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ABSTRACT

The propagation of the fast magnetoacoustic wave is studied within a magnetic topol-
ogy containing a three-dimensional coronal null point whose fan field lines form a
dome. The topology is constructed from a magnetic dipole embedded within a global
uniform field. This study aims to improve the understanding of how MHD waves prop-
agate through inhomogeneous media, specifically in a medium containing an isolated
three-dimensional magnetic null point. We consider the linearised MHD equations for
an inhomogenous, ideal, cold plasma. The equations are solved utilising the WKB
approximation and Charpit’s Method. We find that for a planar fast wave generated
below the null point, the resultant propagation is strongly dependent upon initial loca-
tion and that there are two main behaviours: the majority of the wave escapes the null
(experiencing different severities of refraction depending upon the interplay with the
equilibrium Alfvén-speed profile) or, alternatively, part of the wave is captured by the
coronal null point (for elements generated within a specific critical radius about the
spine and on the z = 0 plane). We also generalise the magnetic topology and find that
the height of the null determines the amount of wave that is captured. We conclude
that for a wavefront generated below the null point, nulls at a greater height can trap
proportionally less of the corresponding wave energy.

Key words: Corona, Models – Magnetic fields – Magnetohydrodynamics – Waves,
Magnetohydrodynamic – Waves, Propagation

1 INTRODUCTION

The solar corona is replete with oscillations and wave be-
haviour, which is well described by magnetohydrodynam-
ics (MHD) (see e.g. Roberts 2004; Nakariakov & Verwichte
2005; De Moortel 2005), and various types of MHD waves
have been observed by several solar instruments (see Nakari-
akov et al. 2016 for a recent review). From both theoret-
ical considerations as well as observations, it is clear that
the propagation, evolution and behaviour of MHD waves is
linked intimately with the magnetic topology of the region
in which they manifest. Thus, in order to understand MHD
wave behaviour in the solar corona, one must also under-
stand the topology of the coronal magnetic field.

Potential field extrapolations of the coronal magnetic
field can be made from magnetograms of the photosphere
(e.g. see Régnier 2013) and these extrapolations show the
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topology (structure) of the magnetic field can contain two
key features: null points — locations within a magnetic
topology in which the field strength is zero (see Longcope
2005; Régnier et al. 2008; Priest 2014; Edwards & Parnell
2015); and separatrix surfaces — topological surfaces that
separate regions of different magnetic flux connectivity. Null
points occur naturally wherever there exist multiple flux
fragments in a domain. By considering these fundamental
elements of a field’s configuration, one can prescribe the
magnetic skeleton of the topology. Parnell et al. (1996) inves-
tigated and classified the different types of linear magnetic
null points that can exist. Topologically, 3D null points con-
sist of two key features: a special, isolated field line called
the spine which approaches (or recedes from) the null from
above and below (Priest & Titov 1996) and a fan surface
consisting of field lines spreading out from (or approaching)
the null. Null points have received considerable attention as
they are locations at which magnetic reconnection can occur
(e.g. Priest & Forbes 2000; Pontin et al. 2005; McLaughlin
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et al. 2009). Null points occur not only within solar mag-
netic field configurations but can be found throughout na-
ture, such as in the Earth’s magnetic field (Finn 2006).

From potential field extrapolations and observations, it
is evident that both MHD waves and magnetic null points
are present throughout the solar corona. It is therefore natu-
ral to assume that MHD waves will encounter these magnetic
features. This paper follows a series of papers studying the
interactions between MHD waves and various magnetic null
point topologies (McLaughlin & Hood 2004, 2005, 2006a,
2006b; McLaughlin et al. 2008; Thurgood & McLaughlin
2012, 2013a, 2013b; McLaughlin et al. 2016). This series of
papers suggests that it is a generic result that fast mode
waves will be attracted to the close vicinity of magnetic null
points due to a refraction effect, where they subsequently
concentrate energy on small scales, experiencing enhanced
visco-resistive dissipation and triggering magnetic reconnec-
tion (the specific physics of which have been considered by
Thurgood et al. 2017; 2018a; 2018b). Here, specifically, we
consider the behaviour of the fast MHD wave in the neigh-
bourhood of a coronal null point located at the apex of a
separatrix dome, i.e. a 3D null whose field lines form a mag-
netic dome configuration. This configuration is more physi-
cally representative of the coronal magnetic field than pre-
viously considered. Crucially, we aim to assess the extent to
which wavefronts emanating from below such a null (rep-
resenting upwardly-propagating wave-energy flux from the
solar surface) may be attracted to and trapped in the close
vicinity of such a null.

The WKB approximation is a mathematical technique
which utilises an expansion approach to approximate expo-
nential waveforms (see e.g. Bender & Orszag 1978; Tracey
et al. 2014). For this technique to be applied the system
must contain a large parameter. Since the typical spatial
scales of the medium that fast waves propagate through is
much larger than their typical wavelength, the WKB ap-
proximation provides an ideal tool for examining the prop-
agation of the fast magnetoacoustic wave. Several authors
have utilised the technique successfully in a solar context
(e.g. Khomenko & Collados 2006 consider propagation in a
magnetic sunspot-like structure; Afanasyev & Uralov 2011,
2012 consider aspects of solar shocks in a nonlinear exten-
sion of the WKB method). However, the use of the WKB
approximation is not just limited to astrophysical applica-
tions; the approximation is used in many other branches of
physics, for example in quantum mechanics where it can be
used to calculate an approximate solution to Schrödinger’s
equation (see Griffiths 2004). Within the wider topic of ray
tracing methods, Núñez (2017, 2018) studied the geometry
of rays and wavefronts associated with the fast magnetosonic
wave and applied the results to the formation of shock waves
and to current sheets. Of particular interest to this article is
the work of McLaughlin et al. (2008) who utilised the WKB
approximation to investigate MHD wave behaviour in the
neighbourhood of a fully 3D null point. The authors utilised
the technique to determine the transient properties of the
fast and Alfvén modes in a linear, β = 0 plasma regime.
However, McLaughlin et al. (2008) considered a simple 3D
null point whose magnetic field strength becomes unphysi-
cally large as one moves far away from the null. In contrast,
the magnetic field considered in this paper is more physically

Figure 1. Rotationally-symmetric equilibrium magnetic field in

the x = 0, yz−plane. Dipole is located at x = y = 0 and z =

d = −0.2. 3D null point is located at x = y = 0, at a height
z = 21/3

+d = 21/3−0.2 = 1.05992. Black lines denote magnetic field

lines, and red lines indicate the magnetic skeleton in this plane:
y = 0 denotes the spine and the curve denotes the separatrix fan

surface: here y2
+ (z − d)2

= 22/3. Arrows indicate the magnetic
field direction.

representative of the coronal magnetic field and removes this
limitation (see §2.2).

