
i

Abstract

The aim of the project was to design a Low Vision Aid using commercially

available computing and/or entertainment hardware. The aid was designed

primarily for the application of reading. A standard PC running Windows is the

chosen platform for development. The design of a software application for

scrolling enlarged text across a screen is presented. The problems of Line Tearing

and slow rendering times from the PC display refresh were investigated. The

Win32 GDI, OpenGL and DirectDraw graphics libraries were investigated for

possible solutions to these problems. The final application was implemented

using DirectDraw.

ii

Declaration of Or iginality

I declare that this thesis is my original work except where stated.

__

iii

Table of Contents

Abstract i

Declaration of Or iginality ii

Table of Contents iii

L ist of Tables vi

L ist of Figures vii

Glossary viii

Conventions ix

Chapter 1 Introduction 1

1.1 Aims 1

1.2 Motivation 1

1.3 Requirements 3

1.4 Project Planning 3

1.4.1 Research 3

1.4.2 Development 4

1.4.3 Trials 4

1.5 Report overview 5

Chapter 2 Background 6

2.1 Introduction 6

2.1.1 Macular Degeneration (MD) 6

2.1.2 Reading with macular degeneration 7

2.2 Reading Aids 8

2.2.1 Traditional LVAs 8

2.2.2 CCTV 9

2.2.3 Text to speech 10

2.2.4 PCs as Low Vision Aids 11

2.3 A PC based LVA: Motivation 11

2.3.1 LVA for computer use 11

2.3.2 LVA for reading only 12

iv

2.4 Summary 13

Chapter 3 Text Scroller Design 14

3.1 Introduction 14

3.2 Software Specification 14

3.2.1 A Generic Class Framework 14

3.2.2 Adapting The MFC Framework 15

3.3 Application Design in MFC 17

3.3.1 GDI 17

3.3.2 Formatting 17

3.3.3 Rendering onto display 18

3.4 Naïve Method for Scrolling 18

3.4.1 Rendering to memory (double buffering) 19

3.4.2 Protecting the buffer 19

3.5 Improved Methods for Scrolling 20

3.5.1 Alphabet Buffer Scrolling 20

3.5.2 Scrolling Window 21

3.6 Scrolling Text Implementation 22

3.6.1 CReaderDoc Initialisation 22

3.6.2 CView Initialisation 22

3.6.3 Calling the scroller 22

3.6.4 Displaying the text 23

3.6.5 Updating the scroll buffer 23

3.6.6 Controlling the application 24

3.7 Analysis 25

3.7.1 Improvements 26

3.8 Summary 26

Chapter 4 Smoothing the Scroller 27

4.1 Introduction 27

4.2 Problem Descr iption 27

4.2.1 Line Tearing 27

4.2.2 Rendering Overheads 28

4.3 Gener ic Solutions 28

4.3.1 Triple Buffering 29

4.3.2 Refresh Synchronisation 30

4.4 Investigation of Graphics L ibrar ies 30

v

4.4.1 GDI 31

4.4.2 OpenGL 31

4.4.3 DirectDraw 34

4.5 Revised Text Scroller 37

4.5.1 The DDGraphics class 37

4.5.2 The DDGraphics back buffer 38

4.5.3 The CreaderView Class 41

4.6 Analysis 41

4.7 Chapter Summary 42

Chapter 5 Feedback 43

5.1 Introduction 43

5.2 A recent development 43

5.3 Feedback on Supernova 43

5.3.1 Interface and control 44

5.3.2 Full screen 44

5.3.3 Text scrolling with speech 44

5.4 Further recommendation 45

5.5 Summary 45

Chapter 6 Summary and Discussion 46

6.1 Project Summary 46

6.2 Still to do 46

6.3 Should have done 47

6.4 Future Work 47

6.4.1 Medical trials 47

6.4.2 Adaptive scrolling 48

6.4.3 Control methods 49

6.4.4 Capture methods 49

6.4.5 Into the future 50

vi

Acknowledgements 51

References 52

Appendix A.1 Initial Scroller Code 54

Appendix A.2 OpenGL Based Code 58

Appendix A.3 DirectDraw Based Code 60

Appendix A.4 Mission Statement 70

List of Tables

Table 3.1 Responsibilities and collaborators for View class CReaderView 16

Table 3.2 Responsibilities and collaborators for Document class CReaderDoc 16

Table 3.3 Responsibilities and collaborators for Frame class CMainFrame 16

Table 4.1 DDGraphics class responsibilities and collaborators 37

vii

List of Figures

Figure 1.1 Map on an eye showing location of the retina and macula 2

Figure 2.1 Fundus image of the retina showing the macula area 6

Figure 2.2 Fundus image of healthy retina (left) compared with macular

degeneration case (right)3. 7

Figure 2.3 Reading view of someone with severe macular degeneration – the left image

 showing normal text, the right showing magnified. 7

Figure 2.4 Typical binocular LVA 8

Figure 2.5 CCTV for reading (left) and head mounted for everyday use (right) 10

Figure 2.6 PC with screen magnifier application 12

Figure 3.1 Simple UML Class diagram for reader application 16

Figure 3.2 Typical MFC modal dialogue for changing text font and colour 18

Figure 3.3 Alphabet buffer method for rendering a string of text 20

Figure 3.4 Scrolling window method for rendering and scrolling a string of text 21

Figure 3.5 Maintaining continuous scrolling text before and after a render 24

Figure 3.6 Screenshot of the initial LVA reader application 25

Figure 4.1 Single thread execution of text scroller application 28

Figure 4.2 Single thread execution of scroller with immediate return blit 29

Figure 4.3 Execution of text scroller with rendering performed in a separate thread 29

Figure 4.4 Video architecture for Windows 95 – indicating both GDI and DD interfaces

between applications and hardware 34

Figure 4.5 Page flipping with three surfaces in DirectDraw 36

Figure 4.6 Simplified UML class diagram including DDGraphics 37

Figure 4.7 Wide buffer emulation using three surfaces in DDGraphics 38

Figure 4.8 Blitting from two surfaces showing split source and destination scrolling windows 39

viii

Glossary

ASCII American Standard Code for Information Interchange

API Application Programming Interface

blit An operation that copies a block of bits

CCTV Closed Circuit Television

CRT Cathode Ray Tube –used for computer monitors

DD DirectDraw

DDI Device Driver Interface

EOG Electro-oculography – tracking minute electrical pulses around the eye

Fundus image Medical image of the back of an eye (retina)

GDI Graphics Display Interface – usually with reference to Win32 GDI

HEL Hardware Emulation Layer

html Hypertext mark-up language

HUD Head-Up Display

LCD Liquid Crystal Display – flat-screen displays

LVA Low Vision Aid

MD Macular Degeneration

MFC Microsoft Foundation Classes

OO Object Oriented (Programming)

PAEP Princess Alexandra Eye Pavilion, Edinburgh

PC Personal Computer

PRL Preferred Retinal Loci

UI User Interface

UML Unified Modelling Language

WIMP Windows, Icons, pull-down Menus and Pointer style interface

Win32 Windows 32-bit – API for Microsoft Windows 95 and NT

ix

Conventions

Coding

Any coding referred to in the main body of text is highlighted in Italic. The coding convention

adopted in the Appendices is as follows:

• Different font used is Cour i er New

• Keywords and return types in Bold

• Comments in Italic and preceded by a double slash (//)

The code provided in the Appendices is merely intended as supplementary examples to the main

text, as such code for dealing with errors and assertions has been removed to aid clarity. The

complete code listing is in the accompanying CD.

Footnotes

Footnotes within the text are indicated using superscript Latin symbols, e.g. ζ, ψ , ξ…

Introduction 1

Chapter 1

Introduction

1.1 Aims

The initial aim of this project was to research and develop a novel aid for people with low vision.

In particular the low vision aid (LVA) was to be designed specifically for the task of reading. The

key elements of the aid were that it should be:

• Effective – it should function at least as well as existing aids.

• Cheap – making use of ‘off the shelf’ technology to be as affordable as possible.

• Useable – convenient and easy to use.

Research into existing aids available for low vision reading was required in order to help build a

specification for the new LVA. An analysis of existing technologies, particularly with displays

and methods of capturing text for reading was also required. The approach was then to build the

text display part of the aid in software on a PC running Windows 95. Following from this it was

planned to perform medical trials of the program on low vision patients at the Princess Alexandra

Eye Pavillion (PAEP.)

Early on in the software implementation phase however, it became apparent that development of

the LVA display would require more work than initially anticipated. Unforeseen problems,

relating to the way in which a PC deals with scrolling graphics, posed a new, more software-

oriented challenge. The aim of the project shifted away from the more general LVA design

towards solving the problems with the display.

1.2 Motivation

Low vision affects nearly one in three of the world’s population. It is generally characterised as

any loss in visual acuity or field that cannot be corrected by lenses or spectacles. The causes of

low vision are varied, but by far the most common is macular degeneration. This is where the

macula, or central part of the retina where frontal vision is dealt with, deteriorates over time1,2,3,4.

See Figure 1.1. The upshot of this is that the sufferer loses all or part of his or her forward vision.

Introduction 2

In order to see properly, sufferers must make greater use of their peripheral or side vision. The

problem with this is that peripheral vision lacks the acuity of forward vision, and as such cannot

make out details such as text or far-off objects. Loss in detail can be partially compensated for by

enlarging or magnifying the article to be viewed. This is the job of the low vision aid.

Figure 1.1 Map on an eye showing location of the retina and macula

Traditional aids such as the telescopic monocular, consisting merely of lenses and a tube (much

like a small hand-held telescope), can be used to magnify objects for viewing, albeit at the cost of

a restricted viewing field. More modern aids based on closed-circuit television, or CCTV

technology help address many of the problems associated with lens based aids, but often at the

price of being too bulky or expensive to use.

The advent of the home computer, together with continual miniaturisation of technology may hold

the key to a better solution. Hardware and software for scanning, processing and displaying text is

relatively cheap – particularly when included as part of a ‘multimedia package’ with most new

home PCs. In addition to scanning paper-based text, the Internet provides a vast source of text

already in electronic form.

Some software already caters for the needs of low vision users. Screen magnifiers and software

text-to-speech readers are all available, but remain largely unused. Part of the problem lies with

the added complexity of a computer interface, and on the focus of an aid being directed at general

purpose computer-use. Additionally, many sufferers of low vision are elderly, and as such are

generally less able or willing to learn how to deal with even the simplest technological devices5.

Introduction 3

1.3 Requirements

The LVA application shall be based around scrolling large text across a screen. Initial

requirements of the LVA are outlined below:

• Real-time navigation – should allow dynamic interactions for moving around the text. In

particular changing speed and direction of the text flow.

• Text fully customisable – attributes such as size, font, contrast and colour can be altered either

dynamically at run-time, or as part of the program set-up procedure.

• Suitable interface - should be designed with a low vision user in mind. Ideally, use of visual

controls, such as buttons and pull-down menus should be kept to a strict minimum.

Some possible future additions to the application may include further navigation features, such as

letter, word or paragraph jumps and or a find/search facility. Some form of audio feedback should

also be considered.

1.4 Project Planning

The project was initially broken into roughly three stages: research, development and trials. In

practice, these stages overlapped, with much of the research continuing right up until the end of

the project. The outcome of each stage is outlined below.

1.4.1 Research

Much of the initial research time was spent talking to doctors and patients at the Princess

Alexandra Eye Pavilion (PAEP) in Edinburgh6. This was used to gain a better understanding of

the problems associated with low vision, in particular with macular degeneration. Additional

material on the subject was obtained from various journals, newsgroups and Internet. Much of the

information on existing electronic aids and their usage was provided by the resource centre of

Edinburgh District Libraries7.

Introduction 4

1.4.2 Development

Based on the requirements obtained from the preliminary research into low vision aids, an initial

specification was drawn up in accordance with the project Mission Statement. The initial software

development was carried out using the Java development package. This was chosen due to the

inherent cross-platform appeal of Java. This would have allowed the final application to be run on

a variety of platforms, ideally leaving scope for a Java applet implementation that could be used

as a web based LVA.

Unfortunately, early into the project it became apparent that the application would be fairly

demanding both processor and memory wise due to the full screen graphics involved. Java was

deemed inappropriate for such intense system usage, and so the lower-level C++ based

Win32/MFC platform was adopted instead.

The first LVA application was then built using the Microsoft Foundation Classes (MFC) on a

Windows 95 based PC. It was at this stage that complications began to surface with the standard

Windows Graphics Device Interface (GDI).

In an effort to find a solution to these complications, the OpenGL and DirectDraw graphics

libraries where investigated at length. Two separate implementations of the application were

developed using these respective libraries. In the end, DirectDraw was chosen for the final

implementation.

1.4.3 Tr ials

The original project Mission Statement specified evaluation of the LVA through extensive patient

trials. Due to the problems mentioned above, these trials were never carried out. An informal

investigation of a similar LVA was however carried out at the Edinburgh Library’s resource

centre later in the project.

Introduction 5

1.5 Report overview

This report is split into six chapters. The contents of which are outlined in brief below:

Chapter 1: Introduction

This chapter introduces the aims and motivations for development of a software LVA.

Outlines the project structure and design process, and gives the application requirements.

Chapter 2: Background

This chapter goes into more detail on the problem of macular degeneration and the

problems with existing reading aids. Supplementary research relevant to the problem is

discussed, together with a brief look at some of the technology available. It also looks at

how this may eventually be utilised for developing LVA.

Chapter 3: Text Scroller Design

This documents the main body of work in the development of the initial scrolling text

application. The specification is given in detail and from this a basic program structure

devised. The implementation of each key element in the design is then summarised,

together with support for decisions made and reference to actual code where relevant. The

operation of the working LVA application is analysed and problems highlighted.

Chapter 4: Smoothing the Scroller

This chapter deals mainly with solving the problems highlighted in Chapter 3. In

particular the problem of line tearing on the display refresh is discussed. Possible

solutions to the problem are considered, which includes a comparison of the OpenGL and

DirectDraw graphic libraries. The design of a revised text scroller application is given and

analysed accordingly.

Chapter 5: Feedback

This is a brief chapter discussing feedback from preliminary trials of a similar program.

Some possible improvements to any future development of the application are suggested.

