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Abstract

Zero-shot learning (ZSL) aims at recognizing unseen classes that are absent during the training stage. Unlike the existing
approaches that learn a visual-semantic embedding model to bridge the low-level visual space and the high-level class
prototype space, we propose a novel synthesized approach for addressing ZSL within a dictionary learning framework.
Specifically, it learns both a dictionary matrix and a class-specific encoding matrix for each seen class to synthesize
pseudo instances for unseen classes with auxiliary of seen class prototypes. This allows us to train the classifiers for
the unseen classes with these pseudo instances. In this way, ZSL can be treated as a traditional classification task,
which makes it applicable for traditional and generalized ZSL settings simultaneously. Extensive experimental results on
four benchmark datasets (AwA, CUB, aPY, and SUN) demonstrate that our method yields competitive performances
compared to state-of-the-art methods on both settings.
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1. Introduction

Deep learning greatly promotes the development of
computer vision, such as object classification, image re-
trieval, and action classification. The performances of
these tasks are usually evaluated after extensive and in-
cremental training with a large amount of labeled data.
However, real-world tasks only have a small quantity of
or even no training data, giving rise to the failure of tra-
ditional classification models under such scenarios. Aim-
ing to promote traditional classification models to recog-
nize categories with few data, Zero-Shot Learning (ZSL)
[1, 2, 3, 4, 5, 6] has attracted a lot of attention recently.

In ZSL, the training classes (seen classes) and test class-
es (unseen classes) are disjoint. Unseen object recognition
is typically achieved by transferring knowledge from seen
classes to unseen ones via a pre-defined class semantic s-
pace where both the seen and unseen classes are embedded.
To this end, each class is associated with a vector in the
class semantic space, which is called class prototype. Such
a space can be structured with class attributes [7, 8, 9], or
Word2Vec [10, 11]. Specifically, attributes are obtained by
manual annotation or automatic learning, while Word2Vec
is obtained with language processing technology on a large
text corpus.

The process of most current ZSL approaches generally
consist of two steps: 1) learning the interaction relation-
ships between the visual space and class prototype space;
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2) predicting the labels of test data with the semantic sim-
ilarities between the test visual features and the unseen
class prototypes using the learned model. Since the visual
features and the class prototypes are located in differen-
t structural spaces, most existing approaches bridge the
“heterogeneity gap” between visual and class prototype
spaces using either a linear embedding model [12, 13], a
bilinear embedding model [14, 15, 16], or a nonlinear mod-
el [17, 18].

These approaches can be indirectly compared with hu-
man being’s inferential mechanism. In fact, ZSL can be
addressed by imitating the human being’s mechanism that
recognizes a novel category. When finding a novel catego-
ry, someone tends to classify it according to the consistence
between the visual features and prior knowledge about the
unseen classes. For example, as illustrated in Fig. 1, if a
child has the prior knowledge of a horse and semantic de-
scription of “a unicorn is similar to a horse, apart from a
unicorn has a long horn on the head”, the child is very like-
ly to accurately identify a unicorn the first time it is seen.
The mechanism behind this is that the child can imagine
a synthesized virtual appearance for a unicorn based on
his/her prior knowledge.

Motivated by this observation, some recent works study
ZSL in a more direct way, i.e., treating ZSL as a tradition-
al classification task by synthesizing pseudo instances for
unseen classes. Obviously, the key challenge lies in how to
synthesize pseudo instances with prior knowledge about
the seen classes and unseen ones. For example, [19] for-
mulates it in a manifold learning framework, and [6, 20]
present a diffusion regularization to ensure the balancing
distribution of the synthesized data.
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Semantic description

A unicorn is a mythical 

creature of legend. The 

appearance of unicorn 

is similar to a horse, 

apart from a unicorn 

has a long horn in the 

head.

Horn

Horse Animals with horn

Horse

Unicorn

Figure 1: The mechanism behind human being that recognizes a
novel category. Human can identify a unicorn the first time it is seen
based on the prior knowledge of a horse and semantic description of
“a unicorn is similar to a horse, apart from a unicorn has a long horn
in the head”.

In this paper, we also propose a synthesis approach to
treat ZSL as a traditional classification task. Based on dic-
tionary learning framework, reconstruction of visual fea-
tures can be realized with the auxiliary of class prototypes
sparsely, and the class-specific properties are preserved.
Different with the existing synthesis approaches [6, 19, 20]
that synthesize unseen instances with class prototypes, our
approach synthesizes the pseudo unseen instances with not
only their corresponding class prototypes but also their
affinity seen classes.

