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Abstract. We consider the cosmological models based on Palatini f(R)-theory for the func-
tion f(R) = αR− β

2R2− γ
3R , which, when only dust visible matter is considered, is called dune

cosmology in view of the shape of the function f(R(a)) (being a the scale factor). We dis-
cuss the meaning of solving the model, and interpret it according to the Ehlers-Pirani-Schild
framework as de�ning a Weyl geometry on spacetime.

Accordingly, we extend the de�nitions of luminosity distance, proper distance, and red-
shift to Weyl geometries and �t the values of parameters to SNIa data. Since the theoretical
prediction is model-dependent, we argue that the �t is a�ected by an extra choice, namely a
model for atomic clocks, which, in principle, produces observable e�ects. To the best of our
knowledge, these e�ects have not being considered in the literature before.
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1 Introduction

We now have signi�cant evidence that standard GR cannot account for observations if we
restrict the sources of the gravitational �eld to the matter we are most familiar with. This
is true now at cosmological scale (see [1], [2], [3], [4], [5]), for almost a century at the scale
galaxy cluster dynamics (see [6], [7]), and, more recently, at the scale of galaxies (see [8], [9],
[10] and [11]).

At more or less all scales, maybe with the exception of the Earth and the solar system,
one can call for new sources we are not able to see directly yet (which are collectively named
dark sources) or, alternatively, for a modi�cation of the dynamics of the gravitational �eld
(i.e. the prescription of how ordinary visible matter generates a gravitational �eld). It is clear
that a priori the two approaches are equally possible (and somehow equivalent) until we have
a direct evidence of dark sources other than gravitational ones, that, currently, we do not
have.

In terms of modi�cations of dynamics, we have a (too) rich list of proposals: conformal
gravity, MOND, metric, Palatini, and metric-a�ne f(R)-theories, torsion, Lovelock, just to
quote a few. Each one has proven well in some speci�c situation, but none have yet proven
to be a solution in general. Hence, one needs a generic and robust framework to test models
with a solid control on observational protocols, which often are not uniquely determined by
the action principle, but they are extra choices one does to connect to observations.

For modi�cations of sources, in cosmology, the ΛCDM(-concordance) model has been
accepted as a good description of current observations. Currently, observations require the
cosmic pie to be ΩΛ ' 0.70 dark energy (in the form of a cosmological constant Λ), Ωc ' 0.25
of some dark matter which we do not see though it shares with ordinary matter the same
equation of state (EoS) and of which we have no local, fundamental, direct evidence other
than its gravitational e�ects, Ωb ' 0.05 of ordinary baryonic matter which accounts for the
visible matter we see in form of galaxies and gas, as well as traces Ωr ' 10−4 of radiation (and
relativistic matter) which have very little e�ect today even though, due to a di�erent scaling
property, they grow important in an earlier universe. The ΛCDM(-concordance) model also
has no spatial curvature k = 0.

The ΛCDM-model is considered the best description of current observations, a kind of
standard which any other proposed model must reproduce. One also often believes that the
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dark matter added from cosmological evidence is the same dark matter one needs in galaxy
and cluster dynamics, an identi�cation for which, however, a detailed quantitative parallel
is missing and it is currently theoretically out of reach. To state the obvious, extrapolating
matter equations of state (EoS), which are already an approximation, from a cosmological
scale down to a galactic scale is brave, not even mentioning the lack of knowledge behind the
fact we do not know an elementary counterpart for dark matter.

Of course, the same bravery is needed in trying to extend the same dynamics from human
scale up to cosmology, not to mention down to the quantum world. Furthermore, often most
observations rely on a gravitational model for interpretation and that such an interpretation is
often quite fragile with respect to modi�cation of assumptions about geometry of spacetime.
We have to admit that, beside raw data, we do not know much for sure and currently any
study needs extra care.

Among modi�cations of gravitational dynamics, we shall here consider a particular class,
namely the extended theories of gravitation (see [12], [13], [14]). In extended theories of grav-
itation, one has a Weyl geometry on spacetime, i.e. (M, g, Γ̃), instead of the usual Lorentzian
metric structure. The (torsionless) connection Γ̃ is a priori independent of the metric g.
While the connection describes the free fall of test particles (and light rays) in the gravita-
tional �eld, the metric g is chosen to simplify the gravity-matter coupling and (consequently)
to account for atomic clocks and, in turn, our protocols for measuring distances.

The dynamics are chosen so that the metric and the connection, a priori independent,
turn out to be a posteriori, i.e. as a consequence of �eld equations, EPS-compatible (see [15]),
which means there exists a 1-form A = Aεdx

ε such that

Γ̃αβµ = {g}αβµ −
1

2

(
gαεgβµ − 2δα(βδ

ε
µ)

)
Aε (1.1)

This framework is theoretically inspired and motivated by a work on foundations of
gravitational physics by Ehlers-Pirani-Schild (EPS); see [15]. The application to extended
theories is described in [16], [13], [14], [17].

In an extended gravitational theory, one has modi�cations of dynamics which can equiv-
alently be seen as e�ective sources. Extended theories also contain standard GR, with or
without a cosmological constant, as a special (quite degenerate) case.

A class of dynamics which are automatically extended theories of gravitation are Palatini
f(R)-theories (see below and [18]), in which, �eld equations not only imply EPS-compatibility,
but they also imply that A is closed or, equivalently, that Γ̃ is metric, i.e. Γ̃ = {g̃} for a metric
g̃ which is conformal to g. Being g and g̃ conformal, they de�ne the same pointwise causal
structure, the same light cones, the same light-like geodesics. However, they de�ne di�erent
timelike geodesics so that it is important to declare that g̃, rather than g, de�nes the free fall
of test particles. Also, being conformal, the g-length of a Γ̃-parallelly transported vector is
not preserved, though at least it depends on the point only, not on the curve along which is
parallelly transported.

In this simpler case of two conformal metrics, the extra (kinematical) freedom one has
with respect to standard GR is encoded in the conformal factor ϕ, a scalar (real, positive)
�eld such that g̃ = ϕ · g. We have to stress, however, that, in view of the speci�c form of the
action functional in Palatini f(R)-theories, all these objects are not dynamically independent.
For example, once we know the �eld g̃, then the conformal factor ϕ as well as the metric g
are uniquely determined as function of g̃ and its derivatives (up to order two). They are
not extra physical degrees of freedom, for example in the sense that one cannot �excite� one

� 2 �



without exciting the others. The dynamics of ϕ and g (or g̃) are uniquely determined once
the dynamics of g̃ (or g) is given, as it usually happens to Lagrangian multipliers. The metric
g shares with Lagrangian multipliers the fact that it enters the gravitational Lagrangian with
no derivatives (so, in a sense, its �eld equations are algebraic).

