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Abstract

Most gesture recognition systems analyze gestures intended
for communication (e.g. sign language) or for command
(e.g. navigation in a virtual world). We attempt instead to
recognize gestures made in the course of performing every-
day work activities. Specifically, we examine activities in
a wood shop, both in isolation as well as in the context of
a simulated assembly task. We apply linear discriminant
analysis (LDA) and hidden Markov model (HMM) tech-
niques to features derived from body-worn accelerometers
and microphones. The resulting system can successfully
segment and identify most shop activities with zero false
positives and 83.5% accuracy.

1 Introduction

Advances in technology are allowing computer support for
mobile applications. Delivery, maintenance, and manufac-
turing personnel are adopting mobile computing devices to
support their work. Similarly, consumers now have access
to mobile electronic tourist guides, communication devices,
and health and wellness monitoring devices.

A key issue in most such mobile applications is the ef-
fort required to devote to operating the devices. Whereas
in a desktop setting the computer is the focus of the user’s
attention, the user is forced to focus his attention on the
environment for many mobile applications. Accessing the
computer should require minimal cognitive and physical ef-
fort to prevent distracting the user from his primary task.

1.1 Context Sensitivity in Wearable Systems

In addressing the above issues wearable computers have re-
cently emerged as a promising new paradigm. To reduce
the physical effort required to operate the device they are
designed to be a permanently accessible part of the user’s
outfit, have mostly hands free input devices, and head-up
displays.
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With respect to the cognitive load, many wearable sys-
tems focus on context sensitivity and proactiveness (e.g [1]).
The system should be aware of the user’s action and the ac-
tivities occuring in his environment. Based on this aware-
ness, the system can adapt its configuration, deliver infor-
mation to the user, or record interesting events without any
explicit user input [17]. For example, a maintenance sup-
port system could recognize what particular task is being
performed by the user and automatically display the rele-
vant manual pages on the system’s head-up display. The
wearable could also record the sequence of operations that
are being performed for later analysis or could warn the user
if an important step has been forgotten.

1.2 Recognition Approach

Past approaches by the authors have used head-mounted
cameras and computer vision techniques to identify user
context [17]. Although the visual signal contains much rel-
evant information about any given situation, vision-based
recognition has several disadvantages. For one, reliable lo-
calization and recognition of the relevant objects (hands,
machine parts, tools) in complex scenes is an open research
problem. In addition, computer vision techniques have diffi-
culty with the unstructured, moving backgrounds and vary-
ing lighting condition as is common to many wearable sce-
narios, and relevant parts of the scene might be out of view
or obstructed. Finally, video recognition is computationally
intensive, often requiring resources not available on a wear-
able system.

A recognition approach gaining popularity in the wear-
able community is simple sensors integrated in the user’s
outfit and in the user’s artifacts (e.g. tools, appliances, or
parts of the machinery) [10]. One of the key aspects of
this approach is the recognition and tracking of postures and
gestures using motion sensors attached to appropriate loca-
tions on the user’s limbs. Initial experiments have shown
that many activities can be well identified through such
analysis[8]. Another important source of information about



environmental activity is sound. It has been shown that in
many situations ambient sound analysis can be used to dis-
tinguish between different settings, activities, and situations

[4].

1.3 Paper Aims and Contributions

This paper is part of our work aiming to develop a reli-
able context recognition methodology based on the above
approach. It presents a novel way of combining motion
sensor-based gesture recognition with sound data from dis-
tributed microphones. In particular we exploit intensity dif-
ferences between microphones on the wrist of the dominant
hand and on the chest to identify relevant actions performed
by the user’s hand.

In the paper we focus on tracking user activity during as-
sembly or maintenance tasks. Such tasks are among the
most important applications of wearable computing (e.g.
[2, 7]) and could significantly benefit from context sensi-
tivity. At the same time these tasks are well structured and
limited to a reasonable number of often repetitive actions.
In addition, machines and tools typical to a workshop envi-
ronment generate distinct sounds. Therefore, these activi-
ties are well suited for a combination of gesture and sound—
based recognition.

This paper describes our approach and the results pro-
duced in an experiment performed on an assembly task in
a wood workshop. We demonstrate that simple sensors
placed on the user’s body can reliably select and recognize
user actions during a workshop procedure.

