
1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Unsupervised Deep Video Hashing via Balanced
Code for Large-Scale Video Retrieval

Gengshen Wu, Jungong Han, Yuchen Guo, Li Liu, Guiguang Ding, Member, IEEE,
Qiang Ni, Senior Member, IEEE, and Ling Shao, Senior Member, IEEE

Abstract—This paper proposes a deep hashing framework,
namely Unsupervised Deep Video Hashing (UDVH), for large-
scale video similarity search with the aim to learn compact yet
effective binary codes. Our UDVH produces the hash codes in
a self-taught manner by jointly integrating discriminative video
representation with optimal code learning, where an efficient al-
ternating approach is adopted to optimize the objective function.
The key differences from most existing video hashing methods lie
in 1) UDVH is an unsupervised hashing method that generates
hash codes by cooperatively utilizing feature clustering and a
specifically-designed binarization with the original neighborhood
structure preserved in the binary space; 2) a specific rotation is
developed and applied onto video features such that the variance
of each dimension can be balanced, thus facilitating the subse-
quent quantization step. Extensive experiments performed on
three popular video datasets show that UDVH is overwhelmingly
better than the state-of-the-arts in terms of various evaluation
metrics, which makes it practical in real-world applications.

Index Terms—Video Hashing, Balanced Rotation, Similarity
Retrieval, Feature Representation, Deep Learning

I. INTRODUCTION

With the fast development of Internet and mobile communi-
cation technologies, recent decades have witnessed the explo-
sive growth of massive online information. According to the
recent statistical reports, for the famous image sharing web-
site, Flickr, which contains over 5 billion images, the active
users upload over 3,000 images per minute on their personal
accounts. While for another video website, Youtube, the users
post over 100 hours of video clips per minute in the broadcast
channels [1]. This deluge of data makes fast similarity search
extremely important, however, traditional retrieval methods
using exhaustive linear scanning are not feasible in this context
due to the critical issues of computational complexity and
storage requirement [2]. Consequently, Approximate Nearest
Neighbor (ANN) search based on hashing techniques, which
represents data by a sequence of binary codes, has attracted

Manuscript received February 16, 2018; revised July 15, 2018 and October
3, 2018; accepted November 2, 2018. This research was partially supported by
the Royal Society Newton Mobility Grant (IE150997), Shenzhen Government
(GJHZ20180419190732022), and National Natural Science Foundation of
China (Grant No. 61773301, 61571269). (G. Wu and J. Han contributed
equally to this work) (Corresponding author: Guiguang Ding).

Gengshen Wu, Jungong Han and Qiang Ni are with the School of
Computing and Communication, Lancaster University, Lancaster, LA1
4YW, UK (e-mail: gengshen.wu@lancaster.ac.uk; jungonghan77@gmail.com;
q.ni@lancaster.ac.uk).

Yuchen Guo and Guiguang Ding are with the School of Software, Tsinghua
University, Beijing, 100084, P. R. China (e-mail: yuchen.w.guo@gmail.com;
dinggg@tsinghua.edu.cn).

Li Liu and Ling Shao are with Inception Institute of Artificial Intelligence,
Abu Dhabi, UAE (e-mail: liuli1213@gmail.com; ling.shao@ieee.org).

substantial attentions attributed to high calculation efficiency
with low memory requirement of the XOR operation in the
Hamming Space [3], [4], [5].

At the core of hashing-based visual search is how to
generate a compound hash function that is able to project high-
dimensional floating-point features into the compact binary
Hamming space with vital properties from the original data
preserved. According to the prior arts, generating binary
codes directly from the original feature is usually a NP-hard
problem [6], [7], [8], [9]. Consequently, most existing methods
adopt a two-stage framework, consisting of projection stage
and quantization stage [10]. At the projection stage, certain
linear projection functions, which are usually learned from
the original data to preserve important properties, such as
global Euclidean structure or manifold structure, are built
and such functions, in turn, are exploited to project the data
from the original feature space to a low-dimensional compact
space [11], [12]. At the quantization stage, the real-value fea-
ture representation on that space is quantified into binary codes
by arbitrary thresholding [3], [13]. With effective projections,
such a framework has achieved promising results to some
extent. Unfortunately, it has been acknowledged that the per-
formance of those hashing schemes may degrade significantly
if the projected dimensions are imbalanced [4], [6], [13], i.e.,
their variances vary a lot. The major reason is that the equal-
length bit allocation adopted in the quantization stage (e.g., 1
bit in most cases, and 2 bits in a Double-bit Quantization [13]
ends up with a suboptimal situation that dimensions with lower
variances, which contain less information, will have the same
influence on Hamming distance computing as high-variance
dimensions. The problem mentioned above is illustrated in
Fig. 1(a), taking the 2-bit quantization in the two-dimensional
feature space as an example. As can be seen, the X axis of
the data point obviously contains more information than the
Y axis in the original feature space, but both of them are
quantized with 1 bit in the Hamming space. This implies that
those dimensions containing various amounts of information
equally contribute to the calculation of Hamming distance,
which is likely to make the quantization intractable.