Chapter 6: Summary and Discussion

Summary of the project with a discussion on future work that may be carried out in this

area. A discussion on the possibility of medical trials into low vision reading using this

technology is also included.

Background 6

Chapter 2

Background

2.1 Introduction

This chapter attempts to provide some background into the problems associated with reading in

low vision sufferers. Existing reading aids are investigated, and the motivations for development

of a new software based aid given.

2.1.1 Macular Degeneration (MD)

Macular degeneration (MD) is one of the most common reasons for severe visual impairment.

Sufferers range from having ‘blurry’ vision to almost complete blindness. In most cases, the

disorder does not prevent them from going about their daily lives, but if the condition deteriorates,

ability to read becomes harder. Although the condition affects many people as they get older, it

can develop at any age through a variety of causes, such as diabetes.

The macula is the area of the retina where most of our central vision is dealt with. A healthy retina

has a large concentration of light receptive cones in the macula; this corresponds to a high

resolution in vision. The highest concentration of these cones is in the centre of the macula at the

fovea, this is where vision is most acute. Blood vessels on the retina tend to flow around the edges

of the macula. Here cones are sparse and hence resolution is low. This is the part that deals with

peripheral (side) vision. Figure 2.1 shows a fundus image from a healthy retina.

Figure 2.1 Fundus image of the retina showing the macula area

Background 7

In cases where the macula has become damaged or obscured, the resolution and contrast

sensitivity of the macula deteriorates and frontal vision suffers as a result. Figure 2.2 shows a

comparison between the fundus image of a healthy retina and that of one with macular

degeneration (MD).

White area shows
damaged macular

Darker area shows
healthy macular

Figure 2.2 Fundus image of healthy retina (left) compared with macular

degeneration case (right)3.

2.1.2 Reading with macular degeneration

It is the brain’s responsibility to direct images to the best suited part of the retina—the Preferred

Retinal Loci (PRL)8. In normal healthy eyes, the PRL is fixed on the central macula and is used

for most vision tasks—particularly with reading, where high resolution is desirable. In cases

where the macula is obscured or damaged, the PRL is forced to fixate on less acute areas of the

retina. This loss in visual acuity can effectively render tasks such as reading almost impossible.

Figure 2.3 shows the likely view of someone with macular degeneration reading both normal and

magnified text.

Figure 2.3 Reading view of someone with severe macular degeneration – the left

image showing normal text, the right showing magnified.

Enlarging or magnifying text can help to compensate, although not correct, this loss in acuity.

Recent studies have also shown that the brain can adopt new reading strategies around the macula

defects. This may involve constantly moving the PRL fixation to suit whatever is being read.

Background 8

2.2 Reading Aids

There is a surprisingly small range of aids available for people with severe vision problems.

Although there are a few electronic (e.g. CCTV) aids, the most common involve antiquated

optical lens technology such as eyeglasses and telescopes. People with macular disorders use such

aids to magnify images onto their lower resolution periphery. The magnification compensates for

loss in visual acuity, but this is usually at the expense of a reduced field of view – particularly

when using monocular LVAs. Another problem with increased magnification is the corresponding

increase in image motion. This can disorientate the brain causing so-called image slips9, where

even the slightest movements can cause visual acuity to suffer - in some case inducing severe

motion sickness.

2.2.1 Traditional LVAs

Traditional lens based reading aids are typically available in monocular or binocular form. These

are small telescopes that can be handheld or fixed to a sturdy set of spectacle frames, as shown in

Figure 2.4. The magnitude of such aids is typically in the range of x2 to x7. These are used by

people with a wide range of vision disorders and rarely provide a ‘perfect’ solution. Generally,

the fixed focal length of (say) a monocular requires that in order to read, the user must hold the

text at a constant distance from the lens. Finding the correct distance is one problem, finding the

text itself—especially with a magnification greater than x3 -- can be another. It often takes much

effort to get used to such a device—some people never get used to them.

Figure 2.4 Typical binocular LVA

Greater magnification and a hugely reduced field of view speeds up even the slightest movements.

The resultant image slips can lead to disorientation and in many cases headache. When reading

text it is important to avoid such slips, so as not to loose the reading place. The reader must scan

text slowly, word-by-word—or even letter by letter in more severe cases. The problem with this is

Background 9

that the brain becomes preoccupied with text recognition and hence suffers in understanding. At

the end of a line of text, the reader may even have forgotten what was at the beginning.

Further complications arise at the end of a line. In normal reading conditions the eye moves in

saccades, progressively fixating at points along a line, before jumping to the start of the next line

– the carriage return10. The brain deliberately blocks reading during this jump so as not to disrupt

the flow of reading. When reading through a monocular, the carriage return must be made more

carefully so as not to cause image slip and loose track of the line. This has the knock-on effect of

introducing a break in reading flow during which extra text may be read causing confusion.

Invariably the reader may suffer from some form of arthritis, nerve problem or loss of motor

skills: both holding the device and scanning the paper (or book) for any length of time becomes a

very difficult task. Sadly, for some people whose vision deteriorates, the mental and physical

fatigue of reading becomes all too much. What once may have been a leisurely and enjoyable

pursuit, can quickly become an unbearable chore. Fortunately, in many more cases, these

inadequacies are overcome. People can learn to adapt with the help of even the most primitive

LVA devices.

2.2.2 CCTV

There are numerous Closed Circuit television (CCTV) systems available for people with low

vision11. CCTV is generally the term applied to any electronic LVA. A basic CCTV is comprised

of a video camera pointed at the object or text to be viewed, and a television monitor for viewing.

See reading CCTV in Figure 2.5. Control circuitry allows the user to move the camera around and

magnify or alter the display in some way. This is the advantage of a CCTV over lenses; it can

have features such as greater magnification, wide viewing range, adjustable brightness and

artificially increased contrast.

Background 10

Figure 2.5 CCTV for reading (left) and head mounted for everyday use (right)12

Despite these benefits, CCTV is not as widely used as optical devices. Part of the problem with

CCTV technology is that it has been, until recently, fairly bulky in size. A large TV screen and

camera may be somewhat of an inconvenience for day-to-day use when compared with a small

hand-held monocular. There are smaller and lighter head-mounted based CCTVs available,

incorporating advanced features such as automatic focus13, but these tend to use specialised

technology and can be very expensive. See head mounted CCTV in Figure 2.5. Advances in

technology, driven by the lucrative home entertainment markets, have brought the size and price

of such systems down, but there is still some way to go.

Another factor of quality is in ease-of-use. People suffering from low vision tend to be elderly,

and as such less willing to learn how to use new ‘gadgetry’ . If the use of an LVA does not ‘ feel’

natural or convenient, people will inevitably go back to using what they are used to – despite the

failings.

2.2.3 Text to speech

Advances in text-to-speech technology has brought many benefits for low vision users. Stand-

alone text-to-speech readers are available that can scan any source of paper based text, from

newspapers, magazines to books and bills. The text is extracted and read out to the user. Text can

be navigated using a simple keypad, with feedback provided vocally by the machine14.

The initial problem with this technology was the lack of a ‘natural’ sounding voice. This is now

becoming less of a problem. Such machines can be quite effective as a reading aid – not just for

low vision sufferers, but for the totally blind. As with CCTVs though, the text-to-speech stand

alone units can be fairly bulky and expensive.

Background 11

2.2.4 PCs as Low Vision Aids

A solution to the expense problem of electronic low vision aids can be found in the use of the

home PC. Many PCs these days come packaged with facilities for scanning paper based image

and text. Once scanned, images can be manipulated in many ways: magnification, colour, contrast

enhancement, and even text extraction. There are several software based ‘PC CCTV’ packages

available specifically for the low vision computer user. Together with relatively inexpensive text-

to-speech software the home PC can be used both as a CCTV and a text-to-speech reader

combined. The only real cost involved is with the software15,16.

PC based LVAs are still in their infancy however, and there are many problems associated with

their use. These will have to be overcome before such aids are useable enough for widespread

acceptance.

2.3 A PC based LVA: Motivation

Much of the motivation for this project comes from the much neglected potential of merging

existing ‘off the shelf’ technology with medical applications. There is already a wealth of cheap

video technology driven by the massive potential in the home entertainment market. Miniature

video cameras and high resolution displays are just some of the products that with minimal

adjustment could be used to build high-tech low vision aids of the future.

The use of an electronic low vision aid can be split into two categories: aid for using a computer,

and computer based aid for reading. Although this project shall focus on development of an aid

for reading, some of the wider problems associated with aids for computers shall be discussed.

2.3.1 LVA for computer use

Most of the so-called PC CCTV systems available are developed with a general purpose day-to-

day computer user in mind. Such aids are essential as it is becoming increasingly necessary for

computers to be accessible to all, such is the growing importance of computers in everyday life.

The problem is that often these software aids are no more than mere add-on ‘hacks’ that fit

uneasily on top of the existing computer interface. These rarely provide an efficient and practical

solution to the needs of a low vision user.

As an example of this, consider the case of a typical software LVA on a Windows based platform

- the screen magnifier. Screen magnifiers generally work by enlarging part or all of the desktop

Background 12

area of the screen. The user can move around the screen by dragging the mouse beyond the

magnified area’s boundary. This can work quite effectively if the user is only working with one

part of the screen, but what if an error message appears on another section of screen? It is likely

that the user will not see the error message until he/she scrolls the magnified area over it.

Figure 2.6 PC with screen magnifier application

There are many more such problems with this and other software based LVAs. The problem

seems to lie with the fact that existing computer interfaces, such as the Window’s desktop

metaphor, were simply not designed with low vision users in mind.

2.3.2 LVA for reading only

Falling short of a complete re-design of the standard Window’s interface, the approach used in

this project concentrates on the specific task of reading. It is hoped that by narrowing the domain

down to a reading specific software application, a more effective solution can be built. If fruitful,

this may yet lead the way to a more general purpose aid.

Other issues in the general design of a PC based LVA for reading are identified as follows:

• Where does the text to be read come from

• How should the text be displayed for optimal low vision viewing, and

• How can it all be controlled

2.3.2.1 Where does the text come from?

As mentioned previously scanners and digital cameras are widely available for PCs. This allows

easy conversion of paper based text sources onto computer for enhancement in low vision use.

Background 13

It may be the case that today most of our reading tasks are carried out using paper based sources,

but with ever increasing use of the Internet, more and more information is becoming available

electronically. Most national newspapers are already available ‘on-line’ , as are many books.

Increasing use of email is already taking over the traditional postal service as a means of

communication. Some telephone and electricity companies have already started billing customers

by email. As the text is already available electronically, it may be extracted and displayed using

the software LVA with minimal fuss.

2.3.2.2 How should the text be displayed?

There have been many advances in digital displays over the last few years. It is now possible to

have a fairly large, full colour, high resolution LCD flat-screen display for a relatively

inexpensive price.

For portability and ease of use, there are already head-mounted displays available, in some cases

weighing less than a pair of bifocals. Video glasses, such as the Sony Glasstron, developed

primarily for the home entertainment market allow a direct link-up to a portable PC17. Some PCs,

in particular the so-called ‘wearables’ are so small they can be sewn in to the lining of a jacket.18

2.3.2.3 How should it be controlled?

The standard mouse and keyboard is an effective interface for computers. If the application is to

be made for wider non-computer use as an LVA, these devices are unnecessarily complicated.

Particularly when designed for use by elderly or non-computer literate low vision sufferers.

From the point of view of control, a simpler control may be all that is required, such as a simple

button for controlling text flow, or a joystick/control pad as used with video games.

2.4 Summary

The necessary background into the problem of low vision has been given. Some of the problems

associated with existing low vision reading aids have been identified, and the motivations for a

novel solution using existing technology given.

Text Scroller Design 14

Chapter 3

Text Scroller Design

3.1 Introduction

This chapter outlines the design of a text scrolling application for use as a low vision reading aid.

A specification is given based on some of the requirements and low vision needs discussed

previously. A suitable user interface (UI) is also identified. From this, an initial program structure

is devised and implemented. Issues arising from this initial implementation are discussed and any

major problems identified.

3.2 Software Specification

An Object-oriented (OO) approach was used in the design of the text scroller application. Based

on the perceived requirements for an electronic low vision aid, as discussed in the last chapter, a

preliminary software specification was put together using UML (Unified Modelling Language19)

use cases and class diagrams.

3.2.1 A Gener ic Class Framework

When choosing a set of classes for an OO design, it often helps to base the high-level class

structure on an abstraction of some relevant ‘ real world’ situation. Individual classes and their

responsibilities can be chosen from the key parts of that abstraction. It seemed natural to base the

design abstraction for this application on a traditional monocular LVA. The main components of a

text reading scenario where a monocular is being used is the document being read, the lenses and

the telescope holder.

Use-cases were drawn up and used to identify the main components used in a typical low vision-

reading scenario.

• The Document stores page(s) of text. It may be in many different forms, e.g. newspapers,

books, bills and letters.

Text Scroller Design 15

• The lenses are responsible for magnifying and altering the View of the text in a way that is

useful for the reader. Magnification is changed by adjusting the distance between the

lenses, and or replacing the lenses themselves. The lenses may be tinted using filters if

necessary, e.g. to assist partially colour blind users.

• The telescope holder (or Frame) allows the user to adjust the distance between lenses. It

also gives the user a handle to control the positioning and movement of the device.

From an object-oriented programming point of view the Document, View and Frame abstract of

the telescopic monocular provides a good basis for any future class structure.

3.2.2 Adapting The MFC Framework

The Microsoft Foundation Classes (MFC) that come packaged with the Visual Studio C++

development suite was used in development of this application.

Built on top of the Win32 API (Application Programming Interface), MFC provides a collection

of useful skeleton classes for building Windows based applications. Much of the code for setting

up windows and interpreting user commands is already provided. Classes for reading and writing

to files is also provided. MFC allows straightforward development of applications without the

distraction of having to code commonly used window interface features.

An advantage of using MFC was that it already had an application framework that correlated

nicely with the monocular abstraction given in section 3.2.1. The basic Frame class

(CMainFrame) provides a mechanism for handling user interactions and passing them on to the

relevant classes for processing. The Document class (CDocument) provides a basic mechanism for

reading and writing to files. The View (CView) class provides mechanisms for processing and

writing the application’s display.