The topology described in this paper exists above any
parasitic polarity region and is a common feature in poten-
tial field extrapolations. Such a topology has been investi-
gated by other authors: Pontin et al. (2013) considered a
topology constructed from magnetic monopoles and investi-
gated the properties of reconnection in such a system, and
Tarr et al. (2017) used three magnetic monopoles to con-
struct a 2D magnetic dome topology (in 2D, these manifest
as separatrices rather than separatrix surfaces), embedded
within a model stratified solar atmosphere with the null at
a coronal altitude. For a wave packet generated at the pho-
tosphere, Tarr et al. (2017) found that the wave propagates
into the 2D dome topology and that a portion of the wave
refracts toward the null owing to the varying Alfvén speed,
and that approximately 15.5% of the wavepacket’s initial
energy converges on the null. In contrast to the monopole
approach, Candelaresi et al. (2016) considered a dome topol-
ogy constructed from analytical expressions for a dipole and
uniform field. They considered the effects of photospheric
footpoint motions as an input of energy into the topolopy.
In this paper, we consider a similar analytical set-up to that
of Candelaresi et al. (2016).

The paper has the following structure: the equations
utilised to describe the system are detailed in §2, in-
cluding assumptions, simplifications, linearisation and non-
dimensionalisation. This section will also outline the con-
struction of the specific magnetic topology through which
the fast wave will propagate (§2.2). §3 details the utilisation
of the WKB approximation and the isolation of the fast
wave, and §4 presents the results obtained. §5 calculates the
percentage of wave captured and the alterations this makes
to the propagation of the fast wave. The conclusions are
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Figure 2. 3D representation of the magnetic skeleton. Here, the
blue line denotes the spine, and the solid red lines denote the

separatrix fan surface, described by x2
+ y2

+ (z − d)2
= R2

= 22/3,
where R = 21/3. The lower boundary shows the value of Bz (x, y, 0)

i.e. the line-of-sight magnetogram. The dotted red circle indicates

the (circular) footprint of the separatrix fan surface, described by

radius=
√
R2 − d2

=

√
22/3 − 0.04 = 1.24395). The dashed green

line indicates the location of the polarity inversion line (radius=

0.27472).

presented in §6. Appendix A details a generalisation of the
magnetic topology.

2 GOVERNING EQUATIONS

To study the propagation of MHD waves through a plasma
it is first necessary to construct a mathematical model of
the environment. This can be achieved by utilising the fol-
lowing resistive, adiabatic MHD equations to describe an
inhomogeneous plasma

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p + j ×B + ρg,

∂B

∂t
= ∇ × (v ×B) + η∇2B,

∂ ρ

∂t
+ ∇ · (ρv) = 0,

∂p

∂t
+ v · ∇p = −γp∇ · v,

µj = ∇ ×B, (1)

where ρ is the mass density, v is the plasma velocity, t de-
notes time, p is the gas pressure, j is electric current density,
B is magnetic induction (usually called the magnetic field),
g is gravitational acceleration, η is magnetic diffusivity, γ is
the adiabatic index and µ is the magnetic permeability.

2.1 Linearisation and non-dimensionalisation

We will utilise the linearised MHD equations in order to
study wave propagation in our system. To do this, for each

variable a, we assume a = a0 + ǫa1, where a0 is the equilib-
rium quantity, a1 is the perturbed quantity and ǫ is a small
parameter such that ǫ ≪ 1. Hence, equations (1) become

ρ0
∂v1

∂t
= −∇p1 + j0 ×B1 + j1 ×B0 + ρ1g (2)

∂B1

∂t
= ∇ × (v1 ×B0) + η∇2B1, (3)

∂ρ1

∂t
+ ∇ · (ρ0v1) = 0, (4)

∂p1

∂t
+ v1 · ∇p0 = −γp0∇ · v1, (5)

µj1 = ∇ ×B1, (6)

where we choose v0 = 0. We then consider the following
simplifications: we choose a potential equilibrium magnetic
field (∇ ×B0 = µj0 = 0), as well as an ideal plasma (η = 0);
gravitational effects are neglected (g = 0); and the equilib-
rium density, ρ0, is assumed to be uniform1. Given that,
in the coronal plasma we are modelling, magnetic pressure
dominates over gas pressure, i.e. β ≪ 1, we consider a ‘cold’
plasma assumption2. This is achieved via setting p0 = 0.

The equations are now subjected to the following de-
compositions in order to render them dimensionless: we let
x = Lx̃, y = Lỹ, z = Lz̃, v1 = vṽ1, B0 = BB̃0, B1 = BB̃1,
t = Tt̃, ∇ = ∇̃/L, where x̃, ỹ, z̃, ṽ1, B̃0, B̃1, t̃, ∇̃ are the
dimensionless quantities and L, v,B,T are constants of di-
mensionality for their respective variable. We then set v as
a constant background Alfvén speed, namely v = B/

√
µρ0,

as well as v = L/T. Under this non-dimensionalisation, t̃ = 1

refers to t = T = L/v, i.e. the Alfvén time taken to travel
distance L.

For the rest of this paper, the tildes are now dropped
from the dimensionless quantities (that they are non-
dimensionalised is understood) yielding the following non-
dimensionalised, linearised equations for a cold, ideal plasma

∂v1

∂t
= (∇ ×B1) ×B0, and

∂B1

∂t
= ∇ × (v1 ×B0).

which can be brought together in a single wave equation

∂2v1

∂t2
= {∇ × [∇ × (v1 ×B0)]} ×B0. (7)

Hence, given a suitable choice for the equilibrium magnetic
field, B0, it is possible to obtain the perturbed velocity, v1.