Recent studies have shown that the spatio-temporal features
combining the frame-level spatial information and the tempo-
ral information of a video sequence make great contribution
in boosting the expressive capability of video representa-
tion [14], [15], [16]. Currently, the methods that generate
deep video features basically follow two pathways: 1) feeding
the sparsely-sampled frame-level image features from video
clip into Recurrent Neural Network (RNN) or Long-Short

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 2

Term Memory (LSTM) [17] in order to explore the tempo-
ral nature and then aggregating into the global video-level
feature [1], [18], [19]; 2) fusing the spatial and temporal
features (e.g., optical flow) from the two-stream networks to
generate the unified video representation via various pooling
schemes [20]. However, we argue that those methods will
yield the imbalanced video representation inevitably due to
the following reasons. Firstly, the sparse-sampling strategy is
usually adopted when tackling video representation learning
to reduce the training costs [21]. The contents within those
frames are less correlated, especially for the cases of long
videos, implying the features in terms of distributions are
quite different [22], [23]. Therefore, the imbalanced variance
distributions within dimensions can be accumulated when
fusing those frame features directly in the video representation
learning. There is no evidence that those temporal encoders
(e.g., RNN or LSTM) can alleviate such problem. Moreover,
the imbalanced situation is even getting worse when making
the video-level evaluation with the aggregation of spatial and
temporal features in most two-stream based works, which
leads to huge variance fluctuations within dimensions. A
reasonable explanation is that the temporal network is actually
designed to capture different visual aspects of videos compared
to the spatial network, which indicates that the feature distri-
butions are more diverse between those fields (e.g., optical
flow and RGB) [20], [24], [25]. The arbitrary pooling scheme
will aggravate the problem of imbalanced video features. Here,
we plot the curves of variances within each dimension of
image and video features on ActivityNet [26] in Fig. 1(b) to
evidentiate the above discussions, where image features are
extracted via a spatial ConvNet [20] and video features are
generated via fusing the output vectors of two sub ConvNets
in temporal segment networks [20]. As can be observed from
Fig. 1(b), the large variance variations do exist within each
dimension of video features. However, most existing video
hashing methods usually concentrate on selecting the appro-
priate fusion strategies that can wrap frame-level features up
as a single video feature so that the binarization tactics existed
in image hashing frameworks can be applied directly [1], [18],
[20], [27], regardless of the imbalanced features. This would
considerably degrade the quality of video hash codes.

In view of the above analysis, it is clear that such imbal-
anced problem needs to be addressed carefully in designing
video hashing method [28], because applying image feature bi-
narizations to video features directly is suboptimal in produc-
ing effective video hash codes. To the best of our knowledge,
this is the first attempt to tackle the imbalanced problem when
binarizing video features. Specifically, we propose a novel
hashing framework as shown in Fig. 2, called Unsupervised
Deep Video Hashing (UDVH), which distinguishes from the
existing methods in three main aspects:

• An unsupervised deep hash framework is proposed to
organize the hash code learning in a self-taught manner.
Instead of minimizing feature reconstruction distortion
[29], our framework minimizes the quantization error
of projecting video features to a binary hypercube, thus
allowing the feature extraction and hash function learning

(a) (b)

Fig. 1: (a) Suppose that two data samples (red and green)
from a benchmark are projected into a two-dimensional feature
space with the coordinates of (x1, y1) and (x2, y2) and en-
coded by two bits subsequently, where |x1| > |y1|, |x2| > |y2|
and |x1−x2| > |y1−y2|. After the proposed balanced rotation,
the coordinates of two data points change to (xr1, y

r
1) and

(xr2, y
r
2) accordingly, where |xr1| = |yr1| and |xr2| = |yr2|.

Obviously, compared to the original features, the variances
contained in the X and Y axis can be balanced with such
rotation strategy applied. That indicates two dimensions of
the rotated data points will have the same impact on the
calculation of the Hamming distances when encoding them
with the fixed number of bits; (b) The variance within each
dimension of image and video feature.

to engage with each other. Involving the feature clustering
in the code learning enables the neighborhood structure
to be preserved. To solve the objective function, a novel
scheme is proposed, where the rotation matrix, binary
code generation and the deep framework parameters are
jointly optimized.

• During the code learning, a balanced rotation designed for
video features is proposed to identify a proper projection
matrix such that the variance of each projected dimension
can be balanced (see Fig. 1). By doing so, the information
in each dimension of video features can be equalized.
This would greatly benefit the quantization step, in which
each dimension is allocated with the same number of bits.

