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Abstract 

The curse of dimensionality is a challenge that researchers often face when dealing with large 
Vector Autoregressions (VARs). Different approaches have been proposed in the literature to 
address this issue. In this paper, we propose a new method based on the idea of compressed 
regression. In particular, we introduce two novel nonlinear compressed VARs to forecast the 
occupancy rate of hotels that compete within a narrow geographical area. We make the models 
more flexible through the introduction of neural networks, and compare their performance against 
several competing models. The empirical results show that the new compressed VARs outperform 
all other models, and their accuracy is preserved across nearly all forecast horizons from 1 to 36 
months.   
 
Keywords: Large Vector Autoregressions (VARs), Compressed Methods, Bayesian; Neural 
Networks; Hotel Occupancy Rate  



1. Introduction 

Forecasting tourism/hotel demand continues to be one of the most widely researched areas in 

tourism economics (Gunter and Önder, 2016; Wan et al. 2016; Hassani et al. 2017). A variety of 

methods have so far been introduced ranging from Autoregressive Moving Average Cause Effect 

(ARMAX) models (Akal, 2004) to combination of forecasts (Chan et al. 2010) and Bayesian 

methods (Wong et al. 2006; Assaf et al. 2018). Advanced techniques like support vector regression 

have been proposed and used early on (Chen and Wang, 2007). Nonlinear models like neural 

networks are also still being employed with some success (Li et al. 2018). Vector Autoregressions 

(VAR), in particular, have received strong attention in modelling tourism demand (Massidda and 

Mattana, 2013; Pan et al., 2012; Li et al., 2005; Witt et al., 2004). The method is popular because it 

relaxes the assumption of exogeneity and allows for reverse causality (e.g. between tourism demand 

and its determinants). 

A problem with VARs, however, is that they suffer from the “curse of dimensionality,” that is, 

“the situation in which the number of parameters to be estimated grows exponentially with the 

number of variables in the system, while the size of the data set remains limited” (Assaf et al. 2018, 

p.3) Large VARs usually result in more parameters than individual data, and, as a result, forecast 

poorly out-of-sample (Koop et al., 2016). Several solutions to this problem have been proposed 

in a Bayesian framework, such as adopting prior shrinkage on the parameters (Koop et al. 2016), 

with some choices including the Minnesota prior, LASSO (least absolute shrinkage and selection 

operator), and SSVS (stochastic search variable selection) - see Park and Casella (2008), and 

George, et al. (2008) for more details. However, as discussed in Koop et al. (2016, p.2), most of 

these solutions will result in computationally intensive Markov Chain Monte Carlo (MCMC) and 

“their use in recursive forecasting exercises can be computationally infeasible”.  

A more effective approach to tackle the problem is to use compression methods, where shrinkage 

is applied by compressing the data instead of shrinking the parameters towards a given value (for 

example, zero). In tourism studies, Li et al. (2018) used principal component Analysis (PCA) to 

reduce the dimensionality of the data and then used a neural network to forecast tourism arrivals. 

However, a problem with PCA is that it is an “unsupervised data compression method”, where 

“the data compression is done without reference to the dependent variable(s)” ( Koop et al., 2016. 

p.3). An arguably more effective way to handle this issue is to use the idea of Bayesian compressed 

regression, introduced by Guhaniyogi and Dunson (2015), where compression is achieved using 

the concept of Bayesian model averaging (BMA). Koop et al. (2016) generalized the use of this 

method to the context of large dimensional VARs.  

The objective of this study is take up this approach and propose and estimate flexible VAR models. 

We focus on a problem of forecasting monthly occupancy rates of hotels that compete within the 

same geographical area (also known as “tract”). Several studies have recently focused on 

forecasting hotel demand (e.g. Zakhary et al., 2011; Pan et al., 2012; Yang et al., 2014). This is 

rightly so as hotel management depends on the accuracy of forecasts which, in turn, can promote 

efficient resource allocation in the hotel industry. One of the contributions of the present study is 

to model occupancy rate as a function of prices of other hotels within the same tract (geographical 

area). The merits of this approach are rather obvious as the occupancy rate of a particular hotel 

within a tract is likely to be affected by the price offering of other hotels competing within the 

same tract (Schwartz et al., 2016).  

The context is a perfect example of large VAR. The dimensionality of the predictor space increases 

dramatically when the number of hotels and lags increase. The question is then is how to select 



predictors that are promising in terms of forecasting accuracy. The curse of dimensionality 

becomes even worse when we want to set up VARs for prices and occupancy rates of all 21 hotels 

resulting in 42 dependent variables (assuming we have only one lag) and a very large number of 

parameters. Standard Bayesian VARs (Wong et al., 2006) become computationally infeasible even 

when tight priors are adopted.  