1 Note that spatial inhomogeneity in ρ0 can lead to phase mixing,

see e.g. Heyvaerts & Priest (1982); Nakariakov et al. (1997); Botha
et al. 2000; McLaughlin et al. (2011a).
2 Note that this is not strictly true for wave-null interactions
since B → 0 at the null itself, but we note that the cold plasma
assumption is a good approximation away from and near the null.
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2.2 Magnetic topology

We wish to consider an isolated 3D null point located at
the apex of a separatrix dome. Thus, we consider a sim-
ilar analytical set-up to that of Candelaresi et al. (2016)
namely we consider a Cartesian domain with a magnetic
topology consisting of a (parasitic) magnetic dipole within
a (global) uniform field. The topology is created by consid-
ering a vector potential, A, such that B = ∇×A. The dipole
field can be calculated by taking the dipole magnetic mo-
ment, m = (0, 0,−1) where the negative sign on m ensures a
parasitic polarity relative to the uniform field. Given posi-
tion vector r = (x, y, z), the dipole is placed at r0 = (0, 0, d).
In this paper, we choose d = −0.2. This corresponds to a
model ‘photosphere’ at z = 0 where the dipole is centred
at x = y = 0 and buried at a depth of |d |. Following Shad-
owitz (1975), the (non-dimensionalised) equilibrium vector
potential for the dipole is calculated via

Adipole(r) =

m × (

r − r0
)

| (r − r0
) |3
,

from which the dipole magnetic field is calculated: Bdipole =

∇ × Adipole. The full equilibrium magnetic topology in
our system is created by adding a uniform magnetic field
Buniform = (0, 0, 1). This gives the equilibrium magnetic field
which will be used throughout this paper

B0 = Bdipole + Buniform = (Bx, By, Bz ),

where the individual components of the magnetic field can
be expressed as follows

Bx = − 3x(z − d)[
x2
+ y2

+ (z − d)2
]5/2

,

By = − 3y(z − d)[
x2
+ y2

+ (z − d)2
]5/2

,

Bz =

x2
+ y

2 − 2(z − d)2[
x2
+ y2

+ (z − d)2
]5/2

+ 1 . (8)

This constructs a system with an isolated three-dimensional
null point which is located on x = y = 0 at height z = 21/3

+

d = 21/3 − 0.2 = 1.05992 (the height of the null within the
topology is calculated by setting B0 = 0). The separatrix
surface of this null extends down to the z = 0, xy−plane
forming a dome shape. The equilibrium magnetic field in the
x = 0, yz−plane — B0(0, y, z) — can be seen in Fig. 1, where
magnetic field lines are indicated as black lines. Here, the red
lines indicate the key topological features — the magnetic

skeleton — which divides the connectivity of the region in
this plane: the line y = 0 denotes the spine and the curve
y

2
+(z − d)2

= 22/3 denotes the separatrix fan surface. Arrows
indicate the magnetic field direction. We identify this type
of null point as a negative null (as defined by Parnell et al.
1996) since the fan surface consists of field lines approaching
the null and the field lines forming the spine are directed
away from the 3D null.

The equilibrium magnetic field is rotationally symmet-
ric about z = 0 and this can be seen in Fig. 2, which shows
a 3D representation of the magnetic skeleton. Here, the red
lines denote the separatrix fan surface, as in Fig. 1, but the
spine is now denoted in blue for clarity. The lower bound-
ary, z = 0, shows the value of Bz (x, y, 0) i.e. the line-of-sight

Figure 3. Equilibrium Alfvén-speed profile: colour contour of

vA(0, y, z) = |B0 (0, y, z) | in the x = 0, yz−plane. Contour is colour
coded: 0 ≤ vA ≤ 0.1 (blue); 0.1 ≤ vA ≤ 0.5 (green); 0.5 ≤ vA ≤ 1.2

(yellow); 1.2 ≤ vA ≤ 10 (orange); vA ≥ 10 (black). Red lines
indicate the magnetic skeleton in this plane, which is rotationally-

symmetric about the z−axis.

magnetogram. Our isolated 3D null point is generated by
a parasitic polarity (black) within a uniform magnetic field
(grey) and thus the dashed green line indicates the loca-
tion of the polarity inversion line (the radius of which is
0.27472). Mathematically, the separatrix surface is the sur-
face of a sphere described by x2

+ y
2
+ (z − d)2

= R2
= 22/3.

Since we have placed the dipole at z = d = −0.2, this means
the separatrix surface forms a spherical dome of height
z = R + d = 21/3 − 0.2 = 1.05992 and with a circular foot-
print of radius

√
R2 − d2

=

√
22/3 − 0.04 = 1.24395. This is

denoted by a dotted red circle on the lower boundary/line-
of-sight magnetogram in Fig. 2, i.e. this is the ‘footprint’ of
the dome. Note that although B0 is inhomogeneous, it is still
potential (∇ × B0 = 0) and solenoidal (∇ · B0 = 0). Note that
as we move away from the null point, B0 → (0, 0, 1), i.e. we
recover the uniform field. This is a more physically-realistic
topology than that investigated in McLaughlin et al. (2008).

Previous work (see review by McLaughlin et al. 2011b)
has highlighted that the equilibrium Alfvén-speed profile —
vA(x, y, z) = |B0(x, y, z) | — plays a key role in dictating the
propagation of the fast wave. Fig. 3 shows a colour con-
tour of vA(0, y, z) = |B0(0, y, z) | in the x = 0, yz−plane. The
red lines denote the magnetic skeleton in this plane (as per
Fig. 1). The contour shows clearly that the Alfvén-speed
profile changes substantially across the magnetic domain
and we observe that there is a small island of low Alfvén
speed around the null point at (x, y, z) = (0, 0, 1.05992), and
that this is zero at the null itself (as per the definition).
In contrast, the Alfvén-speed profile reaches a maximum at
x = y = z = 0, i.e. the closest point in our domain (where
z ≥ 0) to the location of the (buried) dipole.
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3 WKB APPROXIMATION

In this paper, we will be looking for Wentzel-Kramers-
Brillouin (WKB) solutions (see e.g. Bender & Orszag 1978)
of the form

v1(x, y, z, t) = Veiφ(x, y, z, t), (9)

where V is a constant vector matching the dimensions of the
system. We define ω = ∂φ/∂t as the angular frequency and
k = ∇φ = (p, q, r) as the wavevector. For the WKB approach
to be applicable, we consider φ and its derivatives to be large
parameters in our system.