• Comprehensive experimental study has been carried out
on several publicly available video datasets. The results
demonstrate various advantages of UDVH, compared to
existing video hashing approaches.

This paper is built upon our previous conference pa-
per1 [19], but it differs in many ways from that work, where
the main extensions are summarized in the following list:
• We replace the vanilla stacked LSTM units with Tem-

poral Segment Networks (TSNs) [20] for better feature
modeling, which improves the retrieval performance dra-
matically and validates the powerful scalability of the
proposed framework.

• An in-depth analysis of the proposed framework is pro-
vided, especially on the comparison between the balanced
rotation and other related works.

• We conduct extensive experiments on the proposed
framework with TSNs and evaluate the performance un-

1We denote the framework in [19] as UDVH-LSTM in this paper.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 3

Fig. 2: The basic framework of UDVH-TSN. The whole process consists of three subsections: feature extraction, unsupervised
code learning and deep hash function learning, which are performed iteratively to obtain the solution.

TABLE I: The network configurations of SSTH, UDVH-
LSTM and UDVH-TSN.

Method Network Configuration
SSTH [29] CNN (VGG-19 [30]), encoder RNN in-

cluding BLSTM and vanilla LSTM layer,
decoder RNN including 2-layer stacked
vanilla LSTM units

UDVH-LSTM [19] CNN (VGG-19 [30]), 2-layer stacked
vanilla LSTM units, fusion layer, 2 fully-
connected layers

UDVH-TSN Modified TSNs including spatial and tem-
poral ConvNets, fusion layer, 2 fully-
connected layers

der various types of loss functions in Section IV. Results
on a new dataset, ActivityNet [26], are also provided.

• The experimental results reveal that our new proposed
algorithm outperforms the previous work [19], and it
is overwhelmingly better than the other state-of-the-art
video hashing algorithms.

The rest of this paper is organized as follows: Section
II presents the review and discussion of hashing scheme
development, including the latest research efforts in video
hashing. Section III introduces the proposed UDVH. The
experimental results are given and analyzed comprehensively
in Section IV. The paper is concluded with detail summary
and introduction of future work in Section V.

II. RELATED WORK

In this section, we review and discuss the existing methods
closest to our work, including both image and video hashing.

A. Learning-based Hashing

Traditional learning-based hashing methods can be catego-
rized into two independent classes: unsupervised and super-
vised [31]. For supervised hashing, dedicated label information
is utilized for training purpose in the hash function learning.
For example, kernel mapping is employed and pair-wised
information is utilized by Kernel Supervised Hashing (KSH)
[32], where the distances between similar and dissimilar pairs
are minimized and maximized, respectively. In [33], LDA
hashing is proposed to minimize the intra-class variations
and maximize the inter-class variations of binary codes. In
unsupervised learning, the hash function that encodes data
points into binary codes is built on the training of unlabeled
data. Iterative quantization (ITQ) is presented in [3], which
minimizes the binarization loss simultaneously by the pre-
trained rotation matrix, while an updated version of iterative
quantization (ITQ+) is proposed in [11] with both robustness
and generalization enhanced by using a lp-norm distance.
Moreover, spectral hashing (SP) is proposed in [7] to obtain
binary codes efficiently by solving spectral graph partitioning
problem. In [34], K-means hashing (KMH) generates effective
hash code via minimizing the Hamming distance between
anchors and cells after quantization. The similar idea of using
anchors is applied to estimate the similarity between data in
Anchor Graph Hashing (AGH) [6]. Recently, breakthrough
performance has been achieved by the combination of deep
learning techniques and hashing in large-scale image retrieval
tasks [35], [36], [37], where deep Convolutional Neural Net-
work (CNN) [38], [39] is widely deployed in those works. In
[37], CNNH is proposed to decompose the hash function learn-

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 4

ing into two stages: hash codes learning and deep network fine-
tuning. While DNNH in [36], which can be treated as updated
version of CNNH, outperforms CNNH by jointly combining
feature learning and hash code learning via deep network.
In [35], deep hashing (DH) is developed to learn the hash
function with multiple hierarchical non-linear transformations,
where independent bits in binary codes with even distribution
can be achieved. Subsequently, an unsupervised learning-based
deep hashing framework is proposed in [40] that trains the
deep neural network by minimizing the compact real-valued
codes and the binary codes. They further extend this work
to supervised deep hashing and multi-label supervised deep
hashing, which aims at generating more discriminative binary
codes with aid of supervision information. In [41], a nonlinear
discrete hashing method is proposed for scalable image search,
where the binary codes are optimized with discrete quantiza-
tion and the reconstruction errors are minimized between the
learnt binary codes and the original data, respectively.

