/N for all 1.
Yet we show below that there can be advantages in having these probabilities vary

with ¢; for example to give higher probabilities to sampling data points for which

~

V fi(0) — V f;(0) has higher variability with respect to 6.
If the gradient of the likelihood for a single observation is smooth in 6 then we

will have

Vi) = Vfi(0) if 0~0.
Hence for 0 ~ 6 we would expect the unbiased estimator

A A

VI0)=VfO)+[VIO)—VIiO), (3.3.1)

to have a lower variance than the simpler unbiased estimator (3.2.2). This is because

when 0 is close to § we would expect the terms Vf(#) and V£(0) to be positively

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 62

Algorithm 1: SGLD-CV
Input: 6, Vf(é), h.

Set + 0.

for k=0,..., K —1do
Update V f(6y) using (3.3.1)

Draw (~ N(0,h[)

Orr1 < O — %Vf(ek) + Ck

end

correlated. This reduction in variance is shown formally in Lemma 1, stated in Section
3.3.2.

The gradient estimate (3.3.1) can be substituted into any stochastic gradient
MCMC algorithm in place of V f (0). We refer to SGLD using this alternative gradient
estimate as SGLD-CV. The full procedure is outlined in Algorithm 1.

Implementing this in practice means finding a suitable é, which we refer to as the
centring value. We show below, under a strongly log-concave assumption, that the
Wasserstein distance between the distribution defined by SGLD-CV and the posterior
distribution can be bounded by some arbitrary constant; and that this can be done
such that the computational cost Kn is O(1). For this to be the case though, we
require both 6 and the starting point of SGLD-CV, 6, to be O(N _%) distance from
the posterior mean. This requires some pre-processing steps: an optimisation step to
find 0, and calculating f(6). These steps are both O(N), but we suggest starting the
algorithm from é, meaning the optimisation step essentially replaces the burn-in of

the chain. We find in the experiments that these initial steps are often faster than

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 63

the burn-in of SGLD.

In practice, we find 0 using stochastic optimisation (Robbins and Monro, 1951),
and then calculate the full log-posterior gradient at this point V f (é) We then start
the algorithm from 6. In our implementations we use a simple stochastic optimisation
method, known as stochastic gradient descent (SGD, see e.g. Bottou, 2010). The
method works similarly to the standard optimisation method gradient descent, but at
each iteration replaces the true gradient of the function with an unbiased estimate.

A single update of the algorithm is as follows
Orsr = O — iV f(0), (3.3.2)

where Vf(6) is as defined in (3.2.2) and h; > 0 is a small tuning constant referred to
as the stepsize. Provided the stepsizes hy satisfy the following conditions Y, h? < oo
and), hy = oo then this algorithm will converge to a local maximum (Robbins and
Monro, 1951).

We show in Section 3.3.4, under our assumptions of log-concavity of the posterior,
that finding 6 using SGD has a computational cost that is linear in N, and we can
achieve the required accuracy with just a single pass through the data. As we then
start SGLD-CV with this value for 6, we can view finding the centring value as a
replacement for the burn-in phase of the algorithm, and we find, in practice, that the
time to find a good 0 is often quicker than the time it takes for SGLD to burn-in.
One downside of this procedure is that the SGD algorithm, as well as the SGLD-CV
algorithm itself needs to be tuned, which adds to the tuning burden.

In comparison to SGLD-CV, the SAGA algorithm by Dubey et al. (2016) also uses

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 64

control variates to reduce the variance in the gradient estimate of SGLD. They show
that this reduces the MSE of SGLD. The main difference is that their algorithm uses
a previous state in the chain as the control variate, rather than an estimate of the
mode. This means that SAGA does not require the additional optimisation step, so
tuning should be easier. However we show in the experiments of Section 3.5, that the
algorithm gets more easily stuck in local stationary points, especially during burn-in.
For more complex examples, the algorithm was prohibitively slow to burn-in because
of this tendency to get trapped. Dubey et al. (2016) also do not show that SAGA has

favourable computational cost results.

3.3.2 Variance Reduction

The improvements of using the control variate gradient estimate (3.3.1) over the
standard (3.2.2) become apparent when we calculate the variances of each. For our
analysis, we make the assumption that the posterior is m-strongly-log-concave and
M-smooth, formally defined in Assumption 3.3.1. These assumptions are common
when analysing gradient based samplers that do not have an acceptance step (Durmus
and Moulines, 2017a; Dalalyan and Karagulyan, 2017). The assumptions imply that
ml < V2f(0) < MI, for all § € R? where I is the identity matrix, and for two
matrices Ay, Ay € R4 A, < A, means that Ay — A; is positive semi-definite. In all

the following analysis we use ||-|| to denote the Euclidean norm.

Assumption 3.3.1. Strongly log-concave and smooth posterior: there exists positive

constants m and M, such that the following conditions hold for the negative log-

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 65

posterior

FO) = £0)=ViE)(6—0) = T |60 (3.3.3)

IVF(O) = V@) < M[o—0. (3.3.4)
for all 6,0" € RY.

We further need a smoothness condition for each of the likelihood terms in order

to bound the variance of our control-variate estimator of the gradient.

Assumption 3.3.2. Smoothness: there exists constants Lo, ..., Ly such that
IVf(0) = Vf:(0)| < Li |0 — €|, fori=0,...,N.

Using Assumption 3.3.2 we are able to derive a bound on the variance of the

gradient estimate of SGLD-CV. This bound is formally stated in Lemma 3.3.3.

Lemma 3.3.3. Under Assumption 3.3.2. Let 0y be the state of SGLD-CV at the
k" iteration, with stepsize h and centring value 6. Assume we estimate the gradient
using the control variate estimator with p; = Li/zyzl L; foriv=1,...,N. Define
k= V(0 — V£(0r), so that & measures the noise in the gradient estimate V f

and has mean 0. Then for all Qk,é €R? and allk =1,..., K we have

N
i=

Z 1Li) ~112
—EH«%—@
n

E & < ((3.3.5)

Here the expectation is over both the noise in the minibatch choice, as well as the
distribution of 6. All proofs are relegated to the Appendix. It is simple to show that

Assumption 3.3.2 also implies that the log-posterior is M-smooth, with M = Zfio L;,

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 66

i.e. condition (3.3.4) in Assumption 3.3.1 holds. This allows us to write
M? NIE
E [|&ll* < 71[3 Hek - 9“ -

We will use this form of the bound for the rest of the analysis. In many situations, it
is easier to work with a global bound on the smoothness constants, as in Assumption
3.3.4 below, and it is natural to choose p; = 1/N. We use p; = 1/N in all our
implementations in the experiments of Section 3.5.

In order to consider how SGLD-CV scales with N we need to make assumptions
on the properties of the posterior and how these change with N. To make discussions
concrete we will focus on the following, strong, assumption that each likelihood-term
in the posterior is L-smooth and [-strongly-log-concave. As we discuss later, our

results apply under weaker conditions.

Assumption 3.3.4. Assume there exists positive constants L and | such that f; sat-

i1sfies the following conditions
£.00)— 50) ~ VA6 0) > S 10— 0
IV£i(0) = V(@) < L6 =6
foralli€0,...,N and 0,0 € R<.

Under this assumption the constants, m and M, of the posterior both increase

linearly with N, as shown by the following Lemma.

Lemma 3.3.5. Suppose Assumption 3.3.4 holds. Then f satisfies the following

(N +1)

1o — 6|’
2

FO) = f(0) =V f(O) (0 -0) =

IVF(O) = VO < LN+ 1) |0 — 0]

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 67

Thus the log posterior is M-smooth and m-strongly-concave with parameters M =

(N+1)L and m = (N + 1)L.

We can see that the bound on the gradient estimate variance in (3.3.5) depends
on the distance between 6, and 0. Appealing to the Bernstein-von Mises theorem
(see e.g. Le Cam, 2012), under standard asymptotics, and provided & is small enough
(we make this more formal in the analysis to follow, but it must be at most O(1/N)),
we would expect the distance E Hﬁk - éH2 to be O(1/N), if 0 is within O(N~/2) of
the posterior mean, once the MCMC algorithm has burnt in. As M is O(N), this
suggests that B ||&]|° will be O(N).

To see the potential benefit of using control variates to estimate the gradient
in situations where N is large, we now compare this O(N) result for SGLD-CV,
with a result on the variance of the simple estimator, V f (0). If we randomly pick
some data point index I and fix some point § = o, then define V;(J) to be the
empirical variance of 0; f;() over the dataset x; and set V(0) = Z?Zl V;(9). Then,
defining £(0) = Vf(0) — Vf(0), if we assume we are sampling the minibatch without

replacement then

Now, suppose that as N — oo, the posterior converges to some point mass at
2

0y € RY. Then we would expect that, for 9 close to 0y, E Hg(ﬁ)H ~ N72V(90), so that

the estimator will be O(N?). More precisely, as N — oo, if we assume we can choose

€ > 0 such that V(9) > 02 > 0 for all ¥ in an epsilon ball around 6p; then there is a

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 68

constant ¢ > 0 such that

n A 2
mE Hg(e) — ¢, as N — oo. (3.3.6)

This suggests using the estimate V f , rather than V f , could give an O(N) reduc-
tion in variance, and this plays a key part in the computational cost improvements

we show in the next section.

3.3.3 Computational Cost of SGLD-CV

In this section, we investigate how applying control variates to the gradient estimate
of SGLD reduces the computational cost of the algorithm.

In order to show this, we investigate the Wasserstein-Monge-Kantorovich (Wasser-
stein) distance Wy between the distribution defined by the SGLD-CV algorithm at
each iteration and the true posterior as NV is changed. For two measures p and v de-
fined on the probability space (R?, B(R?)), and for a real number ¢ > 1, the distance

W, is defined by

Wau) = |t [jo-oraes)|
R4 xR4

YET (V)
where the infimum is with respect to all joint distributions I' having p and v as
marginals. The Wasserstein distance is a natural distance measure to work with for
Monte Carlo algorithms, as discussed in Durmus and Moulines (2017a); Dalalyan and
Karagulyan (2017).
One issue when working with the Wasserstein distance is that it is not invariant

to transformations. For example scaling all entries of # by a constant will scale the

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 69

Wasserstein distance by the same constant. A linear transformation of the parameters
will result in a posterior that is still strongly log-concave, but with different constants
m and M. To account for this we suggest measuring error by the quantity /mWhs,
which is invariant to scaling 6 by a constant. Theorem 1 of Durmus and Moulines
(2017a) bounds the standard deviation of any component of 6 by a constant times
1/4/m, so we can view the quantity /mW5 as measuring the error on a scale that is
relative to the variability of # under the posterior distribution.

There are a number of quantities that will affect the performance of SGLD and
SGLD-CV. These include the step size h, the minibatch size n and the total number
of iterations K. In the analysis to follow we find conditions on h, n and K that
ensure the Wasserstein distance between the distribution defined by SGLD-CV and
the true posterior distribution 7 are less than some ¢ > 0. We use these conditions
to calculate the computational cost, measured as Kn, required for this algorithm to
reach the satisfactory error e.

The first step is to find an upper bound on the Wasserstein distance between
SGLD-CV and the posterior distribution in terms of h, n, K and the constants m

and M declared in Assumption 3.3.1.

Proposition 3.3.6. Under Assumptions 3.53.1 and 3.3.2, let O be the state of SGLD-
CV at the K iteration of the algorithm with stepsize h, initial value 0y, centring value
0. Let the distribution of Ok be vi. Denote the expectation of 6 under the posterior

distribution ™ by 0. If h < then for all integers K > 0,

2m
2M2+m?’
B2

C
W < (1— AEW I
2(vic,m) <)T Walvo, ™)+ 5+ C +VAB'

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 70

where

2h2M
Azl—\/ - + (1 —mh)?,

2h2M?
B:\/h [E
n

C = aM(h*d)?,

-+ 2]

o= 7\/5/6 and d is the dimension of 0y.

The proof of this proposition is closely related to the proof of Proposition 2 of
Dalalyan and Karagulyan (2017). The extra complication comes from our bound on
the variance of the estimator of the gradient; which depends on the current state of
the SGLD-CV algorithm, rather than being bounded by a global constant.

We can now use Proposition 3.3.6 to find conditions on K, h and n in terms of the
constants M and m such that the Wasserstein distance is bounded by some positive

constant €y/+/m at its final iteration K.

Theorem 3.3.7. Under Assumptions 3.5.1 and 3.3.2, let Ok be the state of SGLD-CV
at the K™ iteration of the algorithm with stepsize h, initial value 0y, centring value
0. Let the distribution of O be vi. Denote the expectation of 0 under the posterior
distribution © by 0. Define R := M/m. Then for any ¢ > 0, if the following

conditions hold:

he L @ (3.3.7)
= M\ 2R £ 0 64R2a2d [o
1 dm =112
> = — — 3.
Kh> —log [2 (E 160 — 0|, + d/m)] , (3.3.8)
4R? ~ 12 d
n > 0 }z ﬁm [E HG —0|| + —] , (3.3.9)
€ m

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 71

where

[= max L i
2R% 4+ 17 64R2a2d |’

o = 7v2/6, and d is the dimension of Oy, then Wy(vg, m) < €9 /+/m.

As a corollary of this result, we have the following, which gives a bound on the
computational cost of SGLD, as measured by Kn, to achieve a required bound on the

Wasserstein distance.

Corollary 3.3.8. Assume that Assumptions 3.3.1 and 3.3.4 and the conditions of
Theorem 3.3.7 hold. Fix ey and define

2 92
Ch :min{2R2+l,M}.

2
€5

and Cq := 64R?B/et. We can implement an SGLD-CV algorithm with Wo(vg, 7) <

€o/v/m such that
o 4 2
Kn < [Cllog mE |16, — 0] + d] +C’110g6—2—|—1} [szEHH—HH +02d+1].
0

The constants, C7 and Cy, in the bound on Kn, depend on €y and R = M/m. It
is simple to show that both constants are increasing in R. Under Assumption 3.3.4
we have that R is a constant as N increases. Corollary 3.3.8 suggests that provided
H‘90 — Q_H < ¢/y/m and Hé — H_H < ¢/+/m, for some constant ¢; then the computational
cost of SGLD-CV will be bounded by a constant. Since we suggest starting SGLD-
CV at 6, then under the conditions of Corollary 3.3.8, we just need this to hold for
Hé -0 H Under Assumption 3.3.4 we have that m increases linearly with IV, so this
corresponds to needing Hé -0 H < ¢1/V'N as N increases. Additionally, by Theorem

1 of Durmus and Moulines (2017a) we have that the variance of the posterior scales

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 72

like 1/m = 1/N as N increases, so we can interpret the 1/ VN factor as being a
measure of the spread of the posterior as N increases. The form of the corollary
makes it clear that a similar argument would apply under weaker assumptions than
Assumption 3.3.4. We only need that the ratio of the log-concavity constants, M/m,
of the posterior remains bounded as N increases.

This corollary also gives insight into the computational penalty you pay for a poor
choice of 8y or 6. The bound on the computational cost will increase logarithmically
with H@O — Q_H and linearly with Hé — H_H

Similar bounds for the computational cost of SGLD have been derived (e.g., Na-
gapetyan et al., 2017; Chatterji et al., 2018). For example, Chatterji et al. (2018)
state the computational cost of SGLD in order to sample from a distribution with
W, distance that is within e distance of the target is O(1/€?). For our required level
of accuracy, € = ¢y/+/m, this corresponds to a bound on the computational cost that
is O(N), as compared to O(1) for SGLD-CV. However, a formal proof that SGLD is
O(N) requires showing that any implementation of SGLD with Kn that is sublinear
in N cannot reach arbitrary accuracy e. This requires a lower bound on the Wy dis-
tance, rather than an upper bound. Whilst the result of Chatterji et al. (2018) is just
an upper bound on the W5 distance, there are empirical results that suggest a linear
computational cost for SGLD, including those in Nagapetyan et al. (2017), as well as

our own experiments in Section 3.5.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 73

3.3.4 Setup Costs

There are a number of known results on the convergence of SGD under the strongly
log-concave conditions of Assumption 3.3.1. These will allow us to quantify the setup
cost of finding the point 6 in this setting. More complex cases are explored empirically
in the experiments in Section 3.5. Lemma 3.3.9 due to Nemirovski et al. (2009)

quantifies the convergence of the final point of SGD.

Lemma 3.3.9. (Nemirovski et al., 2009) Under Assumption 3.5.1, let 0 denote
the final state of SGD with stepsizes hy = 1/(mk) after K iterations. Suppose

2
E HVf(Q)H < D? and denote the true mode of f by 0*. Then it holds that

2 4D?
< .
- m2K

EHé—e*

By using a similar argument to (3.3.6), we would expect that D? is O(N?/n).
This means that under Assumption 3.3.4, we will need to process the full dataset
once before the SGD algorithm has converged to an estimate of the mode 6 within
O(N~z) of the posterior mean. It follows that, for these cases there are two one
off O(N) setup costs, one to find an acceptable mode 0 and one to find the full

log-posterior gradient at this point V f (é)

3.4 Post-processing Control Variates

Control variates can also be used to improve the inferences made from MCMC by
reducing the variance of the output directly. The general aim of MCMC is to estimate

expectations of functions, g(#), with respect to the posterior w. Given an MCMC

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 74

sample 01, ... M) from the posterior 7, we can estimate E[g(6)] unbiasedly as

Elg(0)] ~ 52 D 9(6).

Suppose there exists a function h(#), which has expectation 0 under the posterior.

We can then introduce an alternative function,

9(0) = g(0) + h(0),

where E[g(6)] = E[g(0)]. If h(-) is chosen so that it is negatively correlated with g(6),
then the variance of §(#) will be reduced considerably.

Mira et al. (2013) introduce a way of choosing h(f) almost automatically by using
the gradient of the log-posterior. Choosing h(+) in this manner is referred to as a zero-
variance (ZV) control variate. Friel et al. (2016) showed that, under mild conditions,
we can replace the log-posterior gradient with an unbiased estimate and still have
a valid control variate. SGMCMC methods produce unbiased estimates of the log-
posterior gradient, and so it follows that these gradient estimates can be applied as
ZV control variates. For the rest of this section, we focus our attention on SGLD, but
these ideas are easily extendable to other stochastic gradient MCMC algorithms. We
refer to SGLD with these post-processing control variates as SGLD-ZV.

Given the setup outlined above, Mira et al. (2013) propose the following form for
h(o),

hB) = AQ(0) + VQ(0) - z,

here () is a polynomial of € to be chosen and z = V f(0)/2. A refers to the Laplace

operator 59_92% + -4 8‘9—%. This is a good form for h because E;[h(f)] = 0. This

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 75

can be seen in two ways, the first is simply to use integration by parts. The second
is to notice that h(6) = AQ(0), where A is the infinitesimal generator of Langevin
diffusion, as defined in (2.3.4). If A is the generator of a continuous-time Markov
process with unique stationary distribution 7; then mild conditions on A and () ensure
that E,[AQ(#)] = 0 (Barbour, 1988). In order to get the best variance reduction, we
simply have to optimize the coefficients of the polynomial Q(-). In practice, first or
second degree polynomials Q(#) often provide good variance reduction (Mira et al.,
2013). For the rest of this section we focus on first degree polynomials, so Q(#) = a’¥,
but the ideas are easily extendable to higher orders (Papamarkou et al., 2014).

The SGLD algorithm only calculates an unbiased estimate of V f(#), so we propose

replacing h(6) with the unbiased estimate
ho) = AQ(0) + VQ(0) - 2, (3.4.1)

where 2 = Vf(6)/2. By identical reasoning to Friel et al. (2016), h(f) is a valid
control variate. Note that z can use any unbiased estimate, and as we will show
later, the better the gradient estimate, the better this control variate performs. The
expectation of h is zero because E[h(#)] = 0, and 2 is an unbiased estimate of z. See
the Appendix for the full calculation.

As Q(0) is a linear polynomial a’6, so our SGLD-ZV estimate will take the fol-
lowing form

9(0) = g(0) +a’z. (3.4.2)

Similar to standard control variates (Ripley, 2009), we need to find optimal coefficients

& in order to minimise the variance of g(-), defined in (3.4.2). In our case, the optimal

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 76

Algorithm 2: SGLD-ZV
Input: SGLD Output: {0y, Vf(6x)}E,

Set Zp < %Vf(@k)
Estimate V, < Var(z), C,, < Cov(g(f), z)
a; + [Vi] ' Oyl

for k=1... K do
| 9(6k) < g(6) + aTz,

end

coefficients take the following form (Friel et al., 2016)
a=Var ' (2)Cov(2,9(9)).

This means that SGLD already calculates all the necessary terms for these control
variates to be applied for free. So the post-processing step can simply be applied
once when the SGLD algorithm has finished, provided the full output plus gradient
estimates are stored. The full details are given in Algorithm 2. For higher order
polynomials, the calculations are much the same, but more coefficients need to be
estimated (Papamarkou et al., 2014).

The efficiency of ZV control variates in reducing the variance of our MCMC sample
is directly affected by using an estimate of the gradient rather than the truth. For
the remainder of this section, we investigate how the choice of the gradient estimate,

and the minibatch size n, affects the variance reduction.

Assumption 3.4.1. Var[g(0)] < co and Var[h(0)] < co. E, ||V f;(0)||* is bounded by

some constant o for alli =0,...N, 6 € R.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 7

Theorem 3.4.2. Under Assumption 3.4.1, define the optimal variance reduction for
ZV control variates using the full gradient estimate to be R, and the optimal variance

reduction using SGLD gradient estimates to be R. Then we have that

R

R> 5
L+ [o(N + 1) Egx[Es [|€s(0)]7]

(3.4.3)

where £g(0) is the noise in the log-posterior gradient estimate.

The proof of this result is given in the Appendix. An important consequence
of Theorem 3.4.2 is that if we use the standard SGLD gradient estimate, then the
denominator of (3.4.3) is O(n/N), so (provided the bound is tight) our variance
reduction diminishes as N gets large. However, if we use the SGLD-CV estimate
instead, then under standard asymptotics, the denominator of (3.4.3) is O(n), so the
variance reduction does not diminish with increasing dataset size. The same holds for
SAGA, and other control variate algorithms that reduce the gradient error to O(N).
It follows that for best results, we recommend using the ZV post-processing step after
running the SGLD-CV algorithm, especially for large N. The ZV post-processing
step can be immediately applied in exactly the same way to other stochastic gradient
MCMC algorithms, such as SGHMC and SGNHT (Chen et al., 2014; Ding et al.,
2014).

It is worth noting that there are some storage constraints for SGLD-ZV. This
algorithm requires storing the full MCMC chain, as well as the gradient estimates at
each iteration. So the storage cost is twice the storage cost of a standard SGMCMC
run. However, in some high dimensional cases, the required SGMCMC test statistic

is estimated on the fly using the most recent output of the chain and thus reducing

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 78

the storage costs. We suggest that if the dimensionality is not too high, then the
additional storage cost of recording the gradients to apply the ZV post-processing step
can offer significant variance reduction for free. However, for very high dimensional
parameters, the cost associated with storing the gradients may preclude the use of

the ZV step.

