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Abstract

In this thesis I explore non-Hermitian topological photonics with the aim of de-

scribing new phenomena which question our understanding of how far the current

classification of topological states extends. This work invigorates the search for

topological states in photonic systems with the hope of describing new mech-

anisms for controlling and increasing the number of physical systems in which

robust light transport can be achieved. In coupled resonator optical waveguides, I

demonstrate the formation of topological defect states in one dimensional systems

and topological edge states in two dimensional systems, which only occur for a

system with open boundaries. Since a non-Hermitian system displaying topolog-

ical defect states with a trivial Hermitian limit has not been seen before, these

results are both novel and paradigm breaking.

Topological mode selection is another mechanism unique to controlling topological

states in non-Hermitian photonic system. I consider a non-linear extension to this

notion for a complex wave equation describing lasing elements with saturable gain.

I show that beyond the categorisation of topological stationary-states, which con-

tinue from the underlying linear system, new power-oscillating topological states

form. These power-oscillations have not yet been seen in experiments but ongoing

collaborations aim to see these solutions in the near future.
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panel) and energy level diagram of a gapped 1D superconductor

with charge-conjugation symmetry. The left set of energy levels

demonstrates the symmetric pairing of energy states around E = 0,

the middle set shows a Majorana zero-mode pinned to the Fermi

level whilst the right set shows that single energy states cannot be

created without breaking charge-conjugation symmetry (as it is its

own antiparticle, perturbing it away from E = EF , it would not

appear as a pair of symmetric levels like all other states). . . . . . . 9

1.2 Su-Schrieffer-Heeger model showing the different bulk phases of the

chain. Red lattice sites are A sites, blue lattice sites are B sites

and the orange lattice site indicates a defect. The unit cells for

the bulk phases are given by the grey dimer. The upper panel

contains the α phase, where the bulk is topologically trivial, the

middle panel contains the β phases, where the bulk is topologically

non-trivial. The bottom panel shows both phases brought together

by a dimerisation defect, which is connected to either side by single
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1.3 (a) Winding numbers for the SSH chain without a defect. Red and
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trivial. Plotted for couplings t1 = 0, t2 = 1.0 (red), t1 = 0.5, t2 =

1.0 (blue), t1 = 1.0, t2 = 1.0 (green), t1 = 1.0, t2 = 0.5 (black)

and t1 = 1.0, t2 = 0.1 (orange). (b) Numerical spectrum of the

SSH chain with a defect for 16 dimers, plotted as a function of

t1, where t2 = 1.0. The red line indicates a zero mode, which is

topologically protected and an example of the wavefunction is given

by that shown in figure (c) where t1 = 0.5, t2 = 1 . For t1 > t2, the

wavefunction is an extended state. . . . . . . . . . . . . . . . . . . . 17

1.4 Sketches of different types of band touching points for two-level

systems for no interaction α = β = 0 (left), Hermitian interactions

α = β 6= 0, α, β ∈ R, resulting in an avoided crossing with gap of

size 4λ|α| (middle) and non-Hermitian interactions where α = −β,

displaying the square root branch points at ±∆c (right), which join

real eigenvalues (orange) to imaginary eigenvalues (purple). . . . . . 20

2.1 a) Sketches of deformed coupled resonators and tight binding chain

schematic with internal backscattering couplings (A and B) and

inter-resonator coupling W which couples CW (CCW) modes of one

resonator to CCW (CW) modes of adjacent resonators. b) Phase

diagram of the bulk dispersion given by equation 2.13, where phase

space is separated into regions of real gapped bands, imaginary

gapped bands, 2 exceptional points and 4 exceptional points. c)

corresponding dispersions of complementary coloured phase from

b). d) Sketch of chain where the dotted line indicates where the

defect occurs, resulting in the opposite resonator deformation and

inversion of the backscattering couplings. . . . . . . . . . . . . . . . 31
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2.2 Phase diagram indicating the existence of defect states and their

extended state (ES) precursors, bounded by the PT and CPT -

symmetry lines. The Hermitian line H = H† is included to demon-

strate that defect states only exist for open boundary conditions. . . 40

2.3 The central panel shows the trajectory of one of the four eigenvalues

associated with the defect states from the upper right quadrant of

the complex plane for the interval 1 < B < 4.5, A = W = 1 (the

other 3 quadrants are mirror images of the central panel). Panels

labelled a)-h) give examples of the corresponding defect states and

their precursors for eigenvalues marked by the black squares (fol-

lowing the trajectory anti-clockwise from the bottom) in the central

panel. Each mode profile consists of two intensities |an|2 of the CW

component in the left half of the chain and the CCW component

in the right half of the chain and |bn|2 of the CCW component in

the left half of the chain and the CW component in the right half

of the chain. Panels a)-h) contain parameters as follows: A=W=1,

B= a) 1.5, b) 1.8, c) 1.85, d) 2.0, e) 2.5, f) 2.9, g) 3.2 and h) 3.5. . . 43

2.4 (Left panel) Divergences in the Petermann factor indicate spectral

degeneracies in both the extended state phase and the two large

broad peeks which indicate the PT and CPT phase transitions.

(Right panel) Inverse participation ratio which grows large over the

defect state phase. Both panels are produce for the same interval

as that shown in figure 2.3, where the black markers are labelled in

the same order as given in the caption. . . . . . . . . . . . . . . . . 44



LIST OF FIGURES x

2.5 Asymmetric chain: a) Example of a defect state for couplings A =

W , B = 2W in the left half and A = 0.5W , B = 2.5W in the

right half of the chain. The remaining 3 panels are given by the

parameters A = W , B = x on the left half of the chain and A =

0.5W , B = 0.5W + x on the right half: b) Trajectories of the

eigenvalues associated with the defect states and their predecessors.

c) Petermann factor of the defect states and predecessors. d) Inverse

participation ratio of the defect states and predecessors. . . . . . . . 45

2.6 The same as given in figure 2.5, except now the backscattering

amplitudes A and B have been perturbed by drawing from the

uniform distribution y ∈ [−0.1W, 0.1W ] for three different disorder

realisations. Panel a) shows an example of a defect state for one of

the disorder realisations for the same parameters give in panel a)

of figure 2.5 plus the additional perturbation. . . . . . . . . . . . . 47
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3.1 Bulk Fermi arcs in a two dimensional array of evanescently coupled

non-hermitian resonators. (a) Each resonator supports a clockwise

(CW) and a counter-clockwise (CCW) internal mode that are cou-

pled by asymmetric backscattering amplitudes A and B, as ob-

tained, e.g., from a small non-spherical deformation of open dielec-

tric resonators. The resonators are placed on a square lattice and

are coupled evanescently with coupling coefficients Wx and Wy that

convert CW waves into CCW waves. This coupling configuration

introduces a chiral symmetry into this non-hermitian system.(b-d)

Real part Re Ω of the bulk dispersion for B = −2.5 + 0.2i, Wx =

1.0 + 0.1i, Wy = 1.0 + 0.5i, and the three values A = 1.5 + 0.1i (b),

A = 1.5 + 0.2i (c) and A = 1.5 + 0.3i (d). In each case, the disper-

sion consists of two sheets Ω+ (yellow surface) and Ω− = −Ω+ (blue

surface) that are related by the chiral symmetry. The white lines

indicate Fermi arcs and lines with Re Ω = 0, corresponding to inter-

sections of the two sheets. The arcs terminate at exceptional points

(EPs), which are the non-hermitian counterparts of Weyl points in

topological insulators. In (b), four EPs are connected by two arcs.

In (d), the EPs are reconnected by two arcs with a different topol-

ogy, while a closed Fermi line is also present. Panel (c) shows the re-

connection point between these two scenarios, which is mediated by

two smaller closed Fermi lines. Bulk dispersions are also shown for

B = −1.5−0.2i, A = 1.5+0.2i,Wx = 1.0−0.5i and Wy = 1.0+0.5i

for panel e) and B = −2.5 + 0.2i, A = 1.5 + 0.2i,Wx = 1.0 − 0.3i

and Wy = 1.0 + 0.3i for panel f). Balancing the gain and loss of Wx

and Wy creates additional exceptional points for the Fermi-arcs to

connect between. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



LIST OF FIGURES xii

3.2 (a) Real and (b) imaginary parts of the bulk dispersion for A = 1.0,

B = −1.0 and Wx = Wy = 1, representing the PT -symmetric case

(symmetry class BDI) where the band structure displays purely real

and imaginary branches, and the exceptional points degenerate into

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Edge-state arcs in an array with an interface joining resonator ar-

rays with opposite backscattering. (a) Horizontal slice through the

array, where the dotted line indicates the interface between res-

onators with backscattering amplitudes A and B as in figure 3.1

(blue resonators to the left), and resonators where the values of

these backscattering amplitudes are interchanged (green resonators

to the right). (b) Density plot of the intensity of a representa-

tive edge state in a finite square array of 40 × 40 resonators, with

A = −B = Wx = Wy. (c) Quasi-one dimensional band structure

in the infinite version of this array, where ky is a good quantum

number. In this representation, the bulk bands form sheets, which

here lie in the real and imaginary plane as all parameters are real

(PT -symmetric symmetry class BDI, see figure 3.2). The black

curves are the edge-state arcs, which connect the different sheets. . 58
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3.4 (a) Traces of the edge-state arcs in the real section of their ef-

fective parameter space (A,B) [defined in Eq. (3.11)]. The traces

are horizontal lines of length 4Wy/Wx, which are centred at A =

(A+B)/2Wx, B = (A−B)/2Wx. The solid and dashed curves de-

note the termination conditions at the real and imaginary branches

of the bulk bands, where the edge states (green region) turn into

extended scattering states (red) or into non-normalizable, unphysi-

cal states (blue). The three representative traces correspond to the

quasi-one-dimensional band structures shown in (b-d), where the

edge-state arcs are indicated in green, while their scattering pre-

decessors are given in red and unphysical states in blue. In (b),

A/Wx = 0.55, B/Wx = −0.55, Wy/Wx = 1.175, for which the

trace crosses both termination lines and the arcs connect the real

and imaginary branches of the bulk bands. In (c), A/Wx = −0.9,

B/Wx = 0.9, Wy/Wx = 1, for which the trace only reaches the real

termination line so that the arcs loop back to the real branches.

In (d), A/Wx = −2.0, B/Wx = 2.0, Wy/Wx = 1, for which the

trace remains confined in the edge-state region so that the arc are

free-standing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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3.5 (a) Edge-state arcs for complex backscattering amplitudes A/Wx =

0.55+0.02i, B/Wx = −0.55+0.02i and Wy = 1.175 [close to the real

values in figure 4.13(b)]. All arcs still terminate on the bulk bands,

which now no longer are real or imaginary. (b-d) Propagation fac-

tors |λl|, 1/|λl| of potential edge states as determined by equation

3.14. In (b), A = −B = 0.55/Wx, Wy/Wx = 1.175, corresponding

to the real values of figure 4.13 panel (b). In (c,d), the parameters

take the complex values given above. For complex parameters the

region of scattering states is replaced by regions of physical and

unphysical states. Furthermore, the termination points of differ-

ent arcs now appear at separate values of ky, as shown in detail in

panels (d) and (e) which zoom into the termination region at the

formerly purely imaginary and real branches of the bulk dispersion,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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4.1 Topological mode selection in laser arrays consisting of single-mode

resonators grouped in dimers (enumerated by n). The intra-dimer

couplings κ and inter-dimer couplings κ′ are chosen to produce in-

terfaces between regions of topologically different band structures.

(a) In the Su-Schrieffer-Heeger (SSH) model, the alternating cou-

plings define a phase α (κ > κ′ ) and a phase β (κ < κ′). The

displayed defect state arises from two consecutive weak couplings,

forming an interface between the two phases. (b) The defect re-

gion can be extended, leading to a variant where the phases α and

β function as selective mirrors that confine a defect state with a

larger mode volume. In both cases, the resulting defect states have

preferential weight on the A sublattice (red) and can be selected by

distributed gain and loss. As illustrated in the right panels, in the

linear regime the defect state acquires the effective gain GA from

the A sublattice, while the other modes acquire the average gain

Ḡ in the system (GA = Ḡ + 0.1, κ, κ′ = 1, 0.7). We demonstrate

that this mode selection mechanism extends to the nonlinear condi-

tions at the working point of a laser, where it stabilises robust zero

modes and also enables alternative topological operation regimes

with power oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . 70
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4.2 Topological lasing regimes for the SSH array of figure 4.1(a) pumped

on the A sublattice (finite gain gA at fixed gB = 0, with amplitudes

scaled such that SA = SB = 1) under conditions that preserve the

symmetries in the linear case (ωs,n = ωAB, αs = 0), demonstrating

operation in topological states over the whole parameter range. (a)

Phase diagram of stable quasistationary operation regimes depend-

ing on the gain gA and background losses γA = γB ≡ γAB, where

lasing requires gA > γAB. Over the whole grey region labelled Z,
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the initial conditions. The remaining panels analyse the lasing char-

acteristics for varying gain gA along the line γAB = 0.1 (blue arrow

in the phase diagram). (b) Sublattice-resolved intensities IA (red)

and IB (blue), including shaded intensity ranges for the power oscil-

lations of T1 and dashed lines indicating the corresponding ranges

for T2. (c) Amplitude oscillation period T (equalling twice the

period of power oscillations for twisted states, see Fig. 4.3). (d)

Correlation function C̃(t) at t = 0, T/2, where C̃(T/2) = Imax re-

veals the topological nature of the states (see text). As illustrated

for the examples in Fig. 4.3, all states inherit the intensity profile

of the linear defect mode from Fig. 4.1(a). . . . . . . . . . . . . . . 73
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for T1 and T2). (a) Intensity distributions over the array, shown
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Chapter 1

Introduction

UNESCO designated 2015 as the ‘International Year of Light and Light Based

Technologies’ in recognition of how important controlling light has become in our

everyday lives. Physical Review highlighted some of the most important topics

to this endeavour [1], which modern society strongly relies on to meet the ever

increasing demands of high speed optical communications, data processing, inte-

grated optical circuits and data storage.

Some of the key highlighted topics in the aforementioned celebration of past

achievements include photonic crystals which make up optical fibres [2], squeezed

light which is noise-free [3], long lived light storage [4], molecular imaging [5], and

high-intensity photonic entanglement sources [6].

In this thesis I will bring together two concepts which have been at the forefront

of optical innovation for the last two decades and explore the combination in a

new light. The first concept is topological states of matter, where states located at

the interface between materials (or material and vacuum boundaries) of different

topological genus (which I will discuss in more detail in the next section) remain

persistent and robust to disorder provided that certain symmetries remain pre-

served. These states are accompanied by insulating bulk phases. The schematic

given in the left panel of figure 1.1 is a typical realisation of conducting edge states

1
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plotted on top of gapped bulk bands.

The second concept is non-Hermicity, which can relax the constraint of a fully real

spectrum or the conservation of particle number. Non-Hermitian Hamiltonians

describe open-systems where energy is dissipated to the environment (referred to as

losses), while in the case of systems which lase, this can describe gain-amplification.

Relaxing these constraints results in decaying normal modes, described by complex

frequencies with finite lifetimes and is often associated with electron-electron or

electron-phonon interactions [7, 8], as well as leakage and absorption.

1.1 Motivation

Systems exhibiting non-trivial band topology attract intense attention owing to

phenomena such as chiral edge and surface states supported by boundaries between

topologically distinct gapped phases. While the initial focus was on electronic or

superconducting systems, the excitement quickly extended to other areas of quan-

tum and classical wave phenomena, which often display very different constraints

compared to fermionic systems, such as the non conservation of particle number.

Haldane and Raghu observed the universal nature of topological band theory when

they realised that topological band structures are a property of waves inside a pe-

riodic medium [9]. In direct analogy with chiral edge states flowing along the

surface of a quantum Hall bar in the Integer quantum Hall effect (IQHE), they

postulated a ‘one-wave waveguide’ where unidirectional photonic modes had com-

plete suppression of quasiparticle backscattering at the surface of the waveguide,

including at bends or imperfections [10]. The unwanted feedback and loss of sig-

nal generated by backscattering in normal waveguides is mitigated by this design

as the transmission along the surface of the waveguide is no longer hindered by

fabrication imperfections. The modes of this one-way waveguide, occurring at

microwave frequencies within the photonic band gap, have been experimentally
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verified in two-dimensional arrays of gyromagnetic ferrite rods which break time-

reversal symmetry [11] and in honeycomb photonic crystals [12,13].

Beyond the IQHE, experiments involving square lattices of coupled resonators

introduce pseudo-spin internal degrees of freedom through counter propagating

internal modes which alleviate the necessity for time-reversal symmetry breaking

mechanisms. The pseudo-spins are decoupled by scatters in such a way that leads

to an effective magnetic field with opposite signs for each pseudo-spin. The net

result is an analogous description to the spin quantum hall effect [14], which by

the same mechanism has also been achieved in ring resonators [15].

Effective magnetic fields can also be achieved in systems by harmonically mod-

ulating the coupling constants between lattices sites. These temporally driven

periodic systems are then governed by floquet theory, where the symmetry of

discrete time translations are in analogy with crystal momentum. Since the eigen-

states are periodic in time, their phases introduce an effective gauge field which

can be engineered into a form which gives rise to chiral edge states [16,17]. With

the expanse of a number of techniques, laser written waveguides provide another

degree of freedom involving time dynamics. Instead of time periodically driven

systems, modes are driven along helical structures with a propagation direction

(z) which display chiral edge states in the (x, y) plane [18].

Whilst all of these examples of topological photonic systems are bosonic in na-

ture, the focus has been on achieving analogous physics to fermionic systems. As

mentioned, one major difference between these systems is that photons typically

radiate and are therefore not conserved. Such non-conservation is described by

non-Hermitian Hamiltonians with gain and loss. In general, non-Hermitian Hamil-

tonians have played an increasingly interesting role in recent years where several

mechanism have been reported to induce topological phenomena. These are based

on non-hermitian symmetries such as time-reversal symmetries (PT ) or combi-

nations with chiral symmetry (X ) or charge-conjugation symmetry (C = XT ).
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Another main motivation compared to Hermitian systems is to obtain topological

states with distinct life times, as encoded in the imaginary part of the energy

spectrum.

In many cases, the models are based on topological hermitian counterparts, such

as the well studied Su-Schrieffer-Heeger (SSH) model [19], where dissipation can

yield quantised displacements of decay and survival processes [20, 21], while the

introduction of gain and loss yields a topological mechanism of zero-mode selection

based on a non-Hermitian C [22–26] or PT [27] symmetry. In these and other

examples [28, 29] derived from topological Hermitian systems, the topologically

protected states still obey a bulk-boundary correspondence [30] and their robust

properties are directly inherited from the Hermitian limit.

However, this is not always the case. Protected edge and interface states can

also arise via exceptional points, even when the Hermitian limit is topologically

trivial [31–34]. This mechanism equips a system with robust spatially localised

states that display distinct life times. Furthermore, non-Hermitian effects can

fundamentally change the properties of edge states of a hermitian origin, which

for instance can bifurcate at exceptional points to display additional branches

with PT -symmetry [35]. These observations highlight the role that exceptional

points and their topological charges play in distinguishing conventional topolog-

ical states with adopted non-Hermitian properties from genuinely non-Hermitian

symmetry-protected states that do not have a Hermitian counterpart [30,36], and

for classifying non-Hermitian topological systems in general [37].

Recently, the question of whether the notions of non-Hermitian topological sys-

tems from passive systems could be extended to include non-linear systems with

active elements has gained traction. Weak non-linearities arise naturally when

one considers systems which are pumped externally and saturate such as lasers or

from the intrinsic properties of the system such as for polaritons where photons

are strongly coupled to an electric-dipole. Initial experiment in lasing systems
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have held much promise, where topological lasing has been reported in photonic

crystal cavities [38, 39], edge modes in photonic crystals [40] and edge modes in

topological insulators [41]. The question then becomes how best to utilise gain

and loss.

Distributed gain and loss has been employed to achieve PT -symmetry in lasers

[42–45], which exploit a spectral phase transition between conventional modes

that then acquire different weights on lossy and amplified regions. One proposed

method goes a step further, to selectively enhance topologically protected modes

by adding a staggered gain and loss profile to the well known SSH model [22]. Since

the zero-mode of the SSH model is only localised to one of the two sublattices,

the zero-mode can be amplified with respect to the other modes of the system

enhancing the lifetime of the already spectrally isolated mode. Since these models

involve only linear gain and loss and with the appearance of experiments built from

these model [25, 26, 46], there is a clear need to see if topological mode selection

still occurs in models containing non-linear gain and loss.