1.4 Related Work

Acceleration—based activity recognition has been studied by
different research groups [11, 14, 19]. However all of the
above work focused on recognizing comparatively simple
activities (walking, running, and sitting). Sound based sit-
uation analysis has been investigated by Pelton et al. and
in the wearables domain by Clarkson and Pentland [12, 5].
Intelligent hearing aids have also exploited sound analysis
to improve their performance [3].

2 Experimental Setup

Performing initial experiments on live assembly or mainte-
nance tasks is unadvisable due to the cost and safety con-
cerns and the ability to obtain repeatable measurements un-
der experimental conditions. As a consequence we have de-
cided to focus on an “artificial” task performed at the work-
bench of wood workshop of our lab (see Figure 1). The task
consisted of assembling a simple object made of two pieces
of wood and a piece of metal. The task required 8 process-
ing steps using different tools and including walking and

Figure 1: Left: the wood workshop with 1) grinder, 2) drill,
3)file and saw, 4) vice, and 5) cabinet with drawers. Right:
The sensor type and placement is identical with the one used
in our experiment: 1,4: microphone, 2,3 and 5: 3-axis ac-
celeration sensors.

other gestures similar to an assembly task in a real world
setting.

2.1 Procedure

No | action

1 take the wood out of the drawer

2 put the wood into the vice

3 take out the saw

4 saw

5 put the saw into the drawer

6 take the wood out of the vice

7 drill

8 get the nail and the hammer

9 hammer

10 | put away the hammer, get the driver and the screw
11 | drive the screw in

12 | put away the driver

13 | pick up the metal

14 | grind

15 | put away the metal, pick up the wood
16 | put the wood into the vice

17 | take the file out of the drawer

18 | file

19 | put away the file, take the sandpaper
20 | sand

21 | take the wood out of the vice

Table 1: Steps of workshop assembly task.

The assembly sequence consists of sawing a piece of
wood, drilling a hole in it, grinding a piece of metal, at-
taching it to the piece of wood with a screw, hammering in
a nail to connect the two pieces of wood, and then finish-
ing the product by smoothing away rough edges with a file



and a piece of sandpaper. The wood was fixed in the vice
for sawing, filing, and smoothing (and removed whenever
necessary). The test subject moved between areas in the
workshop between steps. Also, whenever a tool or an ob-
ject (nail screw, wood) was required, it was retrieved from
its drawer in the cabinet and returned after use.

The exact sequence of actions is listed in Table 1. The
task was to recognize all tool-based activities. Tool-based
activities excludes drawer manipulation, user locomotion,
and clapping (a calibration gesture). The experiment was
repeated 10 times in the same sequence to collect data for
training and testing. For practical reasons, the individual
processing steps were only executed long enough to obtain
an adequate sample of the activity. This policy did not re-
quire the complete execution of any one task (e.g. the wood
was not completely sawn), allowing us to complete the ex-
periment in a reasonable amount of time. However this pro-
tocol influenced only the duration of each activity and not
the manner in which it was performed.

2.2 Data Collection System

The data was collected using the ETH PadNET sensor net-
work [8] equipped with 3 axis accelerometer nodes and two
Sony mono microphones connected to a body worn com-
puter. The position of the sensors on the body is shown in
Figure 1: an accelerometer node on both wrist and on the
upper arm of the right hand and a microphone on the chest
and on the right wrist (the test subject was right handed).

As can be seen in Figure 1 each PadNET sensor node
consist of two modules. The main module incorporates
a MSP430149 low power 16-Bit mixed signal micropro-
cessor (MPU) from Texas Instruments running at 6 MHz
maximum clock speed. The current module version reads
out up to three analog sensor signals including amplifica-
tion and filtering and handles the communication between
modules through dedicated I/O pins. The sensors them-
selves are hosted on an even smaller "sensor-module’ that
can be either placed directly on the main module or con-
nected through wires. In the experiment described in this
paper sensor modules were based on a 3-axis accelerom-
eter package consisting of two ADXL202E devices from
Analog Devices. The analog signals from the sensor were
lowpass filtered (feutorf = 50H z) and digitized with 12Bit
resolution using a sampling rate of 100Hz.

3 Recognition

3.1 Acceleration Data Analysis

Figure 2 shows a segment of the acceleration data collected
during the experiment. The segment includes sawing, re-
moving the wood from the vice, and drilling. The user ac-

cesses the drawer two times and walks between the vice and
the drill. Clear differences can be seen in the acceleration
signals. For example, sawing clearly reflects a periodic mo-
tion. By contrast, the drawer access (marked as 1aand 1b in
the figure) shows a low frequency “bump” in acceleration.
This bump corresponds to the 90 degree turns of the wrist
as the user releases the drawer handle, retrieves the object,
and grasps the handle again to close the drawer.