Our approach is referred as Class-Specific Synthesized
Dictionary Model (CSSD), which consisits of two stages:
1) Pseudo instances synthesis stage. In this stage, the pro-
posed model undergoes two steps. First, it maps the seen
class prototypes into a latent space to learn a class-specific
encoding matrix for each class, and learns a dictionary
matrix simultaneously to reconstruct the visual features
within a dictionary learning framework. And then, it syn-
thesizes pseudo instances of unseen classes with the class
prototypes of affinity seen classes and their correspond-
ing encoding matrices, in which the affinity seen classes
represent those seen classes similar to unseen ones. 2)
Prediction stage. Classifiers for unseen classes are first
trained with these pseudo instances in a supervised way.
Afterwards, the labels of test data are predicted by these
classifiers. The flowchart of CSSD approach is illustrated
in Fig. 2.

In summary, the contributions of our proposed approach
can be summarized into two-fold:

• We propose a novel synthesized ZSL approach by syn-
thesizing pseudo instances of unseen classes with their
corresponding class prototypes and their affinity seen

classes.

• To effectively synthesize unseen pseudo instances, we
learn the common properties of all classes as well as
the specific properties of each class within a dictionary
learning framework. Specifically, it learns both a dic-
tionary matrix and a class-specific encoding matrix for
each seen class, so as to synthesize pseudo instances
for unseen classes with auxiliary of seen class proto-
types. In this way, ZSL is transferred to a traditional
classification task.

2. Related Work

2.1. Traditional Zero-Shot Learning

The goal of ZSL is to recognize instances from unseen
classes. And it is achieved by transferring knowledge from
seen classes to unseen ones with a kind of class prototype s-
pace. The existing ZSL approaches can be divided into two
different strategies, embedding-based ZSL and synthesis-
based ZSL.

2.1.1. Embedding-Based ZSL

Embedding-based approaches treat ZSL as a multimodal
learning problem that learns the interactions between the
visual space and the class prototype space. They are di-
vided into three sub-categories in terms of the direction
of the embedding function. The first one [12, 17] learns
an embedding function to project the visual features to
the class prototype space. With the learned function, the
test instance can obtain its class embedding vector in the
class prototype space. By measuring the semantic similar-
ities between the class embedding vector and unseen class
prototypes, the test instance is predicted with the nearest
neighbor classifier. However, these methods usually suffer
from hubness issue [21]. That is, a small number of ob-
jects (hubs) may occur as the nearest neighbour of many
categories, resulting the diminishing of nearest neighbour
method. In order to alleviate this issue, in the approaches
of the second sub-category, [13][22] apply an opposite di-
rection to map the class prototypes into the visual space.
The last sub-category [23, 24, 25] learns a bilinear embed-
ding function to project both the visual features and class
prototypes into a shared latent space, which can preserve
the compatibility scores between different modalities. The
correct class usually has a higher score than other class-
es. Among these, JEDM [24] is the most related work to
ours. The difference between JEDM and CSSD is that our
model learns class-specific encoding matrices in terms of
different classes while JEDM learns a common encoding
matrix for all classes.

2.1.2. Synthesis-Based ZSL

Synthesis-based approaches treat ZSL as a traditional
classification task by synthesizing pseudo instances with
the unseen class prototypes. The existing approaches differ
in the synthesis process. For example, [19] learns manifold
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Figure 2: The illustration of our proposed CSSD model for ZSL.
In the pseudo instances synthesis stage, it first learns a dictionary
matrix D and a class-specific encoding matrix Ci for each seen class
within a dictionary learning framework. Then, pseudo instances for
unseen class are synthesized with the help of its affinity seen class-
es together with D and Ci. In the prediction stage, classifiers for
unseen classes are first trained with these pseudo instances in a su-
pervised way. And then, the labels of test data are predicted by
these classifiers.

structure in the class prototype space based on sparse cod-
ing and then transfers the manifold information into the
visual space to synthesize pseudo instances for predicting
the labels of unseen classes. [6, 20] present a diffusion
regularization to ensure the balancing distribution of the
synthesized data. The proposed CSSD is also a synthesis
approach. Different with the existing synthesis approach-
es that synthesize pseudo unseen instances only with their
corresponding class prototypes, the proposed CSSD syn-
thesizes the pseudo instances of unseen classes with both
their class prototypes as well as their affinity seen classes.