3.5 Experiments

In the experiments to follow we compare SGLD-CV to SGLD in a number of different
scenarios. We also compare to the method SAGA (Dubey et al., 2016), an alternative
variance reduction method for SGLD discussed at the end of Section 3.3.1. Perfor-
mance is measured by plotting the log predictive density of a held out test set at each
iteration. Some of our examples are high dimensional, so our performance measure
aims to reduce dimensionality while still capturing important quantities such as the
variance of the chain. To empirically demonstrate the scalability advantages, for each
experiment we fit the models with different proportions of the full dataset. For ex-
ample, in the logistic regression experiment we run the algorithms with dataset sizes
0.01N, 0.1N and N; where N is the full dataset size. The pre-processing steps for
SGLD-CV are included in the plots, as a result we also include the burn-in of SGLD
and SAGA in the plots to contrast with this.

We also provide boxplots of the log predictive density of SGLD-CV at each it-
eration, before and after it has been post-processed using ZV control variates; to

demonstrate the variance reduction after ZV control variates are applied.

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 79

0.01IN 0.1N N

11-

N
o
v

method

[Isew
|~ |seLo-cv
| Isaca

©
v

Average log predictive

@
v

. . . \ . T \
0 25 50 75 100 1250 50 100 0 100 200 300
Time (secs)

Figure 3.5.1: Log predictive density over a test set every 10 iterations of SGLD,
SGLD-CV and SAGA fit to a logistic regression model as the proportion of data used

is varied (as compared to the full dataset size N).

A fixed stepsize scheme is used for all methods, and these are tuned using a grid
search (for SGLD-CV, both SGD and SGLD steps are tuned using a grid search).
Full details of the tuning constants, and alternative results using a decreasing stepsize
scheme are given in the Appendix. The minibatch size is fixed across all the dataset

sizes. All results are timed when the algorithms are run on four cores of a 2.3 GHz

Intel Xeon CPU.

3.5.1 Logistic Regression

We examine our approaches on a Bayesian logistic regression problem. The probability
of the i output y; € {—1,+1} is given by

1
1+ exp(—yfTay)

P(yz' |$i, 5)

We use a Laplace prior for 8 with scale 1.

We used the cover type dataset (Blackard and Dean, 1999), which has 581012

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 80

post
B3 Original SGLD-CV
- ZV Postprocessed
.
2 3 4 5

i

[@ ©
=) ~ ©

Log predictive density

©
o

Random seed

Figure 3.5.2: Plots of the log predictive density of an SGLD-CV chain when ZV post-
processing is applied versus when it is not, over 5 random runs. Logistic regression

model on the cover type dataset (Blackard and Dean, 1999).

observations, which we split into a training and test set. First we run SGLD, SGLD-
CV and SAGA on the dataset, all with minibatch size 500. The model is run with
three different dataset sizes, from about 1% of the full dataset to the full dataset
size N. The performance is measured by calculating the log predictive density on a
held-out test set every 10 iterations.

The results are plotted against time in Figure 3.5.1. The results illustrate the
efficiency gains of SGLD-CV over SGLD as the dataset size increases, as expected
from Theorem 3.3.8. SAGA outperforms SGLD-CV in this example because SAGA
converges quickly in this simple setting. In the more complicated examples to follow,
we show that SAGA can get stuck in local stationary points.

We also compare the log predictive density over a test set for SGLD-CV with
and without ZV post-processing, averaged over 5 runs at different seeds. We apply
the method to SGLD-CV rather than SGLD due to the favourable scaling results as

discussed after Theorem 3.4.2. Results are given in Figure 3.5.2. The plot shows

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 81

0.1N 0.5N N

-
@
S

method
SGLD

|—|setp-cv

SAGA

[
N
o

Average log predictive

mifiveis ARARAN LAkl

0 25 5 75 100 0 50 100 150 0 50 100 150 200
Time (secs)

.
=)
S

Figure 3.5.3: Log predictive density over a test set of SGLD, SGLD-CV and SAGA
fit to a Bayesian probabilistic matrix factorisation model as the number of users is

varied, averaged over 5 runs. We used the Movielens ml-100k dataset.

box-plots of the log predictive density of the SGLD sample before and after post-
processing using ZV control variates. The plots show good variance reduction of the

chain.

3.5.2 Probabilistic Matrix Factorisation

A common recommendation system task is to predict a user’s rating of a set of items,
given previous ratings and the ratings of other users. The end goal is to recommend
new items that the user will rate highly. Probabilistic matrix factorisation (PMF)
is a popular method to train these models (Mnih and Salakhutdinov, 2008). As
the matrix of ratings is sparse, over-fitting is a common issue in these systems, and
Bayesian approaches are a way to account for this (Chen et al., 2014; Ahn et al.,
2015).

In this experiment, we apply SGLD, SGLD-CV and SAGA to a Bayesian PMF

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 82

0.9580-

0.9575-
post
. . : B3 Original SGLD-CV
. - ZV Postprocessed
0.9570-
2 3 4 5

Random seed

Log predictive density

Figure 3.5.4: Plots of the log predictive density of an SGLD-CV chain when ZV post-
processing is applied versus when it is not, over 5 random runs. SGLD-CV algorithm

applied to a Bayesian probabilistic matrix factorisation problem using the Movielens

ml-100k dataset.

(BPMF) problem, using the formulation of Chen et al. (2014). The data for BPMF
is a matrix of ratings R, of size L x M, where L is the number of users and M is the
number of items. Each entry contains a rating of a particular item by that user, with
a lot of missing entries. The aim is to predict the values of the missing entries. This
is done by factorising R into two matrices U and V, so that R ~ UTV, where U and
V are size D x L and D x M respectively. Here D is some user specified parameter,
which we choose to be 20. We use the Movielens dataset ml-100k!, which contains
100,000 ratings from almost 1,000 users and 1,700 movies. We use batch sizes of 5,000,
with a larger minibatch size chosen due to the high-dimensional parameter space. As
before, we compare performance by calculating the log predictive density on a held
out testset every 10 iterations. Full details of chosen hyperparameters are detailed in

the Appendix.

Thttps://grouplens.org/datasets/movielens/100k/

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 83

In this case, we vary the dataset size by limiting the number of users in the dataset,
ranging from 100 users to the full 943. The results are given in Figure 3.5.3. In this
example SAGA converges slowly in comparison even to SGLD. In fact the algorithm
converges slowly in all our more complex experiments. The problem is particularly
bad for large N. This is likely a result of the starting point for SAGA being far from
the posterior mode. Empirically, we found that the gradient direction and magnitude
can update very slowly in these cases. This is not an issue for simpler examples such
as logistic regression, but for more complex examples we believe it could be a sign
that the algorithm is getting stuck in, or moving slowly through, local modes where
the gradient is comparatively flatter. The problem appears to be made worse for large
N when it takes longer to update g,. This is an example where the optimisation step
of SGLD-CV is an advantage, as the algorithm is immediately started close to the
posterior mode and so the efficiency gains are quickly noted. This issue with SAGA
could be related to the starting point condition for SGLD-CV as detailed in Corollary
3.3.8. Due to the form of the Wasserstein bound, it is likely that SAGA would have
a similar starting point condition. It appears that the speed of the burn-in of SGLD
becomes more competetive with the initial SGD step for SGLD-CV as the dataset size
increases. Despite this, a close look at the plots still shows good variance reduction
for SGLD-CV and better log predictive density scores.

Once again we compare the log predictive density over a test set for SGLD-CV
with and without ZV post-processing when applied to the Bayesian PMF problem,
averaged over 5 runs at different seeds. Results are given in Figure 3.5.2. The plot

shows box-plots of the log predictive density of the SGLD sample before and after

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 84

0.1N 0.6N N

850 -
\

method
SGLD

— SGLD-CV
SAGA

Perplexity
©
8

~
a
=3

700~

0 5000 10000 15000 0 20000 40000 600000 25000 50000 75000 100000
Time (secs)

Figure 3.5.5: Perplexity of SGLD and SGLD-CV fit to an LDA model as the data size

N is varied, averaged over 5 runs. The dataset consists of scraped Wikipedia articles.

post-processing using ZV control variates. The plots show excellent variance reduction

of the chain.

3.5.3 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is an example of a topic model used to describe
collections of documents by sets of discovered topics (Blei et al., 2003). The input
consists of a matrix of word frequencies in each document, which is very sparse,
motivating the use of a Bayesian approach to avoid over-fitting.

Due to storage constraints, it was not feasible to apply SGLD-ZV to this prob-
lem, so we focus on SGLD-CV. We scraped approximately 80,000 documents from
Wikipedia, and used the 1,000 most common words to form our document-word ma-
trix input. We used a similar formulation to Patterson and Teh (2013), though we
did not use a Riemannian sampler, which should test the methods due to the gradient

instability. We also instead use the expanded-natural parameterisation, since accord-

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 85

ing to empirical results by Patterson and Teh (2013) that was the best performing
parameterisation for the non-Riemannian case. We set the number of topics K to be
20. Full details of hyperparameters are given in the Appendix.

Once again in our comparison of SGLD, SGLD-CV and SAGA, we vary the dataset
size, this time by changing the number of documents used in fitting the model, from
10,000 to the full 81,538. We use batch sizes of 50 documents. We measure the
performance of LDA using the perplezity on held out words from each document, a
standard performance measure for this model, for more detail see Patterson and Teh
(2013). The results are given in Figure 3.5.5. Here the scalability improvements of
using SGLD-CV over SGLD are clear as the dataset size increases. This time the
batch size is small compared to the dataset size, which probably makes the scalability
improvements more obvious. The sudden drop in perplexity for the SGLD-CV plot
occurs at the switch from the stochastic optimisation step to SGLD-CV. This is likely
a result of the algorithm making efficient use of the Gibbs step to simulate the latent
topics.

An interesting aspect of this problem is that it appears to have a pronounced local
mode where each of the methods become trapped (this can be seen by the blip in the
plot at a perplexity of around 850). SGLD-CV is the first to escape followed by SGLD,
but SAGA takes a long time to escape. This is probably due to a similar aspect as
the one discussed in the previous experiment (Section 3.5.2). Similar to the previous
experiment, we find that while SAGA seems trapped, its gradient estimate changes
very little, which could be a sign that the algorithm is moving very slowly through

an area with a relatively flat gradient, such as a local mode. A simple solution would

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 86

be to start SAGA closer to the mode using a stochastic optimisation scheme.

3.6 Discussion

We have used control variates for stochastic gradient MCMC to reduce the variance
in the gradient estimate. We have shown that in the strongly log-concave setting, and
under standard asymptotics, this proposed SGLD-CV algorithm reduces the com-
putational cost of stochastic gradient Langevin dynamics to O(1). Our theoretical
results give results on the computational cost under non-standard asymptotics also,
and show there should be some benefit provided distance between the centring value
6 and the posterior mean inversely depends on N. The algorithm relies on a setup
cost that estimates the posterior mode which replaces the burn-in of SGLD. We have
explored the cost of this step both theoretically and empirically. We have empirically
supported these scalability results on a variety of interesting and challenging prob-
lems from the statistics and machine learning literature using real world datasets. The
simulation study also revealed that SGLD-CV was less susceptible to getting stuck in
local stationary points than an alternative method that performs variance reduction
using control variates, SAGA (Dubey et al., 2016). An interesting future extension
would be to reduce the start-up cost of SGLD-CV, along with introducing automatic
step-size tuning.

We showed that stochastic gradient MCMC methods calculate all the informa-
tion needed to apply zero-variance post-processing control variates. This improves

the inference of the output by reducing its variance. We explored how the variance

CHAPTER 3. CONTROL VARIATES FOR SGMCMC 87

reduction is affected by the minibatch size and the gradient estimate, and show us-
ing SGLD-CV or SAGA rather than SGLD can achieve a better variance reduction.
We demonstrated this variance reduction empirically. A limitation of these post-
processing control variates is they require the whole chain, which can lead to high
storage costs if the dimensionality of the sample space is high. Future work could

explore ways to reduce the storage costs of stochastic gradient MCMC.

3.7 Acknowledgements

The first author gratefully acknowledges the support of the EPSRC funded EP/L015692/1
STOR-i Centre for Doctoral Training. This work was supported by EPSRC grants
EP/K014463/1, EP/R018561/1, EP/S00159X/1 and EP/R01860X/1 and ONR Grant

NO00014-15-1-2380 and NSF CAREER Award IIS-1350133.

Chapter 4

sgmcmc: An R Package for
Stochastic Gradient Markov Chain

Monte Carlo

4.1 Introduction

This article introduces sgmeme, an R package (R Development Core Team, 2008)
for scalable Bayesian inference on a wide variety of models using stochastic gradient
Markov chain Monte Carlo (SGMCMC). A disadvantage of most traditional MCMC
methods are that they require calculations over the full dataset at each iteration;
meaning the methods are prohibitively slow for large datasets. SGMCMC methods
provide a solution to this issue. The methods use only a subset of the full dataset,
known as a minibatch, at each MCMC iteration. While the methods no longer target

the true posterior, they instead produce accurate approximations to the posterior at

88

CHAPTER 4. AN R PACKAGE FOR SGMCMC 89

a reduced computational cost.

The sgmeme package implements a number of popular SGMCMC samplers includ-
ing stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011), stochas-
tic gradient Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014) and stochastic
gradient Nosé-Hoover thermostats (SGNHT) (Ding et al., 2014). Recent work has
shown how control variates can be used to reduce the computational cost of SGMCMC
algorithms (Baker et al., 2018; Nagapetyan et al., 2017). For each of the samplers
implemented in the package, there is also a corresponding control variate sampler
providing improved sampling efficiency.

Performing statistical inference on a model using SGMCMC requires calculating
the gradient of the log likelihood and log priors. Calculating gradients by hand is often
time consuming and error prone. One of the major advantages of sgmemc is that gradi-
ents are calculated within the package using automatic differentiation (Griewank and
Walther, 2008). This means that users need only specify the log likelihood function
and log prior for their model. The package calculates the gradients using TensorFlow
(TensorFlow Development Team, 2015), which has recently been made available for
R (Allaire et al., 2016). TensorFlow is an efficient library for numerical computation
which can take advantage of a wide variety of architectures, as such, sgmcme keeps
much of this efficiency. Both sgmcme and TensorFlow are available on CRAN, so
sgmeme can be installed by using the standard install.packages function. Though
after the TensorFlow package has been installed, the extra install tensorflow()

function needs to be run, which installs the required Python implementation of Ten-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 90

sorFlow.! The sgmceme package also has a website with vignettes, tutorials and an
API reference.?

SGMCMC methods have become popular in the machine learning literature but
less so in the statistics community. We partly attribute this to the lack of available
software. To the best of our knowledge, there are currently no R packages available
for SGMCMC, probably the most popular programming language within the statistics
community. The only package we are aware of which implements scalable MCMC is
the Python package edward (Tran et al., 2016). This package implements both SGLD
and SGHMC, but does not implement SGNHT or any of the control variate methods.

Section 4.2 introduces MCMC and discusses the software currently available for
implementing MCMC algorithms, we discuss the scenarios where sgmemc is designed
to be used. In Section 4.3 we review the methodology behind the SGMCMC methods
implemented in sgmeme. Section 4.4 provides a brief introduction to TensorFlow. Sec-
tion 4.5 overviews the structure of the package, as well as details of how the algorithms
are implemented. Section 4.6 presents a variety of example simulations. Finally, Sec-
tion 4.7 provides a discussion on benefits and drawbacks of the implementation, as

well as how we plan to extend the package in the future.

!More information on installing TensorFlow for R can be found at https://tensorflow.

rstudio.com/.

Zsgmeme website at https://stor-i.github.io/sgmcmc

https://tensorflow.rstudio.com/
https://tensorflow.rstudio.com/
https://stor-i.github.io/sgmcmc

CHAPTER 4. AN R PACKAGE FOR SGMCMC 91

4.2 Introduction to MCMC and Available Soft-

ware

Suppose we have a dataset of size N, with data x = {x;},, where z; € X for some
space X. We denote the probability density of x; as p(x;|0), where § € © C R? are
model parameters to be inferred. We assign a prior density p(f) to the parameters
and the resulting posterior is then p(8]x) o p(0) [T, p(:]0).

Often the posterior can only be calculated up to a constant of proportionality Z.
In practice Z is rarely analytically tractable; so MCMC provides a way to construct a
Markov chain using only the unnormalized posterior density h(8) := p(6) [, p(z:]6).
The Markov chain is designed so that its stationary distribution is the posterior p(é|x).
The result (once the chain has converged) is a sample {;},_; from the posterior,
though this sample is not independent. A downside of these traditional MCMC algo-
rithms is that they require the evaluation of the unnormalized density h(f) at every
iteration. This results in an O(N) cost per iteration. Thus MCMC becomes pro-
hibitively slow on large datasets.

The Metropolis-Hastings algorithm is a type of MCMC algorithm. New proposed
samples ¢ are drawn from a proposal distribution ¢(¢’|f) and then accepted with

probability,

o pOal)
i {156) 42

Notice that the normalising constant Z cancels in (4.2.1), so we can interchange the
posterior p(f|x) with h(#). The efficiency of the Metropolis-Hastings algorithm is

dependent on the choice of proposal distribution, q.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 92

There are a number of proposals for the Metropolis-Hastings algorithm which
can have a very high acceptance rate. Some examples are the Metropolis-adjusted
Langevin algorithm (MALA; see e.g., Roberts and Rosenthal (1998)) and Hamilto-
nian Monte Carlo (HMC; see Neal (2010)). The reason these proposals achieve such
high acceptance rates is that they approximate a continuous diffusion process whose
stationary distribution is p(#|x). As an example, consider the MALA algorithm. The

MALA algorithm uses a Euler discretisation of the Langevin diffusion as the proposal,
4(¢']6) :/\/<0’|6+ gvg logp(9|x),d>, (4.2.2)

where NV (0|u, X) denotes a multivariate Normal density evaluated at 6§ with mean g
and variance X; I is simply the identity matrix; € is a tuning parameter referred to
as the stepsize. Discretising the diffusion introduces an approximation error, which
is corrected by the Metropolis-Hastings acceptance step (4.2.1). This means that as
e — 0, we tend back towards the exact, continuous diffusion and the acceptance rate
is 1. However this would result in a Markov chain that never moves. Thus picking €
is a balance between a high acceptance rate and good mixing.

There are a number of general purpose samplers for MCMC that fulfil different
purposes to sgmeme. The most popular samplers are Stan, BUGS and JAGS (Car-
penter et al., 2017; Plummer, 2003; Lunn et al., 2000). The samplers BUGS and
JAGS implement automated Gibbs sampling. These samplers work with both contin-
uous and discrete parameter spaces and can be highly efficient. However because the
samplers rely on Gibbs sampling, conjugate priors need to be used; also the samplers

are not efficient when there is high correlation between the parameters (Carpenter

CHAPTER 4. AN R PACKAGE FOR SGMCMC 93

(o2}
o
'

) mn
g 0.10- Method 3 Method
% etho &40. etho
S sgmcmc] sgmcmce
2 £
5 0.05- Stan = 50- Stan
~ s
X x
000 L ' ' ' ' ' ' ' '
103 10M 1075 1076 1073 100 1075 106
Number of Observations Number of Observations

Figure 4.2.1: KL divergence (left) and run time (right) of the standard Stan algorithm
and the sgldcv algorithm of the sgmcmc package when each are used to sample from
data following a standard Normal distribution as the number of observations are

increased.

et al., 2017). The package Stan implements state of the art Hamiltonian Monte Carlo
techniques, which means non-conjugate priors can be used, and that the sampler is
more robust when there is correlation between parameters. However the package can-
not perform inference on discrete parameters, and requires that these are integrated
out of the model.

The sgmemce package aims to fill a gap when the dataset is large enough that other
general purpose MCMC samplers such as Stan, BUGS and JAGS cannot be run or
run prohibitively slowly. In the packages Stan, BUGS and JAGS, properly speci-
fied models will define a Markov chain whose stationary distribution is the posterior
distribution. However a major problem with these methods are that as the number
of observations gets large the algorithms run slowly. This has become a problem as
dataset sizes have been increasing. The reason these methods are slow when running
on large datasets are because they require a calculation over the full dataset at each

iteration. The methods implemented in sgmeme aim to account for this issue by only

CHAPTER 4. AN R PACKAGE FOR SGMCMC 94

using a subset of the dataset at each iteration. The main downside being that the
stationary distribution is no longer the true posterior, just a close approximation.
However, as the dataset size increases, the main tuning constant in sgmcme, known
as the stepsize, can be set smaller and the approximation to the posterior improves.
Compared to Stan, BUGS and JAGS; sgmcmc offers significant computational advan-
tages for Bayesian modelling with large datasets, but like Stan, a downside of sgmcme
is it requires that discrete parameters are integrated out. The package also requires
more tuning than other general purpose samplers since satisfactory results for tuning
these methods are still under development.

Figure 4.2.1 demonstrates in which scenarios practitioners may find sgmcmc useful.
The standard Stan sampler and the sgldcv algorithm of the sgmcme package are
used to sample from the posterior of data drawn from a standard Normal with a
N(0,10) prior. The KL divergence between the MCMC sample and the true posterior
is calculated, and the plots show how this and the run time changes as the number
of observations are increased. Since both Stan and TensorFlow models need to be
compiled, we recompile the models each time they are run to keep the comparison
fair; but it is worth mentioning that the Stan run time is much quicker for the small
observation models if precompiled. We can see the run time of Stan increasing rapidly
as the number of observations is increased, while the run time of the sgmemec algorithm
increases more slowly. This is a very simple model, used so that the KL divergence
can be calculated exactly. As the model complexity increases the run time of Stan can
quickly become unmanageable for large datasets. On the other hand, we can see that

the KL divergence of the sgmcmc algorithm for this example is poor compared with

CHAPTER 4. AN R PACKAGE FOR SGMCMC 95

Stan for a small number of observations. However as the dataset size increases the
KL divergence for the sgmeme algorithm becomes much more reasonable compared
with Stan. Thus sgmcme is best used when the dataset size is slowing down the run
time of the other general purpose algorithms, and practitioners can safely trade-off a

small amount of accuracy in order to gain significant speed-ups.

4.3 Stochastic Gradient MCMC

Many popular MCMC proposal distributions, including HMC and MALA, described
in (4.2.2), require the calculation of the gradient of the log posterior at each iteration,
which is an O(N) calculation. Stochastic gradient MCMC methods get around this

by replacing the true gradient with the following unbiased estimate

— N
Vg logp(0h[x) := Vlog p(6h) + — > Volog p(i[6h), (4.3.1)
1€ St
calculated on some subset of the all observations S; C {1,..., N}, known as a mini-

batch, with |S;| = n.