As the problem of dimensionality is endemic, one solution is to examine each hotel separately (that 

is, as a single equation in the VAR) and select the appropriate predictors.1 However, if we do so, 

we ignore the correlation of errors with other hotels in the same tract and, of course, there is no 

strong theoretical justification for this. In this paper we use two techniques to deal with this 

problem. First, we reduce the VAR to the estimation of a single equation at a time, without ignoring 

the correlation of error terms. Second, for each single equation we use Bayesian Compression 

(Guhaniyogi and Dunson, 2015) to select the best set of predictors out of a universe of a potentially 

huge number of candidates. Bayesian compression attempts to estimate interesting linear 

combinations of the regressors which are promising in terms of fit by using randomly drawn 

weights for the linear combinations. The best linear combination is then selected using closed-

form expressions for the marginal likelihood or “evidence”. The final model is a Bayesian VAR 

whose theoretical properties are not sacrificed and full information likelihood-based methods are 

used to address the forecasting problem. Our reduction of a potentially huge VAR to a series of 

univariate autoregressions (without sacrificing theoretical consistency with the full-blown VAR) 

along with compression, allows us to obtain good models at a fraction of the time that would be 

normally required to estimate medium-scale Bayesian VAR for each tract.  

Additionally, recognizing that linear combinations are not necessarily ideal in our context, we 

augment the original set of predictors (lagged prices and occupancy rate from hotels within the 

same tract) with basis function used in neural networks (known as sigmoid function) whose 

parameters are also drawn randomly avoiding expensive global optimization or back propagation 

to select optimal weights. Artificial neural networks (ANN) can approximate arbitrarily well any 

given functional form (Stinchcombe and White, 1989). The marginal likelihood can still be used in 

the same fashion to select optimally the appropriate model.  

Our techniques open up new possibilities for forecasting in tourism research. Even when 

researchers do not have access to contexts like ours, they can always construct huge sets of 

predictors using basis functions, lags, powers and other nonlinear functions of the predictors, etc. 

When the original problem is univariate, the problem reduces to finding the “best” predictors for 

a single equation / dependent variable. In the context of large VAR (i.e. multiple dependent 

variables) the VAR can be reduced to a series of single equations without any loss of generality. 

The VAR is further generalized using an ANN to a flexible form. Additionally, we also explore a 

fully non-parametric VAR based on Gaussian Process priors.  

2. Statement of the problem 

To state our forecasting problem, suppose we have a number of tracts and within each tract there 

is a number (𝑛) of hotels. Actually, the number of hotels varies by tract but in order to keep 

notation as simple as possible we use “ 𝑛 ”. Hotel occupancy rates are in the vector 𝑌𝑡 =

[𝑦1𝑡, . . . , 𝑦𝑛𝑡]′ where 𝑡 is time period (𝑡 =1,…,𝑇). For each hotel, we model occupancy rate as a 

                                                 
1An alternative is to impose some structural relationship across different dimensions. In this specific case, 
the distance between hotels can be structured. See for example, Pfeifer and Bodily (1990).  



function of its own price as well as the prices of other hotels within the tract. Hotel price is an 

important component of guest satisfaction (Matilla and O’Neill, 2003), and is also an important 

criteria in the selection of hotel/motel accommodation (Lockyer, 2005).  

As we will see below, we have 10 years of monthly data (i.e. 𝑇 =120) for each hotel. Of course, it 

is possible to forecast hotel occupancy rates based on univariate models like the following, and we 

which we use later for comparison:  

 
2.1. Univariate Model I 
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where 
itx  is a vector of predictors (e.g. lagged prices), α, β are coefficients and 

it  is an error 

term. Hotels in the same tract are dependent in the sense that prices or price changes are correlated 
as they compete in the same market. Therefore, an alternative model could be: 
 
2.2.  Univariate Model II 
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where ty  is the average value of the dependent variable in the tract. For simplicity, we keep the 

number of lags (L) to be the same. Such models can be estimated without much difficulty and 
their forecasting performance can be examined systematically. 
 

Although such models2 account for dependence within a tract, one can argue that dependence is 
deeper, and guests look at the prices of other hotels within the tract when deciding on a particular 
hotel. A model that accounts for such dependence is a VAR: 
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If we abstract from the presence of exogenous variables and restrict attention to L=1, a full VAR 
can be written as follows: 
 

                           1 , 1,..., ,t t tY BY t T−= + =  

 
      (4) 
 

                                                 
2 For all univariate models the number of lags is chosen using the Schwarz Bayesian Information criterion. 
We estimated for each tract individually. We have tried ARIMA but the forecast gains were trivial. We did 
not try vector ARMA because of computational difficulties. This means that MA terms do not add 
significantly to forecast performance, at least in this application. Given that the average of y's is included in 
each equation (except unit / tract i which we forecast) this means that common factors are accounted for, 
so it extremely unlikely that any forecast improvement will arise from vector ARMA processes as they only 
account for error correlation.. 

 



where B is n n  matrix of unknown coefficients. For simplicity, we also omit the vector of 

intercepts. Here,  1 ,...,t t nt   =  is a vector of error terms whose mean is zero and their 

covariance is Ω.  
 

Even in this simplified form, it is clear that if we have, for example, n=30 hotels per tract, matrix 

B involves 900 unknown parameters and Ω involves another 465 parameters.. With 𝑇 = 120 

observations it is impossible to estimate these parameters3.  