Consequently, �nding a solution in a Palatini f(R)-theory actually means determining
all g̃, the conformal factor ϕ, as well as the original metric g. Of course, one could recast the
action functional in terms of purely g or g̃, though at the price of making the matter�gravity
coupling more complicated and messing up with the interpretation of the theory about which
we made a clear choice: times and distances are measured with g, free fall with g̃.

Traditionally, doing all with the metric g is referred as the Jordan frame, while using g̃ is
called the Einstein frame. In the model we study in this paper, we do not use either the Jordan
or the Einstein frame. We argue instead that one should not expect either of the metrics to be
used for everything, as it happens in standard GR, and that is the essence of Weyl geometries.
It is clear, for example by EPS kinematic analysis, that free fall and the causal structure are
structures coming from di�erent physical phenomena (free fall is associated to test particles,
causality to light rays) and one has no reason to assume a priori a constraint between them.
The choice of g̃ for geodesics and g for causal and metric structures is precisely what makes
this model di�erent from the other analyses in which one frame is chosen to describe both
structures. We shall eventually argue that this feature turns out to be in principle observable
and important when one is going to compare the model with the solar system classical tests.

The main aim of this paper is to discuss the application of a speci�c model of a Palatini
f(R)-theory to cosmology. We discuss how the interpretation of the gravitational physics is
extended from a Lorentzian metric geometry, to the more general Weyl conformal geometry,
Furthermore, we investigate how the observations are interpreted in this more general setting
(see [19]), which contains the standard GR case as a special case, as we said. If one does
not like the model on a physical stance, one can regard this paper as a proposal for setting
a rigorous standard for interpretation of observations in cosmology as well as an example of
how a model should be discarded from an observational stance. As a matter of fact, Palatini
f(R)-theories are naturally candidates to be at least a setting for understanding tests of
GR in a wider context, something which was originally done with Brans-Dicke theories for
historical reasons (see [20]) while we are suggesting it should be done in extended gravity.

2 Notation

We hereafter consider a cosmological model with a dynamics based on a Palatini framework,
i.e. fundamental �elds (gµν , Γ̃

α
βµ) and an action functional

AD(g, Γ̃, ψ) =

∫
D

(√
g

2κ
f(R) + Lm(g, ψ)

)
dσ κ :=

8πG

c3
(2.1)

where ψ denotes matter �elds and
√
gdσ is the volume element induced by the metric g. The

quantity
√
g is the usual square root of the absolute value of the determinant of the metric

tensor. The function f(R) will be here chosen as

f(R) = αR− β

2
R2 − γ

3R (2.2)

where we set R := gµνR̃µν and R̃µν is the Ricci tensor of the (torsionless) connection Γ̃.
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The choice of function (2.2) has been not very thoughtful. If one sets γ = 0 the master
equation becomes too easy to be inverted, but one has no late acceleration. Moreover, here
we want to set up a framework able to deal with more generic f(R), rather then choosing
one for which we can easily do the computations. Under this viewpoint, the function (2.2)
shows a number of pathologies which are good to learn to cope with, at least in a classical
regime. On the other hand, we do not want to add too many terms, keeping the degeneracy
minimal. The more parameters one adds the easier the �tting becomes, the more experiments
one should use to actually remove degeneracy and to really constrain the parameters.

If we had chosen γ = 0, we would obtain a sort of Starobinsky model (see [21]), though
in Palatini formalism. That is simpler to analyse (the master equation is globally and ana-
lytically invertible). However, in this simpli�ed model, one will have no negative pressure in
e�ective EoS, no late time acceleration, the conformal factor will be asymptotically constant.
Still, also in this model, one has a bouncing rather than an initial singularity (in the Jordan
frame).

Similar models have been considered in the purely metric formulation, see [22] [23], [24],
[25]. It has been argued that these models are not viable as physical models, mainly for
stability issues and classical tests; see [27], [28], [29], [30]. On this basis, further models have
been proposed in the metric formalism to address these shortcomings; see [31], [32], [33]. Even
if, in view of the non-equivalence between the metric and the Palatini formulation, the same
critiques do not apply directly to our model, we believe it is useful to brie�y review them in
a purely metric context to pinpoint what they exactly disprove.

Most of the models proposed deal with cosmology only, where they used Jordan frame.
All the critiques deal with stability and solar system tests (or, equivalently, Newtonian limit)
in the Jordan frame as well. They show in many cases the Jordan frame is not viable in the
solar system. However, in cosmology, one uses only light and comoving test particles which,
as a consequence of cosmological principle, are shared by the Jordan and Einstein frames.
As a consequence, in cosmology (at least until perturbations are considered) one never really
uses the metric g̃. If it is certainly true that solar system tests do not allow g-geodesics to
describe test particles, however, it is also true that assuming that test particles are described
by g̃ does not change anything in the cosmological model and it gives a di�erent solar system
model (which, by the way, can pass the tests quite easily, in view of the universality theorem;
see [34]).

Accordingly, we completely agree that (metric) f(R)-theories in the Jordan frame (at
least the ones considered in the references above) are not compatible with solar system tests.
We just need to mention that when doing cosmology, one is not really compelled to declare the
frame and there are mixed models, in which both g and g̃ are used to do di�erent things, which
have not been discussed explicitly. It is our opinion they should be discussed and possibly
disproven as well. Let us stress that, in f(R)-theory there is no dynamical equivalence
between purely metric and Palatini formalisms, even at the level of a simple counting of
physical degrees of freedom. Accordingly, disproving metric models leaves Palatini models
unchallenged.

Of course, one could argue that, because of the form of the action functional, this model
is certainly non-renormalisable and that the Minkowski metric is not even a solution. Of
course, this is true also for standard GR with a cosmological term. It may be that the
model is not well suited for quantum gravity. However, on one hand, we do not know what
quantum gravity will eventually be precisely or whether it will require renormalisable theories
or it will rather be non-perturbative in nature. On the other hand, we are here discussing a
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classical model, which unfortunately has nothing to do (observationally speaking) with the
quantum regime. And there are many ways a classical model with a singular Lagrangian
can well behave, especially if the standard for well-behaviour is what happens in standard
GR, in which singularities are already bound to appear generically. Kepler motion in a plane
is another example of a singular Lagrangian which is accepted to describe a well-behaving
(mechanical) system, in which the conservation of angular momentum prevents, most of the
times, the system to get to the singularity.