Calculating the Metropolis-Hastings acceptance step (4.2.1) is another O(N) cal-
culation. To get around this, SGMCMC methods set the tuning constants such that
the acceptance rate will be high, and remove the acceptance step from the algorithm
altogether. By ignoring the acceptance step, and estimating the log posterior gradient,
the per iteration cost of SGMCMC algorithms is O(n), where n is the minibatch size.
However, the algorithm no longer targets the true posterior but an approximation.
There has been a body of theory exploring how these methods perform in different

settings. Similar to MALA, the algorithms rely on a stepsize parameter €. Some of

CHAPTER 4. AN R PACKAGE FOR SGMCMC 96

the algorithms have been shown to weakly converge as ¢ — 0.

4.3.1 Stochastic Gradient Langevin Dynamics

SGLD, first introduced by Welling and Teh (2011), is an SGMCMC approximation
to the MALA algorithm. By substituting (4.3.1) into the MALA proposal equation

(4.2.2), we arrive at the following update for 6
6 —_—
Qt—i-l = Qt + éVg 1ng(9t|X) + Cta (432)

where ¢; ~ N(0, &).

Welling and Teh (2011) noticed that as ¢, — 0 this update will sample from the
true posterior. Although the algorithm mixes slower as € gets closer to 0, so setting
the stepsize is a trade-off between convergence speed and accuracy. This motivated
Welling and Teh (2011) to suggest setting ¢, to decrease to 0 as t increases. There is
a body of theory that investigates the SGLD approximation to the true posterior (see
e.g., Teh et al., 2016; Sato and Nakagawa, 2014; Vollmer et al., 2016). In particular,
SGLD is found to converge weakly to the true posterior distribution asymptotically
as ¢, — 0. The mean squared error of the algorithm is found to decrease at best
with rate O(T~'/3). In practice, the algorithm tends to mix poorly when e is set to
decrease to 0 (Vollmer et al., 2016), so in our implementation we use a fixed stepsize
which has been shown to mix better empirically. Theoretical analysis for this case is
provided in Vollmer et al. (2016). The tuning constant €, referred to as the stepsize
is a required argument in the package. It affects the performance of the algorithm

considerably.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 97
4.3.2 Stochastic Gradient Hamiltonian Monte Carlo

The stochastic gradient Hamiltonian Monte Carlo algorithm (SGHMC) (Chen et al.,
2014) is similar to SGLD, but instead approximates the HMC algorithm (Neal, 2010).
To ensure SGHMC is O(n), the same unbiased estimate to the log posterior gradient is
used (4.3.1). SGHMC augments the parameter space with momentum variables v and
samples approximately from a joint distribution p(6, v|x), whose marginal distribution
for € is the posterior of interest. The algorithm performs the following updates at

each iteration

041 = 0, + 1y,

—

Vi1 = (1 - OZ)Vt +€eVy 1ng(6t+1|x) + G

where ¢, ~ N(0,2][a — Bt]E); € and « are tuning constants and Bt is proportional to
an estimate of the Fisher information matrix. In our current implementation, we
simply set Bt := 0, as in the experiments of the original paper by Chen et al. (2014).
In future implementations, we aim to estimate Bt using a Fisher scoring estimate
similar to Ahn et al. (2012). Often the dynamics are simulated repeatedly L times
before the state is stored, at which point v is resampled. The parameter L can
be included in our implementation. The tuning constant € is the stepsize and is a
required argument in our implementation, as for SGLD its value affects performance
considerably. The constant o tends to be fixed at a small value in practice. As a

result, in our implementation it is an optional argument with default value 0.01.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 98
4.3.3 Stochastic Gradient Nosé—Hoover Thermostat

Ding et al. (2014) suggest that the quantity £, in SGHMC is difficult to estimate in
practice. They appeal to analogues between these proposals and statistical physics in
order to suggest a set of updates which do not need this estimation to be made. Once
again Ding et al. (2014) augment the space with momentum parameters v. They
replace the tuning constant a with a dynamic parameter oy known as the thermostat

parameter. The algorithm performs the following updates at each iteration

Ori1 = 0 + 11, (4.3.3)

Vi1 = (1 — Oét>Vt + €V9 10gp(9t+1|X) + Ct, (434)
1

Q1 = Qg + 5(Vt+1)T(Vt+1> — €. (4.3.5)

Here (; ~ N (0, 2ae¢); € and a are tuning parameters to be chosen and p is the dimension
of 6. The update for « in (4.3.5) requires a vector dot product, it is not obvious how
to extend this when 6 is higher order than a vector, such as a matrix or tensor. In
our implementation, when 6 is a matrix or tensor we use the standard inner product
in those spaces (Abraham et al., 1988). The tuning constant € is the stepsize and
is a required argument in our implementation, as again its value affects performance
considerably. The constant a, similarly to o in SGHMC, tends to be fixed at a small
value in practice (Ding et al., 2014). As a result, in our implementation it is an

optional argument with default value 0.01.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 99

4.3.4 Stochastic Gradient MCMC with Control Variates

A key feature of SGMCMC methods is replacing the log posterior gradient calculation
with an unbiased estimate. The unbiased gradient estimate, which can be viewed as a
noisy version of the true gradient, can have high variance when estimated using a small
minibatch of the data. Increasing the minibatch size will reduce the variance of the
gradient estimate, but increase the per iteration computational cost of the SGMCMC
algorithm. Recently control variates (Ripley, 2009) have been used to reduce the
variance in the gradient estimate of SGMCMC (Dubey et al., 2016; Nagapetyan et al.,
2017; Baker et al., 2018). Using these improved gradient estimates have been shown
to lead to improvements in the MSE of the algorithm (Dubey et al., 2016), as well as
its computational cost (Nagapetyan et al., 2017; Baker et al., 2018).

We implement the formulation of Baker et al. (2018), who replace the gradient

estimate Vylog p(f|x) with

—
—_—— o —

Vo log p(6]x) := Vg log p(d]x) + Vg log p(B]x) — Ve log p(d]x), (4.3.6)

where 6 is an estimate of the posterior mode. This method requires the burn-in phase
of MCMC to be replaced by an optimisation step which finds := argmax, log p(6|x).
There is then an O(N) preprocessing step to calculate Vg logp(é|x)7 after which the
chain can be started from 6 resulting in a negligible mixing time. Baker et al. (2018)
and Nagapetyan et al. (2017) have shown that there are considerable improvements to
the computational cost of SGLD when (4.3.6) is used in place of (4.3.1). In particular
they showed that standard SGLD requires setting the minibatch size n to be O(N)

for arbitrarily good performance; while using control variates requires an O(N) pre-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 100

processing step, but after that a batch size of O(1) can be used to reach the desired
performance. Baker et al. (2018) also showed empirically that this particular formu-
lation can lead to a reduction in the burn-in time compared with standard SGLD and
the formulation of (Dubey et al., 2016), which tended to get stuck in local stationary
points. This is because in complex scenarios the optimisation step is often faster than
the burn-in time of SGMCMC. The package sgmcme includes control variate versions

of all the SGMCMC methods implemented: SGLD, SGHMC and SGNHT.

4.4 Brief TensorFlow Introduction

TensorFlow (TensorFlow Development Team, 2015) is a software library released by
Google. The tool was initially designed to easily build deep learning models; but the
efficient design and excellent implementation of automatic differentiation (Griewank
and Walther, 2008) has made it useful more generally. This package is built on
TensorFlow, and while we have tried to make the package as easy as possible to use,
the requirement for some knowledge of TensorFlow is unavoidable; especially when
declaring the log likelihood and log prior functions, or for high dimensional chains
which will not fit into memory. With this in mind, we provide a brief introduction
to TensorFlow in this section. This should provide enough knowledge for the rest of
the article. A more detailed introduction to TensorFlow for R can be found at Allaire
et al. (2016).

Any procedure written in TensorFlow follows three main steps. The first step is

to declare all the variables, constants and equations required to run the algorithm. In

CHAPTER 4. AN R PACKAGE FOR SGMCMC 101

the background, these declarations enable TensorFlow to build a graph of the possi-
ble operations, and how they are related to other variables, constants and operations.
Once everything has been declared, the TensorFlow session is begun and all the vari-
ables and operations are initialised. Then the previously declared operations can be

run as required; typically these will be sequential and will be run in a for loop.

4.4.1 Declaring TensorFlow Tensors

Everything in TensorFlow, including operations, are represented as a tensor; which is

basically a multi-dimensional array. There are a number of ways of creating tensors:

e tf$constant(value) — create a constant tensor with the same shape and values
as value. The input value is generally an R array, vector or scalar. The most
common use for this in the context of the package is for declaring constant

parameters when declaring log likelihood and log prior functions.

e tf$Variable(value) — create a tensor with the same shape and values as value.
Unlike tf$constant, this type of tensor can be changed by a declared operation.

The input value is generally an R array, vector or scalar.

e tf$placeholder(datatype, shape) —create an empty tensor of type datatype
and dimensions shape which can be fed all or part of a dataset, this is useful
when declaring operations which rely on data which can change. When you have
storage constraints (see Section 4.5.2) you can use a placeholder to declare test
functions that rely on a test dataset. The datatype should be a TensorFlow

data type, such as tf$f1loat32; the shape should be an R vector or scalar, such

CHAPTER 4. AN R PACKAGE FOR SGMCMC 102
as ¢(100,2).

e operation — an operation declares an operation on previously declared tensors.
These use TensorFlow defined functions, such as those in its math library. This
is essentially what you are declaring when coding the logLik and logPrior
functions. The params input consists of a list of tf$Variables, representing
the model parameters to be inferred. The dataset input consists of a list
of tf$placeholder tensors, representing the minibatch of data fed at each
iteration. Your job is to declare functions that return an operation on these

tensors that define the log likelihood and log prior.

4.4.2 TensorFlow Operations

TensorFlow operations take other tensors as input and manipulate them to reach the
desired output. Once the TensorFlow session has begun, these operations can be run
as needed, and will use the current values for its input tensors. For example, we could
declare a Normal density tensor which manipulates a tf$Variable tensor represent-
ing the parameters and a tf$placeholder tensor representing the current data point.
The tensor could then use the TensorFlow tf$contrib$distributions$Normal ob-
ject to return a tensor object of the current value for a Normal density given the
current parameter value and the data point that’s fed to the placeholder. We can
break this example down into three steps. First we declare the tensors that we re-

quire:

CHAPTER 4. AN R PACKAGE FOR SGMCMC 103

library("tensorflow")

loc = tf$Variable(rep(0, 2))

dataPoint = tf$placeholder(tf$float32, c(2))

scaleDiag = tf$constant(c(1l, 1))
distn = tf$contrib$distributions$MultivariateNormalDiag(loc, scaleDiag)

dens = distn$prob(dataPoint)

Here we have declared a tf$Variable tensor to hold the location parameter; a
tf$placeholder tensor which will be fed the current data point; the scale parameter
is fixed so we declare this as a tf$constant tensor. Next we declare the operation
which takes the inputs we just declared and returns the Normal density value. The
first line which is assigned to distn creates a MultivariateNormalDiag object, which
is linked to the loc and scaleDiag tensors. Then dens evaluates the density of
this distribution. The dens variable is now linked to the tensors dataPoint and
scaleDiag, so if it is evaluated it will use the current values of those tensors to

calculate the density estimate. Next we begin the TensorFlow session:

sess = tf$Session()

sess$run(tf$global _variables_initializer())

CHAPTER 4. AN R PACKAGE FOR SGMCMC 104

The two lines we just ran starts the TensorFlow session and initialises all the
tensors we just declared. The TensorFlow graph has now been built and no new
tensors can now be added. This means that all operations need to be declared before
they can be evaluated. Now the session is started we can run the operation dens we

declared given current values for dataPoint and loc as follows:

x = rnorm(2)
out = sess$run(dens, feed_dict = dict(dataPoint = x))

print (paste0("Density value for x is ", out))

x = rnorm(2)
out = sess$run(dens, feed_dict = dict(dataPoint = x))

print (pasteO("Density value for x is ", out))

Since dataPoint is a placeholder, we need to feed it values each time. In the
block of code above we feed dataPoint a random value simulated from a standard
Normal. The sess$run expression then evaluates the current Normal density value
given loc and dataPoint.

As mentioned earlier, this is essentially what is happening when you are writing
the logLik and logPrior functions. These functions will be fed a list of tf$Variable
objects to the params input, and a list of tf$placeholder objects to the dataset

input. The output of the function will then be declared as a TensorFlow opera-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 105

tion. This allows the gradient to be calculated automatically, while maintaining the
efficiencies of TensorFlow.

TensorFlow implements a lot of useful functions to make building these operations
ecasier. For example a number of distributions are implemented at tf$contrib$distributions,?
(e.g., tf$contrib$distributions$Normal and tf$contrib$distributions$Gamma).
TensorFlow also has a comprehensive math library which provides a variety of useful

4

tensor operations.” For examples of writing TensorFlow operations see the worked

examples in Section 4.5 or the sgmemc vignettes.

4.5 Package Structure and Implementation

The package has 6 main functions. The first three: sgld, sghmc and sgnht will
implement SGLD, SGHMC and SGNHT, respectively. The other three: sgldcv,
sghmccv and sgnhtcv implement the control variate versions of SGLD, SGHMC and
SGNHT, respectively. All of these are built on the TensorFlow library for R, which
enables gradients to be automatically calculated and efficient computations to be
performed in high dimensions. The usage for these functions is very similar, with the
only differences in input being tuning parameters. These main functions are outlined

in Table 4.5.1

3For full API details see https://www.tensorflow.org/api_docs/python/tf/contrib/

distributions though note this is for Python, so the . object mnotation needs to
be replaced by $, for example tf.contrib.distributions.Normal would be replaced by

tf$contrib$distributions$Normal.
4See https://www.tensorflow.org/api_guides/python/math_ops.

https://www.tensorflow.org/api_docs/python/tf/contrib/distributions
https://www.tensorflow.org/api_docs/python/tf/contrib/distributions
https://www.tensorflow.org/api_guides/python/math_ops

CHAPTER 4. AN R PACKAGE FOR SGMCMC 106

Function | Algorithm

sgld Stochastic gradient Langevin dynamics
sghmc Stochastic gradient Hamiltonian Monte Carlo
sgnht Stochastic gradient Nosé-Hoover thermostat

sgldcv | Stochastic gradient Langevin dynamics with control variates
sghmccv | Stochastic gradient Hamiltonian Monte Carlo with control variates

sgnhtcv | Stochastic gradient Nosé-Hoover thermostat with control variates

Table 4.5.1: Outline of 6 main functions implemented in sgmcmec.

The functions sgld, sghmc and sgnht have the same required inputs: logLik,
dataset, params and stepsize. These determine respectively: the log likelihood
function for the model; the data for the model; the parameters of the model; and the
stepsize tuning constants for the SGMCMC algorithm. The input logLik is a function
taking dataset and params as input, while the rest are defined as lists. Using lists in
this way provides a lot of flexibility: allowing multiple parameters to be defined; use
multiple datasets; and use different stepsizes for each parameter, which is vital if the
scalings are different. It also allows users to easily reference parameters and datasets
in the logLik function by simply referring to the relevant names in the list.

The functions also have a couple of optional parameters that are particularly
important, logPrior and minibatchSize. These respectively define the log prior
for the model; and the minibatch size, as it was defined in Section 4.3. By default,
the logPrior is set to an uninformative uniform prior, which is fine to use for quick

checks but will need to be set properly for more complex models. The logPrior is a

CHAPTER 4. AN R PACKAGE FOR SGMCMC 107

Function inputs | Definition

logLik Log-likelihood function taking dataset and params as inputs
dataset R list containing data

params R list containing model parameters

stepsize R list of stepsizes for each parameter

optStepsize R numeric stepsize for control variate optimisation step
logPrior Function of the parameters (on the log-scale); default p(f) o 1

minibatchSize | Size of minibatch per iteration as integer or proportion; default 0.01.

nlters Number of MCMC iterations; default is 10,000.

Table 4.5.2: Outline of the key arguments required by the functions in Table 4.5.1.

function similar to logLik, but only takes params as input. The minibatchSize is
a numeric, and can either be a proportion of the dataset size, if it is set between 0
and 1, or an integer. The default value is 0.01, meaning that 1% of the full dataset is
used at each iteration.

The control variate functions have the same inputs as the non-control variate
functions, with one more required input. The optStepsize input is a numeric that
specifies the stepsize for the initial optimisation step to find the 0 maximising the
posterior as defined in Section 4.3.4. For a full outline of the key inputs, see Table
4.5.2.

Often large datasets and high dimensional problems go hand in hand. In these

high dimensional settings storing the full MCMC chain in memory can become an

CHAPTER 4. AN R PACKAGE FOR SGMCMC 108

issue. For this situation we provide functionality to run the chain one iteration at a
time in a user defined loop. This enables the user to deal with the output at each
iteration how they see fit. For example, they may wish to calculate a test function
on the output to reduce the dimensionality of the chain; or they might calculate the
required Monte Carlo estimates on the fly. We aim to extend this functionality to
enable the user to define their own Gibbs updates alongside the SGMCMC procedure.
This functionality is more involved, and requires more knowledge of TensorFlow, so
we leave the details to the example in Section 4.5.2.

For the rest of this section we go into more detail about the usage of the func-
tions using a worked example. The package is used to infer the bias and coefficient
parameters in a logistic regression model. Section 4.5.1 demonstrates standard usage
by performing inference on the model using the sgld and sgldcv functions. Section
4.5.2 demonstrates usage in problems where the full MCMC chain cannot be fit into

memory. The same logistic regression model is used throughout.

4.5.1 Example Usage

In this example we use the functions sgld and sgldcv to infer the bias (or intercept)
and coeflicients of a logistic regression model. The sgldcv case is also available as a
vignette. Suppose we have data xi,...,xy of dimension d taking values in R? and
response variables y;, . .., yx taking values in {0, 1}. Then a logistic regression model

with coefficients # and bias 5, will have likelihood

p(X, |8, Bo) = ﬂ [;} : [1 ;} o (4.5.1)

= 1+ e—Po—x:if] + e—Po—xif
1=

CHAPTER 4. AN R PACKAGE FOR SGMCMC 109

We will use the covertype dataset (Blackard and Dean, 1999) which can be down-
loaded and loaded using the sgmceme function getDataset, which downloads example
datasets for the package. The covertype dataset uses mapping data to predict the
type of forest cover. Our particular dataset is taken from the LIBSVM library (Chang
and Lin, 2011), which converts the data to a binary problem, rather than multiclass.
The dataset consists of a matrix of dimension 581012 x 55. The first column contains
the labels y, taking values in {0,1}. The remaining columns are the explanatory

variables X, which have been scaled to take values in [0, 1].

library("sgmcmc")

covertype = getDataset("covertype")

<
|

= covertypel[,2:ncol(covertype)]

covertypel,1]

]
I

dataset = list("X" =X, "y" =y)

In the last line we defined the dataset as a list object which will be input to the
relevant sgmeme function. The list names can be arbitrary, but must be consistent
with the variables declared in the logLik function (see below).

When accessing the data, it is assumed that observations are split along the first
axis. In other words, dataset$X is a 2-dimensional matrix, and we assume that
observation x; is accessed at dataset$X[i,]. Similarly, suppose Z was a 3-dimensional

array, we would assume that observation ¢ would be accessed at Z[i,,]. Parameters

CHAPTER 4. AN R PACKAGE FOR SGMCMC 110

are declared in a similar way, except the list entries are the desired parameter starting
points. There are two parameters for this model, the bias 8y and the coefficients £,

which can be arbitrarily initialised to 0.

d = ncol(dataset$X)

params = list("bias" = 0, "beta" = matrix(rep(0, d), nrow =d))

The log likelihood is specified as a function of the dataset and params, which
are lists with the same names we declared earlier. The only difference is that the
objects inside the lists will have automatically been converted to TensorFlow objects.
The dataset list will contain TensorFlow placeholders. The params list will contain
TensorFlow variables. The logLik function should be a function that takes these
lists as input and returns the log likelihood value given the current parameters and
data. This is done using TensorFlow operations, as this allows the gradient to be
automatically calculated.

For the logistic regression model (4.5.1), the log likelihood is

N
logp(Xa y’ﬁ: BO) = Zyz lOg Yest + (1 - yz) log(l - yest);

=1

where Yest = [1+ 6*50*"2'5]*1, which coded as a logLik function is defined as follows

loglik = function(params, dataset) {
yEst = 1 / (1 + tf$exp(- tf$squeeze(params$bias +
tf$matmul (dataset$X, params$beta))))

loglik = tf$reduce_sum(dataset$y * tf$log(yEst) +

CHAPTER 4. AN R PACKAGE FOR SGMCMC 111

(1 - dataset$y) * tf$log(l - yEst))

return(logLik)

For more information about the usage of these TensorFlow functions, please see
the TensorFlow documentation.’
Next, the log prior density, where we assume each 3;, for j = 0,...,d, has an

independent Laplace prior with location 0 and scale 1, so logp(5) x — Z;‘l:o |85

Similar to logLik, this is defined as a function, but with only params as input

logPrior = function(params) {
logPrior = - (tf$reduce_sum(tf$abs(params$beta)) +
tf$reduce_sum(tf$abs (params$bias)))

return(logPrior)

The final input that needs to be set is the stepsize for tuning the methods, this

can be set as a list
stepsize = list("beta" = 2e-5, "bias" = 2e-5)

Setting the same stepsize for all parameters is done as stepsize = 2e-5. This

shorthand can also be used for any of the optional tuning parameters which need

®Documentation for TensorFlow for R available at https://tensorflow.rstudio.com/

tensorflow/

https://tensorflow.rstudio.com/tensorflow/
https://tensorflow.rstudio.com/tensorflow/

CHAPTER 4. AN R PACKAGE FOR SGMCMC 112

to specified as lists. The stepsize parameter will generally require a bit of tuning in
order to get good performance, for this we recommend using cross validation (see e.g.,
Friedman et al., 2001, Chapter 7).

Everything is now ready to run a standard SGLD algorithm, with minibatchSize

set to 500. To keep things reproducible we’ll set the seed to 13.

output = sgld(logLik, dataset, params, stepsize,

logPrior = logPrior, minibatchSize = 500, nIters = 10000, seed

The output of the function is also a list with the same names as the params list.
Suppose a given parameter has shape (dy, ..., d;), then the output will be an array of
shape (nlters, dy, ..., d;). So in our case, output$betali,,] is the i’ MCMC sample
from the parameter [3; and dim(output$beta) is c(10000, 54, 1).

