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Abstract 

In this paper, we offer a method aiming to minimize the role of distance metric used in clustering. It is well 
known that distance metrics used in clustering algorithms heavily influence the end results and also make the 
algorithms sensitive to imbalanced attribute/feature scales. To solve these problems, a new clustering algorithm 
using a per-attribute/feature ranking operating mechanism is proposed in this paper. Ranking is a rarely used 
discrete, nonlinear operator by other clustering algorithms. However, it also has unique advantages over the 
dominantly used continuous operators. The proposed algorithm is based on the ranks of the data samples in 
terms of their spatial separation and is able to provide a more objective clustering result compared with the 
alternative approaches. Numerical examples on benchmark datasets prove the validity and effectiveness of the 
proposed concept and principles. 
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Clustering is an important tool for statistical data analysis [1]. The main goal of clustering is to group 
homogeneous data samples into clusters [2]. Clustering technique is used for identifying the underlying patterns 
and multimodal distribution behind the empirically observed data samples and, thus, it is the key to data mining 
and complex system identification [3].  

Clustering algorithms use distances, based on which they estimate the underlying data distribution. However, 
it is well known that different distance types have different abilities in disclosing the ensemble properties and 
mutual distribution of the data, and the differences are even more significant in higher dimensional data spaces 
[4], [5]. Choosing the most suitable distance type for a specific problem is of great importance for a meaningful 
clustering result. However, this requires a certain degree of prior knowledge of the problem itself [6]. Moreover, 
practically all the clustering algorithms use only one type of distance at one time [7].  

In this paper, in order to minimize the influence of the distance in clustering and to obtain a more objective 
partition, a fundamentally new approach using a novel ranking operation is proposed. It is called Ranking 
Operation-based Clustering (ROC) algorithm. Instead of using the continuous algorithmic operators that the vast 
majority of clustering algorithms rely on, the proposed ROC algorithm uses the per-attribute/feature ranking (in 
terms of the spatial divergence of the data samples) to disclose their ensemble properties. Ranking operation is 
widely used in our daily life, but clustering approaches avoid using it because ranks are nonlinear, discrete 
operators [2]. Ranking operation is able to provide sufficient spatial divergence information of the data for 
clustering; meanwhile, it ignores the unnecessary details that may lead to discrepancy. In comparison with the 
existing clustering approaches, the ROC algorithm has the following unique advantages: 

1) the clustering result is invariant to the type of distance metric used;  

2) the clustering result is invariant to the scales of attributes/features. 

In addition, it is free from user- and problem- specific parameters and it does not impose any prior 
assumptions of generation model on the empirically observed data. Therefore, the ROC algorithm is able to 
produce clustering results with higher objectiveness. 
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The remainder of this paper is organized as follows. Section 2 briefly reviews the related works, which 
provides the background and motivation of this paper. Section 3 presents the main procedure of the proposed 
ROC algorithm. Numerical examples are given in section 4 for demonstrating the concept. The final section 
concludes this paper and points out the directions for future work. 

Based on the clustering mechanisms used by the existing approaches, one can generally group them into five 
general categories [8], [9]: 

1) hierarchical clustering algorithms, e.g., agglomerative [10] [13], divisive [14], [15]; 

2) centroid-based clustering algorithms, e.g., k-means [16], [17], k-medoids [18]; 

3) density-based clustering algorithms, e.g., eClustering [19], DBSCAN [20], subtractive [21]; 

4) distribution-based clustering algorithms, e.g., Gaussian mixture models [22] , mean-shift [23]; 

5) fuzzy clustering algorithms, e.g., fuzzy c-means [24], [25], fuzzy-possibilistic c-means [26] [28]. 

Due to the limited space of this paper, it is impossible to cover all of the existing clustering algorithms. The 
interested readers are referred to, for example, [8], [29] for more details. 

Although, different clustering algorithms operate and behave differently, practically all of them directly or 
indirectly rely on the use of distances. Hierarchical clustering algorithms use the mutual distances between data 
samples to build up a dendrogram, and achieve the result by cutting the dendrogram at the desired similarity 
level. Centroid-based clustering algorithms iteratively minimize an error criterion function, which is formulated 
based on the distances between the data samples to the respective cluster centres. Density-based, distribution-
based and fuzzy clustering algorithms formulate the algorithmic operators, statistical models or criteria based on 
the mutual distribution information of the data samples estimated using distances. Therefore, the clustering 
results obtained by these algorithms are highly relevant (dependent) to the types of distance used.  

Generally, Euclidean and Mahalanobis types of distance are the most commonly used types by clustering 
algorithms. However, studies have shown that for many problems, the widely used distance metrics, e.g., 
Euclidean distance, city block distance and their generalization, Minkowski distance as well as the Mahalanobis 
distance are less effective [4]. Cosine similarity, despite of being a pseudo-metric, is more frequently used in 
very high dimensional problems, e.g., natural language processing [30], speech processing [31] because it does 
not suffer from the so-  [4], [5]. Other popular similarity measures include 
Jaccard coefficient, Pearson correlation coefficient [32]. However, similarity measures are not full metrics, and 
they can hide information and be misleading [33]. There are also hybrid distances proposed for clustering the 
mixed-type data, namely, the data with interval and categorical variables [34]. However, defining such a 
distance function is usually very challenging. In short, choosing the best distance is always problem-dependent, 
and it requires expert knowledge.  

Another frequently occurring problem directly related to the effectiveness of distances is the highly 
imbalanced scales of different attributes/features of the dataset. If some of the attributes/features have much 
larger scales, they will overwhelmingly squeeze the role of other attributes/features during the calculation of the 
selected distances. As a result, the imbalances may cause significant difficulties in clustering. To solve this 
problem, the common practice is to employ attribute/feature re-scaling techniques, e.g., normalization, 
standardization [3], as pre-processing. 