The classes CDocument and CView were subclassed and responsibilities specific to this

application built onto them. The responsibilities and collaborations are given below for these

subclasses: CReaderView in Table 3.1, CReaderDoc in Table 3.2. CMainFrame is included for

completeness in Table 3.3.

Text Scroller Design 16

Class name: CReaderView Collaborator(s):

Responsibility:

• Format text (font, size, colour)
• Render text (position, actual screen format and size)
• Show text on screen
• Scroll text across screen
• Retrieve text from Document

CReaderDoc

Table 3.1 Responsibilities and collaborators for View class CReaderView

Class name: CReaderDoc Collaborator(s):

Responsibility:

• Load text from file
• Translate to plaintext

 [file system]

Table 3.2 Responsibilities and collaborators for Document class CReaderDoc

Class name: CMainFrame Collaborator(s):

Responsibility:

• Handle user input
• Display controls and menus
• Forward commands to Doc and View objects

CReaderView
CReaderDoc

Table 3.3 Responsibilities and collaborators for Frame class CMainFrame

The corresponding class diagram, showing proposed member functions is shown below using

UML notation in Figure 3.1.

Figure 3.1 Simple UML Class diagram for reader application

CReaderView

initiateText()

renderText()

displayText()

scroller()

CReaderDoc

CString GetText()

CMainFrame

Text Scroller Design 17

3.3 Application Design in MFC

Due to the predominantly graphical nature of the scrolling text application, most of the

interactions handled by the Frame class are passed onto CReaderView for processing. Part of the

appeal of using MFC is that the user interface comes almost ‘ for free’ . Indeed most of the setting

up of menus, control buttons and shortcut keys are handled automatically using the API’s ‘Class

Wizard’ . Additionally, MFC provides standard pop-up or modal dialogue boxes for changing

attributes such as colour and font.

Most of the implementation details of dealing with files and text sources are dealt with already

using the CDocument based class. This can easily be adapted to deal with many different formats

of input file. It can be linked with external libraries of code that are written specifically for

parsing different formats of text into plain text ASCII. This means that the scroller application

itself only ever has to handle plain text.

3.3.1 GDI

The Win32 Graphics Display Interface, or GDI, provides a wide variety of functions for

formatting and then rendering to display. It allows programming of applications using low-level

display functions without being bogged down by device specifics. Most of the calls to GDI will

be carried out in the CView class as this is where display work for the application is dealt with.

3.3.2 Formatting

The GDI provides many useful functions for formatting text. The size and font details can all be

stored within a LOGFONT structure. This structure can be kept active throughout the View’s

runtime by specifying it as a member variable, m_logfont. The specific details of the font, such as

line spacing and character widths can be taken care of by using the MFC class CFont. This sets up

a LOGFONT structure with suitable default values, while allowing changes if necessary using its

member functions. The colour of the text and its background can be set in a similar manner.

Manual setting of the font can be carried out using a pre-defined MFC dialogue box such as that

shown in Figure 3.2.

Text Scroller Design 18

Figure 3.2 Typical MFC modal dialogue for changing text font and colour

3.3.3 Render ing onto display

The GDI provides an abstraction from the device specifics of the display in the form of a device

context. A device context is a section of memory that can be mapped to output devices such as

printers as well as portions or the entire display screen. The GDI provides functions for easy

manipulation of device contexts.

When rendering an image or text to screen, a pointer to the screen’s device context is required.

Calling the GDI’s GetDC from within the CReaderView class returns a pointer to the client

window’s device context. This is the portion of screen within the current View window. The

current font and size can then be selected into the device context using the SelectObject function.

Similarly, the background and text colours can be set using the functions SetBackgroundColor

and SetTextColor.

A string of text can be rendered into position on screen context using the function TextOut. Its

position can be specified using x and y co-ordinates relative to the client screen. The colours and

font previously selected are applied automatically to the rendered text. Bitmap and images can be

rendered in a similar manner.

3.4 Naïve Method for Scrolling

A naïve approach to scrolling the text would be to call the TextOut function within a loop,

incrementing the x co-ordinate each time. The previous output must also be cleared with each

increment so as to prevent the screen becoming cluttered and unreadable. This can be done most

Text Scroller Design 19

efficiently by creating a rectangle the same size as the text region and colour of the background

and selecting it onto the device context before each call to TextOut.

In practice, the continual clearing and rendering of text causes a noticeable ‘ flicker’ on screen.

Additionally, the rendering process initiated by TextOut is fairly processor intensive and can take

several tens or hundreds of milliseconds. With this delay imposed by rendering on each refresh,

the scrolling becomes noticeably slow and jerky. This is unacceptable for any practical usage.

3.4.1 Render ing to memory (double buffer ing)

One solution to the redraw ‘ flicker’ is to create an off-screen device context in memory. The

memory device context is made compatible with the screen context using the GDI function

GetCompatibleDC. It acts as a buffer to which text can be rendered to in a similar manner as with

directly to screen. This technique is known as double buffering.

The GDI provides a BitBlt function for blitting, or bit copying, between display contexts. The off-

screen buffer is copied directly onto the screen only when rendering has finished. This can be

carried out much faster than rendering directly to screen, and as only a complete image is copied

each time, the ‘ flicker’ caused by screen redraw can be reduced.

3.4.2 Protecting the buffer

An issue that arises with multitasking platforms such as Windows is ‘who owns what?’ In

Windows, a device context can be accessed by any of the running programs. As there may be

several programs running at any one time, including the window manager, the chance of a newly

rendered context being overwritten is high.

Win32 applications are responsible for updating their own windows. This includes their visible

portion of a screen as well as any buffers in memory. To allow for other applications also making

use of off-screen buffer space, the application should be set up to make a ‘backup’ copy of its

buffer space each time it is rendered to.

One way of making a backup is to copy the buffer onto a bitmap image. The GDI function

SelectObject can be used to select a bitmap in and out of the device context. When a new bitmap

is selected, any calls to write to buffer are also written to bitmap. The bitmap can then be selected

out again for safekeeping, freeing the buffer context for use in other applications.

Text Scroller Design 20

Whenever the buffer is required again, the bitmap is simply reselected, overwriting any unwanted

information in the buffer that was left over from other applications.

3.5 Improved Methods for Scrolling

Using BitBlt from an off-screen buffer may help remove flicker from screen redraw, but it does

not remove the need to render a complete image on each iteration, and so the rendering overheads

remain. Two different approaches were taken to this problem; these are best described as the

“Alphabet Buffer” and “Scrolling Window” algorithms.

3.5.1 Alphabet Buffer Scrolling

One approach to reducing rendering time would be to render a complete alphabet onto the off-

screen buffer. This would effectively require rendering once only. A suitable blit operation can

then be used to select individual letters as required and copy them in position to the screen. This is

shown in Figure 3.3.

ALP
ABCDEF
GHIJKLM
NOPQRS
TUVWXYZ

Blt #1.

Blt #3.

Blt #2.

Off-screen
buffer

Visible display

Figure 3.3 Alphabet buffer method for rendering a string of text

This method makes use of a variation to GDI’s BitBlt function, StretchBlt. StretchBlt expands the

content of the source rectangle to fill the destination. This magnification results in a loss of text

resolution, but this can be minimised if the buffer is sufficiently big and the rendered font being

used is large enough.

The major advantage of this method is that the alphabet need only be rendered at set-up or when a

change is made to the text font.

Text Scroller Design 21

Colour changes do not necessitate re-rendering as text and background colours can be selected

directly into the screen context. The off-screen buffer can be configured to store the image as a

monocolour bitmap. The StretchBlt operation can then be configured to merge copy this bitmap

with the colours specified for the destination screen. This method of rendering has a further

advantage of reducing the memory used by the buffer.

The disadvantages of this method come with the added processor overheads of StretchBlt and the

need to call a blit for each character being displayed. This leads to a noticeable degradation in

scrolling speed. Additionally, the time differences between each call to StretchBlt causes the

characters to jitter disturbingly.

3.5.2 Scrolling Window

An alternative way of coping with the overheads of rendering is to create an off-screen buffer that

is much wider than the screen and using a smaller clipper window to copy to display. GDI’s BitBlt

allows copying between sub-rectangles of the source and destination device contexts. This means

that a large section of text can be rendered to the off-screen buffer, with a small sub window being

used to copy portions of the buffer to screen. The scrolling can be achieved by incrementing the

starting x co-ordinate of this source window and calling BitBlt. See Figure 3.4.

crollinScrolling text
Blt

Off-screen buffer Visible display

scrolling window

Figure 3.4 Scrolling window method for rendering and scrolling a string of text

The rendering function need only be called at the end of each text section being scrolled. If the

buffer is big enough to accommodate an entire sentence, then the slight delay in scrolling can

correspond to the reader ‘catching a breath’ at the end of a sentence. In this way the rendering

overhead would not be such an inconvenience. Unfortunately for large text such a buffer would

occupy a sizeable portion of memory – even if stored as a monocolour bitmap. A further

restriction is that the GDI only allows a certain amount of memory for use as a device context.

Text Scroller Design 22

3.6 Scrolling Text Implementation

The general algorithm for the initial text scroller application is fairly straightforward. This section

gives a short description of the structure and methods used for implementing the scroller using

MFC. The application follows the class diagram shown earlier in Figure 3.1. It may help to

consult the code samples given in Appendix A.1.

3.6.1 CReaderDoc Initialisation

The CReaderDoc loading mechanism extracts strings of up to 256 characters serially into

elements of the CStringArray member, m_textStrArray. The GetText member function can then be

used to return a string of text from this. In the initial implementation, m_textStrArray behaves like

a circular stack. Calling GetText ‘pops’ the top string from the stack and ‘pushes’ it onto the

bottom.

3.6.2 CView Initialisation

The CReaderView::initiateText function is responsible for retrieving the initial string of text from

CReaderDoc by calling GetText. Using the default font and size attributes, the pixel width of the

text string is calculated. This is carried out using GetCharWidths, which calculates each

individual character width in the current font. These are then used by GetStringWidth to determine

the pixel length of the entire string, m_textStrPixelLen. This is used later in the scrolling process

to determine exact pixel locations of characters being displayed.

Setting up the off-screen buffer and rendering text to it is carried out by the renderText function.

Using the “Scrolling Window” algorithm detailed above, this function can be called in three

situations: directly after initialisation; at the end of the each displayed section of text, when new

text is loaded; and whenever the screen becomes invalidated. The screen becomes invalidated

whenever a window is moved or resized – when the device context of one application interferes

with another. Thus the View’s OnSize and OnDraw functions are simply overridden to call

renderText.

3.6.3 Calling the scroller

The scroller function is called from out with CReaderView by the application framework’s handle

function OnIdle. Care must be taken to ensure that the application cannot call this function before

CReaderView itself has been created and initialised.

The approach of using OnIdle was chosen because initial trials using the system timer ran far too

slowly. Ideally, the scrolling mechanism should be regulated in some way to preserve consistency

Text Scroller Design 23

across different systems. The implementation given in Appendix A.1 attempts to regulate the

scrolling loop by using a counter within OnIdle. The counter only allows scroller to be called on

every n counts. This method works well for development purposes, but use of a multimedia timer

is recommended for any further work.

3.6.4 Displaying the text

The main thing scroller does is call displayText, which handles all of the blitting between off-

screen buffer and screen. The displayText function blits a window of the current visible screen

size (m_screenSize) from the larger buffer (m_bufferSize) onto the display. See method for

“Scrolling Window” in Section 3.5.2. The member m_pos.x is used to keep track of the current x-

coordinate of the bottom-left point on the source window. Before each call to displayText, the

scroller increments m_pos.x by an integral number of pixels (m_scrollerIncrement).

Hence on each call to displayText the source window of the buffer is moved along and blitted to

screen, thus creating the effect of scrolling text.

3.6.5 Updating the scroll buffer

Once the scroller reaches the end of the current buffer, new text should then be rendered. The

displayText function checks for when m_pos.x reaches the point exactly one visible screen width

before the end of a section of text – assuming forward scrolling from left to right. When this is

reached, the m_bRenderText flag is set, signalling scroller to call renderText.

This is where m_textStrPixelWidth comes in handy. Function renderText uses

m_textStrPixelWidth to determine at exactly which point in the string the currently visible text

begins. It uses this to extract the next section of text beginning just before the point identified.

This means that the text already on screen is re-rendered at the start of the buffer with new text

following directly on from it. Thus allowing a seemingly continuous flow of text. See Figure 3.5.

Text Scroller Design 24

Scrolling text
Off-screen buffer - before render

g text

Visible display

g text for you

render

Off-screen buffer - after render

Figure 3.5 Maintaining continuous scrolling text before and after a render

In the initial implementation, no provision has been made for reverse scrolling. This is something

that should be rectified for any future release.

3.6.6 Controlling the application

Any changes to the flow of scrolling or to the size and format of the display may be made through

both menu and button controls, or via keyboard shortcuts. The handler functions for each user

interaction generally make some change to the relevant member variable. For example, pressing

the ‘up’ arrow key increases the scrolling speed by incrementing the variable

m_scrollerIncrement. Similarly the ‘down’ key decrements the variable.

Where changes are made to the text format, for example size, font and colour of text, the

renderText function must be called in addition to changing the relevant variables.

Text Scroller Design 25

A typical screenshot of the working reader application is shown in Figure 3.6. The executable for

the reader is included on the accompanying CD.

Figure 3.6 Screenshot of the initial LVA reader application

3.7 Analysis

For this initial implementation it was decided that the “Scrolling Window” approach gave better

results. With a buffer of about seven times the screen width, reasonably smooth scrolling could

be obtained. Memory overheads were kept to a minimum by using monocolour bitmaps.

Despite these improvements, the scroller continued to halt whenever renderText was called. This

was noticeable and occurred frequently, particularly with large text. Some further investigation

was required to speed up the rendering process and or stop the scroller from being interrupted.

Another problem was the effect of line tearing on the display. The BitBlt function runs fairly

slowly compared to the refresh rate of Windows itself, and whenever it was called the redraw

could be observed ‘ tearing’ on the screen. The effects of this tearing became especially visible

when the scrolling speed was increased. This was so visually disturbing that it rendered the

application unusable in any practical sense.

Text Scroller Design 26

3.7.1 Improvements

Other than the operational problems identified above, there is much scope for improvement to this

initial implementation. Notably, navigational features such as letter/word/sentence jump and a

search facility remain to be implemented. More essentially, backward scrolling should also be

dealt with. Additionally the document class should be extended to deal with larger files than just

256 by 256 characters.