In order to run a control variate algorithm such as sgldcv we need one additional
argument, which is the stepsize for the initial optimisation step. The optimisation
uses the TensorFlow GradientDescentOptimizer. The stepsize should be quite sim-
ilar to the stepsize for SGLD, though is often slightly larger. First, so that we can
measure the performance of the chain, we shall set a seed and randomly remove some
observations from the full dataset to form a testset. We also set a short burn-in of

1000.

set.seed(13)

testSample = sample(nrow(dataset$X), 1074)

13)

testset = list("X" = dataset$X[testSample,], "y" = dataset$y[testSample])

CHAPTER 4. AN R PACKAGE FOR SGMCMC 113

dataset = list("X" = dataset$X[-testSample,], "y" = dataset$y[-testSample])
output = sgldcv(loglLik, dataset, params, 5e-6, 5e-6,

logPrior = logPrior, minibatchSize = 500, nIters = 11000, seed = 13)

output$beta

output$betal[-c(1:1000),,]

output$bias = output$bias[-c(1:1000)]

A common performance measure for a classifier is the log loss. Given an obser-
vation with data x; and response y;, logistic regression predicts that y; = 1 with

probability

1

(Xz;ﬂ BO) 1+e Bo—x:8"

Given a test set T of data response pairs (x,y), the log loss s(+), of a binary chain, is

defined as

s(8, 8o, T) = Z [ylogm(x, 3, Bo) + (1 — y) log(1 — 7(x, 8, 50))] . (4.5.2)
x,y)€T

To check convergence of sgldcv we’ll plot the log loss every 10 iterations, using the
testset we removed earlier. Results are given in Figure 4.5.1. The plot shows the
sgldcv algorithm converging to a stationary after a short burn-in period. The burn-in

period is so short due to the initial optimisation step.

iterations = seq(from = 1, to = 1074, by = 10)

logLloss = rep(0, length(iterations))

for (iter in 1:length(iteratioms)) {

CHAPTER 4. AN R PACKAGE FOR SGMCMC 114

j = iterations[iter]
betal_j = output$bias(j]
beta_j = output$betalj,]
for (i in 1:length(testset$y)) {
piCurr = 1 / (1 + exp(- betaO_j - sum(testset$X[i,] * beta_j)))
y_i = testset$y[il
logLossCurr = - ((y_i * log(piCurr) + (1 - y_i) * log(l - piCurr)))

logLloss[iter] = logloss[iter] + 1 / length(testset$y) * logLossCurr

}

Plot output
plotFrame = data.frame("Iteration" = iterations, "logLoss" = logLoss)
ggplot(plotFrame, aes(x = Iteration, y = loglLoss)) +

geom_line(color = "maroon") +

ylab("Log loss of test set")

4.5.2 Example Usage: Storage Constraints

Often large datasets and high dimensionality go hand in hand. Sometimes the di-
mensionality is so high that storage of the full MCMC chain in memory becomes an
issue. There are a number of ways around this, including: calculating estimates of the
desired posterior quantity on the fly; reducing the dimensionality of the chain using

a test function; or just periodically saving a the chain to the hard disk and starting

CHAPTER 4. AN R PACKAGE FOR SGMCMC 115

0.5150-

0.5148-

Log loss of test set

0.5146 -

1 1 1 1
0 2500 5000 7500 10000
Iteration

Figure 4.5.1: Log loss on a test set for parameters simulated using the sgldcv algo-
rithm after 1000 iterations of burn-in. Logistic regression problem with the covertype

dataset.

from scratch. To deal with high storage costs sgmcme provides functionality to run
SGMCMC algorithms step by step. This allows users to deal with the output as they
see fit at each iteration.

In this section, we detail how to run SGMCMC chains step by step. To do this
requires more knowledge of TensorFlow, including using TensorFlow sessions and
building custom placeholders and tensors. For more details see the TensorFlow for
R documentation (Allaire et al., 2016). The step by step procedure works similarly
to a standard TensorFlow procedure: TensorFlow variables, tensors and placeholders
are declared; then the TensorFlow session is started and all the required tensors are
initialised; finally the SGMCMC algorithm is run step by step in a user defined loop,
and the user evaluates tensors as required.

To demonstrate this concept we keep things simple and use the logistic regression

example introduced in the previous section. While this example can fit into memory, it

CHAPTER 4. AN R PACKAGE FOR SGMCMC 116

allows us to demonstrate the concepts without getting bogged down in a complicated
model. For a more realistic example, where the output does not fit into memory, see
the Bayesian neural network model in Section 4.6.3.

We start by assuming the dataset, params, logLik, logPrior and stepsize
objects have been created in exactly the same way as in the previous example (Section
4.5.1). Now suppose we want to make inference using stochastic gradient Langevin
dynamics (SGLD), but we want to run it step by step. The first step is to initialise an
sgld object using the function sgldSetup. For every function in Table 4.5.1 there is a
corresponding *Setup function, such as sghmccvSetup or sgnhtSetup. This function
will create all the TensorFlow objects required, as well as declare the dynamics of the

SGMCMC algorithm. For our example we can run the following

sgld = sgldSetup(loglLik, dataset, params, stepsize,

logPrior = logPrior, minibatchSize = 500, seed = 13)

This sgld object is a type of sgmcme object, it is an R S3 object, which is essentially
a list with a number of entries. The most important of these entries for building
SGMCMC algorithms is called params, which holds a list, with the same names as in
the params that were fed to sgldSetup, but this list contains tf$Variable objects.
This is how the tensors are accessed which hold the current parameter values in the
chain. For more details on the attributes of these objects, see the documentation for
sgldSetup, sgldcvSetup, etc.

Now that we have created the sgld object, we want to initialise the TensorFlow

variables and the sgmcmc algorithm chosen. For a standard algorithm, this will ini-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 117

tialise the TensorFlow graph and all the tensors that were created. For an algorithm
with control variates (e.g., sgldcv), this will also find the 0 estimates of the parame-
ters and calculate the full log posterior gradient at that point; as detailed in Section

4.3.4. The function used to do this is initSess,

sess = initSess(sgld)

The sess returned by initSess is the current TensorFlow session, which is needed
to run the SGMCMC algorithm of choice, and to access any of the tensors needed,
such as sgld$params.

Now we have everything to run an SGLD algorithm step by step as follows

for (i in 1:1074) {
sgmcmeStep(sgld, sess)

currentState = getParams(sgld, sess)

Here the function sgmcmcStep will update sgld$params using a single update
of SGLD, or whichever SGMCMC algorithm is given. The function getParams will
return a list of the current parameters as R objects rather than as tensors.

This simple example of running SGLD step by step only stores the most recent
value in the chain, which is useless for a Monte Carlo method. Also, for large scale
examples, it is often useful to reduce the dimension of the chain by calculating some
test function g(-) of 6 at each iteration rather than the parameters themselves. This

example will demonstrate how to store a test function at each iteration, as well as

CHAPTER 4. AN R PACKAGE FOR SGMCMC 118

calculating the estimated posterior mean on the fly. We assume that a new R session
has been started and the sgld object has just been created using sgldSetup with the
same properties as in the example above. We assume that no TensorFlow session has
been created (i.e., initSess has not been run yet).

Before the TensorFlow session has been declared, the user is able to create their
own custom tensors. This is useful, as test functions can be declared beforehand using
the sgld$params variables, which allows the test functions to be quickly calculated
by just evaluating the tensors in the current session. The test function used here is
once again the log loss of a test set, as defined in (4.5.2).

Suppose we input sgld$params and the testset T to the logLik function. Then
the log loss is actually —|—%,| times this value. This means we can easily create a tensor
that calculates the log loss by creating a list of placeholders that hold the test set,
then using the logLik function with the testset list and sgld$params as input. We

can do this as follows

testPlaceholder = list()

testPlaceholder [["X"]] tf$placeholder(tf$float32, dim(testset[["X"]1]))

testPlaceholder[["y"]] = tf$placeholder(tf$float3d2, dim(testset[["y"]1]1))
testSize = as.double(nrow(testset[["X"]1]))

logloss = - logLik(sgld$params, testPlaceholder) / testSize

This placeholder is then fed the full testset each time the log loss is calculated.
Now we will declare the TensorFlow session, and run the chain step by step. At each

iteration we will calculate the current Monte Carlo estimate of the parameters. The

CHAPTER 4. AN R PACKAGE FOR SGMCMC 119

log loss will be stored every 100 iterations. We omit a plot of the log loss as it is

similar to Figure 4.5.1.

sess = initSess(sgld)
Fill a feed dict with full test set (used to calculate log loss)
feedDict = dict()
feedDict [[testPlaceholder[["X"]]]] = testset[["X"]]
feedDict[[testPlaceholder[["y"]]]] = testset[["y"]]
Burn-in chain
message ("Burning-in chain...")
message("iteration\tlog loss")
for (i in 1:1074) {
Print progress
if (i %% 100 == 0) {
progress = sess$run(logloss, feed_dict = feedDict)
message (paste0(i, "\t", progress))

}

sgmcmeStep(sgld, sess)
}
Initialise posterior mean estimate using value after burn-in
postMean = getParams(sgld, sess)
logLossOut = rep(0, 1074 / 100)

Run chain

CHAPTER 4. AN R PACKAGE FOR SGMCMC 120

message ("Running SGMCMC...")
for (i in 1:1074) {
sgmcmcStep(sgld, sess)
Update posterior mean estimate
currentState = getParams(sgld, sess)
for (paramName in names(postMean)) {
postMean[[paramName]] = (postMean[[paramName]] * i +
currentState[[paramName]]) / (i + 1)
}
Print and store log loss
if (4 %% 100 == 0) {
logLossOut[1/100] = sess$run(logloss, feed_dict = feedDict)

message (paste0(i, "\t", logLossOut[i/100]))

4.6 Simulations

In this section we demonstrate the algorithms and performance by simulating from a
variety of models using all the implemented methods and commenting on the perfor-
mance of each. These simulations are reproducible and available in the supplementary

material and on Github.® For more usage tutorials similar to Sections 4.5.1 and 4.5.2,

Shttps://github.com/jbaker92/sgmecmc-simulations

https://github.com/jbaker92/sgmcmc-simulations

CHAPTER 4. AN R PACKAGE FOR SGMCMC 121

please see the vignettes on the package website.”

4.6.1 Gaussian Mixture

In this model we assume our dataset zq,...,zy is drawn i.i.d from
1 1 .
Xi|91,92"\/5./\/(01,12)—{-5./\/‘(92,12), Zzl,...,N; (461)

where 01, 6, are parameters to be inferred and I is the 2x2 identity matrix. We assume
the prior 01,60, ~ N(0,10Iy). To generate the synthetic dataset, we simulate 103
observations from N ([0,0]",I5) + N ([0.1,0.1]7,1,). While this is a small number
of observations, it allows us to compare the results to a full Hamiltonian Monte Carlo
(HMC) scheme using the R implementation of Stan (Carpenter et al., 2017). The
full HMC scheme should sample from close to the true posterior distribution, so acts
as a good surrogate for the truth. We compare each sgmeme algorithm implemented
to the HMC sample to compare performance. Larger scale examples are given in
Sections 4.6.2 and 4.6.3. We ran all methods for 10* iterations, except SGHMC, since
the computational cost is greater for this method due to the trajectory parameter L.
We ran SGHMC for 2,000 iterations, using default trajectory L = 5, as this ensures
the overall computational cost of the method is similar to the other methods. We
used a burn-in step of 10* iterations, except for the control variate methods, where
we used 10% iterations in the initial optimisation step, with no burn-in. Again this
ensures comparable computational cost across different methods.

The logLik and logPrior functions used for this model are as follows

"https://stor-i.github.io/sgmcmc

https://stor-i.github.io/sgmcmc

CHAPTER 4. AN R PACKAGE FOR SGMCMC 122

loglik = function(params, dataset) {

Declare Sigma (assumed known)

SigmaDiag = c(1, 1)

Declare distribution of each component

componentl = tf$contrib$distributions$MultivariateNormalDiag(
params$thetal, SigmaDiag)

component2 = tf$contrib$distributions$MultivariateNormalDiag(
params$theta2, SigmaDiag)

Declare allocation probabilities of each component

probs = tf$contrib$distributions$Categorical (c(0.5,0.5))

Declare full mizture distribution given components and probs

distn = tf$contrib$distributions$Mixture (
probs, list(componentl, component?2))

Declare log likelihood

logLik = tf$reduce_sum(distn$log_prob(dataset$X))

return(logLik)

logPrior = function(params) {
Declare hyperparameters muO and Sigma0
mu0 = c(0, 0)

SigmaODiag = c(10, 10)

CHAPTER 4. AN R PACKAGE FOR SGMCMC 123

priorDistn = tf$contrib$distributions$MultivariateNormalDiag(

mu0, SigmaODiag)

logPrior = priorDistn$log_prob(params$thetal) +
priorDistn$log_prob(params$thetal)

return(logPrior)

The following list determines the stepsizes used for each method, the optStepsize

used for control variate methods was 5e-5.

stepsizelist = list("sgld" = 5e-3, "sghmc" = 5e-4, "sgnht" = 3e-4,

"sgldcv" = le-2, "sghmccv" = 1.5e-3, "sgnhtcv" = 3e-3)

We set the seed to be 2 using the optional seed argument and use a minibatch
size of 100. We also used a seed of 2 when generating the data (see the supplementary
material for full details). Starting points were sampled from a standard Normal.

The results are plotted in Figure 4.6.1. The black contours represent the best guess
at the true posterior, which was found using the standard HMC procedure in Stan.
The coloured contours that overlay the black contours are the approximations of each
of the SGMCMC methods implemented by sgmcme. This allows us to compare the
SGMCMC estimates with the ‘truth’ by eye.

In the simulation, we obtain two chains, one approximating #; and the other

CHAPTER 4. AN R PACKAGE FOR SGMCMC 124

sgld sghmc sgnht sgldev sghmeev sgnhtcv

truth

= truth
sgld
sghme

=== sgnht
sgldev

sghmeev

=== sgnhtcv

025 0.00 025 050 0.75-0.25 0.00 0.25 050 0.75-0.25 000 0.25 050 0.75-025 0.00 025 0.50 0.75-025 0.00 025 050 0.75-0.25 0.00 0.25 050 0.75
dim1

Figure 4.6.1: Plots of the approximate posterior for ; simulated using each of the
methods implemented by sgmcme, compared with a full HMC run, treated as the

truth, for the Gaussian mixture model (4.6.1).

approximating 6. In order to examine how well the methods explore both modes, we
take just 7 and compare this to the HMC run for 6;. The results are quite variable,
and it demonstrates a point nicely: there seems to be a trade-off between predictive
accuracy and exploration. Many methods have demonstrated good performance using
predictive accuracy; where a test set is removed from the full dataset to assess how
well the fitted model performs on the test set. This is a useful technique for complex
models, which are high dimensional and have a large number of data points, as they
cannot be plotted, and an MCMC run to act as the ‘truth’ cannot be fitted.
However, this example shows that it does not give the full picture. A lot of the
methods which show improved predictive performance (e.g., control variate methods
and especially sgnht) over sgld appear here to perform worse at exploring the full
space. In this example, sgld performs the best at exploring both components, though
it over-estimates posterior uncertainty. The algorithm sghmc also explores both com-
ponents but somewhat unevenly. We find that sgnht, while being shown to have

better predictive performance in the original paper (Ding et al., 2014), does not do

CHAPTER 4. AN R PACKAGE FOR SGMCMC 125

nearly as well as the other algorithms at exploring the space and appears to collapse to
the posterior mode. The control variate methods, shown in the following sections, and
in Baker et al. (2018), appear to have better predictive performance than sgld, but
do not explore both components either. For example, sgldcv explores the space the
best but over-estimates uncertainty of the first component, since it relies on SGLD
updates which also overestimates uncertainty. In contrast, sgnhtcv collapses to a

posterior mode since it relies on the SGNHT updates which also collapse.

4.6.2 Bayesian Logistic Regression

In this section, we apply all the methods to the logistic regression example in Section
4.5.1. We compare the performance of the methods by calculating the log loss of a
test set every 10 iterations, again as detailed in Section 4.5.1. The standard methods
(sgld, sghmc, sgnht) were run for 10? iterations with an additional 10* iterations of
burn-in; except for sghmc which has 5x the computational cost, so is ran for 2,000
iterations with 2,000 iterations of burn-in. The control variate methods were run for
10* iterations with an additional 10* iterations for the initial optimisation step, and
no burn-in; again except for sghmccv which was run for 2,000 iterations. This means
that all the methods should be somewhat comparable in terms of computation time.

The following list determines the stepsizes used for each method, the optStepsize

used was le-6.

CHAPTER 4. AN R PACKAGE FOR SGMCMC 126

Control variate Standard

0.5250 - sgld
o sgld
@ 0.5225- sghme
=t
5 —— sgnht
1%}
g 0.5200- sgldcv
§" sghmccv

0.5175- —— sgnhtcv

' ' ' ' ' ' ' '
0.0 25 5.0 7.5 0.0 2.5 5.0 7.5

Proportion of dataset processed

Figure 4.6.2: Plots of the log loss of a test set for 3y and [simulated using each of
the methods implemented by sgmeme. Logistic regression problem with the covertype

dataset.

stepsizes = list("sgld" = Be-6, "sghmc" = le-7, "sgnht" = le-7, "sgldcv" = le-5,

"sghmccv" = le-6, "sgnhtcv" = 5e-7)

We set the seed to be 1 for each of the simulations, and when generating the test
data (see the supplementary material for reproducible code) and use a minibatch size
of 500. Starting points are sampled from a standard Normal.

Results are plotted in Figure 4.6.2. All of the algorithms show decent performance.
Methods which use control variates have significantly better predictive performance;
and result in chains with lower variance. sghmc has lower variance than sgld and
sgnht, though this could be related to the high computational cost. One might
envisage setting a lower trajectory L would result in a chain with higher variance.
sgldcv takes longer to burn-in than the other control variate methods. The algorithm

sgld has the highest variance by far; this could be related to our discussion in Section

CHAPTER 4. AN R PACKAGE FOR SGMCMC 127

4.6.1 on exploration versus accuracy.

4.6.3 Bayesian Neural Network

In this simulation we demonstrate a very high dimensional chain. This gives a more
realistic example of when we would want to run the chain step by step. The model is
a two layer Bayesian neural network which is fit to the MNIST dataset (LeCun and
Cortes, 2010). The MNIST dataset consists of 28 x 28 pixel images of handwritten
digits from zero to nine. The images are flattened to be a vector of length 784. The
dataset is available as a standard dataset from the TensorFlow library, with a matrix
of 55,000 training vectors and 10,000 test vectors, each with their corresponding labels.
The dataset can be constructed in a similar way to the logistic regression example of

Section 4.5.1, using the standard dataset in the package mnist.

library("sgmcmc")

mnist = getDataset("mnist")

dataset = list("X" = mnist$train$images, "y" = mnist$train$labels)

testset = list("X"

mnist$testPimages, "y" = mnistPtest$labels)

We build the same neural network model as in the original SGHMC paper by Chen
et al. (2014). Suppose Y; takes values in {0,...,9}, so is the output label of a digit,

and x; is the input vector, with X the full N x 784 dataset, where N is the number

CHAPTER 4. AN R PACKAGE FOR SGMCMC 128

of observations. The model is then as follows

Yi |6, x; ~ Categorical(5(0,x;)), (4.6.2)

B(0,x;) =0 (0 (x{ B+b) A+a). (4.6.3)

Here A, B, a, b are parameters to be inferred with 6 = (A, B, a,b); o(-) is the softmax
function (a generalisation of the logistic link function). A, B, a and b are matrices
with dimensions: 100 x 10, 784 x 100, 1 x 10 and 1 x 100 respectively. Each element

of these parameters is assigned a Normal prior

Ag|da ~N(0,03"), Bjg|As ~ N(0,A5Y),

al|)\a~1\/'(0,)\;1), bk|)\bNN(0,>\b_1),

where A4, Ag, A\, and)\, are hyperparameters. Finally, we assume
)\A,)\B, /\m /\b ~ Gamma(l, 1)

The model contains a large number of high dimensional parameters, and unless
there is sufficient RAM available, a standard chain of length 10* will not fit into
memory. First, we shall create the params dictionary, and then code the logLik and
logPrior functions. We can sample the initial A parameters from a standard Gamma

distribution, and the remaining parameters from a standard Normal as follows

d = ncol(dataset$X)

params = list()

CHAPTER 4. AN R PACKAGE FOR SGMCMC 129

params$A = matrix(rnorm(10%*100), ncol = 10)

params$B = matrix(rnorm(d*100), ncol = 100)

Sample initial bias parameters from standard Normal

params$a = rnorm(10)

params$b = rnorm(100)

Sample initial precistion parameters from standard Gamma

params$lambdal = rgamma(l, 1)
params$lambdaB = rgamma(l, 1)
params$lambdaa = rgamma(1l, 1)
params$lambdab = rgamma(l, 1)

loglik = function(params, dataset) {

Calculate estimated probabilities

beta = tfnnsoftmax(tf$matmul (dataset$X, params$B) + params$b)

beta = tfnnsoftmax(tf$matmul (beta, params$A) + params$a)
Calculate log likelihood of categorical distribution with prob. beta
logLik = tf$reduce_sum(dataset$y * tf$log(beta))

return(logLik)

logPrior = function(params) {
distLambda = tf$contrib$distributions$Gamma(l, 1)

distA = tf$contrib$distributions$Normal (0, tf$rsqrt(params$lambdald))

CHAPTER 4. AN R PACKAGE FOR SGMCMC 130

logPriorA = tf$reduce_sum(distA$log_prob(params$A)) +
distLambda$log_prob(params$lambdad)

distB = tf$contrib$distributions$Normal (0, tf$rsqrt(params$lambdaB))

logPriorB = tf$reduce_sum(distB$log_prob(params$B)) +
distLambda$log_prob(params$lambdaB)

dista = tf$contrib$distributions$Normal (0, tf$rsqrt(params$lambdaa))

logPriora = tf$reduce_sum(dista$log_prob(params$a)) +
distLambda$log_prob(params$lambdaa)

distb = tf$contrib$distributions$Normal (0, tf$rsqrt(params$lambdab))

logPriorb = tf$reduce_sum(distb$log_prob(params$b)) +
distLambda$log_prob(params$lambdab)

logPrior = logPriorA + logPriorB + logPriora + logPriorb

return(logPrior)

Similar to Section 4.5.2, we use the log loss as a test function. This time though it
is necessary to update the definition, as the logistic regression example was a binary
problem whereas now we have a multiclass problem. Given a test set T of pairs (x, y),
now y can take values in {0, ..., K'}, rather than just binary values. To account for

this we redefine the definition of log loss to be

K
S(H,T) = —% Z Zlka IOgﬁk(97X)7

x,y€T k=1

where 1, is the indicator function, and £, (6,x) is the k' element of 3(f, x) as defined

in (4.6.3).