Given the data, time series recognition techniques such
as hidden Markov models (HMMs) [13] should allow the
recognition of the relevant gestures. However, a closer anal-
ysis reveals two potential problems. First, not all relevant
activities are strictly constrained to a particular sequence of
motions. While the characteristic motions associated with
sawing or hammering are distinct, there is high variation in
drawer manipulation and grinding. Secondly, the activities
are separated by sequences of user motions unrelated to the
task (e.g the user scratching his head). Such motions may
be confused with the relevant activities. We define a “noise”
class to handle these unrelated gestures.

3.2 Sound Data Analysis

Considering that most gestures relevant for the assem-
bly/maintanance scenario are associated with a distinct
sounds, sound analysis should help to address the problems
described above. We distinguish between three different
types of sounds:

1. Sounds made by a handtool: - Such sounds are directly
correlated with user hand motion. Examples are saw-
ing, hammering, filing, and sanding. These actions are
generally repetitive, quasi—stationary sounds (i.e. rel-
atively constant over time - such that each time slice
on a sample would produce an identical spectrum over
a reasonable length of time). In addition these sounds
are much louder than the background noise (dominant)
and are likely to be much louder at the microphone
on the user’s hand than on his chest. For example,
the intensity curve for sanding (see Figure 2 top right)
reflects the periodic sanding motion with the minima
corresponding to the changes in direction and the max-
ima coinciding with the maximum sanding speed in the
middle of the motion. Since the user’s hand is directly
on the source of the sound the intensity difference is
large. For other activities it is smaller, however in most
cases still detectable.

2. Semi-autonomous sounds: These sounds are initiated
by user’s hand, possibly (but not necessarily) remain-
ing close to the source for most of the sound duration.
This class includes sound produced by a machine, such
as the drill or grinder. Although ideal quasi-stationary
sounds, sounds in this class may not necessarily be
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Figure 2: Left: example accelerometer data from sawing and drilling. Right top: audio profile of sanding from wrist and
chest microphones. Right bottom: clustering of activities in LDA space

dominant and tend to have a less distinct intensity dif-
ference between the hand and the chest (for example,
when a user moves their hand away from the machine
during operation).

. Autonomous sounds: These are sounds generated by
activities not driven by the user’s hands (e.g loud back-
ground noises or the user speaking).

Obviously the vast majority of relevant actions in assembly
and maintanance are associated with hand tool sounds and
semi—autonomous sounds. In principle, these sounds should
be easy to identify using intensity differences between the
wrist and the chest microphone. In addition, if extracted ap-
propriately, these sounds may be treated as quasi-stationary
and can be reliably classified using simple spectrum pattern
matching techniques.

The main problem with this approach is that many ir-
relevant actions are also likely to fall within the definition
of handtool and semi—autonomous sound. Such actions
include scratching or putting down an object. Thus, like
acceleration analysis, sound—based classification also has
problem distinguishing relevant from irrelevant actions and
will produce a number of false positives.

3.3 Recognition Methodology

Neither acceleration nor sound provide enough information
for perfect extraction and classification of all relevant activ-
ities; however, we hypothesize that their sources of error are

likely to be statistically distinct. Thus, we develop a tech-
nique based on the fusion of both methods. Our procedure
consists of three steps:

1. Extraction of the relevant data segments using the in-
tensity difference between the wrist and the chest mi-
crophone. We expect that this technique will segment
the data stream into individual actions (including many
actions we will model as noise).

Independent classification of the actions based on
sound or acceleration. This step will yield imperfect
recognition results by both the sound and acceleration
subsystems.

Removal of false positives. While the sound and ac-
celeration subsystems are each imperfect, when their
classifications of a segment agree, the result may be
more reliable (if the sources of error are statistically
distinct).

4 |solated Activity Recognition

As an initial experiment, we segment the activities in the
data files by hand and test the accuracy of the sound and
acceleration methods separately.



4.1 Sound Recognition
411 Method

The basic classification scheme operates on individual
sound segments of length ¢,,. The approach follows a three
step process: feature extraction, dimensionality reduction,
and the actual classification.

The features used are the spectral components of each ¢,
obtained by Fast Fourier Transformation (FFT). This pro-
duces N = ’% - t,, dimensional feature vectors.