From a low vision user’s point of view, the use of standard MFC dialogues is not ideal. One

future improvement would be to redesign these dialogues to something more appropriate. For

example, the text colour selection dialogue could be with fewer but bigger colour selection

buttons.

These suggested improvements will not be implemented in the context of this project, but should

be noted for any future work.

3.8 Summary

The initial implementation of a scrolling reading aid has been presented. A basic user interface

and application framework has been described using a Win32 based platform. Basic graphics

techniques such as double buffering and scrolling windows have been investigated. The result of

this is an application that fulfils its specification, albeit with two major problems with the

particular scrolling implementation. In particular, the effect of line tearing and also the problem of

slow rendering times causing the application to halt every few seconds. These shall be

investigated in the next chapter.

Smoothing the Scroller 27

Chapter 4

Smoothing the Scroller

4.1 Introduction

This chapter attempts to investigate the display problems encountered with the text-scrolling

algorithm outlined in Chapter 3. Some possible solutions are discussed and means of

implementing them for this application considered. In particular, a specialised graphics class is

proposed for interfacing the application to some suitable graphics library. Two popular graphic

libraries for the Win32 API are assessed, namely OpenGL and DirectDraw. The implementation

of the specialised graphics class using the DirectDraw API is described, as is an improved

algorithm for displaying smoothly scrolling text.

4.2 Problem Descr iption

There are two basic problems described in the last chapter. The first is the effect so-called ‘ line

tearing’ – the visually disturbing effect observed as the scrolling display is moved across the

screen. The second is the effects of rendering overheads – observed as momentary halts in

scrolling whenever a new display is being rendered. Both of these problems raise issues with the

scrolling text application that are far from trivial. Particularly when implemented using a Win32

GDI based platform.

4.2.1 L ine Tear ing

The line-tearing problem is essentially one of synchronisation. In particular, the software screens

refresh synchronisation with that of the display hardware. Although the Windows operating

system itself has its screen refresh in sync with the display hardware, characterised by there being

no such tearing observed when a window is moved, the GDI functions do not. This means that

whenever a GDI BitBlt is called the data is copied to the screen regardless of whether there is a

physical screen refresh in progress or not.

Tearing is observed when a new image is blitted to a screen that is mid-way through redrawing

the content of the previous image. When displaying a moving image, the succession of partially

drawn images creates flickering jagged edges on screen, thus rendering the text uncomfortable, if

not impossible to read.

Smoothing the Scroller 28

It follows from this description that in order to be able to solve line tearing, the scroller must

somehow be synchronised with the physical display refresh. An investigation into possible ways

of attacking this problem is detailed later in this chapter. A working solution is also presented.

4.2.2 Render ing Overheads

In any graphical application, before displaying to screen an image must firstly be rendered. The

current implementation of the text scroller, using an off-screen buffer with scrolling window,

requires an image to be rendered whenever the end of buffer is reached. When implemented in a

single program execution sequence (thread) the scrolling display update must temporarily halt

while the rendering is carried out. This can cause a noticeable halt in the scrolling, as shown in

Figure 4.1.

Main App.

displayText

renderText

Location

Time

Figure 4.1 Single thread execution of text scroller application

4.3 Gener ic Solutions

One approach to this problem is to make the rendering finish as quickly as possible. The faster the

rendering can be carried out, the less noticeable the halt in scrolling. Additionally, speeding up the

scroller execution would leave more time for rendering. As shown in Figure 4.2 if the blit

operation was to return immediately, having registered with the graphics hardware to update the

screen, then execution time can be reduced significantly.

Smoothing the Scroller 29

Main App.

displayText

renderText

Location

h/w Blit op.

Time

Figure 4.2 Single thread execution of scroller with immediate return blit

 A second approach would be to execute the rendering code ‘simultaneously’ with the scroller.

This can be achieved on a single processor PC using a separate thread of execution, as shown in

Figure 4.3. The threads effectively enable multiprocessing at a low level, giving the appearance

of simultaneous execution. Implementing threads using Java is relatively straightforward20. With

Win32 however the opposite is true. MFC does provide classes for implementing threads, but

using them is non-trivial. A full investigation of threads shall not be carried out in this report due

to time restrictions. The implementation given in this chapter does however leave scope for

possible future addition of threads.

Main App.

displayText

begin render thread

renderText STOP

Time

Figure 4.3 Execution of text scroller with rendering performed in a separate thread

4.3.1 Tr iple Buffer ing

Although the processor may be freed by diverting blit operations to display hardware, the off-

screen buffer would not. Any rendering to this buffer may invalidate the blit in progress. A

solution to this is to employ a second off-screen buffer. This can be rendered to while the first is

being used by display hardware. When the next blit operation is called, the buffers are rotated –

Smoothing the Scroller 30

i.e. one off-screen buffer is handed to display for blitting, while the other is made available for

rendering. This technique is known as triple buffering.

4.3.2 Refresh Synchronisation

Moving the blit to hardware does not necessarily imply that the operation will be speeded up.

Speeding up the execution of a blit depends both on the display hardware and the number of tasks

that blit must perform. Any additional operations, such as magnification or colour translations can

significantly slow down the blit.

A one-to-one blit between same size buffers resident in display memory, as opposed to system

memory, can increase the speed of operation significantly. This can help to reduce the effects of

tearing. Unfortunately it cannot completely remove them. To do this, the screen update initiated

by the blit must be fully synchronised with display hardware. Due to its device independent

nature, this cannot be achieved using the standard Wind32 GDI. Instead a much closer interface to

the hardware is required.

Unfortunately any closer interfaces to hardware comes with the added complexity of having to

deal with device specifics. The GDI deals with differences between display devices by interfacing

to the hardware through the given device driver interface (DDI) for that device. Often,

manufacturers develop their DDI with GDI in mind, so any additional functionality would require

bypassing both GDI and the given device interface. This involves dealing with many low level

parameters and functions specific to each device. To deal with the multitude of display

technologies available, as well as anticipating new ones is a task neigh on impossible. Some mid-

way solution is therefore required.

4.4 Investigation of Graphics L ibrar ies

Various graphics libraries are available for providing an improved interface to display hardware.

As well as providing lower level blit-style operations, these libraries provide added capabilities

for off-screen buffers and can make better usage of advanced graphics hardware. These libraries

provide a higher-performance graphics interface, while maintaining at least some of the device

independence provided by GDI.

Two desirable characteristics of a suitable graphics library for this application were highlighted

as: closer collaboration with hardware for fast screen refresh and blitting; and provision for fast

off-screen rendering.

Smoothing the Scroller 31

This investigation covers two of the graphics libraries available for Win32. These are OpenGL21

and DirectDraw22. For completeness the Win32 GDI shall also be considered.

4.4.1 GDI

As already shown in the last chapter, the GDI graphics library provides many useful features for

2D graphics manipulation. Although these have proved insufficient for low level display

operations, such as fast blitting and display memory buffering, there are many GDI functions that

may still be of use to this application.

GDI provides a host of tools for creating and manipulating graphics objects. These objects include

brushes, pens, bitmaps, pixels and text. The attributes of these objects, such as fills, thickness,

font and colour, can be specified and changed using object member functions.

Off-screen buffering can be provided using the GDI device contexts. Device contexts provide a

canvas onto which GDI objects can be assigned and manipulated. As shown in the initial scroller

implementation with the renderText function (Appendix A.1) these functions provide a

convenient way of manipulating text with different system fonts and attributes. Bypassing this

capability for lower level code would introduce increased complexity with a huge increase in

necessary coding.

4.4.2 OpenGL

OpenGL is an open standard graphics library that may be used on a variety of platforms.

Although designed for 3D applications, OpenGL can be tailored for 2D. This platform was chosen

for a possible implementation of the scroller’s graphics class due to the wide support available for

it. Additionally, its inherent cross-platform appeal meant that any future implementations of the

text scroller on another platform would reap the benefits of minimal required alteration.

OpenGL provides support for off-screen buffering using a back buffer. This can be rendered and

then copied to screen using the function SwapBuffers. SwapBuffers itself is not directly an

OpenGL function, it is an add-on to the Win32 GDI. It is limited by GDI’s device independence

and as such is not directly synchronised with the hardware. It does however provide a much faster

transfer to screen than BitBlt as it uses the OpenGL back buffer which is optimised for such

transfers.

Smoothing the Scroller 32

4.4.2.1 Initialising OpenGL

Due to the inherent 3D nature of OpenGL, initialisation for even a basic 2D application is non-

trivial. The view is treated as a 3D co-ordinate space and as such requires prior setting up for 2D

emulation.

Before rendering can begin, the back buffer must be set up with the correct screen pixel format

and other device parameters. Setting up OpenGL to be compatible with the current device must be

carried out manually. This involves using glGet function to probe the current device for its

capabilities and fill them into an appropriate structure for use by the OpenGL engine.

Much of the code for initialising OpenGL for use in this application is irrelevant to the context of

this report, but can be found in the accompanying CD.

4.4.2.2 Render ing text with OpenGL

The support for rendering to the back buffer is where OpenGL’s strengths lie. Fast manipulation

of 3D and 2D polygonal images, texture mapping from bitmaps onto polygons, and fast view

translations, rotations and inversions are all possible. The caveat however, is with OpenGL’s

ability to render text.

The Win32 version of OpenGL available for use in this project did not allow the use of GDI

functions directly onto the back buffer. This meant GDI could not be used to format and render

text.

To get around this, the OpenGL function wglUseFontBitmaps was used. When the application is

set up, or whenever the font or text size is changed, this function is called to generate an array of

bitmaps. Each bitmap element corresponds to a fully rendered glyph of the desired font.

The process for formatting text in OpenGL is outlined below:

• Prepare GDI font using CFont object

• Obtain the main OpenGL device context using wglGetCurrentDCψ

• Select the CFont into device context in usual GDI way

• use wglUseFontBitmaps specifying the device context to create bitmap array

ψ Note the device context returned corresponds to the screen only – it cannot be used as a
back buffer

Smoothing the Scroller 33

The method employed for rendering is effectively the same as that used in the Alphabet Buffer

algorithm described in previous chapter. When a string of text is to be displayed, the desired

glyphs from the array are chosen and placed in position onto the back drawing buffer. This is

carried out using the function glCallLists, specifying the string as a parameter; the function

glTranslate must also be used to specify the position in 3D co-ordinate space.

Once the drawing has been fully rendered, SwapBuffers can be called to transfer the entire

drawing buffer onto the screen device context.

4.4.2.3 Scrolling text with OpenGL

In practice, after the desired glyphs are converted into real-size bitmaps and listed as an array of

pointers, accessing them and rendering to buffer became quite slow. Swapping the buffer to

screen could be carried out quickly, but there is no easy way of translating (horizontally shifting)

a selection of the drawing buffer onto screen without completely redrawing the buffer again. The

resultant scrolling was very slow and jumpy.

As the SwapBuffers function provided no facility to specify a source window, or even to translate

the view, the Scrolling Windows approach was not possible for this implementation.

If some OpenGL ‘ tricks’ are employed however, the process of translating the display quickly

during scrolling can be partially realised. One idea is to alter the OpenGL view co-ordinates on

each scroller increment, as opposed to the drawing raster position. Although a simple enough

idea, this proved tricky to implement. The bitmaps must still be redrawn on each scroll step, but

as the parameters to glTranslate and glCallLists do not change the redraw should not take much

time. In practice however, the speed improvements were slight and the scroller continued to run

very slowly.

4.4.2.4 Analysis of OpenGL

The OpenGL implementation failed to solve the problems of either line tearing or rendering

speed. Surprisingly, the rendering time for a string of text was even slower than using GDI alone.

The likely cause of this is not with OpenGL itself, but with the limitations imposed by the

particular Win32 implementation of OpenGL used.

It is likely that a better solution could be found using a later version of the OpenGL library. This

is something that may be considered for any future work.

Smoothing the Scroller 34

4.4.3 DirectDraw

DirectDraw, from Microsoft’s DirectX software development family, provides a more optimistic

route. As with OpenGL, DirectDraw can be made cross-platform. However, as its name suggests

DirectDraw provides a more direct interface to hardware. In particular it can be configured to

make effective use of device memory, and is able to synchronise screen refresh with hardware.

Another advantage of DirectDraw API is that it can be used alongside GDI. Figure 4.4 shows the

relationship between the DirectDraw hardware emulation layer (HEL) and the device driver

interface (DDI) compared with GDI.

Windows
Graphics Device
Interface (GDI)

Windows Device
Driver Interface

(DDI)

DirectDraw Hardware
Abstraction Layer (HAL) /

Device Driver Interface

DirectDraw Hardware Emulation
Layer (HEL)

Windows Application

DIBENG
Emulator

Display Hardware

Figure 4.4 Video architecture for Windows 95 – indicating both GDI and DD

interfaces between applications and hardware

4.4.3.1 Surfaces and Double Buffer ing

Access to video memory in DirectDraw is provided through surface objects. As there are many

different kinds of video memory, so there also many kinds of surfaces available through

DirectDraw.

A primary surface gives access to the main display memory. Anything written to the primary

surface is immediately visible on screen. Unlike the GDI device context, a primary surface

Smoothing the Scroller 35

includes the entire screen. This means that care must be taken when writing to it so as to avoid

overwriting the display space of other applications.

Buffering can be achieved in DirectDraw using one or more off-screen surfaces. Surfaces can be

manipulated directly as a contiguous section of memory. Alternatively, a handle to the surface can

be obtained using a GDI compatible device context. This allows GDI graphics rendering functions

to be used.

4.4.3.2 Fast Blitting

The DirectDraw API provides a Blt function for blitting between surfaces. A DDBLT_WAIT flag

can be set to specify whether the Blt function should wait until the blit operation has been

completed before returning. If Blt is called without this flag, it will post the blit operation to

display hardware and return immediately.

The blit operation itself can be carried out considerably faster than with GDI if all surfaces

involved are held in display memory. This is one of the ways in which DirectDraw makes good

use of the hardware resources available.

4.4.3.3 Page Flipping

Using Blt alone does not ensure synchronisation with hardware. To achieve this DirectDraw must

be set up in page flipping mode.

