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We provide detailed comparisons between experimental findings and numerical simulations of large coopera-
tively interacting, spatially disordered metamaterial arrays, consisting of asymmetrically split rings. Simulation
methods fully incorporate strong field-mediated inter-meta-atom interactions between discrete resonators and
statistical properties of disorder, while approximating the resonators’ internal structure. Despite the large system
size, we find a qualitative agreement between the simulations and experiments and characterize the microscopic
origins of the observed disorder response. Our microscopic description of macroscopic electrodynamics reveals
how the response of disordered arrays with strong field-mediated interactions is inherently linked to their
cooperative response to electromagnetic waves where the multiple scattering induces strong correlations between
the excitations of individual resonators. Whereas for a regular array the response can be overwhelmingly
dominated by a spatially extended collective eigenmode with subradiant characteristics, a gradual increase of
the positional disorder rapidly leads to a spatial localization of both the electric and magnetic dipolar excitation
profile of this eigenmode. We show how the effects of disorder and cooperative interactions are mapped onto the
transmission resonance in the far field spectrum and measure the “cooperative Lamb shift” of the resonance that
is shifting toward the red as the disorder increases. The interplay between the disorder and interactions generally
is most dramatic in the microwave arrays, but we find that in suitable regimes the strong disorder effects can be
achieved also for plasmonic optical systems.

DOI: 10.1103/PhysRevB.98.245136

I. INTRODUCTION

According to conventional wisdom, disorder and interac-
tions are undesired phenomena with deleterious effects on
the design and development of electromagnetic (EM) devices
and functionalities. They lead to uncontrolled coupling be-
tween radiation and matter, resonance broadening, shifts, and
dephasing, thus limiting the potential of devices for prac-
tical applications, such as sensing and telecommunications.
Intrinsic disorder in optical materials affects the transport
properties of light and can even lead to the absence of dif-
fusive wave propagation [1], analogously to the Anderson
localization of electrons in solids. In artificial materials, in
particular, disorder is known to introduce unwanted scattering
and deteriorate the performance of optical devices; however,
at the same time, engineered EM materials provide unique
controlled environments for studying the effects of disorder
and implementing novel disorder-induced functionalities [2].

The advent of metamaterials allows one to manipulate
the EM response across different scales. At the microscopic
level of individual unit-cell resonators (metamolecules), elec-
tric and magnetic multipolar properties can be engineered.
In large metamaterial arrays, the collective behavior of the
ensemble of resonators can be altered due to strong radiation-
mediated interactions. Systems where the EM-field mediated

interactions are not weak have been utilized in regular meta-
material arrays, e.g., in subdiffraction focusing [3,4], metal-
ensing [5], generation of coherent, collimated beams [6,7],
in narrow transmission resonances [8–13], in subradiance
of few-resonator systems [14–17] and of massive spatially
extended samples [18], atomic lattices [19,20], in supercon-
ducting quantum-interference devices [21–24], and in thin
semiconductor layers [25,26]. Introducing disorder in meta-
materials typically concerns either stochastic distributions
of the resonance frequencies (inhomogeneous broadening)
[23,27–31] or positional disorder [32–44]. Positional disorder
fundamentally differs from the inhomogeneous broadening
in that the latter can only reduce the role of light-mediated
interactions between the resonators [30], while positional
disorder can dramatically change their collective nature. How-
ever, most experiments—as well as applications—of disorder
have not exploited strong field-mediated interactions in meta-
material systems, while theoretical analysis of positionally
disordered metamaterials has typically focused on the effects
of disorder on the metamaterial effective parameters. The
description of metamaterials with effective parameters based
on a continuous medium approach treats the interactions in an
average sense, where the precise information of the locations
of the discrete resonators is lost (in violation of the fact that
the resonant dipole-dipole interactions between the resonators
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sensitively depend on their spatial separation). While such ap-
proaches often work for weakly interacting resonator systems,
in strongly interacting systems the response can substantially
differ [45,46].

Here, we apply large-scale numerical simulations for the
microscopic description of the electrodynamics of coopera-
tively responding disordered metamaterial arrays and compare
the simulations with far-field experimental measurements.
Our work on a large disordered array of asymmetrically
split rings (ASRs) is motivated by previous experimental
observations of the difference in between the far- and near-
field responses of ordinary “incoherent” metamaterials and
interacting “coherent” metamaterials [33,38]. We show how
their response is inherently linked to strong field-mediated
interactions between the resonators that induce correlations
between the excitations of different resonators and cannot
be described by effective continuous medium theories of
electrodynamics. We analyze the system by using simulation
methods that treat each discrete meta-atom individually and
fully incorporate all recurrent scattering events between all the
resonators as well as the statistical properties of the positional
disorder, while approximating the resonators’ internal struc-
ture. The approach allows us to characterize the microscopic
principles of the collective macroscopic EM response of the
disordered metamaterial. We show how the interplay between
the strong interactions and the disorder leads to emergent
behavior and correlated response that is qualitatively distinct
from the response of the individual metamolecules and that of
regular arrays.