B. Video Hashing

While hashing plays a crucial role in visual search perfor-
mance improvement, very limited amount of efforts have been
invested to video hashing development. Early exploration in
the domain often leverages the core ideas of existing image
hashing techniques by processing the frame-level features
from the video directly. Multiple Feature Hashing (MFH) [42]
and Submodular Video Hashing (Submod) [43] are the most
representative ones in those algorithms. The former generates
binary codes via multiple types of hand-crafted features, while
the latter builds the hash function based on the relevant
frames selected from videos. However, hand-crafted frame-
level features have tremendous limitations in representing the
video comprehensively and the results compromise for the
suboptimal compatibility with the code learning process [36],
[39], [44]. Later on, the temporal nature over successive frames
is becoming more attractive in video representation, including
motion trajectory [45] and temporal consistency [46]. The
experimental results reveal that such dedicated temporal infor-
mation, rather than those with spatial features adopted, indeed
enhances the video representation capability. For example, a
low-rank tensor approximation method is introduced in [47]
to model the video clips both in 2-D and temporal evolution
in the third dimension, thus producing robust video hash
codes. Inspired by the recent performance boost of deep
learning based image hashing, deep architectures have been
adopted in the latest video hashing frameworks to further
improve the retrieval effectiveness. One of the most typical
examples is a supervised CNN-based hashing framework [18],
namely Deep Video Hashing (DVH), which can generate
similar binary codes for videos belonging to the same category
by exploiting the discriminative temporal nature of video.
However, pairwise information is required to compute hash
codes in DVH, which might not be easily obtained when
dealing with large-scale retrieval tasks. Meanwhile, inspired by
the advance of video internal structure in content modelling,
Nonlinear Structural Hashing (NSH) [48] is developed to ex-
ploit the nonlinear relationship between videos and structural

information between frames via subspace clustering. However,
temporal information is completely ignored in NSH. The same
problem also occurs in [49], where the proposed Stochastic
Multiview Hashing (SMVH) converts multiple types of key-
frame features into binary codes by exploring the relationship
between the original feature and the approximated hash code.
[50] substantially upgrades the work mechanism of SMVH via
adopting Student t-distribution and deep neural network in the
similarity preservation and hash function learning separately.

Alternatively, Zhang et al. [29] propose a deep encoder-
decoder framework called Self-Supervised Temporal Hashing
(SSTH), where Binary Long Short Term Memory (BLSTM)
unit is designed to directly encode the video features into
compact binary codes. SSTH tends to minimize the recon-
struction distortion between real-valued feature and binary
code, where hash function learning and feature extraction
are jointly optimized. However, SSTH suffers from serious
efficiency issue due to the involvement of de-binarization and
de-LSTM. Moreover, minimizing the reconstruction error does
not seem to help preserve the neighbourhood structure of
the original data, which is crucial for the accurate similarity
search. Despite the potential drawbacks analyzed above, SSTH
is viewed as a pioneer work in unsupervised deep video
hashing with temporal sequence modeling [19] and a strong
competitor in the comparisons with the proposed framework.
Extension work of SSTH has been released recently in [51],
termed SSVH, which incorporates a hierarchical binary auto-
encoder and neighborhood structure in the code learning. One
of the main drawbacks is that the similarity matrix is only
constructed in the initialization stage without considering the
temporal information, which limits the improvement of hash
code quality. Additionally, the network structures of UDVH-
TSN, UDVH-LSTM and SSTH are briefly presented in Table I,
where the latter two methods are specifically designed for
deep video hashing and inevitably considered to be the major
competitors in the following experiments.

III. UNSUPERVISED DEEP VIDEO HASHING

Given a benchmark data set that contains N videos, our goal
is to exploit the deep hash function F(.) that encodes those
videos into k-bit binary representation as B ∈ {−1,+1}N×k.
Particularly, the deep networks are treated as to-be-learnt
binary encoding functions, defined as F(Z; Θ), where Z
represents the input that could be in the form of feature matrix
or original images. The hash function is parameterized by
network parameters Θ including weights and biases. In this
paper, instead of stacked LSTM units [19], TSNs [20] are
utilized in the feature modeling, which are illustrated in Fig. 2.