Hence, the important question is how to proceed when faced with such a large VAR. As 

mentioned, methods like principal components can be used as well. However, some new 

techniques have been proposed in the statistical literature based on the idea of “compression” 

(Guhaniyogi and Dunson, 2015). The potential number of explanatory variables is reduced to a 

much smaller number (determined by the data) automatically. We discuss the idea in the next 

section, and for discussion purposes, we confine our attention first to the case of the linear model.  

3. The case of the linear model 

 
Suppose we have a model of the form: 
 

 2= , ~ (0, ), =1,..., ,t t o t t vy x β v v iidN σ t T +  (5) 

 

where tx  is a 1k  vector of predictors whose dimension can be large or even larger than T . 

Guhaniyogi and Dunson (2015) advocated compression methods in which the vector of regressors 

is replaced by tx  where   is an km  compression matrix which, effectively, reduces the 

dimensionality to m . In turn, the regression model is: 
 

 2= (Φ ) , ~ (0, ), =1,..., ,t t t ty x β u u iidN σ t T +  (6) 

 

where   is the 1m  parameter vector. Guhaniyogi and Dunson (2015) suggest to draw the 

elements of matrix   randomly as follows:  
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3 The VAR model can be estimated on a single-equation basis for each hotel (this is known to provide the 
maximum likelihood estimator under normality) - the matrix of regressors is the same for each hotel / 

equation. Bayesian methods can be used which impose prior information on the elements of 𝐵 . For 
example, the well-known Minnesota prior assumes that the series are random walks and therefore the 
diagonal elements of B should be close to one while the off-diagonal elements should be close to zero. The 

question of estimating or imposing a prior on Ω is left open or is dealt with using other techniques. Often, 

a reasonable alternative is to use a conditional Wishart prior so that Ω can be directly integrated out of the 

posterior and then numerical techniques are used to explore the marginal posterior of 𝐵. How useful are 
such techniques in terms of forecasting is an empirical question. Many studies have been conducted to 
examine the effect of the prior in out-of-sample forecasting (Feldkircher, 2012; Assaf et al. 2018). 



 
where   and m  are parameters. Matrix   is orthonormalized before proceeding. Parameter 

m  can be drawn from a uniform distribution in  ),(min,log2 kTk  and   from a uniform 

distribution in (0.1, 0.9). In turn, different draws for m  and   can be considered and we select 
the one with the highest values of the marginal likelihood4. In a simulation study and empirical 
work, Guhaniyogi and Dunson (2015) documented very good coverage properties of predictive 
intervals and large computational savings relative to other computational alternatives to the 

problem. In matrix notation, the problem vXy o +=  is converted to uXuXy ++ 
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If we write the model as: 
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the marginal likelihood is available in closed form as follows:  
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provided our prior is: ( )2| 0, Σββ σ N σ  and ( ) 1p σ σ − . Moreover,  
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Our interest in this study focuses on a different, more flexible model, an artificial neural network 

(ANN) of the form:  
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In this paper we focus on ANNs with a single layer, although “deep learning” techniques (relying 
on more layers) can be examined in future work. Such models also known as artificial intelligence 
methods and have been used widely in tourism forecasting as we mentioned in the Introduction. 

                                                 
4 It is possible to average different models based on their posterior model probabilities which can be 
computed easily once we have the marginal likelihood. This is the method advocated in Guhaniyogi and 
Dunson (2015). Following the suggestion of an anonymous referee, we re-examined the forecasting 
problem but found that posterior model probabilities favour one model by a large margin (posterior 
model probability for one model was always above 0.9 and the other models received negligible 
probability). In turn, this suggests that, at least in our application, we can rely on model selection rather 
than model comparison or model averaging. 



In equation (8),  o  and 
g  are 1k  parameter vectors, G ,...,1  are parameters,   is a 

given “activation function”, for example ,
)(exp1

1
=)(

z
z

−+
  G  is the number of nodes in the 

ANN. It is well known that as G  increases, the model can approximate accurately any given 
functional form. 
 

The problem is, of course, that with large k , the ANN is even more demanding in terms of data 
requirements. Therefore, we have to consider compression methods. There are two alternative 
compression techniques that we can consider in this context.. In Compression Method I, we 
compress the data prior to estimating and forecasting using an ANN. In Compression Method II, 
we apply a simpler procedure to select the nonlinear parameters of the ANN instead of full 
MCMC-based Bayesian inference. The method relies on the idea that the support of the nonlinear 
parameters consists of only three values, one of which is zero and the other two are placed 
symmetrically around zero. As this alternative reduces computational burden significantly, it is 
worth examining whether it performs well in terms of out-sample-forecasting relative to 
Compression Method I.  
 