Rather than attempting to classify such large N-
dimensional vectors directly, Linear Discriminant Analysis
(LDA)[6] is employed to derive an optimal projection of the
data into a smaller, A dimensional feature space (where M
is the number of classes). In the “recognition phase”, the
LDA transformation is applied to the data segment under
test to produce the corresponding M — 1 dimensional fea-
ture vector.

Using a labeled training-set, class means are calculated
in the M —1 dimensional space. Classification is performed
simply by choosing the class mean which has the minimum
Euclidean distance from the test feature vector (see Figure
3 bottom right).

4.1.2 Intensity Analysis

Making use of the fact that signal intensity is inversely pro-
portional to the square of the distance from its source, the
ratio of the two intensities Lypist/Ichest 1S USed as a mea-
sure of absolute distance of source from the user. Assuming
the sound source is distance d from the wrist microphone
and d + ¢ from the chest, the ratio of the intensities will be
proportional to

Lyrit  (d+0)* _d*+2d6+6* 20 &7
Tnew & @&  Tate
When both microphones are separated by at least 4, any

sound produced a distance d ( where d >> & ) from the
user will bring this ratio close to one. Sounds produced near
the chest microphone (e.g. the user speaking) will cause the
ratio to approach zero whereas any sounds close to the wrist
mic will make this ratio large.

Sound extraction is performed by sliding a window w;,
over the fs Hz resampled audio data. On each iteration,
the signal energy over w;, for each channel is calculated.
For these windows, the difference in ratio Iyist /Iohest @and
its reciprocal are obtained, which are then compared to an
empirically obtained threshold th;, .

The difference Lypist /Ichest — Lehest/Twrist Provides a
convenient metric for thresholding - zero indicates a far off
(or exactly equidistant) sound while above or below zero
values indicate a sound closer to the wrist or to the chest
mic respectively.

Sound LDA | IA+LDA | maj(IA+LDA)
Hammer | 96.79 | 98.85 100
Saw 92.71 | 92.98 100
Filing 69.68 | 81.43 100
Drilling 99.59 | 99.35 100
Sanding 93.66 | 92.87 100
Grinding | 97.77 | 97.75 100
Screwing | 91.17 | 93.29 100
Vice 80.10 | 81.14 100
Overall 90.18 | 92.21 100

Table 2: Isolated Recognition Accuracy Per Sound (in %)
for LDA alone, LDA with 1A preselection and majority de-
cision.

4.2 Results

In order to analysis the performance of the LDA on isolated
classes, individual examples of each class were partitioned
from each of the 10 experiments, providing 10 examples
of each class. Eight examples of each class were used for
training while testing on the remaining two examples.

Earlier work[15] cited f,=5kHz and ¢,,=0.05 seconds
(256 points) as optimal parameters for general purpose
sound recognition tasks. In this task, it was found that
recognition rates were improved using a larger ¢,,=0.1; at
the same time f, could be reduced to 2kHz without any no-
table adverse effects.

With these parameters, a sliding window ¢,, LDA classi-
fication was run directly over all the class partitioned sam-
ples. This process returned an overall recognition rate of
90.19%. The individual class results are given in the first
column of Table 2. We next used intensity analysis to select
only the samples over a given threshold to pass to the LDA
procedure. This technique resulted in a slightly higher accu-
racy of 92.21% as shown in the second column of Table 2.
The third column of Table 2 shows a variation of this tech-
nigue where we slide a window over the data and classify
the data at each window segment. A majority decision over
the window segments was used to determine the overall la-
bel for a given isolated activity. This technique resulted in
100% recognition over the test data.

Figure 3: HMMs topologies.



4.3 Accelerometer-Based Activity Recogni-
tion

Hidden Markov models (HMMs) are probabilistic models
used to represent non-deterministic processes in partially
observable domains and are defined over a set of states, tran-
sitions, and observations. Details of HMMs and the respec-
tive alogrithms are beyond the scope of this paper but may
be found in Rabiner’s tutorial on the subject [13].

Hidden Markov models have been shown to be robust
for represention and recognition of speech [9], handwriting
[16], and gestures [18]. HMMs are capable of modelling
important properties of gestures such as time variance (the
same gesture can be repeated at varying speeds) and repe-
tition (a gesture which contains a motion which can be re-
peated any number of times). They also handle noise due
to sensors and imperfect training data by providing a prob-
abilistic framework.