As far as the fact that Minkowski is not even a solution, the identi�cation of Minkowski,
and only Minkowski spacetime, as the vacuum state of gravitational �eld is already quite
dubious at a fundamental level. A theory involving a metric �eld has no canonical vacuum
just because metrics (or vielbein) do not carry a linear (or a�ne) structure. Metric theories
are di�erent from all other fundamental �eld theories. Already standard GR is a peculiar �eld
theory in which one should learn to live without many of the structures used in �eld theories
in Special Relativity (SR). For example, in GR one has no linear structure for con�gurations,
generically no Killing vectors, no �xed background.

In what follows, we shall assume that the connection Γ̃ is responsible for free fall. Par-
ticles will follow geodesic trajectories of Γ̃. The metric g is related to distances on spacetime
and its causal structures, e.g. the light cones. For example, a freely falling atomic clock will
follow a timelike geodesics worldline with respect to g̃, though the parameterisation is chosen
to be proper with respect to g. Of course, the di�erence is expected to be tiny, though we
have to keep in mind that we wish then to discuss objects going around for 3 · 1017s, with
plenty of time to grow the tiny di�erence until it may become appreciated. Extrapolation at
scales by many order of magnitudes requires good de�nitions and possibly no mathematical
approximations.

If experience still eventually points in favour of standard GR dynamics, we shall have
obtained it without relying on unnecessary theoretical assumptions, but based on experience
and a better understanding of which assumptions we rely on.

In the literature, there are not many studies for Palatini f(R)-theories; see [35], [36]
and references quoted therein. See also [37], [38], [39] for polynomial models. This is often
argued to be due to a number of problems that Palatini f(R)-theories are supposed to have
which have been however refuted; see [40], [41]. We shall not discuss here these issues since
they are discussed in [42], [43], [44], [13], [45].

Field equations for the action (2.1) are obtained by varying with respect to δgµν , δΓ̃αβν ,

and δψi: 
f ′(R)R̃µν − 1

2f(R)gµν = κTµν

∇̃α(
√
gf ′(R)gβµ) = 0

Ei = 0

(2.3)

In general, the second is solved by de�ning a conformal factor ϕ = (f ′(R))
m−2

2 , m being
the dimension of spacetime, a conformal metric g̃µν = ϕgµν and by showing that Γ̃ = {g̃} is
thence the general solution of the second �eld equation (which, written in terms of g̃ and Γ̃,
is actually algebraic, in fact linear, in Γ̃).

The third equation Ei = 0 is obtained as a variation of the action with respect to the
matter �elds ψ. It describes how matter �elds evolve in the gravitational �eld. Usually, in
cosmology, one does not give a precise Lagrangian description of the matter dynamics, which
is described (under additional assumptions) by EoS, thanks to which Friedmann equations
become well-posed. Accordingly, we shall neglect the speci�c form for it.
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By tracing the �rst equation by means of gµν , one obtains the so-called master equation

f ′(R)R− m

2
f(R) = κT (2.4)

where we set T := gµνTµν . This is also an algebraic equation in R and T which generically
can be (at least locally) solved for R = R(T ), so that the curvature R along solutions can be
expressed as a (model dependent but) �xed function of the matter content T .

At this point, the �rst �eld equation can be recast as the Einstein equation for the metric
g̃ (or, equivalently, for the conformal metric g)

R̃µν −
1

2
R̃g̃µν = κT̃µν ⇐⇒ Rµν −

1

2
Rgµν = κT̂µν (2.5)

In both cases, the energy�momentum stress tensors (T̃µν or T̂µν) need to be modi�ed by
sending to the right hand side all spurious contributions from matter (or curvature). Let
us stress that also T̂µν di�ers from the original Tµν which instead is the usual variation of
the matter Lagrangian with respect to the metric δgµν . We shall not use T̂µν , while let us
mention that

T̃µν :=
1

f ′(R)

(
Tµν −

f ′(R)R− f(R)

2κ
gµν

)
(2.6)

This is where e�ective dark sources come from in Palatini f(R)-theories. Whatever visible
matter is, it is described by Tµν , then T̃µν directly gets extra contributions from the modi�ed
dynamics, i.e. from the function f(R) which, hopefully, by choosing it accordingly, can be used
to model dark matter and energy as e�ective sources. This is not the only e�ect in extended
theories. Also the odd de�nition of atomic clocks (which are free falling with respect to g̃
but proper with respect to g) produces extra accelerations in particles. These accelerations
are universal, i.e. they are easily confused with an extra gravitational �eld acting on all test
particles equally which, when reviewed in a standard GR setting, calls for other sources.
Hereafter, we shall investigate the combination of these two types of e�ects in cosmology.

It is precisely because we chose g̃ to describe test particles that we are not working in
the Jordan frame, and because we chose g to describe clocks that we are not working in the
Einstein frame, either. That is true, even though, when we restrict to cosmology, one could
argue that we are working in the Jordan frame since the comoving structure is shared by
those two frames. However, the Einstein frame pops out again if we go to discuss gravity in
the solar system, where choosing the frame to describe test particles leads to di�erent models.

3 Extended cosmologies

Let us consider a four dimensional spacetimes with a Weyl geometry (M, g, {g̃}). If we want
to build a cosmological model based on the extended theories described above, we need to
impose the cosmological principle. Of course, with two metrics, one should at least stop and
think which metric should obey the cosmological principle. The good news is that (since the
master equation holds) it does not matter: g is spatially homogeneous and isotropic i� g̃ is.
The only di�erence is that, if g is in FLRW form in coordinate (t, r, θ, φ), with a scale factor
a, then g̃ is in FLRW form in coordinate (t̃, r, θ, φ), with a scale factor ã =

√
ϕ a. If the

conformal factor is a function only of time, the new time is de�ned by dt̃ =
√
ϕdt.

Thus one has a Friedmann equation both for a and ã

ȧ2 = Φ(a) ˙̃a2 = Φ̃(ã) (3.1)
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which are, of course, de�ned to be equivalent. The speci�c form of the function Φ(a) and
Φ̃(ã) are obtained by expanding the Einstein equations (2.5), which are, in fact, equivalent.

As a consequence of the cosmological principle, the energy-momentum tensor Tµν is in
the form of a perfect �uid energy-momentum tensor, namely

Tµν = c−1
(
(ρc2 + p)uµuν + pgµν

)
(3.2)

for some time-like, future directed, g-unit, comoving vector uµ. Also T̂µν can be recast in the
same form (for di�erent ρ̂ and p̂), as well as T̃µν is a perfect �uid energy-momentum tensor
using g̃ and a suitable g̃-unit vector ũ as well as di�erent e�ective pressure and density p̃ and
ρ̃.