Specifically, TSNs evaluate the video-level representation
with the two-stream ConvNets networks [20] consisting of
spatial and temporal networks. Here, spatial networks col-
lect the spatial information of each image whereas temporal
networks model the relationships of successive frames over
time with the optical flow fields provided. By fusing these
two types of features, TSNs end up exploring both spatial
and temporal information to represent videos. To address the
over-fitting problem when training deep convolution neural

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 5

networks on small datasets, several strategies are adopted in
training TSNs: (1) Cross modality Pre-training is introduced in
the initializations of two ConvNets, where Pre-trained models
on ImageNet and RGB frames are utilized as the initial models
for spatial and temporal ConvNets, respectively; (2) Compared
to the shallow structure in [52], TSNs adopt the Inception
with Batch Normalization (BN-Inception) [53] in the network
structure, which speeds up the training process significantly
by converting the activations of the mean and variance in
each batch into the standard Gaussian distribution. In the
meanwhile, a good trade-off between algorithm accuracy and
efficiency can be achieved by re-evaluating those values in
the certain layers with the proposed partial BN [20]; (3) they
employ two new methods: corner cropping and scale jitter-
ing, in the data augmentation to avoid the severe overfitting
problems in traditional two-stream based networks. To make
it compatible with the proposed framework, we modify the
traditional TSNs presented in [20], where the last fc-action
layers of the original TSNs are removed and the pooled
features from the global-pool layers in spatial and temporal
ConvNets are fused averagely. Afterwards, such features are
fed to two fc layers (FC7 and FC8) like UDVH-LSTM [19],
thus constructing the architecture of UDVH-TSN.

As discussed in the previous paragraphs, we define the
to-be-learnt deep hash function as F(Z; Θ), where the deep
parameters including weights and biases from the fc layers
(FC7 and FC8) and modified TSNs for UDVH-TSN are
represented by Θ uniformly for the concise description, Z
denotes the input streams. Those network parameters will be
updated automatically during each iteration of hash function
learning, thus producing the desirable outputs from the last
fc layer with the dimension of k after the training process.
Finally, the binary representation for the input can be obtained
by calculating sign(F(Z; Θ)).

A. Feature Embedding with Pseudo Labels

At the beginning of the proposed unsupervised code learn-
ing, we first roughly estimate the feature distribution via
exploring the pseudo labels, which aims at improving the
effectiveness of the feature embedding afterwards [54]. Par-
ticularly, k-means is adopted to categorize the video features
Z ∈ RN×1024 from FC7 layer such that the similar videos
tend to be classified into the same category. To accelerate
the clustering process in the experiment, we randomly sam-
ple 10,000 video features from Z to generate C centroids,
where C is the cluster number. Then a 1-of-C vector (C
dimensions with one 1 and C − 1 0s) can be assigned to
each video by measuring the smallest l2-norm distance among
the corresponding feature and those centroids [55]. Such
dedicated pseudo labels Y ∈ {0, 1}N×C are generated for
the whole training set during each iteration, thus preserving
the original neighborhood structure to the maximum extent in
the following process of the dimensionality reduction.

Subsequently, the dimensionality of the video features Z
is reduced into the required code length (k) via Canonical
Correlation Analysis (CCA) to obtain the projected video fea-
ture matrix H ∈ RN×k, where the correlation between video

features and the corresponding pseudo labels are maximized
and well preserved in the low-dimensional space. In contrast to
Principle Component Analysis (PCA), CCA is more effective
in extracting discriminative information with the robustness
in anti-noise [3], thus obtaining more discriminative video
features after the projection. We denote the projection matrix
as P ∈ R1024×k and Z ∈ RN×1024 as the video features from
FC7 layer, where P can be pre-trained with Z and Y during
CCA. According to the above illustrations, the process of the
proposed feature embedding can be simplified as:

H = Z×P = Z× CCA(Z,Y),

s.t. Z ∈ RN×1024,Y ∈ {0, 1}N×C .
(1)

However, similar to the conventional methods that reduce
the feature dimensionality via projection schemes, CCA will
also concentrate most information on a few top eigenvectors,
thus unbalancing the projected data and lowering the hash
code quality drastically [4]. Consequently, we propose a novel
rotation matrix to alleviate this imbalanced issue, which will
be elaborated in the next subsection.

B. Balanced Rotation

As shown in Fig. 1(b), the video features are more dispersed
in terms of distribution compared to image features, which
results in larger variance fluctuations among dimensions. How-
ever, in most previous works that allocate the same number of
bits to encode such imbalanced features, the dimensionality
containing less information (low variance) will make the
same contribution on calculating the Hamming distance as
those with rich information (high variance), thus significantly
reducing the quality of the hash code [4], [6], [13]. To solve
the problem described in Fig. 1(a), this paper proposes a
novel balanced rotation that balances the information within
each dimension of video features before undergoing the quan-
tization. The detailed formula for the proposed rotation is
presented as follows. Firstly, the effect of rotation on the
variance of data is investigated. Given the optimal projection
P, the projected data H = ZP ∈ RN×k can be calculated
by Eq. (1). Assuming the video features are zero-centralized,
i.e.,