CHAPTER 4. AN R PACKAGE FOR SGMCMC 131

Control Variate Standard
0.33-
sgld

-
% 0.30- sgld
2 sghmc
]
ks — sgnht
wn 0.27-
2 sgldcv
8’ sghmccv
|

0.24- — sgnhtcv

' ' '
0 25 50 75 0 25 50 75
Proportion of dataset processed

Figure 4.6.3: Plots of the log loss of a test set for 6 simulated using each of the
methods implemented by sgmcme. Bayesian neural network model with the MNIST

dataset.

1

As in Section 4.5.2, the log loss is simply — 7

times the logLik function, if we
feed it the testset rather than the dataset. This means the logLoss tensor can be

declared in a similar way to Section 4.5.2

testPlaceholder = list()

testPlaceholder [["X"]]

tf$placeholder (tf$float32, dim(testset[["X"]]))

testPlaceholder[["y"]]

tf$placeholder (tf$float32, dim(testset[["y"]1]1))
testSize = as.double(nrow(testset[["X"]]))

logloss = - logLik(sgld$params, testPlaceholder) / testSize

We can run the chain in exactly the same way as Section 4.5.2, and so omit the
code for this. We ran 10* iterations of each of the algorithms in Table 4.5.1, calculating
the log loss for each every 10 iterations. The standard algorithms have 10* iterations

of burn-in while the control variate algorithms have no burn-in, but 10* iterations in

CHAPTER 4. AN R PACKAGE FOR SGMCMC 132

the initial optimisation step. Note that due to the trajectory parameter L, sghmc and
sghmccv will have 5 times the computational cost of the other algorithms. Therefore,
we ran these algorithms for 2,000 iterations instead, to make the computational cost

comparable. We used the following list of stepsizes

list("sgld" = le-4, "sghmc" = le-5, "sgnht" = 5e-6, "sgldcv" = be-5,

"sghmccv" = le-5, "sgnhtcv" = 5e-7)

Generally these are the stepsizes which produce the smallest log loss; except when
these chains did not seem to explore the space fully, in which case we increased the
stepsize slightly. We set the seed to be 1 for each of the simulations, and when
generating the test data (see the supplementary material for reproducible code).

The results are plotted in Figure 4.6.3. Again we see improvements in the pre-
dictive performance of the control variate methods. Among the standard methods,
sghmc and sgnht have the best predictive performance; which is to be expected given

the apparent trade-off between accuracy and exploration.

4.7 Discussion

We presented the R package sgmceme, which enables Bayesian inference with large
datasets using stochastic gradient Markov chain Monte Carlo. The package only re-
quires the user to specify the log likelihood and log prior functions; and any differenti-
ation required can be performed automatically. The package is based on TensorFlow,

an efficient library for numerical computation that can take advantage of many differ-

CHAPTER 4. AN R PACKAGE FOR SGMCMC 133

ent architectures, including GPUs. The sgmcmc package keeps much of this efficiency.
The package provides functionality to deal with cases where the full MCMC chain is
too large to fit into memory. As the chain can be run step by step at each iteration,
there is flexibility for these cases.

We implemented the methods on a variety of statistical models, many on realistic
datasets. One of these statistical models was a neural network, for which the full
MCMC chain would not fit into memory. In this case we demonstrated building
test functions and calculating the Monte Carlo estimates on the fly. We empirically
demonstrated the predictive performance of the algorithms and the trade-off that
appears to occur between predictive performance and exploration.

Many complex models for which SGMCMC methods have been found to perform
well require Gibbs updates to be performed periodically (Patterson and Teh, 2013; Li
et al., 2016). In the future we would like to build functionality for user defined Gibbs
steps that can be updated step by step alongside the sgmcme algorithms. SGHMC
has been implemented by setting the value Bt = 0, as in the experiments of the
original paper Chen et al. (2014). In the future, we would like to implement a more
sophisticated approach to set this value, such as using a similar estimate to Ahn et al.

(2012).

Chapter 5

Large-Scale Stochastic Sampling

from the Probability Simplex

5.1 Introduction

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular
method for scalable Bayesian inference (Welling and Teh, 2011; Chen et al., 2014;
Ding et al., 2014; Ma et al., 2015). The foundation of SGMCMC methods is a class
of continuous-time processes that explore a target distribution—e.g., the posterior—
using gradient information; these processes converge to a Markov chain which samples
from the posterior distribution exactly. SGMCMC methods replace the costly full-
data gradients with minibatch-based stochastic gradients, which provides one source of
error. Another source of error arises from the fact that the continuous-time processes
are almost never tractable to simulate; instead, discretizations are relied upon. In the

non-SG scenario, the discretization errors are corrected for using Metropolis-Hastings

134

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 135

corrections. However, this is not (generically) feasible in the SG setting. The result of
these two sources of error is that SGMCMC targets an approximate posterior (Welling
and Teh, 2011; Teh et al., 2016; Vollmer et al., 2016).

Another significant limitation of SGMCMC methods is that they struggle to sam-
ple from constrained spaces. Naively applying SGMCMC can lead to invalid, or
inaccurate values being proposed. The result is large errors near the boundary of
the space (Patterson and Teh, 2013; Ma et al., 2015; Li et al., 2016). A particularly
important constrained space is the simplex space, which is used to model discrete
probability distributions. A parameter w of dimension d lies in the simplex if it sat-
isfies the following conditions: w; > 0 for all j = 1,...,d and Z;l:l w; = 1. Many
popular models contain simplex parameters. For example, latent Dirichlet allocation
(LDA) is defined by a set of topic-specific distributions on words and document-
specific distributions on topics. Probabilistic network models often define a link
probability between nodes. More generally, mixture and mixed membership mod-
els have simplex-constrained mixture weights; even the hidden Markov model can be
cast in this framework with simplex-constrained transition distributions. As models
become large-scale, these vectors w often become sparse—i.e., many w; are close to
zero—pushing them to the boundaries of the simplex. All the models mentioned have
this tendency. For example in network data, nodes often have relatively few links
compared to the size of the network, e.g., the number of friends the average social
network user has will be small compared with the size of the whole social network.
In these cases the problem of sampling from the simplex space becomes even harder;

since many values will be very close to the boundary of the space.

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 136

Patterson and Teh (2013) develop an improved SGMCMC method for sampling
from the probability simplex: stochastic gradient Riemannian Langevin dynamics
(SGRLD). The improvements achieved are through an astute transformation of the
simplex parameters, as well as developing a Riemannian (see Girolami and Calder-
head, 2011) variant of SGMCMC. This method achieved state-of-the-art results on an
LDA model. However, we show despite the improvements over standard SGMCMC,
the discretization error of this method still causes problems on the simplex. In par-
ticular, it leads to asymptotic biases which dominate at the boundary of the space
and causes significant inaccuracy.

To counteract this, we design an SGMCMC method based on the Cox-Ingersoll-
Ross (CIR) process. The resulting process, which we refer to as the stochastic Cox-
Ingersoll-Ross process (SCIR), has no discretization error. This process can be used
to simulate from gamma random variables directly, which can then be moved into the
simplex space using a well known, standard transformation. The CIR process has a
lot of nice properties. One is that the transition equation is known exactly, which is
what allows us to simulate from the process without discretization error. We are also
able to characterize important theoretical properties of the SCIR algorithm, such as
the non-asymptotic moment generating function, and thus its mean and variance.

We demonstrate the impact of this SCIR method on a broad class of models. In-
cluded in these experiments is the development of a scalable sampler for Dirichlet
processes, based on the slice sampler of Walker (2007); Papaspiliopoulos (2008); Kalli
et al. (2011). To our knowledge the application of SGMCMC methods to Bayesian

nonparametric models has not been explored, and we consider this a further con-

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 137

tribution of the article. All proofs in this article are relegated to the Supplementary
Material. All code for the experiments will be made available online, and full details of
hyperparameter and tuning constant choices has been detailed in the Supplementary

Material.

5.2 Stochastic Gradient MCMC on the Probabil-
ity Simplex

5.2.1 Stochastic Gradient MCMC

Consider Bayesian inference for continuous parameters § € R? based on data x =
{z;}¥,. Denote the density of z; as p(z;|#) and assign a prior on 6 with density
p(0). The posterior is then defined, up to a constant of proportionality, as p(]|x) o
p(O) [TX, p(x:]6), and has distribution 7. We define f(8) := —logp(f|x). Whilst
MCMC can be used to sample from 7, such algorithms require access to the full data
set at each iteration. Stochastic gradient MCMC (SGMCMC) is an approximate
MCMC algorithm that reduces this per-iteration computational and memory cost by
using only a small subset of data points at each step.

The most common SGMCMC algorithm is stochastic gradient Langevin dynamics
(SGLD), first introduced by Welling and Teh (2011). This sampler uses the Langevin

diffusion, defined as the solution to the stochastic differential equation
d6, = =V f(0,)dt + /2dW, (5.2.1)

where W, is a d-dimensional Wiener process. Similar to MCMC, the Langevin diffu-

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 138

sion defines a Markov chain whose stationary distribution is 7.

Unfortunately, simulating from (5.2.1) is rarely possible, and the cost of calculat-
ing Vf is O(N) since it involves a sum over all data points. The idea of SGLD is to
introduce two approximations to circumvent these issues. First, the continuous dy-
namics are approximated by discretizing them, in a similar way to Euler’s method for
ODEs. This approximation is known as the Fuler-Maruyama method. Next, in order
to reduce the cost of calculating V f, it is replaced with a cheap, unbiased estimate.

This leads to the following update equation, with user chosen stepsize h
Omit = O — BV F(0) + V201, 1 ~ N(0,1). (5.2.2)

Here, V f is an unbiased estimate of V f whose computational cost is O(n) where n <
N. Typically, we set Vf(0) := —Vlogp(d) — N/n > ics, Vlogp(x;|0), where S, C
{1,..., N} resampled at each iteration with |S,,| = n. Applying (5.2.2) repeatedly
defines a Markov chain that approximately targets m (Welling and Teh, 2011). There
are a number of alternative SGMCMC algorithms to SGLD (Chen et al., 2014; Ding
et al., 2014; Ma et al., 2015), based on approximations to other diffusions that also
target the posterior distribution.

Because the gradient error is typically larger than the discretisation error, recent
work has investigated reducing the error introduced by approximating the gradient
using minibatches (Dubey et al., 2016; Nagapetyan et al., 2017; Baker et al., 2018;
Chatterji et al., 2018). While by comparison, the discretization error is generally
smaller, in this work we investigate an important situation where it degrades perfor-

mance considerably.

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 139

5.2.2 SGMCMC on the Probability Simplex

We aim to make inference on the simplex parameter w of dimension d, where w; > 0
for all j = 1,...,d and 2?21 wj = 1. We assume we have categorical data z; of
dimension d for i« = 1,..., N, so z; will be 1 if data point 7 belongs to category j
and z;, will be zero for all k£ # j. We assume a Dirichlet prior Dir(«) on w, with
density p(w) o H;l:lng, and that the data is drawn from z; |w ~ Categorical(w)
leading to a Dir(a + Y., z;) posterior. An important transformation we will use
repeatedly throughout this article, is that if we have d random gamma variables
X;j ~ Gamma(ay, 1). Then (X, ..., Xq)/ >, X; will have Dir(a) distribution, where
a=(ag,...,aq).

In this simple case the posterior of w can be exactly calculated. However, in the
applications we consider the z; are latent variables, and they are also simulated as part
of a larger Gibbs sampler. Thus the z; will change at each iteration of our algorithm.
We are interested in the situation where this is the case, and N is large, so that
standard MCMC runs prohibitively slowly. The idea of SGMCMC in this situation
is to use sub-samples of the z;s to propose appropriate local-moves to w.

Applying SGMCMC to models which contain simplex parameters is challenging
due to their constraints. Naively applying SGMCMC can lead to invalid values being
proposed. The first work to introduce an SGMCMC algorithm specifically for the
probability simplex was Patterson and Teh (2013), the algorithm is a variant of SGLD
known as stochastic gradient Riemannian Langevin dynamics (SGRLD). Patterson

and Teh (2013) try a variety of transformations for w which will move the problem

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 140

onto a space in R%, where standard SGMCMC can be applied. They also build upon
standard SGLD by developing a Riemannian variant (see Girolami and Calderhead,
2011). Riemannian MCMC often improves performance when different dimensional
components of the parameter have different scales, or are highly correlated. These
are both often the case when the parameter lies in the simplex. The parameterisation
Patterson and Teh (2013) find numerically performs the best is w; = [6;|/ Z;.lzl 6.
They use a mirrored gamma prior for 6;, which has density p(6;) o |6;|* e~ 1%l. This
means the prior for w remains the required Dirichlet distribution. They calculate the

density of z; given # using a change of variables and use an SGLD update to calculate

6.

5.2.3 SGRLD on Sparse Simplex Spaces

Patterson and Teh (2013) suggested that the boundary of the space is where most
problems occur using these kind of samplers. In many popular applications, such
as LDA and modeling sparse networks, some of the components w; will be close to
0, referred to as a sparse space. In other words, there will be many j for which
Zij\; zi; = 0. In fact, this is their main motivation for introducing the Riemannian
ideas to their SGLD algorithm. In order to demonstrate the problems with using
SGRLD in this case, we provide a similar experiment to Patterson and Teh (2013).
We use SGRLD to simulate from a sparse simplex parameter w of dimension ten with
N = 1000. We set Zfil zin = 800, Zf\il Zio = Zf\il 23 = 100, and Zfil z;; = 0, for
3 < 7 < 10. The prior parameter a was set to 0.1 for all components. Leading to

a highly sparse Dirichlet posterior, i.e. given the data z, many components of w will

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 141

le-05- i
le-12- Method
B3 Exact

B8 scir
B3 SGRLD

Omega

le-19-

le-26-

Exact SCIR SGRLD
Method

Figure 5.2.1: Boxplots of a 1000 iteration sample from SGRLD and SCIR fit to a
sparse Dirichlet posterior, compared to 1000 exact independent samples. On the log

scale.

be close to zero. We will refer back to this experiment as the running experiment.
In Figure 5.2.1 we provide boxplots from a sample of the fifth component of w using
SGRLD after 1000 iterations with 1000 iterations of burn-in, compared with boxplots
from an exact sample. The method SCIR will be introduced later. We can see from
Figure 5.2.1 that SGRLD rarely proposes small values of w. This becomes a significant
issue for sparse Dirichlet distributions, since the lack of small values leads to a poor
approximation to the posterior; as we can see from the boxplots.

We hypothesize that the reason SGRLD struggles when w; is near the boundary
is due to the discretization by h, and we now try to diagnose this issue in detail. The
problem relates to the bias of SGLD, caused by the discretization of the algorithm.
We use the results of Vollmer et al. (2016) to characterize this bias for a fixed stepsize
h. For similar results when the stepsize scheme is decreasing, we refer the reader to
Teh et al. (2016). Proposition 5.2.1 is a simple application of Vollmer et al. (2016,
Theorem 3.3), so we refer the reader to that article for full details of the assumptions.

For simplicity of the statement, we assume that 6 is 1-dimensional, but the results

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 142
are easily adapted to the d-dimensional case.

Proposition 5.2.1. (Vollmer et al., 2016) Under Vollmer et al. (2016, Assumptions
3.1 and 3.2), assume 0 is 1-dimensional. Let 0, be iteration m of an SGLD algorithm
form =1,..., M, then the asymptotic bias defined by limp; o0 |1/M M _ E[f,,] — E[6]

has leading term O(h).

While ordinarily this asymptotic bias will be hard to disentangle from other sources
of error, as E,[] gets close to zero, h will have to be set prohibitively small to give
a good approximation to #. The crux of the issue is that, while the absolute error
remains the same, at the boundary of the space the relative error is large since 6 is
small, and biased upwards due to the positivity constraint. To counteract this, in the
next section we introduce a method which has no discretization error. This allows us
to prove that the asymptotic bias, as defined in Proposition 5.2.1, will be zero for any

choice of stepsize h.

5.3 The Stochastic Cox-Ingersoll-Ross Algorithm

We now wish to counteract the problems with SGRLD on sparse simplex spaces.
First, we make the following observation: rather than applying a reparameterization
of the prior for w; we can model the posterior for ¢; directly and independently
as 0; |z ~ Gamma(a; + Zf\il %j,1). Then using the gamma reparameterization
w=0/>_;0;still leads to the desired Dirichlet posterior. This leaves the 6; in a much
simpler form, and this simpler form enables us to remove all discretization error. We

do this by using an alternative underlying process to the Langevin diffusion. The

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 143

diffusion we use is known as the Cox-Ingersoll-Ross (CIR) process, commonly used in
mathematical finance. A CIR process #; with parameter a and stationary distribution

Gamma(a, 1) has the following form
det = (Cl — et)dt + \V4 29,5th (531)

The standard CIR process has more parameters, but we found changing these made
no difference to the properties of our proposed scalable sampler and so we omit them
(for exact details see the Supplementary Material).

The CIR process has many nice properties. One that is particularly useful for us
is that the transition density is known exactly. Define x*(v, i) to be the non-central
chi-squared distribution with v degrees of freedom and non-centrality parameter p. If

at time ¢ we are at state 9J;, then the probability distribution of 6,,, is given by

1—e"

—h
Opn | 0, = Uy ~ W, W~ y? <2a, 29, —-) (5.3.2)

1—eh

This transition density allows us to simulate directly from the CIR process with no
discretization error. Furthermore, it has been proved that the CIR process is negative
with probability zero (Cox et al., 1985), meaning we will not need to take absolute

values as is required for the SGRLD algorithm.

5.3.1 Adapting for Large Datasets

The next issue we need to address is how to sample from this process when the
dataset is large. Suppose that z; is data for ¢ = 1,..., N, for some large N, and

that our target distribution is Gamma(a, 1), where a = a + SN, 2. We want to

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 144

approximate the target by simulating from the CIR process using only a subset of z
at each iteration. A natural thing to do would be at each iteration to replace a in the
transition density equation (5.3.2) with an unbiased estimate a = o + N/n)_, g 2,
where S C {1,..., N}, similar to SGLD. We will refer to a CIR process using unbiased
estimates in this way as the stochastic CIR process (SCIR). Fix some stepsize h,
which now determines how often a is resampled rather than the granularity of the

discretization. Suppose 0,, follows the SCIR process, then it will have the following

update

. e’
W, W ~ X2 (2am> Qﬁmﬁ) 5 (533)

— e

A A 1—eh
9m+1‘9m:79mw 9

where @, =+ N/n) i g 2.

We can show that this algorithm will approximately target the true posterior
distribution in the same sense as SGLD. To do this, we draw a connection between
the SCIR process and an SGLD algorithm, which allows us to use the arguments
of SGLD to show that the SCIR process will target the desired distribution. More

formally, we have the following relationship:

Theorem 5.3.1. Let 6, be a CIR process with transition 5.3.2. Then U, := g(6;) =
20, follows a Langevin diffusion whose stationary distribution is in the generalized

gamma family, with density p(u) oc u2*te=*/4,

Theorem 5.3.1, allows us to show that applying the transformation g(-) to the
approximate SCIR process, leads to a discretization free SGLD algorithm for a gen-
eralized gamma distribution. Similarly, applying ¢g~!(-) to the approximate target

of this SGLD algorithm leads to the desired Gamma(a, 1) distribution. Full details

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 145

are given after the proof of Theorem 5.3.1. The result means that similar to SGLD,
we can replace the CIR parameter a with an unbiased estimate a created from a
minibatch of data. Provided we re-estimate a from one iteration to the next using
different minibatches, the approximate target distribution will still be Gamma(a, 1).
As in SGLD, there will be added error based on the noise in the estimate a. However,
from the desirable properties of the CIR process we are able to quantify this error
more easily than for the SGLD algorithm, and we do this in Section 5.4.

Algorithm 3 below summarizes how SCIR can be used to sample from the simplex
parameter w |z ~ Dir(a + Zf\il z;). This can be done in a similar way to SGRLD,
with the same per-iteration computational cost, so the improvements we demonstrate

later are essentially for free.

Algorithm 3: Stochastic Cox-Ingersoll-Ross (SCIR) for sampling from the prob-

ability simplex.

Input: Starting points 6y, stepsize h, minibatch size n.
Result: Approximate sample from w | z.

for m=1to M do
Sample minibatch S, from {1,..., N}

for j=1toddo
Set aj < a+N/ny g zij.

Sample émj] é(m_l)j using (5.3.3) with parameter a; and stepsize h.

end

Set wy, Qm/zj O mj-

end

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 146

SSSSS

KS Dist
KS Dist

0.001 0010 0.100 0010
Minibatch Size (log scale) Minibatch Size (log scale)

(a) (b)

Figure 5.3.1: Kolmogorov-Smirnov distance for SGRLD and SCIR at different mini-
batch sizes when used to sample from (a), a sparse Dirichlet posterior and (b) a dense

Dirichlet posterior.

5.3.2 SCIR on Sparse Data

We test the SCIR process on two synthetic experiments. The first experiment is the
running experiment on the sparse Dirichlet posterior of Section 5.2.3. The second
experiment allocates 1000 datapoints equally to each component, leading to a highly
dense Dirichlet posterior. For both experiments, we run 1000 iterations of optimally
tuned SGRLD and SCIR algorithms and compare to an exact sample. For the sparse
experiment, Figure 5.2.1 shows boxplots of samples from the fifth component of w,
which is sparse. For both experiments, Figure 5.3.1 plots the Kolmogorov-Smirnov
distance (dxg) between the approximate samples and the true posterior (full details
of the distance measure are given in the Supplementary Material). For the boxplots, a
minibatch of size 10 is used; for the dxg plots the proportion of data in the minibatch
is varied from 0.001 to 0.5. The dgg plots show the runs of five different seeds, which
gives some idea of variability.

The boxplots of Figure 5.2.1 demonstrate that the SCIR process is able to handle

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 147

smaller values of w much more readily than SGRLD. The impact of this is demon-
strated in Figure 5.3.1a, the sparse dgg plot. Here the SCIR process is achieving
much better results than SGRLD, and converging towards the exact sample at larger
minibatch sizes. The dense dig plot of Figure 5.3.1b shows that as we move to the
dense setting the samplers have similar properties. The conclusion is that the SCIR

algorithm is a good choice of simplex sampler for either the dense or sparse case.

5.4 Theoretical Analysis

In the following theoretical analysis we wish to target a Gamma(a, 1) distribution,
where a = o + sz\il z; for some data z. We run an SCIR algorithm with stepsize h
for M iterations, yielding the sample 6., for m = 1,..., M. We compare this to an
exact CIR process with stationary distribution Gamma(a, 1), defined by the transition
equation in (5.3.2). We do this by deriving the moment generating function (MGF)
of 6, in terms of the MGF of the exact CIR process. This allows us to quantify
the moments of ém in the analysis to follow. For simplicity, we fix a stepsize h and,

abusing notation slightly, set #,, to be a CIR process that has been run for time mh.