To establish an equivalence between Einstein equations and Friedmann equation, we
need conservation of the relevant energy-momentum tensors. Luckily enough, once again, if
∇µTµν = 0 (as it is, since it is variation of a covariant matter Lagrangian) then ∇̃µT̃µν = 0
and ∇µT̂µν = 0 as well. Here, ∇µ denotes the covariant derivative with respect to g, ∇̃µ the
covariant derivative with respect to g̃.

Finally, we need to state the EoS for matter. This is where the game becomes odd:
imposing the EoS for visible matter, i.e. for p and ρ appearing in Tµν , the EoS for ρ̃ and p̃ in
T̃µν are uniquely determined (as well as the EoS for ρ̂ and p̂ in T̂µν). However, �simplicity� is
not preserved. Even if we assume visible matter to be simply dust (i.e. we select p = 0 as EoS)
then the EoS for e�ective matter is determined, though the e�ective EoS is very exotic and
non-linear. Even if we regard it as a mixture of simple polytropic �uids, the decomposition is
not canonical and, in any event, it contains di�erent polytropic �uids. Again, since we wish to
discuss a model at cosmological scale, it is necessary to avoid mathematical approximations
in EoS and learn to live with what we have, even when it is complicated to compute.

As the usual in cosmology, one normalises the scale factor to be unit today, i.e. a(t0) = 1.
Since the conformal factor is de�ned up to a constant factor which does not a�ect Christo�el
symbols {g̃}, one can also normalise the conformal factor to be (positive and) ϕ(t0) = 1, so
that the conformal transformation preserves the (positivity and) normalisation of the scale
factor and one has also ã(t̃0) = 1.

Regardless which equation of (3.1) we decide to solve, once we have t(a), then the know
the conformal factor as a function of a from the master equation, so we also have ã(a). Then
we also know ϕ(a) and hence t̃(a), ρ(a), p(a), ρ̃(a), p̃(a) and so on. We get everything as a
function of a so all quantities are known in parametric form as function of every other (and
no need to invert functions, other than the master equation).

For an energy-momentum tensor in the form of a perfect �uid, we have T = c−1(3p−ρc2)
and, for simplicity, we set the EoS for visible dust p = 0. That, in view of energy-momentum
tensor conservation, is equivalent to set ρ(a) := ρ0a

−3.

If we �x the function (2.2), the master equation reads as

αR− βR2 +
γ

3
R−1 − 2

(
αR− β

2
R2 − γ

3
R−1

)
= −αR+ γR−1 =

κ

c
(3p− ρc2) (3.3)

which can be solved in two branches (corresponding to the sign of R) as

±R(a) =
κ
(
ρc2 − 3p

)
±
√
κ2 (ρc2 − 3p)2 + 4c2αγ

2cα
(3.4)
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If we consider a mixture of dust (pd = 0) and radiation (pr = 1
3ρrc

2)

ρc2 − 3p = ρdc
2 − 3pd + ρrc

2 − 3pr = ρdc
2 + ρrc

2 − ρrc2 = ρdc
2 (3.5)

Thus we have ρd = ρ0a
−3 and, consequently

±R(a) =
κc2ρd ±

√
κ2c4ρ2

d + 4c2αγ

2cα
=
κcρd0 ±

√
κ2c2

(
ρd0
)2

+ 4αγa6

2αa3
(3.6)

In case one wants di�erent types of visible matter, though, the extra pressure would
need to be taken into account. We shall show the result for the values:

α ' 0.095 β = 0.25m2 γ ' 2.463 · 10−104 m−4 (3.7)

When we discuss �ts in Section 5, we shall argue that if we analyse this model to �t
SNIa there is a lot of degeneracy. The �t is not really able to constrain the parameters α
and β, though if their values are provided by some other test (e.g. solar system tests) then
supernovae will �x γ. Still, the analysis of the model is interesting because having enough
tests to remove the degeneracy. At this point, we are introducing a small β and we are not
here concerned with the small value of α. See discussion in the conclusions.

The conformal factor is chosen to be proportional to f ′(R) which is everywhere positive
if we use −R(a), while +R(a) changes sign at about ρ1 := 1.925 · 1024 kg m−3. Thus, for the
conformal factor to be positive, we need to de�ne it in three branches

• � the branch A, with R > 0 and and ρ ∈ (ρ1,+∞) (thus a ∈ (0, a1)), where the
conformal factor is de�ned as ϕA := −ϕ0f

′( +R);

• � the branch B, with R > 0 and ρ ∈ (0, ρ1) (thus a ∈ (a1,+∞)), where the conformal
factor is de�ned as ϕB := ϕ0f

′( +R);

• � the branch C, with R < 0 and ρ ∈ (0,+∞) (thus a ∈ (0,+∞)), where the conformal
factor is de�ned as ϕC := ϕ0f

′( −R);

where ϕ0 is a constant to be chosen so that today ϕ(t0) = 1.
Branch A corresponds to very high densities, so it happened early in the universe. We as-

sume then to currently be on branchB at a = a0 = 1. So we choose ϕ0 := (f ′( +R(a0 = 1)))
−1
.

The e�ective (mass) density and pressure are

ρ̃ =
4γR− 3βR4 + 12κcρR2

4κc (3αR2 − 3βR3 + γ)ϕ
p̃ = −4cγR− 3cβR4 − 12κpR2

4κ (3αR2 − 3βR3 + γ)ϕ
(3.8)

where ρ and p are the total mass density and pressure of visible matter.
If we have only visible dust, ρ = ρd and p = 0. If we have visible dust and radiation,

then ρ = ρd + ρr, p = pr = 1
3ρrc

2.
We also clearly see that e�ective sources in general cannot be dust, as well as cannot be

polytropic.
By using the correct expression for ϕ and R on each branch, we can compute the

Friedmann equation

˙̃a2 =
κc3

3
ρ̃(ã) ã2 − kc2 =: Φ̃(ã) (3.9)
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In view of the transformation between the two frames induced by the conformal factor,
we have

ȧ2 = Φ(a) := ϕ(a)

(
dã

da

)−2

Φ̃(ρ̃(a)) = ϕ(a)

(
dã

da

)−2(κc3

3
ρ̃(a)ã2(a)− kc2

)
(3.10)

Hence, the Friedmann equation evaluated today reads as

ω2H2
0 =

(
κc3

3
ρ̃(ρ0)− kc2

) (
ω :=

dã

da
(1)

)
(3.11)

Since the Hubble parameter today H0 is measured, then we can obtain the spatial curvature
as a function of the visible matter density ρ0, i.e.

k(ρ0) = c−2

(
κc3

3
ρ̃(ρ0)− ω2H2

0

)
(3.12)

Let us remark that once the function f(R) is �xed, then we know the function ρ̃(ρ) and the
constant ω.