2.2. Generalized Zero-Shot Learning

The early ZSL work has a limitation that the learned
model only can differentiate categories between unseen
classes, which violates the reality. Recently, [17, 26] extend
ZSL to a more general scene called Generalized Zero-Shot
Learning (GZSL), where the test instances are classified
into both the seen and unseen classes. [17] designs two
novelty detection strategies to differentiate unseen classes
from seen classes to help the final object classification. S-
ince no training data are available for unseen classes, the
learned model tends to classify the test instances into the
seen classes. To alleviate this issue, [26] introduces a cali-
bration factor to calibrate the classifiers for both seen and
unseen classes. And [27] uses a maximum margin frame-
work for semantic manifold-based recognition, which con-
strains the distance of vocabulary atoms to ensure the la-
beled images can be projected closest to their class proto-
types than other classes.

Table 1: The notations used in CSSD model.
Notations Description

M number of seen classes
N number of unseen classes
mi number of seen instances of i-th class
n number of unseen instances
p dimensionality of visual features
q dimensionality of class prototypes

Xi ∈ Rp×mi visual features of each seen class
Xu ∈ Rp×n visual features of unseen classes
Ai ∈ Rq×mi class prototypes of each seen class
Au ∈ Rq×N class prototypes of unseen classes

D dictionary matrix
Ci class-specific encoding matrix of i-th class
Pi class-specific embedding function of i-th class
Q embedding function of all seen classes
ai class prototype of i-th seen class
aj class prototype of j-th unseen class
µij class similarities of different classes
xpsej pseudo instances of j-th unseen class

Apse
j synthesized class prototypes

Ppse
i embedding function of selected class

3. The Proposed Model

3.1. Notations

Suppose that we have M seen classes in the train-
ing stage and N unseen classes in the testing stage, and
each class is associated with a q-dimensional class pro-
totype vector in the class prototype space. We denote
X = [X1,X2, · · · ,XM ] as a set of p-dimensional visual fea-
tures from M seen classes, where Xi ∈ Rp×mi is the visual
feature set of class i, and mi is the number of seen in-
stances of each class. Similarly, Ai ∈ Rq×mi is denoted
as the class prototypes of class i. Let {Xu,Au} denote all
the test data, in which Xu ∈ Rp×n is available only when
predicting the labels. The notations used in this paper are
summarized in Table 1.

3.2. Reconstruction of Class-Specific Dictionary Learning
Model

The traditional dictionary learning aims at learning a
dictionary matrix D to sparsely represent the input data
X with its corresponding encoding matrix C. The process
is usually followed by an l0 or l1 norm constraint on the
encoding matrix C to make it sparse. The model can be
summarized as follows:

{D∗,C∗} = argmin
D,C
‖X−DC‖2F + λ ‖C‖p + ψ (D,C,X)

(1)
where λ is a hyper-parameter, and ψ (D,C,X) stands for
discriminative functions to ensure the discrimination of D
and C.

Clearly, traditional dictionary models cannot achieve
ZSL directly since they are learned only with visual fea-
tures of seen classes. In order to achieve the knowledge
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transfer across different classes, we propose to embed the
class prototypes to the dictionary learning model to reveal
the relationships between the seen classes and unseen ones.

Due to the fact that redundant information exists in the
class prototype space, denoting the class prototypes as the
encoding matrix C directly will not ensure the sparsity of
C. To address this problem, we propose to use an embed-
ding function P to map the class prototypes into a latent
space, which preserves the semantic relationships between
different classes. And the redundant information of the
seen class prototypes is decreased when we consider the
mapped class prototypes as the encoding matrix. Inspired
by this idea, we thus have:

min
P,C
‖PA− C‖2F (2)

where the mapped class prototypes are considered as the
encoding matrix C. In this way, there is an advantage that
the l0 or l1 norm constraint on the encoding matrix C can
be removed, and the class prototypes can be embedded
into the dictionary-based approach easily to achieve the
purpose of knowledge transfer. Therefore, when integrat-
ing Eq. (2) into the dictionary learning framework, we have
an objective function as follows:

{P∗,D∗,C∗} = arg min
P,D,C

‖X−DC‖2F + ‖PA− C‖2F

+ ψ (D,P,C,X,A)
(3)

The first term in Eq. (3) is used to jointly reconstruct the
visual features of seen classes with the linear combination
between the dictionary matrix D and the mapped class
prototypes C in the latent space. The second term is to
map class prototypes into a latent space of seen classes and
unseen classes to realize knowledge transfer. And the last
term ψ (D,P,C,X,A) is a discriminative term to achieve
other constraints.