Theorem 5.4.1. Let 0, be the SCIR process defined in (5.3.3) starting from 6y after
M steps with stepsize h. Let 0y be the corresponding exact CIR process, also starting

from 0y, run for time Mh, and with coupled noise. Then the MGF' of Orr is given by

M _ —(am—a)
1—s(1—e™h)
My 6 =t O TT |20 |

m=1

(5.4.1)

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 148

where we have

Seth

1—s(1—eMn)

M, (s) = [1—s(1 — e_Mh)]_a exp |6y

The proof of this result follows by induction from the properties of the non-central
chi-squared distribution. The result shows that the MGF' of the SCIR can be written
as the MGF of the exact underlying CIR process, as well as an error term in the
form of a product. Deriving the MGF enables us to find the non-asymptotic bias and
variance of the SCIR process, which is more interpretable than the MGF itself. The

results are stated formally in the following Corollary.

Corollary 5.4.2. Given the setup of Theorem 5.4.1,

~

E[0u] = E[fy] = Ope ™" + a(1 — M),

so that, since Er[0] = a, then limy_o | M E[6,] — B[] = 0 and SCIR is
asymptotically unbiased. Similarly,

1—eh

Var[éM] = Var[@M] + (1 - eith)m
e

Varlal,
where Var|a| = Var|a,,| form=1,..., M and
Var[0a] = 20p(e " — e2MM) 4+ q(1 — e M")2.

The results show that the approximate process is asymptotically unbiased. We be-
lieve this explains the improvements the method has over SGRLD in the experiments
of Sections 5.3.2 and 5.5. We also obtain the non-asymptotic variance as a simple
sum of the variance of the exact underlying CIR process, and a quantity involving

the variance of the estimate a. This is of a similar form to the strong error of SGLD

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 149

(Sato and Nakagawa, 2014), though without the contribution from the discretization.
The variance of the SCIR is somewhat inflated over the variance of the CIR process.
Reducing this variance would improve the properties of the SCIR process and would
be an interesting avenue for further work. Control variate ideas could be applied for
this purpose (Nagapetyan et al., 2017; Baker et al., 2018; Chatterji et al., 2018) and
they may prove especially effective since the mode of a gamma distribution is known

exactly.

5.5 Experiments

5.5.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA, see Blei et al., 2003) is a popular model used to
summarize a collection of documents by clustering them based on underlying topics.
The data for the model is a matrix of word frequencies, with a row for each document.
LDA is based on a generative procedure. For each document [, a discrete distribution
over the K potential topics, 6, is drawn as 6, ~ Dir(a) for some suitably chosen
hyperparameter o. Each topic k is associated with a discrete distribution ¢, over
all the words in a corpus, meant to represent the common words associated with
particular topics. This is drawn as ¢, ~ Dir(f3), for some suitable 5. Finally, for each
word in document [, a topic k is drawn from #;; then the word itself is drawn from ¢y.

LDA is a good example for this method because ¢ is likely to be very sparse,
there are many words which will not be associated with a given topic at all. The

code is an adaption of the code released by Patterson and Teh (2013), which we

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 150

apply to a dataset of scraped Wikipedia documents. At each iteration a minibatch
of 50 documents is sampled in an online manner. We use the same vocabulary set
as in Patterson and Teh (2013) which consists of approximately 8000 words. The
exponential of the average log-predictive on a held out set of 1000 documents is
calculated every 5 iterations to evaluate the model. This quantity is known as the
perplexity, and use a document completion approach to calculate it (Wallach et al.,
2009). The perplexity is plotted for five runs using different seeds, which gives an
idea of variability. Similar to Patterson and Teh (2013), for both methods we use a
decreasing stepsize scheme of the form h,, = h[l + m/7|7*. The results are plotted
in Figure 5.5.1a. While the initial convergence rate is similar, SCIR keeps descending
past where SGRLD begins to converge. This experiment serves as a good example
for the impact that removing the discretization error has for this problem. Further
impact would probably be seen if a larger vocabulary size were used, leading to sparser
topic vectors. In real-world applications of LDA, it is quite common to use vocabulary

sizes above 8000.

5.5.2 Bayesian Nonparametric Mixture Model

We apply SCIR to sample from a Bayesian nonparametric mixture model of cate-
gorical data, based on Dunson and Xing (2009). To the best of our knowledge, the
development of SGMCMC methods for Bayesian nonparametric models has not been
considered before, so we deem this to be another contribution of the work. In partic-
ular, we develop a truncation free, scalable sampler based on SGMCMC for Dirich-

let processes (DP, see Ferguson, 1973). For more thorough details of DPs and the

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 151

Method

Perplexity
Test Log Predicti

10000 20000 30000 40000

Figure 5.5.1: (a) plots the perplexity of SGRLD and SCIR when used to sample from
the LDA model of Section 5.5.1 applied to Wikipedia documents; (b) plots the log

predictive on a test set of the anonymous Microsoft user dataset, sampling the mixture

model defined in Section 5.5.2 using SCIR and SGRLD.

stochastic sampler developed, the reader is referred to the Supplementary Material.

The model can be expressed as follows

x; | 0, z; ~ Multi(n;, 0,,), 6,z ~ DP(Dir(a), a). (5.5.1)

Here Multi(m, ¢) is a multinomial distribution with m trials and associated discrete
probability distribution ¢; DP(Gg, «) is a DP with base distribution Gy and concen-
tration parameter a. The DP component parameters and allocations are denoted by
6 and z; respectively. We define the number of observations N by N := . n;, and
let L be the number of instances of x;, ¢ = 1,..., L. This type of mixture model is
commonly used to model the dependence structure of categorical data, such as for
genetic or natural language data (Dunson and Xing, 2009). The use of DPs (Ferguson,
1973) means we can account for the fact that we do not know the true dependence

structure. DPs allow us to learn the number of mixture components in a penalized

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 152

way during the inference procedure itself.

We apply this model to the anonymous Microsoft user dataset (Breese et al.,
1998). This dataset conmsists of approximately N = 10° instances of L = 30000
anonymized users. Each instance details part of the website the user visits, which is
one of d = 294 categories (here d denotes the dimension of x;). We use the model
to try and characterize the typical usage patterns of the website. Since there are a
lot of categories and only an average of three observations for any one user, these
data are expected to be sparse. To infer the model, we use an novel algorithm,
which is a minibatched version of the slice sampler (Walker, 2007; Papaspiliopoulos,
2008; Kalli et al., 2011). We assign an uninformative gamma prior on «, and this
is inferred similarly to Escobar and West (1995). We minibatch the users at each
iteration using n = 1000. For multimodal mixture models such as this, SGMCMC
methods are known to get stuck in local modes (see Section 2.4.2), so we use a fixed
stepsize for both SGRLD and SCIR. Once again, we plot runs over 5 seeds to give an
idea of variability. The results are plotted in Figure 5.5.1b. They show that SCIR
consistently converges to a lower log predictive test score, and appears to have lower
variance than SGRLD. SGRLD also appears to be producing worse scores as the
number of iterations increases. We found that SGRLD had a tendency to propose
many more clusters than were required. This is probably due to the asymptotic bias
of Proposition 5.2.1, since this would lead to an inferred model that has a higher «
parameter than is set, meaning more clusters would be proposed than are needed. In
fact, setting a higher a parameter appeared to alleviate this problem, but led to a

worse fit, which is more evidence that this is the case.

CHAPTER 5. STOCHASTIC SAMPLING FROM THE SIMPLEX 153

5.6 Discussion

We presented an SGMCMC method, the SCIR algorithm, for simplex spaces. We
show that the method has no discretization error and is asymptotically unbiased.
Our experiments demonstrate that these properties give the sampler improved per-
formance over other SGMCMC methods for sampling from sparse simplex spaces.
Many important large-scale models are sparse, so this is an important contribution.
A number of useful theoretical properties for the sampler were derived, including the
non-asymptotic variance and moment generating function. Finally, we demonstrate
the impact of the sampler on a variety of interesting problems including a novel scal-
able Dirichlet process sampler. An interesting line of further work would be reducing

the non-asymptotic variance, which could be done by means of control variates.

Chapter 6

Conclusions

6.1 Discussion

This thesis has addressed the problem of making MCMC scalable to large datasets.
Stochastic gradient MCMC, which aims to cheaply approximate Ito processes that
target the posterior exactly, has become a popular scalable MCMC algorithm. The
method has substantial theoretical foundation in the form of Itd6 processes and the
Euler—-Maruyama method. However, the methods no longer target the posterior ex-
actly, and more work needs to be done to improve the error introduced using these
methods.

While SGLD has improved per-iteration cost, there are many empirical results
suggesting the method still has O(N) overall computational cost (Welling and Teh,
2011; Nagapetyan et al., 2017). Here by computational cost we mean the number
of observations the algorithm needs to process in order to reach a given arbitrary

accuracy. This means the scalability of SGLD will grow linearly with the dataset size.

154

CHAPTER 6. CONCLUSIONS 155

In Chapter 3 we demonstrate how this phenomenon can be avoided using control
variates. We introduce the algorithm SGLD-CV, which subject to two one-off passes
through the dataset, leads to an algorithm with overall computational cost O(1).
We also investigate the usage of post-processing control variates within SGMCMC
algorithms, including the variance reduction achieved by SGMCMC.

SGMCMC has received a lot of attention from the machine learning community,
but less so from the statistics community. We propose this may be due to lack of
computational tools, especially for the programming language R, favoured by many
statisticians. In light of this we develop the R software package sgmcme. Chapter 4
details a background to the package and its usage.

Typical implementations of SGLD on simplex spaces (i.e. sampling from Dirichlet
distributions) result in an unstable gradient. Patterson and Teh (2013) get around
this by using judicious transformations of the parameters. However, in Chapter 5 we
show that this method still has large biases on sparse simplex spaces, where many of
the components are zero, due to discretisation of the underlying Langevin diffusion.
This is an important problem, as many vital, large-scale models such as network and
natural language models rely on sampling from sparse simplex spaces. To counteract
this, we develop a scalable algorithm for sampling from the probability simplex that is
discretisation free. We show this removes the large biases caused by the discretisation

CITor.

CHAPTER 6. CONCLUSIONS 156

6.2 Future Work

Scalable MCMC, and more specifically SGMCMC, is still an active and open area
of research. An important problem that needs to be addressed is that SGMCMC
methods still have quite high error, compared to, for example ULA, due to the noise
in the gradient estimate. Therefore, more sophisticated variance reduction methods
than those introduced in Chapter 3, especially those that do not require setup costs,
could prove fruitful. On the other hand, work that allows the piecewise deterministic
process samplers of Bierkens et al. (2018a); Bouchard-Coété et al. (2018) to be applied
more simply could be more valuable to the community still; since these methods are
known to be exact.

Chapter 5 potentially opens up quite a few extensions. There are a number of dif-
fusions whose transition densities are known, which could be exploited in similar ways
to the Cox-Ingersoll-Ross process. The normalisation of Gamma random variates in
order to simulate from Dirichlet distributions has connections to Bayesian nonpara-
metrics, where Gamma processes can be normalised to create Dirichlet processes.
Recently, it has been shown that many traditional models based on exchangeability
of the adjacency matrix, such as the stochastic block model, are not able to model
sparsity (Caron and Fox, 2017). This leads Caron and Fox (2017) to suggest modelling
networks using Bayesian nonparametric models; one Bayesian nonparametric model
that has particularly good properties for this case is the generalised Gamma process.
Let X be a Gamma distributed random variable, then X* for a € R, is generalised

Gamma distributed, with full flexibility over the distribution parameters. This means

CHAPTER 6. CONCLUSIONS 157

the SCIR process could be used to develop scalable samplers from generalised Gamma

processes, and hopefully this modern class of network model.

Appendix A

Appendix to Chapter 3

A.1 Computational Cost Proofs

Proof of Proposition 3.3.6

Proof. Let m be the invariant distribution of the underlying dynamics, so that it has
density e~/ = p(|x), and define Wy(v, 7) to be the Wasserstein distance between
v and w. Define & to be the SGLD-CV gradient noise term. Then we can write a

single step of SGLD-CV as
Opsr = O + WV f(O)) + héx + V2h(,

We have that 0 ~ vy, and follow similarly to the proof of Dalalyan and Karagulyan
(2017, Proposition 2). First define Yj to be a draw from the invariant distribution 7,
such that the joint distribution of Y and), minimises I ||Yy — 6;|°. Here ||.|| denotes
the Euclidean distance for R%. It follows that E ||Yy — 6,||> = W2(v, 7).

Let B, be a d-dimensional Wiener process, independent of 6, Yy and &, but which

158

APPENDIX A. APPENDIX TO CHAPTER 3 159

we couple to the injected noise () so that B, = Vh(s. Now let Y;, t > 0, follow the
diffusion
t
Y, =Y, +/ Vf(Y,)ds +V2B,. (A.1.1)
0
Let Ay = Yy — 0, and Ay 1 = Y, — 0p1. Since we started the process Y; from
Yy ~ m, then it follows that Y; ~ 7 for all ¢ > 0. Also since W3 (vg11, 7) minimises the
expected squared distance between two random variables with marginals v and 7
then it follows that W2(vesr,) < E||Ap]*.

Let us define
U=Vf(lr+Ar) — Vf(b), (A.1.2)
h
v [w500 - vr) e (A.1.3)
0
Then by the unbiasedness of the gradient estimation, &, has mean 0 regardless of the
value of 8. Thus
E[[Apall” = El A, +hU + VI* + E|lh& |

< [E[A = hU | +EV]]* + B°E [|&* -

We can then apply Lemmas 2 and 4 in Dalalyan and Karagulyan (2017), stated below

in Lemmas A.1.1 and A.1.2, as well as applying the gradient noise bound in Lemma

3.3.3, to obtain a bound on W3 (v, 1,) given W3 (v,).
Lemma A.1.1. WithU as defined in (A.1.2), if b < 2m/(2M?*+m?), then ||Ax — hU|| <

(1 —mh) [[Al

The original lemma by Dalalyan and Karagulyan (2017) assumed h < 2/(m+ M),

but this holds when h < 2m/(2M? + m?) as m < M.

APPENDIX A. APPENDIX TO CHAPTER 3 160
Lemma A.1.2. Under Assumption 3.3.1. Let V be as defined in (A.1.3), then

1
||V < 5(h' M)z + S(2h°d)2 M.

Wl o

Finally we can apply Lemma 3.3.3, as stated in the main body, to get

M? A||2
E & < =K |6, - 0

2M? 2M? ~112
< —E[h - Y%l + —-E|v% - 4|
n n
2M? 2M? ~1|12
< W2 () +]EHYO—G
n n

Using Theorem 1 of Durmus and Moulines (2017b)

e .2 d
EHYO—Q <E[0-0) +. (A.1.4)

It follows that

2M? 2M?
Ellgel? < =~ WE(m,m) + {E

é—éHQJr%]. (A.1.5)

Now using that W2(v4i1,7) < E||Apy1]|* we get the following

W3 (vgy1,7) < [(1—mh)Wy(vg, 7) + on(h?’d)%] + W3 (vg, m)+

2 2h*M? 2h%M> {E

.2 d
b — eH + —} ,
m
where a = 7v/2/6. Gathering like terms we can further bound W2(v,1,7) to get the
following recursive formula
W3 (vir1,) < [(1 — A)Wa(vy,) + O] + B

where

2h2M?
Azl—\/ + (1 — mh)?
n

2 \[2
B:\/2h {E
n

C = aM(h*d):.

o=+

APPENDIX A. APPENDIX TO CHAPTER 3 161

We can now apply Lemma 1 of Dalalyan and Karagulyan (2017), as stated below to

solve this recurrence relation.

Lemma A.1.3. Let A, B and C be non-negative numbers such that A € (0,1).
Assume that the sequence of mon-negative numbers xy, k = 0,1,..., satisfies the

recursive inequality

22 < [(1 = A)zy, + C)* + B?
for every integer k > 0. Then for all integers k > 0

32

C
xkg(l—A)kxo+Z+—O+\/ZB

To complete the proof all that remains is to check A € (0,1) so that Lemma A.1.3

can be applied. Clearly A < 1, since n > 1 we have

A>1—+/2h2M?2 — (1 — mh)?,

and the RHS is positive when h € (0,2m/(2M? + m?)). O O

Proof of Theorem 3.3.7

Proof. Starting from Proposition 3.3.6, we have that

B2

C
W vk, 1) < (1= A Wa(vp, 7) + = + — 2
2<VK 7T) < () Q(VO 7T)) C_l_ \/ZB

(A.1.6)

where

2 2 2 2
A:1—\/2hM + (1= mh), B:\/QhM [E

n n

2 d 1
e—eH +—], C = aM(h3d)}
m

APPENDIX A. APPENDIX TO CHAPTER 3 162

Suppose we stop the algorithm at iteration K. Using (A.1.6), the following are

sufficient conditions that ensure W2(vx, m) < €o/+/m,

(1 — AKX Wy(vp,m) < 2\%, (A.1.7)
C €
7 < 4\/0%, (A.1.8)
B2 €0
< Al
O VAR S dym (A19)

The starting point 6y is deterministic, so from Theorem 1 of Durmus and Moulines

(2017b)
- d
W2 (v,) §E||90—9||2+E. (A.1.10)
If we rewrite
¥ 2n
h=— A.1.11
m {QRQ +n} ’ ()

where v € (0, 1) is some constant and R := M /m as defined in the theorem statement,

then it follows that we can write

A=1—+/1-2mh(1l —~). (A.1.12)

Since we have the condition
v< 5)
then v < %
Now suppose, using (A.1.12), we set
1 {4m

Kh > —log (Eueo—eujm/m)] (A.1.13)

€

Then using the result for the deterministic starting point 6y (A.1.10), we find that

APPENDIX A. APPENDIX TO CHAPTER 3 163

(A.1.13) implies that

€0

2y/m

> exp [—mhK /2] \/IE 160 — 8" + %
> [1 — mh]? Wa(v,)
> (1 - A)KWQ(V077T)7

Using (A.1.12) and that our conditions imply v < 1/2. Hence (A.1.7) holds.

Using that for some real number y € [0,1], /T —y < 1 —1y/2, we can bound A by

A>1—+/1-2mh(1l —7)>mh(l —7) = A,. (A.1.14)

As v <1/2, for (A.1.8) to hold it is sufficient that

€0 >£
am = Ay’

where C/Ay > 2aM+/hd/m. This leads to the following sufficient condition on h,

h< i (A.1.15)
~ m |64R%a%d o
Similarly for (A.1.9) it is sufficient that

o B
Wm = VA,

5 2VhM[E He - 9”2 +d/m
VA, © Vi

Leading to the following sufficient condition on n

~

6—0

n =

2

€o

h E
m

2 d
+2].

APPENDIX A. APPENDIX TO CHAPTER 3 164

Now due to the conditions on h, define

e 1 €
R PYEE RV ERC)
Then (A.1.9) will hold when

64128

2
€

n >

ak

é—§H2+%] (A.1.16)

[l [l

Proof of Lemma 3.3.3

Proof. Our proof follows similarly to Dubey et al. (2016),

~ 2
E s’ = ||V 76 - 7560

= E|[Vflt) ~ VA0) + 3 [Vi6) ~ VEOD)] - [V(6) ~ V)

i€Sy 1"
< B |[vr60 - v0) - (Vfowk) - V1) + - [VAi) - m(é)])
1€Sk

2

Where the third line follows due to independence. For any random variable R, we
have that I ||R — ER|”> < E||R||>. Using this, the smoothness results of Assumption
3.3.2 and our choice of p;, gives the following, where E; refers to expectation with

respect to the sampled datum index, I,

v (o |[vaie) - v 6])

1o Ly SN2

<a 2= (nfe-9)

1 N N)

:E{Z (ZLj) L,}Hek—e
i=1 \j=1

from which the required bound follows trivially. O] O]

E [|&]|* <

2

)

APPENDIX A. APPENDIX TO CHAPTER 3 165

Proof of Lemma 3.3.5

Proof. Smoothness condition: By the triangle inequality

IV£(0) =V 1(0)] VIO) =D F(0)

<(N+1)LJo—0].
Strong convezity: We have that

FO) = F(O) = VO (0—-0) = Z — V()0 - 0]

N+1)
2

> 10— ¢'|[5 .

A.2 Post-processing Proofs

Proof that E[i(6)] =

Proof due to Friel et al. (2016). Let S C {1,...,N} be the minibatch chosen to

estimate z, then using the law of total expectation

E[h(0)] = E[AQ(0) + VQ(0) - E[2]S]]
=E[AQ(0) +VQ(F) - z] = E[h(h)] = 0.

APPENDIX A. APPENDIX TO CHAPTER 3 166
Proof of Theorem 3.4.2

Proof. We start from the bound in Theorem 6.1 of Mira et al. (2013), stating for some

control variate h, the optimal variance reduction R is given by

(Egpx [9(0)1(6)])”

R = 2
Eojx [2(0)]

Y

so that in our case we have

(Eox [s@hi0)])
Eoix [ﬁ(é’)] ’
_ (Eoix [9(0)1(0)])°
Eox [1(0))> + 1Eqix [a - £5(0)]

R

1By [a€s(0)]?
Egx[h(0)]

1+
Then we can apply Lemmas A.2.1, A.2.2, defined in Section A.2, to get the desired

result

R
L+ [o(N + 1)) EgEs [|€5(0) "

R> (A.2.1)

[l [l

Lemmas

—

Lemma A.2.1. Define A = 3% a2, and let £5(0) = Vlogp(f|x) — Vlog p(0]x) be

=1 "7

the noise in the gradient estimate. Then

Egix [a - £5(0))* < ABgBEs [[€5(0)]]° -

APPENDIX A. APPENDIX TO CHAPTER 3 167

Proof. We can condition on the gradient noise, and then immediately apply the

Cauchy-Schwarz inequality to get

d
< (Z a?) EoxEs [|€5(0)]”

=1

[l [l

Lemma A.2.2. Under Assumption 3.4.1, define A =57 a2. Then Eg|o [h(0))° <

i=1""

Ao(N +1)/4.

Proof. Applying the Cauchy-Schwarz inequality

Eg. [1(0)]” < i (Z a?) Eo | V£(0)]”

. A(N4+ D

[l [l

A.3 Experiments

Minibatch Sizes

The minibatch sizes were kept fixed for each of the dataset sizes. They are given in

the following table:

Stepsize Tuning and Hyperparameters

When tuning the experiments, initially a wide grid search was used to obtain a stepsize

to first order. Then, if convergence was insufficient, a more precise grid search was

APPENDIX A. APPENDIX TO CHAPTER 3

Model

Minibatch Size

Logistic Regression

Probabilistic Matrix Factorisation

LDA

500

20

5000

168

Table A.3.1: Minibatch sizes for each of the experiments in 3.5 (they were fixed for

SGLD, SGLD-CV and SAGA).

used. In the tables to follow, we detail the optimal stepsizes found in the different

experiments. For SGLD-CV we list two sets of stepsizes: SGD and SGLD-CV. SGD

corresponds to the stepsizes for the initial optimisation step, SGLD-CV corresponds

to the stepsizes for the SGLD-CV algorithm itself.