There are also some methods proposed to learn a distance metric from data to boost the performance of 
clustering or classification [35] [37]. However, the learning process is computationally expensive due to the 
iterative search for the optimal solution, and the learnt distance metric is not meaningful for a different problem. 
Prior knowledge about the problem is also required in order to perform the distance metric learning. 

Furthermore, it is very difficult to judge the quality of the clustering. There have been many measures 
proposed for evaluating the quality of clustering results, and the most well-known ones include: Silhouette 
Coefficient [38], Calinski-Harabasz index [39], Davies-Bouldin index [40], etc. However, they use some types 



 
 

of distance to measure the spatial separation between data samples and cluster centres, which raises the question 
of the objectiveness and correctness of these quality measures because they can give very different judgements 
on the quality of a clustering result with different distance types. It is also possible to objectively measure the 
quality by using the Rand index [41] or Purity [2], [42] and the ground truth, namely, the actual class labels of 
the data samples. However, in many real-world applications, ground truth is usually an extremely valuable but 
scarce resource [43]. Without the ground truth, there is no proper way to check whether clusters are correctly 
created. 

There are two data partitioning algorithms introduced recently that deserve special attentions. One of them is 
the self-organized direction-aware data partitioning (SODA) algorithm [7]. Unlike other clustering algorithms, 
the SODA algorithm involves a (linear) combination of a distance metric and a cosine dissimilarity-based 
component to estimate both, the spatial and angular divergences of the data. Therefore, it utilizes two types of 
divergence information, namely, spatial and angular, for data partitioning at the same time. The SODA 
algorithm, firstly, projects data samples onto a number of direction-aware planes based on their spatial and 
angular divergences. Then, prototypes are identified from the direction-aware planes as the local maxima of the 
data densities (both, spatial-based and angular-based), and data clouds are formed around them partitioning the 
data space. The other algorithm is the autonomous data partitioning (ADP) [2]. The ADP algorithm introduces 
for the first time the ranking operation to data partitioning. ADP identifies the prototypes from data by rank-
ordering the data samples in terms of their data density value and mutual distances. Then, it iteratively filters out 
the more meaningful prototypes as the local maxima of global data densities and forms data clouds afterwards. 
The ideas of both, SODA and ADP algorithms are innovative, but they still fail to avoid and minimize the 
influence of the distances on the partitioning result.  

Clustering is an unsupervised machine learning technique for recognising the unknown patterns behind the 
data in an exploratory manner. As it was stated in Section 1, selecting a proper distance measure for a clustering 
algorithm is one of the preconditions for obtaining a meaningful result, and this requires prior knowledge. 
However, in many real-world problems, prior knowledge is very limited. Learning a distance metric from data 
is practically impossible with a poor understanding of the problem, and, thus, one has to choose an existing, 
well-known and easy-to-use distance measure instead. With different types of distance, the clustering results 
obtained by a clustering algorithm can vary a lot. In addition, involving attribute/feature re-scaling techniques 
for pre-processing usually results in an entirely new partitioning. It is practically impossible to tell which 
distance measure or pre-processing technique enables the clustering algorithm to perform the best based on the 
very limited prior knowledge, 

To address these issues, a feasible solution is to minimize the role of distance measures in the clustering. 
Following this concept, we propose the ROC algorithm, which is insensitive to the type of distance metric used 
as well as to the imbalances in the scales of the data attributes/features thanks to its per-attribute/feature ranking 
operating mechanism. Moreover, the ROC algorithm is free from user- and problem- specific parameters and 
requires no prior assumptions to be made. The proposed algorithm can be very useful under the circumstances 
where prior knowledge is very limited. These merits show the very strong potential of the ROC algorithm in 
solving real-world problems.  

In the next sections of this paper, the proposed ROC algorithm will be descripted in detail. 

The ROC algorithm starts by applying the ranking operation to each attribute/feature of data for extracting 
the ensemble properties. Then, it aggregates the information obtained separately from each attribute/feature for 
estimating the multimodal distribution. In the end, data clouds are formed using the local peaks of the 
multimodal distribution as prototypes to partition the data space. The main procedure of the proposed ROC 
algorithm is given by Fig.1 in the form of a flowchart. 



 
 

 

Fig. 1. The main procedure of the Rank Operation-Based Clustering (ROC) algorithm 

 

As it is depicted in Fig. 1, the ROC algorithm performs clustering through the following main steps: 

Step 1. Calculate per-attribute/feature pair-wise distances from the data; 

Step 2. Rank-order the pair-wise distances and transform the ranking indices into ranking matrices; 

Step 3. Filter the ranking matrices and obtain the sparse ranking matrices; 

Step 4. Calculate the cumulative sparse ranking at each data sample; 

Step 5. Identify the local maxima of cumulative sparse ranking; 

Step 6. Create a Voronoi tessellation with the local maxima and form data clouds. 

The detailed algorithmic procedure of each step is given in the following sub-section. 