1.2 Thesis Structure

This thesis introduces two natural extensions of the paradigm of topological states

discussed in the previous section. Both of these sets contain surprising new phe-

nomena which are paradigm breaking and have no known analogue in other set-

tings. The first set, which will be discussed in chapters 2 and 3, demonstrate

the emergence of topological defect states in complex open wave systems with a

topologically trivial hermitian limit. These intriguing results have been shown to

have different consequences in one and two dimensions, so I shall therefore discuss

the general model of how to realise topological defect states in the context of one

dimensional chains of openly coupled resonator waveguides in chapter 2. I will

also demonstrate the robustness of theses states to disorder. Extending the basis
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of this work further, in chapter 3 I will consider a two dimensional array of coupled

resonators and describe the formation of bulk arcs from the dispersion relation.

Using the formulation of topological defect states in chapter 2 I will also show

that complex frequency edge states can form in these arrays, which connect the

bulk real frequency bands to the bulk imaginary frequency bands.

In chapter 4, I will discuss the second set of new phenomena encountered in non-

Hermitian, non-linear wave systems. I demonstrate that for the well established

topological modes of the Su-Schrieffer-Heeger model, topological mode selection

persists and acquires a new twist when applied to non-linear wave equations with

loss and saturable gain. I analyse the topological modes which display satura-

tion after an onset of lasing. These modes include a set of time-dependent and

symmetry connected solutions which have no analogue in the linear system. By

exploiting the underlying symmetries of this model I will describe how both the

linear solutions and these new power-oscillating solutions are stable and topolog-

ically protected by examining the excitation spectrum with specific attention to

phase transitions. I will also show the operational regimes of all the topological

solutions found from this model.

In the remainder of this chapter, I will introduce some general notions that serve

as the background to these investigations.

1.3 Topological States and Symmetries

One of the most remarkable results in condensed matter physics over the last

decade is the concept and realisation of topological states of matter and the

promise of finding long-lived states immune to decoherence, a key criterion for

quantum computation [47]. Topological states are protected states provided that

the corresponding Hamiltonian cannot be smoothly deformed (adiabatically) to re-

move the bulk band gap between the highest occupied band and the lowest empty
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band. Open and closing a gap therefore represents a phase transition. Since the

study of topological spaces concerns global properties that cannot be removed or

destroyed by smooth deformations, the same idea can be expressed with respect

to band theory.

Topological spaces can be explained using the classic example of the torus (T 2)

and sphere (S2). Smooth deformations cannot destroy or create the hole (the

global property) which appears in the center of the torus. Hence these two objects

are topologically distinct, each has it’s own genus, an index corresponding to the

number of holes, which is also called the topological invariant.

The first topologically non-trivial electronic state was discovered in 1980 [48], in

the context of the Integer Quantum Hall Effect (IQHE). Electrons confined to two

dimensions are placed in a strong magnetic field, where in the insulating bulk of

the material they perform quantised circular orbits. At the surface of the material

metallic surface states carry a quantised Hall conductance along the surface. A

mapping of the crystal momentum k, which is defined on a torus, to the Bloch

Hamiltonian H(k) demonstrates an equivalence between the topological spaces

and the 2D band structure of the Bloch Hamiltonian. The topological invariant

for such systems is the geometric phase known as the Berry phase, a phase which

is accumulated when Bloch states |um(k)〉 of the bulk Hamiltonian are taken in

closed loops around the Brillouin zone which enclose the special degeneracy points

where the gap would close. In the case of the Bloch Hamiltonian for the IQHE,

the topological invariant is a Chern invariant Q ∈ Z.

The Chern invariant occurs in integer multiples of 2π. This integer gives the

net number of times a surface state may cross the Fermi Energy (where counting

the crossings, +1 indicates a crossing with positive group velocity ( dE
dK

) and −1

indicates a crossing with negative group velocity). This net integer therefore

counts the number of edge states at each edge. Hence the invariant of the bulk

corresponds to the properties at the edge.
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Since 1980 the IQHE has become just one of many examples where emergent

protected phenomena exists. In the realm of single-particle physics, the IQHE

is accompanied by other examples such as the spin-IQHE, topological insulators,

Chern insulators and topological superconductors, whilst many-body physics hosts

the fractional quantum Hall effect.

A powerful notion which connects all of these cases is the principle of bulk-

boundary correspondence. If the gap in the bulk of the material remains open,

smooth deformations which prohibit the closing of the gap also protect the presence

of the states at the edge, provided that the topological invariant of the material

under considerations differs from that which lies beyond the edge. Whilst all Her-

mitian topological materials obey this principle of bulk-boundary correspondence,

they do not all have the same types of invariant or have the same types of topolog-

ical surface states. By invoking different combinations of the three fundamental

Hermitian symmetries discussed in the next section, Altland and Zirnbauer [49]

proposed a table of 10 classes which exhaust the combinations of the three sym-

metries in 0d.

This classification is called the ‘Ten-fold way’ and has its roots in random matrix

theory. The full classification also considers the number of spatial dimensions,

leading to the so-called periodic table of topological insulators and superconduc-

tors [50, 51]. The classification also includes trivial combinations where there are

no topological states and hence no invariant is present. The non-trivial classifica-

tions have invariants which come in three forms, they can be integers (Z), even

integers (2Z) or binary (Z2). In the next section we will see some brief examples

of how each of these come about.
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Figure 1.1: Sketches of typical topological band structures for a gapped insulator,
with edge states crossing the Fermi level in the gap (left panel) and energy level
diagram of a gapped 1D superconductor with charge-conjugation symmetry. The
left set of energy levels demonstrates the symmetric pairing of energy states around
E = 0, the middle set shows a Majorana zero-mode pinned to the Fermi level whilst
the right set shows that single energy states cannot be created without breaking
charge-conjugation symmetry (as it is its own antiparticle, perturbing it away from
E = EF , it would not appear as a pair of symmetric levels like all other states).

1.3.1 Hermitian Symmetries

The three symmetries which determine the 10 Altand-Zirnbauer classes are made

up of two anti-unitary operators, time reversal (T ) and charge conjugation (C),

which can both either square to 1 or −1 and one unitary operator belonging to

chiral (χ) symmetry which always squares to 1. These three symmetries impose

conditions on the spectra of each class. Since chapter 4 of this thesis is concerned

with zero-modes I will end this section by focusing on the simplest 1D with topo-

logical states as an example.

The 10 classes are presented in table 1.1 and are listed as follows: Firstly counting

classes where only a single symmetry is present, since both time reversal symmetry

and charge-conjugation symmetry can square to either ±1, this constitutes four

distinct classes. These classes are labelled AI and AII when time-reversal symme-

try only is present, with T 2 = 1,−1 respectively. Classes D and C appear when
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Cartan Class
Symmetry A AIII AI BDI D DIII AII CII C CI

T 0 0 1 1 0 -1 -1 -1 0 1
C 0 0 0 1 1 1 0 -1 -1 -1
χ 0 1 0 1 0 1 0 1 0 1

Dimensions Invariants (Q)
1 0 Z 0 Z Z2 Z2 0 Z 0 0
2 Z 0 0 0 Z Z2 Z2 0 Z 0
3 0 Z 0 0 0 Z Z2 Z2 0 Z

Table 1.1: Periodic table of the ten symmetry classes given according to their
Cartan labels. Each class is composed of the presence of absence of time-reversal
symmetry T , charge-conjugation symmetry C or chiral symmetry χ = T C. If a
symmetry is absent the entry for the corresponding class is denoted by a 0, if it
is present it is denoted by ±1, where ±1 corresponds to the value of the relevant
symmetry operator squared. The invariants Q are given as a function of both
class and number of dimension(s) for the first 3 dimensions.

charge-conjugation symmetry only is present, again with C2 = 1,−1 respectively.

The final single symmetry class is given by class AIII, where only chiral symmetry

is present. Since χ squares to 1, chiral symmetry on its own only forms one class.

A further four classes denoted as class BDI, DIII, CII and CI occur when both

time-reversal and charge-conjugation symmetry are present covering all of the pos-

sible combinations of T 2, C2 = ±1 as presented in 1.1. Additionally when both

time-reversal and charge-conjugation symmetries are present, chiral symmetry is

also by default present as χ = CT . Chiral symmetry then still satisfies χ2 = 1.

Finally the last remaining class, class A, contains no symmetries.

If time-reversal symmetry is present it commutes with the Hamiltonian, T HT −1 =

H. If T 2 = 1, then there is a basis where time reversal symmetry can be given

by complex conjugation (T = K). This occurs for the case of spin-less particles

and combined with Hermicity this imposes that H contains only real elements as

Hlm = H∗ml. Without any other symmetries being present this is referred to as

class AI. This symmetry occurs in the models in chapters 2 and 3.
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If T 2 = −1 then there is a basis where T can be written as T = ΩK, where

Ω = iσy ⊗ 1m, σi is the 2 × 2 i’th Pauli matrix and 1m is the m dimensional

identity matrix, where m corresponds to the number of channels in a system.

This structure can arise for the case of spin-1/2 particles where σy represents

a spin-degree of freedom. The spin degree of freedom means that T has even

dimensions of 2m, where the basis can be arranged in the identical time-reversed

pairs of the same energy, i.e. |ψ〉 = T |ψ̄〉. This results in a doubly degenerate

spectrum, which is known as Kramer’s degeneracy. If no other symmetries are

present this corresponds to class AII.

Charge-conjugation (also know as particle-hole symmetry) is the other anti-unitary

symmetry in the classification. It anti-commutes with the Hamiltonian, CHC−1 =

−H, which causes states at positive energy to be paired with states at negative

energy. This symmetry means that energy levels must therefore approach and

cross the Fermi level in pairs. The most prominent group of systems this symmetry

appears in is the group of superconductors described by the Bologliubov-de Gennes

(BdG) Hamiltonian, a mean-field description of the quasiparticle excitations.

The BdG Hamiltonian can be expressed as

HBdG =

H0 − EF ∆0

∆∗0 EF −H∗0

 , (1.1)

where EF is the Fermi energy and H0 is the Hamiltonian when the s-wave su-

perconductivity pairing term ∆ is set to zero. Here I have suppressed the spin

degree of freedom to highlight the charge conjugation symmetry. H0 − EF repre-

sents particle-like excitations above the Fermi energy, where as EF−H∗0 represents

hole-like excitations below the Fermi energy. In this case C2 = 1 and C = τxK,

where τ is the Pauli matrix operating on the particle-hole degree of freedom.

A single fermionic state in this description is associated with a pair of energy level
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E+ and E−, where E+ = −E−. The corresponding quasiparticle operators at

these two energies are joined by the relation ξE+ = ξ†E− and hence a special case

exists when E+ = E− = 0, as these operators now define a charge neutral particle

which is its own antiparticle, called the Majorana zero-mode. This is an example

of class DIII [52].

Spin degeneracy needs to be broken in order to realise an unpaired Majorana mode.

This can be achieved in two ways, either by considering a superconducting coupling

associated with a topological superconductor which is of ‘p-wave’ type, for a single

spin-band this corresponds to the spin-triplet coupling term ∆ = ∆0(px− ipy). Or

by considering a conventional ‘s-wave’ (∆ = ∆0) superconductor in conjunction

with the strong spin-orbit coupling of a topological insulator.

In the latter case this results in Majorana zero-modes appearing in the band

gap at the interface between the superconductor and a topologically insulating

wire. In 3D this corresponds to states bound to the core of Abrikosov vortices

and in 2D they are pinned to the edge between the topological insulator and the

superconductor, much like a superconducting counter-part of a Shockley state

[53, 54]. This superconducting counter-part however is a special case, protected

by charge conjugation symmetry as demonstrated by the energy schematic in the

right panel of figure 1.1. The associated topological invariant with these states is

Q = Z2 as the zero-modes can either be present or not [55].

If C2 = −1, and we consider C = iτy to be spinful, the BdG Hamiltonian can be

expressed in terms of the two separate spin components and will then take the

form

HBDG
± =

H± − EF ∓∆±

∓∆∗± EF −H∗±

 , (1.2)

where H0 and ∆0 are direct sums of H+, H− and ∆+,∆− respectively [56].
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Chiral symmetry anticommutes with Hamiltonian, hence χHχ = −H and χ2 = 1.

It is often associated with the presence of two sublattices in finite systems (often

labelled A,B) where the Hamiltonian can be written in the block diagonal form

HC =

 0 HAB

H†AB 0

 . (1.3)

The blocks HAB are of dimensions m1×m2 (where m1 and m2 count the size of

each sublattice), while the chiral operator takes the form χ = diag(1m1,−1m2) =

τz. Anti-commutation of the chiral symmetry with the Hamiltonian indicates

that energy levels appear in pairs around the Fermi energy, hence giving rise to a

symmetric spectrum. If the dimensions of HAB are such that m1 = m2 all states

are paired up, but when m1 6= m2 there are ν = |m1 −m2| states pinned at the

Fermi energy, which are localised onto one sublattice [57]. If ν > 0 the eigenstates

of the eigenvalues pinned at the Fermi energy take the form ψ = (0, ψB)T with

HABψB = 0, whilst if ν < 0 the eigenstates take the form ψ = (ψA, 0)T with

H†ABψA = 0 [56].

1.3.2 Example: SSH Model

The simplest topological one dimensional model is the Su-Schrieffer-Heeger (SSH)

model. This provides a tight binding description of the charge fractionalisation

which was first discovered in Polyacetylene molecules [19]. These molecules are

long polymers containing alternating single and double bonds between carbon

atoms on the backbone. In the tight binding approximation each unit cell consists

of two different atoms, denoted as A and B. Consider a configuration as shown in

upper panel of figure 1.2. A sites are denoted in red, B sites denoted in blue. The

unit cell for such a structure contains a single bond, t1, which connects the A and

B site together. All adjacent unit cells are connected by a double bond, t2, where
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only nearest neighbours are taken into account. This is called the α phase.

α - Phase

β - Phase

α - Phase β - Phase

Figure 1.2: Su-Schrieffer-Heeger model showing the different bulk phases of the
chain. Red lattice sites are A sites, blue lattice sites are B sites and the orange
lattice site indicates a defect. The unit cells for the bulk phases are given by the
grey dimer. The upper panel contains the α phase, where the bulk is topologically
trivial, the middle panel contains the β phases, where the bulk is topologically non-
trivial. The bottom panel shows both phases brought together by a dimerisation
defect, which is connected to either side by single bonds.

The tight binding equations for such a structure are

εψ(A)
n = t1ψ

(B)
n + t2ψ

(B)
n−1 (1.4a)

εψ(B)
n = t1ψ

(A)
n + t2ψ

(A)
n+1. (1.4b)

The associated Bloch equation is HSSHψSSH = εψSSH , where HSSH

HSSH(k) =

 0 t1 + t2e
−ika

t1 + t2e
ika 0

 , (1.5)

and a is the real-space distance between neighbouring carbon atoms (from here

on a = 1) and ψSSH = (ψA, ψB)T . The corresponding dispersion and eigenvectors

are
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ε± = ±
√
t21 + t22 + 2t1t2 cos k (1.6)

and

u± =

 ε±
t1+t2eik

1

 . (1.7)

The two bands of the dispersion meet when t1 = t2. Earlier I stipulated that in

the α phase the bond connecting the two lattice sites within the unit cell was a

weaker single bond, so t1 < t2. If however for the same unit cell, t1 > t2, the

two lattice sites will be connected by a stronger double bond as pictured in the

middle panel of figure 1.2. These two phases are therefore separated by the band

gap closing (t1 = t2).

The SSH-Hamiltonian is of the same form as the chiral Hamiltonian in equation

1.3. The chiral symmetry can be made explicit by re-writing the SSH-Hamiltonian

in terms of the Pauli matrices (σi)

HSSH(k) = d(k) · σ = (t1 + t2 cos k)σx + (t2 sin k)σy. (1.8)

The chiral symmetry, given by σz, then anticommutes with the Hamiltonian as

no terms are proportional to σz or the identity. In parameter space HSSH(k) is

therefore confined to a plane, d(k) = (dx, dy, 0). The topological characteristics

can be measured by the Berry phase, which in general for 1D systems is given by

the Zak phase, defined as

νj = i

∮
BZ

〈uj(k)|∂kuj(k)〉, (1.9)

where |uj(k)〉 is the j’th eigenvector of Bloch Hamiltonian.

For the SSH model I calculate the winding number for the Bloch state of the upper
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band corresponding to the + index of equation 1.6, which is given by the integral

of the pseudo-spin vector around the Brillouin zone

ν+ =

∫
dk(〈σx〉, 〈σy〉, 〈σz〉), (1.10)

where 〈σi〉 = 〈u+(k)|σi|u+(k)〉 is the expectation value of Bloch wave-vector u+

given in equation 1.7.

In 2002 Ryu and Hatsugai [58] showed that by using the pseudo-spin vector, where

the σz component is always 0, the contour is confined to a circle of radius t2 in

the complex plane. The winding number then counts how many times the Bloch

eigenvectors encircle the origin when a contour is performed around the Brillouin

zone. This number also counts the number of topological modes that are present.

The origin corresponds to the point where the band gap closes and hence separates

out the two topologically distinct phases. If t1 > t2 the origin is not enclosed by the

contour and can be smoothly deformed away, categorised by no winding (ν+ = 0),

but if t2 > t1 then the origin is encircled (ν+ = 1) and is topologically distinct.

Figure 1.3 shows this for a few example parameters in both phases.

Since in this discussion I have mentioned nothing about edges or finite systems, this

bulk description gives us a concept of topology but not of a physical phenomena

or observable to measure.

However, in a finite system the difference between the two phases can be easily

detected. In particular, for a finite system with an odd number of sites there

is one more A site than B site as in the case of equation 1.3 for m1 6= m2,

ν = |m1 −m2| = 1. In both the α and β phases the spectrum must be symmetric

as demanded by the chiral symmetry. The additional eigenvalue must be located

at E = 0. By examining the fully dimerized limit, in the α phase t1 = 1, t2 = 0

and the eigenstate is located on the edge where the t1 bond is present. In the β

phase where t1 = 0, t2 = 1, the eigenstate is located on the opposite edge where
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Figure 1.3: (a) Winding numbers for the SSH chain without a defect. Red and
blue trajectories encompass the origin and hence are topologically non-trivial,
whilst all other trajectories do not and are therefore trivial. Plotted for couplings
t1 = 0, t2 = 1.0 (red), t1 = 0.5, t2 = 1.0 (blue), t1 = 1.0, t2 = 1.0 (green),
t1 = 1.0, t2 = 0.5 (black) and t1 = 1.0, t2 = 0.1 (orange). (b) Numerical spectrum
of the SSH chain with a defect for 16 dimers, plotted as a function of t1, where
t2 = 1.0. The red line indicates a zero mode, which is topologically protected
and an example of the wavefunction is given by that shown in figure (c) where
t1 = 0.5, t2 = 1 . For t1 > t2, the wavefunction is an extended state.

the t2 bond is present. The eigenvalue pinned to zero energy has an eigenstate

which is located on one sublattice (H†AB(k)ψA = 0, with ψB = 0) [57]. Moving

away from the fully dimerized limit, spatially this eigenstate exponentially decays

away from the edge of the system. This edge now acts as an interface with the

vacuum which is topologically trivial.

Moving the zero-mode to a different location requires a different type of interface.

Since we have a trivial phase and a non-trivial phase, we can simply connect them

together via a defect. This has been show in the lower panel of figure 1.2, where

the defect coloured in orange is connected to both the α and β phases by weak

t1 couplings. This topological defect has the same properties as the edge state,

i.e. if we look at the spectrum given in panel (b) of figure 1.3, there is clearly one
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edge mode which persists. Inspection of the wavefunction shows that it is entirely

localised onto one sublattice, but now decays exponentially in both directions (see

panel (c), shown for the topologically non-trivial region).

1.4 Consequences of non-Hermicity

Beyond the examples of Hermitian symmetries, in 1998 Bender and Boettcher

[59–61] showed that a Hamiltonian need not be Hermitian to have a completely

real spectrum. This broke the traditional view of quantum mechanics, that Her-

micity was a requirement to describe quantum systems. In relaxing this constraint,

they noticed that some non-Hermitian Hamiltonians were capable of displaying

partially or entirely real spectra if there was an additional symmetry, a space-

time reflection symmetry known as Parity-Time (PT ) symmetry. Whilst genuine

non-Hermitian quantum systems have not been discovered, this concept has found

many important applications in analogous settings, such as photonic systems.