In order to isolate one of the different MHD wave modes
(i.e. distinguishing between the fast and slow magnetoacous-
tic waves and the Alfvén wave), we now introduce a new set
of coordinates (B0, k, B0 × k). This coordinate system de-
scribes all three directions in space when B 6∝ k, i.e. B0 , αk,
where α is an arbitrary constant of proportionality. This pa-
per is interested primarily in the behaviour of the fast wave,
which can propagate across magnetic field lines, and hence
such a coordinate system is well suited to isolating the fast
wave behaviour. Note that the work here is also valid for
B0 = αk, but the consequence of which is that the solution
is degenerate and one cannot distinguish between the fast
wave and Alfvén wave (see Appendix A of McLaughlin et

al. 2008 for full derivation).
The WKB approximation (equation 9) is substituted

into equation (7) and we make the WKB approximation such
that φ ≫ 1. Taking the scalar product with the coordinate
system described above yields

ω2 0 0

(B0 · k) |k|2 ω2 − |B0 |2 |k|2 0

0 0 ω2 − (B0 · k)2


· *.,

v1 ·B0

v1 · k
v1 ·B0 × k

+/
- =

*.
,

0

0

0

+/
-

In order to avoid a trivial solution, the determinant of
this matrix must be zero. Hence

ω2
(

ω2 − |B0 |2 |k|2
) [
ω2 − (

B0 · k
)2
]
= 0 , (10)

which has two solutions; corresponding to the fast magne-
toacoustic mode and the Alfvén mode. The slow magne-
toacoustic wave solution is absent under the cold plasma
approximation.

3.1 WKB solution corresponding to fast

magnetoacoustic wave

The fast magnetoacoustic wave is isolated in equation (10)
by making the assumption ω2

, (B0 · k)2. Therefore, equa-
tion (10) simplifies to

1

2

[
ω2 − (B2

x + B2
y + B2

z )(p2
+ q2

+ r2)
]

= 0 = F (φ, ω, t,B0,k), (11)

where B0 and k have been expanded into component form,
and 1/2 has been introduced for convenience later on. Here,
F is a first-order, nonlinear partial differential equation,
which we solve using Charpit’s Method (a variation on
the method of characteristics, see e.g. Evans et al. 1999).
Charpit’s Method requires that all variables depend upon an

Figure 4. Ray paths for starting points of x0 = 0, −2 ≤ y0 ≤
−0.05, z0 = 0 to demonstrate the general behaviour in the system.
Individual characteristic curves are plotted at: intervals of 0.05

for −2 ≤ y0 ≤ −0.2; intervals of 0.01 for −0.2 ≤ y0 ≤ −0.1; and then
specific characteristics starting at y0 = −0.09 (yellow), y0 = −0.08

(blue), y0 = −0.07 (orange), y0 = −0.06 (red), y0 = −0.05 (green)
respectively. A star denotes the location of the 3D null point at

x = y = 0, z = 21/3 − 0.2 = 1.05992.

independent variable in characteristic space, which we take
as s. Hence, for this system the relevant Charpit’s Equations
are

dφ

ds
=

(

ω
∂

∂ω
+ k · ∂

∂k

)

F , dω

ds
= −

(

∂

∂t
+ ω

∂

∂φ

)

F ,

dk

ds
= −

(

∂

∂r
+ k
∂

∂φ

)

F , dt

ds
=

∂F
∂ω
,

dr

ds
=

∂F
∂k
,

recalling k = ∇φ = (p, q, r) and r = (x, y, z). This reduces the
first-order partial differential equation in equation (11) to a
set of ordinary differential equations, which are dependent
upon only their initial conditions and evolution s along the
characteristic curve. The relevant initial conditions for the
variables are φ0 = φ(s = 0), ω0 = ω(s = 0), t0 = t(s = 0),
x0 = x(s = 0), y0 = y(s = 0), z0 = z(s = 0), p0 = p(s = 0),
q0 = q(s = 0) and r0 = r (s = 0). The equations are pro-
gressed numerically from their initial positions and along
their characteristic curve using a fourth-order Runge-Kutta
method. It is worth noting there are no boundary condi-
tions in the traditional sense: the variables are solved using
Charpit’s Method and the solutions depend only upon the
initial position

(

x0, y0, z0, t0
)

and the extent s travelled along
the characteristic curve. Hence, no boundary conditions are
imposed and only initial conditions are required: this is a
strength of the WKB approach, whereas for traditional nu-
merical simulations the choice of boundary conditions can
play a significant role.
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(c)(b)(a)

Figure 5. (a) Ray paths generated for y0 = −0.062 (blue), y0 = −0.061 (black), y0 = −0.06 (red). (b) Ray paths from y0 = −0.053. (c) Ray
paths from y0 = −0.0525.

Applying Charpit’s Method to equation (11) yields

dφ

ds
= 0,

dω

ds
= 0,

dt

ds
= ω,

dx

ds
= −p|B0 |2,

dp

ds
=

(

Bx
∂Bx

∂x
+ By

∂By

∂x
+ Bz

∂Bz

∂x

)

|k|2,

dy

ds
= −q |B0 |2,

dq

ds
=

(

Bx
∂Bx

∂y
+ By

∂By

∂y
+ Bz

∂Bz

∂y

)

|k|2,

dz

ds
= −r |B0 |2,

dr

ds
=

(

Bx
∂Bx

∂z
+ By

∂By

∂z
+ Bz

∂Bz

∂z

)

|k|2, (12)

where |B0 |2 = Bx
2
+ By

2
+ Bz

2 and |k|2 = p2
+ q2

+ r2. All
variables in the system are now dependent only on s and
their initial position. Equations (12) yield some simplifica-
tions: φ(x, y, z, t) = φ0, ω = ω0 and t = ω0s + t0, where φ0, ω0

and t0 are constants.
The following initial conditions are now selected for

equations (12)

ω0 = 2π, t0 = 0, −3 ≤ x0 ≤ 3, −3 ≤ y0 ≤ 3, z0 = 0,

p0 = 0, q0 = 0, r0 = −
ω0

|B0(x0, y0, z0) | , (13)

where this set of initial conditions corresponds to a fast mag-
netoacoustic wave being launched from z = z0 = 0 and that
is initially planar in the xy−plane.