3.1. Compression Method I 
  

In Compression Method I we compress the data in tx  to reduce the dimensionality, and after we 

apply the ANN. The data compression is achieved by using the Guhaniyogi-Dunson operator 

Φ tx . In turn, the number of variables is significantly reduced and the procedure is the same as in 

(6).  
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The model is nonlinear in the parameters  Ggg 1,...,=,=
~

 . Statistical inferences can be 

provided using MCMC algorithms, for example the Metropolis-Hastings or the Girolami and 
Calderhead (2011) technique. In this study we use a simple Metropolis-Hastings random-walk 
algorithm.5  
 

3.2. Compression Method II 
 

In Compression Method II we condition, first, on the nonlinear parameters 
'
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5The number of nodes “𝐺" is chosen using the marginal likelihood for each model (corresponding to 
different G from 1 to 10). 
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where ],[=   o  and ])
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(   ttt zxw  whose dimensionality is 1)( +Gk . Conditional 

on 
~

, we can apply compression directly to this model. To choose the  s we want to impose 

some sparsity and avoid proliferation, so we can draw randomly each j  from a discrete 

distribution with support  bb,0,−  with equal probabilities (1/3), where b  can be selected after 

some experimentation: The experimentation consists in treating the  s as parameters supported 

over continuous sets, apply MCMC to update them and then choose b  based on the MCMC 

samples to minimize a rough measure of predictive ability. Specifically, we try 1,000 different 

randomly selected values of b , and we choose the one that provides minimum absolute forecast 

error at a 12-month horizon.. To the best of our knowledge, this is a novel technique. Since the 

𝛽 s are nonlinear parameters and direct optimization to select them is quite costly, it was 
encouraging to see that this method works quite well in practice. The method can be extended in 
future work to allow for more points in the support. Intuitively, this method works because for 
the nonlinear parameters of an ANN, precisely knowledge is immaterial; what is more important 
is that we have a sufficient number of nodes and rough approximations for the values of the 
nonlinear parameters.  

4. The case of Vector Autoregressions 

VARs have been considered, from the point of view of compression, by Koop et al. (2016). The 
VAR model is:  

 

                           ,1,...,=,= 1 TtBYY ttt +−                                 (15) 

 

where ],...,[= 1


nttt yyY  is a vector of variables, B  is an nn  matrix of coefficients, and for the 

error terms we assume:  
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As the number of parameters is 2n  (provided we have only lags of order one but the extension 
to more lags is straightforward) this can quickly exceed the sample size, so the need for 
compression is immediate. Our extension to the model is:  
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of regressors in the i th equation of the VAR, and ],...,[=
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1
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iGii   is the vector of nonlinear 

parameters whose dimensionality is 1nG . In turn, we can write the i th equation of the VAR as 
follows:  
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where ]}1,...,=,{,[=  Ggigoii   is the 1)( +Gn  vector of parameters. This model is a 



multivariate regression of the form6:  
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where )
~

(tZ  has )
~

( itz  as its i th row. We can apply any of the two compression methods in 

the previous section, as we can i) first, compress the tx s in (14) or ii) treat the nonlinear parameters 

ig  as given for the moment and compress directly in (15). In this form we can compress as:  
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where   is a mk   compression matrix. In this form we still have to deal with i) the nonlinear 

parameters in 
~

, and ii) a large covariance matrix  . 

 
Koop et al. (2016) exploit results from Primiceri (2005), Eisenstat et al. (2016) and Carriero et al. 
(2015) to express the VAR in a recursive form with independent errors facilitating equation-by-
equation analysis. The representation for the standard VAR in (12) has the form:  
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where  =AA , ),...,(= 1 ndiag  , A  is a lower triangular matrix with ones on the main 
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where )(i

tX  contains the regressors in the i th equation (as we described), i  is a compression 

matrix whose dimensionality is )( )(i

tXdimm  and the i th row of   is given by i . This form 

suggests that the model can be made flexible through the introduction of ANNs as in the previous 
section (the case of the simple linear model). We call this the “Compressed VAR-ANN” or 
Compressed VAR (CVAR) in short. 

5. Alternative Models 

As an extension to the above, we also consider two alternative models. In the first, we consider a 

CVAR model using a non-parametric form. We label the model as a Gaussian Process VARs 

(GPVAR), where the implementation of GPVAR is based on the existing compression from linear 

VAR (so we maintain the same compression as in CVAR) and then the compressed variables are 

used in GPVAR. In other words, we maintain the advantage of single-equation-based estimation 

through non-parametric, Gaussian process regression, to implement our GPVAR. The non-

parametric context has some obvious advantages. For example, we make no assumption on the 

functional form and thus we let the data speak for themselves in terms of in-sample fit. How useful 

                                                 
6 In this multivariate regression unlike standard VARs the regressors are not the same in each 
equation. 



they can be in terms of forecasting, is an empirical question. A priori, however, we do not expect 

them to perform well as non-parametric models tend to adapt too much to the idiosyncrasies of 

the sample and, as a result, may not always perform well in terms of out-of-sample forecasting.  

In the second model, we consider a dynamic factor method, which also emerges naturally in the 

big-data context and has been used in previous work (Forni et al. 2000; Forni et al. 2015; Koop et 

al. 2016). From here, we believe it is an appropriate choice to assess the forecasting performance 

of Bayesian compressed methods.  