Due to the strong collective response of the metamate-
rial, we find that the effects of disorder are much more
dramatic than one would surmise based on the disciplined
and predictable responses of regular arrays. The dramatic
difference between the responses of regular and disordered
arrays manifests itself most clearly in the microscopic prop-
erties of collective excitation eigenmodes. For instance, in
a regular array, the transmission resonance corresponds to a
single, giant, spatially extended subradiant eigenmode [18].
Even small amounts of disorder lead to rapid spatial shrinking
of this cooperative excitation eigenmode. With increasing
disorder this eigenmode continuously deforms from a uniform
excitation to a strongly localized one that, nevertheless, is
influenced by the resonators in the entire array. The analysis
shows how the scattered fields directly convey information
about the positional disorder and interactions. We link the
contrasts, widths, and shifts of the resonances to the mi-
croscopic properties of the collective excitation eigenmodes.
For instance, the measured shift and its calculated disorder-
dependent statistical fluctuations represent the detection of a
“cooperative Lamb shift” [47] in this system, which has been
actively measured in various ensembles of resonant emitters,
e.g., of nuclei [48], ions [49], thermal atoms in vapor cells
[50], and cold trapped atoms [51–54].

We have discovered that in the ASR arrays the strong col-
lective interactions can set in surprisingly easily. The coopera-
tive effects are not only restricted to microwave metamaterials
consisting of metallic resonators, where the Ohmic losses
are weak, but surprisingly, with appropriate engineering of
the microscopic resonator properties, we can identify suitable
parameter regimes of strong disorder effects and intense light

confinement even in metallic materials in the optical regime
(plasmonics).

II. COLLECTIVE INTERACTIONS IN DISORDERED
RESONATOR ARRAYS

A. Ordered and disordered arrays

Consider a planar metamaterial composed of plasmonic
metamolecules. Generally, the response of each resonator to
an applied EM field has both electric and magnetic charac-
teristics. Plasmonic oscillations in each metamolecule scatter
EM fields, which then drive plasmonic oscillations in other
resonators in the array. Fields scattered between the resonators
mediate long-range interactions between them [55]. Strong
interactions, particularly pronounced for metamolecules sep-
arated by a fraction of a wavelength, cause the metamaterial
to respond collectively to an incident driving field.

In a regular array, the lattice structure imposes a discrete
translational symmetry on the interactions between meta-
molecules that comprise a unit cell. The resulting regularity
in the interactions favors a collective response to an incident
plane wave in which all metamolecules oscillate with equal
amplitudes and a spatially coherent phase. Since the spatial
distribution of metamolecule excitations remains uniform re-
gardless of the strength of unit-cell interactions, the lack of
variation partially obscures the role of collective interactions
in the regular array.

In a disordered metamaterial, the interactions between
metamolecules no longer lead to uniform response of the
array. Since these interactions strongly depend on the meta-
molecules’ relative positions, introducing disorder to their
positions breaks the discrete symmetry of the interactions
present in the regular array. This variation in interaction
strength means that the distribution of metamolecule excita-
tions is no longer uniform, but can exhibit localized excita-
tions with intensities stronger than those attainable in a regular
array.

Collective excitations due to EM-mediated interactions in
a regular planar array of ASRs were identified in terms of a
many-body subradiant eigenmode in Ref. [18]. An incident
field, normal to the array, was able to excite a spatially
extended eigenmode comprising the entire lattice of over
2000 resonators, indicating a giant realization of the sup-
pressed emission, originally introduced by Dicke [56]. This
massive correlated radiative excitation also violates standard
effective continuous medium descriptions of electrodynamics.
Although the translational symmetry of the regular array
provides a response displaying little obvious visible signs
of collective effects, the existence of the giant many-body
subradiant mode was manifested in the properties of the far-
field transmission resonance. The collective response resulted
from the interplay between the electric and magnetic dipole
excitations in the ASRs: although the incident field directly
only coupled to the spatially uniform electric dipole excita-
tions, the intrinsic asymmetry in the arc lengths of the ASR
enabled the transfer of the excitation to an eigenmode with
a nearly uniform magnetic dipole excitation and suppressed
radiative decay.
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B. Microwave and plasmonic materials

In both regular and disordered arrays, long-range inter-
actions develop between excitations in different resonators
due to the multiple scattering of EM waves in the system.
Meta-molecules that suffer substantial radiative losses in iso-
lation thus strongly interact when placed in the array. Energy
lost to nonradiative losses, by contrast, inhibits interactions.
Nonradiative losses limit the number of times an EM wave
can scatter between resonators before it is absorbed into the
material [55].

In microwave metamaterials, nonradiative losses mainly
occur in the dielectric substrate surrounding the meta-
molecules rather than in the metamolecules themselves [57].
In the infrared and optical parts of the spectrum, by contrast,
dissipation severely limits quality factors of metallic meta-
molecule resonances. Ohmic losses impose a lower bound
on the quality factors of collective plasmonic metamaterial
resonances, generally limiting the scope of their potential
applications [58]. We show how this generally leads to signif-
icant suppression of the long-range interactions and manifes-
tations of disorder-related phenomena. However, we find that
by radiatively broadening the single metamolecule resonances
and reducing their Q factors can even in the optical regime
of metallic resonators lead to intense light confinement and a
response that is fundamentally different from that of regular
arrays.