Note that the equilibrium magnetic field (8) is rota-
tionally symmetric about z = 0 and so if equations (12) were
to be presented in cylindrical polar coordinates, say (ζ, θ, z)

under which k = ∇φ =
(

∂φ
∂ζ
, 1
ζ
∂φ
∂θ
,
∂φ
∂z

)

= (kζ , kθ, kz ) then

dkθ

ds
= B0 ·

1

ζ

∂B0

∂θ
|k|2 = 0 (14)

since ∂B0/∂θ = 0. Furthermore, in cylindrical polar coordi-
nates, initial conditions (13) would be equivalent to kθ = 0

at t = 0 and so, by equation (14), kθ = 0 for all time. Hence

dr

ds
=

∂F
∂k

⇒ ζdθ

ds
=

∂F
∂kθ

= −kθ |B0 |2

⇒ dθ

ds
= − 1

ζ
kθ |B0 |2 = 0. (15)

Given that dθ/ds = 0 we predict the ray paths will lie on
planes of constant θ. Note the confinement of ray paths to

planes of constant θ results from not only the rotationally-
symmetric equilibrium magnetic field but also from our
choice of initial conditions, specifically kθ (t = 0) = 0.

4 FAST WAVE PROPAGATION

We now look at the propagation of the fast wave in the
neighbourhood of our isolated null point and separatrix fan
surface. The WKB approach considers individual elements
that are generated at specific starting points and then gives
their 3D position as the element progresses along their indi-
vidual characteristic curve. This heralds two complementary
avenues to analysing the wave evolution: we can follow and
visualise the ray paths (or characteristic paths) of individ-
ual wave elements (§4.1) or we can construct surfaces of
individual elements at specific times which are equivalent to
the propagation of the wavefront (§4.2).

4.1 Ray paths

Figures 4 and 5 plot the ray paths of individual elements
from an initially-planar wave generated along the xy−plane
at z = 0. Our system is rotationally symmetric, so it is suf-
ficient to present the results in the x = 0, yz−plane. Fig. 4
shows the ray paths for starting points of −2 ≤ y0 ≤ −0.05

to illustrate the propagation in the system. We have cho-
sen specific starting points to best illustrate the overall
behaviour: ray paths are plotted at intervals of 0.05 for
−2 ≤ y0 ≤ −0.2, then at intervals of 0.01 for −0.2 ≤ y0 ≤ −0.1,
and then specific ray paths generated from y0 = −0.09 (yel-
low), y0 = −0.08 (blue), y0 = −0.07 (orange), y0 = −0.06

(red), and y0 = −0.05 (green). A star at x = y = 0,
z = 21/3 − 0.2 = 1.05992 denotes the 3D null point.

We see that the different ray paths experience refrac-

tion, albeit by varying severities, where individual rays are
refracted towards the null point, i.e. a region of lower Alfvén
speed, and are refracted away from close to x = y = z = 0,
i.e. a region of high Alfvén speed, close to the dipole lo-
cation. This is in agreement with the Alfvén-speed profile
in Fig. (3). We see that ray paths generated for y0 ≤ −1.5

do not appear to be influenced greatly by the system and
simply propagate in the direction of increasing z. Ray paths
generated for −1.5 ≤ y0 ≤ −0.1 experience refraction away
from the dipole locus — for some ray paths this manifests
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Fast wave behaviour around a magnetic null point in a dome configuration 7

Figure 6. Location of ray paths at various times for WKB approximation of a fast wave generated on boundary x0 = 0, for −3 ≤ y0 ≤ 0,
z0 = 0 and its resultant propagation in the x = 0, yz−plane. Displayed times are chosen to best illustrate evolution and so time between

frames is not uniform. The wavefront consists of crosses from the WKB solution, so as to illustrate clearly the evolution. The magnetic
skeleton (red) in the yz−plane is shown for context.

as the crossing over of ray paths in the top left corner of
the subfigure — and for ray paths generated closer to the
spine, they experience refraction towards the null — these
ray paths propagate at varying angles to the z−direction.
The individual ray paths for y0 = −0.09 (yellow), y0 = −0.08

(blue) and y0 = −0.07 (orange) are influenced significantly
by the topology, namely refracting towards the null but ulti-
mately escaping towards the right of the subfigure. The ray
path for the characteristic generated at y0 = −0.06 (red) is
first refracted towards the null point, then is refracted away
from the dipole and is then refracted a second time around
the null, before ultimately escaping the system. Finally, the
ray path generated at y0 = −0.05 (green) is captured fully
by the null. It experiences refraction but ultimately does not
escape the system; it spirals into the null point.

In Fig. 5a, the ray paths generated for y0 = −0.062

(blue), y0 = −0.061 (black) and y0 = −0.06 (red) are shown.

We present incremental steps of 0.001 to show that the fi-
nal directions of the ray paths can vary substantially, and
we can see that all three experience refraction towards the
null and varying levels of refraction away from the dipole
locus. An extreme example of the sensitivity to the refrac-
tion phenomenon can be seen in the ray path generated for
y0 = −0.053 (Fig. 5b). Here, the characteristic undergoes
multiple orbits around the null, before ultimately escaping.
This is in contrast to Fig. 5c which shows the ray path gen-
erated for y0 = −0.0525; here the characteristic spirals into
the null and is ultimately captured by the null. We find that
all ray paths generated on x0 = 0, −0.0525 ≤ y0 ≤ 0.0525,
z0 = 0 are captured by the null point and, due to the ro-
tational symmetry, we identify this as the critical radius in
our system, rcritical = 0.0525, where ray paths generated on
x0, y0, z0 = 0 are captured by the null if x2

0
+ y

2
0
≤ rcritical.

Note that this is a critical radius on the z = 0 plane, not a
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(b)(a)

x
y

z z

y
x

Figure 7. 3D ray paths for individual elements generated along z0 = 0 and (a) y0 = −x0 and (b) y0 = x0. Green denotes ray path generated
for x0 = ±0.0525, i.e. captured. The magnetic skeleton (red) in the plane-of-generation is shown for context.

spherical radius surrounding the null point. In this paper,
we limit the spacing between initial points (our generated
wave elements) to incremental steps of 0.0005.

4.2 Wavefront evolution

Let us now consider the wavefront propagation. Fig. 6 shows
the location of the individual elements after a given time
which can be understood as defining the location of the
wavefront. Since t = ω0s+t0, each time corresponds to a par-
ticular value of s (recall s quantifies the evolution along an
individual characteristic). An individual element is therefore
described fully by its starting position (x0, y0, z0) and its evo-
lution along parameter s (note that z0 is fixed here). Starting
positions for x0 = 0, −3 ≤ y0 ≤ 0, z0 = 0 are shown in Fig. 6,
and each individual element is plotted as a cross (with an
initially-uniform separation of 0.01) to elucidate the wave
stretching. In each subfigure, the magnetic skeleton (red) in
the yz−plane is shown for context.