This section introduces a two-level model which describes how we can understand

a few of the physical consequences of non-Hermitian physics, in particular spe-

cial spectral degeneracy points and the role of PT symmetry and PT symmetry

breaking.

1.4.1 Two-level model and avoided crossings

Suppose we have the following two-level Hamiltonian H = H0 + λH1, broken

up into an unperturbed system H0 containing two modes and a corresponding

off-diagonal perturbation H1, where H0 and H1 are given by

H0 =

E1 0

0 E2

 , H1 =

0 α

β 0

 . (1.11)
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Here E1 and E2 are the natural energies of the two modes, λ is the perturbation

strength, which we demand to be a positive scalar and α, β are coupling param-

eters. Considering only H0, the two corresponding modes of H0 are completely

independent, even if they become degenerate, i.e. E1 = E2. By introducing the

difference between the natural energies ∆ = E1 − E2 and varying ∆, the con-

sequences of non-Hermicity on degenerate points and avoided crossings can be

explored as the coupling parameters are turned on.

Firstly, considering the hermitian case, hermicity of H (that is H = H†) is satisfied

if α = β∗ (I will consider α = β and α, β ∈ R for simplicity). The eigenvalues of

H are given by

E± =
1

2
(E1 + E2)±

1

2

√
(E1 − E2)2 + 4λ2α2, (1.12)

with corresponding eigenvectors

ψ+ =
1√
N

 1

E+−E1

λα

 , ψ− =
1√
N

 1

E2−E−
λα

 , (1.13)

where 1/
√
N is the appropriate normalisation. For these two modes plotting E±

in the interval −x ≤ ∆ ≤ x for α = 0, as sketched in the left panel of figure 1.4,

demonstrates that there is no gap between E+ and E− at ∆ = 0. This degenerate

touching point of the bands is referred to as a diabolic point. Furthermore it is

very quickly apparent by inspecting ψ+ and ψ− that at this point the modes are

indeed distinct. This degeneracy where the eigenvectors are distinct is called a

diabolic point. For any finite α, 4λ2α2 is positive and hence a gap opens for all

values of ∆, with a gap corresponding to 4λα at ∆ = 0, as shown in the middle

panel of figure 1.4.
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Figure 1.4: Sketches of different types of band touching points for two-level systems
for no interaction α = β = 0 (left), Hermitian interactions α = β 6= 0, α, β ∈ R,
resulting in an avoided crossing with gap of size 4λ|α| (middle) and non-Hermitian
interactions where α = −β, displaying the square root branch points at ±∆c

(right), which join real eigenvalues (orange) to imaginary eigenvalues (purple).

1.4.2 Exceptional Points and PT -symmetry

If the condition for Hermicity is broken, |α|2 is replaced with αβ in equation 1.12,

where now α 6= β∗. This does not strictly need to be a positive definite, hence in

general the square root in equation 1.12 can be imaginary and as a function of ∆

the eigenvalues E± can therefore be complex.

Avoided crossings can then be pushed into the complex plane, and from the

square root branch points eigenvalues can form a different type of spectral sin-

gularity/coalescence known as exceptional points. To highlight this, consider the

special case where E1 = −E2. The bare energy difference ∆ now takes the form

∆ = 2E1 and E± = ±
√

∆2 + 4λαβ. Consider α = −β, and α, β ∈ R. By varying

∆ figure 1.4 shows that regions of real eigenvalues are connected to regions of

imaginary eigenvalues via points where E+ = E− = 0. These points, called excep-

tional points are referred to as coalescences. This will be discussed more explicitly

later on.

The position of these exceptional points can be pushed around in the complex

plane by varying the strength parameter λ and the values of α, β. In fact critical

values ∆c occur when E± = 0, which happens when ∆2 = −4λαβ and hence
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∆c = ±2
√
λαβ.

The special case discussed here, depicted when α = −β, results in eigenvalues that

are forced to either be imaginary or real; this is sometimes referred to as pseudo-

Hermitian. If the perturbation H1 contained diagonal terms or relaxation of the

constraint E1 = −E2 then the expression for the critical values for the exceptional

points would in general be shifted into the complex plane, and fine tuning of the

diagonal terms of H0 and H1 would be required to recover this special case.

This example belongs to the class of Hamiltonians which are parity-time (PT )

symmetric in the regions where the eigenvalues are real. PT -symmetric Hamil-

tonians were first investigated by Bender and Boettcher [59] in the context of

complex cubic Hamiltonians and later on for a range of complex Hamiltonians of

different degree polynomials of momentum and position operators, which display

either entirely real spectra or partly real and partly complex spectra depending on

the degree [62]. More in-depth reviews beyond the scope of this discussion exist

in this review [61].

PT -symmetry is a combination of parity P (given in this representation by P =

iσx.) and time reversal symmetry T (given in this representation by complex

conjugation T = K), which commute with the Hamiltonian and form PT sym-

metry. In this example, the exceptional point represents a spectral transition into

a region where parity and hence PT -symmetry is broken and eigenvalues are no

longer real but come in complex conjugate pairs. Hence we can use these spectral

transitions to identify when PT -symmetry is broken, a feature I will rely on in

chapters 2 and 3. Examining the modes of E± highlights an important additional

consequence which occurs at the exceptional point. Away from the exceptional

point, the corresponding linearly independent eigenvectors are again given by

ψ+ =
1√
N

 1

E+−E1

λα

 , ψ− =
1√
N

 1

E2−E−
λα

 . (1.14)
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Using the conditions that I previously stipulated, E1 = −E2 and at the excep-

tional point ∆c is such that E± = 0, these two eigenvectors become identical

resulting in only one linearly independent eigenvector ψ+ = ψ− = 1√
N

(
1 E2

λα

)T
.

This behaviour of the eigenvectors is referred to as a coalescence and not a degen-

eracy because the two degenerate eigenvalues belong to one linearly independent

eigenvector and not two.

The presence of exceptional points can also be identified by making use of the

concept of left and right eigenstates instead of simply inspecting the eigenstates.

Non-Hermitian Hamiltonians have left and right eigenstates which satisfy the fol-

lowing eigenvalue equations

〈Ln|H = 〈Ln|εn and H|Rn〉 = εn|Rn〉 (1.15)

respectively, but generally are distinct, i.e. 〈Ln| 6= |Rn〉†. They form a biorthogo-

nal basis, 〈Ln|Rm〉 = δnm, and completeness is satisfied if

Σn|Rn〉〈Ln| = 1. (1.16)

At the exceptional point, 〈Ln|Rn〉 vanishes [63], hence biorthogonality cannot be

fulfilled. During this thesis I will make use of this property in order to identify

phase transitions in parameter space where exceptional points emerge. This is

signified by a divergence in the Petermann factor [64]

K =
〈L|L〉〈R|R〉
|〈L|R〉|2

, (1.17)

which measures non-orthogonality in vicinity of exceptional points [65].
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1.4.3 Time evolution, geometric phases and interchange of

eigenstates

The states of a physical system described by H evolve over time according to

the operator Û(t) = e−iHt. Acting on eigenstates of H this evolution gives the

familiar phase factors e−iEnt. Since En will not always be real for non-Hermitian

Hamiltonians, these phase factors will decay or grow with rate Γ. This rate Γ is

defined by splitting the eigenvalues of H into their real and imaginary components,

En = Ere + iEim, and considering the consequences on the phase factors given by

time evolution: e−i(Ere+iEim)t = e−iErete−Eimt, where Γ = −2Eim.

In addition to the phase factors which come from the time evolution alone, Berry

[66] discovered a second type of phase factor, β(C), which is accumulated when

a diabolic point is encircled adiabatically in parameter space, where adiabatic

traversal is necessary, such that the evolution at any instance corresponds to sta-

tionary eigenstates of the Hamiltonian. When a complete loop is performed, the

eigenstate returns to its original state up to a phase, which besides the dynami-

cal component from the instantaneous energies include an additional, geometric

contribution. These phase factors are also known as geometric phases as they

measure the curvature of the parameterised space of the Hamiltonian. The wind-

ing numbers of the 1D SSH model in the previous chapter are an example of such

phases.

The geometric phase β(C) accumulated over such a closed loop (C), for a Hermi-

tian system prepared in eigenstate |Ψ(κ)〉, is given by

β(C) = i

∮
C

〈Ψ(κ)|∇Ψ(κ)〉dκ, (1.18)

where κ is an appropriate parametrisation of H. If H is non-Hermitian however,

and one tries to traverse an exceptional point, the expression for the geometric
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phase must take into account the left eigenstates 〈Ψ̃(κ)| introduced in the previous

section. The geometric phase becomes

β̃(C) = i

∮
C

〈Ψ̃(κ)|∇Ψ(κ)〉dκ. (1.19)

Determining the geometric phase in the Hermitian case reveals that one full com-

plete cycle around the diabolic point is sufficient to return the eigenstates to its

initial state with the additional geometric phase of π. Thus two complete trips

must be made to pick up a full phase of 2π. If the same process is completed by

avoiding the diabolic point, no additional phase is achieved.

An interesting consequence is revealed in the non-Hermitian case, where encircling

exceptional points shows that pairs of eigenstates are exchanged after a full loop

and after repeated loops they obey the pattern

|Ψ1〉 → −|Ψ2〉 → −|Ψ1〉 → |Ψ2〉 → |Ψ1〉, (1.20)

indicating that four complete loops are required to return to the original state

with a full geometric phase of 2π. As noted in reference [63] and experimentally

verified using microwave cavities [67, 68], the directionality of the loop C deter-

mines the signs and hence implies a chirality associated with C. These examples

were for static measurements of the spectra and eigenmodes and hence do not

represent adiabatic, true-time dependant encircling of the exceptional point. Such

measurements so far have remained elusive, as in the presence of gain and loss non-

adiabatic mode switching occurs [69, 70], which is dependent on the parametric

direction of the loop [71–73].



Chapter 2

Coupled resonators optical

waveguides

Microcavities or microresonators, most commonly grown and etched in dielectric

materials, confine light to very small volumes where the desired confinement is

measured by quality factors Q = ωτ which measure how long modes of a specific

frequency remain confined (τ = 1/Γ for decay rate Γ) or equivalently how broad

they are (∆ω = 1/τ). Limiting factors for this confinement include properties such

as the resonator’s geometry, surface roughness and material attenuation factors.

Various designs for different microcavities exist which change the degree of con-

finement of the light, resulting in different quality factors. Some examples of

microcavities include the more traditional Fabry-Perot micropillar, photonic crys-

tals, microdiscs, microtoroids and microspheres [74]. Quality factors in these types

of designs can range from high (for pillars and crystals with Q ∼ 104 − 105) to

ultrahigh (microdiscs and spheres Q ∼ 108) [75], whilst different designs confine

light in different dimensions. Further control of the confinement in the case of

micropillars can be achieved with the use of Bragg mirrors, where emission can be

directed into a single direction or plane as in the case of lasers or single photon

sources [76]. In microspheres the strong confinement of light can be used to detect
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when molecules bind to the surface. The resonances within the cavity experience

a shift in wavelength, broadening of the resonance and even splitting [77], making

the resonators ideal for highly sensitive sensing [78].

In this chapter I focus on devices where the operational regime results in whis-

pering gallery modes. These are optical modes which propagate by total internal

reflection around the insides of a structure. From the list of examples above these

include microspheres, microtoroids and microdiscs, where this discussion will be

confined to microdiscs. A wide range of applications for microresonators include

low threshold lasing [79], nanoparticle sensing [80], unidirectional emission from

deformed cavities [81] and non-linear optics [82].

I will describe how the counter propagating whispering gallery modes inside cir-

cular disc geometries can be asymmetrically backscattered by introducing defects

to the surface of the discs, and how from the perspective of standing waves this

gives rise to effective gain and loss to the respective modes and an asymmetry in

the direction of propagation around the internal edge of the disc. Coupling these

resonators evanescently together in 1D chains, I will demonstrate how the internal

backscattering can lead to non-Hermitian phases which support topological defect

states localised at an interface. Since an interface state is different from an edge

state in the sense that it arises from locally breaking translational invariance, I

will then show that further asymmetries and disorder can be introduced to the

chain to break the translational invariance throughout the chain and hence show

that these states are robust to large and non-local perturbations, signifying that

they are of a topological nature.

The topological modes discussed in this chapter have no fermionic analogue as

they belong to a non-Hermitian extension of the BDI symmetry class, the chiral

symmetry class with time reversal symmetry. The topological modes are a direct

result of the openness of the system in a physical setting which is achievable to

experiments. The resonances themselves are spectrally isolated and have long
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lifetimes, making such phenomena more easily observable.

2.1 Coupled Resonators

In circular resonator geometries with sufficiently smooth edges, light travels in

closed circular paths by total internal reflection. The travelling waves in such a

cavity occur in spectrally degenerate orthogonal pairs which circulate in opposite

directions, hence giving rise to the names clockwise (CW) and counter-clockwise

(CCW) propagating modes. This description originates from the Helmholtz equa-

tion for dielectric cavities where solutions are travelling modes of the form φTW (θ) ∝

eimθ. The quantum number m plays the role of orbital angular momentum which

is positive for CCW modes and negative for CW modes such that they counter

propagate [83]. The corresponding contributions to the frequency (∝ m2) are two-

fold degenerate if |m| 6= 0. In such a case the eigenstates can be superimposed

in pairs of +m and −m to produce new eigenstates, standing waves of the form

cosmφ and sinmφ.

For now focusing on the travelling wave basis, the two travelling waves can be

grouped into the two-component vector ψTWn =

(
an bn

)T
, where an and bn

are the amplitudes of the CW and CCW modes respectively and n enumerates

the resonator. Travelling modes can be expressed as the superposition of standing

waves given by cosine (|c〉) and sine (|s〉) waves: |CW 〉 =
√

1
2
(|c〉+i|s〉), |CCW 〉 =√

1
2
(i|c〉 + |s〉). This transformation can be rewritten in matrix form, ψSW =

SψTW , where

S =
1√
2

1 i

i 1

 . (2.1)

For an isolated circular resonator both of the travelling modes propagate with reso-

nance frequency Ω0. Deforming the resonator geometry slightly leads to asymmet-
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ric internal scattering. Such effects can likewise be introduced by adding notches,

scattering by nanoparticles or tunnelling into chromium tips placed in close prox-

imity to the surface of the disc [74, 84]. The distance between the disc and the

loss inducing rods or the angle between pairs of nanoparticles can then be tuned

to create the required asymmetry in the backscattering coefficients.

Asymmetric internal scattering means that modes are converted from CW to CCW

with amplitude A, whilst CCW modes are converted to CW modes with amplitude

B. The single resonator Hamiltonian is therefore

HTW =

Ω0 A

B Ω0

 . (2.2)

ForA 6= B∗ the internal scattering is asymmetric and henceHTW is non-Hermitian.

Whilst Hermicity is broken (H 6= H†), reciprocity still remains present, a con-

straint which requires the Hamiltonian in the standing wave basis to be symmetric

(HSW = HT
SW ). In the standing wave basis reciprocity takes the form

HSW =

α β

β γ

 . (2.3)

Using the transformation S, the reciprocal Hamiltonian in the travelling wave

basis is given by

HTW = S†HSWS =
1

2

 (α + γ)/2 iβ + (α− γ)/2

−iβ + (α− γ)/2 (α + γ)/2

 (2.4)

where the coefficients of HTW correspond with equation 2.2, where Ω0 = (α+γ)/2,

A = iβ + (α− γ)/2 and B = −iβ + (α− γ)/2, demonstrating reciprocity.

The previously degenerate eigenfrequencies Ω0 for A = B = 0 now split according



2.1. Coupled Resonators 29

to Ω± = Ω0 ±
√
AB as the travelling modes hybridise. The corresponding eigen-

vectors are given by v± = (|A| + |B|)− 1
2

(
√
A ±

√
B

)T
, where the imbalance in

the components is measured by the chirality

α =
|A| − |B|
|A|+ |B|

, (2.5)

which approaches 1 when |A| � |B| and −1 when |A| � |B|.

When a resonator is brought within tunnelling distance of another resonator,

evanescent coupling couples CW (CCW) modes of one resonator to CCW (CW)

modes of the other resonator preserving the angular momentum of the modes.

Inter-resonator backscatter from CW to CW and CCW to CCW modes is highly

suppressed if the resonator surface is smooth on the scale of a wavelength [14,85,

86]. The coupling matrix between individual resonators is therefore given by

T =

 0 W

W 0

 , (2.6)

where W is the inter-resonator coupling. The form of this coupling matrix is jus-

tified by considering the coupling operator between two resonators in the standing

wave basis. Using the definitions associated with equation 2.3, the coupling oper-

ator takes the form

t̂ =Wcc(|c〉〈c′|+ |c′〉〈c|) +Wss(|s〉〈s′|+ |s′〉〈s|)

+Wcs(|c〉〈s′|+ |s′〉〈c|) +Wsc(|s〉〈c′|+ |c′〉〈s|), (2.7)

where Wij are the coupling coefficients between the resonators determined by the

distances between the resonators and states denoted with a prime belong to the
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second resonator. Transforming this into the standing wave basis the coupling

operator becomes

t̂ =W+(|CW〉〈CW′|+ |CCW′〉〈CCW|)

+W−(|CCW〉〈CCW′|+ |CW′〉〈CW|)

+W ′
+(|CW〉〈CCW′|+ |CW′〉〈CCW|)

+W ′
−(|CCW〉〈CW′|+ |CCW′〉〈CW|), (2.8)

where

W± =
Wcc +Wss ± i(Wsc −Wcs)

2
,

W ′
± =

Wcc −Wss ± i(Wsc +Wcs)

2
. (2.9)

Since within the approximation of coupled-mode theory, adjacent resonators are

coupled evanescently and hence backscattering is suppressed, this means Wcc +

Wss ≈ 0 and Wsc −Wcs ≈ 0. Additionally, since I assume that the surfaces of the

resonators are both smooth and symmetric in the vicinity of the point of closest

approach of the two resonators, Wcs,Wsc ≈ 0. Hence the terms W± vanish and

W
′
± = Wcc = W . The coupling operator can then be written in matrix form

t =

 0 W

W 0

 . (2.10)

A chain of resonators can then be connected together using the coupled-mode

approximation (analogous to the tight-binding model), as depicted in panel a) of

figure 2.1. In the travelling wave basis (where the TW labels have been suppressed)

this wave equation takes the form
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Figure 2.1: a) Sketches of deformed coupled resonators and tight binding chain
schematic with internal backscattering couplings (A and B) and inter-resonator
coupling W which couples CW (CCW) modes of one resonator to CCW (CW)
modes of adjacent resonators. b) Phase diagram of the bulk dispersion given by
equation 2.13, where phase space is separated into regions of real gapped bands,
imaginary gapped bands, 2 exceptional points and 4 exceptional points. c) corre-
sponding dispersions of complementary coloured phase from b). d) Sketch of chain
where the dotted line indicates where the defect occurs, resulting in the opposite
resonator deformation and inversion of the backscattering couplings.
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ωnψn = Hnψn + T (ψn+1 + ψn−1). (2.11)

Solutions to this equation are of the normal Bloch form ψn = eiknΨ, which when

substituted into the wave equation gives the Bloch Hamiltonian

H(k) =

 Ω0 A+ 2W cos k

B + 2W cos k Ω0

 . (2.12)

The corresponding dispersion is ω±(k) = Ω0 ± Ω(k), where

Ω(k) =
√

(A+ 2W cos k)(B + 2W cos k). (2.13)

The two bands, labelled by ±, are chirally symmetric about Ω0, where the chiral

symmetry is given by σzH(k)σz = −H(k). Exact numerical calculations have

shown that parameters A,B and W are almost real and by fine tuning the shape

parameters of the resonator can be made exactly real. The Hamiltonian is then

PT symmetric, where in this basis PT symmetry is given by complex conjugation

K.

Panel b) and c) of figure 2.1 shows that Ω± has entirely real and gapped bands if

|A/2W | > 1, |B/2W | > 1 and AB > 0, while it displays imaginary and gapped

bands if for the same conditions AB < 0. The rest of the phase space contains

ranges of both imaginary and real bands in separate ranges of k, joined by excep-

tional points when Ω± = 0 and hence −A/2W = cos k or −B/2W = cos k.