Accordingly, on each branch we can compute the function Φ(a), exactly, depending on
the parameters (α, β, γ, ρ0) of the theory. In Figure 6.b in the Appendix we draw the graph
of the function Φ(a) for branches A and B.

For any given value of the spatial curvature k one can compute the corresponding value
of the density which produces it. As usual the critical density is the density which produces
a spatially �at spacetime k = 0. Thus we have a 3-parameter family of extended models, all
with the observed value of the Hubble parameter today.

One can explicit the time as a function of a solving the integral

t(a) =

∫ a

1

da√
Φ(a)

(3.13)

Then the parametric curve γ : a 7→ (t(a), a) represents the graph of the function a(t). Let
us notice that, in this way, one can study the function analytically, at the price of a �nite
number of numerical integration, even when the integral cannot be performed analytically.

For realistic parameters, we obtain the evolution of the scale factor (dark-solid), com-
pared with ΛCDM (light-solid) and standard GR (light-dashes).

The 3 models are almost identical near today (t = 0) while they di�er in the past and in
the future. In particular, the extended f(R) model exhibits, for the critical density, a slightly
younger age for the universe (with a Universe age of about 13.68By).

Once we solved the model, then we can obtain all other quantities as a function of a.
Qualitative graphs are collected in Appendix A.

4 Distances in extended theories

To �t data from supernovae (SNIa), we need a precise de�nition of the luminosity distance
dL, the proper distance δ, and the red-shift z of a source within our model. In particular,
we need to extend the standard discussion which is based on a Lorentzian geometry to an
(integrable) Weyl geometry (M, g, {g̃}).

In cosmology, one de�nes spatial distances as the geometric distance on the surface
t = t0, without relying on synchronisation of clocks, which, of course, would be impractical in
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Figure 1. Evolution of a(t) in standard GR for critical density (light dash), standard GR for ±30%
of the critical density (light dotted), ΛCDM (light solid), and dune cosmology for the critical density
(dark solid). Times in seconds (x-axis), a is adimensional (y-axis).

astrophysics since easily it would take millions (if not billions) of years for a signal to bounce
back and forth from another galaxy. Any comoving observer, at its time t = t0, de�nes a
surface t = t0 and chooses a geodesics on the surface (with respect to the metric induced
on the surface by g). The proper distance δ(t0) is then the g-length of such a (space-like)
geodesics.

Let us remark that the geodesic on the surface is in general not a geodesic on spacetime,
as a geodesic on a sphere S2 in R3 is not a straight line.

The surface t = t0, which is here de�ned using the time coordinate, can also be de�ned
in terms of the Killing algebra of isometries prescribed by the cosmological principle in an
intrinsic fashion.

The proper distance is a geometric well-de�ned distance, though it is di�cult to de�ne
a protocol to measure it directly. We use it as a benchmark to refer the luminosity distance
dL and the red-shift z of a source.

In our model, light rays move along geodesics of g̃ which are light-like with respect to
g. However, since g and g̃ are conformal, they share the same light-like geodesics. So we can
consider light-like geodesics using only the metric g. Accordingly, the red-shift is given by

z(a) =
ao − a
a

(4.1)

where ae = a is the scale factor of g at emission, ao at observation. If we make observations
today, of course we have ao = 1. The scale factor ã of the metric g̃ does not play a role in
observations until we assume that atomic clocks are proper for g and not for g̃, though they
free fall along g̃-geodesics.

This can also be shown in detail, directly by repeating the standard argument in a Weyl
geometry; see [46].

Similarly, the area of the sphere S2 for t = t0 and r = r∗, measured by the metric g is
exactly A = 4πa2(t0)r2

∗. Accordingly, the luminosity distance of a comoving source at r = r∗
observed at t = t0 is

dL = (1 + z)aor∗ (4.2)

which, if k = 0, is exactly dL = (1 + z)δ(to, r∗). If one wishes not to assume k = 0, depending
on the sign of k, r∗ is anyway a known function of the proper distance.
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There is no mathematical approximation we made here, in particular, we are not re-
stricting ourselves to near sources by using a linear approximation of the Hubble law.

Now we know z(a) as a function of the emission scale factor. If we observe today sources
at di�erent distances, we have their proper distance δ(to, r∗) as a function of the emission
scale factor a

δ(a) := c

∫ a0

a

da

a
√

Φ(a)
(4.3)

Given that we have dL(a) and z(a), we have a parametric representation of the function dL(z).
That function depends on the dynamics of the model through the Weierstrass function,

namely Φ(a;α, β, γ, ρ0), so that it brings information about the model, and the function f(R)
in particular.

For this reason, we can �t the parameters to obtain a best �t representation of the
observed curve.

5 Fitting the Ia type supernovae

Since we know that the relationship between the magnitude of a far standard electromagnetic
source (e.g. Ia type supernovae) and the observed redshift is determined by the dynamics of
the scale factor a(t), it is possible to use statistical inference methods to evaluate the agree-
ment between the theoretical prediction within our model and the experimental observations.
The complexity of the modelling of both the theory and observations requires correspond-
ingly re�ned statistical and data analysis skills. In fact, the measurements of the magnitude
and the redshift of the SNIa must account for a strong uncertainty signal in the background
(see [47]), usually described by two nuisance unknown parameters a and b. For this rea-
son, a Bayesian inference approach is often used in this case (but more generally in all the
cosmological measurements).

We have decided to perform two di�erent sets of �t for our model using the data con-
cerning the measurement of the Ia type supernovae magnitude as a function of the observed
redshift. We considered the Supernovae Legacy Survey (SNLS) project catalogue composed
by 115 SNIa (see [47]) and the whole Union2.1 catalogue (see [48]) composed by 580 SNIa.
We have a clear and unambiguous relation between these physical observables and the math-
ematical objects in the theory, which makes these datasets particularly well suited for model-
theoretic parameters �t. The SNLS is a smaller dataset than Union2.1 though its data are
more homogeneous, so we use it as a check for consistency.

The theoretical value of the magnitude m of a source as a function of its redshift z has
been calculated considering the �ow of power carried by the momentum-energy tensor asso-
ciated to a high frequency electromagnetic wave propagating in a homogeneous and isotropic
spacetime. One can notice that the explicit form of m(z) is strongly related to the dynamics
of the universe so it depends on the initial conditions (e.g. the baryonic and radiation energy
density today, the Hubble parameter today) as well as the vacuum Lagrangian parameters
that determine the evolution of metric tensor g.