We find that the fast wavefront starting between −3 ≤
y0 ≤ 0 propagates in the direction of increasing z away from
the lower boundary z = 0, but not all parts rise uniformly.
The part of the wavefront (approximately −0.45 ≤ y ≤ 0)
rises much faster than the rest, with the maximum occurring
at y = 0. This is not due to the presence of the magnetic
skeleton, but instead it is due to the inhomogeneous Alfvén-
speed profile which deforms the wave from its original planar
form and where each individual element (and therefore that
part of the wavefront) propagates with its own local (Alfvén)
speed. The behaviour is well understood from Fig. 3.

The subsequent evolution takes two different forms:
firstly, the majority of the wavefront is deformed and de-
flected (dictated by the varying equilibrium Alfvén-speed
profile) but ultimately escapes the region and, secondly, a
portion of the wave is trapped by the null point, in agree-
ment with the results in §4.1. With two fates (escape or
capture), the wavefront is stretched between its two ultimate
destinations and this stretching manifests as an increase in
the spacing between the crosses.

4.3 Three-dimensional wave propagation

We can use the WKB solution to plot the three-dimensional
ray paths of individual elements generated at (x0, y0, z0 = 0).
Fig. 7 shows the ray paths for individual elements that start
along z0 = 0 and are generated along the lines y0 = −x0

(Fig. 7a) and y0 = x0 (Fig. 7b) respectively. The ray paths
denoted in green are those generated for y0 = ±0.0525, i.e.
the critical radius of capture, rcritical. For context, the mag-
netic skeleton (red) is shown in the plane-of-generation. As
in §4.1, we see there are two types of behaviour: charac-
teristic curves can be trapped by the null for |x0 | ≤ 0.0525

or else escape the null, where the closer a ray path gets to
the null or dipole, the stronger its deflection by the local
Alfvén-speed profile. Fig. 7b also confirms the ray paths are
confined to the azimuthal plane they are generated in, as
predicted from equation (15).

We can also consider the propagation of an entire wave-
front (the 3D equivalent of §4.2) but, given the ray paths are
rotationally symmetric, there is little extra information to
be gained. An example of a wavefront surface can be found
in Appendix B.

5 PERCENTAGE OF WAVE CAPTURED

5.1 Radius and area of capture

From §4.1, we see that there are two types of behaviour:
ray paths can be trapped (by refraction) at the null or else
ultimately escape the null. This allows us to calculate a per-
centage of the wave that is captured by the null. The radius
of capture, which was found to be rcritical = 0.0525, is fixed
for the system considered here, but to calculate a capture
percentage we must make a choice for our initial input area.
Note that in this paper we have presented results for ini-
tial conditions −3 ≤ x0 ≤ 3, −3 ≤ y0 ≤ 3 and z0 = 0 (see
equations 13) but since the WKB solution does not involve
boundary conditions (only initial conditions) we would have
obtained the same rcritical for any choice of initial area with
| (x0, y0, 0

) | ≥ rcritical. Thus, we are free to choose the initial
input area covered by the wavefront, but will always have
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Fast wave behaviour around a magnetic null point in a dome configuration 9

(a) (b)

Figure 8. Parametric study of how (a) radius of capture (rcritical) varies with null height, and (b) percentage of area-under-the-dome
captured versus null height. Error bars of ±0.0005 are included.

a fixed rcritical and therefore (due to rotational symmetry) a

fixed area of capture: π
(

rcritical
)2.

In this paper, we choose to define the initial input area
as the area underneath the dome, i.e. the area defined by the

footprint of the dome at radius
√

R2 − d2
=

√
22/3 − 0.04 =

1.24395 (see Fig. 2 for a visualisation of the dome foot-
print). Under this definition, the (non-dimensionalised) area

covered by the initially-planar wavefront is π
(

R2 − d2
)

=

4.86130 and the area of capture is π
(

rcritical
)2
= 0.0086590.

Thus, the percentage of the wave captured by the null point
is 0.178%.

5.2 Percentage of wave captured varying with null

height

The magnetic topology considered so far in this paper (§2.2)
can be generalised by the introduction of two dimensionless
coefficients into equations (8). These coefficients, say A and
B, can be used to alter the relative strengths of the magnetic
dipole and uniform global field, respectively. A full general-
isation of the magnetic topology can be found in Appendix
A, which shows that changing the coefficients can be used to
alter the height of the magnetic null point, whilst preserving
the dome topology.

Generalising the magnetic topology gives us the oppor-
tunity to investigate how the radius of capture varies with
null height. In order to adjust the null height here, we ap-
proach this by varying A but keeping B and d fixed (B = 1,
d = −0.2). Physically, for A > 1 this is equivalent to consid-
ering a stronger, buried dipole that has the effect of ‘pushing’
the location of the null upwards. This varies the null height
as governed by equation (A2), i.e. znull height = (2A)1/3 − 0.2.
We repeat the analytical work of §3 but now utilising equa-
tions (A1) for our equilibrium magnetic field (note that ini-
tial conditions 13 are still valid).

We find that for each individual null height considered,
we always find a single radius of capture (critical radius)
for a given A. This can be seen in Fig. 8a. We find that
the critical radius decreases with null height, tending to a
constant value of rcritical = 0.0470. In this paper, we limit the
spacing of our initial points to incremental steps of 0.0005:
recall the difference in behaviour between Fig. 5b (the ray
path generated for y0 = −0.053 escapes the null) and Fig. 5c
(the ray path generated for y0 = −0.0525 is captured by the

null). Thus, we indicate error bars of ±0.0005 in Fig. 8a. This
spatial sensitivity was checked to be adequate for the most
challenging cases investigated.

We then repeat the calculation of §5.1, i.e. we define
the initial input area as the area defined by the footprint

of the separatrix dome at radius

√

(

2A
B

)2/3 − d2. Each in-
dividual topology considered (varying A, B = 1, d = −0.2)
then has its own radius of capture, say rcritical,A , and the
corresponding area of capture is always

(

rcritical,A2
)

(

2A
B

)2/3 − d2
=

(

rcritical,A2
)

(2A)2/3 − 0.04
.