C. Asymmetrically split ring resonators

To determine the effects of disorder, we consider 30 ×
36 arrays of ASR metamolecules [57] arranged in a square
lattice. We introduce disorder into the metamolecule positions
by placing each one randomly within a square with side length
of a fraction D of the lattice spacing centered on each unit cell.
Periodic and disordered microwave ASR arrays fabricated on
a 1.6-mm-thick FR4 dielectric substrate were characterized
under normal incidence illumination using a pair of linearly
polarized broadband horn antennas [33].

D. Numerical model

Theoretical analysis of disordered arrays poses a challenge,
as, e.g., methods exploiting the regular lattice structure [59]
no longer are possible. Our numerical model is designed for
simulations of a cooperative response [46,60–63] in large
strongly coupled resonator arrays [55] that we here extend
to disordered resonator systems. We find that a simplified
physical model of a single-mode RLC circuit in a dipolar
approximation for each resonator arc provides a sufficient
description for the experimentally observed collective radia-
tive properties when the scattering processes between the
resonators are incorporated in all orders in the calculations.
In large-scale numerical simulations, we evaluate the EM
response of over 2000 interacting resonators, corresponding
to the experimental configurations, and analyze statistical
fluctuations due to disorder by ensemble-averaging over many
stochastic realizations.

FIG. 1. Schematic diagram of the theoretical model. A disor-
dered array of metamolecules, with each unit-cell consisting of two
concentric arcs. Currents flowing symmetrically (antisymmetrically)
in a metamolecule produce an oscillating electric (magnetic) dipole
[upper-left (right) inset]. Each arc is governed by a single dynamic
variable for the electric current whose oscillation generates both
electric (blue arrows) and magnetic (red arrows) dipoles. The varying
length of arrows across the array illustrates how disorder in meta-
molecule positions can yield a nonuniform response to a uniform
incident field.

To numerically model the collective interactions between
the metamolecules in the metamaterial, consider how each
metamolecule responds to and scatters an external field. Cur-
rents can flow along each of the arcs, as shown in Fig. 1(a). A
symmetric current flow in metamolecule �, with an amplitude
d�, is dominated by an electric dipole that couples strongly
to the incident electric field. By contrast, currents in ASR
� flowing out of phase, described by an amplitude m�, have
a suppressed electric dipole; they produce radiation into the
plane of the array by the magnetic dipole (and weaker electric
quadrupole) [57].

As explained in Appendix A, we model interactions be-
tween metamolecules by decomposing each one into two
resonators, corresponding to the arcs, each of which behaves
like a damped RLC circuit driven by external fields. The dy-
namics of arc j (j = 1, . . . , 2N ) is described by the oscillator
normal variable bj . The symmetric (d�) and antisymmetric
(m�) amplitudes are normalized such that the lower arc of
unit cell � has an amplitude b2�−1 = (d� + im�)/

√
2, and the

amplitude of the upper arc is b2� = (d� − im�)/
√

2.
Current flows produce oscillating multipoles that couple

to the incident field and the fields scattered by other arcs in
the array. The oscillations in each arc are damped at a decay
rate � which has contributions from an electric dipole decay
rate �e, a magnetic dipole decay rate �m, and a nonradiative
damping rate �o accounting for Ohmic losses in the metal and
losses in the substrate material. For the microwave resonators,
we set �o = 0.07� in the numerics to describe the losses in
the substrate. For the plasmonic resonators, we assume that
each ASR arc has an Ohmic loss rate given by �o = 0.25�

and �r = �m. The Ohmic loss rate is comparable with those

245136-3



STEWART D. JENKINS et al. PHYSICAL REVIEW B 98, 245136 (2018)

observed for gold rods Fano resonance experiments [64] and
obtained by Drude-model based estimates [65]. To enhance
the strength of cooperative interactions, we consider a realistic
array of metallic metamolecules that are closely spaced with
a lattice spacing of a = 0.2λ.

The cooperative response of the metamaterial array
emerges from the multiply scattered EM fields between the
resonators (Appendix A). Each meta-atom is driven by the
incident fields and the fields radiated by the other meta-atoms.
This leads to the dynamics of the EM response, described
by a coupled set of linear equations between the different
meta-atoms. The radiative coupling matrix between the arcs
yields the collective excitation eigenmodes and the corre-
sponding eigenvalues (the collective resonance frequencies ωj

and decay rates γj ).
A key element in the EM response of a disordered system

is the statistical effect of disorder in the observable quantities.
Although our experiment is restricted to a few realizations
of the disorder in the resonator positions, in the numerical
simulations, we can analyze the statistical properties of the
disorder by stochastically sampling the positional disorder of
the randomly distributed metamolecules. For each individual
stochastic realization of metamolecule positions, we calculate
the scattered fields and the EM response for the quantities
of interest. By means of ensemble-averaging over many such
realizations, we obtain both ensemble averages and statistical
fluctuations of the EM response of the magneto-dielectric
array that represent the given statistics of the positional
disorder. Each ASR � is located at position r� = R� + δr�,
where R� is the center of the corresponding unit cell, and
δr� is the random displacement of the ASR. As explained
in Appendix B, we treat the positional displacement as a
random variable uniformly distributed within the square in-
terval x ∈ (−aD/2, aD/2), y ∈ (−aD/2, aD/2), where a is
the periodic array unit cell size and D quantifies the strength
of disorder. For a typical observable quantity O of an array
of N ASR resonators, we then calculate its averages 〈O〉
and variances (�O )2 = 〈O2〉 − 〈O〉2 subject to the disorder
by ensemble averaging over a large number of stochastic
realizations.