However, due to the different distribution of each class, a
global linear model is oversimple to represent complicated
relationships between visual features and class prototypes
of all seen classes. And a nonlinear model is easily overfit-
ting on the seen classes. Thus, we prefer to learn a unique
linear model for each class to better reflect their relation-
ships. Based on this idea, instead of learning a common
encoding matrix, we propose to learn a class-specific en-
coding matrix for each seen class to preserve discriminative
information. Thus, the objective function becomes:

min
D,Ci,Pi,Q

M∑
i=1

‖Xi−DCi‖2F + ‖PiAi−Ci‖2F

+ λ ‖QAi−Ci‖2F +γ ‖Pi‖2F + ‖Q‖2F , ‖di‖
2
2 ≤ 1

(4)
The first term in Eq. (4) represents the reconstruction

error in terms of different classes. D is the dictionary ma-
trix shared by all seen classes, Ci and Xi represent the
class-specific encoding matrix and visual features of each
seen class, respectively. The second and third terms are

the process of mapping class prototypes into a latent s-
pace, and the difference between them locates that the for-
mer distinguishes the discriminative information between
different classes and the latter preserves the same parts.
That is, Pi(1 ≤ i ≤ M) is thought to be the class-specific
embedding function of each seen class, and Q is consid-
ered to be an embedding function shared by all different
seen classes. And λ is a hyper-parameter to trade off the
proportion between them, which is determined through a
cross-validation strategy. The last two terms are regu-
larizers, where γ is another hyper-parameter. Besides, di
denotes the i-th atom of the dictionary matrix D. Utilizing
l2 norm to constrain the value of the atom of dictionary
matrix D is to make their distribution more balanced so
as to make sure the model more stable.

Next, we introduce the optimization approach. When
solving D, Ci, Pi and Q simultaneously, Eq. (4) is not
a convex objective function while it is convex for solving
each variable separately. The optimization can be done
according to the following steps.
(1) Fix D, Pi and Q, and update Ci

C∗
i = argmin

Ci

M∑
i=1

‖Xi −DCi‖2F + ‖PiAi − Ci‖2F

+ λ ‖QAi − Ci‖2F

(5)

This is a standard least squares problem which can get its
closed-form solution when we take the derivative of Eq. (5)
with respect to Ci and make it equal to zero:

C∗
i =

(
DT D + (1 + λ) I

)−1
(DXi + (Pi + λQ) Ai) (6)

(2) Fix D and Ci, update Pi and Q
P∗
i = argmin

Pi

M∑
i=1

‖PiAi − Ci‖2F + γ ‖Pi‖2F

Q∗ = argmin
Q

M∑
i=1

λ ‖QAi − Ci‖2F + ‖Q‖2F
(7)

Due to Pi and Q are independent, we can obtain their
closed-form solutions respectively, which are as follows:

P∗
i =

(
CiA

T
i

) (
AiA

T
i + γI

)−1

Q∗ =

(
M∑
i=1

λCiA
T
i

)(
M∑
i=1

λAiA
T
i + I

)−1 (8)

(3) Fix Ci, Pi and Q , update D

D∗ = argmin
D

M∑
i=1

‖Xi −DCi‖2F , ‖di‖
2
2 ≤ 1 (9)

The optimization of D can be achieved by introducing an
intermediate variable S :

D∗ = argmin
D,S

M∑
i=1

‖Xi −DCi‖2F , s.t.D = S, ‖si‖22 ≤ 1

(10)

4

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮



Similarities of visual features

gr
izz

ly
 b

ea
r

ki
lle

r w
ha

le
be

av
er

da
lm

ati
an

ho
rse

ge
rm

an
 sh

ep
he

rd
bl

ue
 w

ha
le

sia
m

es
e c

at
sk

un
k

m
ol

e

(a)

0.3839 0.4339
0.36 0.3114

0.3885 0.4381

0.4311 0.5614
0.6856 0.8357
0.533 0.626

0.3 0.285

0.4371 0.5697

0.3618 0.4866
0.4147 0.5452

Similarities of class prototypes

m
ol

e

gr
iz

zl
y 

be
ar

ki
lle

r w
ha

le
be

av
er

da
lm

at
ia

n
ho

rs
e

ge
rm

an
 sh

ep
he

rp
bl

ue
 w

ha
le

sia
m

es
e 

ca
t

sk
un

k

(b)

Figure 3: The consistency of similarities between visual features and
class prototypes. In both sub-figures, the height of each column is the
similarity between each class and “antelope”. And the red columns
correspond to affinity classes of “antelope”.