∑N
i=1 Zi = 0, the variance of the j-th dimension is

vj =
1

N

∑N
i=1 H

2
ij . Given an orthogonal rotation matrix R

and the adjusted data Hr = HR, the new variance of each
dimension is updated as vj ′, where RRT = Ik and Ik ∈ Rk×k

is the identity matrix. Then we obtain the following lemma.
Lemma 1: The sum of variances on all dimensions is invariant
after rotation for the centralized data.
Proof to Lemma 1: Particularly, the sum of variances in all
dimensions after rotation can be calculated as below:

N
k∑

j=1

vj
′ =

k∑
j=1

N∑
i=1

(HR)2
ij = tr(HRRTHT)

= tr(HHT) = ‖H‖2F =
k∑

j=1

N∑
i=1

(H)2
ij = N

k∑
j=1

vj ,

(2)

where tr(.) denotes the trace norm. As observed from the
above equation, the total variance remains unchanged with the

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 6

original properties (e.g., global Euclidean or local manifold
structure) preserved after the orthogonal rotation [3], [56].
The purpose of the proposed rotation scheme is to balance
the variance of each dimension in the rotated data Hr, where
the degree of balance can be measured by the variance of
standard deviation (VSD) of each dimension. Theoretically,
smaller VSD implies more balanced data. If all dimensions
have the same data variance or standard deviation, the VSD is
0. Denote the standard deviation (SD) of the j-th dimension
as sj =

√
vj , the VSD is computed as:

VSD =
1

k

k∑
j=1

(sj − s)2, (3)

where s is the mean of SD. Hence, the goal of balancing the
variances can be achieved by finding a rotation that minimizes
the VSD. However, it is not intuitive by solving Eq. (3)
directly. This problem can be simplified because of:
Lemma 2: Minimizing the VSD of the data by a rotation is
equivalent to maximizing the sum of standard deviation (SSD).
Proof to Lemma 2: Based on the Lemma 1, we have∑k

j=1 s
2
j =

∑k
j=1 vj = c, where c is a constant. Then, the

VSD of the data in Eq. (3) can be further expanded as:

VSD =
1

k

k∑
j=1

(sj − s)2 =
1

k

k∑
j=1

s2
j + s2 − 2

k

k∑
j=1

sjs

=
c

k
− s2 =

c

k
− (

1

k

k∑
j=1

sj)
2 =

c

k
− 1

k2
SSD2.

(4)

From Lemma 2, it is clear that minimizing VSD equals
maximizing SSD, where the SSD can be further expressed as
the matrix form:

SSD =
k∑

j=1

sj =
k∑

j=1

√√√√ 1

N

N∑
i=1

H2
ij =

1√
N
‖HT ‖2,1, (5)

where ‖.‖2,1 is the l2,1-norm of HT . Considering Eq. (2),
Eq. (4) and Eq. (5) jointly, the rotation matrix which aims at
balancing the variance of each dimension can be learned from
the elegant optimization formulation:

max
R
‖RTHT ‖2,1, s.t. RRT = Ik, (6)

where Ik ∈ Rk×k is the identity matrix. Eq. (6) is also
the objective function of the proposed balanced rotation and
the corresponding optimization process regarding R will be
elaborated in the next subsection.

C. Objective Function and Optimization

In this section, we introduce the objective function of
UDVH-TSN2 and its optimization process in details. The core
idea behind such self-taught frameworks is that the binary
code B generated by balanced rotation is utilized iteratively
to guide the deep hash function learning, where B is expected
to preserve the local structures and balanced properties from

2The objective function is exactly the same for both UDVH-LSTM [19] and
UDVH-TSN but with slight differences in defining the network parameters
Θ.

the processes of feature embedding and balanced rotation,
respectively [48]. For the purpose of sharing those properties
within the hash function construction, the learning objective
of hash function learning is defined as minimizing the loss
between the output of F(Z; Θ) and the learnt binary code
B, where l2-norm distance is used as the measurement. The
process can be formulated as following:

L1 = min
Θ,B
‖F(Z; Θ)−B‖2F , s.t. B ∈ {−1,+1}N×k. (7)

Moreover, the balanced rotation is also considered in this
case to address the issue of imbalanced variances during the
unsupervised code learning, where its learning objective is
formulated as Eq. (6):

L2 = max
R
‖RTHT ‖2,1, s.t. RRT = Ik. (8)

Without loss of generality, we can integrate Eq. (7) and Eq.
(8) together to express the overall objective function of UDVH
following previous hashing frameworks as below:

L = L1 + λL2 = min
Θ,B,R

‖F(Z; Θ)−B‖2F − λ‖RTHT ‖2,1,

s.t. B ∈ {−1,+1}N×k, RRT = Ik, H ∈ RN×k,
(9)

where λ is the balance parameter between two terms to provide
the general expression of the objective function, i.e., Eq. (9).
The value of λ is fixed as 1 during the optimization.