III. COLLECTIVE EXCITATION EIGENMODES
OF INTERACTING RESONATORS

We find that the spatial disorder manifests itself in the
collective radiative excitation eigenmodes that are respon-
sible for the transmission resonances of the system. Even
small changes in the positions of the resonators dramati-
cally alter the spatial profiles of the relevant eigenmodes,
which in turn has a profound effect on the EM response of
the array.

The emergence of the cooperative effects [60–63] results
from the scattered fields that mediate interactions between
resonators. When the interactions between metamolecules are
strong, as occurs for the subwavelenght lattice spacing of
the experimental sample, the radiative response of a single,
isolated metamolecule is no longer a simple guide to the
response of the array; the metamaterial response becomes
a function, not only on properties of individual unit cells,

but on collective modes of excitation [55,66] involving many
metamolecules distributed over the whole of the metama-
terial array. Each mode is characterized by a distinct col-
lective resonance frequency and decay rate. Here we take
the many-body subradiant eigenmode of a regular array of
Ref. [18] in the planar array and show how this spatially
extended mode becomes strongly localized as a function of
increasing weak spatial disorder when we change the res-
onator positions.

When incident fields drive the regular array at the reso-
nance of the subradiant magnetic eigenmode, the excitation
of the electric dipoles across the plane is transferred to a
nearly uniform excitation of magnetic dipoles across the entire
metamaterial. The transfer of energy between the coherently
oscillating electric and magnetic dipoles is possible because
of the asymmetry in the lengths of the arcs within each ASR
metamolecule. About 70% of this excitation is concentrated
on a single eigenmode in which the metamolecular magnetic
dipole amplitudes oscillate in phase with each other, pointing
to the direction normal to the plane [18] (see Fig. 2). This
eigenmode extends over the entire array of over 1000 meta-
molecules, has a resonance frequency ωM (shifted from that
of a single arc in isolation ω0), and a suppressed subradiant
collective radiative decay rate of 0.21�. In Fig. 2, the effect
of the array edge can be identified by a reduced excitation
amplitude in the outermost unit cells.

To see how this mode is affected by disorder, we consider
one realization of experimental unit-cell displacements δr(1)

� ,
and the collective mode in arrays whose resonators are par-
tially moved toward those positions. That is, we determine the
collective modes for resonators at positions R� + αδr(1)

� . We
find a dramatic deformation in the profile of the eigenmode
even for small values of α, as shown in Fig. 2. For the par-
ticular realization of resonator positions, the mode moves to
one side of the array and becomes more localized. As the dis-
placement of the resonator positions from the center continues
to increase, the mode also gains a stronger contribution from
electric dipole excitations. Perhaps surprisingly, the effect of
the disorder on the radiative decay rates is notably weaker,
and the subradiant nature of the eigenmode is preserved even
for the displacement D = 0.33 when the radiative decay rate
is about 0.28�.

The localization of the mode to a single region of the array
is another feature of strong interactions associated with higher
densities. In fact, the collective response is very sensitive
to the lattice spacing between the resonators owing to the
leading ∝1/r3 contribution to the dipole-dipole interactions.
When the resonator positions are scaled so that the underlying
regular array has a lattice spacing greater than a wavelength,
the response changes drastically. The deformation of the mode
profile now consists of multiple regions of excitation dis-
tributed over the array. Also the subradiant nature of the mode
is almost entirely lost. In the regular array, the radiative decay
rate becomes 0.85� and in the disordered case it quickly
reaches the value close to �.

The 30 × 36 array consists of 1080 unit cells and 2160
collective excitation eigenmodes, collective radiative res-
onance linewidths and line shifts. All these collec-
tive linewidths and line shifts for one specific case
with and without disorder are shown as scatter plots
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FIG. 2. The effects of positional disorder and ASR density on the collective uniform magnetic eigenmode. [(a)–(d)] Electric (left) and mag-
netic dipole (right) excitations of a single radiative excitation eigenmode with a lattice spacing a = 0.28λ (microwaves). From top to bottom,
the ASRs are increasingly displaced from the centers of their respective unit cells by 0% (a), 50% (b), 100% (c), and 150% of the corresponding
displacements in an experimental sample with D = 0.22. The corresponding radiative decay rates are 0.21�, 0.21�, 0.24�, and 0.28�.
[(e)–(h)] The uniform mode in arrays whose ASR positions correspond to those on [(a)–(d)] scaled by a factor of five, giving the regular array
(e) a lattice spacing of a = 1.4λ. The corresponding radiative decay rates are 0.91�, 0.96�, 1.1�, and 1.2�.

in Fig. 3. The distribution of collective eigenmode
resonance frequencies and decay rates illustrates how
many of the collective mode resonance frequencies are
shifted from the single-arc resonance. The collective mode
decay rates span several orders of magnitude, with the
strongly suppressed decay rates of subradiant modes satisfy-
ing γj � �. For small degrees of disorder, there is a class
of superradiant modes which look relatively unaffected by
the disorder. That is, though the disorder shifts the collective

resonance frequencies of all the modes, in these superradiant
modes, this shift is much smaller than the distance to neigh-
boring modes.