5.1. Gaussian Process VARs 

 
Once we have the single-equation representation of the VAR as in (19) it is possible to use a non-
parametric version and write (19) as:  
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where itiit E = , and )()( = i
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t Xx  . In this formulation, we use a fully non - parametric version 

of each VAR equation instead of a flexible ANN representation. This formulation is novel in the 
sense that the regressors in the i th equation of the VAR are compressed before non-parametric 
regression. In turn, we use the Gaussian Process Prior (GP) formalism to implement non-
parametric estimation (see O’ Hagan and Kingman, 1978; Williams and Rasmussen, 1996, and 
Williams and Rasmussen, 2006). In the GP we assume: 
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where ),( xxKi  represents the covariance matrix of )(xfi  at different pairs of points, say ),( zx
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where iy  and if  are 1T  vectors, if  denotes the vector of unknown function values at the 
)(i

tx s, and K  is a TT   matrix representing the covariance of the GP given by 

( , ) = [( ( ) ( ))( ( ) ( )) ]i i i i iK x z E f x f z f x f z − − . The covariance matrix can be written as 

)(=),( st
i

sti xxxxK −  where  2/2exp=)( i
i

ddd 
−  is a kernel function and i  is a 

hyperparameter. Often, an alternative kernel is used, viz.  2
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controls the variance and 2i  controls the decay of covariances. 
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at which the function values are ],...,[= *

)(,

*

(1),

* 
Miii fff . Under the GP prior, the joint distribution 

of if  and *

if  is:  
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 (26) 

 

where *, XX  represent the vectors of observed and evaluation (test) points. Defining 
2= ( , )i i i TA K X X σ I+  we obtain the posterior mean and covariance matrix:  

 

 * * 1( | ) = ( , ) ,i i i i iE f y K X X A y−  (27) 

  

 * * * * 1 *( | ) = ( , ) ( , )Α ( , ).cov i i i i i if y K X X K X X K X X−−  (28) 

 
These expressions can be derived if we notice that:  
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1
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yp

dfyffpyfp   (29) 

 

Finally, the hyperparameter(s) i  can be chosen so that the marginal likelihood is maximized. The 

analytical expression for the log marginal likelihood is:  
 

2 1 21 1
2 2 2

log ( | , ) = '[ ( , ) ) log | ( , ) | log 2 .T
i i i i η i i i i η i i i T

i i
p y X η y K X X σ I y K X X σ I π−− + − + −

 (30) 
 
For more details, see MacKay (1999), Williams and Rasmussen (2006), and Sundararajan and 

Keerthi (2001). The only expensive computation is the inversion of the 
iA  matrix (which depends 

on the hyperparameters). However, efficient methods have been proposed by Williams and 
Rasmussen (2006). 
 
5.2. Dynamic Factor Model (DFM) 
 
DFMs are popular in the big-data context and they have, more or less, the same interpretation as 
principal components. Principal components are linear combination of the variables which explain 

as much of the variation in the variables, as possible. Suppose ty is an 1n  vector of variables 

that we need to “explain” in terms of m n  factors, which we denote by tf . Then we assume: 

                                                                               Λt t ty f u= +                                   (31) 

where 𝑢𝑡 is a vector error term with zero mean and covariance matrix Σ, and  Λ ijλ =    is a 

matrix of parameters known as factor loadings. There are several possible normalizations that can 

be used for identification, for example 0, , 1ij iiλ i j λ=  = . In distinction to classical principal 

components or factor analysis, the factors have a dynamic structure: 
 

      1t t tf Af e−= +                                      (32) 

 

where ( )~ 0,Ωte N , A  is a square matrix ( m  m ) and Ω  is a diagonal matrix. The model is 

not unlike the factor analysis model and, in fact, some estimation techniques have been proposed 
which rely heavily on the static factor model. In terms of advantages, the DFM allows for serial 
dependence in the factors which is of interest in applied forecasting. For more details, see Forni 



et al. (2000).  
 

6. Data 

The dataset for this study was obtained from Smith Travel Research (STR), an independent 

company that tracks lodging supply and demand data for most major hotels in the United States. 

We obtained data on occupancy rates and average daily rates (as a proxy of hotel price) for 1,508 

hotel located in 50 different tracts. For each hotel, we have 10 years of monthly data ranging from 

the first month of 2008 to the last month of 2017. In total, we have 180,960 observations. Table 

1 summarizes the number of hotels for each of these tracts. According to STR, a tract is defined 

as a “subset of a Metropolitan Statistical Area market and are defined by counties and/or zip codes. 

For example, the Boston MSA is divided into 10 tracts” (Canina et al. 2005, p. 571).  

Hotels within the same tract naturally compete with each other as the tract represents the 

narrowest grouping available and is “the realistic options available to a consumer who desires to 

visit a particular location” (Canina et al. 2005, p. 571). For this reason, tracts have been used in 

some studies to represent “competitive clusters” (e.g. Assaf et al. 2016; Canina et al. 2005).  

As mentioned, we model the occupancy rate for each hotel as a function of its own price (i.e. 