With respect to the optimization, instead of optimizing the
objective function in a single step, an alternating approach
that differs from previous works is proposed in this paper,
where those two sub-objective functions, namely L1 and L2,
are optimized iteratively and the deep hash functions can
be built by updating the parameters, including R, B and
Θ, to facilitate the unique self-taught learning process. This
enables the interaction between deep feature learning and hash
function learning during the optimization procedure so that
the parameters of both deep networks and hash function can
be jointly optimized. More importantly, our optimization ap-
proach transforms the hash function learning into a regression
problem with binary code B as the regression target, thus
avoiding the use of a relaxation strategy to solve the non-
convex equation with binary constraints in most published
works [3], [8], [18], [35], [48], [57], [58]. Following the above
descriptions, our optimization of UDVH can be solved by
iteratively optimizing L1 and L2. The optimization goal of
L2 can be achieved in the following alternating steps.

1) Update R. With given video feature H ∈ RN×k, Eq.
(8) can be viewed as the orthogonality constrained l2,1-norm
maximization problem, which can be efficiently solved by the
gradient flow method in [59]. Following [59], a feasible set
for R is defined as Mk = {R ∈ Rk×k : RRT = Ik}, which
is also called the Stiefel manifold. Then the tangent space for
Mk can be formulated as ER = {E ∈ Rk×k : ETR+RTE =
0}. Here, the basic idea is to find an optimal direction in the
tangent space of the current point R, then project that direction
to the feasible manifold, and replace the current point with the
projected one. Finally, a stationary point can be achieved by
repeating the above steps iteratively. To optimize the problem

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

Algorithm 1: Unsupervised Deep Video Hashing
Input: The input matrix Z; Randomly initialize deep param-

eters Θ; Initialize R0 = Ik and r = 0; Code length k;
Output: F(Z; Θ): deep hash function;

1: for t = 1 to T do
2: Compute feature matrix Ht according to Eq. (1);
3: repeat
4: Compute Dr by Eq. (14);
5: Compute Gr by Eq. (13);
6: Compute Wr by Eq. (12);
7: Compute Qr by Eq. (11);
8: Compute Rr+1 by Eq. (10);
9: r = r + 1;

10: until Convergence;
11: Update rotation matrix Rt = Rr+1;
12: Update binary code Bt according to Eq. (15);
13: Update deep parameters Θt according to Eq. (16);
14: Until Convergence;
15: t = t+ 1;
16: end for
17: return F(Z; Θ);

(10), the convergence lemma is illustrated as: given a point Rr

in the feasible set, the below updating rule will lead to larger
value unless it has arrived at a stationary point, namely:

Rr+1 = QrRr, (10)

where Qr is the Cayley transformation matrix defined as:

Qr = (Ik +
τ

2
Wr)−1(Ik −

τ

2
Wr). (11)

In the above equation, W is the skew-symmetric matrix,
which can be calculated with the upgradient G. They are
formulated as follows:

Wr = GrR
T
r −RrG

T
r , (12)

Gr = −HT
r HrRrDr, (13)

Dr = diag(
1

N0.5sr1
, ...,

1

N0.5sri
, ...,

1

N0.5srk
). (14)

Here, the subscript r denotes the r-th iteration. τ is a
step size satisfying Armijo-Wolfe conditions [60], which only
controls the convergence rate in updating R. Usually bigger
τ leads to faster convergence. sti represents the standard
deviation of (HRr)∗i and D is the diagonal matrix. The
above steps are iteratively executed until convergence and the
obtained R is the rotation matrix.

2) Update B. After solving R, the variance of each dimen-
sion in the projected video feature H is balanced and conse-
quently the binary code B can be calculated via thresholding:

B = sign(H×R), s.t. H ∈ RN×k, R ∈ Rk×k. (15)

The obtained balanced codes are prepared to be utilized as
the learning objective of network training afterwards.

3) Update Θ. With fixed Z, R and B, the optimization
of L1 in Eq. (7) is further derived as below with the only
argument Θ:

min
Θ
‖F(Z; Θ)−B‖2F , s.t. B ∈ {−1,+1}N×k. (16)

This minimization problem can be solved by fine-tuning the
deep network with Stochastic Gradient Descent (SGD) [61]
until it gets converged, where the Euclidean loss is minimized
via mini-batch back-propagation and the low bound can be
found (See IV-C). The network parameter Θ is updated
simultaneously with the balanced properties from B preserved
after convergence, such boosting the quality of hash code in
the query process. By repeating above steps iteratively, the
deep hash function can be built finally after several iterations,
where t = 3 ∼ 5 in this paper. Given a query video Zq , the
hash code can be obtained via compute sign(F(Zq; Θ)). The
step by step description of the proposed optimization scheme
is summarized in Algorithm 1.