First of all, let us define the static dataset in the N-dimensional real data space NR as  1 2, ,..., KK
x x x x

, 1 2, ,...,
TN N

k k k kx x x Rx  , where the subscript k  denotes the time instance at which kx  is observed. The 

static dataset 
K

x  can be further expressed by a N K  dimensional matrix: 

1 1 1 1
1 2 1
2 2 2 2
1 2 1

1 2 1

1 1 1 1
1 2 1

1 2 1

, , ..., ,

K K

K K

K K K

N N N N
K K

N N N N
K K N K

x x x x

x x x x

x x x x

x x x x

X x x x x                                                                      (1) 

Step 1  



 
 

Considering the thi ( 1,2,...,i N ) attribute/feature of the dataset 
K

x , namely, the thi row of  KX (equation 

(1)) denoted by 1 2 1
, , ,i i i i

K K K
x x xX , the pair-wise distances between any two different elements of  i

KX  can 

be formulated in the following matrix form: 

1,2 1, 1 1,

1,2 2, 1 2,

1, 1 2, 1 1,

1, 2, 1,

0

0

0

0

i i i
K K

i i i
K K

i

i i i
K K K K
i i i

K K K K K K

d d d

d d d

d d d

d d d

d                                                                                                   (2) 

where ,
i i i
k j k jd x x  denotes the most widely used Euclidean distance between i

kx  and i
jx  ( k j and 

, 1,2,...,k j K ). However, it has to be stressed that 
,

i
k jd  can be the distance metric of any type, and the result 

will not change due to the ranking operation (the theoretical proof will be presented in subsection 3.3). The pair-

wise distance matrix, id can be further expressed in a compact form as the following vector: 

 11,2 1,3 1, 2,3 2, 1, 1
2

,..., , ,... ,, ,i i i i i i i
K KK K K K Kd d d d d dd                                                                                        (3) 

By applying the same principle to all N attributes/features of  
K

x , one is able to obtain a set of pair-wise 

distance matrices and the corresponding vectors: 1 2, ,..., Nd d d  and 1 2, ,..., Nd d d , respectively. 

For example, considering a dataset consisting of four data samples with two attributes/features, 

1 2 3 44
, , ,x x x x x  ( 1 0,0.8

T
x , 2 0.6,0.2

T
x , 3 0.4,0.7

T
x  and 4 0.9,1.2

T
x ), one can obtain two 

pair-wise distance matrices (one per attribute/feature), 1d  and 2d : 

1 1 1
1,2 1,3 1,4

1 1 1
1,2 2,3 2,41
1 1 1
1,3 2,3 3,4
1 1 1
1,4 2,4 3,4 4 4

0 0.6 0.4 0.90

0.6 0 0.2 0.30

0.4 0.2 0 0.50

0.9 0.3 0.5 00

d d d

d d d

d d d

d d d

d  and 

2 2 2
1,2 1,3 1,4

2 2 2
1,2 2,3 2,42
2 2 2

1,3 2,3 3,4
2 2 2

1,4 2,4 3,4 4 4

0 0.6 0.1 0.40

0.6 0 0.5 1.00

0.1 0.5 0 0.50

0.4 1.0 0.5 00

d d d

d d d

d d d

d d d

d , 

and two pair-wise distance vectors:   

1 1 1 1 1 1 1
1,2 1,3 1,4 2,3 2,4 3,4 1 61 6

, , , , , 0.6, 0.4, 0.9, 0.2, 0.3, 0.5d d d d d dd  and 

 2 2 2 2 2 2 2
1,2 1,3 1,4 2,3 2,4 3,4 1 61 6

, , , , , 0.6, 0.1, 0.4,0.5, 1.0, 0.5d d d d d dd . 

Step 2  

The elements of the pair-wise distance vector, id ( 1,2,...,i N  ) are ranked in a descending order in terms 

of their values, and a new vector with the rank-ordered elements is obtained: 

 11 2 1 2
1

2

,...,,i i i i
K KK Kd d dd                                                                                                                       (4) 

If there is , ,
i i
k j m nd d  ( k m  and j n ), ,

i
k jd  is ranked before ,

i
m nd  in id . 



 
 

Based on the pair-wise distance vector and the corresponding rank-ordered vector, id  and id , the ranking 

indices of the elements of id  can be obtained, which is given by the following ranking index vector, ir : 

11,2 1,3 1, 2,3 2, 1, 1
2

,..., , ,... ,, ,i i i i i i i
K KK K K K Kr r r r r rr                                                                                                (5) 

where ,
i

k jr  is the corresponding ranking index of  ,
i
k jd  in id ; ,

1
1,2,3,...,

2
i

k j

K K
r   and , ,

i i
k j m nr d  if  

k m  or j n . 

Further, ir  can be transformed back to a pair-wise ranking matrix in a similar form as equation (2): 

1,2 1, 1 1,

1,2 2, 1 2,

1, 1 2, 1 1,

1, 2, 1,

0

0

0

0

i i i
K K

i i i
K K

i

i i i
K K K K
i i i
K K K K K K

r r r

r r r

r r r

r r r

r                                                                                                       (6) 

By applying the same procedure to all the attributes/features, we can finally obtain N  different ranking 

matrices like the above one: 1 2, ,..., Nr r r , which are composed of ranking indices (only integers) derived from 

the pair-wise distance matrices calculated per attribute/feature. 

Let us continue the previous example. With 1d  and 2d , the corresponding rank-ordered vectors 1d  and 2d  

are expressed as: 

1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 1,4 1,2 3,4 1,3 2,4 2,3 1 61 61 6

, , , , , , , , , 0.9, 0.6, 0.5, 0.4, 0.3, 0.2,d d d d d d d d d d d dd   and 

 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 2,4 1,2 2,3 3,4 1,4 1,3 1 61 61 6

, , , , , , , , , 1.0, 0.6, 0.5, 0.5, 0.4, 0.1,d d d d d d d d d d d dd . 

Accordingly, the ranking index vectors are obtained as:  

1

1 6
2, 4, 1, 6, 5, 3r  and 2

1 6
2, 6, 5, 3, 1, 4r . 

and the pair-wise ranking matrices are given as follows: 

1

4 4

0 2 4 1

2 0 6 5

4 6 0 3

1 5 3 0

r  and 2

4 4

0 2 6 5

2 0 3 1

6 3 0 4

5 1 4 0

r . 