Transforming the Bloch Hamiltonian into the standing wave basis using the trans-

formation SHTW (k)S† = HSW (k),

HSW =

 2Ω + i(A−B) A+B + 4W cos k

A+B + 4W cos k 2Ω− i(A−B)

 , (2.14)
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reveals the underlying PT symmetry when A 6= B, given by the passive gain and

loss terms i(A − B) and −i(A − B) for A > B respectively (the roles of these

terms reverse if A < B). Time reversal symmetry is realised by the condition of

reciprocity (H = HT ), which is indeed true as HSW is a symmetric Hamiltonian,

whilst parity symmetry takes the form P = σx. In this basis chiral symmetry is

transformed in C = σy and commutes with PT symmetry.

Returning to the travelling wave basis, as discussed in the previous chapter, PT

symmetry H(k) = H(k)∗ makes the eigenvalues of H(k) either real or appear in

complex conjugate pairs. In combination with the chiral symmetry σzH(k)σz =

−H(k) this forms the charge conjugation symmetry σzH(k)σz = −H(k)∗. Eigen-

values then appear in the complex conjugate pairs Ω± = −Ω∗±.

In the Hermitian setting, I would expect that the eigenstates of this chain do not

display any topological protection. Convention from Hermitian systems uses the

interface with air/vacuum to demonstrate a change in topological index (air/vacuum

being trivial) between material and air/vacuum. One such method of measuring

the topological index for A = B, would be to consider the winding number given

by the winding of the pseudo-spin vector ~S around the Brillouin zone. Since the

pseudo-spin vector is not constrained to a single plane, encompassing the origin,

the trajectory can be adiabatically deformed and ultimately completely removed.

This renders the natural choice for the topological index trivial in the Hermitian

limit of this system.

Interestingly however, in a departure from Hermitian convention, I will demon-

strate in the next section that by introducing a mirror symmetry in the form of

a defect in the orientation of the resonators with respect to the entire chain, a

spectral phase transition accompanies the appearance of topologically protected

defect states, despite each sub-system being topologically trivial.
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2.1.1 Defect states and wave matching

I now consider the consequences of an interface in the chain of resonators. Placed

at n = 0, this interface exchanges the roles of the backscattering amplitudes A

and B in the second half the chain as depicted in panel d) of figure 2.1. For the

wave equation given in equation 2.11 the following amendments are made: Firstly

the wave equation is shifted with respect to the central frequency Ω0 by setting

Ωn = ωn−Ω0 and secondly the single-resonator Hamiltonian before and after the

defect now takes the form

Hn =



 0 A

B 0

 (n < 0)

0 B

A 0

 (n ≥ 0).

(2.15)

Solutions to the wave equation, which belong to topological modes, will decay

exponentially either side of the interface. In general, solutions can be written in

terms of the propagating factors λ = eik in each half of the chain,

ψn = λnφ. (2.16)

These propagating factors correspond to decaying solutions if k is complex.

The wave equation becomes

Ωφ = Hnφ+ 2W (λ+ λ−1)φ, (2.17)

where
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φ(L) ∝

A+ 2W cos ki

Ω

 (2.18)

φ(R) = σxφ
(L) ∝

 Ω

A+ 2W cos ki

 , (2.19)

noting that λ+λ−1 = 2 cos k. Non-trivial solutions Ω of the wave equation on the

left side of the interface occur when

∥∥∥∥∥∥∥
−Ω A+ 2W cos k

B + 2W cos k −Ω

∥∥∥∥∥∥∥ = 0 (2.20)

is satisfied. The two corresponding solutions are

2W cos k1 = −A+B

2
+

√
(A+B)2

4
+ Ω2 (2.21)

2W cos k2 = −A+B

2
−
√

(A+B)2

4
+ Ω2, (2.22)

and the four propagating factors are

λ±1 = cos k1 ±
√

cos k1
2 − 1 ≡ cos k1 ± sin k1 (2.23)

λ±2 = cos k2 ±
√

cos k2
2 − 1 ≡ cos k2 ± sin k2. (2.24)

All four propagating factors are associated with both sets of Bloch vectors on each

side of the interface. Additionally for each pair of propagating factors (λ+i , λ
−
i ),

λ+i λ
−
i = 1.
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Defect states are comprised of superpositions of decaying solutions, where propa-

gating wave factors λi are chosen from each pair (λ+i , λ
−
i ) such that |λi| > 1. The

resulting defect states are of the form

ψ
(L)
n<0 = a

(L)
1 λn+1

1 φ
(L)
1 + a

(L)
2 λn+1

2 φ
(L)
2 (2.25)

ψ
(R)
n≥0 = a

(R)
1 λ−n1 φ

(R)
1 + a

(R)
2 λ−n2 φ

(R)
2 . (2.26)

The solutions either side of the interface must match continuously. This means

that evaluated at n = 0 and n = −1, the wave matching conditions given by

ψ(L) = ψ(R) are

a
(L)
1 λ1φ

(L)
1 + a

(L)
2 λ2φ

(L)
2 = a

(R)
1 φ

(R)
1 + a

(R)
2 φ

(R)
2 . (2.27)

Defect states can either come in symmetric (a
(L)
i = a

(R)
i ) or antisymmetric (a

(L)
i =

−a(R)
i ) form. For now I contain the discussion to the symmetric case, as the

antisymmetric case can be recovered by applying the chiral symmetry operator σz

(transforming solutions Ω → −Ω and Bloch wavevectors according to σzφ
(R)
i =

σzσxφ
(L)
i = −σxσzφ(L)

i ).

Substituting into this expression the definitions of φ
(L)
i and φ

(R)
i from equations

2.18 and 2.19 and collecting the coefficients a1, a2 into a vector, the defect states

correspond to non-trivial solutions to the matrix equation

 A+ 2W cos k1 − λ1Ω A+ 2W cos k2 − λ2Ω

Ω− λ1(A+ 2W cos k1) Ω− λ2(A+ 2W cos k2)


︸ ︷︷ ︸

M

a1
a2

 = 0 (2.28)

which occur if

∥∥∥∥M∥∥∥∥ = 0. Solutions are given by
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[
(A+2W cos k1)(A+2W cos k2)−Ω2

]
(λ1−λ2)−2W (cos k1−cos k2)(−1+λ1λ2)Ω = 0.

(2.29)

Noting that (A+ 2W cos k1)(A+ 2W cos k2) = −Ω2, this reduces to

W (1− λ1λ2)(cos k1 − cos k2) = Ω(λ1 − λ2), (2.30)

and multiplying through by 1 − 1/λ1λ2 isolates the propagating factors in terms

of only the eigenvalue of the defect state

2− λ1λ2 −
1

λ2λ2
= 2

Ω

W
, (2.31)

which can be used as a consistency check for any pair of propagating factors. If

a pair of propagating factors contains at least one propagating factor which has

|λi| = 1, the corresponding mode will not be a defect state but a scattering state.

If either propagating factor has |λi| > 1, the state will be unphysical.

This condition can be manipulated further to show the corresponding eigenfre-

quency at which the defect states occur in terms of the real physical parameters

(A,B and W ). Using the definitions of λ1, λ2 given in equation (2.23) and (2.24)

and inserting them into equation (2.31)

1− cos k1 cos k2 − Ω/W = ± sin k1 sin k2, (2.32)

then squaring the result
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cos2k1 cos2k2 −2 cosk1 cos k2(1− Ω/W ) + (1− Ω)2 = sin k1
2 sin k2

2 (2.33)

and using that

cos k1 cos k2 = [(
A+B

2
)2 − Ω2 − (

A−B
2

)2]/4W 2 (2.34)

(cos k1 − cos k2)
2 = [Ω2 +

A−B
2

2

]/W (2.35)

sin k1
2 sin k2

2 = (cos k1
2 − 1)(cos k2

2 − 1), (2.36)

produces the condition

Ω(Ω− 2W )2 − ABΩ + (A−B)2
W

2
= 0. (2.37)

Solutions of Ω to this equation correspond to defect state that have a symmetric

mode profile. Antisymmetric solutions can also be recovered by applying the chiral

symmetry operator, where chiral symmetry maps Ω → −Ω. The consistency

condition becomes

2− λ1λ2 −
1

λ2λ2
= −2

Ω

W
, (2.38)

and following the same procedure as for the symmetric solutions, the antisymmet-

ric mode profiles occur for solutions to

− Ω(Ω + 2W )2 + ABΩ + (A−B)2
W

2
= 0. (2.39)

Both equations 2.37 and 2.39 are cubic equations. On inspection of the solutions,

one root for each equation is always non-normalisable and hence there exist four
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unique solutions (Ω,−Ω,Ω∗,−Ω∗). If these solutions do not fulfil the consistency

conditions given by equation (2.31) and (2.38), they do not belong to defect states.

2.1.2 Phase Diagram

Recalling that the PT symmetry means that solutions Ω to equations 2.37 and

2.39 come in either real pairs or complex conjugate pairs indicates that solutions

must become degenerate in the transition between these two spectral phases. The

associated degeneracy between these two phases is an exceptional point. When

the solutions are real pairs at least one of the two propagating factors will satisfy

|λi| = 1, which corresponding to a scattering state and hence the phase contains

no defect states. After the exceptional point the solutions are complex conjugate

pairs which become defects states as both propagating factors satisfy |λi| > 1.

The phase boundary as a function of A,B and W can be derived analytically from

looking at when the solutions to equations 2.37 and 2.39 become degenerate. This

occurs when

27(A+B)4 = 16A2B2(1 + AB/W 2) + 8(8W 2 + 9AB)(A+B)2. (2.40)

Again recalling that in the presence of charge-conjugation symmetry (CPT ) so-

lutions appear in either imaginary or complex-conjugate pairs, a second spectral

phase transition accompanied by an exceptional point creates the second phase

boundary. This phase boundary joins pairs of imaginary eigenvalues, correspond-

ing to at least one propagating factor being unphysical |λ±i | < 1, to the physical,

complex conjugate pairs of solutions.

The analytical form, found by considering when imaginary solutions become de-

generate, occur when
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Figure 2.2: Phase diagram indicating the existence of defect states and their
extended state (ES) precursors, bounded by the PT and CPT -symmetry lines.
The Hermitian line H = H† is included to demonstrate that defect states only
exist for open boundary conditions.

A2 +B2 + 6AB = 32W 2. (2.41)

The defect states, bounded by these two phase transitions, has been mapped out

in figure 2.2, where the backscattering amplitudes have been rescaled by the inter-

resonator coupling.
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2.1.3 Finite-size effects

To illustrate robustness of the defect states and the PT and CPT transitions,

I extend the discussion into finite systems. Before I consider the robustness of

the defect states I consider the effects of a finite chain to see what role finite-size

effects have on the defect states and the transitions.

First I consider numerical simulations of a chain of 300 coupled resonators. Start-

ing from the Hermitian line A/W = B/W = 1 in figure 2.2 and looking at the

interval 1 < B < 4.5, a cut is performed through all three phases. As discussed

in the previous section solutions to the defect state equation must start in pairs

on the real axis, bifurcate becoming complex after crossing the PT phase tran-

sition and finally meet again becoming imaginary after crossing the CPT phase

transition. The remaining eigenvalues not corresponding to the defect states and

not shown here remain either pinned to the real axis or to the imaginary axis and

additionally a band gap is not required for the defect states to be present. The

defect solutions are not pinned to a specific energy for example at zero energy as

dictated by the charge-conjugation symmetry in the SSH model, presented in the

introduction 1.3.2, but instead confined to the complex plane. Additionally since

these states vanish in the presence of the defect and edge-modes cannot be found,

this represents a deportation from the expected behaviour of topological states

given by Hermitian systems.

The phase transitions of the defect states can be identified by divergences in the

Petermann factor

K =
〈L|L〉〈R|R〉
|〈L|R〉|2

(2.42)

which measures the non-orthogonality of the defect-state wavefunction given by

the left 〈L| and right |R〉 eigenvectors. This quantity diverges at exceptional points
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where the non-orthogonality is largest [87]. The Petermann factor also quantifies

the sensitivity to general perturbations [88], including quantum noise [89,90].

For the numerical simulation the defect state is selected according to the crite-

ria that it is the most localised state. This can be determined by the inverse

participation ratio (IPR)

Γ =
∑
n

(|a4n|+ |bn|4). (2.43)

If the wavefunction is localised over a few resonators Γ is large, if it spreads out like

for example an extended state, Γ will be comparatively small. Tracking the defect

state over the interval, one of the four defect frequencies is shown in the central

panel of figure 2.3. The black squares indicate 8 highlighted, distinct localisations

which all occur within the defect region. Panel a) represents an extended state

solution to the defect equations. As a precursor state this state weakly resembles

a defect state. Since mode competition is high in this region the Petermann factor

and IPR are erratic in this portion of the interval around the first black marker

shown in figure 2.4. This first black markers corresponds to the upper most black

marker of the middle panel of figure 2.3 and also panel a) of the same figure.

The clockwise pattern of black markers in central panel of figure 2.3 correspond

to panels a)-h) and the same markers given in figure 2.4 form left to right. Cross

referencing panels b) through to g) with figure 2.4 demonstrates how the defect

initially has a rapid increase in the IPR due to narrowing of the defect state when

B lies within the defect state region. The two largest peaks of the Petermann

factor indicate the two phase transitions. The second marker corresponding to

panel b) depicts the state just as the eigenvalues begin to depart from the real

axis. The erratic behaviour of both the IPR and the Petermann factor before

this transition occurs due to finite size effects and large mode competition from

the extended states. Many shorter sharper peaks can be seen in the Petermann
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Figure 2.3: The central panel shows the trajectory of one of the four eigenvalues
associated with the defect states from the upper right quadrant of the complex
plane for the interval 1 < B < 4.5, A = W = 1 (the other 3 quadrants are mirror
images of the central panel). Panels labelled a)-h) give examples of the corre-
sponding defect states and their precursors for eigenvalues marked by the black
squares (following the trajectory anti-clockwise from the bottom) in the central
panel. Each mode profile consists of two intensities |an|2 of the CW component in
the left half of the chain and the CCW component in the right half of the chain
and |bn|2 of the CCW component in the left half of the chain and the CW com-
ponent in the right half of the chain. Panels a)-h) contain parameters as follows:
A=W=1, B= a) 1.5, b) 1.8, c) 1.85, d) 2.0, e) 2.5, f) 2.9, g) 3.2 and h) 3.5.
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Figure 2.4: (Left panel) Divergences in the Petermann factor indicate spectral
degeneracies in both the extended state phase and the two large broad peeks which
indicate the PT and CPT phase transitions. (Right panel) Inverse participation
ratio which grows large over the defect state phase. Both panels are produce for
the same interval as that shown in figure 2.3, where the black markers are labelled
in the same order as given in the caption.

factor before the broad phase transition peaks due to non-defects encountering

spectral degeneracies. Again due to finite size effects the Petermann factor does

not diverge. The clear smooth increase in IPR provides a reliable mechanism to

track the defect state across the defect state region, until the IPR drops back to

values comparable to extended states.

The wave-matching model indicates that after the CPT transition the defect state

becomes non-normalisable and hence unphysical. However, in the fixed size finite

system the exact degeneracy on the imaginary axis is avoided and defect solutions

move parallel to the imaginary axis away from the origin. This avoidance is

connected to the hybridisation of the defect state with an extended state, which

occurs as soon as the decay length becomes comparable to the system size as

shown in panel h).

2.1.4 Testing robustness

I test the robustness of the defect states using two approaches. I first consider a

chain where the left-right symmetry is broken. This means parameterising each

half of the chain differently without loss of the defect states. To illustrate this in
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Figure 2.5: Asymmetric chain: a) Example of a defect state for couplings A = W ,
B = 2W in the left half and A = 0.5W , B = 2.5W in the right half of the chain.
The remaining 3 panels are given by the parameters A = W , B = x on the left half
of the chain and A = 0.5W , B = 0.5W +x on the right half: b) Trajectories of the
eigenvalues associated with the defect states and their predecessors. c) Petermann
factor of the defect states and predecessors. d) Inverse participation ratio of the
defect states and predecessors.

the finite system over a wide range of parameters, consider the couplings A = W

and B = x on the left side of the chain and A = 0.5W , B = 0.5W +x on the right

hand side of the chain, where x is given by the interval 1 < x < 4.5.

A typical defect state within this interval is now highly asymmetric with two

different decay rates on either side of the interface as shown in panel a) of figure

2.5. Following the trajectory of all 4 defect states, panel b) of the same figure

shows the same departure of the pairs of solutions from the real axis into the

complex plane and back towards the imaginary axis, where again hybridisation

initially avoids the degeneracy until the IPR fails to track the defect state due

to increased mode competition given by the weaker decay rate in one half of the

chain. The transitions themselves are again reflected in the broad peaks of the
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Petermann factor in panel c) and the largely increased IPR over the defect state

region in panel d). Since both halves of the chain must have parameters that lie

within the defect state region to exhibit defect states, broadening of the PT phase

transition occurs. The asymmetric scenario also leads to a slight shift in the PT

transition compared to the symmetric case given in figures 2.3 and 2.4 as on the

left side of the chain A has been reduced.

Finally, in addition to asymmetry the topological nature of these defect states can

be tested by introducing disorder and breaking translational invariance across the

chain. This is calculated by drawing perturbations to A and B from the uniform

distribution y ∈ [−0.1W, 0.1W ] on top of the parameters given in figure 2.5 for each

individual resonator. Three different disorder realisations are presented in figure

2.6. Panel b) shows that the eigenvalues of the defect states still emerge from the

real axis, their trajectories can be followed through the complex plane towards the

imaginary axis. From panel c) it is difficult to directly infer from the peaks of the

Petermann factor alone where the phase transitions are. This is because disorder

induced Anderson localisation provides increased mode competition against the

precursor states, which have a larger IPR than the extended states. However, the

smooth increase of the IPR inside the defect state region shows both the presence

of and the further shift to the PT and CPT phase transitions for all three disorder

realisations. At this weak level of disorder the defect region is strikingly robust,

demonstrating that these defects are indeed of a topological nature.

If disorder, induced by growth differences in the spacing between resonators, is

of the same size as discussed in figure 2.6 is introduced to the inter-resonator

couplings instead of the backscattering couplings, I would expect to see similar re-

sults. This is because the effects of disorder on topological states are usually most

prominent when they force the bulk band gap to close and hence the topological

phase is lost. Since this system does not rely on there being a bulk band gap it

should remain relatively unaffected. Disorder typically creates many fractioned,
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Figure 2.6: The same as given in figure 2.5, except now the backscattering am-
plitudes A and B have been perturbed by drawing from the uniform distribution
y ∈ [−0.1W, 0.1W ] for three different disorder realisations. Panel a) shows an ex-
ample of a defect state for one of the disorder realisations for the same parameters
give in panel a) of figure 2.5 plus the additional perturbation.
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weakly connected subsystems, where bulk modes are contained within small spa-

tially isolated parts of the lattice. This may effect the width of the defect state

only when it is not already localised. This will therefore slightly shrink the size of

the defect region in the phase diagram. Most prominently disorder effects will be

seen in the position of the divergences of the peterman factor and the increased

competition of the IPR around the phase transitions.

2.2 Conclusion

In general optical systems are open due to radiative leakage or intrinsic gain and

loss. The resulting non-Hermitian effects are often minimise for the purpose of

experiments, where the principle goal was to find topological photonic analogues

of electronic systems. With the more general case being non-Hermitian systems,

in this chapter I have explored how open chains of coupled resonators can exhibit

unique spectral features and host topological defect states pinned to an interface.

The key finding of this work is the generation of non-Hermitian topological states

in a system which has a trivial Hermitian limit, where I demonstrated that the

localised exponentially decaying states are insensitive to disorder. I showed that

the localised states can be derived from the wave-matching conditions and iden-

tified the three phases of the associated solutions. Solutions may either come in

real pairs where they correspond to scattering states, complex conjugate pairs

where they represent defect states, or imaginary pairs which represent unphysical

solutions. Each phase is separated by an exceptional point and the defect states

emerge from the continuum of states to become spectrally isolated, an important

feature for both the lifetime of the states and for experimentally exciting only

these resonances. Furthermore, I have also showed that the exceptional point

transitions of the defect states are symmetry driven by PT and CPT symmetries.

I demonstrated insensitivity to asymmetry and disorder for both the spectral tran-
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sitions and the defect states. In relation to the Hermitian classification this poses

the important question of whether such states can be understood via a suitable

extension of the conventional classification of Hermitian system.

The conventional methodology for categorising one-dimensional systems, such as

that described in section 1.3.2, is to calculate winding numbers, the bulk prop-

erty which determines the bulk-boundary correspondence. One such equivalent

method is to calculate the pseudospin vector, σ = (〈σx〉, 〈σy〉, 〈σz〉), of the bulk

Bloch modes as conducted in reference [22] for a non-Hermitian system. However

similarly to the method discussed in 1.3.2 this requires the pseudospin vector to

be confined to a plane due to σz = 0. In the resonator setting this is not the case.