IV. FAR-FIELD DETECTION OF BACK-SCATTERED
INTENSITY

We can directly link the excitation of the giant subradiant
eigenmode in Fig. 2 to the reflected far field. The excitation
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FIG. 3. Collective mode shifts and decay rates of regular and
disordered plasmonic ASR arrays. (a)–(c) show the distribution for
a regular (a) and two disordered arrays with D = 0.22 (b) and
D = 0.44 (c), respectively.

patterns in a regular metamaterial array due to an incident
plane wave show little visible signs of strong collective in-
teractions between the resonators. However, under more care-
ful examination, the cooperative nature of the metamaterial
response manifests itself in the reflection spectra even in the
case of a regular array. In an ASR array, interactions can form
a Fano resonance in lattices whose individual unit cells, in iso-
lation, show no such resonance [8,11]. It was recently shown
[18] that this transmission resonance in a regular array reveals
the excitation of the giant many-body subradiant eigenmode
of Fig. 2. In an array where the metamolecules do not interact,
the antisymmetric oscillations of a metamolecule are damped
as strongly as symmetric oscillations, and the array exhibits
no transmission resonance.

Figure 4 shows how the collective transmission resonance
of the uniform response of a regular lattice still persists
even in the presence of disorder. The disorder alters the
interactions between the resonators and the quality of the
resonance (determined by contrast and width) is reduced.
In Figs. 4(a) and 4(b), we show a side-by-side comparison
between experimental observations and large-scale numerical
simulations of the back-scattered intensity (see Appendices A
and D) from disordered microwave metamaterial arrays. A
narrow dip occurs in the back-scattered intensity at a fre-
quency around 11 GHz. Our numerical model demonstrates
that this resonance arises solely as a result of interactions
between metamolecules. The different curves indicate how

starting from a regular lattice and then increasing the degree
of positional disorder considerably affects the nature of the
resonance. The contrast, width, and shift of the resonance vary
from sample to sample, and in our numerical simulations we
found that this variance increases with the degree of positional
disorder in the array. This variation is a manifestation of the
dependence of interactions on the relative positions of the
resonators, and shows how the fluctuations of the positions
are mapped onto the fluctuations of the transmission and
reflection resonance properties of the fields.

Both experimental measurements and theoretical calcula-
tions, show that [Figs. 4(a) and 4(b)], on average, the contrast
of the transmission resonance is reduced and the resonance
becomes broader as the resonators take on more random posi-
tions relative to one another. While the theoretical model qual-
itatively captures the essential features of the positional dis-
order, the spectrum for the experimental system is, however,
more sensitive to disorder than that of the theoretical model.
This could be because of the interaction of the metamolecules
with the substrate that our model does not account for. Ad-
ditionally, because our simplified model takes each arc to be
a point dipole, it may underestimate the interaction between
arcs as their outer edges move closer together. The disorder of
D = 0.22 in the experimental system therefore corresponds to
an effective disorder of D = 0.44 in the model array.

Measuring the shifts of resonances in strongly coupled res-
onant emitter systems has in recent years attracted consider-
able attention. Such collective resonance shifts are frequently
also referred to as “cooperative Lamb shifts” [47], and have
been detected in systems composed, e.g., of nuclei [48], ions
[49], thermal atoms confined inside vapor cells [50], and cold
trapped atomic ensembles [51–54]. The origin of the shifts
is the resonant interaction due to the surrounding emitters
that modifies the resonance linewidths and line shifts and
therefore results in an effective renormalization of the reso-
nance frequency. The observed shifts have been found to differ
from the basic Lorentz-Lorenz shift [67,68], due to collective
interactions. In dense and homogeneously broadened ensem-
bles, resonance shifts can notably differ from those of inho-
mogeneously broadened ensembles, and can violate standard

FIG. 4. Far field spectrum of microwave and optical plasmonic arrays with varying degree of disorder. The back-scattered intensity from
the microwave array (a) as calculated by the theoretical model and (b) measured in the experiments. The blue lines represent scattering from
ordered arrays (D = 0), and the red (black) lines represent scattering from arrays with disorder parameter D = 0.22a (D = 0.44a). (c) The
experimentally measured and theoretically calculated shift of the transmission resonance as a function of disorder [corresponding to (a) and
(b)]. The filled regions indicate values within one standard deviation of the ensemble average in theoretical simulations and the markers indicate
averages obtained experimentally from five realizations of resonator positions, with the error bars spanning one standard deviation. (d) The
back-scattered intensity from the optical plasmonic array with a lattice spacing of 0.2λ and an Ohmic loss rate of 25% of the total loss rate as
calculated by the theoretical model. The degrees of disorder being shown are D = 0, 0.22, and 0.44. All theoretical simulations are ensemble
averaged over 1024 stochastic realizations.
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textbook results of electrodynamics [45,46,51,54,69]. Here,
we observe a shifting of the resonance toward the red as
disorder is increased, which provides a clear indication of
the collective nature of the EM response of the system. This
pattern is borne out both in the theoretical model and in the
experiment, as shown in Fig. 4(c). The statistical fluctuations
of the shift are calculated by considering 1024 distinct re-
alizations of resonator positions within each unit cell (see
Appendix B).