Step 3  

Based on the obtained ranking matrices: 1 2, ,..., Nr r r , one can calculate the cumulative ranking at each data 

sample denoted by kx  ( 1,2,...,k K ) using the following equation: 

1 1

,
K N

i
k

j i

k jrx                                                                                                                                     (7a) 

where ,i k jr  stands for the element at the thk  row, thj  column of  the ranking matrix, ir , and there is: 

,

,

,
i

k ji
i
j k

r k j
k j

r k j
r                                                                                                                                   (7b) 



 
 

Cumulative ranking aggregates the information of spatial proximity between the data samples estimated from 
each attribute/feature of the data. However, without using the actual distance values for calculation, it uses the 
integer ranking indices instead, and, thus, it is able to ignore the unnecessary details. Cumulative ranking is 

closely related to the concept of cumulative proximity, kq x  [44], [45], which is defined as a measure of 

mutual positions of the data samples. If city block distance is used, kq x  has a very similar form as the 

cumulative ranking:

2

1 1

K N
i i

k k j
j i

q x xx                                                                                                                                   (8) 

One may also consider the cumulative ranking as a form of cumulative proximity by comparing equations 
(7a) and (8). Similarly, the cumulative ranking also results in a unimodal distribution. The data sample having 
the highest value of 

kx  is the one that determines the peak of the data distribution. This is because that the 

sum of the distances between this data sample and all other data samples within the data space are the smallest, 
and, thus, the sum of the ranking indices between the centre and all other data samples are the largest. 
Comparatively, the values of the cumulative ranking of the data samples that are located at the edge of the data 
space will be much lower. An example of the cumulative ranking of all the data samples is depicted in Fig. 2, 
where the A1 dataset is used [46]. 

 

 

(a) 
K

x                                                           (b) x  

Fig. 2. The cumulative ranking x of A1 dataset 

 

In order to extract the multimodal distribution of the ranking from data, one can transform the ranking 

matrices 1 2, ,..., Nr r r  into sparse matrices 1 2, ,..., Ns s s , which has the similar form to equation (6) ( 1, 2,...,i N  ): 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

i i i

i i i
i

i i i

K K

K

K

K K K K

s s s

s s s
s

s s s

                                                                                                  (9) 

and, the transformation is done by a filtering operation using the following rules ( , 1,2,...,k j K ): 

, , ,i i i
ok j k j if k j Ts r r                                                                                                             (10a) 

, 0 ,i i
ok j if k j Ts r                                                                                                                       (10b) 



 
 

where ,i k js   stands for the element at the thk  row, thj  column of the K K  dimensional sparse matrix, is ;

oT  is the threshold controlled by the free parameter, a , which is calculated by the following equation: 

1

2o

K K
T a                                                                                                                                             (11) 

and there is 0,1a . Apparently, the higher a  is, the sparser 1 2, ,..., Ns s s  will be.  

Following the previous example, we filter the ranking matrices 1r  and 2r  with the threshold 3oT , namely, 

0.5a , and obtain the sparse ranking matrices as follows: 

1

4 4

0 0 4 0

0 0 6 5

4 6 0 3

0 5 3 0

s  and 2

4 4

0 0 6 5

0 0 3 0

6 3 0 4

5 0 4 0

s . 

 

Step 4 

Similarly to equation (7a), one can obtain the cumulative sparse ranking at each data sample based on the 

sparse ranking matrices, 1 2, ,..., Ns s s , denoted by kx  ( 1,2,...,k K ): 

1 1

,
K N

i
k

j i

k jsx                                                                                                                                     (12) 

Combining equations (10a), (10b) and (12) one can see that the lower a  is, the closer x  is to x . 

While, the higher a  is, the closer x  is to a zero matrix. In comparison with x , the cumulative sparse 

ranking is able to disclose the multimodal distribution of the data. An example of the cumulative sparse ranking 
of all the data samples from the A1 dataset [46] is depicted in Fig. 3, where a  is set to be 0.3,a 0.5 , 0.7  and 

0.9 , respectively. Comparing Figs. 3(a)-(d), one can conclude that x  is closer to a unimodal distribution 

with a smaller value of a , meanwhile, x is able to give more details of the multimodal distribution with a 

larger a . 

However, it has to be stressed that a  is not a user- or problem-specific parameter, and its value can be 

determined without any prior knowledge of the problem. The value of a  influences the granularity of the 

clustering result obtained by the proposed algorithm. The higher a  is, the more detailed partitioning the ROC 

algorithm obtains. This will be demonstrated through numerical examples in section 4.  

In the rest of this paper, we use 0.9a  by default except when it is specifically declared otherwise. 

 



 
 

 

(a) 0.3a                                                                       (b) 0.5a  

 

(c) 0.7a                                                                    (d) 0.9a  

Fig. 3. The cumulative sparse ranking x of A1 dataset 

 

Step 5 

In this step, the local maxima are identified from x  in an efficient way, and they will be used as 

prototypes to partition the data into data clouds forming a Voronoi tessellation [47] in the next step. In contrast 
to the conventionally defined clusters, data clouds do not have regular shapes, e.g., hyper-sphere, or hyper-
ellipsoid, and pre-defined parameters, but are formed from data samples around the nearest prototypes directly 
representing the local ensemble properties [48]. 

Firstly, for each data sample kx  ( 1,2,...,k K ), we identify the M nearest data samples to it by the 

following equation: 

1 2

*

1 2
1,..., 1, 1,...

, ,..., ; , ,..., arg max ,
Mn n n M k jk

j k k K
n n n Rx x x x x x                                                           (13) 

where 1 2, ,..., Mn n n  are the indices of the M nearest data samples; ,k jR x x  is the sum of ranking indices of 

the per-attribute/feature distances between jx and kx : 

 
1

, ,
N

i
k j

i

R k jrx x                                                                                                                                  (14) 

,i k jr  is the element at the thk  row, thj  column of  the ranking matrix ir , and its value is decided by 

equation (7b); M  is an integer value determining the amount of data samples that are potentially close to kx . 



