A genetic algorithm based grey goal programming (G 3) approach for parts supplier evaluation and selection

Barak, Sasan (2012) A genetic algorithm based grey goal programming (G 3) approach for parts supplier evaluation and selection. International Journal of Production Research, 50 (16). pp. 4612-4630. ISSN 0020-7543

Full text not available from this repository.


The problem of part supplier selection is a major concern for all manufacturers when seeking to enhance the products’ quality and productivity. The objective of this paper is to propose an integrated genetic algorithm based grey goal programming (G3) approach to solve the part supplier selection problem. The main factor in part supplier selection is the assembly relation of the parts so as to find the suitable suppliers combination for the parts of a product. We first identify the main factors affected on supplier selection. We then present a grey-based goal programming model to work as the fitness function to evaluate the suppliers with respect to the total deviation the factors have from the ideal values. Since the objective is to find the best solution, a genetic algorithm is used to solve this problem for faster and better evaluation. The novelty of this integrated approach is to apply both qualitative and quantitative factors at once in one model and to use the grey theory to cover the lack of information of qualitative factors in order to find a solution in a near real situation.

Item Type: Journal Article
Journal or Publication Title: International Journal of Production Research
Uncontrolled Keywords: /dk/atira/pure/subjectarea/asjc/2200/2209
Departments: Lancaster University Management School > Management Science
ID Code: 130923
Deposited By: ep_importer_pure
Deposited On: 29 Jan 2019 16:40
Refereed?: Yes
Published?: Published
Last Modified: 06 Feb 2020 03:38
URI: https://eprints.lancs.ac.uk/id/eprint/130923

Actions (login required)

View Item View Item