Logistic Regression

Method 0.01N 0.1N N

SGLD 5x107% 5x107° 5x 1076
SGLD-CV 5x 107 5x10° 5x 107
SGLD-CV (SGD) | 7x10™® 5x 1075 5x107°
SAGA 1x107% 1x107% 1x107°

Table A.3.2: Tuned stepsizes for the Logistic regression experiment in Section 3.5.1.

Alternative results using a decreasing stepsize scheme of the form hy, = h(1+k/a)™°

are given in Figure A.3.1. We use the optimal value of b = .33 (Teh et al., 2016). We

again tune using a grid search and find optimal h values are the same for the fixed

APPENDIX A. APPENDIX TO CHAPTER 3 169

0.01IN 0.1N N

11-

210-

o

g method

a D SGLD

{2

o [|sep-cv
o o-

g | Isaca

g

z

@
v

. . . \ . T \
0 25 50 75 100 1250 50 100 0 100 200 300
Time (secs)

Figure A.3.1: Log predictive density over a test set every 10 iterations of SGLD (with
a decreasing stepsize scheme), SGLD-CV and SAGA fit to a logistic regression model

as the data size N is varied.

case, and a = 1000 is the best for all dataset sizes.

Matrix Factorisation

We use the formulation of BPMF as in Chen et al. (2014, Section H.2). We set
AU, Avy Aay Ap ~ Gamma(1,300) and 7 = 3. This formulation has two matrix parame-
ters U, V and two vector parameters a and b that are learnt by the chosen SGMCMC
algorithm. We found these parameters tend to have quite different scales, so setting
one global tuning parameter for all mixed poorly. However having four separate step-
sizes would also prove difficult to tune. We opted instead to set one global tuning
parameter h, detailed in Table A.3.3, and then scale each of the stepsizes based on

the relative size of E [V f(#)]. The scaling we opted for, for each parameter 6 was

E {Hv f(e)H2 /d} for SGLD and SGD; E [Hv £(6)? /d} for SGLD-CV; and for SAGA

it was equivalent with the corresponding variance reduced gradient. Here, for a given

matrix A, ||A|| corresponds to the Frobenius norm. The expectation was estimated

APPENDIX A. APPENDIX TO CHAPTER 3 170

using stochastic optimisation, for example at each iteration k the scaling S for SGLD

would be estimated by

2

1 HVJE(Qk)
= "

Sk - Sk—l

Then the local stepsize hy for parameter 6 would be set to hy = h/+/Sk. The global

stepsizes are detailed in the table below.

Method 0.1N 0.5N N
SGLD 1x107% 5x103 5x 1073
SGLD-CV 5x 1077 1x107% 1x10°°

SGLD-CV (SGD) | 1x 1072 1x 1072 1 x 1072

SAGA 5x 1073 1x1072 1x1072

Table A.3.3: Tuned stepsizes for the Bayesian probabilistic matrix factorisation ex-

periment in Section 3.5.2.

Alternative results using a decreasing stepsize scheme of the form hy = h(1+k/a)=®
are given in Figure A.3.2. We use the optimal value of b = .33 (Teh et al., 2016). We
again tune using a grid search and find optimal h values are the same for the fixed

case, and a = 1000 is the best for all dataset sizes.

Latent Dirichlet Allocation

We used the LDA formulation of (Patterson and Teh, 2013), integrating out 7, but
without the Riemannian information, and using the expanded-natural parameterisa-

tion. We use uninformative hyperparameters a = § = 1.

APPENDIX A. APPENDIX TO CHAPTER 3

.
o
<]

Average log predictive
B

.
o
S

%5 50 75

100 0 50
Time (secs)

e —

150 0

100 150 200

171

method
SAGA

s

SGLDCV

Figure A.3.2: Log predictive density over a test set of SGLD (with a decreasing step-

size scheme), SGLD-CV and SAGA fit to a Bayesian probabilistic matrix factorisation

model as the number of users is varied, averaged over 5 runs. We used the Movielens

ml-100k dataset.

Method 0.1N 0.6N N

SGLD 8x107* 8x107° 5x10°
SGLD-CV 8x107* 8x107° 5x107°
SGLD-CV (SGD) | 7x107* 1x10™* 1x107*
SAGA 5x 107 5x107° 5x10°

Table A.3.4: Tuned stepsizes for the Bayesian probabilistic matrix factorisation ex-

periment in Section 3.5.2.

Appendix B

Appendix to Chapter 5

B.1 Proofs

Proof of Proposition 5.2.1

Proof. Define the local weak error of SGLD, starting from 6, and with stepsize h,

with test function ¢ by

E |¢(61) — ¢(0h)

Y

where 0, is the true underlying Langevin diffusion (5.2.1), run for time h with starting
point . Then it is shown by Vollmer et al. (2016) that if ¢ : R? — R is a smooth
test function, and that SGLD applied with test function ¢ has local weak error O(h),
then
M
E| lim 1/M Z 3(0m) — Er[6(0)]
is also O(h). What remains to be checked is that using such a simple function for

¢ (the identity), does not cause things to disappear such that the local weak error

172

APPENDIX B. APPENDIX TO CHAPTER 5 173

of SGLD is no longer O(h). The identity function is infinitely differentiable, thus is

sufficiently smooth. For SGLD, we find that
E[61|60] = 0o + hf'(6o).

For the Langevin diffusion, we define the one step expectation using the weak Taylor
expansion of Zygalakis (2011), which is valid since we have made Assumptions 3.1
and 3.2 of Vollmer et al. (2016). Define the infinitesimal operator £ of the Langevin
diffusion (5.2.1) by

Lo = f(0) - 0o (0) + 5(0).
Then Zygalakis (2011) shows that the weak Taylor expansion of Langevin diffusion

(5.2.1) has the form

2
[0 00] = 0 + hL(00) + o L26(00) + O(1).

This means when ¢ is the identity then

2

E[0400) = 00 + ' (00) + o L1(0)(0) + "(0)] + O(h?).

Since the terms agree up to O(h) then it follows that even when ¢ is the identity,

SGLD still has local weak error of O(h). This completes the proof. O

Proof of Theorem 5.3.1

Proof. Suppose we have a random variable U, following a generalized gamma poste-

rior with data z and the following density

Flu) oc u2etEiiz) -1t/

APPENDIX B. APPENDIX TO CHAPTER 5 174

Set a := 2(a + Zfil 2;), Then Jlog f(u) = (2a — 1)/u — u/2, so that the Langevin

diffusion for U,, will have the following integral form

t+h 2 _ 1 Us t+h
Ut+h|Ut:Ut+/ [GU —T}dé’—i-\/i/ dW;.
t s t

Applying Ito’s lemma to U; to transform to 6; = ¢~ (U;) = U?/4 (here g(-) has

been stated in the proof), we find that

t+h t+h
6t+h | Gt = et + / [Cl — 98] ds -+ / \V 20tth
t t

This is exactly the integral form for the CIR process. This completes the proof. [

Now we give more details of the connection between SGLD and SCIR. Let us
define an SGLD algorithm that approximately targets U,,, but without the Euler

discretization by

(m+1)h 2Am . 1 Us (m+1)h
U+ | U = Upa, —i—/ [aU _ ?} ds + \/5/ aw,, (B.1.1)
mh s mh

where a,, is an unbiased estimate of a; for example, the standard SGLD estimate
am =+ N/n) g z;also his a tuning constant which determines how much time
is simulated before resampling a,,.

Again applying Ito’s lemma to U, to transform to 6,,, = g(Upnn) = U2, /4, we

find that

(m+1)h (m+1

)h
[— 0,) ds + / /20, dW,.

mh

e(m—‘rl)h = emh + /

mh

This is exactly the integral form for the update equation of an SCIR process.

Finally, to show SCIR has the desired approximate target, we use some properties

of the gamma distribution. Firstly if 6, ~ Gamma(a,1) then 40, ~ Gamma(a, 1),

APPENDIX B. APPENDIX TO CHAPTER 5 175

so that U, = 24/0, will have a generalized gamma distribution with density propor-

2a—1€—u2/4

tional to h(u) o< u . This is exactly the approximate target of the discretiza-

tion free SGLD algorithm (B.1.1) we derived earlier.

Proof of Theorem 5.4.1

First let us define the following quantities

~h
se
— (M) (g) =
TS ' (s) =ro---or(s).

n

r(s)

Then we will make use of the following Lemmas:

Lemma B.1.1. Foralln € N and s € R

Lemma B.1.2. For alln € N, s € R, set r(0(s) := s, then

|
—

n

[1- r®(s)(1 — e M) =[1-s1-e")].

s
Il
o

Both can be proved by induction, which is shown in Section B.2.
Suppose that 6;]0y is a CIR process, starting at 6y and run for time h. Then we
can immediately write down the MGF of 61, My, (s), using the MGF of a non-central

chi-squared distribution

My, (s) =E [e*"']6y] = [1 —s(1—e")] “exp { e 1

1—s(1—eh)

APPENDIX B. APPENDIX TO CHAPTER 5 176

We can use this to find E [eseM |6 M—l] , and then take expectations of this with respect
to Opr_o, 1e. E [IE [eSGMI QM,J | HM,Q]. This is possible because E [65‘9M|'9M,1} has the
form C(s)explfr—17(s)], where C(s) is a function only involving s, and r(s) is as
defined earlier. Thus repeatedly applying this and using Lemmas B.1.1 and B.1.2 we

find

—Mh
sboe } (B.1.2)

My (s) = [1 = s(1 — ™M) " exp {1 — (1 — e~ Mh)
Although this was already known, we can use the same idea to find the MGF of the
SCIR process.

The MGF of SCIR immediately follows using the same logic as before, as well as

using the form of My, (s) and Lemmas B.1.1 and B.1.2. Leading to

MéM(s) = H [1 — T(m_l)(s)(l — e_h)] o exp [QOT(M)(S)}

mh) —(@m—a)

M 1-— s —e
H 1— s (m—l)h)
=1

Proof of Theorem 5.4.2

Proof. From Theorem 5.4.1, we have

M ~
MGM MGM H 1 — 8 1 — 6—mh>] ~(am—a) H [1 _ S(l o 6_(m_1)h)}_(a_am) .
m=1 el

eo(s) e1(s)

We clearly have My, (0) = e¢(0) = €;(0) = 1. Differentiating we find

eh(s) = (i —a)(1 —e ™) [1—s(1—e ™)) eg(s),

similarly

APPENDIX B. APPENDIX TO CHAPTER 5 177

It follows that, labeling the minibatch noise up to iteration M by B, and using the

fact that Ea; = a for all ¢ = 1,..., M we have

Efy = E [E (éMyBM)]

—F [Mi (0)}

0

en(s) =Y (@i —a)(@ —a—1)(1—e ™2 [1—s(1 —e ™) eg(s)
+3 (ai—a)(@;—a)(1—e ™M) (1—e M) 1= s(1—e™)] 71— s(1—e)] eols).

Now taking expectations with respect to the minibatch noise, noting independence of

a; and a; for i # j,

M
E[ef(0)] = Y (1 — e ™")*Var(a).
=1
By symmetry
M
E[e/(0)] =) (1 —e V") Var(a;).
=1
We also have
M

APPENDIX B. APPENDIX TO CHAPTER 5 178

Now we can calculate the second moment using the MGF as follows, note that

= E [Mj, (0)eq(0)e1 (0) + Mo, (0)e5(0)e1(0) + M, (0)eq(0)€{ (0) + 2Mo,, (0)en(0)e; (0)]

M
= E92 + Z 2Var (a;) + Z (1— e -1 QVar (G;) — 2 Z e_(i_l)h)Van
=1
r M
— E6?, + Var(a) |e —2Mh _ | 4 9o Z (—2(i—1 (2i1)h)]
L i=1

2M—1
=E67, + Var(a) [e " —1+2) (=1)'e Zh]
=0

2 O Y 2 — 2¢ MR
=]EQM + Var(a) _6 —1 + W}
_ RO, + Var(a)(1 — ey [1= e

M 14+eh

APPENDIX B. APPENDIX TO CHAPTER 5 179

B.2 Proofs of Lemmas

Proof of Lemma B.1.1

Proof. We proceed by induction. Clearly the result holds for n = 1. Now assume the

result holds for all n < k, we prove the result for n = k + 1 as follows

r D (5) = r o r®(s)

- (=iem)

B sekh e (1 — s(1 — e~kh))
1 —s(l—e*h) 1 —s(1—eHh) —sekh(1 —eh)
so—(k+Dh

1 —s(1— e DRy’

Thus the result holds for all n € N by induction. m

Proof of Lemma B.1.2

Proof. Once again we proceed by induction. Clearly the result holds for n = 1. Now
assume the result holds for all n < k. Using Lemma B.1.1, we prove the result for

n=Fk+ 1 as follows

: i —hy] —kh se™(1—e™)
[0 -] = 1= -) 1 F =)

=0

= [1—s(1 — e7)] [1 —s(1- e—(k+1>h)}

1 — (1 — e—Fh)

= [1—s(1— e *DM)]

Thus the result holds for all n € N by induction. O

APPENDIX B. APPENDIX TO CHAPTER 5 180

B.3 CIR Parameter Choice

As mentioned in Section 5.3, the standard CIR process has more parameters than

those presented. The full form for the CIR process is as follows
b, = b(a — 0,)dt + o+/6,dWV,, (B.3.1)

where a, b and o are parameters to be chosen. This leads to a Gamma(2ab/a?, 2b/5?)
stationary distribution. For our purposes, the second parameter of the gamma sta-
tionary distribution can be set arbitrarily, thus it is natural to set 2b = o> which leads

to a Gamma(a, 1) stationary distribution and a process of the following form
d@t = b(a — Ht)dt + Qbetth

Fix the stepsize h, and use the slight abuse of notation that 6,, = 0,,,. The process

has the following transition density

1—e
2

) e—bh
Oms1 | O = O ~ W WX (2“’219’”1_—@%)'

Using the MGF of a non-central chi-square distribution we find

My, (s) = [1 = s(1 — e M| ™ exp [$fpe—Mbh }

1 —s(1 —eMbh)

Clearly b and h are unidentifiable. Thus we arbitrarily set b = 1.

B.4 Stochastic Slice Sampler for Dirichlet Processes

Dirichlet Processes

The Dirichlet process (DP) (Ferguson, 1973) is parameterised by a scale parameter

a € R.g and a base distribution Gy and is denoted DP(Gg,«). A formal definition

APPENDIX B. APPENDIX TO CHAPTER 5 181

is that G is distributed according to DP(Gy,«) if for all & € N and k-partitions

{By, ..., By} of the space of interest
(G(BY), ... G(By)) ~ Dir(aGo(By), ..., aGo(By)

More intuitively, suppose we simulate 6,...0y from G. Then integrating out G

(Blackwell and MacQueen, 1973) we can represent 6y conditional on 6_y as
1 = a
On |01,...,0n 1 ~ ——— 0p, + ——— B.4.1
N O N—1+az 01+N—1+aG0’ ()

i=1

where dy is the distribution concentrated at 6.
An explicit construction of a DP exists due to Sethuraman (1994), known as the
stick-breaking construction. The slice sampler we develop in this section is based on

this construction. For j =1,2,..., set V; ~ Beta(1,a) and 6; ~ Gy. Then the stick

breaking construction is given by

1

<.
|

wj =V, | [(1—V) (B.4.2)
k=1
G~ widy,, (B.4.3)
j=1

and we have G ~ DP(Gy,).

Slice sampling Dirichlet process mixtures

We focus on sampling from Dirichlet process mixture models defined by
Xi | 0; ~ F(6,)
0| G~G

G | Go,a ~ DP(Gy,).

APPENDIX B. APPENDIX TO CHAPTER 5 182

A popular MCMC algorithm for sampling from this model is the slice sampler, origi-
nally developed by Walker (2007) and further developed by Papaspiliopoulos (2008);
Kalli et al. (2011). The slice sampler is based directly on the stick-breaking con-
struction (B.4.2), rather than the sequential (Pélya urn) formulation of (B.4.1). This
makes it a more natural approach to develop a stochastic sampler from; since the
stochastic sampler relies on conditional independence assumptions. The slice sampler
can be extended to other Bayesian nonparametric models quite naturally, from their
corresponding stick breaking construction.

We want to make inference on a Dirichlet process using the stick breaking con-
struction directly. Suppose the mixture distribution F', and the base distribution
G admit densities f and go. Introducing the variable z, which determines which

component z is currently allocated to, we can write the density as follows
p(z|lw,0,2) x w, f(x]6,).

Theoretically we could now use a Gibbs sampler to sample conditionally from z,
and w. However this requires updating an infinite number of weights, similarly z is
drawn from a categorical distribution with an infinite number of categories. To get
around this Walker (2007) introduces another latent variable u, such that the density
is now

p(z|w,0,z,u) x 1(u < w,) f(x]6,),

so that the full likelihood is given by

N
p(X|w, 8,2z, 1) H 1(w; < wy,)f(xi]0s,). (B.4.4)

i=1

APPENDIX B. APPENDIX TO CHAPTER 5 183

Walker (2007) shows that in order for a standard Gibbs sampler to be valid given
(B.4.4), the number of weights w; that needs to be sampled given this new latent
variable is now finite, and given by k*, where k* is the smallest value such that
Zle w; > 1—u,.

The Gibbs algorithm can now be stated as follows, note we have included an

improvement suggested by Papaspiliopoulos (2008), in how to sample v;.

e Sample the slice variables u, given by u; | w,z ~ U(0,w,,) for i = 1,..., N.

Calculate ©v* = minu.

e Delete or add components until the number of current components £* is the

k*
smallest value such that u* <1—3"7 w;.

e Draw new component allocations z; for i =1,..., N, using

p(zi = jloi, i, w, 0) o< L(w; > u;) f(x;]60).

e For j < k*, sample new component parameters ¢; from

p(0;1x,2) o< go(6;) Hi:zi:j f(:]6;)

e For 7 < k* calculate simulate new stick breaks v from

vj | 2z, ~ Beta (1 +m;, a + Ziﬂl ml>. Here m; == YN 1.._;.

e Update w using the new v: w; = v; [],_;(1 —vj).

Stochastic Sampler

The conditional independence of each update of the slice sampler introduced in Section

B.4 makes it possible to adapt it to a stochastic variant. Suppose we update 6 and

APPENDIX B. APPENDIX TO CHAPTER 5 184

v given a minibatch of the z and u parameters. Then since the z and u parameters
are just updated from the marginal of the posterior, only updating a minibatch of
these parameters at a time would leave the posterior as the invariant distribution.
Our exact MCMC procedure is similar to that in the R package PReMiuM (Liverani
et al., 2015), though they do not use a stochastic sampler. First define the following:
Z* =maxz; S C{l,..., N} is the current minibatch; ©* = minug; £* is the smallest

value such that 25:1 w; > 1 —wu*. Then our updates proceed as follows:

e Recalculate Z* and S (note this can be done in O(n) time since only n z values

changed).

e For j =1,..., 7" sample v; stochastically with SCIR from

vj |z, ~ Beta(l +m;, o+ Zijﬂ my). Here mj = N/ny . 1.

e Update w; using the new v: w; = v; [[,;(1 —v;).

e For j =1,...,Z" sample 0; stochastically with SGMCMC from
p(05]x,2) o< go(0;) T1g, f(wilb;). Here Sj = {i: 2z =j and i € S}.

e For i € S sample the slice variables u; |w,z ~ U(0, w,,).

e Sample « if required. Using Escobar and West (1995), for our example we as-
sume a Gamma(by, by) prior so that « | vy.z« ~ Gamma(b + 7%, bg—Z]K:*l log(1—

v;))-

e Recalculate u*. Sample additional w; from the prior, until £* is reached. For

j=(Z*+1),...,k* sample additional ¢, from the prior.

APPENDIX B. APPENDIX TO CHAPTER 5 185
e For i € S, sample z;, where P(z; = jlu;, w, 0,x) o< 1(w; > w;) f(x;]6;).

Note that for our particular example, we have the following conditional update for
6 (ignoring minibatching for simplicity):

6, | zj,x ~ Dirichlet a+2xi1,...,a+2xid

iESj iESj
B.5 Experiments

Synthetic

We now fully explain the distance measure used in the synthetic experiments. Sup-
pose we have random variables X taking values in R with cumulative density func-
tion (CDF) F. We also have an approximate sample from X, X with empirical
density function F. The Kolmogorov-Smirnov distance dxg between X and X is de-

fined by dis(X,X) = sup,cp

F(z)—F (x)H . However the Dirichlet distribution is
multi-dimensional, so we measure the average Kolmogorov-Smirnov distance across
dimensions by using the Rosenblatt transform (Rosenblatt, 1952).

Suppose now that X takes values in RY. Define the conditional CDF of X =
| Xp—1 = Tp—1, ..., X1 = 1 to be F(xy|X1,(x-1)). Suppose we have an approximate
sample from X, which we denote x™, for m = 1, ... M. Define Fj to be the empirical
CDF defined by the samples F(x§m)|xgr8._l)). Then Rosenblatt (1952) showed that if
X is a true sample from X then 3 ; should be the uniform distribution and independent

of F}, for k # j. This allows us to define a Kolmogorov-Smirnov distance measure

APPENDIX B. APPENDIX TO CHAPTER 5 186

across multiple dimensions as follows

Where here applying Rosenblatt (1952), F;(X) is just the uniform distribution.
The full posterior distributions for the sparse and dense experiments are as follows:
Waparse | 2 ~ Dir [800.1,100.1,100.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1],
Wdense | 2 ~ Dir [112.1,119.1,92.1,98.1,95.1,96.1,102.1,92.1,91.1, 103.1] .

For each of the five random seeds, we pick the stepsize giving the best dxg for SGRLD

and SCIR from the following options:

Method | A

SCIR 1.0 bHe-1 1le-1 5He-2 1e-2 bHe-3 1le-3

SGRLD | be-1 1le-1 5e-2 1e-2 be-3 1le-3 be-4d 1le4

Table B.5.1: Stepsizes for the synthetic experiment

Latent Dirichlet Allocation

As mentioned in the main body, we use a decreasing stepsize scheme of the form
hpm = h(1+m/7)7". We do this to be fair to SGRLD, where the best performance is
found by using this decreasing scheme (Patterson and Teh, 2013; Ma et al., 2015); and
this will probably reduce some of the bias due to the stepsize h. We find a decreasing
stepsize scheme of this form also benefits SCIR, so we use it as well. Notice that we
find similar optimal hyperparameters for SGRLD to Patterson and Teh (2013). Table

B.5.2 fully details the hyperparameter settings we use for the LDA experiment.