The solution to Eq. (10) can be obtained by ADMM al-
gorithm. When the difference between two adjacent iter-
ations is less than a threshold, the optimization process
stops.

3.3. Synthesis of Pseudo Instances

Most existing approaches directly utilize the model
learned from seen classes to predict the labels of unseen
classes [28, 29, 30]. However, since the distribution of seen
classes and unseen ones are different, the model learned
from seen classes cannot be well generalized to unseen
ones. To diminish this distribution gap, we propose to use
the combination of affinity seen classes to replace unseen
classes to train classifiers. We have the following assump-
tion.

Assumption The semantic similarities among class-
es obtained with visual features are consistent with those
obtained with class prototypes. Thus, the combination of
affinity seen classes prototypes with the embedding model
can approximate the visual features of unseen classes.

To verify the correctness of our assumption, we perform
statistical studies on AwA dataset. Take the class “ante-
lope” for example. As illustrated in Fig. 3, we can find
that the similarities between the class “antelope” and the
other ten classes with visual prototypes (i.e., the mean vi-
sual features of each class) are similar with those obtained
with the class prototypes (i.e., class attributes). Specifical-
ly, “horse”, “german shepherd”, “siamese cat” and “dal-
matian” are more similar than the others, such as “blue
whale” in visual space (i.e., Fig.3 (a)). And this close-
ness are kept in the class prototype space (i.e., Fig.3 (b)).
Thus, it verifies the consistency of similarities between vi-
sual features and class prototypes.

Based on this assumption, the pseudo instances of un-
seen classes can be synthesized with their most affinity seen
classes. Therefore, the j-th pseudo instances xpsej can be
synthesized with the following form:

xpsej =

k∑
i=1

µijD
(
Psel
i + λQ

)
aj , (1 ≤ j ≤ N) (11)

where k denotes the number of selected affinity seen class-
es, Psel

i is the embedding function corresponding to the
i-th selected class, and µij is the class similarity that is
considered as the weight of each affinity class.

There are many possible ways to evaluate the similari-
ties between different classes, such as cosine distance, Eu-
clidean distance, and so on. In this work, we use cosine dis-
tance to measure the similarities between different classes

µij =
〈ai, aj〉
‖ai‖2‖aj‖2

(12)

where ai and aj are the class prototypes of the i-th seen
class and the j-th unseen class.

We utilize SVM as the classifiers. Since enough labeled
data are required to train SVM classifiers, we have to pre-
pare several class prototypes for each unseen class in ad-
vance to synthesize enough pseudo instances.

In the visual space, data from different classes are sepa-
rated and form a tight cluster. Thus we assume each class
follows a Gaussian distribution. Considering the similari-
ties among different classes in visual space are consistent
with those in class prototype space, the prepared class pro-
totypes Apse

j should also follow a Gaussian distribution

Apse
j = aj + δ · I (13)

where aj serves as the mean value of Gaussian distribution
and δ is the variance. Therefore, we are able to synthesize
plenty of unseen class prototypes for the same class, which
ensures the diversity of synthesized pseudo instances.

Algorithm 1 summarizes the process of our CSSD model.

4. Experiments

4.1. Datasets and Settings

In this section, we conduct extensive experiments on
four benchmark datasets to illustrate the effectiveness and
superiority of our proposed model. The four datasets
are Animals with Attributes (AwA) [18], Caltech-UCSD
Bird2011 (CUB) [31], aPascal-aYahoo (aPY) [7], and SUN
Attribute (SUN) [32]. Table 2 summarizes the details of
the four datasets.

Visual features. To compare fairly with the existing
approaches, we use the VGG-19 [33] deep features extract-
ed from popular CNN architecture as the visual features.

Class prototypes. In this paper, we choose both at-
tributes and Word2Vec as the class prototypes for AwA
and CUB datasets, respectively. The attributes are pre-
defined and Word2Vec are obtained by a large text corpus
based on a neural language processing technology. For
aPY and SUN datasets, we only use attributes as the
class prototypes since few competitors are evaluated with
Word2Vec on them.