 
 

Then, all the local maxima, denoted by p ,  are identified by the following rule ( 1,2,...,k K ): 

**

*max
k

k kIF THEN
x x

x x p x                                                                                         (15) 

The local maxima identified from the cumulative sparse ranking x  in the example given by Fig. 3 with 

0.9a  are depicted in Fig. 4, where the red dots represent the identified local maxima. The value of M  is set 

to be 5 , 10 , 15 and 20 , respectively.  

In general, the smaller M is, the more detailed partitioning the proposed ROC algorithm is able to achieve. 
However, it has to be stressed that M is not a user- and problem- specific parameter. In this paper, we use 

10M  by default.   

 

 

(a) 5M                                                                    (b) 10M  

 

(c) 15M                                                                    (d) 20M                                                                                                                              

Fig. 4. The identified local maxima (red dots) from the cumulative sparse ranking x  

 

Step 6 

Finally, a Voronoi tessellation is created and data clouds, denoted by C , are formed by using the identified 

local maxima p  as their prototypes with the following rule ( 1,2,...,k K ): 

; arg max ,
m

n n k k mn R
x p

C C x x x                                                                                                    (16) 



 
 

where 
1

, ,
N

i
k m

i

R m krx x ; m  is the original index of mx  in 
K

x .  

The final clustering result of the example given by Fig. 4(b) is depicted in Fig. 5, where the dots in different 
colours represent data samples of different data clouds; the dots in red are the local maxima. 

 

 

Fig. 5. The clustering results of A1 dataset 

 

In this subsection, the proof for the distance-type-insensitivity of per-attribute/feature ranking operation is 
given.  

For a full distance metric, it has to satisfy the non-negativity and subadditivity conditions [49], namely, 
inequalities (17a) and (17b): 

Non-negativity: , 0d x y                                                                                                                          (17a) 

Subadditivity: , , ,d x y d x z d y z                                                                                                    (17b) 

In the proposed ROC algorithm, the pair-wise distance matrix (equation (2)) is calculated on each 

attribute/feature of the data separately for the ranking operation. Assuming that for the thi attribute/feature of the 

data, the following inequalities (18a) and (18b) are satisfied for Euclidean distance ( , , , 1,2,...,k j m n K  and  

k m  or j n ): 

, ,
i i i i i i
k j k j m n m nd x x d x x                                                                                                                  (18a) 

, ,
i i

k j m nr r                                                                                                                                                        (18b) 

One can always find a point denoted by y  on the thi  dimension of the data space, NR  that meets the 

following equation: 

i i i i i i
k j m m n nx x x y x x x y                                                                                                       (19a) 

With any other types of distance metric, the following inequality is also satisfied thanks to the non-negativity 
and subadditivity conditions (equations (17a) and (17b)): 

, , , ,i i i i i i
k j m m n nd x x d x y d x x d x y                                                                                                 (19b) 



 
 

and, thus, the rank indices of ,
i
k jd  and ,

i
m nd  still satisfy the inequality (18b). 

This indicates that, the values of elements of id may be different if different types of distance metrics are 

used, but their ranking orders in id  remain the same. Therefore, for any type of distance metric used, the 

proposed ROC algorithm will always obtain the same ranking sequence, ir .  

-attribute/feature ranking operation gives the following very 
important advantages to the algorithm: 

1) it is insensitive to the type of distance metrics used; 

2) it is insensitive to the imbalanced attribute/feature scales; 

and, as a consequence, normalization and standardization are unnecessary for the ROC algorithm. 

The majority of the computations take place during the first three steps of the ROC algorithm. The 
computational complexity of calculating the pair-wise distance sequences, ranking and filtering for one 

attribute/feature is 2O K  . Thus, for the data with N  attributes/features, the overall computational complexity 

of this step is 2O N K . The computational complexity of the remaining steps of the ROC algorithm is linear 

in regards to the number of data samples in the static data space, namely, O K . 

Therefore, the overall complexity of the proposed ROC algorithm is 2O N K . 

In this section, numerical examples based on well-known benchmark datasets are presented to demonstrate 
the general concept and principles of the proposed ROC algorithm. 

The following benchmark datasets are involved in the numerical experiments: 

1) A1 dataset [46], mentioned earlier; 

2) A2 dataset [46]; 

3) A3 dataset [46]; 

4) Steel plates faults dataset [50]; 

5) Cardiotocography dataset [51]; 

6) Wine quality dataset [52]; 

7) Multiple feature dataset [53];  

8) Optical recognition of handwritten digits dataset [54]; 

9) Occupancy detection dataset [55]. 

The details of these datasets are given in Table 1. 

Since the proposed ROC algorithm is for offline application, its performance is compared dominantly with 
the popular offline clustering algorithms. Nonetheless, some well-known evolving algorithms are also involved 
for a comprehensive comparison. In this study, the following clustering algorithms are used for comparison: 

1) DBSCAN algorithm [20]; 

2) Mean-shift algorithm [23]; 

3) Subtractive algorithm [21]; 



 
 

4) Affinity propagation algorithm [13]; 

5) Nonparametric mode identification algorithm [56]; 

6) Nonparametric mixture model algorithm [57]; 

7) SODA algorithm (offline version) [7]; 

8) ADP algorithm (both, offline version and evolving version) [2]; 

9) eClustering algorithm [58]; 

10) Evolving local means algorithm [42]. 

The settings of these algorithms used in the numerical experiments are given in Table 2. 