ADR) as well as the prices and occupancy rates of other hotels within the tract. Given that tracts 

represent a realistic option available to consumers, we believe that the occupancy rate of a certain 

hotel is affected by the price and occupancy rate of other hotels within the same tract. As discussed 

above, hotel price has always been an important criterion in the selection of hotel/motel 

accommodation (Lockyer, 2005). 

7. Results  

7.1. Forecasting 

In Table 2 we report mean absolute forecast errors (MAFE) for all models we presented, under 

the baseline prior. Root Mean Squared Forecast Errors (RMSE) are reported in Table 3. 

Specifically, we present average MAFE across all tracts, and results for three tracts selected at 

random. The results are for the baseline prior (see subsection 7.2). Evidently, the best forecasts in 

terms of both MAFE and RMSE are delivered by CVAR-I and CVAR-II implying that 

compression provides accurate forecasts even at horizons of 36 months ahead.  

Although, at some short horizons, GPVAR performs well, its behavior is not consistent across 

tracts and / or forecast horizons. Univariate and Dynamic Factor Models (DFM) do not perform 

nearly as well as compressed VARs, and the forecast errors are, invariably, quite large relative to 

the compression methods. This means that compression and (dynamic) factor analysis rely on 

different principles of selecting summaries of the data and, in practice, using compression delivers 

much better forecasts. Surprisingly, univariate models are not adequate in out-of-sample forecasts. 

This often happens and it is well known that more elaborate models (VARs for example), in 

particular Bayesian VARs sometimes perform better (Wong et al. 2006). In our application, it turns 

out that univariate models do not perform nearly as well as compression methods.  

A formal criterion of selecting the best-performing model is the predictive Bayes factor (PBF). 
Loosely speaking, given the data 

1:  TY  where T  is the available number of observations, we 

consider the predictive density: 
1: 1:( | )T T h Tp Y Y+ +

, where 1,2, ,h H=   is the forecast horizon.  



                         ( ) ( )1: 1: 1: 1:

Θ

,| |T T h T T T h Tp Y Y p Y θ Y dθ+ + + +=      (33) 

( ) ( )1: 1: 1:

Θ

, .| |T T h T Tp Y θ Y p θ Y dθ+ +=   

 

Here, Θθ   represents the parameter vector. Given an ergodic sequence, ( ) , 1, ,
s

θ s S=  , which 

converges to the posterior, ( )1:| Tp θ Y , the multivariate integral can be accurately approximated as: 
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                        (34) 

The ratio of any two predictive densities provides the predictive Bayes factor. PBFs are reported 

in Table 4. PBFs are computed in favor of CVAR-I and against all other models. Although PBFs 

are close to unity for CVAR-II (implying that the two models behave nearly the same) they are 

strongly in favor of CVAR-I (and therefore, CVAR-II as well) against all other models. For 

example, the odds against DFM at 12 months are overwhelming (292.15) and the same is true for 

most of the other models.  

To evaluate the “statistical significance” of forecast superiority we rely on the Hansen, Lunde and 

Nason (2011) model confidence set (MCS) 𝑝-values. The MCS consists of models that are not 

clearly inferior in the light of the data. As these authors mention: “The interpretation of a MCS 𝑝-

value is analogous to that of a classical 𝑝-value. The analogy is to a (1 − 𝛼) confidence interval 

that contains the “true” parameter with a probability no less than 1−𝛼. The MCS p-value also 
cannot be interpreted as the probability that a particular model is the best model, exactly as a 
classical p-value is not the probability that the null hypothesis is true. Rather, the probability 
interpretation of a MCS p-value is tied to the random nature of the MCS because the MCS is a 
random subset of models that contains [the true model] with a certain probability.” (p. 463)  
 

In Table 5, we report median 𝑝-values of the MCS test across all tracts. From the results reported 
in Table 5, it turns out that CVAR I and II are always in the MCS across all forecasting horizons 
and other models are clearly inferior in terms of forecasting performance. For the models in the 

MCS (viz. CVAR I and II) the 𝑝-values were never lower than 0.10. For the models that are not 
in the MCS they were never greater than 0.01.  
 
 
7.2. Sensitivity Analysis 
 
Sensitivity to prior assumptions is an issue in Bayesian analysis and, in principle, different priors 
may lead to different forecasting results. We address this issue in what follows. First, we describe 

the baseline prior. In (1), we have parameters   ,α β . In (2) we have parameters , ,α β γ . In (8) we 

have parameters  0, , gγ β β . In (30) we have the hyperparameters ( )i iη ξ= exp . In (31) – (32) 

we have parameters A  and the different elements of 𝛬. The reparametrization from iη  to iξ  

facilitates the use of a normal prior for all parameters. All parameters are assumed a priori 

independent and for any parameter, say λ  we assume: 
 

( )2~ 0,λ N ω I      (35) 

In the baseline prior we have 1ω = .. To examine alternative priors we vary parameter 𝜔 between 

0.01 and 100 randomly and, therefore, we generate 100 such priors. The reduction of the prior to 



a single parameter (𝜔) facilitates exposition in the absence of specific information about the 

parameters.  