To �t the SNIa data, we relied on the software MULTINEST (see [49], [50], [51]), an
e�cient and robust Bayesian inference tool developed to calculate the evidence and obtain-
ing posterior samples from distributions with (an unknown number of) multiple modes and
pronounced (curving) degeneracies between parameters.

The power of the software lies in the algorithm that naturally identi�es the individual
modes of a distribution, allowing for the evaluation of the local evidence and parameter
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constraints associated with each mode separately. The �t was performed asking MULTINEST
to �nd the free parameters of the theory (α, β, γ, ρ0; a, b) that minimizes the χ2 de�ned as
following:

χ2 =
N∑
i=1

[mBi −m(z?i )]2

σ(mB)2 + σ2
int

(5.1)

where:

• - z?i is the measured redshift;

• - mBi = mi − a(s− 1) + bc is the cleaned real magnitude in which: mi is the measured
magnitude, s is the stretch factor, c is the colour factor, a and b are free nuisance
parameters that are �xed by the �t;

• - m(z?i ) is the theoretical prediction of the magnitude at given redshift;

• - σ(mB)2 = σ(m)2 + σ(s)2 + σ(c)2 is the error of the observations. In particular, we
have that σ(m)2 is the error related to the magnitude, σ(s)2 and σ(c)2 are respectively
the errors of the stretch factor and color factor;

• - σ2
int = 0.13104 the error related to the intrinsic dispersion of the real SNIa from the

ideal standard candle.

• - N is the number of observed supernovae belonging to the dataset, 115 for the SNLS
dataset, 580 for the Union2.1 dataset.

MULTINEST is also able to provide us with the value of the χ2 evaluated on the best
�t parameters, the posteriors samples and the live points produced by the algorithm. This
is very useful both for checking the right convergence to the minimum and to estimate the
posterior probability distribution of our parameters. The posteriors analysis as well as the
con�dence region has been performed using the software GetDist; see [52].

Furthermore, considering the minimum value of the χ2, we can compare di�erent theo-
retical models and determine the accuracy of the theoretical predictions.

Di�erent cases have been studied: at �rst, we have considered the case in which all the
parameters (α, β, γ, ρ0, a, b) are �tted against the Union2.1 dataset. That �t shows that the
model is strongly degenerate, that the β parameter does not in�uence the scale factor at the
scales sampled by the dataset as well as that α is very poorly localized.

Then we analysed cases in which some parameters are set to a value determined by
di�erent considered scenarios. That shows that if we have some value for parameters from
tests other than SNIa, the model is still able to �t supernovae, for example to determine the
γ parameter (as well as a and b). This shows how SNIa are unable to �x all parameters of
the model, as one can reasonably expect. The same behaviour in some sense is noticed in
standard GR, where the parameters (α, ρ0) are �xed at di�erent scales, α being �xed by the
solar system tests, and ρ0 by supernovae.

Here we expect something similar, only with more parameters. We expect di�erent tests
at di�erent scales (solar system, light elements formation, . . . ) to remove the degeneracy and
�x best �t value for the parameters. Then, and only then, the model can be tested to predict
new phenomena (e.g. BAO, lensing, . . . ).
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The �rst �t we tried is using the Union2.1 dataset, �tting all parameters (α, β, γ, ρd0, ρ
r
0, H0, a, b).

At each step in the simulation, we compute the spatial curvature k using equation (3.12).
The best �t parameters are

α = 11.996+87.962
−9.599

β = −0.097+9.284
−9.480 · 1016 m2 Mpc2 km−2 = −0.092+8.840

−9.025 · 1055 m2

γ = 2.178+8.661
−1.753 · 10−24 km4 m−4 Mpc−4 = 0.024+0.095

−0.019 · 10−100m−4

(5.2)

The matter content is determined as

ρd0 = 1.375+1.621
−1.160 · 10−26 kg m−3, ρr0 = 2.526+0.470

−5.523 · 10−26 kg m−3 (5.3)

the Hubble parameter as

H0 = 73.106+1.215
−1.376 km s−1 Mpc−1 = 2.369+0.039

−0.045 · 10−18 s−1, (5.4)

and the nuisance parameters as

a = 0.108+0.019
−0.020, b = 2.398+0.144

−0.133 (5.5)

The spatial curvature is computed as

k = −1.958+2.030
−2.439 · 10−53m−2 (5.6)

The �t has χ2
R = 0.370 which could indicate an overestimation of the errors. See Figure 2 for

the triangular plot.

The goodness of the �t is not particularly relevant here, since the best �t parameters
con�dence intervals indicate that, as one could expect, the system is quite degenerate and
some of the parameters, α, β, γ in the �rst place, are quite poorly constrained. This �t is also
compatible with negative densities of radiation which are of course unphysical. Let us notice
that, �rst of all, one can interpret it as saying that SNIa are not able to constrain radiation,
i.e. that, as far as only SNIa are concerned, the radiation density could be zero. As for
removing degeneracy, one will need further tests to �x radiation contribution. Secondly, we
are interested here in showing that the extended model we are discussing will be potentially
able to �t data with the same visible sources and no dark sources at a fundamental level.
This is a long process, it will take into consideration many di�erent tests as explained in
Conclusions. In the following �ts concerning SNIa, we shall �x a radiation density similar
to the one predicted in the ΛCDM model, since SN themselves are not able to constrain the
value of ρr0.

The second �t we try is using Union2.1 dataset, �xing ρd0 = 0.418 · 10−27kg m−3, ρr0 =
0.001 · 10−27kg m−3, and �tting all other parameters (α, β, γ,H0, a, b). At each step in the
simulation, we compute the spatial curvature k using equation (3.12).

The best �t parameters are
α = 0.369+99.627

−0.171

β = −7.825+17.210
−1.561 · 1016 m2 Mpc2 km−2 = −7.450+16.388

−1.486 · 1055 m2

γ = 6.540+837.97
−1.740 · 10−26 km4 m−4 Mpc−4 = 7.214+924.329

−1.926 · 10−104m−4

(5.7)

The Hubble parameter is determined as

H0 = 73.106+1.215
−1.376 km s−1 Mpc−1 = 2.369+0.024

−0.052 · 10−18 s−1, (5.8)
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and the nuisance parameters as

a = 0.107+0.015
−0.015, b = 2.408+0.112

−0.134 (5.9)

The spatial curvature is computed as

k = −2.033+2.986
−1.000 · 10−53m−2 (5.10)

The �t has χ2
R = 0.368. See Figure 3 for the triangular plot.