 

Table 1. Details of the benchmark datasets 

Dataset Number of classes Number of samples 
Number of 

attributes/features 
A1 20 3000 2 +1 class label 
A2 35 5250 2+1 class label 
A3 50 7500 2+1 class label 

Cardiotocography 10 2126 21+1 class label 
Steel plates faults 7 1941 27+1 class label 

Wine quality a 7 6497 11+1 class label 
Multiple feature 10 2000 649+1 class label 

Optical recognition of 
handwritten digits 

10 5620 62+1 class label 

Occupancy detection b 2 20560 5+1 class label 
                 a Two sub-datasets related to red and white wines are combined; 
                 b The time stamps in the original dataset have been removed. 

 

In order to objectively evaluate the quality of the clustering results, the following measures are used: 

1)  number of data clouds/clusters (C), which should be equal to or larger than the number of classes (NC) in 
the dataset.  

2) Rand index (R) [41], which is used for measuring the accuracy of the clustering results. The Rand index is 
formulated as [59]: 

2 2 2
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                                                                                                                  (20) 

where is  is the number of data samples of the thi class ( 1,2,..., Ci N ); js  is the number of data samples that 

are grouped in the thj  data cloud/cluster ( 1,2,...,j C ); ,i js  denotes the number of data samples of the thi class 

that are grouped in the thj  data cloud/cluster. The value range of Rand index is 0,1 , and the value should be 

as close to 1 as possible. The higher R is, the better the clustering result is. 

3) Purity (P) [2], which is also an index for measuring the accuracy of the clustering results. The Purity of a 
particular clustering result is calculated by the following equation: 
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                                                                                                                                                       (21) 



 
 

where D
js  is the number of data samples with the dominant class label in the thj  data cloud/cluster (

1,2,...,j C ). The value range of Purity is 0,1 , and its value should be as close to 1 as possible. A higher 

value of Purity indicates that the clustering algorithm shows stronger separation ability. 

4) execution time (texe), which directly indicates the computational efficiency of the algorithms, and its 
value should be as small as possible. 

 

Table 2. Settings of the comparative algorithms 

Algorithm Free Parameter(s) Experimental Setting 

DBSCAN 
1) cluster radius, r; 

2) minimum number of data samples within the 
radius, k; 

1) the value of the knee point of the 
sorted k-dist graph; 

2) k=4 [20]; 

MS 
1) bandwidth, p; 

2) kernel function type; 
1) p=0.15; 

2) Gaussian kernel; 
Sub initial cluster radius, r; r=0.3 [21]; 

AP 

1) maximum number of iterative refinements; 
2) cumulative number of iterations for 

monitoring the exemplar decisions; 
3) dampening factor, ; 

1) 200 ; 
2) 20 ; 

3) 0.5 [13]; 

NMI 
1) bandwidth sequence; 

2) prior data distribution model; 

1) 0.1 ,0.2 ,...,2.0 ; is the 

maximum value of the standard 
deviations calculated from each 
attribute/feature of the data [56]; 

2) Gaussian distribution; 

NMM 
1) prior scaling parameter, ; 

2) maximum number of iterative refinements; 
3) prior data distribution model; 

1) 1; 
2) 200; 

2) Gaussian distribution; 
SODA granularity, g; g=6 [7] 
ADP none;  

eClustering 
1) learning parameter, ; 

2) spread, r; 
3) membership threshold, ; 

1) 0.5 ; 

2) 0.5r ; 
3) 1e [58]; 

ELM initial cluster radius, r; 0.15r [42] ; 
(DBSCAN: DBSCAN algorithm; MS: mean-shift clustering algorithm; Sub: subtractive algorithm; AP: affinity propagation 
algorithm; NMI: nonparametric mode identification algorithm; NMM: nonparametric mixture model algorithm; SODA: self-

organized direction-aware data partitioning algorithm; ADP: autonomous data partitioning algorithm; eClustering: 
eClustering algorithm; ELM: evolving local means algorithm) 

 

The reason for using the Rand index and Purity as the quality measures in the numerical examples of this 
paper is that both measures are calculated based on the obtained cluster indices and the ground truth. Most of 
other well-known quality indicators, e.g., Silhouette Coefficient [38], Calinski-Harabasz index [39], Davies-
Bouldin index [40], use some types of distance measure for evaluation.  

However, both quality measures share the same deficiency that when the number of data clouds/clusters (C) 
tends to be closer to the number of data samples (NS) in the dataset, they would give higher values, but, in 
practice, having almost as many clusters as data samples is highly questionable. To avoid this problem, we 
further involve another criterion that C should be equal or larger than the number of classes (NC), but smaller 
than 5% of NS, namely, 

5%c SN C N                                                                                                                                             (22) 

Otherwise, the clustering results are viewed as invalid ones. 



 
 

In the numerical examples presented in this section if it is not specifically declared, the two parameters of the 
ROC algorithm are set as: 0.9a  and 10M . However, we have to stress that a  and M  are not problem- 

and user- specific parameters and require no prior knowledge to be determined.  

In this subsection, the influence of the parameters a  and M  on the performance of the proposed ROC 

algorithm is investigated. In the following numerical experiments, A1, steel plates faults and cardiotocography 
datasets are used.  

The first numerical experiment studies the influence of a  on the clustering results. In this experiment, the 

value of a  changes from 0.4  to 0.98 , and the relationship between different values of a  and the performance of 

the ROC algorithm in terms of number of data clouds and Rand index are depicted in Fig. 6, where 10M . 

The second numerical experiment investigates the influence of different values of M  on the clustering 
results, where the value of M  changes from 3  to 25 . The relationship between different values of M  and the 

performance of the ROC algorithm in terms of number of data clouds and Rand index are depicted in Fig. 7. In 
this example, 0.9a . 