Our results are reported in Table 6, where we present the percentage of cases in which CVAR-I 

delivers smaller RMSFE and MAFE relative to other models across all forecast horizons. 

Compared to CVAR-II, CVAR-I behaves about the same. Relative to other models, in particular 

Univariate-II and DFM, are occasionally better but in more than 90% of all cases, CVAR-I 

performs best. Whenever other models are better, a closer examination showed that MAFE and 

RMSE do not differ by more than 5%, showing that compression techniques are still competitive 

even when univariate or DF models are better.  

 

8. Concluding remarks 

In this paper we take up the issue of forecasting occupancy rates of hotels that compete within the 

same tract. Apart from univariate models, we propose the use of two novel nonlinear VARs based 

on the idea of compressing the regressors in each equation to avoid the curse of dimensionality. 

The VARs are extended to a flexible framework by using neural networks to specify the functional 

forms. In addition, we examined the forecasting performance of a nonparametric specification 

based on Gaussian processes. We also use dynamic factor models as an alternative method to 

summarize the data when the number of regressors is large. The empirical results show that the 

performance of the new compressed VARs is impressive, relative to the alternative models, and 

their accuracy is preserved across nearly all forecast horizons from 1 to 36 months.  

One limitation of the study is that it does not account for other factors may affect the occupancy 

rate of hotels within the tract. For instance, occupancy rate can be affected by seasonality, number 

of tourist arrivals, star rating, gross domestic product and consumer price index, among others. 

Unfortunately, obtaining some of these data at a consistent level for all tracks was not possible for 

this study. Future studies are encouraged to account for some of these variables. Nevertheless, the 

present study presents an important illustration on the power of compressed methods should more 

data become even more available.  

Given the superiority of Bayesian compressed methods, future applications of the techniques are 

recommended. For example, future research may consider applying the methods to study other 

aspects of the tourism industry. The techniques, for instance, may open the door for more 

comprehensive applications that would account for a large number of variables to forecast 

important issues such as tourism demand and arrivals. It would be also interesting to compare the 

methods to other data reduction techniques currently used in the tourism literature (e.g. principal 

components).    

 

 

 

 

 

 



 

 

 

 

 

Table 1. Sample Characteristics  
 

Tract # No. of Hotels No of Obs. Tract # No. Hotels 
No. of 
Obs. 

Tract 1 18 2160 Tract 26 29 3480 

Tract 2 35 4200 Tract 27 29 3480 

Tract 3 45 5400 Tract 28 25 3000 

Tract 4 40 4800 Tract 29 20 2400 

Tract 5 17 2040 Tract 30 26 3120 

Tract 6 36 4320 Tract 31 39 4680 

Tract 7 20 2400 Tract 32 43 5160 

Tract 8 26 3120 Tract 33 41 4920 

Tract 9 26 3120 Tract 34 16 1920 

Tract 10 26 3120 Tract 35 24 2880 

Tract 11 37 4440 Tract 36 41 4920 

Tract 12 43 5160 Tract 37 35 4200 

Tract 13 21 2520 Tract 38 20 2400 

Tract 14 23 2760 Tract 39 20 2400 

Tract 15 32 3840 Tract 40 42 5040 

Tract 16 27 3240 Tract 41 26 3120 

Tract 17 29 3480 Tract 42 32 3840 

Tract 18 52 6240 Tract 43 32 3840 

Tract 19 26 3120 Tract 44 44 5280 

Tract 20 25 3000 Tract 45 29 3480 

Tract 21 27 3240 Tract 46 26 3120 

Tract 22 22 2640 Tract 47 31 3720 

Tract 23 24 2880 Tract 48 42 5040 

Tract 24 32 3840 Tract 49 28 3360 

Tract 25 26 3120 Tract 50 33 3960 

 
 

 

 

 

 



 

 

 

 

 

Table 2. Forecasting Performance: Mean Absolute Forecast Errors (%) 