These findings have motivated intense research into the bulk-boundary correspon-

dence in non-Hermitian systems, seen as a critical linchpin in the Hermitian clas-

sification [91]. Calculations of winding numbers for non-Hermitian systems with

well defined topological states in the Hermitian limit obey bulk-boundary corre-

spondence holds [30]. The so-called anomalous protected edge and interface states

such as those discussed here emerge from exceptional points. In the anomalous

case it is still not clear whether bulk-boundary correspondence holds which has

been further put to the test but more complex bulk phenomena in 2D systems,

as I will discuss in the next chapter. It has also been suggest that these anoma-

lous states are symmetry protected continuum bound states, following from the

discussion of zero-energy bound states here [92].

It has been shown that for systems with chiral symmetry, bulk properties require

two winding numbers to fully categorise them. One number belongs to the chirality

of the mode and hence the sign of the Berry curvature and the other corresponds

to the chirality of the exceptional point [30, 67, 93, 94]. The same authors also

have recently suggested that the resonator chain discussed in this chapter, for the

parameters A = −B, this belongs to a coupled ladder chain, made up from two

complex SSH (cSSH) chains, where the SSH chain is given a staggered gain and
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loss on-site potential [95]. An interesting avenue of future work would be to see if

the well defined winding numbers of the cSSH chains could be used to find a bulk

invariant for this system.



Chapter 3

Bulk and Edge Fermi Arcs in

Coupled Resonator Arrays

Spectral singularities behave like magnetic monopoles in that they are a source of

topological charge in momentum space. Whilst the discussion in the introduction

focused on these singularities as a signature of topological phase transitions, where

the phases either side of the transition are gapped insulating phases, the discussion

would not be complete without the inclusion of semimetals. In three-dimensions

diabolic points occur in Weyl and Dirac semimetals [96, 97]. Weyl semimetals

can be realised by either breaking time-reversal symmetry or parity-symmetry in

Dirac semimetals where the degeneracy of two spin degenerate bands is lifted [98].

Pairs of Weyl points separated in momentum space then act as sources of Berry

flux with opposite chirality and must be created and destroyed in pairs of opposite

chirality. A particularly intriguing phenomenon observed in such systems is the

formation of gapless surface-state Fermi arcs, corresponding to dispersive branches

on the surface which connect topologically distinct parts of the bulk bands and

are hinged to these spectral singularities [99,100].

In optical systems, Hermitian Fermi arcs have been realised in metamaterials [101]

and laser-written waveguides [102]. This provides again a springboard to explore
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non-Hermitian counterparts. Since optical systems don’t intrinsically possess spin,

other degrees of freedom can be used to engineer artificial gauge fields in acoustic

structures to create Weyl points such as coupled waveguides [103] and stacking of

dimerized chains in three dimensions [104]. In non-Hermitian systems exceptional

points occur generically when only two parameters are varied [87], while a non-

Hermitian perturbation of a diabolic point in three dimensions results in a one-

dimensional exceptional curve [105]. Incorporating loss into a two-dimensional

topological system with a diabolic point therefore results in the formation of two

exceptional points connected by a bulk Fermi arc, a scenario that has been realised

in a periodic photonic crystal [106]. Non-Hermiticity can also close the band gap

in the bulk of a system, resulting in the formation of exceptional points and curves

in momentum space that spawn complex branches in the bulk dispersion [107,108].

Furthermore, the PT -symmetric edge states branching off conventional edge states

[35] have been found to survive when the gap is closed.

These complex spectral bulk and edge effects in gapless topological systems are the

focus of this chapter, where I show that analogous effects can also be achieved in 2D

arrays of coupled resonators where the hermitian limit is topologically trivial. In

the same vein as chapter 2, I again consider resonators that are slightly deformed

from the circular geometry, which induce non-Hermitian losses in the form of

leakage through the boundaries. Here I consider two symmetry classes, class AIII

the chiral class where time reversal symmetry is broken, and class BDI the chiral

class where time reversal symmetry is present. In two dimensions both of these

classes are topologically trivial. I will demonstrate the existence of bulk Fermi arcs

joining exceptional points in the Brillouin zone for class AIII and the formation

of edge states in both classes.
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3.1 2D array

The wave equation for a one-dimensional chain of coupled resonators was given in

equation (2.11) of chapter 2. I now consider a two-dimensional array of coupled

resonators as depicted in panel (a) of figure 3.1 with corresponding wave equation

ωn,mψn,m = Hn,mψn,m + Tx(ψn+1,m + ψn−1,m) + Ty(ψn,m+1 + ψn,m−1), (3.1)

where

Tx =

 0 Wx

Wx 0

 , Ty =

 0 Wy

Wy 0

 . (3.2)

Solutions to equation (3.1) are of the form ψn,m = eikxn+ikym(an,m, bn,m)T . Plugging

this solution back into (3.1) generates the Bloch Hamiltonian

H(k) =

 Ω0 A+ 2WxCx + 2WyCy

B + 2WxCx + 2WyCy Ω0

 , (3.3)

where k = (kx, ky)
T , Cx = cos kx and Cy = cos ky. The dispersion of this Hamil-

tonian is ω±(k) = ω0 ± Ω±(k) where

Ω± = ±
√

(A+ 2WxCx + 2WyCy)(B + 2WxCx + 2WyCy). (3.4)

Since we have only added an extra dimension to the model studied in the previous

chapter, the same symmetries are still present. Here, I also consider the case
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where the parameters A,B,Wx and Wy can be complex and hence break time-

reversal symmetry. For the case of complex parameters, since the chiral symmetry

mapping Ω+ to Ω− is still present, the model falls into the symmetry class AIII,

which is trivial in two dimensions.

3.1.1 Bulk Arcs

As shown in the examples of figure 3.1(b-d), representative band structures in this

class AIII combine regions with predominantly real and predominantly imaginary

resonance frequencies. In all cases, one can clearly make out bulk Fermi arcs with

Re Ω± = 0. These arcs emanate from exceptional points, which arise when

A+ 2WxCx + 2WyCy = 0 or (3.5a)

B + 2WxCx + 2WyCy = 0. (3.5b)

Each of these conditions can be met by varying two real parameters (kx and ky), so

that the EPs appear generically at isolated positions in the two-dimensional Bril-

louin zone. The arcs can occur on their own (panel b and e) or be complemented by

closed Fermi lines (panel d and f). The topology of these lines and arcs can change

at parameters for which they intersect (panel c), which occurs when an arc crosses

a stationary point, i.e. when ∂kx+ikyΩ±|kx−iky = 0 or ∂kx−ikyΩ±|kx+iky = 0. Addi-

tional Fermi arcs occur when the inter-resonator couplings take on PT -symmetric

values, as shown in panels e and f.

Tuning the array further such that the parameters are all real returns us to the PT

symmetric case, where real values of Wx and Wy are realised when the evanescent

coupling is lossless [109]. To obtain real but distinct values of A and B, only

a single parameter needs to be tuned [110]. In the symmetry classification of

Hermitian topological systems, the case of real couplings represents the chiral class

BDI with a conventional time-reversal symmetry where here the non-Hermitian
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Figure 3.1: Bulk Fermi arcs in a two dimensional array of evanescently coupled
non-hermitian resonators. (a) Each resonator supports a clockwise (CW) and a
counter-clockwise (CCW) internal mode that are coupled by asymmetric backscat-
tering amplitudes A and B, as obtained, e.g., from a small non-spherical deforma-
tion of open dielectric resonators. The resonators are placed on a square lattice
and are coupled evanescently with coupling coefficients Wx and Wy that convert
CW waves into CCW waves. This coupling configuration introduces a chiral sym-
metry into this non-hermitian system.(b-d) Real part Re Ω of the bulk dispersion
for B = −2.5 + 0.2i, Wx = 1.0 + 0.1i, Wy = 1.0 + 0.5i, and the three values
A = 1.5 + 0.1i (b), A = 1.5 + 0.2i (c) and A = 1.5 + 0.3i (d). In each case, the
dispersion consists of two sheets Ω+ (yellow surface) and Ω− = −Ω+ (blue surface)
that are related by the chiral symmetry. The white lines indicate Fermi arcs and
lines with Re Ω = 0, corresponding to intersections of the two sheets. The arcs
terminate at exceptional points (EPs), which are the non-hermitian counterparts
of Weyl points in topological insulators. In (b), four EPs are connected by two
arcs. In (d), the EPs are reconnected by two arcs with a different topology, while
a closed Fermi line is also present. Panel (c) shows the reconnection point between
these two scenarios, which is mediated by two smaller closed Fermi lines. Bulk
dispersions are also shown for B = −1.5−0.2i, A = 1.5+0.2i,Wx = 1.0−0.5i and
Wy = 1.0 + 0.5i for panel e) and B = −2.5 + 0.2i, A = 1.5 + 0.2i,Wx = 1.0− 0.3i
and Wy = 1.0+0.3i for panel f). Balancing the gain and loss of Wx and Wy creates
additional exceptional points for the Fermi-arcs to connect between.
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Figure 3.2: (a) Real and (b) imaginary parts of the bulk dispersion for A = 1.0,
B = −1.0 and Wx = Wy = 1, representing the PT -symmetric case (symmetry
class BDI) where the band structure displays purely real and imaginary branches,
and the exceptional points degenerate into lines.

time reversal symmetry is given by (PT )2 = 1, which for two-dimensional systems

is again topologically trivial.

In this subsection, unless specified, I consider A,B,Wx and Wy to be real. Under

these conditions the band structure of equation (3.4) the resonator array is real

and gapped if |A|, |B| > 2(Wx + Wy) and AB > 0, or imaginary and gapped if

for the same conditions AB < 0. In all other cases, the dispersion contains purely

real and purely imaginary branches in ranges of kx and ky. These branches are

joined at lines of EPs with Ω± = 0, which are again determined by the equation

(3.5).

An example of a band structures in symmetry class BDI is shown in figure 3.2.

The purely imaginary branches define flat patches with Re Ω± = 0, which are

bounded by lines of exceptional points. The Fermi arcs in symmetry class AIII can

be interpreted as remnants of these regions when the PT -symmetry is explicitly

broken and values of the couplings become complex.
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3.1.2 Interfaces and extending the wave matching

Following the same prescription laid out in the chapter 2, I extend the notion of

a point interface into an edge interface, to induce edge states. Again the interface

separates two regions of opposite deformations of the resonators as depicted in

figure 3.3 panel (a). This time the interface is placed along the y-axis, where within

the configuration for n < 0 (depicted in blue) resonators have backscattering A

and B, whilst for n ≥ 0 (depicted in green) resonators have the values of A and

B swapped.

In figure 3.3, panel (b) shows an example of a numerically obtained edge state in

an array of 40 × 40 resonators with parameters A = −2, B = 2, Wx = Wy = 1,

demonstrating that such states can indeed be formed. The states are exponentially

confined in the direction away from the interface, and display a standing-wave

pattern along the interface as the y-direction is only dependent on the quantisation

conditions.

This simple dependence in the y-direction allows for separation of the variables

according to ψn,m = ϕne
ikym, where the permitted values of ky are determined by

the width of the array.

The wave equation (3.1) then takes the form

Ωϕn = hnϕn + tx(ϕn+1 +ϕn−1), (3.6)

where

hn =



 0 A′

B′ 0

 (n < 0)

 0 B′

A′ 0

 (n ≥ 0)

, (3.7)
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Figure 3.3: Edge-state arcs in an array with an interface joining resonator arrays
with opposite backscattering. (a) Horizontal slice through the array, where the
dotted line indicates the interface between resonators with backscattering ampli-
tudes A and B as in figure 3.1 (blue resonators to the left), and resonators where
the values of these backscattering amplitudes are interchanged (green resonators
to the right). (b) Density plot of the intensity of a representative edge state in a
finite square array of 40×40 resonators, with A = −B = Wx = Wy. (c) Quasi-one
dimensional band structure in the infinite version of this array, where ky is a good
quantum number. In this representation, the bulk bands form sheets, which here
lie in the real and imaginary plane as all parameters are real (PT -symmetric sym-
metry class BDI, see figure 3.2). The black curves are the edge-state arcs, which
connect the different sheets.
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with the effective coupling coefficients

A′ = A+ 2Wy cos ky, (3.8a)

B′ = B + 2Wy cos ky. (3.8b)

For fixed parametersA′, B′, equations (3.6) and (3.7) define a quasi-one-dimensional

set of coupled-mode equations, which for ky = π/2 recovers the case of defect

states found in the previous chapter. Additionally, the wave matching calculation

performed in the chapter 2 also holds for this quasi-1D parameterisation. The

equations determining the symmetric and antisymmetric edge states are

Ω(Ω− 2Wx)
2 − A′B′Ω + (A

′ −B′)2Wx

2
= 0 (3.9a)

−Ω(Ω + 2Wx)
2 − A′B′Ω + (A

′ −B′)2Wx

2
= 0. (3.9b)

For convenience this can be re-parameterised as follow: using the scaled frequencies

ω =
Ω

Wx

(3.10)

and the effective parameters

A =
A+B + 4Wy cos ky

2Wx

(arc parameter), (3.11a)

B =
A−B
2Wx

(backscattering asymmetry), (3.11b)

edge states with a symmetric or antisymmetric mode profile about the interface
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then obey the equations

−ωA2 + (2 + ω)B2 + ω(2− ω)2 = 0, (3.12a)

ωA2 + (2− ω)B2 − ω(2 + ω)2 = 0., (3.12b)

respectively.

The symmetric and antisymmetric solutions to these equation are connected by

chiral symmetry, thus remain paired as ω and −ω even when all parameters are

complex. In the PT -symmetric case where the parameters A, B, Wx and Wy are

real, the solutions of equations (3.12a) and (3.12b) are further constrained to be

real or to occur in complex-conjugated pairs, leading to quadruplets (ω,−ω, ω∗,−ω∗).

Again to ensure the solutions to these equations belong to physical, non-scattering

defect states I rewrite the consistency conditions from equations 2.31 and 2.38 in

the previous chapter as

2− λ1λ2 −
1

λ1λ2
= 2ω, (3.13a)

2− λ1λ2 −
1

λ1λ2
= −2ω, (3.13b)

where the propagating factors are given by

λ1 = C1 ±
√
C2

1 − 1, C1 = −A
2

+

√
B2 + ω2

2
, (3.14a)

λ2 = C2 ±
√
C2

2 − 1, C2 = −A
2
−
√
B2 + ω2

2
. (3.14b)
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The signs of the square roots have to be chosen such that |λ1| > 1 and |λ2| > 1.

Propagating factors follow the same rules as in the 1D case, that being if for a

solution of equation (3.12a) or (3.12b) a propagation factor is |λl| = 1, the solution

belongs to a scattering state. If the consistency equations (3.13a) or (3.13b) can

only be fulfilled by combining a decaying and an increasing propagation factor

λl, the state cannot be normalized and is unphysical. Therefore, in both cases

edge states change from physical to unphysical at points at which one of the

propagation factors attains |λl| = 1. This corresponds to propagating waves in

the bulk system, and therefore occurs when an edge-state arc meets the bulk

dispersion relation, where it then terminates. In the PT -symmetric case, the

termination points coincide with degeneracies in edge-state quadruplets at real or

imaginary frequencies, thus constituting exceptional points.

3.1.3 Phase diagram and edge states

The position of these exceptional points follows from the same procedure up to

equation (2.40) and (2.41), except now mapped to the effective parameter space

of (A,B);

A6 − B6 + B4 +A4(46− 3B2) +A2(16− 20B2 + 3B4) = 0 (3.15a)

2A2 − B2 − 8 = 0. (3.15b)

Panel (a) in figure 4.13 illustrates the traces of the edge-state arcs in the real

section of effective parameter space. The solid and dashed curves in the diagram

denote the locations of the real and imaginary bulk energy bands in this space given

by equations (3.15a) and 3.15b, which confine solutions ω of equations (3.12a)

and (3.12b) to the regions which represent genuine edge states (green region),

scattering states (red) or non-normalizable unphysical states (blue). The edge
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Figure 3.4: (a) Traces of the edge-state arcs in the real section of their effective
parameter space (A,B) [defined in Eq. (3.11)]. The traces are horizontal lines of
length 4Wy/Wx, which are centred at A = (A + B)/2Wx, B = (A − B)/2Wx.
The solid and dashed curves denote the termination conditions at the real and
imaginary branches of the bulk bands, where the edge states (green region) turn
into extended scattering states (red) or into non-normalizable, unphysical states
(blue). The three representative traces correspond to the quasi-one-dimensional
band structures shown in (b-d), where the edge-state arcs are indicated in green,
while their scattering predecessors are given in red and unphysical states in blue.
In (b), A/Wx = 0.55, B/Wx = −0.55, Wy/Wx = 1.175, for which the trace crosses
both termination lines and the arcs connect the real and imaginary branches of
the bulk bands. In (c), A/Wx = −0.9, B/Wx = 0.9, Wy/Wx = 1, for which the
trace only reaches the real termination line so that the arcs loop back to the real
branches. In (d), A/Wx = −2.0, B/Wx = 2.0, Wy/Wx = 1, for which the trace
remains confined in the edge-state region so that the arc are free-standing.
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states trace out a horizontal line A(ky) in the arc parameter, which according to

the definition in equation 3.11 has a length 4Wy/Wx determined by the coupling

anisotropy, while its horizontal center is given by A(π/2) = (A + B)/2Wx and

its vertical position given by the backscattering asymmetry parameter B = (A −

B)/2Wx.

The three labeled horizontal lines are the traces of edge states for representative

systems with A = −B. In the complex energy dispersion these traces correspond

to the arcs shown by the green curves in panels (b-d). These arcs can connect the

real and imaginary branches of the bulk dispersion relation (b), can loop back to

the real branch (c), or can be disconnected from the bulk bands (d). The blue

arcs in panel (b) looping back to the imaginary branches represent unphysical

states, arising in panel (a) from segments of the trace across the dashed line. The

red arcs in panels (b,c) represent scattering states within the real branch of the

bulk dispersion, which occur in panel (a) when the traces cross the corresponding

solid line. The disconnected arcs as shown in panel (d) occur for traces that are

confined to the interior of the edge-state region, so that they do not cross the

phase boundaries defined by the bulk bands. Additionally, since the length of the

horizontal lines in panel (a), given by the arc parameter, is 4Wy/Wx, the amount

of the branches which correspond to edge states can be controlled by the ratio of

inter-resonator couplings Wx and Wy. The coupling strengths of these couplings

are determined by the relative distances between the resonators in the x and y

directions.

3.1.4 Breaking PT -symmetry

Edge state arcs still persist when PT -symmetry is broken by allowing the coupling

parameters to become complex and the system has entered into the AIII symmetry

class. To examine the qualitative behaviour of this symmetry breaking, panel (a)

of figure 3.5 demonstrates that the edge states are still present for parameters
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Figure 3.5: (a) Edge-state arcs for complex backscattering amplitudes A/Wx =
0.55 + 0.02i, B/Wx = −0.55 + 0.02i and Wy = 1.175 [close to the real values in
figure 4.13(b)]. All arcs still terminate on the bulk bands, which now no longer
are real or imaginary. (b-d) Propagation factors |λl|, 1/|λl| of potential edge
states as determined by equation 3.14. In (b), A = −B = 0.55/Wx, Wy/Wx =
1.175, corresponding to the real values of figure 4.13 panel (b). In (c,d), the
parameters take the complex values given above. For complex parameters the
region of scattering states is replaced by regions of physical and unphysical states.
Furthermore, the termination points of different arcs now appear at separate values
of ky, as shown in detail in panels (d) and (e) which zoom into the termination
region at the formerly purely imaginary and real branches of the bulk dispersion,
respectively.

which are almost real and close to those used in panel (b) of figure 4.13. The arcs

still emerge from the bulk dispersion, but the degeneracy of the termination points

is lifted, which is particularly visible on the formerly real sheets. Panels (b) and

(c) compare the propagation factors λl and 1/λ1 along the arc for real and complex

couplings. This comparison reveals two distinct effects. The propagation factors

of the former scattering states acquire moduli |λ1| 6= 1 and hence turn into weakly

confined edge states or non-normalizable, unphysical states. Furthermore, the

formerly degenerate transitions at which edge states from previously symmetry-

paired arcs become unphysical occur at independent values of ky, as shown in panel

(d) close to the formerly imaginary sheet and in panel (e) close to the formerly real

sheet. All these features remain dictated by the general quantization conditions

given in equations (3.12a) and (3.12b) subject to the consistency equations (3.13a)

and (3.13b), which hold for general complex values of all coupling parameters.
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3.2 Conclusion

In summary, in this chapter I have demonstrated an extension of one dimensional

resonator chain to the the two-dimensional array of coupled resonators with non-

Hermitian internal backscattering which is capable of displaying complex spectral

phenomena in both the bulk and at interfaces. In doing so, I have shown that two

of the universality classes in 2D display non-Hermitian topological phenomena,

the chiral class AIII without time-reversal symmetry and the chiral class BDI

with time-reversal symmetry, which are both trivial in the Hermitian limit.