Also providing the densities for visible matter, the parameters of the model are still
poorly constrained. Thus, as a third �t we �x α = 1 and β = 0, as well as ρr0 = 0.001 ·
10−27kgm−3. Then, still using the Union2.1 dataset, we �t all the other parameters (ρd0, γ,H0, a, b),
while still computing k at each step.

The best �t parameter is

γ = 2.417+3.706
−2.346 · 10−25 km4 m−4 Mpc−4 = 2.667+4.089

−2.588 · 10−103m−4 (5.11)

The dust density and the Hubble parameter is determined as{
ρd0 = 5.212+2.647

−3.689 · 10−27 kg m−3

H0 = 73.259+1.442
−1.292 km s−1 Mpc−1 = 2.374+0.046

−0.041 · 10−18 s−1
(5.12)

and the nuisance parameters as

a = 0.108+0.018
−0.018, b = 2.408+0.134

−0.137 (5.13)

The spatial curvature is computed as

k = −0.423+3.500
−4.466 · 10−53m−2 (5.14)

The �t has χ2
R = 0.367. See Figure 4 for the triangular plot.

This time we see that the �t is better convincing. The only issue with respect to ΛCDM
is that the dust density is (about one order of magnitude) higher than in ΛCDM. At this
stage it is not clear whether this is a prediction of the model or it is simply due to the value
imposed on the other parameters. For, let us consider a fourth �t, where we �x α = 0.095
and β = 0, as well as ρr0 = 0.001 · 10−27kg m−3. Then, always using Union2.1 dataset, we �t
all other parameters (ρd0, γ,H0, a, b), still computing k at each step.

The best �t parameter is

γ = 2.223+3.479
−2.034 · 10−26 km4 m−4 Mpc−4 = 2.463+3.838

−2.244 · 10−104m−4 (5.15)

The dust density and the Hubble parameter is determined as{
ρd0 = 0.489−0.257

−0.304 · 10−27 kg m−3

H0 = 73.242+1.328
−1.364 km s−1 Mpc−1 = 2.373+0.043

−0.044 · 10−18 s−1
(5.16)

and the nuisance parameters as

a = 0.109+0.018
−0.017, b = 2.404+0.141

−0.134 (5.17)
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The spatial curvature is computed as

k = −0.505+3.497
−4.459 · 10−53m−2 (5.18)

The �t has χ2
R = 0.367. See Figure 5 for the triangular plot.

In these cases the space curvature is about of the same order of magnitude of experi-
mental constraints (k ∼ 10−54m−2 from Planck), just with a bigger uncertainty, as one can
expect since here we used only SNIa data. In any event, it is compatible with spatial �atness.

We see that in this fourth �t the obtain more or less the same dust density as in ΛCDM,
thus con�rming that one can change α and ρd0 accordingly, so that the �t adjusts the value
of γ but still it is a good �t. That explicitly highlights the degeneracy we originally guessed.

We also checked what happens in the third and fourth �ts by restricting to the SNLS
dataset. The SNLS is smaller, so we expect higher errors, though it is more homogeneous, so
we might prevent systematic errors in calibration. For this reason, it is interesting to check
that one obtains about the same results as with Union2.1 dataset.

We obtained best �t values which are completely compatible with the ones of the Union
2.1 catalogue, both with reduced chi-squared values of χ2

R = 1.390.
The last �ts are reasonably good (maybe they show a overestimation of the errors). They

show us the way to test the model. One needs more tests, for example solar system tests
and light elements formation, to �x α and β. Then, with that extra information, supernovae
seem to be able to determine the parameter γ (as well as the matter content ρd0, the Hubble
parameter H0, and the nuisances a and b).

Let us stress that the value of γ is not compatible with γ = 0 showing that this model
is not a simple deformation of Starobinsky model f(R) = αR + βR2. The model we are
considering has late time acceleration, but supernovae do not constrain β which in some �t
is even considered β = 0.

For the best �t values we found in the fourth �t, we showed the evolution of the scale
factor a(t), see Figure 1. In Appendix A, we provide qualitative graphs for all relevant
functions in the model.

6 Conclusions and perspectives

We can conclude that we have many degrees of freedom and degeneracy in the parameters,
too many and too much to determine all parameters just by �tting the SNIa. However, if we
impose some theoretical constraints, for example by tests at di�erent scales, we are always
able to determine at least the value of γ, as well as H0, a and b, in di�erent scenarios. More
tests are needed. Tests are model dependent and each new test must be done within a model
framework. It is dangerous and reckless to guess the results on the basis of an intuition which
has been developed in standard GR.

Only after one has enough tests to remove the degeneracy and �x the model, then new
phenomena will allow us to discuss the predictivity of the theory. Currently, we believe that
solar system test can �x α, while light elements production could �x β. Only at that point
could one really discuss the physical content of the theory, for example by discussing BAO,
CMB, structures formation, gravitational lensing, galaxies and clusters dynamics (see [53]),
for each of which one still needs to develop a complete treatment within the framework of
f(R)-Palatini theories.

The speci�c model we consider here produces late time acceleration, it is compatible with
SNIa observations (as many other models are, including ΛCDM), it predicts a cosmological
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dynamics which is quite closed to that of ΛCDM (see Figure 1), yet it is observationally
di�erent in principle. That is simply not enough to propose or dismiss it as a sound physical
model.

Even if we did not believe that the model f(R) = αR − β
2R2 − γ

3R−1 is a sound
physical proposal, it certainly shows that Palatini f(R)-theories are potentially able to model
SN observations and cosmology without adding dark sources at a fundamental level. Also,
we showed that Palatini f(R)-theories are observationally di�erent from standard GR and
ΛCDM.

This approach is also interesting because it poses a new standard for tests, with respect
to the traditional comparison with Brans-Dicke models, which is now much better founded
on �rst principles, e.g. in view of EPS. Let us remark that if standard GR, in order to �t
observations, needs to account for dark sources (at all scales) at a fundamental level, then
alternative, modi�ed or extended theories of gravitation need to account (thoroughly and
in full detail) for how observations arise in their framework. One cannot simply say that a
model �ts observations without dark sources, and not explaining in details where the extra
accelerations (which are usually interpreted as the e�ect of the gravitational �eld produced
by dark matter) come from.

Here we considered a speci�c Palatini f(R)-theory, we assumed an interpretation for
the �elds g, g̃, and matter �elds, which supports EPS framework and provides us with a solid
bridge between the model and observational protocols. These assumptions are not proven,
they are part of the model speci�cation and can be falsi�ed or corroborated by experiments.
That is the correct way of proceeding.