By means of comparing the collective eigenmodes of
interacting resonators with the far-field spectrum, we have
established how the scattered fields convey information about
the positional disorder and collective effects in a metamaterial.
Strong Ohmic losses in optical and near-infrared plasmonic
metamaterials, however, can curtail the role of interactions in
the material’s response, since they limit the number of times
a photon can scatter before it is absorbed [55]. Nonetheless,
when plasmonic metamolecules are closely spaced, we still
find signatures of a strong collective response. The magnetic
mode responsible for the transmission resonance in the mi-
crowave array can no longer be employed to produce as high
a quality transmission resonance. The material still supports a
transmission resonance, though be it a broader one, as shown
in Fig. 4(d). However—despite the reduced collective effects
due to stronger absorption—the introduction of disorder in the
resonator positions even in a plasmonic array notably disrupts
the transmission resonance [Fig. 4(d)].

We would like to note that although fabrication imper-
fections are more prominent in metamaterias for the optical
part of the spectrum, the degree of disorder required for
applications is substantially higher than the fabrication pre-
cision, and hence the realization of such disordered meta-
materials will not be significantly hindered by manufacturing
limitations.

The reduction of the transmission resonance with increased
disorder can be understood by considering the excitations
within each metamolecule. In a regular array, the transmission
resonance occurs when the antisymmetric oscillations are ex-
cited at the expense of the symmetric excitations [8,10]. Since
the electric dipoles produced by the symmetric metamolecule
excitations radiate in the forward and backward directions,
and the antisymmetric excitations do not, a lack of symmetric
metamolecule excitations implies a lack of reflectance.

V. CONCLUDING REMARKS

We have analyzed the microscopic principles of macro-
scopic EM response in disordered metamaterials. Our work
indicates that strongly interacting metamaterials, where the
discrete nature of the resonators and the field-induced correla-
tions become relevant, could be an especially fruitful avenue
in the design of novel metamaterial functionalities and in
exploitation of the effects of positional disorder. Planar arrays
of ASRs provide a model example of a system where strong
interactions can be achieved. In such strongly interacting sys-
tems, cooperative response, which is absent in weakly coupled
ordinary resonator arrays and “hidden” in the response of
strongly coupled resonators in regular arrays, manifests itself
in the presence of disorder. The nonuniform subwavelength-
scale response and localization due to disorder indicate the

breakdown of effective continuous-medium theories for elec-
trodynamics that assume each resonator interacting with the
average behavior of all the other surrounding resonators, while
the system is composed of discrete emitters. This is analogous
to the breakdown of mean-field theories in condensed-matter
physics where enhanced interparticle interactions lead to cor-
related system response.

Our microscopic analysis of the electrodynamics of disor-
dered metamaterials paves a way for novel design paradigms
in artificial EM materials that are based on the discrete na-
ture of the metamaterial lattice and the resulting cooperative
effects rather than effective medium considerations. Our ap-
proach allows to tailor the metamaterial functionalities both
at the microscopic (metamolecule) as well as the macroscopic
(array) scale. The localization of the array collective modes
in combination with the prescribed multipole character of the
excitation at the resonator level holds promise for a number of
applications, including control of emitter rate and directivity,
sensing, nonlinear optics, focusing.

Light transmission in disordered media of resonant scatter-
ers generally attracts broad interest in many different physical
systems. These include natural media, formed by atoms, as
well as those composed of artificial atoms. Although, for
example, Anderson localization of light in 1D is well estab-
lished and analyzed (as an example of a recent experiment, see
Ref. [70]), there is still considerable debate whether light can
even undergo Anderson localization in 3D systems of dipolar
scatterers due to disorder [71,72]. Moreover, the framework
for the analysis of disordered metamaterial arrays presented
here can be readily extended to include higher-order terms
of the multipole expansion beyond the electric and magnetic
dipoles [17,73]. Finally, engineering collective modes and
utilizing disorder will be of particular interest in the studies of
highly nonlinear superconducting metamaterials that display,
e.g., resonator synchronization [22–24,31].
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APPENDIX A: ASYMMETRICALLY SPLIT RINGS AND
THE MODEL FOR COLLECTIVE INTERACTIONS

1. Asymmetrically split ring metamolecule

The general formalism to describe interacting magne-
todielectric resonators is presented in Ref. [55]. We model
each unit-cell resonator, labeled by index � = 1 . . . 30 × 36
as an ASR metamolecule supporting two types of current
oscillation: (i) currents flowing symmetrically and (ii) with
currents flowing antisymmetrically. The amplitude and phase
of these oscillations within metamolecule � are described by
the complex amplitudes d� and m�, respectively. Symmetric
oscillations possess a net electric dipole proportional to d�d̂,
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while owing to the curvature, antisymmetric oscillations are
dominated by a magnetic dipole proportional to m�m̂ with a
small electric quadrupole. Each ASR � is located at position
r� = R� + δr�, where R� is the center of the corresponding
unit cell, and δr� is the random displacement of the ASR. The
amplitudes for symmetric and antisymmetric oscillations d�

and m� are normalized such that the total energy contained
in an ASR excitation is proportional to |d�|2 + |m�|2. Each
unit-cell resonator is decomposed into two asymmetric arcs,
or meta-atoms, each of which behaves like a single-mode
damped RLC circuit with resonance frequency ωj driven
by external fields. If the split rings were symmetric, the
individual meta-atoms would have identical resonance fre-
quencies ωj = ω0. An asymmetry in the arc lengths shifts
the meta-atom resonance frequencies by δω so that for
ASR �,

ω2�−1 = ω0 − δω, (A1a)

ω2� = ω0 + δω. (A1b)

The current excitations in the meta-atoms interact with
the propagating field and radiate electric and magnetic fields.
Each meta-atom is treated in the point dipole approxima-
tion. With this approach, the EM properties of the meta-
molecules can be obtained by assigning each arc an elec-
tric dipole dj (t ) = dj (t )êy and magnetic dipole mj (t ) =
mj (t )m̂j , where m̂2� = −m̂2�−1 ≡ m̂ = êz.