This can be seen in Fig. 8b. We find that the percentage
of the area under the dome captured decreases with null
height.

6 CONCLUSION

We have investigated the behaviour of the fast magnetoa-
coustic wave within a separatrix dome magnetic topology
that contains a 3D null point (the fan plane forms the
dome). We consider the linearised MHD equations for an
inhomogenous, ideal, cold (β = 0) plasma. The equations
are solved utilising the WKB approximation, followed by
Charpit’s Method. The WKB approach allowed us two com-
plementary avenues to analysing the wave evolution: we can
follow the ray paths of individual wave elements and can
also consider the location of the wavefront at specific times
(equivalent to the propagation of the wavefront).

We find that for a planar fast wave generated below the
null point, the propagation is strongly dependent on its ini-
tial location and there are two main behaviours: the majority
of the wave escapes the null (experiencing different severities
of refraction depending on specific location) and part of the
wave is captured by the 3D null. We find that there exists a
critical radius in the initial z = 0 plane (there is rotational
symmetry about the spine, i.e. the z−axis), which we call a
radius of capture, rcritical, which separates the two types of
behaviour, such that a wave element generated at (x0, y0, 0)

is captured by the null provided x2
0
+ y

2
0
≤ rcritical. We also

find that the ray paths are confined to the azimuthal plane
that they are generated in, provided they are initialised with
no azimuthal component (as per our initial condition).
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10 J. A. McLaughlin et al.

§4.2 demonstrated that, given the two fates (escape or
capture), the wavefront is stretched between its two ultimate
destinations; this stretching is visualised in Fig. 6 as an in-
crease in the spacing between the crosses. Note that under
the WKB approach, this (extreme) stretching can manifest,
but the wave ‘front’ can never truly split – the surface is con-
structed from individual ray paths (individual crosses) which
are independent of each other and so there is nothing to split.
It is expected that in reality stretching will eventually lead
to steep gradients facilitating a genuine splitting of the front
due to enhanced visco-resistive dissipation (essentially, this
is ‘phase mixing’ due to the the field inhomogenity around
the null, see e.g. Heyvaerts & Priest 1982; Nakariakov et al.

1997; Botha et al. 2000; McLaughlin et al. 2011a). However,
the WKB approach as presented here does not capture such
physics.

We also present a generalisation of the magnetic topol-
ogy in Appendix A by introducing dimensionless coefficients
A and B which are used to alter the relative strengths of the
magnetic dipole and uniform global field, respectively. We
find that mathematically the separatrix surface will always
be the surface of a sphere described by x2

+ y
2
+ (z − d)2

=
(

2A
B

)2/3
, corresponding to a null height of

(

2A
B

)1/3
+ d, and

with a circular footprint of radius

√

(

2A
B

)2/3 − d2 (valid for
d ≤ 0). Thus, changing coefficients A and B can be used to
alter the height of the magnetic null point, whilst — cru-
cially — preserving the dome topology. We note that the
magnetic field considered in §2.2 can be recovered by setting
A = B = 1. The height of the null can also be controlled by
modifying d.

For the magnetic topology described in §2.2, we find
rcritical = 0.0525. In this paper, we limit the spacing of our
initial condition to incremental steps of 0.0005, but the res-
olution of our Runge-Kutta approach could be improved to
consider smaller incremental steps if required. Utilising our
generalisation of the magnetic topology, we also conducted
a parametric study of how rcritical varies with null height.
We find that the value of the critical radius decreases as the
height of the null increases. We also find that the critical ra-
dius (as a function of null height) tends towards a constant
value of 0.0470.

We also calculated the percentage of the wave that is
captured by the null. We find that rcritical is fixed once the
specific topology for the system is chosen, but that we have
a free choice to define what we consider as the initial in-
put. In this paper, we chose the initial input to be the area
defined by the footprint of the dome on our model photo-
sphere (z = 0). Under this definition, the percentage of the
wave captured by the null point considered in §2.2 is 0.178%.
We also utilised our parametric study to find that the per-
centage captured of the area under the dome decreases with
null height, and that, for the parameters considered, the per-
centage is never greater than 3%.

We have limited our investigation to understanding the
fast wave in the cold plasma limit, but we could have also
investigated the second root of equation (10) by assuming
ω2
, |B0 |2 |k|2. This would yield the equations governing the

Alfvén wave behaviour.

It is also possible to extend the work in this paper by
dropping the cold plasma assumption, which will lead to a
third root of equation (10) which will correspond to the be-

haviour of the slow magnetoacoustic wave, and also allow for
acoustic contributions to the fast speed (i.e. vfast

2
= v

2
A
+c2

s is
possible), where cs is the sound speed, with fast waves tak-
ing on a predominantly-acoustic character in the very close
vicinity of the null (as B0 → 0). This will modify equation
(7) such that

∂2v1

∂t2
= c2

s∇ (∇ · v1) + {∇ × [∇ × (v1 ×B0)]} ×B0. (16)

Equation (16) is derived in the same way as equation (7)
but without making the assumption of a cold plasma. A full
investigation of equation (16) is outside the scope of this
paper, but we do note that both equations (16) and (7) are
valid for any suitable choice of equilibrium magnetic field,
B0. In other words, the 3D WKB technique described in
this paper can be both applied to other magnetic config-
urations and extended further (e.g. by dropping the cold
plasma assumption), although there are also limitations of
such approaches — see the conclusions of McLaughlin et al.

(2016). For further information on the WKB method and
the wider-family of ray tracing methods, see Tracey et al.

(2014).
Our results show that it is the location of the null

point (which denotes the global minimum of our equilib-
rium Alfvén-speed profile) as well as distance relative to
x = y = z = 0 (the point in our domain closest to the location
of the buried dipole, corresponding to the global maximum)
that play key roles in the fast wave propagation. Conversely,
we find that the separatrix surface itself does not play a role,
and the separatrix fan surface does not align with any key
features in the equilibrium Alfvén-speed profile. Previous
work highlighted that the equilibrium Alfvén-speed profile
plays a key role in dictating the propagation of the fast wave
(e.g. see McLaughlin et al. 2011b) and we conclude that our
results support this idea. Note that within the cold-plasma
conditions studied here the separatrix surfaces play no role,
but it has been shown, e.g. by Tarr et al. (2017), that sep-
aratrix surfaces do play an important role in guiding slow
magnetoacoustic waves and that these can be generated from
fast-mode waves via mode conversion around the null for a
β , 0 plasma (see McLaughlin & Hood 2006b and Tarr et

al. 2017 for discussions of mode coupling about null points).
So if the model in this paper was extended beyond the cold-
plasma assumption, mode conversion would be expected to
occur and so separatrix surfaces could play an important
role (for the generated slow waves).