In the bulk, for complex parameters which break PT -symmetry (class AIII), I have

shown that bulk arcs can be seen connecting pairs of exceptional points in different

topologies, sometimes intersecting with Fermi surfaces. For real parameters when

PT -symmetry is restored (class BDI) these bulk arcs are replaced by flat sections

of the band structure.

At an interface, by extending the wave matching into two dimensions, I showed

that both symmetry classes contain edge arcs emanating from the bulk surfaces

of the dispersion as a natural extension to the concept of edge states spanning

across the bulk gap of a topological insulator. I also demonstrated that the range

of these edge states over the full Brillouin zone can be achieved by adjusting the

real space distances of the adjacent resonators.

From a practical perspective, these findings imply that nontrivial dispersion effects

can be achieved without needing to resort to carefully engineered systems that

replicate the intricate symmetries required for hermitian topological physics. Since

reciprocity is preserved, the described effects can occur in conventional optical

settings where the main requirement is chiral symmetry.

In such optical settings, bulk Fermi arcs are directly observable in momentum

space [106]. Besides this characteristic spatial confinement, a key feature that

distinguishes these states are their distinct life times. Therefore, an attractive
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approach to probe a system for edge-state arcs would be to excite a state locally

near the interface, and observe the dynamical evolution of this state along the

arc towards long life times. In this way, these resonator arrays provide promising

mechanisms for state engineering.



Chapter 4

Nonlinear mode competition in

topological laser arrays

Creating robust light transport when systems contain active optical elements is

difficult to achieve. Considering passive systems alone, robust transport has been

achieved in systems which display topological states such as the SSH model dis-

cussed in the introduction. Such topological interface states can often suffer from

fabrication defects which accidentally close the gap or which easily mix and hy-

bridise with Bloch states due to similar levels of density of states [111]. Since the

topological states are localised onto only one of the sublattices one such method to

spectrally isolate these states is to introduce a staggered complex potential to the

dimerised lattice, where the sublattice which contains the topological state receives

gain and the other sublattice receives loss [22]. The topological mode therefore

makes optimum use of the gain provided. This model transforms the SSH model

into a non-Hermitian PT -symmetric lattice, where Bloch states spread between

both sublattices and see both gain and loss. Non-Hermitian effects therefore play

a vital role in affecting the comparative survival of topological interface states,

making them less susceptible to fabrication errors and vital for topological mode

selection.
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Topological states also appear in active systems such as ultra-cold atomic gases

[112], exciton-polaritons [113–115], acoustic waves [116] and lasers [41, 117]. Re-

cently, experiments have realised topological zero-modes in polariton conden-

sates [46, 118] and lasers [25, 26, 119]. As these systems are inherently non-

linear, the question arises whether the notion of zero-modes and topological pro-

tection persists as non-linearities are indispensable to stabilise active systems

at their working point. These non-linear systems share the commonality with

fermionic systems, that their excitations come in the charge-conjugated pairs

ψexp(−iωt), χψ∗exp(iωt) at positive ω and negative −ω frequencies respectively,

where χ represents the appropriate unitary transformation. Excitations of this

form can be categorised by Bogoliubov theory. Topological protection persists

when these spectral constraints are applied to the fermionic setting, for instance

superconducting systems can feature Majorana zero-modes ψ = χψ∗ at ω = 0,

and in weakly interacting bosonic systems with chiral edge states [120,121], which

sometimes acquire dynamic instabilities [122,123].

In the first part of this chapter I demonstrate that topologically protected modes

of the non-Hermitian SSH model naturally extend into the non-linear setting in the

context of lasers. The first example uses the non-Hermitian SSH model to confirm

the extension of zero-modes into the non-linear regime and the second example

modifies the non-Hermitian SSH model to create zero-mode with a much larger

mode volume. In exploring the operational regimes of the topologically protected

laser modes I will show that the modes acquire topologically protected power

oscillations at topological phase transitions, which have not yet been observed in

the experiments outlined above. On first sight it would appear that nonlinearities

should degrade the effectiveness of topological mode selection. Even when starting

under ideal linear conditions, the nonlinearities induce spatially varying loss and

gain, which depends on the intensity profile of the mode across the system. The

resulting effective gain has the potential to disfavour the topological mode, in

particular when its mode volume is small.
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In the second part of this chapter I perform a stability analysis on the excitation

spectrum by performing a linearisation around the working point, where the non-

linear modes reduce to those of the linear system in the linear limit. Topological

states in linear systems are protected by symmetry, but their number can change

discretely in phase transitions, which are generally linked to degeneracies (such

as when a band gap closes). This notion is underpinned by the continuity of the

spectrum under smooth parameter changes (deformations of the system), a feature

of linear spectral analysis. I show that dynamical solutions to the time-dependent

non linear wave equation are protected by symmetry and that the number of them

can also change due to bifurcations with focus on the spectral modes which have

no linear counterpart.

In the final part of this chapter I consider a series of different effects which effect

both the mode volume of the topological states and test the robustness of the states

to different kinds of disorder. I begin by introducing gain onto the sublattice

without the defect states to show that by increasing the mode competition by

exciting the other modes of the system large parts of parameter space behave

like the ideal case. I also consider the increased mode competition in the second

example, where the defect state region is extended to create a region of uniform

coupling. Again I show that for a large part of parameter space the topological

modes persist, but are now accompanied by additional solutions. Finally for both

the first and second example, I subject the laser arrays to coupling disorders

and onsite disorders and show that a degrading of the topological mode regimes

requires strong disorder strengths, but now the modes are much less stable as

signified by the linearised spectral analysis of the excitation spectra.
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Figure 4.1: Topological mode selection in laser arrays consisting of single-mode
resonators grouped in dimers (enumerated by n). The intra-dimer couplings κ
and inter-dimer couplings κ′ are chosen to produce interfaces between regions
of topologically different band structures. (a) In the Su-Schrieffer-Heeger (SSH)
model, the alternating couplings define a phase α (κ > κ′ ) and a phase β (κ < κ′).
The displayed defect state arises from two consecutive weak couplings, forming an
interface between the two phases. (b) The defect region can be extended, leading
to a variant where the phases α and β function as selective mirrors that confine
a defect state with a larger mode volume. In both cases, the resulting defect
states have preferential weight on the A sublattice (red) and can be selected by
distributed gain and loss. As illustrated in the right panels, in the linear regime the
defect state acquires the effective gain GA from the A sublattice, while the other
modes acquire the average gain Ḡ in the system (GA = Ḡ + 0.1, κ, κ′ = 1, 0.7).
We demonstrate that this mode selection mechanism extends to the nonlinear
conditions at the working point of a laser, where it stabilises robust zero modes
and also enables alternative topological operation regimes with power oscillations.

4.1 Nonlinear topological laser arrays

4.1.1 Modelling laser arrays with saturable gain

The general design of the topological laser arrays studied in this work is shown

in Fig. 4.1. The arrays can be interpreted as chains of identical single-mode res-

onators, denoted by dots, which are coupled evanescently to their nearest neigh-

bours. Given this structure of the coupling it is convenient to divide the system

into two alternating sublattices A and B, and group neighbouring pairs of A and B

sites into dimers. Denoting the corresponding wave amplitudes on the nth dimer
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as An and Bn, their dynamical evolution is then governed by the coupled-mode

equations

i
dAn
dt

= [ωA,n + VA,n(|An|2)]An + κnBn + κ′nBn−1, (4.1a)

i
dBn

dt
= [ωB,n + VB,n(|Bn|2)]Bn + κnAn + κ′n+1An+1, (4.1b)

where ωs,n (s = A,B) are the bare resonance frequencies of the isolated resonators,

κn is the intra-dimer coupling between the A and B site in the nth dimer, and κ′n

is the inter-dimer coupling between the B site in the (n − 1)st dimer and the A

site in the nth dimer. The effective complex potentials [124]

VA,n(|An|2) = (i+ αA)

(
gA

1 + SA|An|2
− γA

)
, (4.2a)

VB,n(|Bn|2) = (i+ αB)

(
gB

1 + SB|Bn|2
− γB

)
(4.2b)

model nonlinear saturable gain of strength gs and background loss γs, where the

real constants Ss and αs are the self-saturation coefficient and the linewidth-

enhancement (or anti-guiding) factor, respectively. The linewidth-enhancement

factor originates from the inherent uncertainty in the spectral energy levels of the

gain medium, this leads to stimulated emission which is not perfectly monochro-

matic, relating changes in phase to changes in gain. The self-saturation coefficient

describes the value at which the rate of population inversion is maximised with

respect to the pump power.

The couplings κn and κ′n follow the same sequence as given in the SSH model
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of section 1.3.2, where κ = t1 and κ′ = t2. Recalling this model, it displays a

symmetric band structure with a gap of size ∆ = 2|κ − κ′| around the central

frequency ωAB, which induces two topological phases α (where κ > κ′) and β

(where κ < κ′). A localised defect state is pinned at the interface between the

two phases, which appears at Ω0 = ωAB and is pinned to the centre of the gap.

This constitutes the first model I will consider, given in figure 4.1(a). Due to its

topological origin this mode persists for more complicated interface configurations,

which I will exploit to change its mode volume as shown in Fig. 4.1(b). There,

the terminating dimer chains operate as topological mirrors while the defect mode

extends uniformly over the central part of the system.

Next, I introduce sublattice dependent gain and loss, where the sublattice with

the defect state contains gain and both sublattices receive uniform losses. This

selectively enhances the topological mode. Assuming that the gain and loss are

linear (Ss = 0) and do not break the symmetry of the frequency spectrum (αs = 0),

the topological mode then acquires the effective gain GA = gA − γA on the A

sublattice, while all bulk modes acquire the average effective gain Ḡ = (gA +

gB − γA − γB)/2 (see the right panels in figure 4.1). The topological protection

persists because the effective non-hermitian Hamiltonian exhibits a non-hermitian

charge-conjugation symmetry (H − ωAB)∗ = −σz(H − ωAB)σz (with the Pauli

matrix σz operating in sublattice space), which stabilises any complex eigenvalues

Ωn positioned on the axis Re Ωn = ωAB [22, 23,31,125–127].

This linear mechanism describes an initial competitive advantage to the defect

mode if GA > Ḡ and allows it to dynamically switch on if GA > 0 and the intensity

is still small. This however, does not describe the quasi-stationary operation

regime where the gain medium saturates in response to a much larger intensity.

The saturation is critical for the stabilisation of any laser at its working point,

where the medium provides just as much energy as the lasing mode loses through

radiative and absorptive processes.
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Figure 4.2: Topological lasing regimes for the SSH array of figure 4.1(a) pumped
on the A sublattice (finite gain gA at fixed gB = 0, with amplitudes scaled such
that SA = SB = 1) under conditions that preserve the symmetries in the linear
case (ωs,n = ωAB, αs = 0), demonstrating operation in topological states over the
whole parameter range. (a) Phase diagram of stable quasistationary operation
regimes depending on the gain gA and background losses γA = γB ≡ γAB, where
lasing requires gA > γAB. Over the whole grey region labelled Z, the system
establishes stationary lasing in a topological zero mode. In the orange region,
this is replaced by operation in a twisted topological mode T1 displaying power
oscillations. In the pink region an additional twisted state T2 exists, whose se-
lection then depends on the initial conditions. The remaining panels analyse the
lasing characteristics for varying gain gA along the line γAB = 0.1 (blue arrow
in the phase diagram). (b) Sublattice-resolved intensities IA (red) and IB (blue),
including shaded intensity ranges for the power oscillations of T1 and dashed lines
indicating the corresponding ranges for T2. (c) Amplitude oscillation period T
(equalling twice the period of power oscillations for twisted states, see Fig. 4.3).
(d) Correlation function C̃(t) at t = 0, T/2, where C̃(T/2) = Imax reveals the topo-
logical nature of the states (see text). As illustrated for the examples in Fig. 4.3,
all states inherit the intensity profile of the linear defect mode from Fig. 4.1(a).

4.1.2 Symmetries and solutions

The nonlinear modification (4.2) of the model (Ss 6= 0) includes the saturation

dynamics. This makes the effective gain or loss non-uniform across the whole sys-

tem and favours modes with a large mode volume. Symmetry breaking is induced

when the linewidth-enhancement factor αs is non-zero. Also a non-Hermitian

charge conjugation symmetry which is satisfied by the non-linear potential [128]

can be realised. By inspection of equations (4.1) and (4.2), solutions of the form

Ψ(t) =

A(t)

B(t)

 (4.3)

with parameters (ωs,n, κn, κ
′
n, gs, γs, αs, Ss), have charge-conjugation symmetric
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partners of the form

Ψ̃(t) = exp(−2iωABt)

 A∗(t)

−B∗(t)

 (4.4)

at the parameters (ω̃s,n = 2ωAB − ωs,n, κn, κ
′
n, gs, γs,−αs, Ss). Time-dependent

solutions which are charge-conjugation symmetric will then appear as natural ex-

tensions to the topological SSH linear modes if they are zero modes with respect

to the background frequency ωs,n = ωAB and there is no charge-conjugation sym-

metry breaking αs = 0. I tune out the background frequency ωAB ≡ 0 through

the gauge transformation Ψ(t) → Ψ(t) exp(−iωABt), for direct comparison with

the linear model.

For the remainder of this section I will discuss solutions to the non-linear wave

equation which appear in several types. They can be self-symmetric stationary

states Ψ(t) = Ψ̃(t) = const(t), which I denote as the nonlinear topological zero

modes [Z], they can also be time dependant version of these states [S], and also

periodic ‘twisted’ modes Ψ(t + T/2) = Ψ̃(t) [T] which display power oscillations

with period T/2. These periodic modes are also self periodic Ψ(t + T ) = Ψ(t)

with period T . Lastly, I will show stationary and time-dependent lasing modes

that spontaneously break the dynamical symmetry, which automatically occur in

pairs Ψ(t), Ψ̃(t) [P].

To distinguish between these types of modes I use the correlation functions

C(t) = |〈Ψ(tmax)|Ψ(tmax + t)〉|, (4.5a)

C̃(t) = |〈Ψ̃(tmax)|Ψ(tmax + t)〉|. (4.5b)

For periodic modes I choose tmax such that I begin with the intensity maximum
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over one period C(0) = Imax. For stationary modes tmax is arbitrary and Imax is

to be interpreted as the stationary intensity. Self-symmetric modes are charac-

terised correlation functions which coincide C̃(t) = C(t). For twisted modes the

correlation functions alternate with an offset T/2, hence C̃(t) = C(t + T/2) and

C̃(T/2) = Imax. For symmetry-breaking modes, the two correlation functions are

not simply related but are constrained by C̃(t) < Imax for all t.

I begin by considering lasing under ideal conditions, where charge-conjugation

symmetry must be present αs = 0 and gain confined to the A sublattice (gA finite

and variable by the pumping, while gB = 0) and the background losses are uniform

γA = γB ≡ γAB. I scale the amplitudes A and B such that the self-saturation

coefficients are unity SA = SB = 1, and randomise initial conditions such that the

populated mode is not a consequence of the chose of those initial conditions.

The phase space of solution for this operational regime is given in panel a of figure

4.2. Over a large part of the parameter space, the laser operates in a stable zero

mode, which is quickly approached over time. In the phase diagram (panel a), this

region is indicated by the label Z. When the gain/loss ratio is increased the zero

mode becomes unstable and is replaced by a twisted mode T1, which results in

lasing with power oscillations. This occurs due to a topological phase transition, I

shall go into more detail about the mechanism behind this in the next section when

I examine the stability spectrum. Upon a small further increase of the gain/loss

ratio the mode T1 starts to compete with a second twisted mode T2. Both modes

sustain stable lasing with power oscillations of different amplitude and period,

where the choice of mode depends on the initial conditions.

Panels (b-c) in figure 4.2 shows the gain-dependence of the sublattice-resolved

intensities IA = |A|2 (orange) and IB = |B|2 (blue). Panel b is the so-called light-

light curve, which displays the characteristic kink as the laser threshold is crossed

gA = γAB. Initially the stationary solution given by the zero mode Z can be seen

where the intensity on the sublattice without gain IB initially remains negligible.
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Upon increasing the gain, the stationary regime is replaced by lasing in the twisted

mode T1, where IB becomes finite and from its onset displays a finite period T

while the amplitude of its power oscillations (of period T/2) increase smoothly

(given by the shaded intensity ranges). The second twisted mode sets in with

a slightly smaller period, but covers very similar intensity ranges (indicated by

the dashed white lines). Panel (d) in figure 4.2 verifies the symmetry-protected

nature of these states throughout the whole range of gain. For the self-symmetric

zero mode Z C̃(0) = Imax. Both of the twisted modes are not self-symmetric,

C̃(0) < Imax, but display continuity of the maximum intensity C̃(T/2) = Imax.

Plotting individual realisations, the modes maintain the exponentially localised

trademark of the localised state at all times up to the beating effect of the twisted

modes as demonstrated for the three solutions shown in panel (a) of figure 4.3.

Panel (b) show that the intensities on both sublattices oscillate out of phase, and

so do the correlation functions C(t) and C̃(t) given in panel (c). Furthermore,

comparing panels (b) and (c) the period T/2 of the power oscillations in IA,B(t) is

half of the amplitude oscillations exhibited by the amplitude correlation functions.

4.2 Stability analysis: Theory

In the previous section I showed that the topological states are surprisingly stable

in the presence of the non-linear potential provided that the gain/loss ratio is

is away from the phase transition between the different types of modes. In this

section I perform a stability analysis to show that this modes are topologically

protected, but first this requires reformulating the problem to make the lineari-

sation around the working point clearer. I begin by reformulating the non-linear

wave equations (4.1) as the matrix equation
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Figure 4.3: Topological wave features of representative lasing states at parameters
indicated by blue dots in figure 4.2 (gA = 0.2 for Z, gA = 0.5 for T1 and T2). (a)
Intensity distributions over the array, shown both as spikes and as disks with area
proportional to intensity, substantiating the relation of these stabilised states to
the linear defect state from figure 4.1(a). (b,c) Time-dependence of the sublattice-
resolved intensities IA(t) and IB(t) (red and blue) and of the correlation functions
C(t), C̃(t) (orange and brown). The alternating correlations C̃(t + T/2) = C(t)
verify the twisted nature of the states T1 and T2, while C(t) = C̃(t) = const
verifies that the state Z is a topological zero mode.

i
d

dt
Ψ(t) = HΨ(t) + V [Ψ(t)]Ψ(t), Ψ(t) =

 A(t)

B(t)

 , (4.6)

H =

 ωA K

KT ωB

 , V [Ψ] =

 VA 0

0 VB

 , (4.7)

where the matrix

Knm = δnmκn + δn,m+1κ
′
n (4.8)

represents the couplings. The resonance frequencies and nonlinear potentials (cor-

responding to equation (4.2)) are the diagonal matrices,
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Figure 4.4: Stability excitation spectra of the representative states illustrated in
figure 4.3. For the stationary state Z this represents the Bogoliubov spectrum ω,
which separates into excitations ω± that preserve or break the symmetry. This
separation further verifies its zero-mode character (see text), while Imω < 0 [apart
from the U(1) Goldstone mode at ω = 0] affirms that the state is stable. For the
periodically oscillating states T1 and T2, this represents the Bogoliubov-Floquet
stability spectrum λ (top, green) and the spectrum λ′ of the half-step propagator
(bottom, red). Both spectra are confined by the unit circle in the complex plane,
demonstrating that these states are stable. The symmetry-protected excitations
pinned to λ′ = ±1 further verify the twisted nature of these states.

ωA,nm = δnmωA,n, ωB,nm = δnmωB,n, (4.9)

VA,nm = δnmVA,n, VB,nm = δnmVB,n. (4.10)

Stationary states Ψ(t) = exp(−iΩnt)Ψ
(n) with real frequency Ωn are determined

as self-consistent solutions of the equation

ΩnΨ(n) = (H + V [Ψ(n)])Ψ(n), (4.11)

while general periodic states of period T fulfil

Ψ(T ) = exp(−iϕ)Ψ(0) (4.12)
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with a real phase ϕ.