The oscillating current excitations in each meta-atom j

(j = 1, . . . , 2N ) are described by the oscillator normal mode
amplitude bj , and the lower arc of unit cell � has the amplitude
b2�−1 = (d� + im�)/

√
2, and the amplitude of the upper arc

b2� = (d� − im�)/
√

2. Here and in the rest of the discussion,
we assume that all the field and resonator amplitudes refer
to the slowly varying versions of the positive frequency
components of the corresponding variables, where the rapid
oscillations e−i�t (k = �/c) due to the frequency, �, of the
incident wave have been factored out in the rotating wave
approximation. Oscillations in each arc are damped (at rate �)
by electric dipole radiation, magnetic dipole, radiation and
ohmic losses at rates �e, �m, and �o, respectively. The
strength of radiative interactions between dipoles of the arcs
of each metamolecule are governed by their separation u.
The upper and lower arcs are located at rj + (u/2)êy and
rj − (u/2)êy , respectively.

2. Collective EM-mediated interactions

The scattered fields from the arcs are given by ES =∑
j E(j )

S and HS = ∑
j H(j )

S where the contributions from the
meta-atom j read

E(j )
S (r, t ) = k3

4πε0

[
G(r − rj )dj + 1

c
G×(r − rj )mj

]
, (A2)

H(j )
S (r, t ) = k3

4π
[G(r − rj )mj − cG×(r − rj )dj ]. (A3)

The dipole radiation kernel G(r) determines the electric (mag-
netic) field at r, from an oscillating electric (magnetic) dipole
at the origin [67]. For a dipole with an amplitude d̂, the

expression reads

G(r) d̂ = (n̂×d̂)×n̂
eikr

kr
+ [3n̂(n̂ · d̂) − d̂]

×
[

1

(kr )3
− i

(kr )2

]
eikr − 4π d̂ δ(kr)

3
, (A4)

where n̂ = r/r . The contact term is included to satisfy the
Gauss law, and we interpret Eq. (A4) in such a way that the
integral over an infinitesimal volume enclosing the origin of
the other terms vanishes.

The cross kernel G×(r) describes the electric (magnetic)
field at r of an oscillating magnetic (electric) dipole at the
origin. For a dipole with an amplitude d̂, we have

G×(r) d̂ = i

k
∇ × eikr

kr
d̂. (A5)

Each meta-atom is driven by the incident fields, E0(r, t ) and
H0(r, t ), and the fields scattered by all the other resonators in
the system,

Eext(rj , t ) = E0(r, t ) +
∑
l 
=j

E(l)
S (r, t ), (A6)

Hext(rj , t ) = H0(r, t ) +
∑
l 
=j

H(l)
S (r, t ) , (A7)

where the scattered fields are given by Eqs. (A2) and (A3).
Owing to the coupling between the current oscillations and

the scattered EM fields we obtain the coupled dynamics for
the arc variables b ≡ (b1, b2, . . . , b2N )T [55],

ḃ = Cb + F(t ). (A8)

In the dipole approximation, the normal mode amplitudes
(unnormalized) of each meta-atom are linked with its electric
and magnetic dipoles:

bj (t ) =
√

k3

12πε0

[
dj√
�e

+ i
mj

c
√

�m

]
. (A9)

The matrix C accounts for radiative and nonradiative decay,
the asymmetry of the individual unit cells, and crucially,
the EM interactions between the unit cells mediated by the
scattered field (that incorporate the retardation effects with
short- and long-range interactions). The vector F represents
the driving of the current in each arc caused by the incident
field and can be expanded to the eigenmodes of the array with
amplitudes fn.

Explicitly, the coupling matrix is

C = − �e + �m

2
1 + i

3

4
(�eGe + �mGm)

+ 3

4

√
�e�m

(
G× + GT

×
)
, (A10)

and the driving field contribution is given by

F = i
Ein(t )√
2ω0L

, (A11)

where Ein is the electromotive force induced by the driving
field. The dimensionless coupling matrices Ge and Gm result
from interactions with the electric or magnetic fields scattered
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from the electric or magnetic dipoles, respectively, while the
matrix G× accounts for the electric (magnetic) fields produced
by the magnetic (electric) dipoles. Equation (A8) corresponds
to the integral representation of Maxwell’s wave equations,
and can be efficiently solved as a linear system.

In a metamaterial array, we have a system of N ASR meta-
molecules, or 2N single-mode resonator arcs. These possess
2N collective eigenmodes of current oscillation, with corre-
sponding collective resonance frequencies and decay rates.
Each collective eigenmode corresponds to an eigenvector of
the matrix C with the eigenvalues given by

λj = −γj

2
− iδωj , (A12)

where the decay rate is γj and the shift of the resonance
frequency with respect to the arc frequency ω0 is given by
δωj . In this work, we calculate the eigenmodes of the 30 × 36
array of 2160 meta-atoms.