In this paper, we find that the fast wave experiences a
complex refraction effect and that this refraction effect is a

key feature of fast wave propagation within inhomogeneous

media. This refraction effect causes upwardly-propagating
waves originating from below the null point to be attracted
to and trapped in the close vicinity of the null, provided the
wave-packet originates sufficiently close to the spine field line
(the requirements for which we have quantified). Such waves
in our model are physically representative of, say, upwardly-
propagating fast-mode waves transmitted from the top of
the transition region. Thus, the energy associated with such
waves will colect preferentially on small scales near the null,
where a number of physical processes may occur to sub-
sequently dissipate or convert the energy to other forms;
namely localised current sheet formation, the triggering of
magnetic reconnection and enhanced visco-resistive dissipa-
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tion of energy brought into the null by the waves (see Thur-
good et al. 2017; 2018a; 2018b for details of such physics
close to the null). The findings presented in this paper, in
a physically-representative null-point-containing field, that
wave energy does indeed collect near null points also justifies
independently the often a priori initial conditions of models
which consider the specific details of subsequent phenomena
occurring close to the null (due to nonlinear and non-ideal
processes, such studies often involve full MHD simulation
of a small domain close to the null, with the assumption
that some externally-originating wave has impinged upon
the immediate neighbourhood of the null point as a neces-
sary simplification).

Thus, we deduce that 3D coronal null points whose fan
field lines form a dome — a common feature in the so-
lar corona as revealed in potential field extrapolations —
will be preferential locations of fast wave energy collection
and deposition, where associated magnetic reconnection and
visco-resistive heating can then occur. We find that only a
small percentage of initial wave energy will be captured by
the null, but in spite of this, the strong refraction effect will
still focus that wave energy into a specific location of the
magnetic tolopology and it is at this area where preferential
heating will occur.
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APPENDIX A: GENERALISED MAGNETIC

TOPOLOGY

The magnetic topology considered in §2.2 can be generalised
by the introduction of two dimensionless coefficients into
equations (8). These coefficients, say A and B, can be used
to alter the relative strengths of the magnetic dipole and
uniform global field, respectively. This alters equations (8)
giving

Bx = −A


3x(z − d)[
x2
+ y2

+ (z − d)2
]5/2


,

By = −A


3y(z − d)[
x2
+ y2

+ (z − d)2
]5/2


,

Bz = A


x2
+ y

2 − 2(z − d)2[
x2
+ y2

+ (z − d)2
]5/2


+ B . (A1)

Recall that the dipole is placed at r0 = (0, 0, d), where |d | is
the depth below our model photosphere (z = 0).

The null height can be calculated using the following
ratio of coefficients

znull height =

(

2A
B

)1/3

+ d , (A2)

where this ratio is computed by setting B0 = 0 and due to
the rotational symmetry must lie along x = y = 0.

The equilibrium vector potential is calculated via

Atotal = Adipole +Auniform field

= A
*..
,

y[
x2
+ y2

+ (z − d)2
]3/2

,− x[
x2
+ y2

+ (z − d)2
]3/2

, 0
+//
-

+B
(

− y
2
,

x

2
, 0

)

. (A3)

Note there is symmetry under x → −y. Therefore, we may
consider the x = 0, yz−plane for further insight. Considering
x = 0, the x̂−component of equation (A3) gives

x̂ ·Atotal =
Ay[

y2
+ (z − d)2

]3/2
− By

2
.

The separatrix surface is found when this is equal to
zero. One solution to this is y = 0; this is the spine. The
solution where y , 0 yields

y
2
+ (z − d)2

=

(

2A
B

)2/3

.

Hence, mathematically the separatrix surface will always be
the surface of a sphere described by x2

+ y
2
+ (z − d)2

=
(

2A
B

)2/3
. This means the separatrix surface will always be a

spherical dome of height znull height =

(

2A
B

)1/3
+ d, in agree-

ment with equation (A2), and with a circular footprint of

radius

√

(

2A
B

)2/3 − d2, valid for d ≤ 0.
Thus, changing the coefficients A and B can be used to

alter the height of the magnetic null point, whilst preserving
the dome topology. Note that the height of the null can also
be controlled by modifying d. The magnetic field considered
in §2.2 can be recovered by setting A = B = 1.

x
y

z

Figure B1. Location of the wavefront at t = 0.5 for initially-
planar wavefront generated on −2 ≤ x0 ≤ 2, −2 ≤ y0 ≤ 2, z0 = 0.
The red block denotes the location of the null (0, 0, 1.05992).

APPENDIX B: THREE-DIMENSIONAL

WAVEFRONT SURFACES

We can also consider the propagation of an entire wavefront
(the 3D equivalent of §4.2). Fig. B1 shows the location of the
wavefront at t = 0.5, showing the behaviour of the initially-
planar wavefront that was generated on −2 ≤ x0 ≤ 2,
−2 ≤ y0 ≤ 2, z0 = 0. The surface is presented as a mesh, with
an initially-uniform point spacing3. A red block denotes the
location of the null (0, 0, 1.05992). We see that the wavefront
propagates in the direction of increasing z and that the wave-
front is distorted (it is initially planar at z0 = 0). The parts of
the wavefront closest to the null are propagating at a lower
speed than those around it, resulting in a local trough form-
ing under the null. Again, the behaviour is entirely dictated
by the inhomogeneous equilibrium Alfvén-speed profile.

Fig. B1 is the 3D companion of the t = 0.5 subfigure
in Fig. 6. From the results in §4.2, we know that at later
times the wavefront begins wrapping around the null and
so the wavefront become distorted significantly, i.e. there is
little extra information to be gained from looking at wave-
front surfaces at later times. Hence, we only present a single
wavefront surface in Fig. B1.

This paper has been typeset from a TEX/LATEX file prepared by
the author.

3 For clarity of presentation in Fig. B1, we present a spacing of
only 1 in every 10 points used to construct the surface.
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