 

 

(a) Number of data clouds                                         (b) Rand index 

Fig. 6. The influence of different values of a  on the clustering results  

(C: number of data clouds/clusters; R: Rand index; CG: cardiotocography dataset; SPF: steel plates faults dataset) 

 

 

(a) Number of data clouds                                         (b) Rand index 

Fig. 7. The influence of different values of M  on the clustering results  

(C: number of data clouds/clusters; R: Rand index; CG: cardiotocography dataset; SPF: steel plates faults dataset) 

 



 
 

From Figs. 6 and 7 one can see that different values of a  and M  (especially, values of 0.9a  and 20M ) 

have only a limited influence on the quality of the clustering results. However, they influence the level of 
granularity of the partitions. As it has been stated before, both a  and M  are not user- and problem-specific 

parameters and can be defined without prior knowledge of the problem.  

In this subsection, the influence of the distance types on the clustering is investigated. The A2, A3 and wine 
quality datasets are used for the numerical experiments. The obtained results by the ROC algorithm are 
tabulated in Table 3, where the i) Euclidean distance (which is the same as the city block distance in 1D space), 
ii) standardized Euclidean distance, iii) Minkowski distance (here, we use the L3 norm) and iv) Chebyshev 
distance are used respectively. We also show the clustering results obtained on the A3 dataset in Fig. 8 as a 2D 
visualization. 

As one can see from the Table 3 and Fig. 8, there is no difference in the clustering results when different 
types of distance are used, which demonstrates the main advantages of the proposed approach: 

1) the distance-type-invariance and; 

2) removing the need for normalizing or standardizing the data. 

 

Table 3 Performance comparison using different types of distance 

Dataset Distance C R 

A2 

Euclidean 96 0.9861 

Standardized Euclidean 96 0.9861 
Minkowski 96 0.9861 
Chebyshev 96 0.9861 

A3 

Euclidean 104 0.9913 
Standardized Euclidean 104 0.9913 

Minkowski 104 0.9913 
Chebyshev 104 0.9913 

WQ 

Euclidean 161 0.6699 
Standardized Euclidean 161 0.6699 

Minkowski 161 0.6699 
Chebyshev 161 0.6699 

(C: number of data clouds/clusters; R: Rand index; WQ: wine quality dataset) 

 

 

 

                         (a) Euclidean distance                                  (b) Standardized Euclidean distance 



 
 

 

                  (c) Minkowski  (L3 norm)                                                 (d) Chebyshev 

Fig. 8. Clustering results with different types of distance 

 

In this subsection, we test the performance of the proposed ROC algorithm on benchmark datasets and 
further compare it with alterative clustering algorithms. For a better evaluation, all the numerical experiments 
are performed 20 times by randomly re-ordering the data samples, and the clustering quality measures are 
reported in the form of: 

 mean standard deviation                                                                                                                           (23) 

Firstly, the results obtained by the comparative algorithms on A1, A2, A3, steel plates faults, 
cardiotocography and wine quality datasets are given in Table 4, where the best clustering results on each 
benchmark dataset are highlighted, and the invalid results are presented in brackets. 

 

Table 4. Statistical performance comparison on benchmark datasets 

Dataset Algorithm C R P texe 

A1 

ROC 4     
DBSCAN 26     

MS (2 ) (0.5230 ) (0.1000 0.0000) (0.10 0.01) 
Sub (9 ) (0.9031 0.0000) (0.4480 0.0000) ( ) 
AP (  (0.9565 0.0050) (0.8827 0.0474) ( ) 

NMI (7 ) (0.8650 0.0000) (0.3500 0.0000) (7.41 0.33) 
NMM ( ) ( ) ( ) (132.14 12.84) 
SODA  (0.9156 0.0000) (0.4483 0.0000) (0.46 0.06) 
OADP     
EADP 28.65  0.9670    

eClustering ( ) ( ) ( ) ( ) 
ELM ( ) ( ) ( ) ( ) 

A2 

ROC     
DBSCAN     

MS     
Sub     
AP     

NMI     
NMM     
SODA     
OADP     
EADP     

eClustering     



 
 

ELM     

A3 

ROC     
DBSCAN 0.00    

MS     
Sub     
AP     

NMI     
NMM     
SODA     
OADP     
EADP     

eClustering     
ELM     

SPF 

ROC     
DBSCAN     

MS     
Sub     
AP     

NMI     
NMM     
SODA     
OADP     
EADP     

eClustering     
ELM     

CG 

ROC     
DBSCAN     

MS     
Sub     
AP 44.00 0.00 0.8330 0.0000   

NMI     
NMM     
SODA     
OADP     
EADP     

eClustering    (  
ELM     

WQ 

ROC     
DBSCAN     

MS     
Sub     
AP     

NMI     
NMM     
SODA     
OADP     
EADP     

eClustering     
ELM     

(C: number of data clouds/clusters; R: Rand index; P: Purity; texe: execution time; CG: cardiotocography dataset; SPF: steel 
plates faults dataset; WQ: wine quality dataset; ROC: ranking operation-based Clustering algorithm; DBSCAN: DBSCAN 

algorithm; MS: mean-shift clustering algorithm; Sub: subtractive algorithm; AP: affinity propagation algorithm; NMI: 
nonparametric mode identification algorithm; NMM: nonparametric mixture model algorithm; SODA: self-organized 
direction-aware data partitioning algorithm; OADP: autonomous data partitioning algorithm (offline version); EADP: 

autonomous data partitioning algorithm (evolving version); eClustering: eClustering algorithm; ELM: evolving local means 
algorithm) 

 



 
 

As one can see from Table 4, the ROC algorithm is able to outperform the state-of-the-art approaches on the 
majority of the involved benchmark datasets. The advantages of the proposed algorithm are more obvious on 
datasets with complex structure.  

Meanwhile, one may notice the limitations of the ROC algorithm from the same table that the computational 
efficiency of the proposed algorithm deteriorates quickly with the increase of the dimensionality and cardinality 
of the dataset. This is because of the per-attribute/feature ranking operation used in the ROC algorithm. The 
ROC algorithm needs to calculate the ranking matrix on each attribute/feature of the dataset.  