Implementation details. In our proposed model,
there are four parameters λ, γ, σ, and k need to be ad-
justed, in which λ and γ are two hyper-parameters in the
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Algorithm 1: The process of CSSD
Input:
1: The seen domain:

Visual features of each seen class Xi ∈ Rp×mi ;
Class prototypes of each seen class Ai ∈ Rq×mi

Hyper-parameter λ, γ;
2: The unseen domain:

Visual features of unseen classes Xu ∈ Rp×n;
Class prototypes of unseen classes Au ∈ Rq×N ;
Parameter σ, k;

Output: The predicted labels of test data.
Training:
3: Repeat;
4: Update Ci according to Eq. (6);
5: Update Pi and Q according to Eq. (8);
6: Update D according to Eq. (10);
7: Until the iteration stops;
8: Return Pi, Q and D;
Synthesizing data:
9: Synthesize class prototypes of each unseen classes Apse

j

according to Eq. (13);
10: Compute class similarities µij according to Eq. (12);
11: Synthesize pseudo instances xpsej with affinity seen

classes according to Eq. (11);
Testing:
12: Train SVM classifiers with the pseudo instances xpsej ;

13: Predict the labels of test data with the trained SVM
classifiers.

Table 2: The statistics of the four datasets used in the experiments.
’/’ in columns of ’Instances’ and ’Classes’ represents the split of train-
ing/test instances and seen/unseen classes, respectively.

Dataset Instances Attribute Classes
AwA 24,295/6,180 85 40/10
CUB 8,855/2,933 312 150/50
aPY 12,695/2,644 64 20/12
SUN 14,140/200 102 707/10

training stage, and σ serves as the variance of the Gaus-
sian distribution, and k is the number of selected affinity
seen classes. We use 5-fold cross-validation strategy to s-
elect the parameters with the best performance. That is,
we split the training data into five parts, one for validation
and the rest as the training set. Once the parameters are
fixed, all seen instances form the training set to get the
final model.

4.2. Comparative Results of Traditional ZSL

The performance of Traditional ZSL mainly indicates
the transferability from seen classes to unseen ones of the
ZSL approaches. In this part, we conduct Traditional ZSL
experiments with both the attributes and Word2Vec.

First, we select seven attribute-based approaches for
comparison, including 1) Convex Combination of Semantic
Embedding (ConSE) [12], 2) Matrix tri-Factorization with

Table 3: Traditional ZSL results (%) of different approaches on four
datasets with attributes. For each column, the best one is marked
in bold and the second best one is marked with underline.

Method AwA CUB aPY SUN
ConSE [12] 64.3 33.6 34.5 74.5
MFMR [34] 79.8 47.7 48.2 84.0
ESZSL [23] 75.9 45.7 30.3 82.0
JEDM [24] 78.7 47.8 43.7 80.5
SynC [22] 74.9 53.7 27.9 83.0
RKT [19] 73.3 40.2 44.3 82.0

UVDS [20] 82.1 44.9 42.3 80.5
CSSD (Ours) 81.2 52.5 54.1 83.0

Table 4: Traditional ZSL results (%) of different approaches on AwA
and CUB datasets with Word2Vec. For each column, the best one is
marked in bold and the second best one is marked with underline.

Method AwA CUB
ConSE [12] 50.5 30.7
ESZSL [23] 67.5 30.6
JEDM [24] 72.4 31.2
SynC [22] 67.3 30.9
RKT [19] 76.9 28.9

UVDS [20] 62.9 32.1
CSSD (Ours) 72.7 32.9

Manifold Regularizations (MFMR) [34], 3) Embarrassing-
ly Simple Approach to Zero-Shot Learning (ESZSL) [23],
4) Joint Embedding Dictionary Model (JEDM) [24], 5)
Synthesized Classifiers for Zero-Shot Learning (SynC) [22],
6) Relational Knowledge Transfer for Zero-Shot Learning
(RKT) [19], and 7) Zero-shot Learning Using Synthesised
Unseen Visual Data with Diffusion Regularisation (UVDS)
[20]. Specifically, the first five approaches are embedding-
based approaches, and the last two are synthesis-based
approaches.

The comparison results are shown in Table 3. The re-
sults of MFMR [34] and UVDS [20] are cited directly from
their published papers and the performances of the rest
competitors are obtained with the released codes using
the same features as our CSSD. We report their best per-
formances after tuning parameters. The parameters are
selected from {0.001,0.01,0.1,1,10,100,1000}.