The simulation techniques described here are quite gen-
eral and can be adjusted to the studies of cooperative phe-
nomena in other point scatterer systems [74,75], including
those in atomic ensembles [19,45]. Recently, similar simu-
lation techniques based on the point-dipole scatterers have
been applied in the design and modeling of metasurfaces
[76,77].

APPENDIX B: SIMULATING ENSEMBLE AVERAGES OF
DISORDERED SYSTEM USING STOCHASTIC SAMPLING

Random displacements in metamolecule positions pro-
foundly affect the EM response of the metamaterial. This
happens because a single arc is driven, not only by the incident
field, but by the fields emitted by all other arcs in the array.
The influence of those scattered fields depends sensitively on
the arcs’ relative positions, particularly when the sample is
dense. Every observable quantity is therefore a function of
the displacements of all of the ASRs in the array. Numerical
simulations allow the calculation of the statistical properties
of the EM response in the presence of positional disorder
through stochastic sampling.

Formally, our sampling technique is described as follows.
Consider some observable quantity O of an array of N ASR
resonators. For a specific realization of displacements, ASRs
are displaced from the centers of their respective lattice sites
r(lat)
� by δX�. The observable quantity could be, for example,

the magnetic dipole intensity |m�|2 of a particular resonator �,
the maximum ASR excitation taken over all elements of the
array (excluding the ten outer most unit cells), or the back
scattered intensity from the array in the far-field. The key
feature of the simulated observable is that a single realization
of ASR positions maps directly to a specific observed value.
So, the average value of the observable is

〈O〉 =
∫

d3δx1 . . . d3δxN O(r1, . . . , rN )P (δx1, . . . , δxN ),

(B1)
where P (δx1, . . . , δxN ) is the joint probability distribution for
displacements of ASRs from the centers of their lattice sites,
and r� ≡ r(lat)

� + δx�. In an array with a degree of disorder
D, we take the displacements δX� to be independent identi-
cally distributed random variables with a uniform distribution

within a square of side length Da centered on the origin of
the xy plane, where a is the lattice spacing of the unperturbed
regular array.

We calculate the average quantities by sampling N
realizations of ASR displacements δX(n)

1 , . . . , δX(n)
� (n =

1, . . . ,N , � = 1, . . . , N ) from the joint probability distribu-
tion P , and averaging the desired observable over all realiza-
tions. This yields

〈O〉 ≈ 1

N

N∑
n=1

O
(
X(n)

1 , . . . , X(n)
N

)
, (B2)

where X(n)
� ≡ r(lat)

� + δX(n)
� is the position of ASR � in re-

alization n of ASR positions. The statistical variances are
calculated analogously,

(�O )2 = 〈
O2

〉 − 〈O〉2. (B3)

APPENDIX C: RESONANCE CONTRAST
AND LINEWIDTH ESTIMATION

For each realization of meta-atom positions, we deter-
mine the frequency δ at which the reflected intensity is at
a minimum Imin. This is the frequency of the transmission
resonance for this specific realization. We then determine the
frequencies at which the reflected intensity reaches its maxima
on either side of the resonance. We define the contrast with
respect to the lesser of these two intensities Ĩ . The contrast
of the resonance is then 1 − Imin/Ĩ so that the resonance has
unity contrast if suppression of the back-scattered field were
perfect, and the contrast is zero when there is no transmission
resonance at all. The spectral width of the resonance is the
difference between the smallest frequency above δ and the
greatest frequency below δ for which the reflected intensity
takes the value (Imin + Ĩ )/2.

APPENDIX D: EXPERIMENTAL METHODS

1. Samples

The experimentally studied samples consisted of reg-
ular and disordered ASR arrays fabricated by etching a
35 μm copper cladding on a FR4 PCB substrate of 1.6 mm
thickness. Each ASR has an inner and outer radius of 2.8
and 3.2 mm, respectively. The metamolecules were arranged
in a 30 × 36 square lattice with lattice spacing a = 7.5 mm.
Disorder was introduced by displacing the center of each
metamolecule according to a random uniform distribution
defined over the square interval x ∈ (−aD/2, aD/2), y ∈
(−aD/2, aD/2), where D is the degree of disorder. We
consider metamaterial arrays with different degrees of disor-
der (D = 0.22, 0.32, 0.39, 0.45, 0.5, 0.55). For each degree
of disorder, we have constructed five samples with different
realizations of unit-cell positions.

2. Far-field measurements

The far-field response of regular and disordered microwave
ASR arrays was characterized in an anechoic chamber using a
pair of linearly polarized horn antennas (Schwarzbeck BBHA
9120D) and a vector network analyzer (Agilent E8364B). The
strength of the backscattered radiation from the metamaterial
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arrays was characterized by measuring their reflectivity under
normal incidence illumination. The polarization of the inci-

dent and the detected reflected wave was fixed along the arcs
of the ASRs.
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Realization of an Electrically Tunable Narrow-Bandwidth
Atomically Thin Mirror Using Monolayer MoSe2, Phys. Rev.
Lett. 120, 037401 (2018).
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