Again setting the reference frequency ωAB = 0, the matrices satisfy charge-

conjugation symmetry

(H + V )∗|ωs,n,αs = −σz(H + V )σz|−ωs,n,−αs (4.13)

where σz is the z Pauli matrix. The solutions must also be connected by charge-

conjugation symmetry

Ψ̃(t)|−ωs,n,−αs = σzΨ(t)|ωs,n,αs , (4.14)

which in this system holds for αs = 0, ωs,n = 0. The coupling matrix K is

the familiar (N + 1) × N -dimensional matrix (as there is one more A site than

B sites) discussed in section 1.3.2. The zero-mode in the linear regime satisfies

KTA(Z) = 0, B(Z) = 0 [57] and obeys H0Ψ
(Z) = iGAΨ(Z), which above threshold

(GA > 0) is an exponentially increasing state and is therefore unphysical. The

non-linearity provides the necessary feedback to make the state stable as evidenced

by it’s presence in the previous section.

In the nonlinear case, the relation between solutions at fixed parameters applies

to stationary zero modes

Ψ(Z) = Ψ̃(Z), (4.15)

which now must be stabilised at an exactly vanishing frequency ΩZ = 0 [see

Eq. (4.11)], and twisted modes

Ψ(T )(T/2) = Ψ̃(T )(0). (4.16)

For both cases, these definitions exploit the U(1) gauge freedom to multiply any

solution by an overall phase factor exp(iχ). For exmaple, if a zero mode fulfils
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Ψ(Z)′ = exp(−2iχ)Ψ̃(Z)′ then Ψ(Z) = ± exp(iχ)Ψ(Z)′ fulfils equation (4.15), and

the same redefinition applies for a twisted mode Ψ(T )′(T/2) = exp(−2iχ)Ψ̃(T )′(0).

Irrespective of these redefinitions, zero modes always display a rigid phase dif-

ference of ±π/2 between the amplitudes on the A and the B sublattice, while

twisted modes always fulfil Ψ(T ) = Ψ(0), as they are periodic modes (4.12) with

guaranteed ϕ = 0.

4.2.1 Stability analysis

Given a general solution Ψ(t) of the nonlinear wave equation (4.6), the stability

of the mode can be analysed by adding a small perturbation,

δΨ(t) = u(t) + v∗(t), u =

 uA(t)

uB(t)

 , v =

 vA(t)

vB(t)

 , (4.17)

and linearising in u and v. This form utilises the charge-conjugation symmetry of

the system and yields the Bogoliubov equation

i
d

dt
ψ(t) = H[Ψ(t)]ψ(t), ψ(t) =



uA(t)

uB(t)

vA(t)

vB(t)


. (4.18)

The corresponding Bogoliubov Hamiltonian is given by
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H[Ψ] =

 H + Γ ∆

−∆∗ −H∗ − Γ∗

 , (4.19)

Γ =

 ΓA 0

0 ΓB

 , ∆ =

 ∆A 0

0 ∆B

 , (4.20)

where

ΓA,nm = δnm(i+ αA)

(
gA

(1 + SA|An|2)2
− γA

)
, (4.21)

ΓB,nm = δnm(i+ αB)

(
gA

(1 + SB|Bn|2)2
− γB

)
, (4.22)

∆A,nm = −δnm(i+ αA)
SAgAA

2
n

(1 + SA|An|2)2
, (4.23)

∆B,nm = −δnm(i+ αB)
SBgBB

2
n

(1 + SB|Bn|2)2
. (4.24)

For a stationary state fulfilling the self consistency condition given in equation

(4.11), solutions are of the form us = exp(−iΩnt − ωmt)u
(m)
s , vs = exp(iΩnt −

ωmt)v
(m)
s (s = A,B), which follow from the eigenvalue equation

ωmψ
(m) =

(
H[Ψ(n)]− ΩnΣz

)
ψ(m), (4.25)

where

Σz =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


. (4.26)
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The stability of stationary states can therefore be ascertained by inspecting the

corresponding spectrum of this equation for a given solution Ψ(t). There are twice

as many eigenvalues representing excitations in this equation as there are states

in the linear system. The excitations themselves are constrained by a second

charge-conjugation symmetry which arises for free from the complex form of the

excitations. This can be seen from the Bogoliubov equation

(H[Ψ])∗ = −ΣxH[Ψ]Σx, (4.27)

where

Σx =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


. (4.28)

Excitations are then either imaginary Reωn = 0 or occur in the pairs ωn, ω̃n =

−ω∗n.

This includes a U(1) Goldstone mode

ψ(0) =

 Ψ(n)

−Ψ(n)∗

 , ω0 = 0, (4.29)

which accounts for the free choice of the overall phase factor of a stationary solu-

tion.

For a periodic state (4.12), the Bogoliubov equation is integrated over the pe-

riod of oscillation, so that ψ(T ) = U(T )ψ(0), where U(T ) is a propagator. The

Bogoliubov-Floquet operator can be written as follows

F = exp(iΣzϕ)U(T ), (4.30)
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where the phase factor ϕ plays the same role as the shift to that of Ωn in equation

(4.25). The eigenvalues of the Bogoliubov-Floquet operator are denoted as λm =

exp(−iωmT ). In both the stationary case and the time-dependant case, a solution

is stable if all eigenvalues fulfil Imωm ≤ 0, so that the associated perturbations

do not grow over time.

The Bogoliubov-Floquet spectrum contains complex-conjugate pairs of eigenvalues

λm, λ̃m = λ∗m and individual real eigenvalues λm = λ∗m. This again includes a U(1)

Goldstone mode

ψ(0) =

 Ψ(t)

−Ψ∗(t)

 , λ0 = 1 (4.31)

reflecting the free choice of the overall phase of any solution, and now also a

time-translation Goldstone mode

ψ(t) =

 dΨ/dt

dΨ∗/dt

 , λt = 1 (4.32)

that reflects the freedom to displace any solution Ψ(t) in time.

4.2.2 Topological modes

To make some more specific statements about the excitation spectra of the topo-

logical modes, I first recall from the previous section that on top of the charge-

conjugation symmetry put forth by the Bogoliubov equation, the modes them-

selves have an additional charge-conjugation symmetry if αs = 0, ωs,n = 0. This

means that the excitation spectrum satisfies

χ(H[Ψn]− ΣzΩn)∗χ = −(H[Ψ̃n] + ΣzΩn), (4.33)
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where χ = 12 ⊗ σz. For stationary mode the perturbations in the presence of

this additional charge-conjugation symmetry can be classified in terms of joint

eigenstates of χ with eigenvalue ε = ±1. The eigenstates are related according to

vε = εσzuε, and fulfil the reduced eigenvalue equations

ω+,nu+,n = (H + 2Γ− V )u+,n (4.34)

ω−,nu−,n = (H + V )u−,n, (4.35)

for symmetry-preserving modes v+,n = u+,n and symmetry-breaking modes for

v−,n = u−,n respectively. In the language of equation (4.17), symmetry-preserving

corresponds to the relation vA = uA, vB = −uB, whilst for the symmetry-breaking

this corresponds to vA = −uA and vB = uB. The symmetry breaking modes

also include the U(1) goldstone mode from equation (4.29), now expressed as

u(−,0) = Ψ(n), ω−,0 = 0.

For twisted modes (4.16), the Bogoliubov-Floquet propagator can be factorised

F = ZU∗(T/2)ZU(T/2)

= ZΣxU(T/2)ΣxZU(T/2)

= F ′
2
, (4.36)

F ′ = ZΣxU(T/2), (4.37)

which defines the twisted half-step propagator F ′. Its eigenvalues λ′m determine

the stability spectrum as λm = (λ′m)2. The U(1) Goldstone mode (4.31) fulfills

ψ(0)(T/2) = −ZΣxψ
(0)(0), so that the associated eigenvalue λ′0 = −1, while the

time-translation mode (4.32) fulfills ψ(t)(T/2) = ZΣxψT (0), so that λ′t = 1.
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Now that both the stationary and time-dependant solutions have appropriate for-

mulations of perturbations in terms of their excitation spectra, which have been

decomposed into symmetry-breaking and symmetry-preserving excitations, I will

demonstrate in the next section how this spectral analysis can be used to show

the transitions between topological phases.

4.3 Stability analysis: application

A state is stable if all physical excitations decay, Imωn < 0 (hence |λn| < 0).

An exception is the U(1) Goldstone mode pinned at ω0 = 0 (λ0 = 1), which

arises from the arbitrary choice of the global phase of the wavefunction Ψ. This

phase can diffuse due to quantum noise, which results in the finite linewidth of

the emitted laser light. Furthermore, in the Floquet case an additional pinned

eigenvalue λt = 1 arises from the arbitrary choice of the reference time t0 for any

solution Ψ(t+ t0).

Consider again the three topological regimes identified in figure 4.3. For a given

stationary zero-mode Z, the excitations spectrum can be understood through ex-

amining the Bogoliubov spectrum given in the left hand panel of figure 4.4. The

excitations which preserve the self-symmetry of the topological mode are given by

the eigenvalues ω+,n, and those that break the self-symmetry are given by ω−,n.

Since the eigenvalues of ω−,n all lie within the lower half of the complex plane, the

stationary zero-mode is a stable solution. The eigenvalues ω−,n also contain the

Goldstone mode ω−,0 = 0, and describes the more slowly decaying excitations.

The other panels of figure 4.4 contain the Floquet spectra belonging to the twisted

half-step propagator of the T1 and T2 modes over half a period T/2. Here the

eigenvalues λn = λ′n
2 are confined to the unit circle. This reduced spectrum

contains a mode pinned at λ′t = 1, which arises from time-translation invariance,

and a mode pinned to λ′0 = −1, which originates from the U(1) Goldstone mode.
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Figure 4.5: Topological phase transition between the zero-mode regime Z and
the twisted mode T1, at gA = 0.291 along the line γAB = 0.1 (see figure 4.2).
At the transition two Bogoliubov excitations ω−,? = 2π/T and ω̃−,? = −ω−,? are
marginally stable, where T is the period of the emerging twisted mode T1. Along
with the U(1) Goldstone mode, they all map onto Floquet-Bogoliubov excitations
λ = 1 for this emerging mode. Away from the transition, these excitations split
into two degenerate excitations λ0 = λt = 1 associated with the U(1) and time
translation freedoms, and a decaying excitation λf related to the amplitude sta-
bilisation of the power oscillations. (Note that at the transition another pair of
excitations is almost unstable, which will give rise to the twisted mode T2.)

This configuration of excitations for propagation over half a period constitutes a

distinctive topological signature of the twisted modes. This time if the eigenvalues

|λn| < 1 the oscillating modes remain stable.

The described features are further illuminated when one inspects the phase tran-

sition between the zero-mode regime and the twisted state T1. In the general

setting of nonlinear optical systems [129, 130], this transition corresponds to a

Hopf bifurcation, which here however occurs in a symmetry-constrained setting.

Panel (a) of figure 4.5 shows the Bogoliubov spectrum at the transition, where a

pair of symmetry-breaking excitations with ω̃−,? = −ω−,? crosses the real axis and

thereby destabilises the zero mode. This pair of excitations combine to display

the oscillatory time dependence of the emerging twisted state T1, whose initial os-

cillation frequency is given by 2π/T = |ω−,?|. Different combinations of these two

excitations amount to a time translation of these resulting oscillations. Notably,

at the transition the Bogoliubov-Floquet spectrum of this emergent state is given

by λn = exp(−iωnT ), as is illustrated in panel (b) of figure 4.5.
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Upon this mapping the destabilising excitations ω̃−,? = −ω−,? map to λ−,? =

λ̃−,? = 1. For the twisted mode, they therefore constitute two excitations that right

at the transition are both degenerate with the U(1) Goldstone mode. Departing

from the transition into the twisted-state regime, these excitations shown in panel

(c) if figure 4.5 split into two separate real eigenvalues λt and λf . Of these, λt

describes the time-translation freedom and therefore remains degenerate with the

U(1) Goldstone mode. The eigenvalue λf , on the other hand, is associated with

perturbations of the finite amplitude of the power oscillations. These perturbations

decay due to the nonlinear feedback, so that |λf | < 1, guaranteeing that the

oscillations are stable. This mechanism gives rise to the aforementioned topological

excitations λ′0 = −1, λ′t = 1 in the half-step propagator, which remain a robust

signature of the twisted state even when one moves far away from the transition,

as already shown in the examples of figure 4.4.

4.3.1 Beyond ideal conditions

The previous sections were focused on understanding the operational regimes of

topological modes in an idealised laser array. To verify the versatility and resilience

of the topological modes, I consider two modifications to the mode competition

between the different states in the system.

4.3.2 Modified gain distribution

Figure 4.6 examines the role of the gain distribution via the addition of finite

gain gB = 0.1 on the B sublattice, which amounts to a reduction of the gain

imbalance. In the linear model, the additional gain does not affect the defect

state, which sees the effective gain GA, but increases the effective gain Ḡ of all the

other states in the system (see figure 4.1). In the nonlinear model, the additional

gain modifies the operation regimes in parts of the region γAB < gB, where the
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Figure 4.6: Role of reduced gain imbalance, obtained under the same conditions
as in figures 4.2-4.4, but with finite gain gB = 0.1 on the B sublattice. For
γAB < gB the parameter space now also contains a region (dark orange) supporting
additional pairs of symmetry-breaking modes P. As illustrated for the marked
example, these modes have substantial weight on the B sublattice, while their
independent correlation functions C(t) and C̃(t) show that they spontaneously
break the symmetry. For such modes the Bogoliubov-Floquet spectrum contains
many eigenvalues close to the unit circle, indicating their high sensitivity under
parameter changes. As shown in the top panels for the cross-section now placed at
γAB = 0.2, the remaining parameter space supports the same robust topological
lasing modes as observed for gB = 0 (twisted modes T1 and T2 and stationary
topological modes Z, as illustrated by the marked examples).
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Figure 4.7: Role of increased mode volume, obtained for the laser array with
topological mirrors illustrated in figure 4.1(b). Here I consider ideal lasing con-
ditions with variable gain gA and background loss γA = γB ≡ γAB, at vanishing
gain gB = 0 on the B sublattice. The representation of the data is the same
as in figure 4.6. The resulting operation regimes closely resemble those of the
SSH laser array under corresponding conditions (see figures 4.2-4.4), with a phase
of stationary zero-mode lasing supplemented by phases with one or two twisted
modes displaying power oscillations. The intensities of these modes have increased,
which reflects their larger mode volume, as illustrated in more detail for the three
examples marked Z, T1 and T2.
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Figure 4.8: Interplay of mode volume and gain imbalance. Same as figure 4.7,
but for finite gain gB = 0.1 on the B sublattice, and the cross-section through
parameter space shifted to γAB = 0.2. Compared to the corresponding conditions
in the SSH laser array (figure 4.6), a larger range of parameters now supports
a multitude of additional states. At the representative point marked P, this in-
cludes a pair of symmetry-breaking oscillating states, whose power oscillations are
modulated. The features of these symmetry-breaking states are not very robust,
as indicated by their Bogoliubov-Floquet stability spectra, which display many
slowly decaying excitations. These modifications are restricted to the range of pa-
rameters that previously displayed the twisted states T1 and T2 (now only seen for
large enough gain), but does not affect the operation in the zero-mode Z. Along
the cross-section γAB = 0.2, we enter only briefly enter this modified regime, in
a region where there is only one extra, twisted, state, which destabilises the zero
mode.
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losses are not strong enough to suppress modes with substantial weight on the B

sublattice. Besides additional twisted modes, this region then becomes populated

by oscillating pairs of symmetry-breaking modes P. As shown for an example in the

figure, where these modes extend over the whole system and display substantial

weight on both sublattices. The Bogoliubov-Floquet spectrum of any two partner

modes are identical, but they cannot be further deconstructed. The position of the

eigenvalues close to the unit circle reflects a reduced robustness of these symmetry-

breaking modes against parameter variations.

In the remainder of parameter space the same topological operation regimes are

encountered as in the ideal case, with the boundary between zero modes and

twisted modes now shifted to larger losses. The modes themselves display the same

features as before, as illustrated for variable gain gA along the line γAB = 0.2. The

threshold to stationary lasing again gives rise to a marked increase of intensity

on the A sublattice, while the power oscillations of the twisted states at larger

gain display very similar periods and relative amplitudes as before. The three

marked examples verify that these topological modes still inherit their mode profile

from the linear defect state, and display the required topological correlations and

excitations that can only change in phase transitions.

4.3.3 Modified mode volume

A different strategy to consider the increased mode competition to the topological

states is to consider a realisation where the defect state region is extended to

include a region of uniform coupling. The schematic for this modified set up

is shown in panel (b) of figure 4.1. Figures 4.7 and 4.8 examine this modified

set-up. In the linear system, the terminating regions act as selective mirrors for

a zero mode with an increased mode volume, which remains confined to the A

sublattice. Furthermore, because of its increased length the system also supports

a larger number of extended states that compete for the gain. In figure 4.7 the
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gain on the B sublattice is set to gB = 0, while in figure 4.8 the gain on the B

sublattice is again small but finite gB = 0.1.

In the ideal case gB = 0, the resulting operation regimes closely resemble those

of ideal lasing in the SSH laser array (compare figure 4.7to that of figures 4.2-

4.4). The parameter space is divided into a region with a topological zero mode

Z and regions with one or two twisted modes T1 and T2. Each of these modes

can now be involved in the topological phase transition with the stationary zero

mode, with a crossover point gA ≈ 0.59, γAB ≈ 0.17. The modes continue to show

all the required topological signatures in their correlation functions and stability

excitation spectra. However, they all now display a larger mode volume, which is

inherited from the profile of the zero mode in the linear case. As a consequence,

the output power of these modes (quantified by the intensities IA and IB) has

increased.

Compared to the situation in the SSH laser array in figure 4.6, the modifica-

tion of the gain imbalance examined in figure 4.8 now affects a much larger range

of parameters, reaching up to γAB . 2gB. This can be attributed not only to

the larger number of competing states, but also to the larger propensity of the

zero mode to hybridise with such states in the central region, which on its own

would constitute a topologically trivial system. In this regime a very large num-

ber of additional solutions are encountered, which are all close to instability and

therefore very sensitive to parameter changes, as demonstrated by the Bogoliubov-

Floquet spectrum of the state marked P. Furthermore, an additional twisted mode

appears close to the phase boundary of the zero mode, and indeed drives its in-

stability along parts of this boundary (see the properties of the modes along the

cross section at γAB = 0.2). In the remaining range of parameters, the system

operates in analogous ways as before, with topological modes that display a larger

output power when compared to the SSH laser array with analogously reduced

gain imbalance (figure 4.6).
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4.3.4 Robustness of operation conditions

Typical bosonic systems are subject to fabrication imperfections and residual in-

ternal and external dynamics, which may or may not break the assumed sym-

metries. For the laser arrays discussed in this chapter, these deviations manifest

themselves as linear static perturbations in the bare resonator frequencies ωs,n and

the couplings κn, κ′n, and the symmetry-breaking nonlinearities quantified by the

linewidth-enhancement factors αs. I therefore consider the case of coupling disor-

der (with perturbations κn = κ̄(1 +Wrn), κ′n = κ̄′(1 +Wr′n)) and onsite disorder

(with perturbations ωA,n = ωAB + Wrn, ωB,n = ωAB + Wr′n), where rn, r′n are

independent random numbers uniformly distributed in [−1/2, 1/2], and compare

the effects with the case of a finite linewidth-enhancement factor αA = αB.

4.3.5 Coupling disorder

As a notable feature, the spectral and nonlinear dynamical symmetries of the

considered laser arrays remain preserved if all perturbations are restricted to the

couplings. This type of disorder does not affect the symmetry-protected spectral

position of the defect mode in the linear model, and also preserves the classification

of topological states in the nonlinear extension with saturable gain.

At disorder levels of W = 0.1 the coupling disorder has a practically negligible

effect on the phase diagram of the laser array. Such levels should be easily attain-

able in many applications, as they are well within the requirements to engineer

any band structure effects in the first place. Only at much larger strengths the

fundamental effects of disorder become discernible.

Figure 4.9 demonstrates that stronger disorder can result in disorder-strength-

dependent phase transitions that modify the operation regimes in parts of pa-

rameter space, with the details generally depending on the disorder realisation.