As illustrated in Table 3, we observe that the proposed
CSSD achieves state-of-the-art performances. Specifically,
except the MFMR [34] and SynC [22], our CSSD is bet-
ter than the other embedding-based approaches, indicat-
ing that CSSD learns a more effective embedding function
by learning common properties of all classes and specific
properties of each class within a dictionary learning frame-
work simultaneously. Unlike the other embedding-based
approaches that learn an embeding function directly, SynC
[22] builds a weighted graph with pseudo class prototypes
in the class prototype space, and constructs synthesized
classifiers in the visual space, achieving best result on the
CUB dataset. Compared with synthesis-based ones, CSSD
achieves best performances on three datasets except AwA,
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Table 5: Generalized ZSL results (%) of different approaches. For each column, the best one is marked in bold and the second best one is
marked with underline.

Method
AwA CUB aPY

U-U U-T S-S S-T U-U U-T S-S S-T U-U U-T S-S S-T

ConSE [12] 64.3 10.1 81.6 81.1 33.6 5.1 54.8 53 34.5 3.1 71.7 71.2
MFMR [34] 79.8 18.3 77.5 76.2 47.7 13.7 48.6 45.3 48.2 7.1 67.1 65.2
ESZSL [23] 75.9 24.1 83.4 82.2 45.7 17.7 63.1 60.8 27.9 17.3 77.3 73.2
JEDM [24] 78.7 17.3 75.2 72.8 47.8 14.7 38.8 34.4 43.7 22.1 73.9 65.8
SynC [22] 74.9 10.7 85.9 85.7 53.7 17.5 64.7 63.9 27.9 11.9 80.1 73.7
RKT [19] 73.3 45.6 79.7 78.1 40.2 12.4 53.2 51.9 44.3 19.5 72.9 70.7

CSSD (Ours) 81.2 34.7 87.5 87.1 51.2 19.1 63.2 62.7 54.1 8.7 84.9 84.2

on which CSSD is only 0.9% lower than UVDS [20]. Since
CSSD synthesizes pseudo instances with affinity seen class-
es and lacks the consideration of the balanced distribution
on each dimension.

Next, we select Word2Vec as the class prototypes
and conduct experiments on the same approaches except
MFMR [34] since no performance is available in the orig-
inal paper. The performances of different approaches are
summarized in Table 4. From the results, we can find that
our model outperforms all the embedding-based approach-
es. Besides, CSSD beats UVDS [20] but is inferior than
RKT [19] on AwA dataset. This is may be that different
kinds of class prototypes have different effects.

4.3. Comparative Results of Generalized ZSL

Compared with Traditional ZSL, Generalized ZSL eval-
uates not only the transferability from seen classes to un-
seen ones but also the discriminability across both the seen
and unseen classes. In this part, we conduct a set of ex-
periments on AwA, CUB, and aPY datasets under the
Generalized ZSL setting.

There are four evaluation scenarios under the General-
ized ZSL setting, including U-U, U-T, S-S, and S-T. Specif-
ically, U-U is the same as the setting of Traditional ZSL,
which means classifying test data from unseen classes in-
to the candidate unseen classes. U-T means classifying
the test data from unseen classes into the joint space of
seen classes and unseen ones. While S-S is the setting of
multi-class classification actually, which means the test da-
ta are from seen classes and the candidate classes are the
seen classes as well, and S-T is a scenario that classifies
the test data from seen classes into the joint space. For
S-S, we randomly select 20% of the seen instances to be
the test data, and the remaining seen instances are used
to train the model. While for S-T, we also select 20% of
the instances from seen classes and merge them with the
instances from unseen classes to compose the test data.

We select six attribute-based approaches for compari-
son. Table 5 summarizes the best results of different mod-
els, the parameters of which are fine tuned by ourselves
using the codes released in the original papers. From the
results, we observe that the performances of S-T are close
to those of S-S, indicating that most of the test data from

seen classes are classified correctly. However, the perfor-
mances of U-T decrease more obviously than those of U-U,
indicating that CSSD is less discriminative to distinguish
differences between seen classes and unseen ones. These
observations illustrate that the Generalized ZSL is a more
challenging task than Traditional ZSL. On AwA dataset,
compared with embedding-based approaches, our model
achieves best performances under four different scenarios,
which obtains an improvement of 1.4%, 10.6%, 0.6% and
1.5% over the second best approach, respectively. On aPY
dataset, we also achieve the best performances except for
U-T. The reason locates that the aPY dataset is a coarse-
grained dataset where classes share little information with
each other, resulting that the class-specific encoding matri-
ces learn ineffective discriminative information. For CUB
dataset, the performances of our CSSD achieve the best
performance on U-T, and the second-best performance on
the other scenarios. While considering the discriminability
of the pseudo instances, we can find the performances of
CSSD are lower than RKT [19] on AwA and aPY dataset-
s. This is because the synthesis process of CSSD pre-
serves more transferable information other than discrim-
inative information on coarse-grained datasets compared
with RKT [19]. Specifically, the discriminability of at-
tributes on coarse-grained dataset is higher than that on
fine-grained dataset. Compared with RKT [19] which syn-
thesizes pseudo instances with all seen classes, CSSD syn-
thesizes pseudo instances only with affinity seen classes
and ignores dissimilar classes, and this method makes C-
SSD less discriminability than RKT.