From our analysis, it seems that either α is much smaller than expected or dust density is
much higher than usually supposed. Within this model,if a smaller value of α is not supported
by observations, then either one has more dust around or the model is contradicted by current
cosmological data. One could also argue that one needs the dark matter contribution to the
dynamics (Ωb+Ωc ' 0.30) for non-cosmological reasons (galaxies and cluster dynamics) which
are quite well established. However, one should say that to discuss galaxy models in a Palatini
f(R)-theories, one should also consider the e�ect of conformal factor, that in these models
is expected to depend on r, not (only) on cosmological t. Is that enough to �t observations
without adding dark matter?

We are also planning to devote future investigations to describe, the evolution of the
Hubble parameter H(z) as a function of distance (being the distance parameterised by z, a,
or t) within this model. That will provide a test when the new data for Hubble drift will
be available and, at least, it provides new evidence that Palatini f(R)-theories can be, in
principle, falsi�ed by the observations.

We are currently working to split the e�ects in extended theories, into the component
due to e�ective sources from the e�ects due to the atomic clocks being proper with respect
to a metric which is not the one describing free fall of test particles. Our interpretation is
well based in EPS framework, though being able to split the e�ects, will enable us to test this
assumption by experiments.

Also a full analysis of the dynamical system describing the cosmological sector of this
theory would be interesting, as done in [39] for polynomial models. Here, we rather analysed
the system around a speci�c set of parameters, while a full analysis would highlight whether
one can have �nite time singularities for other values of the parameters. For now, we know
no �nite time singularity arises for our best �t parameters.

Of course, one would need also perturbation theories, structure formation, lensing, in-
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teractions with particle models (e.g. baryogenesis), the evolutions of perturbations of CMB
and many other aspects. The point is that proceeding in that direction is the only way to
falsify models on a certain basis.

And that is the only thing we can do, until we are able to discuss model properties
without �xing the function f(R), something which currently is completely out of reach.

Appendix A: Qualitative graphs

The model is solved as soon as we get t(a), see (3.13). All other quantities can be computed
as functions of a so that they all can be plotted with respect to all the others in parametric
form. For realistic parameters, graphs are di�cult to be analyzed since the interesting features
occur at many order of magnitude away one from the others. So here we collect the graphs
for the parameters values

κ = c = 1 α = 1 β =
1

16
γ =

1

128
ρ0 =

3

4
(6.1)

These graphs show qualitatively the form of model relations with realistic parameters.

In view of the master equation and EoS for visible matter, equation (3.6) expresses the
curvature R as a function of the scale factor a. The function f(R) is given as a function of
a as f(+R(a)) = 0.7388 − 2.124(a − 1) + O((a − 1)2) in Figure 6.a. That corresponds, near
today, to approximately standard GR with a positive cosmological constant. Going back in
time the action climbs the dune and falls down again unlike in ΛCDM. Also the limit for
a −→ +∞ is di�erent from the standard case in which R ∝ a−3. For this reason, we call this
model dune cosmology.

The Weierstrass function Φ(a), which determines the Friedmann equation for the scale
factor a, for these parameters is shown in Figure 6.b. One can see that there is a bounded
allowed region (0, a1] (corresponding to a universe which readily recollapses) as well as an
unbounded one [a2,+∞) in which we are now. The scale factor a = a2 acts as a re�ection
point (i.e. a bouncing point). The second derivative of the Weierstrass function acts as a
driving force. Accordingly, a positive second derivative indicates an accelerating expansion
while around the maximum we have a deceleration phase.

The conformal factor ϕ(a) is presented in Figure 6.c, ã(a) =
√
ϕ(a) a in Figure 7.a, and

�nally t̃(a) in Figure 7.b, which is obtained by integrating the equation

dt̃

da
=
√
ϕ
dt

da
=

√
ϕ(a)

Φ(a)
(6.2)

Then we integrate t(a) (in Figure 7.c) which in fact exhibits an initial slowing down
phase, followed by an accelerated expansion.

At that point one can graph all quantities as a function of all the others, for example
the EoS for e�ective matter p̃(ρ̃) (see Figure 8.a) and the evolution of the scale factor of g̃ as
a function of t̃, i.e. ã(t̃) (see Figure 8.b).

As long as the old question of which frame is physical, if g or g̃, the issue is simply ignored
since the quantities are all physical in a sense, just some physical structures are associated to
g, some to g̃. The issue is also meaningless since the two metrics after all are one a function
of the other, so that they both equally are physical or unphysical in a sense.
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Figure 2. Triangular plot of the posterior distribution generated from the chains of MULTINEST.
The coloured shapes represent the regions of the parameter space with a con�dence level of 2σ and 1σ.
We �t all parameters (ρd0, ρ

r
0, α, β, γ,H0, a, b). We can see many parameters (e.g. α and β) are not

very well constrained by the �t.
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Figure 3. Triangular plot of the posterior distribution generated from the chains of MULTINEST.
The coloured shapes represent the regions of the parameter space with a con�dence level of 2σ and 1σ.
We �x ρd0 and ρ

r
0 (to the density they have in ΛCDM for the sake of discussion) and �t (α, β, γ,H0, a, b).

The values of α and β are still poorly constrained.
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Figure 4. Triangular plot of the posterior distribution generated from the chains of MULTINEST.
The coloured shapes represent the regions of the parameter space with a con�dence level of 2σ and 1σ.
We now �x α = 1, β = 0, ρr0, �tting (ρd0, γ,H0, a, b). This time the constraint of values by the �tting
is more convincing.
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Figure 5. Triangular plot of the posterior distribution generated from the chains of MULTINEST.
The coloured shapes represent the regions of the parameter space with a con�dence level of 2σ and 1σ.
We now �x α = 0.095, β = 0, ρr0, �tting (ρd0, γ,H0, a, b). This time the dust density is compatible with
ΛCDM.

� 22 �



a

f(+R(a))

1

a

�(a)

1

a

'(a)

1

Figure 6. The graphs show in order:
a) the scalar density f(+R(a)) as function of the scale factor a
b) the Weierstrass function Φ(a) as function of the scale factor a
c) the conformal factor ϕ(a) as function of the scale factor a
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Figure 7. The graphs show in order:
a) the scale factor ã(a) of the metric g̃ as function of the scale factor a
b) the coordinate time t̃(a) as function of the scale factor a
c) the evolution of the scale factor a(t) as a function of time t
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Figure 8. The graphs show in order:
a) the EoS p̃(ρ̃) of the e�ective sources
b) the evolution of the scale factor ã(t̃) of the metric g̃ as a function of the coordinate time t̃
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