Nonetheless, we have to stress that large-scale datasets are always challenging for the clustering problems. 
One can involve feature selection techniques to reduce the dimensionality of the data, e.g., principle component 
analysis (PCA) [60], which can speeds up the computation process. 

In the following examples, we use the multiple feature, optical recognition of handwritten digits and 
occupancy detection datasets to demonstrate the concept. Since the dimensionality and/or cardinality of the 
benchmark datasets involved are very high, PCA is used for dimensionality reduction. The nine clustering 
algorithms involved use the ( 1p ) principle components of the data samples, where p  corresponds to the first 

p  scores with the sum above 90%, which means that the principle components have contained the most of the 

spatial information of the data. The results are tabulated in Table 5, where one can see that the proposed ROC 
algorithm outperforms most of the comparative algorithms. 

 

Table 5. Statistical performance comparison on the principle component analysis (PCA) scores of the large-scale 
benchmark datasets  

Dataset Algorithm C R P texe 

MF 

ROC 41  0.9035  0.6270   
DBSCAN (4 ) ( ) (0.1230 ) ( ) 

MS (3 ) ( ) ( ) (0.0 ) 
Sub (5 ) (0.7973 ) (0.3745 ) ( ) 
AP (1280 ) ( ) ( ) ( ) 

NMI (2 ) (0.4940 ) (0.1965 ) ( ) 
NMM (3 ) ( ) ( ) ( ) 
SODA     
OADP     
EADP     

eClustering  ( ) ( ) ( ) 
ELM  ( ) ( ) ( ) 

ORD 

ROC 115  0.0000 0.0000 84.84 19.10 
DBSCAN (5 ) (0.3596 0.0001) 0.0000) (2.87 0.14) 

MS (3676.30 5.85) (0.9049 0.0001) 0.0000) (11.09 0.51) 
Sub (4447 ) 0.0000) 0.0000) (13.82 0.80) 
AP 195  0.9054 0.0000 0.0000 52.49 1.44 

NMI (5611  0.0000) 0.0000) (433.85 18.37) 
NMM 58.20 3.01 0.9332 0.0018 0.9666 0.0075 1954.40 89.52 
SODA (1782 ) ( ) (0.9948 ) (6.95 0.24) 
OADP (286 ) ( ) (0.9778 ) (1.76 0.19) 
EADP ( ) ( ) ( ) ( ) 

eClustering ( ) ( ) (  ( ) 
ELM ( ) ( ) ( ) ( ) 

OD 

ROC     
DBSCAN     

MS     
Sub     
AP System Crashed 

NMI     
NMM     



 
 

SODA     
ADP     

EADP     
eClustering     

ELM     
(C: number of data clouds/clusters; R: Rand index; P: Purity; texe: execution time; MF: multiple feature dataset; ORD: 

optical recognition of handwritten digits dataset; OD: occupancy detection dataset; ROC: ranking operation-based Clustering 
algorithm; DBSCAN: DBSCAN algorithm; MS: mean-shift clustering algorithm; Sub: subtractive algorithm; AP: affinity 

propagation algorithm; NMI: nonparametric mode identification algorithm; NMM: nonparametric mixture model algorithm; 
SODA: self-organized direction-aware data partitioning algorithm; OADP: autonomous data partitioning algorithm (offline 

version); EADP: autonomous data partitioning algorithm (evolving version); eClustering: eClustering algorithm; ELM: 
evolving local means algorithm) 

 

In order to minimize the role of distance measures in clustering algorithms, this paper proposed a novel 
clustering algorithm named ROC. Instead of using the smooth, continuous operators that the current clustering 
algorithms rely on, the proposed ROC algorithm utilizes per-attribute/feature ranking operation in terms of the 
spatial divergence of the empirically observed data to disclose the ensemble properties, and, further, 
approximates the real distribution in an objective manner. Ranking operator is rarely used by other approaches, 
but it has very unique properties compared with the conventional operators. These unique properties give the 
special advantages to the ROC algorithm surpassing alternative clustering approaches: 

1) being insensitive to the type of distance metric that is used; 

2) being insensitive to the imbalanced attribute/feature scales; 

3) being free from user- and problem- specific parameters; 

4) being free from prior assumptions on data generation model. 

The second point further makes the attribute/feature rescaling techniques such as normalization and 
standardization unnecessary for the ROC algorithm. These advantages allow the ROC algorithm to produce 
objective clustering results without the requirement of prior knowledge about the problems. Therefore, the ROC 
algorithm serves as a strong clustering analysis tool for real-world problems where usually only very limited 
prior knowledge is available. 

Numerical examples on benchmark datasets have demonstrate that the ROC algorithm consistently 
outperforms other approaches in terms of the clustering quality measured by the Rand index and Purity. 
Nonetheless, numerical results also show that the computational efficiency of the ROC algorithm is relatively 
lower than the state-of-the-art approaches. 

 proposed ROC algorithm, the per-attribute/feature ranking operating mechanism is able 
to minimize the influence of the distance metrics on the clustering results. However, we have to admit that it 
also brings the deficiency of higher computational complexity. Furthermore, the current ROC algorithm is 
limited to offline applications because of this operating mechanism. As future work, we will improve the 
proposed ROC algorithm in three directions: 

1) using alternative ranking operations to speed up the computation; 

2) developing an approach to recursively update the clustering result with new data samples; 

3) developing an online version for streaming data processing. 

The first direction allows the ROC algorithm to perform clustering on high-dimensional data efficiently 
without using dimensionality reduction techniques, which may lead to a subjective result. The second and third 
directions enable the ROC algorithm to perform clustering on data streams either on the basis of the result 

 strong data analysis tool in the era 
of  
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