Page flipping uses a number of surfaces, all with the same size and format. One surface is

assigned as a front buffer, the rest as back buffers. Whenever a Flip command is called, one of the

back buffer surfaces becomes the front buffer and the surface acting as front buffer is flipped into

a back buffer. Note that it is the pointers to the surfaces that are copied and not the contents.

Additionally, the Flip operation waits until just before the hardware begins refreshing the screen

before flipping the buffers. The effect is an almost instantaneous display refresh, without any

tearing.

While waiting for a Flip operation, the back buffer surface that is next for flipping to front buffer

is locked. This means that no rendering can be performed on it. One way round this is to introduce

two or more back buffers. See Figure 4.5. Triple buffering, as described in section 4.3.1 can be

used to great effect in this case. The only practical limit to the frame refresh rate is the refresh rate

of the monitor.

Smoothing the Scroller 36

1 2 3

back buffer 1 back buffer 2 front buffer

DD Surfaces

Flip
pointers

Flip

(currently visible)

Figure 4.5 Page flipping with three surfaces in DirectDraw

4.4.3.4 Caveat: full-screen mode

Unfortunately page flipping can only be used in full-screen mode. This is because Windows itself

does not use Page Flipping. Any application making use of Page Flipping therefore becomes

responsible for the entire display. Windows GDI does not recognise the back buffers used in Page

Flipping and as such is unable to maintain a useable windows interface. Any user interaction or

windowing features must be dealt with by the application itself.

Another problem with page flipping is that only entire surfaces can be flipped. This means that

sub windows of a surface cannot be singled out for display. This problem can be overcome, but at

the expense of an extra (non-flip) surface and Blt operation.

4.4.3.5 Analysis of DirectDraw

DirectDraw provides a far superior API for the scrolling text application than either GDI alone or

OpenGL. The speed increase of Blt and the provision for multiple off-screen surfaces in display

memory is ideal for fast display refresh. The ability to use existing GDI rendering functions is

also beneficial from the point of view of development time.

The line-tearing problem can be eliminated in DirectDraw using Page Flipping, albeit at a price of

using full-screen mode. With the view of this particular application as a low vision aid, this price

may not be so terrible however. It is accepted that the standard Windows interface is not entirely

suited to the needs of low vision users. Having other windows and standard menu bars on screen

may serve to detract from the low vision users ability to concentrate on the main tasks, i.e. reading

Smoothing the Scroller 37

text. With full-screen operation, the display can be optimised for reading text, with a minimal set

of interface features geared towards low vision use.

4.5 Revised Text Scroller

A revised scrolling text application was implemented using the DirectDraw graphics API. The

scrolling algorithm employed is Scrolling Windows, as described in the previous chapter. Most of

the changes to the CReaderView class are in relation to switching from using GDI to a new class,

DDGraphics that implements the main graphic features required for this application.

4.5.1 The DDGraphics class

A new class was defined specifically for providing a basic interface to the DirectDraw library.

The responsibilities for this graphics class are given in Table 4.1:

Abstract Class name: DDGraphics Collaborator(s):

Responsibility:

• Initialise display interface
• Create off-screen buffers
• Means of drawing to buffers
• Blitting between buffers and screen
• Releasing display interface

[classes from graphics library]

Table 4.1 DDGraphics class responsibilities and collaborators

A full listing of the DDGraphics class code can be found in Appendix A.3. The revised class

diagram for the application is shown in Figure 4.6. The following sections in this chapter deal

with the operation and methods of this class.

CReaderView

initiateText()
renderText()
displayText()
scroller()

CReaderDoc

CString GetText()

CMainFrame

DDGraphics

Initialise ()
GetBackSurface()
Blt()
ReleaseBackSurface()

Figure 4.6 Simplified UML class diagram including DDGraphics

Smoothing the Scroller 38

4.5.2 The DDGraphics back buffer

The DDGraphics class emulates a wide off-screen buffer by using three separate off-screen

surfaces. These surfaces are related using a form of triple buffering and are exactly the same size

as the screen.

Only one surface can be written to at a time; that is function GetBackSurfaceDC only returns the

device context of a single surface, m_lpBackSurfψ. The other two off-screen surfaces cannot be

written to directly, but can be blitted to the primary surface for display; these are m_lpBltSurf1

and m_lpBltSurf2. See Figure 4.7.

DDGraphics off-screen surfaces

m_lpBltSurf1 m_lpBltSurf2 m_lpBackSurf

RotateBackSur faces

1 2 3

Blt
(directly to

screen)

GetBackSurfaceDC
(access surface
for rendering)

Figure 4.7 Wide buffer emulation using three surfaces in DDGraphics

The pointers to these three surfaces, each determining that surfaces particular role, are stored in a

circular stack. The function RotateBackSurfaces rotates these pointers, thus changing the roles of

the surfaces.

The advantage of this method for off-screen buffering is that a large buffer can be used; three (or

more) times the width of a single surface, while only needing to render a single surface at a time.

Rendering to a single surface takes less time than to the whole buffer. This method also leaves

open the possibility for pipelining using separate threads of execution. One surface could be

ψ of type: LPDIRECTDRAWSURFACE

Smoothing the Scroller 39

rendered to in a separate thread, while the others are used for the scrolling display. This would

effectively eliminate the rendering overheads.

4.5.2.1 DDGraphics::Blt

The Blt operation takes two parameters: rDst the destination rectangle on screen and rSrc the

source rectangle. To the outside world the Blt function treats the two surfaces m_lpBltSurf1 and

m_lpBltSurf2 as a single contiguous surface. Within the function however, two separate

DirectDraw blitters are used, one per surface.

Each blitter has its own variable sized source and destination rectangles: rSrc1 and rDst1 for

m_lpBltSurf1; rSrc2 and rDst2 for m_lpBltSurf2. The function splits the original source and

destination windows between these rectangles. These are then scrolled across the two surfaces in

such a way as to give the impression of a single surface source. The diagram in Figure 4.8 may

help to illustrate this.

 Here
rSrc1

is the ere is

Visible display

m_lpBltSurf1 m_lpBltSurf2

Blt #1

Blt #2

rSrc2 rDst1 rDst2

Figure 4.8 Blitting from two surfaces showing split source and destination

scrolling windows

4.5.2.2 DDGraphics::Initialise

This method is called when the scroller initialises its View. It is responsible for setting up the

DirectDraw interface and surfaces. It uses the DirectDraw GetCaps function to determine the

capabilities of the system; in particular if the device has support for fast hardware blitting. Ideally

the application should have redundant code for dealing with systems that do not support hardware

blits. In this version however, full support is assumed. This is a reasonable assumption bearing in

mind that nearly all new PC’s come equipped with some form of display hardware acceleration.

Smoothing the Scroller 40

It then goes on to create a pointer to the primary surface m_lpPrimSurf, linking it to the current

display and setting it up with the correct system palette. Various attributes of the surface, such as

size and memory typeψ are set using the surface description structureζ, m_sdPrimary. The

m_sdPrimary structure is also set with the flag DDSCAPS_PRIMARYSURFACE, to denote the

role of this surface.

Note that in order to behave as a good windows application, the primary surface should be clipped

to only include the area of screen allocated by the window manager. This is achieved by passing a

reference to the View’s client window to a DirectDraw Clipperξ object. This is then attached to

primary surface. Whenever the window size is changed, DirectDraw automatically updates the

surface.

The three off-screen surfaces are then created: lpBackSurf, m_lpBltSurf1 and m_lpBltSurf2. These

are created in a similar manner to the primary surface. Instead of the flag

DDSCAPS_PRIMARYSURFACE however, DDSCAPS_OFFSCREENPLAIN is used.

To maintain good compatibility across different display devices, the size of the surfaces should be

set to exactly the screen size. This can be determined at run time using the GDI function

GetSysCaps.

4.5.2.3 DDGraphics::Flip

The DDGraphics code for creating flippable surfaces and for flipping them is included in

Appendix A.3. The method of Page Flipping is described in Section 4.4.3.3. However, due to time

constraints Page Flipping has not been fully implemented for this application.

ψ System or display memory
ζ Of type: DDSURFACEDESC
ξ Of type: LPDIRECTDRAWCLIPPER

Smoothing the Scroller 41

4.5.3 The CreaderView Class

Much of the CReaderView code structure remains essentially the same as before. Most of the

changes are minor - merely a switch from GDI function calls to the relevant DDGraphics calls.

The main code for this class is given in Appendix A.3.

4.5.3.1 CReaderView::renderText

Instead of using GDI GetDC, renderText uses DDGraphics::GetBackSurfaceDC to obtain the

device context. This can be rendered to in the same way as before.

4.5.3.2 CReaderView::displayText

There are a few minor changes to the operation of displayText. The source and destination

‘windows’ used for scrolling operate in a similar manner as before. Instead of GDI BitBlt, the

DDGraphics function Blt is used.

4.6 Analysis

At first glance, the revised scrolling text algorithm isn’ t much better than the one described in the

previous chapter. For one thing the line-tearing problem remains. Additionally, the rendering

overheads causing the scroller to halt also remain. It would seem that the extra effort involved in

developing the DDGraphics class was wasted.

Despite the initial disheartening appearance, much progress has actually been made. For one thing

the time constraints of the project meant that neither Page Flipping nor implementation of a

separate rendering thread could be completed. A future incorporation of these would almost

certainly produce results that are more impressive.

The implementation as it stands does incorporate some noticeable improvements over the initial

GDI approach. The DirectDraw fast Blt operation and usage of display memory means that

despite a lack of device synchronisation, the display refresh is much quicker than before. On some

systems, the effects of line tearing are almost completely negated.

The implementation of the off-screen buffer using surfaces in display memory also means that the

rendering time is much quicker than with GDI. The triple buffering technique employed also

leaves room for future implementation of a separate rendering thread.

Smoothing the Scroller 42

4.7 Chapter Summary

A revised implementation of the scrolling text LVA application has been presented. The problems

experienced in previous implementations, in particular line tearing and slow rendering time, still

remain albeit to a much lesser extent.

A structure is in place however for using the DirectDraw API to eliminate these problems

altogether. An outline of how any future revision of the application could address these problems

more effectively has been given. The only reason they have not yet been implemented is purely

down to time constraints.

Feedback 43

Chapter 5

Feedback

5.1 Introduction

In this short chapter, relevant feedback from the use of a similar LVA program is discussed. Some

possible improvements to any future development of the application are suggested.

5.2 A recent development

Since this project’s inception, the existence of a similar text scrolling LVA has come to light. The

Supernova package by Dolphin software incorporates a host of standard PC CCTV features such

as screen magnification, text to speech, as well as facilities for low vision web browsing18. More

importantly, it incorporates a full screen text scroller application, almost identical to the design

described in Chapter 3. Fortunately, from the point of view of this project, the Supernova text

scroller also suffers from exactly the same problems as the design in Chapter 3. Notably the

problems of line tearing and jerky scrolling. From this it can be gathered that these are common

problems, and in the case of Dolphin software, as yet unsolved. This served to enhance motivation

for the work described in Chapter 4.

Some features of the Supernova package, in particular the interface for text navigation and the

text to speech facility, may be of further use in influencing future design considerations of this

project. Also in light of the similarity of the two programs, a preliminary analysis was carried out

on the Supernova scroller by talking to a low vision user familiar with the system. The interview

was conducted with assistance from the Edinburgh District Library resource centre.

5.3 Feedback on Supernova

In practice the text scrolling facility of Supernova is rarely used. The main reason for this is that it

is regarded as nothing more than a gimmick with only short term appeal. This is primarily due to

the uneven scrolling problems (as identified with the design in Chapter 3). The text can still be

read, but the line tearing and jerky text can cause annoyance after a short time using the program.

Feedback 44

Aside from this problem, the text scroller is generally regarded as potentially a good idea. Some

points about its operation are noted as follows:

• Easy to use control keys for navigating text

• Run-time adjustable text attributes – size, speed, colour

• Full screen text removes ‘Windows’ distraction

• Combined scroller and text to speech reading.

5.3.1 Inter face and control

Most interactions with the Supernova text scroller are performed via keyboard. Navigating the

text is performed using the left/right cursor keys, with speed and direction of scrolling using

up/down arrows. Various key combinations are specified for changing attributes of the text. In

particular, the text size can be changed using the +/- keys. This is a very useful feature allowing

the user to ‘zoom’ in and out of the text being read. Likewise different colour combinations can

be tried using the colour toggle key-press.

Once learned, the interface is very easy to use and allows fast navigation of text during reading.

The problem lies with first-time users trying to learn the interface. Those familiar with computers

generally have no problem, but much work is required to design an interface that is ‘ friendly’ to

non-computer users. Further simplification of control may be required to do this. One suggestion

may be to employ a joystick or control pad style interface as found on many games machines.

5.3.2 Full screen

A feature of the program that is particularly appealing to low vision users is the lack of any visual

controls such as windows, icons, menus or pointers (WIMP.) Such controls are often no more

than a distraction to low vision users who generally cannot see them properly anyway. Clearing

the screen of clutter allows more space for the magnified text to be displayed.

5.3.3 Text scrolling with speech

Experience of aids for both day-to-day computer use and for reading shows that a combination of

magnified display and speech together produces the best results for low vision users. Text can be

read much quicker when using a text-to-speech program while manipulating the interface is

achieved best by a combination of visual and audio feedback.

Feedback 45

The problem with using the text-to-speech facility however is more a psychological one. Low

vision users often have the preconceived notion that text-to-speech readers are for completely

blind people. They feel embarrassed having to use an audio reader. Following from this, they try

to ‘make the most’ of what sight they have and opt for the magnified display solutions only, even

if it takes longer to use.

5.4 Further recommendation

In addition to fixing the scrolling problem, some further recommendations for a future LVA were

highlighted, these were: the addition of a search/find facility and screen hooks.

A simple to use word search/find facility was recommended over the use of

word/sentence/paragraph jumps as means of quick navigation of text. Screen hooks were also

recommended. These are portions of the screen that show some other part of the text that may or

may not be chosen as a jump location based on a search result. These would also help the user to

keep track of, or bookmark, their position in the text being read.

5.5 Summary

A description of the pros and cons of the Supernova LVA text reader was given. Additionally,

some recommendations relevant to future development of a software LVA were identified.