APPENDIX B. APPENDIX TO CHAPTER 5 187

Method | h T kK« 6] K n Gibbs Samples

CIR 0.5 10. 33 01 0.5 100 50 200

SGRLD | 0.01 1000. .6 0.01 0.0001 100 50 200

Table B.5.2: Hyperparameters for the LDA experiment

Bayesian Nonparametric Mixture

For details of the stochastic slice sampler we use, please refer to Section B.4. Figure
B.5.3 details full hyperparameter settings for the Bayesian nonparametric mixture
experiment. Note that hy corresponds to the stepsizes assigned for sampling the 6
parameters; while hpp corresponds to the stepsizes assigned for sampling from the

weights w for the Dirichlet process.

Method | hg hpp a K n

CIR 0.1 0.1 0.5 20 1000

SGRLD | 0.001 0.005 0.001 30 1000

Table B.5.3: Hyperparameters for the Bayesian nonparametric mixture experiment

Bibliography

R. Abraham, J. E. Marsden, and R. Ratiu. Manifolds, Tensor Analysis, and Appli-

cations, volume 2. Springer-Verlag, 1988.

Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sampling
via stochastic gradient Fisher scoring. In Proceedings of the 29th International

Conference on Machine Learning, pages 1591-1598, 2012.

Sungjin Ahn, Anoop Korattikara, Nathan Liu, Suju Rajan, and Max Welling. Large-
scale distributed Bayesian matrix factorization using stochastic gradient MCMC.

In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 9-18, 2015.

JJ Allaire, Dirk Eddelbuettel, Nick Golding, and Yuan Tang. TensorFlow: R Interface

to TensorFlow, 2016. URL https://github.com/rstudio/tensorflow.

Jack Baker, Paul Fearnhead, Emily B. Fox, and Christopher Nemeth. Control variates
for stochastic gradient MCMC. Statistics and Computing, 2018. URL https:

//doi.org/10.1007/s11222-018-9826-2. To Appear.

188

https://github.com/rstudio/tensorflow
https://doi.org/10.1007/s11222-018-9826-2
https://doi.org/10.1007/s11222-018-9826-2

BIBLIOGRAPHY 189

A. D. Barbour. Stein’s method and poisson process convergence. Journal of Applied

Probability, 25:175-184, 1988.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On markov chain monte carlo

methods for tall data. Journal of Machine Learning Research, 18(47):1-43, 2017.

Bo Martin Bibby, Ib Michael Skovgaard, and Michael Sgrensen. Diffusion-type models
with given marginal distribution and autocorrelation function. Bernoulli, 11(2):

191-220, 2005.

Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The zig-zag process and super-
efficient sampling for Bayesian analysis of big data. The Annals of Statistics, 2018a.

To Appear.

Joris Bierkens, Gareth Roberts, and Pierre-Andr Zitt. Ergodicity of the zigzag process.

Available at https://arxiv.org/abs/1712.09875, 2018b.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural net-
works and discriminant analysis in predicting forest cover types from cartographic

variables. Computers and electronics in agriculture, 24(3):131-151, 1999.

David Blackwell and James B. MacQueen. Ferguson distributions via Polya urn

schemes. The Annals of Statistics, 1(2):353-355, 1973.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation.

Journal of Machine Learning Research, 3:993-1022, 2003.

https://arxiv.org/abs/1712.09875

BIBLIOGRAPHY 190

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of the 19th International Conference on Computational Statistics, pages

177-187. Springer, 2010.

Alexandre Bouchard-Coté, Sebastian J. Vollmer, and Arnaud Doucet. The Bouncy
Particle Sampler: A nonreversible rejection-free Markov chain Monte Carlo method.

Journal of the American Statistical Association, 113(522):855-867, 2018.

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference

on Uncertainty in Artificial Intelligence, pages 43-52, 1998.

Francois Caron and Emily B Fox. Sparse graphs using exchangeable random measures.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(5):

1295-1366, 2017.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jigiang Guo, Peter Li, and Allen Riddell.

Stan: A probabilistic programming language. Journal of Statistical Software, 76

(1), 2017.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2(3):1-27, 2011.

URL http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Niladri S Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L. Bartlett, and Michael I

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY 191

Jordan. On the theory of variance reduction for stochastic gradient Monte Carlo.

Available at https://arxiv.org/abs/1802.05431v1, 2018.

Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic
gradient MCMC algorithms with high-order integrators. In Advances in Neural

Information Processing Systems 28, pages 2278-2286, 2015.

Changyou Chen, Wenlin Wang, Yizhe Zhang, Qinliang Su, and Lawrence Carin. A
convergence analysis for a class of practical variance-reduction stochastic gradient

MCMC. Available at https://arxiv.org/abs/1709.01180, 2017.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte
Carlo. In Proceedings of the 31st International Conference on Machine Learning,

pages 1683-1691, 2014.

Xiang Cheng, Niladri S. Chatterji, Yasin Abbasi-Yadkori, Peter L. Bartlett, and
Michael I. Jordan. Sharp convergence rates for Langevin dynamics in the non-

convex setting. Available from https://arxiv.org/abs/1805.01648, 2018.

John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross. A theory of the term

structure of interest rates. Fconometrica, 53(2):385-407, 1985.

Arnak S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and
log-concave densities. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 79(3):651-676, 2016.

Arnak S Dalalyan and Avetik G Karagulyan. User-friendly guarantees for the

https://arxiv.org/abs/1802.05431v1
https://arxiv.org/abs/1709.01180
https://arxiv.org/abs/1805.01648

BIBLIOGRAPHY 192

Langevin Monte Carlo with inaccurate gradient. Available at https://arxiv.

org/abs/1710.00095, 2017.

Mark HA Davis. Piecewise-deterministic markov processes: A general class of non-
diffusion stochastic models. Journal of the Royal Statistical Society. Series B (Sta-

tistical Methodology), pages 353-388, 1984.

George Deligiannidis, Alexandre Bouchard-Coté, and Arnaud Doucet. Exponential

Ergodicity of the Bouncy Particle Sampler. Annals of Statistics, 2018. To Appear.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hart-
mut Neven. Bayesian sampling using stochastic gradient thermostats. In Advances

in Neural Information Processing Systems 27, pages 3203-3211, 2014.

Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos,
Alexander J Smola, and Eric P Xing. Variance reduction in stochastic gradient
Langevin dynamics. In Advances in Neural Information Processing Systems 29,

pages 1154-1162. Curran Associates, Inc., 2016.

David B Dunson and Chuanhua Xing. Nonparametric Bayes modeling of multivariate
categorical data. Journal of the American Statistical Association, 104(487):1042—-

1051, 2009.

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the un-
adjusted Langevin algorithm. The Annals of Applied Probability, 27(3):1551-1587,

2017a.

https://arxiv.org/abs/1710.00095
https://arxiv.org/abs/1710.00095

BIBLIOGRAPHY 193

Alain Durmus and FEric Moulines. High-dimensional Bayesian inference via
the unadjusted Langevin algorithm. 2017b. Available at https://hal.

archives-ouvertes.fr/hal-01304430/.

Michael D Escobar and Mike West. Bayesian density estimation and inference using

mixtures. Journal of the American Statistical Association, 90(430):577-588, 1995.

Paul Fearnhead, Joris Bierkens, Murray Pollock, and Gareth O. Roberts. Piecewise
deterministic Markov processes for continuous-time Monte Carlo. Statistical Sci-

ence, 33(3):386-412, 2018.

Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. The

Annals of Statistics, 1(2):209-230, 1973.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical

Learning, volume 1. Springer-Verlag, 2001.

Nial Friel, Antonietta Mira, and Chris Oates. Exploiting multi-core architectures for
reduced-variance estimation with intractable likelihoods. Bayesian Analysis, 11(1):

215245, 2016.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, PAMI-6(6):721-741, 1984.

Charles J Geyer. Markov chain Monte Carlo lecture notes, 2005. Unpublised lecture

notes. Available from http://www.stat.umn.edu/geyer/£05/8931/n1998.pdf.

https://hal.archives-ouvertes.fr/hal-01304430/
https://hal.archives-ouvertes.fr/hal-01304430/
http://www.stat.umn.edu/geyer/f05/8931/n1998.pdf

BIBLIOGRAPHY 194

Mike Giles, Tigran Nagapetyan, Lukasz Szpruch, Sebastian Vollmer, and Konstanti-
nos Zygalakis. Multilevel Monte Carlo for scalable Bayesian computations. Avail-

able from https://arxiv.org/abs/1609.06144, 2016.

Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 73(2):123-214, 2011.

Jack Gorham, Andrew B Duncan, Sebastian J Vollmer, and Lester Mackey. Measuring
sample quality with diffusions. Available from https://arxiv.org/abs/1611.

06972, 2016.

Peter J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82(4):711-732, 1995.

Andreas Griewank and Andrea Walther. Fuvaluating Derivatives: Principles and Tech-

niques of Algorithmic Differentiation, volume 2. STAM, 2008.

W. K. Hastings. Monte Carlo sampling methods using Markov Chains and their

applications. Biometrika, 57(1):97-109, 1970.

Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning

Research, 15:1593-1623, 2014.

Alan M. Horowitz. A generalized guided Monte Carlo algorithm. Physics Letters B,

268(2):247 — 252, 1991.

https://arxiv.org/abs/1609.06144
https://arxiv.org/abs/1611.06972
https://arxiv.org/abs/1611.06972

BIBLIOGRAPHY 195

Maria Kalli, Jim E Griffin, and Stephen G Walker. Slice sampling mixture models.

Statistics and Computing, 21(1):93-105, 2011.

Rafail Khasminskii. Stochastic stability of differential equations, volume 66. Springer-

Verlag, 2011.

Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential

Equations, volume 1. Springer-Verlag, 1992.

Damien Lamberton and Gilles Pages. Recursive computation of the invariant distri-

bution of a diffusion. Bernoulli, 8(3):367-405, 2002.

Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer, 2012.

Yann LeCun and Corinna Cortes. MNIST Handwritten Digit Database, 2010. URL

http://yann.lecun.com/exdb/mnist/.

B. Leimkuhler and X. Shang. Adaptive thermostats for noisy gradient systems. SIAM

Journal on Scientific Computing, 38(2):A712-A736, 2016.

P. A. W Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes

by thinning. Naval Research Logistics Quarterly, 26(3):403-413.

Cheng Li, Sanvesh Srivastava, and David B. Dunson. Simple, scalable and accurate

posterior interval estimation. Biometrika, 104(3):665-680, 2017.

S Li, A Beygelzimer, S Kakadet, J Langford, S Arya, and D Mount. FNN: fast nearest
neighbor search algorithms and applications. R package version 1.1. Available at

https://cran.r-project.org/web/packages/FNN/, 2013.

http://yann.lecun.com/exdb/mnist/
https://cran.r-project.org/web/packages/FNN/

BIBLIOGRAPHY 196

Wenzhe Li, Sungjin Ahn, and Max Welling. Scalable MCMC for mixed membership
stochastic blockmodels. In Proceedings of the 19th International Conference on

Artificial Intelligence and Statistics, pages 723-731, 2016.

Silvia Liverani, David Hastie, Lamiae Azizi, Michail Papathomas, and Sylvia Richard-
son. PReMiuM: An R package for profile regression mixture models using Dirichlet

processes. Journal of Statistical Software, 64(7):1-30, 2015.

David J. Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. WinBUGS -
A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics

and Computing, 10(4):325-337, 2000.

Yi-An Ma, Tiangi Chen, and Emily Fox. A complete recipe for stochastic gradient
MCMC. In Advances in Neural Information Processing Systems 28, pages 2917—

2925. 2015.

J. Mattingly, A. Stuart, and M. Tretyakov. Convergence of numerical time-averaging
and stationary measures via Poisson equations. SIAM Journal on Numerical Anal-

ysis, 48(2):552-577, 2010.

J.C. Mattingly, A.M. Stuart, and D.J. Higham. Ergodicity for SDEs and approxima-
tions: locally Lipschitz vector fields and degenerate noise. Stochastic Processes and

their Applications, 101(2):185 — 232, 2002. ISSN 0304-4149.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing ma-

chines. The Journal of Chemical Physics, 21(6):1087-1092, 1953.

BIBLIOGRAPHY 197

Sean P. Meyn and R. L. Tweedie. Stability of Markovian processes I: criteria for

discrete-time chains. Advances in Applied Probability, 24(3):542574, 1992.

Sean P Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability, vol-

ume 1. Springer-Verlag, 1993a.

Sean P Meyn and Richard L Tweedie. Stability of Markovian processes II: Continuous-
time processes and sampled chains. Advances in Applied Probability, 25(3):487-517,

1993b.

Sean P Meyn and Richard L. Tweedie. Stability of Markovian processes I1I: Foster—
Lyapunov criteria for continuous-time processes. Advances in Applied Probability,

25(3):518-548, 1993c.

Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David Dunson. Scalable and
robust Bayesian inference via the median posterior. In Proceedings of the 31st

International Conference on Machine Learning, volume 32, pages 1656-1664, 2014.

Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David B. Dunson. Robust
and scalable Bayes via a median of subset posterior measures. Journal of Machine

Learning Research, 18(124):1-40, 2017.

Antonietta Mira, Reza Solgi, and Daniele Imparato. Zero variance Markov chain
Monte Carlo for Bayesian estimators. Statistics and Computing, 23(5):653-662,

2013.

Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic matrix factorization. In

Advances in Neural Information Processing Systems 20, pages 1257-1264, 2008.

BIBLIOGRAPHY 198

Tigran Nagapetyan, Andrew Duncan, Leonard Hasenclever, Sebastian J Vollmer,
Lukasz Szpruch, and Konstantinos Zygalakis. The true cost of stochastic gradi-

ent Langevin dynamics. Available at https://arxiv.org/abs/1706.02692, 2017.

Radford M Neal. MCMC using Hamiltonian Dynamics. In Handbook of Markov Chain

Monte Carlo. Chapman & Hall, 2010.

Willie Neiswanger, Chong Wang, and Eric P. Xing. Asymptotically exact, embar-
rassingly parallel MCMC. In Proceedings of the 30th Conference on Uncertainty in

Artificial Intelligence, pages 623-632. AUAI Press, 2014.

Christopher Nemeth and Chris Sherlock. Merging MCMC subposteriors through

Gaussian-process approximations. Bayesian Analysis, 13(2):507-530, 2018.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574—

1609, 2009.

Bernt Oksendal. Stochastic Differential Equations, volume 6. Springer-Verlag, 2003.

Theodore Papamarkou, Antonietta Mira, Mark Girolami, et al. Zero variance differ-
ential geometric Markov chain Monte Carlo algorithms. Bayesian Analysis, 9(1):

97-128, 2014.

Omiros Papaspiliopoulos. A note on posterior sampling from Dirichlet mixture mod-
els. Technical Report. Available at http://wrap.warwick.ac.uk/35493/1/WRAP_

papaspliiopoulos_08-20wv2.pdf, 2008.

https://arxiv.org/abs/1706.02692
http://wrap.warwick.ac.uk/35493/1/WRAP_papaspliiopoulos_08-20wv2.pdf
http://wrap.warwick.ac.uk/35493/1/WRAP_papaspliiopoulos_08-20wv2.pdf

BIBLIOGRAPHY 199

Sam Patterson and Yee Whye Teh. Stochastic gradient Riemannian Langevin dy-
namics on the probability simplex. In Advances in Neural Information Processing

Systems 26, pages 3102-3110, 2013.

I G Petrovskii. Lectures on Partial Differential Equations. GITTL, Moscow (1950).

English translation. Interscience, New York, 1954.

TensorFlow Development Team. TensorFlow: Large-Scale Machine Learning on Het-

erogeneous Systems, 2015. URL http://tensorflow.org.

Martyn Plummer. JAGS: A program for analysis of Bayesian graphical models using

Gibbs sampling, 2003. URL http://mcmc-jags.sourceforge.net/.

Murray Pollock, Paul Fearnhead, Adam M Johansen, and Gareth O Roberts. The
scalable Langevin exact algorithm: Bayesian inference for big data. Available at

https://arxiv.org/abs/1609.03436, 2016.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via
stochastic gradient Langevin dynamics: a nonasymptotic analysis. In Proceedings

of the 2017 Conference on Learning Theory, volume 65, pages 1674-1703, 2017.

R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, 2008. URL http://www.R-project.

org.

Brian D Ripley. Stochastic simulation. John Wiley & Sons, 2009.

http://tensorflow.org
http://mcmc-jags.sourceforge.net/
https://arxiv.org/abs/1609.03436
http://www.R-project.org
http://www.R-project.org

BIBLIOGRAPHY 200

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals

of Mathematical Statistics, 22(3):400-407, 1951.

Christian Robert and George Casella. Monte Carlo Statistical Methods, volume 2.

Springer-Verlag, 2004.

Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling of discrete approximations
to Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 60(1):255-268, 1998.

Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov chains and

MCMC algorithms. Probability Surveys, 1:20-71, 2004.

Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of Langevin

distributions and their discrete approximations. Bernoulli, 2(4):341-363, 1996.

Murray Rosenblatt. Remarks on a multivariate transformation. The Annals of Math-

ematical Statistics, 23(3):470-472, 1952,

Issei Sato and Hiroshi Nakagawa. Approximation analysis of stochastic gradient
Langevin dynamics by using Fokker-Planck equation and Ito process. In Pro-
ceedings of the 31st International Conference on Machine Learning, pages 982-990.

PMLR, 2014.

Steven L. Scott, Alexander W. Blocker, Fernando V. Bonassi, Hugh A. Chipman,
Edward 1. George, and Robert E. McCulloch. Bayes and big data: The consensus
Monte Carlo algorithm. International Journal of Management Science and Engi-

neering Management, 11(2):78-88, 2016.

BIBLIOGRAPHY 201

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica,

4(2):639-650, 1994.

Sanvesh Srivastava, Volkan Cevher, Quoc Dinh, and David Dunson. WASP: Scalable
Bayes via barycenters of subset posteriors. In Proceedings of the 18th International

Conference on Artificial Intelligence and Statistics, volume 38, pages 912-920, 2015.

Denis Talay and Luciano Tubaro. Expansion of the global error for numerical schemes
solving stochastic differential equations. Stochastic Analysis and Applications, 8(4):

483-509, 1990.

Yee Whye Teh, Alexandre H Thiéry, and Sebastian J Vollmer. Consistency and fluc-
tuations for stochastic gradient Langevin dynamics. Journal of Machine Learning

Research, 17(7):1-33, 2016.

Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and
David M. Blei. Edward: A library for probabilistic modeling, inference, and criti-

cism. Available at https://arxiv.org/abs/1610.09787, 2016.

Sebastian J Vollmer, Konstantinos C Zygalakis, et al. (Non-) asymptotic properties
of stochastic gradient Langevin dynamics. Journal of Machine Learning Research,

17(159):1-48, 2016.

Stephen G Walker. Sampling the Dirichlet mixture model with slices. Communications

in Statistics, 36(1):45-54, 2007.

Hanna M Wallach, Tain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation

https://arxiv.org/abs/1610.09787

BIBLIOGRAPHY 202

methods for topic models. In Proceedings of the 26th International Conference on

Machine Learning, pages 1105-1112, 20009.

Ming Chen Wang and George Eugene Uhlenbeck. On the theory of the Brownian

motion ii. Reviews of Modern Physics, 17(2-3):323, 1945.

Xiangyu Wang and David B Dunson. Parallelizing MCMC via Weierstrass sampler.

Available at https://arxiv.org/abs/1312.4605, 2013.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dy-
namics. In Proceedings of the 28th International Conference on Machine Learning,

pages 681-688, 2011.

David Williams. Probability with Martingales. Cambridge University Press, 1991.

Minjie Xu, Balaji Lakshminarayanan, Yee Whye Teh, Jun Zhu, and Bo Zhang. Dis-
tributed Bayesian posterior sampling via moment sharing. In Advances in Neural

Information Processing Systems 27, pages 3356-3364. 2014.

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of Langevin
dynamics based algorithms for nonconvex optimization. In Advances in Neural

Information Processing Systems 31, pages 3126-3137. 2018.

K. C. Zygalakis. On the existence and the applications of modified equations for
stochastic differential equations. SIAM Journal on Scientific Computing, 33(1):

102-130, 2011.

https://arxiv.org/abs/1312.4605

	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Bayesian Inference
	Contributions and Thesis Outline

	Monte Carlo Methods and SGMCMC
	Monte Carlo
	Markov Chain Monte Carlo
	Markov Chains and Stochastic Stability
	Gibbs Update
	Metropolis–Hastings Update

	Itô Processes for MCMC
	Markov Processes and Stochastic Stability
	Itô Processes and the Langevin Diffusion
	The Euler–Maruyama Method and ULA

	Stochastic Gradient Markov Chain Monte Carlo
	Background
	Comparison to Divide-and-Conquer MCMC

	Control Variates for Stochastic Gradient MCMC
	Introduction
	Stochastic Gradient MCMC
	Stochastic Gradient Langevin Dynamics

	Control Variates for SGLD Efficiency
	Control Variates for SGMCMC
	Variance Reduction
	Computational Cost of SGLD-CV
	Setup Costs

	Post-processing Control Variates
	Experiments
	Logistic Regression
	Probabilistic Matrix Factorisation
	Latent Dirichlet Allocation

	Discussion
	Acknowledgements

	sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
	Introduction
	Introduction to MCMC and Available Software
	Stochastic Gradient MCMC
	Stochastic Gradient Langevin Dynamics
	Stochastic Gradient Hamiltonian Monte Carlo
	Stochastic Gradient Nosé–Hoover Thermostat
	Stochastic Gradient MCMC with Control Variates

	Brief TensorFlow Introduction
	Declaring TensorFlow Tensors
	TensorFlow Operations

	Package Structure and Implementation
	Example Usage
	Example Usage: Storage Constraints

	Simulations
	Gaussian Mixture
	Bayesian Logistic Regression
	Bayesian Neural Network

	Discussion

	Large-Scale Stochastic Sampling from the Probability Simplex
	Introduction
	Stochastic Gradient MCMC on the Probability Simplex
	Stochastic Gradient MCMC
	SGMCMC on the Probability Simplex
	SGRLD on Sparse Simplex Spaces

	The Stochastic Cox-Ingersoll-Ross Algorithm
	Adapting for Large Datasets
	SCIR on Sparse Data

	Theoretical Analysis
	Experiments
	Latent Dirichlet Allocation
	Bayesian Nonparametric Mixture Model

	Discussion

	Conclusions
	Discussion
	Future Work

	Appendix to Chapter 3
	Computational Cost Proofs
	Post-processing Proofs
	Experiments

	Appendix to Chapter 5
	Proofs
	Proofs of Lemmas
	CIR Parameter Choice
	Stochastic Slice Sampler for Dirichlet Processes
	Experiments

	Bibliography