For gesture recognition, a model is trained for each of the
gestures to be recognized. In our experiment, the set of ges-
tures includes saw, drill, screw, hammer, sand, file, drawer,
vice, and clap. Once the models are trained, a sequence of
features can be passed to a recognizer which calculates the
probability of each model given the observation sequence
and returns the most likely gesture. For our experiments,
the set of features consists of readings from the accelerom-
eters positioned at the wrist and at the elbow. This provides
6 total feature values which are then normalized to sum to
one and collected at approximatedly 93 Hz.

We found that most of the workshop activities typically
require only simple HMMs for modelling. For file, sand,
saw, and screw, a 5 state model with 1 skip transition and
1 loopback transtion suffice because they consist of simple
repetitive motions. Drill is better represented using a 7 state
model. Clapping, drawer, and grinding are slightly more
complex and required 9 state models. The vice is unique in
that it has two seperate motions, opening and closing. Thus
a 9 state model is used with two appropriate loopbacks to
correctly represent the gesture. These models were selected
through inspection of the data, an understanding of nature
of the activities, and experience with HMMs.

4.4 HMM lsolation Results

For this project, a prototype of the Georgia Tech Gesture
Recognition Toolkit was used to train the HMMs and for
recognition. The Toolkit is an interface to the HTK toolkit
[20] designed for training HMMs for speech recognition.
HTK handles the algorithms for training and recognizing
the Hidden Markov Models allowing us to focus primarily
on properly modelling the data.

To test the performance of the HMMs in isolation, the
shop accelerometer data was partitioned by hand into 255
individual examples of gestures then used as a training set

for the HMMs. Accuracy of the system was calculated by
performing leave-one-out validation by iteratively reserving
one sample for testing and training on the remaining sam-
ples for each sample. The HMMs were able to correctly
classify 93.33% of the gestures over data collected from the
shop experiments. While this method has slightly more er-
rors than the LDA method in isolation, we continue to pur-
sue it for use in the continuous recognition case.

5 Continuous Recognition

Recognition of gestures from a continuous stream of fea-
tures is difficult. However, we can simplify the problem
by partitioning the continuous stream into segments and at-
tacking the problem as isolated recognition. This approach
requires a method of determining a proper partitioning of
the continuous stream. We take advantage of the intensity
analysis described in the previous section as a technique for
identifying appropriate segments for recognition.

Since neither LDA nor the HMM are perfect at recog-
nition, and each is able to recognize a different set of ges-
tures well due to working in different feature space, it is
advantagous to compare their independant classifications of
asegment. If the classification of the segment by the HMMs
matches the classification of the segment by the LDA, the
classification can be believed. Otherwise, the noise class
can be assumed, or perhaps a decision appropriate to the
task can be taken (such as requesting additional information
from the user).

Thus, the recognition is performed in three main stages:
1) Extracting potentially interesting partitions from the con-
tinuous saquence, 2) Classifying these individually using
the LDA and HMMs, and 3) Combining the results from
these approaches.

5.1 LDA for partitioning

For classification, partitioned data needs to be arranged in
continuous sections corresponding to a single user activity.
Such partitioning of the data is obtained in two steps: First,
LDA classification is run on segments of data chosen by
the 1A. Those segments not chosen by intensity analysis are
returned with classification zero. (In this experiment, clas-
sifications are returned at the same rate as accelerometer
features); Secondly, these small window classifications are
further processed by a larger (several seconds) majority de-
cision window, which returns a single result for the entire
window duration.

This partitioning mechanism helps reduce the complex-
ity of continuous recognition. It will not give accurate
bounds on the beginning and end of a gesture. Instead, the
goal is to provide enough information to generate context at
a general level; ie., “The user is hammering” as opposed to



Gesture HMM LDA HMM + LDA
C | D|S| Ac | C I |D| S Acc C | 1| D|S| Acc | P(G|Class)