Summary and Discussion 46

Chapter 6

Summary and Discussion

6.1 Project Summary

The main aim of the project has been partially achieved. A software based low vision aid (LVA)

for reading has been developed and a prototype built. Unfortunately due to unforeseen

complications in the implementation phase, the final version of the LVA has not yet been

finished. The prototype version works and it does conform to the initial specification. However its

operation is not of an acceptable standard for release. The problems encountered in this initial

version have been extensively researched and a design for a suitable solution presented in this

report. A brief summary of what has been achieved is given below:

• Background research into problem of low vision and low vision aids.

• Preliminary specification for a software based LVA

• Initial working version of the LVA designed and built

• Major problems of scrolling smoothness identified and variety of solutions sought

• Similar LVA software discovered with similar problems, useful feedback provided

• Re-design of the LVA incorporating improvements – only partially implemented

• Foundations laid for future trials of the software

6.2 Still to do

Most of the work involved with implementing the final application has already been completed, in

coding time the remaining work should take no more than a matter of weeks to finish off. This

includes:

• Finish code implementing DirectDraw page flipping

• Implement the rendering functions in a separate threaded class

• Finalise interface for backwards and forward scrolling with possible search facility

A possible future improvement for longer term usage of the program would be to time the scroll

rate from a multimedia timer instead of from within the processors idle loop.

Summary and Discussion 47

6.3 Should have done

One area of the project that could have been improved is in the approach to the initial design.

Most of the design for the application was carried out on paper. As such, much of the initial focus

was on research into the interface and following the other objectives of the mission statement. It

was assumed that development of a text scroller would be trivial – this turned out to be a costly

assumption!

The scrolling problems could not have been anticipated given the circumstances and resources

available. If implementation of the scroller had been given priority, the problems would almost

certainly have been discovered sooner. This may have allowed more time to produce a final

working version.

6.4 Future Work

There is much scope for future work leading on from this project. The field of research into low

vision aids using modern day technology is very much in its infancy. The basic reading aid

developed in this project may be adapted for further research into various aspects of reading and

low vision computer use. Additionally, the reading aid could be extended by a more suitable

control interface and text capture mechanism. Moving away from the confines of the PC interface

may result in a far more widely useable aid. Eventually there may even be scope for an aid that

assists low vision sufferers with more than just reading tasks.

6.4.1 Medical tr ials

To assess the effectiveness of the software LVA extensive medical trials are required involving

participation from low vision sufferers.

Measuring the effectiveness of the LVA as a reading aid may best be achieved by performing a

time based trial on the software LVA versus another aid familiar to the user such as the

monocular. It is important that the user is given time beforehand to familiarise themselves with

the reading interface. Additionally the default size, colour and font of the text should be set to

whatever preference the user finds easiest to read, and or pleasing to the eye.

Summary and Discussion 48

There are many factors affecting such trials that may require investigation. Some of the following

in particular:

• Screen – the size and type of display are important. LCD may be preferable to CRT. A

large screen would also be an advantage.

• Colours used – are they merely aesthetic user preferences, or do they help with reading?

• Good contrast – a known factor in improving acuity, but how well can this be achieved on

a CRT or LCD display? Some studies indicate that white text on black background is

most effective for CRT screens, whereas the reverse is true for paper and LCD23.

• Font – which are clearest to read when text is scrolling? Traditionally serif fonts (‘ tails’

on the letters) can aid word recognition and hence reading flow. However, does this apply

to magnified text?

Environmental conditions may also play an important part on the usefulness of the aid:

• Room lighting conditions – does the user perform better in a dark room, or a brightly lit

one? Is there a difference between the effects of fluorescent or normal lighting?

• Glare on the CRT/LCD – this is related to lighting conditions, generally flat-screen LCD

displays do not exhibit much glare compared to CRT.

• Users blink rate – not so much an environmental factor, but something that may well be

worth monitoring. One of the effects of reading from a computer screen is often a reduced

blink rate. The effects of this on reading speed is something that should be investigated.

One experiment would be to note any differences the application of eye drops may have

on reading speed using the computer based LVA.

Another factor that would be worth monitoring is the number of times a user must go back and re-

read certain words. Similarly the times a user changes the size of the text being read, either to

clarify individual letters in a word or to view the word in context of its neighbours. These may

provide clues towards a more effective method of displaying text for low vision readers.

6.4.2 Adaptive scrolling

One possible area of future research could be into ways of changing the speed of text scrolling

based on reading strategies. A basic trial of this adaptive scrolling could be to slow the scrolling

speed whenever some punctuation, such as commas and full stops are reached in a sentence.

Further analysis of reading strategies in low vision sufferers may indicate other ways in which the

scrolling could be adapted automatically to minimise user effort when reading.

Summary and Discussion 49

One example of this would be to have a semi-intelligent model of the user based on a combination

of previous user interactions together with specific traits of his/her particular eye defect. This can

then be used to identify patterns in the user’s reading strategy and allow the system to emulate

them. This may or may not provide a useful aid to reading: there is a danger here that the system

may become a nuisance by attempting to half guess the reader’s next action.

6.4.3 Control methods

Although for initial trials using a keyboard to control the LVA would be sufficient, future work

into a more suitable input device is required. Consideration should be taken for readers with

physical disability. Ideally the controls should not require any prolonged actions, such as holding

down a button for any length of time. Research is required into a control that minimises physical

effort and strain, while maintaining a good level of control and feedback between text and reader.

Additionally, the control should seem ‘ familiar’ to use, with intuitive correlation between physical

actions and manipulation of text on screen.

One solution may be to adopt a joystick or game style control pad. The axis of the joystick can be

used to control speed, direction and size of the text, while the ‘ fire’ button used for starting and

stopping the scrolling. Care must be taken to choose the right balance between level of

customisation of the LVA and simplicity of the interface.

Another, albeit more complicated to implement solution may be to use eye-tracking. EOG

(Electro-oculographic) sensors, as used in controlling some military head-up displays (HUD), can

track the position of the eye and allow the user to control an interface using eye motion24. A

simple handheld push button could additionally be used for start/stop operations. Far fetched as

this may seem, eye-tracking may provide a very effective means of reading control, although a

thorough analysis of individual reading methods would be a necessary precursor it this was to be

used in practice.

6.4.4 Capture methods

Further work may be carried out into the specific text capture methods mentioned in Chapter 2,

such as with paper scanners, digital cameras and the internet. In particular a means of integrating

the text scanning and capture devices into the aid itself so that their usage is simplified and

convenient. One futuristic example would be a real-time video camera that is ‘ trained’ to track

and extract text from its view. The text could then be fed with minimal effort into the LVA

display.

Summary and Discussion 50

Already there are some major book publishers looking towards releasing texts on the internet.

This trend is set to continue, and with it the establishment of standards for paying and

downloading new titles. One area of future work would be to look at these standards and text

formats for conversion into a form suitable for low vision reading.

Similarly there may be demand for integrating a low vision aid into web browsers. One existing

means of achieving this is through programs such as the BBC web site’s ‘Betsie’25. Betsie allows

extraction of plain text and hypertext links from any format of HTML file, from this the text can

be adapted for low vision reading.

6.4.5 Into the future

A culmination of all the possible work identified above may lead to more than just an aid for

reading. As mentioned in Chapter 2, digital video camera and display technology is continually

shrinking in size. Using existing wearable computer technology – for example high resolution

portable video goggles, digital camera and miniature PC embedded into clothing – an aid could be

built that would assist a low vision user in day to day life.

The camera(s) could be used as an electronic eye, the images relayed and enhanced by the PC to

the video goggles. Features such as automatic focus and zoom would all be available to enhance

the view. Additionally, any text that needed to be read could be captured and enlarged (and

possibly scrolled) across the display for ease of reading.

Much of the technology for this kind of augmented reality is already available, and low vision aid

such as this would be quite possible to build. However the success rate of such a device would be

questionable. Although the hardware may be sufficient, as yet there is much work required on

both the software and the understanding of human visual system. It is in the area of how to present

information to a defective eye, whether it be text or video, that more research is needed.

For this to succeed there must be closer collaboration between the medics who research problems

of low vision and the engineers who develop the technology.

51

Acknowledgements

I would like to thank my project supervisor Dr. David Renshaw for his inspiration

and support throughout this enjoyable project. I would also like to thank staff and

patients at PAEP for providing me with invaluable help and materials on all the

medical stuff, in particular Dr. B. Dhillon and Dr. Jeff Mason. Some others I

would like to thank are: Ian Stevenson at ST Vision26, for bailing me out with

DirectDraw; Francis Millingen for suggestions on OpenGL27; all the people in the

lab and newsgroups who helped me get MFC scrolling; and ‘Jim’ from the library

resource centre, for providing me with some insight into reading with low vision.

Finally I thank all those who had scrolling text coming out of their ears through

patiently listening to my occasional ranting and tales of coding despair.

52

References

1. FILNER, P.: Head of research, Macular Degeneration Foundation Website, various links

on MD, http://www.eyesight.org, 12 October 1999.

2. Macular Degeneration Support Website, various MD articles and links,

http://members.aol.com/danrob/MDpeople/index.htm, 16 October 1999.

3. Centre for Macular Degeneration, Iowa University Website,

http://www.opth.uiowa.edu/CMD/Default.htm, 16 February 2000.

4. Macular Degeneration Bulletin Board, Updates on the latest in MD research,

http://www.westmass.com/macular/bulletin.htm, 16 October 1999.

5. DIX, FINLAY, ABOWD, BEALE: “Human Computer Interaction” , Prentice Hall

Europe, 2nd Edition, 1998, p48.

6. DHILLON, B.; MASON, J.: Personal Correspondence, Princess Alexandra Eye Pavillion,

Edinburgh, 2 November 1999.

7. Edinburgh District Libraries Resource Centre: Personal Correspondence, Central Library,

George Fourth Bridge, Edinburgh, 13 March 2000.

8. TRAUZETTEL-KLOSINSKI, S.: “Eccentric fixation with hemianopic field defects” ,

Journal of Neuro-opthalmology, Volume 18, No 3, February 1997, pp 117-131.

9. HARPER, CULHAM, DICKINSON: “Head mounted video magnification devices for

low vision rehabilitation: a comparison with existing technology” , British Journal of

Opthalmology, Volume 83, 1999, pp497-498.

10. SAFRAN, DURET, ISSENHUTH, MERMOUD: “Full text reading with a central

scotoma: pseudo regressions and pseudo line losses” , British Journal of Opthalmology,

Volume 85, No 12, December 1999, pp1341-1342

11. HARPER, CULHAM, DICKINSON: “Head mounted video magnification devices for

low vision rehabilitation: a comparison with existing technology” , British Journal of

Opthalmology, Volume 83, 1999, pp495-500.

12. Pictures of “Jordy CCTV” courtesy of Enhanced Vision Website,

www.enhancedvision.com, May 2000

13. “Supernova magnifier for Windows” , Dolphin Software Website,

http://www.dolphinusa.com, 9 February 2000.

14. “L&H RealSpeak Text-to-Speech Reader” , Lernout & Hauspie Website,

http://www.lhsl.com/realspeak/, 3 May 2000.

53

15. “Jaws magnifier for Windows” , Henter-Joyce Website, http://www.hj.com, 9 February

2000.

16. “ inLarge magnifier” and “outSpoken text to speech reader” , http://www.alva.com, 9

February 2000.

17. “Sony Glasstron” , Sony Website, http://www.ita.sel.sony.com/products/av/glasstron/” ,24

October 1999.

18. SCHWATZ, S.J.: “Wearable Computing: enhance user’s movement throughout the real

world.” , MIT Website, http://schwatz.www.mit.edu/people/schwatz/index.htm, 10

February 2000.

19. BOOCH, JACOBSON, RUMBAUGH: “UML Notation Guide” Version 1.1, OMG

ad/97-08-05 1997.

20. OAKS, WONG: “Java Threads” , O’Reilly, Nutshell Handbook, 1997, Chapter 1, pp1-10

21. WOO, NEIDER, DAVIS, SHREINER: “Open GL Programming Guide” , Addison

Wesley, 3rd Edition, 1998, pp289-304.

22. COELHO, HAWASH: “DirectX, RDX, RSX, and MMX Technology” , Addison Wesley

Developers Press, 1998, pp 1-54.

23. SILVER, GILL, SHARVILLE, SLATER, MARTIN: “A new font for digital television

subtitles” , Tiresius Consortium Website, http://www.eyecue.co.uk/tiresias/design.htm,

1997.

24. KOSKO, B.: “Gaze direction determined by EOG” , Scientific American, July 1993.

25. MYERS, W.:“Betsie web page to text-only script” , BBC Website,

http://www.bbc.co.uk/education/betsie/download.html, 14 March 2000.

26. VAN MILLINGEN, F.: Personal Correspondence, Computer Services Dept., The

University of Edinburgh, 29 February 2000.