4.4. Parameter Sensitivity Analysis
There are two hyper-parameters in the training stage,

and a parameter in the process of synthesizing pseudo vi-
sual features. λ is the hyper-parameter to trade-off the
weight of the same parts and discriminative parts between
different classes, and γ is the balance parameter of reg-
ularizer. Besides, k is the number of the selected affinity
seen classes. To evaluate their influences, we conduct a list
of experiments on AwA and CUB datasets. In the exper-
iments, we change one parameter while fixing the others
with their best values.

Fig. 4 illustrates the influences of different λ on both
datasets. We can find that the curves vary on different
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Figure 4: The influences of different λ on AwA and CUB datasets
with attributes and Word2Vec, respectively. And A and W are short
for attributes and Word2Vec.
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Figure 5: The influences of different γ on AwA and CUB datasets
with attributes and Word2Vec, respectively. And A and W are short
for attributes and Word2Vec.

datasets. The curves in Fig.4 (a) show that the perfor-
mances initially increase with the increase of λ and achieve
their peaks, and then decline on the AwA dataset. The
performances achieve their best value when λ is equal to
0.01, illustrating that although the discriminative infor-
mation plays a more important role than the same parts
among different classes, preserving the information of same
parts is also necessary. On CUB dataset, the overall trends
are similar with Fig.4 (a), while the curses achieve their
peaks when λ is equal to 1. We report the performances
with their best value on the peak.

Two sub-figures in Fig. 5 show the effects of different γ
on both datasets. The performances are robust with the
increase of γ on the AwA dataset with both attributes and
Word2Vec. When the value is larger than 10, the curves
begin fluctuating slightly. On CUB dataset, the trends of
curves are similar with that of AwA dataset, revealing the
insensitivity of γ.

When evaluating the influence of parameter k, its range
should be set in advance according to the number of seen
classes. Specifically, we set it is {5,10,15,20,25,30} on AwA
dataset and {20,30,40,50,60,70} on CUB dataset, respec-
tively. Fig. 6 shows the trend of the accuracy curves with
the increase of k on both datasets. And we can observe
that the two curves of A andW have the similar trend, i.e.,
rise or fall almost at the same number on both datasets.
On AwA dataset, the accuracy reaches maximum when
k is equal to 15, whereas on CUB dataset the number
is 30. The reason behind this phenomenon is that the
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Figure 6: The influences of different k on AwA and CUB datasets
with attributes and Word2Vec, respectively. And A and W are short
for attributes and Word2Vec.
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Figure 7: t-SNE visualization for our synthesized pseudo instances
on AwA dataset.

coarse-grained AwA dataset has fewer similar categories
than that of fine-grained CUB dataset.

4.5. Further Analysis

With the learned model, the pseudo instances of un-
seen classes are synthesized with class prototypes of their
affinity seen classes and their corresponding class-specific
encoding matrices. Given the unseen class prototype, we
consider it as the mean value of the Gaussian distribution,
while the variance is determined by 5-fold cross-validation.
We select the best value of σ to visualize them with t-
SNE approach, as illustrated in Fig. 7. It can be observed
that the pseudo instances from the same class are gathered
around their corresponding class prototypes. Although
each cluster of pseudo instances has a little overlap, the
pseudo instances are enough to form separate clusters for
the ten unseen classes, showing that the proposed CSSD
approach can effectively reveal the visual distribution of
the unseen classes.

5. Conclusion

In this paper, we proposed a novel approach for ZSL
by synthesizing pseudo instances for unseen classes within
a dictionary learning framework. It learns a dictionary
matrix and a class-specific encoding matrix for each seen
class to connect the interactions between the visual space
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and the class prototype space. The distribution of unseen
classes is then synthesized with their affinity seen classes
using the learned model. The experimental results on four
benchmark datasets illustrate that the proposed CSSD
approach achieves the state-of-the-art performances on
both Traditional ZSL and Generalized ZSL tasks.
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