Hammer 9 3 10]|0|667]| 9 1 10| 0 88.9 9 10| 0 |0] 100 1.00
Saw 9 0 (0|0 100 | 9 1 10| 0 88.9 9 10| 0 | 0] 100 1.00
Filing 9 0 (0|1 100 | 9 71011 23.2 8 10| 2|0 80 1.00
Drilling 9 4 | 0|0|556 ]9 1]10]0 88.9 9 |0| 0 |0] 100 1.00
Sanding 8 0|0|1(|89] 9 |8]|0]|O0 111 8 10| 1 |0] 889 1.00
Grinding | 11 |11 | 0 | O 0 9|10 |0]| 2 81.8 9 |0| 2 |0] 818 1.00
Screwing 4 0|0 |5 |44 9 |75]|0| 0 |-7333| 4 |0| 5 |0|444 1.00
Vice 41 | 0 | 0| 2|93 |34 |1 |27 766 |35 |0| 8 |0 813 1.00
Overall | 100 | 18 [ O | 9 | 725 | 97 | 94| 2 | 10 2.8 91 |0 |18 | O | 835 1.00

Table 3: Continuous recognition accuracy per gesture (Correct | Insertions | Deletions | Substitutions | Accuracy) and proba-

bility of gesture given classification P(G|Class)

“A hammering gesture occured between sample 1500 and
2300.” The system is tolerant of, and does not require, per-
fect alignment between the partitions and the actual gesture.
The example alignment shown in Figure 5 is acceptable for
our purposes.

5.2 LDA Results

Analysis of the data was performed to test the system’s abil-
ity to reconstruct the sequence of gestures in the shop exper-
iments based on the partitioning and recognition techniques
described to this point. Figure 4 shows an example of the
automated partitioning versus the actual events. For this
analysis of the system, the non-tool gestures, drawer and
clapping, were considered as part of the noise class. Af-
ter applying the parition scheme, a typical shop experiment
resulted in 25-30 different partitions.

5.3 HMM Classification

Once the partitions are created by the LDA method, they are
passed to set of HMMs for further classification. For this
experiment, the HMMs are trained on individual gestures
from the shop experiments using 6 accelerometer features
from the wrist and elbow. ldeally, the HMMs will return
a single gesture classification for each segment. However,
the segment sometimes includes the beginning or end of the
next or previous gesture respectively, causing the HMMs
to return a sequence of gestures. In such cases, the ges-
ture which makes up the majority of the segment is used as
the classification. For example the segment labelled “B” in
Figure 5 may return the sequence “hammer vice” and would
then be assigned as the single gesture “vice.”

5.4 Combining LDA and HMM classification

For each partitioned segment, the classification of the LDA
and HMM methods were compared. If the classifications

matched, that classification was assigned the segment. Oth-
erwise, the noise class was returned.

+ LDA Partition
Ground Tru
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Data Frame x10"

Figure 4: LDA partitions versus ground truth
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Figure 5: Detailed example of LDA partitioning

Table 3 shows the number of correct classifications (C),
insertions (1), deletions (D), and substitutions(S) for the
HMMs, the LDA, and the combination. Insertions are de-
fined as noise gestures identified as a tool gesture. Deletions
are tool gestures recognized as noise gestures. A substitu-
tion for a gesture occurs when that gesture is incorrectly
identified as a different gesture. In addition, the accuracy of
the system is calculated based on the following metric:

Correct — Insertions

A =
% Accuracy Total Samples

The final column reports the probability of a gesture hav-
ing occurred given that the system reported that gesture.



The accuracies for the HMMs and the LDA are calcu-
lated as well as for the combined method. Clearly, the
HMMs and LDA each perform better than the other on var-
ious gestures and tended to err in favor of a particular ges-
ture. When incorrect, LDA tended to report the “screw”
gesture. Similarly, the HMMs tended to report “grinding”
or “drilling.” Comparing the classification of the LDA and
the HMMs help eliminate the false positives and improve
the performance of the system. The data shows that the
comparison method performed better than the HMMs and
the LDA in many cases and improved the accuracy of the
system.

Although the accuracy of the system in general is not
perfect, it is important to note that the combined HMM +
LDA method results in no insertions or substitutions. This
result implies that when the system returns a gesture, that
gesture, in fact, did occur. While the system still misses
some gestures, a user interface designer can know that the
system did not return a false positive and be confident in
his use of context. This attribute is especially important
in the ubiquitous computing and wearable fields which are
sensitive to such errors.

6 Conclusion

We have shown a system capable of segmenting and rec-
ognizing typical user gestures in a workshop environment.
The system uses wrist and chest worn microphones and
accelerometers and leverages the feature attributes of each
modality to improve the system’s performance. The system
demonstrated perfect performance in isolated gesture test-
ing and a zero false positive rate in the continuous case. In
the future, we hope to apply these promising techniques for
recognizing everyday gestures in more general scenarios.
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