27. STEVENSON, I.: Personal Correspondence, ST Vision, Edinburgh, 1 March 2000.

54

Appendix A.1

Initial Scroller Code

CReaderView

Not e t hat m_buf f er Si ze i s i ni t i al i sed t o appr oxi mat el y 7 t i mes t he wi dt h
of m_scr eenSi ze.

void CReader Vi ew: : r ender Text (CCl i ent DC * dc, CDC * dcMem)
{

/ / empt y ol d bi t map f or r e- use
if (bmText . m_hObj ect ! = NULL)

bmText . Del et eObj ect () ;

/ / make bi t map compat i bl e f or buf f er
int Bi t sPi xel = Get Devi ceCaps(HDC(* dc) , BI TSPI XEL) ;
int Pl anes = Get Devi ceCaps(HDC(* dc) , PLANES) ;
bmText . Cr eat eBi t map(

m_buf f er Si ze. cx, m_buf f er Si ze. cy,
Pl anes, Bi t sPi xel , NULL
) ;

/ / l oad bi t map i nt o buf f er
CBi t map* pOl dBi t map = dcMem- >Sel ect Obj ect (&bmText) ;

/ / cr eat e a r ect angl e i n t he backgr ound col or
CRect r ect (0, 0, m_buf f er Si ze. cx, m_buf f er Si ze. cy) ;
CBr ush br Backgr ound(m_backCol our) ;

/ / set up t he backgr ound & t ext at t r i but es
dcMem- >Set BkCol or (m_backCol our) ;
dcMem- >Set Text Col or (m_t ext Col our) ;
dcMem- >Set Text Al i gn(TA_LEFT) ;
/ / er ase exi st i ng buf f er cont ent
dcMem- >Fi l l Rect (r ect , &br Backgr ound) ;

/ / sel ect f ont i nt o buf f er
Font f ont ;
f ont . Cr eat eFont I ndi r ect (&m_l ogFont) ;
dcMem- >Sel ect Obj ect (&f ont) ;

/ / r ender t ext i nt o posi t i on on buf f er
dcMem- >Text Out (m_buf f er Pos. x, m_buf f er Pos. y, m_t ext St r Al l) ;

/ / save new bi t map out of cur r ent buf f er
dcMem- >Sel ect Obj ect (&pOl dBi t map) ;
m_bRender Text = false;

}

55

void CReader Vi ew: : di spl ayText (CCl i ent DC* dc, CDC* dcMem)
{

/ / check i f one scr een s i ze away f r om end of buf f er
if (m_pos. x > m_buf f er Si ze. cx - m_scr eenSi ze. cx)
{

/ / r e- posi t i on r ender i ng posi t i on of t ext i n buf f er
m_buf f Pos. x - = m_pos. x;
m_pos. x = 0;
m_bRender Text = true;

}

/ / check i f appr oachi ng end of t ext
if (m_pos. x + abs(m_buf f Pos. x) > m_t ext St r Pi xel Len)
{

/ / l oad i n new st r i ng f or r ender i ng
i ni t i at eText () ;
m_bRender Text = true;

}

/ / bl i t a por t i on of buf f er t o posi t i on on scr een
dc- >St r et chBl t (

0, 0, m_scr eenSi ze. cx, m_scr eenSi ze. cy, dcMem, m_pos. x,
m_pos. y, m_scr eenSi ze. cx, m_scr eenSi ze. cy, SRCCOPY
) ;

/ / f or mat of bl i t par amet er s:
/ / (dest co- or di nat es, dest s i ze, buf f er ,
/ / sour ce co- or di nat es, sour ce s i ze,
/ / bl i t code)

}

void CReader Vi ew: : scr ol l er ()
{

CCl i ent DC dc(t hi s) ;

/ / cr eat e a devi ce cont ext i n memor y – t he buf f er
CDC dcMem;
dcMem. Cr eat eCompat i bl eDC(&dc) ;

/ / l oad saved bi t map i nt o buf f er
CBi t map * pOl dBi t map = dcMem. Sel ect Obj ect (&bmText) ;

/ / i ncr ement posi t i on
if (! m_pause) m_pos. x += m_scr ol l I ncr ement ;

/ / di spl ay buf f er ont o scr een at new posi t i on
di spl ayText (&dc, &dcMem) ;

if (m_bRender Text)
r ender Text (&dc, &dcMem) ;

/ / save bi t map out f r om buf f er
dcMem. Sel ect Obj ect (pOl dBi t map) ;
/ / f r ee memor y
dcMem. Del et eDC() ;

}

56

void CReader Vi ew: : i ni t i at eText ()
{

/ / r eset posi t i on t o or i gi n on scr een and i n buf f er
m_pos. x = 0; m_pos. y = 0;
m_buf f er Pos. x = 0; m_buf f er Pos. y = 0;
m_t ext St r Pi xel Len = 0;

/ / r et r i eve t ext st r i ng f r om document
CReader Doc* pDoc = Get Document () ;
m_t ext St r Al l = pDoc- >Get St r i ng() ;

/ / get pi xel wi dt h of new st r i ng
m_t ext St r Pi xel Len = Get St r i ngWi dt h(m_t ext St r Al l) ;

}

void CReader Vi ew: : OnSet Text Font ()
{

/ / cal l MFC’ s f ont sel ect i on di al ogue
CFont Di al og dl gFont (&m_l ogFont) ;

/ / i ni t i at e di al ogue as modal pop- up box
i f (dl gFont . DoModal () == I DOK)
{

dl gFont . Get Cur r ent Font (&m_l ogFont) ;
m_bRender Text = true;

}
}

void CReader Vi ew: : OnI ni t i al Updat e()
{

/ / r et r i eve new st r i ng f r om document
i ni t i at eText () ;
/ / i ni t i at e r ender
m_bRender Text = t r ue;

}

void CReader Vi ew: : Get Al l Char Wi dt hs()
{

/ / obt ai n t he devi ce cont ext – s i mi l ar t o Get DC
CCl i ent DC dc(t hi s) ;

/ / r et r i eve t he cur r ent f ont i n use f r om LOGFONT
CFont f ont ;
f ont . Cr eat eFont I ndi r ect (&m_l ogFont) ;

/ / r et r i eve wi dt hs of al l f ont char act er s
dc. Sel ect Obj ect (&f ont) ;
Get Char Wi dt h(HDC(dc) , 0, 255, &* m_l pAl l Char Wi dt hs) ;

}

int CReader Vi ew: : Get St r i ngWi dt h(CSt r i ng st r)
{

int s t r Len = 0;
Get Al l Char Wi dt hs() ;

/ / sum wi dt hs of char act er s i n st r i ng
for (int i = 0; i < st r . Get Lengt h() ; i ++)

st r Len += m_l pAl l Char Wi dt hs[st r [i]] ;

return s t r Len;
}

57

CReaderDoc

CSt r i ng CReader Doc: : Get St r i ng()
{

/ / get next st r i ng f r om ar r ay
m_t ext St r = m_t ext St r Ar r ay[m_t ext St r I ndex++] ;
if (m_endText < m_t ext St r I ndex) m_t ext St r I ndex = 0;

return m_t ext St r ;
}

CReaderApp

Thi s i s t he appl i cat i on c l ass t hat cr eat es t he Vi ew, Document and Fr ame.

/ / r egul at e t he r at e at whi ch t he Vi ew’ s scr ol l er f unct i on i s cal l ed
/ / wi t hi n OnI dl e - bet ween 1000 (f ast est) and 1 (s l owest)
int CReader App: : set Speed(unsigned int speed)
{

long r at e = 0;

if (speed == 0)
{

/ / i ndi cat es t o st op cal l i ng t he scr ol l er i n OnI dl e
r at e = 0;

}
else
{

/ / set t he r at e
r at e = 1000/ speed;

}

return r at e;
}

bool CReader App: : OnI dl e(LONG l Count)
{

CWi nApp: : OnI dl e(l Count) ;

/ / get a poi nt er t o t he Vi ew
CMai nFr ame * pMai n = (CMai nFr ame*) Af xGet App() - >m_pMai nWnd;
CReader Vi ew * pVi ew = (CReader Vi ew *) pMai n- >Get Act i veVi ew() ;

/ / cal l t he Vi ew’ s scr ol l er f unct i on
if (m_vi ewSaf e)
{

/ / r et r i eve t he desi r ed scr ol l speed f r om Vi ew
m_r at e = set Speed(pVi ew- >Get Speed()) ;

/ / count er mechani sm f or cont r ol l i ng t he scr ol l r at e
if (m_r at e <= m_count er)
{

if (m_r at e ! = 0) pVi ew- >scr ol l er () ;
m_count er = 0;

}
m_count er ++;

}
return t r ue;

}

58

Appendix A.2

OpenGL Based Code

CReaderView

void CReader Vi ew: : r ender Text ()
{
/ / posi t i on r ast er

gl Rast er Pos2d(- 2, - 1) ;

/ / l oad t he st r i ng (or par t of) i nt o OpenGL’ s back buf f er
gl Li st Base(1000) ;
gl Cal l Li st s(

m_t ext St r Al l . Get Lengt h() ,
GL_UNSI GNED_BYTE, CSt r i ng(m_t ext St r Al l)
) ;

}

void CReader Vi ew: : di spl ayText ()
{

/ / t r ansl at e t he v i ew i nt o new posi t i on
f l oat posx = f l oat (m_pos. x) / 100;
gl Tr ansl at ef (posx, 0, 0) ;

/ / f l ush any ot her dr awi ng commands
gl Fi ni sh() ;

/ / f i nal l y swap t he buf f er s
SwapBuf f er s(hDC) ;

}

void CReader Vi ew: : scr ol l er ()
{

if (m_bRender Text)
{

/ / Cl ear out t he col or & dept h buf f er s f i r s t l y
gl Cl ear (GL_COLOR_BUFFER_BI T | GL_DEPTH_BUFFER_BI T) ;
r ender Text () ;

}

di spl ayText () ;

/ / i ncr ement t he t ext posi t i on
if (! m_pause) m_pos. x - = m_scr ol l I ncr ement ;

}

59

void CReader Vi ew: : set Font ()
{

/ / pr epar e t he f ont s & s i zes f or t he t ext
CFont f ont ;
f ont . Cr eat eFont I ndi r ect (&m_l ogFont) ;

/ / sel ect f ont i nt o t he cur r ent devi ce cont ext
HDC hDC = wgl Get Cur r ent DC() ;
Sel ect Obj ect (hDC, HFONT(f ont)) ;

/ / cr eat e t he l i s t of f ont gl yphs f or use
wgl UseFont Bi t maps(hDC, 0, 256, 1000) ;

/ / set t he backgr ound (c l ear i ng) col our
gl Cl ear Col or (0. 0F, 0. 0F, 0. 4F, 1. 0F) ;

m_bRender Text = true;
}

60

Appendix A.3

DirectDraw Based Code

CReaderView

The member m_DD r ef er s t o t he i nst ance of DDGr aphi cs. m_buf f er Si ze i s
set by cal l i ng t he DDGr aphi cs f unct i on Get Buf f er Si ze() .

void CReader Vi ew: : di spl ayText ()
{

CRect r Sr c = m_r Sr cBl t ;

/ / check f or sour ce wi ndow movi ng out wi t h t he buf f er
if (r Sr c. r i ght >= m_buf f er Si ze. cx)
{

/ / pr epar e t o r ender used- up sur f ace
m_DD. Rot at eBackSur f aces() ;

/ / adj ust r Sr c back t o j ust bef or e st ar t of t he buf f er
r Sr c. r i ght = r Sr c. r i ght - m_buf f er Si ze. cx;
r Sr c. l ef t = r Sr c. l ef t - m_buf f er Si ze. cx;

m_r Sr cBl t = r Sr c;
m_r ender Text = true;

}

m_DD. Bl t (m_r Dst Bl t , m_r Sr cBl t) ;
}

61

void CReader Vi ew: : scr ol l er ()
{

if (! m_pause)
{

/ / i ncr ement t he scr ol l i ng sour ce wi ndow posi t i on
m_r Sr cBl t . l ef t += m_scr ol l I ncr ement ;
m_r Sr cBl t . r i ght += m_scr ol l I ncr ement ;

}

/ / di spl ay t he r ender ed t ext t o scr een
di spl ayText () ;

/ / per f or m a r ender t o t he of f scr een buf f er i f necessar y
if (m_r ender Text == true)
{

int char sRender ed = 0;

/ / do t he r ender , keepi ng t r ack of char act er s shown
char sRender ed = r ender Text (m_t ext ToShow) ;

/ / s t or e an i ndex t o t he l ast char act er di spl ayed
m_l ast Char = m_l ast Char + char sRender ed;

/ / r emove t he r emai ni ng st r i ng yet t o be r ender ed
m_t ext ToShow = m_t ext St r Al l . Mi d(m_l ast Char) ;

/ / check i f a new st r i ng needs t o be l oaded
if (m_t ext ToShow. I sEmpt y())

i ni t i at eText () ;
}

}

62

int CReader Vi ew: : r ender Text (CSt r i ng dr awMe)
{

/ / obt ai n t he desi r ed f ont
CFont f ont ;
f ont . Cr eat eFont I ndi r ect (&m_l ogFont) ;

/ / obt ai n t he t ext t o be di spl ayed
CSt r i ng t ext = dr awMe;

/ / / / not saf e f or debuggi ng beyond her e – scr een l ocked!

/ / r et r i eve a handl e t o t he GDI - st y l e devi ce cont ext
/ / of a Di r ect Dr aw of f scr een (back) sur f ace
HDC hDC;
m_DD. Get BackSur f aceDC(&hDC) ;

/ / f i l l t he of f scr een r ect angl e i n t he backgr ound col or
CBr ush br Backgr ound(m_backCol our) ;
CRect r scr een = CRect (CPoi nt (0, 0) , m_sur f aceSi ze) ;
Fi l l Rect (hDC, r scr een, br Backgr ound) ;

/ / cr eat e a r ect angl e i n t he backgr ound col or
CRect r ect (0, 0, m_buf f er Si ze. cx, m_buf f er Si ze. cy) ;
CBr ush br Backgr ound(m_backCol our) ;

/ / pr epar e t ext at t r i but es
Set BkCol or (hDC, m_backCol our) ;
Set Text Col or (hDC, m_t ext Col our) ;
Sel ect Obj ect (hDC, f ont) ;

/ / get wi dt hs of al l char act er s i n sel ect ed f ont
Get Char Wi dt h(hDC, 0, 255, &* m_l pAl l Char Wi dt hs) ;

/ / cal cul at e how much of st r i ng wi l l f i t on t hi s sur f ace
for (int i = 0, l i neLengt h = 0; i < t ext . Get Lengt h() ; i ++)
{

int char Wi dt h = m_l pAl l Char Wi dt hs[t ext [i]] ;
if (l i neLengt h + char Wi dt h > m_sur f aceSi ze. cx) break;

l i neLengt h += char Wi dt h;
}

/ / wr i t e t he f i r s t i char act er s t o t he of f scr een sur f ace
Text Out (hDC, 0, 0, t ext , i) ;

/ / / / Now r el ease t he DC. . . scr een unl ocked agai n!
m_DD. Rel easeBackSur f aceDC(hDC) ;

/ / now t hat t he f i r s t i char act er s of t ext have been wr i t t en
/ / r emove t hem f r om t he st r i ng
t ext = t ext . Mi d(i) ;

m_bRender Text = false;

/ / r et ur n i ndex of t he l ast char act er di spl ayed i n gi ven st r i ng
r et ur n (dr awMe. Get Lengt h() - t ext . Get Lengt h()) ;

}

63

DDGraphics

void DDGr aphi cs: : I ni t i al i se(HWND hwndScr een)
{

/ / r el ease any pr evi ous i nst ances of DD obj ect
m_l pDD- >Rel ease() ;
m_l pDD = NULL;