  1 month 3 months 6 months 12 
months 

24 
months 

36 
months 

Average 
across all 
tracts 

Univariate I 8.35 10.24 11.71 12.88 17.01 20.37 

Univariate II 5.52 7.12 9.77 12.81 14.35 19.13 

CVAR I 3.21 3.48 3.90 4.21 4.30 4.34 

CVAR II 2.89 3.12 3.25 3.90 4.10 4.17 

GPVAR 2.77 3.22 3.71 4.10 4.47 4.55 

DFM 7.62 9.44 10,33 11.45 13.17 15.05 

Random 
tract 1 

Univariate I 7.79 9.81 10.22 11.30 15.24 19.81 

Univariate II 5.68 6.90 9.35 11.33 13.81 18.55 

CVAR I 3.19 3.20 3.79 4.12 4.27 4.22 

CVAR II 2.81 2.89 3.10 3.24 4.51 4.23 

GPVAR 7.82 9.77 10.32 11.53 14.89 21.20 

DFM 6.34 7.33 9.81 10.44 14.07 18.61 

Random 
tract 2 

Univariate I 7.65 9.90 10.71 11.61 16.12 18.45 

Univariate II 5.50 7.05 9.44 10.43 12.85 19.20 

CVAR I  3.44 3.45 3.78 3.57 4.03 4.36 

CVAR II 2.70 3.11 3.17 3.39 4.12 4.20 

GPVAR 7.55 9.81 10.02 11.79 14.81 17.10 

DFM 6.32 8.55 9.33 10.16 11.39 19.72 

Random 
tract 3 

Univariate I 7.88 9.73 10.15 11.21 14.89 17.66 

Univariate II 5.50 6.36 9.10 12.25 13.77 18.90 

CVAR I 3.01 3.12 3.89 4.33 4.58 4.71 

CVAR II 2.77 2.93 3.35 4.02 4.13 4.20 

GPVAR 2.65 3.15 3.88 3.97 4.40 4.66 

DFM 6.57 8.12 9.81 10.83 12.67 17.32 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
      
    Table 3. Forecasting Performance: Root Mean Squared Forecast Error (%) 

  1 month 3 
months 

6 
months 

12 
months 

24 
months 

36 
months 

Average 
across all 
tracts 

Univariate I 8.21 10.33 11.65 13.12 16.44 19.81 

Univariate 
II 

5.33 6.89 9.13 11.45 14.20 19.30 

CVAR I 3.15 3.47 3.87 4.10 4.22 4.55 

CVAR II 2.71 3.20 3.35 3.86 4.30 4.81 

GPVAR 2.82 3.15 3.89 4.40 4.68 4.91 

DFM 4.51 8.30 8.71 10.44 13.16 17.12 

Random 
tract 1 

Univariate I 7.65 9.44 10.43 11.28 15.38 18.65 

Univariate 
II 

5.58 6.88 9.13 11.71 14.30 18.22 

CVAR I 3.17 3.28 3.75 4.19 4.35 4.81 

CVAR II 2.85 2.91 3.15 3.22 4.47 4.20 

GPVAR 7.77 9.81 10.45 11.44 14.35 21.30 

DFM 5.89 6.51 9.22 11.35 14.05 17.89 

Random 
tract 2 

Univariate I 7.62 9.85 10.49 11.33 16.10 18.33 

Univariate 
II 

5.48 6.91 9.35 10.40 12.79 19.33 

CVAR I 3.42 3.55 3.90 4.02 4.15 4.31 

CVAR II 2.67 3.10 3.12 3.22 4.57 4.30 

GPVAR 7.49 9.74 10.21 11.35 14.71 16.30 

DFM 5.41 6.72 9.89 10.81 15.32 18.10 

Random 
tract 3 

Univariate I 7.80 9.63 10.19 11.35 14.77 17.81 

Univariate 
II 

5.32 6.55 9.31 12.12 13.65 19.12 

CVAR I 3.13 3.65 3.92 4.30 4.51 4.65 

CVAR II 2.72 2.85 3.30 4.17 4.21 4.35 

GPVAR 2.60 3.09 3.71 4.09 4.45 4.60 

DFM 5.10 6.14 8.86 11.81 13.32 17.40 

 
 

 

      
     
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
Table 4. Predictive Bayes factors in favor of CVAR I and against stated model 

 1 month 3 
months 

6 months 12 
months 

24 
months 

36 
months 

Univariate 
I 

85.32 91.62 144.30 181.552 281.14 315.87 

Univariate 
II 

115.44 122.35 189.30 293.40 377.14 415.12 

CVAR II 1.15 1.22 1.27 1.33 1.92 2.15 

GPVAR 17.82 25.34 36.16 42.55 71.12 93.71 

DFM 113.10 129.44 185.41 292.15 382.20 419.12 

 
 
 
 
 
 
Table 5. MCS results 

 

Model 1 month 3 months 6 months 12 months 24 months 36 months 

Univariate I 0.00 0.00 0.00 0.00 0.00 0.00 

Univariate II 0.00 0.00 0.00 0.00 0.00 0.00 

CVAR I 0.25∗ 0.18∗ 0.27∗ 0.29∗ 0.32∗ 0.35∗ 

CVAR II 0.14∗ 0.19∗ 0.21∗ 0.23∗ 0.25∗ 0.20∗ 

GPVAR 0.00 0.006 0.00 0.00 0.00 0.00 

DFM 0.003 0.004 0.00 0.00 0.00 0.00 

Notes: Reported are p-values for the MCS test.  A value of 0.00 means that the p-value was 

less than 0.001. Forecasts are evaluated at the posterior means of parameters which were 

obtained from MCMC. An asterisk denotes that the model is included in the 95%-MCS. The 

MCS methodology is implemented using 1,000 bootstrap replications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
Table 6. Results of Prior Sensitivity Analysis 
 

 Frequency of CVAR I 
forecasts with lower 
RMSFE, % 

Frequency of CVAR I 
forecasts with lower 
MAFE, % 

Univariate I 100 100 

Univariate II 94.17 94.23 

CVAR II 45.32 51.12 

GPVAR 93.32 91.30 

DFM 92.14 93.12 
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