Four different disorder realisations are realised in the figure, where the operational
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Figure 4.9: Disorder-driven phase transitions for the SSH laser array as in fig-
ures 4.2-4.4, but with fixed γAB = 0.1 and variable strength W of coupling dis-
order. Each panel corresponds to one randomly selected disorder configuration,
with perturbed couplings κn = κ̄(1 + Wrn), κ′n = κ̄′(1 + Wr′n) obtained from a
fixed realisations of uniformly distributed random numbers rn, r

′
n ∈ [−1/2, 1/2].

Zero-mode lasing persists at all disorder strengths. Twisted states remain robust
for weak to moderate disorder, while phase transitions to other operating regimes
can appear when the disorder is very strong.

regimes are plotted as a function of disorder strength. In each realisation the back-

ground losses have been fixed to γAB = 0.1. In all cases, new operation regimes

emerge only for very strong disorder W & 0.3− 0.5, so that the parameter space

remains dominated by the zero mode and the two twisted states.

For W = 0.5 a series of disorder realisations are illustrated in figure 4.11. At this

level of disorder all of the states are visibly asymmetric. The phase space now

looks drastically different, as the power-oscillating twisted state T1 are pushed

into regions that previously supported the stationary zero mode Z, which still

dominates large parts of parameter space. Even though here this twisted state

has a period similar to T2 in the idealised case without disorder, it traces back

to the state T1 when the disorder strength is adiabatically reduced. The state

labelled T′2, on the other hand, appears in a disorder-strength-dependent phase

transition, and therefore cannot be traced back to any state in the clean system.

Both twisted states become vulnerable to symmetry-breaking instabilities as one

approaches conditions where the gain/loss ratio is large, gA � γAB. In the given

disorder realisation, the twisted mode T1 undergoes a period-doubling bifurcation

into a pair of symmetry-breaking modes P1, which goes along with a noticeable

increase of weight on the B sublattice. The second twisted mode T′2 also bifurcates

into a pair of symmetry-breaking modes, but these turn out to be aperiodic.
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Figure 4.10: Effect of strong onsite disorder in analogy to figure 4.11, for the
disorder realisation of figure 4.12(a) at W = 0.5. Even though the disorder breaks
the symmetry, all states can be traced back to their disorder-free predecessors.
The stationary lasing regime originating from the zero mode Z is barely affected.
The mode originating from T1 is pushed into a smaller part of parameter space,
so that the instability phase transition now involves the modes originating from
Z and T2. The power-oscillations of the originally twisted states are modulated
to clearly display the period T of underlying amplitude oscillations. The mode
profiles of all states are only slightly distorted.
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4.3.6 Onsite disorder

For onsite disorder, the strict classification of states by symmetry breaks down,

and only the distinction between stationary states and power-oscillating states

(as well as aperiodic and chaotic states) persists in a precise sense. Again for

low levels of disorder such as W = 0.1 the effects of small to moderate levels of

onsite disorder are again barely noticeable, just as in the case for coupling disor-

der. However, again for stronger disorder as shown in figure 4.12, the states can

typically be traced back to their symmetry-respecting predecessors, where I retain

the previous labelling. The disorder tends to expand the regime of stationary las-

ing originating from mode Z at the expense of the power-oscillating modes, while

only occasionally leading to transitions into new operation regimes. Figure 4.10

illustrates this resilience against strong disorder for the disorder configuration of

figure 4.12(a) with W = 0.5. For this disorder configuration the stationary lasing

regime originating from mode Z is barely affected. Amongst the power oscillating

states, the mode originating from T1 is pushed into a smaller part of parameter

space, so that the instability phase transition now involves the modes originating

from Z and T2. The main visible consequence of broken symmetry is a mod-

ulation of the power-oscillations, which now acquire the same period T as the

complex-amplitude oscillations, while the two correlation functions C and C̃ ex-

hibit different oscillation amplitudes. Notably, the spatial intensity profiles of the

states are still only slightly modified, as they are affected more weakly than in the

case of coupling disorder.

4.3.7 Symmetry-breaking nonlinearities

Similarly to the case of weak coupling and onsite disorder the lasing regimes are

also highly resilient against realistic symmetry-breaking nonlinearities, giving rise

to practically negligible effects for αA = αB = 0.1. Figure 4.13 shows that
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Figure 4.11: Effect of strong coupling disorder for the SSH laser array as in fig-
ures. 4.2-4.4, with the disorder configuration of figure 4.9(a) at W = 0.5. For
this realisation the regime of zero-mode lasing is slightly reduced in favour of the
power-oscillating twisted mode T1, while the twisted state T2 has been replaced by
another twisted mode T′2, which appears in a disorder-strength-dependent phase
transition. As gain is further increased, T1 undergoes a period-doubling bifurca-
tion to a symmetry-breaking pair of states P1, while T′2 is replaced by an aperiodic
pair P′2 (for which the Floquet-Bogoliubov stability spectrum is not defined). All
modes display visible distortions of their mode profile, and the symmetry-breaking
pairs display noticeable amplitude on the B sublattice.
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Figure 4.12: Robustness against onsite disorder in analogy to figure 4.9, but
for randomly selected disorder configurations with perturbed bare frequencies
ωA,n = ωAB + Wrn, ωB,n = ωAB + Wr′n, rn, r

′
n ∈ [−1/2, 1/2]. While this type

of disorder breaks the symmetries, the states can typically be tracked to large val-
ues of disorder. The mode originating from the zero mode Z persists at all disorder
strengths, and at weak to moderate disorder extends into regions of larger gain.
This happens at the expense of the originally twisted modes, which in panel the
configuration of (c) are replaced by new power-oscillating modes X1, X2 when the
disorder becomes strong.

even at much larger symmetry-breaking nonlinearities αA = αB = 0.5 only small

modifications are observed. The effects of the nonlinearities are still small enough

to preserve the division into stationary and power-oscillating states, even though

the broken symmetry once more prevents the precise topological characterisation of

these states. The symmetry-breaking terms again modulate the power oscillations,

which is displayed more clearly for the mode originating from T2. The Bogoliubov

spectra show that the states remain highly stable as long as one stays away from

the clearly defined phase transitions.

The staggered arrangement αA = −αB = 0.2 can also be considered. This breaks

the non-hermitian charge-conjugation symmetry already in the linear regime. Fig-

ure 4.14 demonstrates that this robustness persists both for symmetry-breaking

onsite disorder and nonlinearities can be attributed to the spectral isolation of the

defect mode in the linear model. This isolation suppresses any matrix elements

of hybridisation with extended modes in a perturbative treatment. It is also im-

portant to note that in the linear case, this spectral isolation is increased by the

favourable gain imbalance, as seen from the position of the complex resonance

frequencies in figure 4.1. Furthermore, disorder can turn the extended modes

into localised ones, thereby decreasing their mode volume.
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Figure 4.13: Effect of nonlinear symmetry breaking on the modes of the SSH
laser array shown in figurs 4.2-4.4, obtained by setting the linewidth-enhancement
factor to αA = αB = 0.5. Most properties of the states are only slightly modified.
The twisted correlation function C̃(T/2) are slightly smaller than Imax, while small
independent modulations appear in the time-dependence of C(t), C̃(t). For the
state originating from T2, this results in noticeable modulations of the power
oscillations, whose period is doubled. There are also noticeable changes in the
stability spectra (green), which can no longer be deconstructed as in the case of
exact symmetry.
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Figure 4.14: Effect of staggered nonlinear symmetry breaking on the modes of
the SSH laser array shown in figures 4.2-4.4, obtained by setting the linewidth-
enhancement factor to αA = −αB = 0.2 so that the non-hermitian charge-
conjugation symmetry is already broken in the linear regime. As in figure 4.13,
most properties of the states are only slightly modified.

4.4 Conclusions

The pursuit of topological effects in photonic systems is motivated by the desire

to achieve robust features in analogy to fermionic systems, which in the bosonic

setting requires a dedicated effort to evoke the required symmetries. The concept

of a topological laser emerged from the realisation that anomalous expectation

values facilitate the selection of topological states by linear gain and loss. This

investigation of topological laser arrays shows that these concepts seamlessly ex-

tend to the nonlinear setting, which accounts for the effects that stabilise active

systems in their quasi-stationary operation regimes.

I uncovered large ranges in parameter space that favour topological operation

conditions, of which I encountered two types: stationary lasing in self-symmetric

zero modes; and lasing in twisted states displaying symmetry-protected power

oscillations. The topological nature of these states can be ascertained by their



4.4. Conclusions 101

characteristic spatial mode structure, and on a deeper level by distinctive prop-

erties of their correlation functions and linear excitation spectra. These features

also uncover topological phase transitions in which zero modes and twisted states

interchange their stability. Encouragingly, the operation conditions can be tuned

by changing the gain and loss distribution and the mode volume, while remaining

remarkably robust under weak to moderate linear and nonlinear perturbations,

even if these break the underlying symmetry.

These findings raise the prospect to explore the much simplified topological mode

competition in a wide range of suitably patterned lasers with distributed gain and

loss. The laser arrays considered here and in the experiments [25,26,46] realise the

required dynamical version of non-hermitian charge-conjugation symmetry by pro-

viding two sublattices, a setting that directly extends to two and three-dimensional

geometries, including polariton systems with flat bands [128, 131]. Alternatively,

one may also exploit orbital and polarisation degrees of freedom in suitably coupled

multi-mode cavities, or design photonic crystals with an equivalent coupled-mode

representation to realise the required non-Hermitian charge-conjugation symme-

try. By utilising additional components that induce an imaginary vector potential

(hence, directionally biased coupling), the mode competition in chains as studied

here can be modified towards favouring a single extended states [132], which fur-

ther optimises the mode volume. All these systems promise to provide topological

lasing modes with highly characteristic spatial and dynamical properties, which

are stabilised at a working point that is spectrally well isolated from competing

states in the system.

Looking beyond this symmetry class, it will be worthwhile to explore the role of

nonlinear distributed gain and loss in topological-insulator lasers [41, 117], where

topological edge states align continuously along an edge band. This is a scenario

which has been predicted to be more fragile against the carrier dynamics in the

medium [133], but is generally expected to benefit from non-hermitian effects, as
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has already been demonstrated for complex and directed couplings [134]. It would

therefore be desirable to classify in general which nonlinearly extended dynamical

symmetries can exist in these and other universality classes of topological systems,

and whether this leads to novel operation regimes as described here for the case

of non-hermitian charge-conjugation symmetry.



Chapter 5

Conclusions

In this thesis I have combined topological modes with non-Hermitian physics and

explored the consequences in novel systems, prompting questions about whether

the understanding of our current classifications for topological systems is com-

plete, and providing examples of topological states which have no counterpart in

the limit of the linear-Hermitian classification. I have probed this in several ways.

Firstly in chapter 2 I exploited the open nature of optical systems to couple pas-

sively leaky resonators together. I showed that this passive leakage results in a

non-Hermitian Hamiltonian with PT -symmetry, obtained by deforming the geom-

etry of the resonators such that backscattering of the resonant counter propagating

whispering gallery modes is asymmetric. I then demonstrated that by adding an

interface into a chain of these coupled resonators topological protected interface

states can be created which vanish in the Hermitian limit. These topological states

emerge from exceptional points in the continuum and become spectrally isolated,

where they display long lifetimes. Furthermore, I identified the topological nature

of these interface state in numerical simulations, where I subjected the backscat-

tering amplitudes to increasing levels of disorder to show their robustness. This

chapter raised the significant question of whether or not there is a way of rec-

onciling this non-Hermitian topological state with the Hermitian classification in
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a setting which is easily accessible in experiments. It also poses the question of

whether similar non-Hermitian topological states can be found in systems with

which have no Hermitian analogue.

In chapter 3, I formulated an extension from a chain of coupled resonators into an

array. I demonstrated that the modes in the bulk of such an array are capable of

displaying bulk Fermi arcs between exceptional points if PT -symmetry (broken

through considering complex inter-resonator coupling and backscattering rates),

where these bulk arcs do not feature in Weyl systems for example. In Weyl sys-

tems however, arcs projected from points in the bulk do appear on the surface

of the structure which have an analogue to the edge-states that feature when an

interface is placed in one direction splitting the array. I showed that these in-

terface states vanish in the Hermitian-limit and exist for two different symmetry

classes, the non-Hermitian extension of the class BDI with time-reversal and chiral

symmetries and the class AIII where time-reversal symmetry is broken but chiral

symmetry still remains. These interface states stretch between projected points

of the bulk bands, where the bulk bands are fixed to real and imaginary ener-

gies. The complex frequency interface states which are physical then emerge from

exceptional points connecting the real to imaginary bulk bands. I showed that

the proportion of these states which are physical can be controlled by engineer-

ing anisotropy in the inter-resonator couplings and hence the patterned distance

between resonators in the two directions. This work identifies two further non-

Hermitian classes where topological states exist but are absent in the Hermitian

limit. Complementary to chapter ?? this also showed that non-Hermitian topolog-

ical states are not constrained to 1D systems but also appear in two dimensions.

Finally, In chapter 4, I discussed topological mode selection of topologically pro-

tected zero-modes in a non-linear laser model. The underlying model consists

of a dimerised chain of alternating coupling strengths where a coupling defect

separates out topological trivial and non-trivial phases. At this interface a topo-
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logically protected state forms. A complex alternating potential of gain and loss

can selectively enhance this state. I considered a model in which this potential is

non-linear, describing active optical systems which involve saturable gain-feedback

processes. I demonstrated that beyond the linear regime stationary zero modes

persists as well as finding a series of topologically protected time-dependant solu-

tions. These time-dependant solutions display power oscillations and do not have

a linear analogue. I showed the operational regimes of these topologically pro-

tected modes and perform a stability analysis to show that these states smoothly

transition at Hopf bifurcations when the gain is increased. Furthermore I also

considered increased mode competition by examining a system which has an ex-

tended interface, where a uniform coupling region is introduced. The results again

show that despite the increased mode competition the topological states remain

present.

In understanding the stability of these modes for both examples, the excitation

spectra display surprisingly robust behaviour at weak levels of both coupling and

onsite disorders. The analysis breaks down for some modes when strong disorders

are used, but regions of the phase space are still occupied by the stationary modes,

making them extremely robust. Finally I discussed the symmetry-breaking effects

which appear for finite linewidth-enhancement factors, where again the topolog-

ical modes remain surprisingly robust. This showcases a wide range of potential

fabrication errors or effects which have little effect on the topologically protected

modes. This model highlights the viability of topologically protected mode selec-

tion in non-linear lasers, where operational regimes have identified the stationary-

solutions presented here. I hope for the future that the operational regimes where

power-oscillations can be identified are achieved. This work also indicates that

the topological classification can be extended to include non-linear symmetries, it

would therefore be interesting to see if other symmetry classes display topologically

protected non-linear modes which have no linear analogue.
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I. Sagnes, J. Bloch, and A. Amo, “Lasing in topological edge states of a

one-dimensional lattice,” Nature Photonics, vol. 11, no. 10, pp. 651–656,

2017.

[47] D. P. DiVincenzo, “The physical implementation of quantum computation,”

Fortschritte der Physik, vol. 48, no. 911, pp. 771–783.

[48] K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy

determination of the fine-structure constant based on quantized hall resis-

tance,” Phys. Rev. Lett., vol. 45, pp. 494–497, Aug 1980.

[49] A. Altland and M. R. Zirnbauer, “Nonstandard symmetry classes in meso-

scopic normal-superconducting hybrid structures,” Phys. Rev. B, vol. 55,

pp. 1142–1161, Jan 1997.

[50] A. Kitaev, “Periodic table for topological insulators and superconductors,”

AIP Conference Proceedings, vol. 1134, no. 1, pp. 22–30, 2009.

[51] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, “Classification

of topological insulators and superconductors in three spatial dimensions,”

Phys. Rev. B, vol. 78, p. 195125, Nov 2008.

[52] C. Reeg, C. Schrade, J. Klinovaja, and D. Loss, “Diii topological super-

conductivity with emergent time-reversal symmetry,” Phys. Rev. B, vol. 96,

p. 161407, Oct 2017.

[53] W. Shockley, “On the surface states associated with a periodic potential,”

Phys. Rev., vol. 56, pp. 317–323, Aug 1939.

[54] M. Wimmer, A. R. Akhmerov, M. V. Medvedyeva, J. Tworzyd lo, and

C. W. J. Beenakker, “Majorana bound states without vortices in topolog-

ical superconductors with electrostatic defects,” Phys. Rev. Lett., vol. 105,

p. 046803, Jul 2010.



BIBLIOGRAPHY 112

[55] C. Beenakker, “Search for majorana fermions in superconductors,” Annual

Review of Condensed Matter Physics, vol. 4, no. 1, pp. 113–136, 2013.

[56] H. Schomerus, “Random matrix approaches to open quantum systems,”

ArXiv e-prints, Oct. 2016.

[57] B. Sutherland, “Localization of electronic wave functions due to local topol-

ogy,” Phys. Rev. B, vol. 34, pp. 5208–5211, Oct 1986.

[58] S. Ryu and Y. Hatsugai, “Topological origin of zero-energy edge states in

particle-hole symmetric systems,” Phys. Rev. Lett., vol. 89, p. 077002, Jul

2002.

[59] C. M. Bender and S. Boettcher, “Real spectra in non-hermitian hamiltonians

having PT symmetry,” Phys. Rev. Lett., vol. 80, pp. 5243–5246, Jun 1998.

[60] C. M. Bender, S. Boettcher, and P. N. Meisinger, “Pt-symmetric quantum

mechanics,” Journal of Mathematical Physics, vol. 40, no. 5, pp. 2201–2229,

1999.

[61] C. M. Bender, “Making sense of non-hermitian hamiltonians,” Reports on

Progress in Physics, vol. 70, no. 6, p. 947, 2007.

[62] C. M. Bender, “Introduction to pt-symmetric quantum theory,” Contempo-

rary Physics, vol. 46, no. 4, pp. 277–292, 2005.

[63] W. D. Heiss, “The physics of exceptional points,” Journal of Physics A:

Mathematical and Theoretical, vol. 45, no. 44, p. 444016, 2012.

[64] K. Petermann, “Calculated spontaneous emission factor for double-

heterostructure injection lasers with gain-induced waveguiding,” IEEE Jour-

nal of Quantum Electronics, vol. 15, pp. 566–570, July 1979.

[65] S.-Y. Lee, J.-W. Ryu, J.-B. Shim, S.-B. Lee, S. W. Kim, and K. An, “Di-

vergent petermann factor of interacting resonances in a stadium-shaped mi-

crocavity,” Phys. Rev. A, vol. 78, p. 015805, Jul 2008.



BIBLIOGRAPHY 113

[66] “Quantal phase factors accompanying adiabatic changes,” Proceedings of

the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, vol. 392, no. 1802, pp. 45–57, 1984.

[67] Heiss, W. D. and Harney, H. L., “The chirality of exceptional points,” Eur.

Phys. J. D, vol. 17, no. 2, pp. 149–151, 2001.
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Joannopoulos, M. Soljačić, and B. Zhen, “Observation of bulk fermi arc

and polarization half charge from paired exceptional points,” Science, 2018.

[107] A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “PT -

symmetry in honeycomb photonic lattices,” Phys. Rev. A, vol. 84, p. 021806,

Aug 2011.

[108] H. Ramezani, T. Kottos, V. Kovanis, and D. N. Christodoulides,

“Exceptional-point dynamics in photonic honeycomb lattices with PT sym-

metry,” Phys. Rev. A, vol. 85, p. 013818, Jan 2012.

[109] M. Golshani, S. Weimann, K. Jafari, M. K. Nezhad, A. Langari, A. R.

Bahrampour, T. Eichelkraut, S. M. Mahdavi, and A. Szameit, “Impact of

loss on the wave dynamics in photonic waveguide lattices,” Phys. Rev. Lett.,

vol. 113, p. 123903, Sep 2014.



BIBLIOGRAPHY 118

[110] H. Schomerus and J. Wiersig, “Non-hermitian-transport effects in coupled-

resonator optical waveguides,” Phys. Rev. A, vol. 90, p. 053819, Nov 2014.

[111] H. Zhao and L. Feng, “Parity–time symmetric photonics,” National Science

Review, vol. 5, pp. 183–199, 03 2018.

[112] N. Goldman, J. C. Budich, and P. Zoller, “Topological quantum matter with

ultracold gases in optical lattices,” Nature Physics, vol. 12, pp. 639 EP –,

06 2016.

[113] V. G. Sala, D. D. Solnyshkov, I. Carusotto, T. Jacqmin, A. Lemâıtre,
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