Cr eat eDD(hwndScr een) ;
Get Caps(hwndScr een) ;

/ / cr eat e sur f aces wi t h s i ze of cur r ent scr een
Cr eat ePr i mar ySur f ace(hwndScr een) ;
Cr eat eBackSur f aces() ;

}

/ / cr eat e t he Di r ect Dr aw obj ect
/ / Not e t hat ext r a code i s r equi r ed t o ensur e
/ / Di r ect Dr aw uses i t s ver s i on 2 i nt er f ace, Di r ect Dr aw2
void DDGr aphi cs: : Cr eat eDD(HWND hWnd)
{

LPDI RECTDRAW l pOl dDD;
/ / cr eat e ‘ ol d’ s t y l e Di r ect Dr aw obj ect
Di r ect Dr awCr eat e(NULL, &l pOl dDD, NULL) ;
/ / set Di r ect Dr aw f or nor mal wi ndows app
l pOl dDD- >Set Cooper at i veLevel (hWnd, DDSCL_NORMAL) ;

/ / quer y t he i nt er f ace f or Di r ect Dr aw2 obj ect
l pOl dDD- >Quer yI nt er f ace(I I D_I Di r ect Dr aw2, (LPVOI D *) &m_l pDD) ;

/ / r el ease ol d DD obj ect
l pOl dDD- >Rel ease() ;

}

64

void DDGr aphi cs: : Get Caps(HWND hWnd)
{

/ / get devi ce capabi l i es
DDCAPS hwCaps = { 0} , hel Caps = { 0} ;
hwCaps. dwSi ze = s i zeof (DDCAPS) ;
hel Caps. dwSi ze = s i zeof (DDCAPS) ;

/ / l ook f or har dwar e f eat ur es of i nt er est t o us
m_l pDD- >Get Caps(&hwCaps, &hel Caps) ;

/ / i s t her e a h/ w bl i t t er t o bl t bet ween sur f aces
m_bCanBl t Vi dMem = (hwCaps. dwCaps & DDCAPS_BLT) ? true : false;

/ / f i nd t he maxi mum devi ce scr een wi dt h and hei ght
HDC hdc;
hdc = Get DC(hWnd) ;
m_scr eenWi dt h = Get Devi ceCaps(hdc, HORZRES) ;
m_scr eenHei ght = Get Devi ceCaps(hdc, VERTRES) ;
Rel easeDC(hWnd, hdc) ;

/ / f i nd out how much v i deo memor y t her e i s t o pl ay wi t h
DWORD dwTot al , dwFr ee;
DDSCAPS ddsCaps;
ddsCaps. dwCaps = DDSCAPS_OFFSCREENPLAI N;
m_l pDD- >Get Avai l abl eVi dMem(&ddsCaps, &dwTot al , &dwFr ee) ;

/ / check t her e i s enough v i deo memor y f or 4 sur f aces
/ / i . e. pr i mar y and 3 of f scr een
if (int(dwFr ee) < 4 * dwWi dt h * dwHei ght)

m_bVi dMemFr ee = false;
}

65

void DDGr aphi cs: : Cr eat ePr i mar ySur f ace(HWND hWnd)
{

/ / cr eat e t he pr i mar y sur f ace and at t ach a wi ndow cl i pper
/ / Not e t hat t o be compat i bl e wi t h Di r ect Dr aw2, t he sur f ace
/ / must be set up usi ng a Di r ect Dr awSur f ace3 i nt er f ace

LPDI RECTDRAWSURFACE l pOl dSur f ;
LPDI RECTDRAWCLI PPER l pddCl i pper ;

HDC hdc;
int i ;

/ / i ni t i al i se sur f ace descr i pt or
Zer oMemor y(&m_sdPr i mar y, s i zeof (m_sdPr i mar y)) ;
m_sdPr i mar y. dwSi ze = s i zeof (m_sdPr i mar y) ;
m_sdPr i mar y. dwFl ags = DDSD_CAPS;
m_sdPr i mar y. ddsCaps. dwCaps = DDSCAPS_PRI MARYSURFACE;

/ / cr eat e a pr i mar y sur f ace
m_l pDD- >Cr eat eSur f ace(&m_sdPr i mar y, &l pOl dSur f , NULL) ;

/ / updat e t o a Di r ect Dr aw3 compat i bl e sur f ace
l pOl dSur f - >Quer yI nt er f ace(I I D_I Di r ect Dr awSur f ace3, &m_l pPr i mSur f) ;

/ / r el ease t he ol d sur f ace poi nt er
l pOl dSur f - >Rel ease() ;

/ / cr eat e a c l i pper : t hi s ensur es t he pr i mar y sur f ace i s t he
/ / same si ze as t he appl i cat i on’ s wi ndow.
Di r ect Dr awCr eat eCl i pper (0UL, &l pddCl i pper , NULL) ;

/ / set t he appl i cat i on wi ndow t o be c l i pped
l pddCl i pper - >Set HWnd(0UL, hWnd) ;

/ / at t ach t he c l i pper t o t he pr i mar y sur f ace and r el ease poi nt er
m_l pPr i mSur f - >Set Cl i pper (l pddCl i pper) ;
l pddCl i pper - >Rel ease() ;

}

66

void DDGr aphi cs: : Cr eat eBackSur f aces(HWND hWnd)
{

/ / Not e t hat t o be compat i bl e wi t h Di r ect Dr aw2, t he sur f aces
/ / must be set up usi ng a Di r ect Dr awSur f ace3 i nt er f ace

LPDI RECTDRAWSURFACE l pOl dBackSur f 1;
LPDI RECTDRAWSURFACE l pOl dBackSur f 2;
LPDI RECTDRAWSURFACE l pOl dBackSur f ;

/ / set descr i pt i on of t he back sur f aces
m_sdBack. dwHei ght = m_scr eenHei ght ;
m_sdBack. dwWi dt h = m_scr eenWi dt h;
m_sdBack. dwFl ags = DDSD_CAPS | DDSD_HEI GHT | DDSD_WI DTH;
m_sdBack. ddsCaps. dwCaps = DDSCAPS_OFFSCREENPLAI N;

/ / i f we can use v i deo memor y, t hen do so.
i f (m_bCanBl t Vi dMem && m_bVi dMemFr ee)

m_sdBack. ddsCaps. dwCaps | = DDSCAPS_VI DEOMEMORY;

/ / cr eat e t he f i r s t back sur f ace
m_l pDD- >Cr eat eSur f ace(&m_sdBack, &l pOl dBackSur f , NULL) ;

/ / empl oy t he Di r ect Dr aw3 i mt er f ace f or t hi s sur f ace
l pOl dBackSur f - >Quer yI nt er f ace(I I D_I Di r ect Dr awSur f ace3,

(LPVOI D *) &m_l pBackSur f) ;
/ / r el ease t he ol d sur f ace poi nt er
l pOl dBackSur f - >Rel ease() ;

/ / do t he same f or 2nd sur f aces
m_l pDD- >Cr eat eSur f ace(&m_sdBack, &l pOl dBackSur f 2, NULL) ;
l pOl dBackSur f 2- >Quer yI nt er f ace(I I D_I Di r ect Dr awSur f ace3,

(LPVOI D *) &m_l pBl t Sur f 2) ;

/ / r el ease t he ol d sur f ace poi nt er
l pOl dBackSur f 2- >Rel ease() ;

/ / and f i nal l y t he 3r sur f ace
m_l pDD- >Cr eat eSur f ace(&m_sdBack, &l pOl dBackSur f 1, NULL) ;
l pOl dBackSur f 1- >Quer yI nt er f ace(I I D_I Di r ect Dr awSur f ace3,

(LPVOI D *) &m_l pBl t Sur f 1) ;
l pOl dBackSur f 1- >Rel ease() ;

}

67

void DDGr aphi cs: : Bl t (CRect r Dst , CRect r Sr c)
{
 / / bl i t f r om t wo separ at e sur f aces, t r eat i ng t hem a s i ngl e buf f er

/ / assumes sour ce and dest i nat i on ar e t he same si ze

CRect r Sr c1 = r Sr c,
r Sr c2 = r Sr c,
r Dst 1 = r Dst ,
r Dst 2 = r Dst ;

/ / dest i nat i on wi dt h
i nt dwi dt h = r Dst . r i ght - r Dst . l ef t ;

/ / r Sr c1 and r Sr c2 shoul d never go out wi t h 0 and m_sur f aceWi dt h

/ / i f sour ce has negat i ve l ef t edge, wr ap r Sr c1
/ / back ar ound ont o i t s sur f ace
if (r Sr c. l ef t <= 0)

r Sr c1. l ef t = r Sr c. l ef t + m_sur f aceWi dt h;

/ / i f r i ght edge scr ol l s past buf f er boundar y,
/ / wr ap r Sr c2 ar ound t o begi nni ng of i t s sur f ace
if (r Sr c. r i ght >= (2 * m_scr eenWi dt h))

r Sr c2. r i ght = r Sr c. r i ght - m_sur f aceWi dt h;

/ / set f i xed poi nt s of t wo sub r ect angl es
r Sr c1. r i ght = sur f aceWi dt h;
r Sr c2. l ef t = 0;

/ / get new wi dt hs of sour ce r ect angl es
int wi dt h1 = r Sr c1. r i ght – r Sr c1. l ef t ;
int wi dt h2 = r Sr c2. r i ght – r Sr c2. l ef t ;

/ / adj ust dest i nat i on r ect angl es t o mat ch t hese wi dt hs
r Dst 1. r i ght = r Dst 1. l ef t + wi dt h1;
r Dst 2. l ef t = r Dst 2. r i ght – wi dt h2;

/ / per f or m t he bl i t t i ng oper at i ons
/ / pr ovi ded t he sour ce r ect angl es ar e val i d
if (wi dt h1 > 0)

m_l pPr i mSur f - >Bl t (&r Dst 1, m_l pBl t Sur f 1, &r Sr c1) ;
if (wi dt h2 > 0)

m_l pPr i mSur f - >Bl t (&r Dst 2, m_l pBl t Sur f 2, &r Sr c2) ;
}

68

void DDGr aphi cs: : Rot at eBackSur f aces(BOOL f or war d)
{

/ / t hi s f unct i on f l i ps t he t hr ee back sur f aces
/ / i n a c i r cul ar f ashi on
LPDI RECTDRAWSURFACE3 t mpSur f ;

if (f or war d)
{

t mpSur f = m_l pBackSur f ;
m_l pBackSur f = m_l pBl t Sur f 2;
m_l pBl t Sur f 2 = m_l pBl t Sur f 1;
m_l pBl t Sur f 1 = t mpSur f ;

}
else / / backwar ds
{

t mpSur f = m_l pBl t Sur f 1;
m_l pBl t Sur f 1 = m_l pBl t Sur f 2;
m_l pBl t Sur f 2 = m_l pBackSur f ;
m_l pBackSur f = t mpSur f ;

}
}

69

DDGraphics Page Flipping

The code f or Page f l i ppi ng i s i nc l uded f or compl et eness. I t has not yet
been i nt egr at ed i nt o t he mai n appl i cat i on.

void DDGr aphi cs: : Cr eat eFl i pSur f aces()
{

/ / cr eat e t wo back buf f er f l i ppabl e sur f aces
LPDI RECTDRAWSURFACE l pFl i pSur f 1;
LPDI RECTDRAWSURFACE l pFl i pSur f 2;

/ / f l i ppabl e back sur f aces shoul d be al most i dent i cal t o pr i mar y
/ / so descr i be pr i mar y sur f ace and copy ont o f l i p descr i pt i onS
m_l pPr i mSur f - >Get Sur f aceDesc(&m_sdPr i mar y) ;

memcpy(&m_sdFl i p, &m_sdPr i mar y, s i zeof (DDSURFACEDESC)) ;
m_sdFl i p. ddsCaps. dwCaps = DDSCAPS_OFFSCREENPLAI N;
m_sdFl i p. dwFl ags = DDSD_WI DTH | DDSD_HEI GHT

| DDSD_PI XELFORMAT | DDSD_CAPS;

/ / i f we can use v i deo memor y, t hen do so.
i f (m_bCanBl t Vi dMem)

m_sdBack. ddsCaps. dwCaps | = DDSCAPS_VI DEOMEMORY;

/ / now cr eat e f l i p sur f ace 1 i n s i mi l ar manner as bef or e
m_l pDD- >Cr eat eSur f ace(&m_sdFl i p, &l pFl i pSur f 1, NULL) ;
l pFl i pSur f 1- >Quer yI nt er f ace(I I D_I Di r ect Dr awSur f ace3,

(LPVOI D *) &m_l pFl i pSur f 1) ;
/ / now cr eat e f l i p sur f ace 2
m_l pDD- >Cr eat eSur f ace(&m_sdFl i p, &l pFl i pSur f 2, NULL) ;
l pFl i pSur f 1- >Quer yI nt er f ace(I I D_I Di r ect Dr awSur f ace3,

(LPVOI D *) &m_l pFl i pSur f 2) ;

/ / at t ach f l i p sur f aces t o t he pr i mar y
m_l pPr i mSur f - >AddAt t achedSur f ace(m_l pFl i pSur f 1) ;
m_l pPr i mSur f - >AddAt t achedSur f ace(m_l pFl i pSur f 2) ;

}

void DDGr aphi cs: : Fl i p()
{

/ / f l i p wi t h wai t unt i l f i ni shed f l ag
r et ur n m_l pPr i mSur f - >Fl i p(NULL, (DWORD) DDFLI P_WAI T) ;

}

70

Appendix A.4

Mission Statement

71

72

1 Macular degeneration literature ***
2

3

4

5 Elderly people and HCI …
6 PAEP
7 Edinburgh libraries
8 eccentric fixation
9 Goodrich et al { hmdp497} image slips
10 saccadic movement BJO vol85 No12, Safran, Duret, Issenhuth, Mermoud (Geneva) Dec 1999
11 cctv
12 pictures courtesy of www.enhancedvision.com
13 CCTVs head mounted and older ones..
14 text-to-speech
15 PC CCTV
16 …
17 Sony Glastron
18 wearables
19 UML
20 java threads
21 OpenGL references
22 DirectDraw references
23 contrast
24 EOG eye tracking
25 Betsie
26 st vision
27 OpenGL