D. Complexity Analysis

The complexity cost of Algorithm 1 basically consists of
three parts as discussed in Section III: deep network training,
feature embedding and balanced rotation. However, calculating
the complexity for the first two terms is not straightforward
because the time costs in network training and feature clus-
tering are affected dramatically by the hardware conditions,
which will be discussed later in the Section IV. Here, we
focus on the optimization complexity in solving the learning
objective of balanced rotation. In particular, the optimization
starts by solving R according to Eq. (10)∼(14), in which
the time complexity for (14) is O(Nk) and (13) is O(k3),
while computing HTH requires O(Nk2), which can be pre-
computed and remains unchanged with iterations. For Eq.
(10)∼(12), the time complexity is the same as O(k3). Thus,
the overall complexity in updating R is O(Nk2 +t(Nk+k3))
after t-th iteration which is linear to the size of training data.
Actually, considering that k and t are usually quite small in the
algorithm, optimizing (9) can be highly efficient. In addition,
the time complexity is O(k3) in (15) in solving B, which
indicates the fast speed of the code learning.

E. Discussion

Now, we discuss the connection between BR and some
previous works. The first one is Iterative Quantization (ITQ)
[3], which finds a rotation to minimize the quantization error.
In fact, ITQ shares a very similar formulation to BR. If closely
looking at the objective function of ITQ, we have:

‖B−HR‖2F = ‖sgn(HR)−HR‖2F
= const− 2‖RTHT ‖1,1.

(17)

Hence, the optimization problem of ITQ can be rewritten into
the following formulation,

max
R
‖RTHT ‖1,1, s.t. RRT = Ik. (18)

Despite the similar formulations, there are several important
differences between ITQ and BR. 1) BR focuses on balancing
the variance which can explicitly address the imbalance be-
tween dimensions. Although ITQ maximizes the total variance
of the data in an indirect way via minimizing the quantization
errors, the bits are quite imbalanced; 2) ITQ adopts an iterative
strategy with two matrix variables for optimization which

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 8

can only achieve a local optimal while BR has one matrix
variable and a more effective optimization algorithm so that
it can achieve better solution. The other two related works
are Isotropic Hashing (IsoH) [62] and Harmonious Hashing
(HamH) [4]. IsoH aims to find a rotation to balance the
variance by minimizing the reconstruction error of the co-
variance matrix and a diagonal matrix. But the reconstruction
on a small covariance matrix seems restricted, so it may be
unstable in large-scale and high-dimensional experiments [4]
due to the overfitting problem. HamH seeks for a rotation
to minimize the distance between the rotated data and a
perfectly balanced matrix. However, such strict requirement
and its non-iterative optimization algorithm may fail to find
a good enough solution as BR which limits its performance,
though it may balance the data to some extent. In addition,
IsoH is based on PCA projection and is derived from spectral
hashing [7]. There is no clue that they have stable results
based on other projection learning methods. Recently, bit-
independent constraint has been incorporated in the nonlinear
discrete optimization, where the l2-norm distance is minimized
between the hash code and the real-valued matrix set [48].
Although the information content is increased inevitably in
this case, the quantization errors are accumulated during
the iterative optimization and the aforementioned imbalanced
variance within each dimension is still an open issue that
affects the hash code quality critically.

IV. EXPERIMENTS

In this section, three large-scale video datasets are adopted
in the experiments, while the corresponding parameters set-
tings are introduced carefully. Then systematic evaluation and
analysis of the proposed frameworks are illustrated compared
with some state-of-the-art video hashing methods, including
some supplementary results for UDVH-LSTM [19].

A. Datasets and Experimental Setting

We validate the proposed deep hashing learning framework
on several large-scale public datasets for video retrieval, in-
cluding FCVID3, YFCC4 and ActivityNet5. The basic infor-
mation about those datasets are introduced as below.

Fudan-Columbia Video Dataset (FCVID) [63] collects
91,223 videos from Youtube, which are classified into 239
categories with accurate manual labels. A wide range of
generic topics are included in this datasets, such as sports,
events and various scenes with the average length of 167
seconds. We randomly select 45,611 videos for the train split
in the unsupervised learning process and the rest is used as
the test split in the retrieval.

Yahoo Flickr Creative Common (YFCC) [64] is one of
the largest public video dataset available in real-world, which
contains over 0.8M video clips with the average length of 37
seconds as claimed. However, 0.7M videos are downloaded
and processed in this experiment except for some corrupted
videos and invalid download links. Particularly, we split the

3https://http://bigvid.fudan.edu.cn/FCVID/
4https://webscope.sandbox.yahoo.com/
5http://activity-net.org/

dataset into two parts: 0.6M unlabeled videos as the train split
in the unsupervised learning and 0.1M labeled videos provided
by [29] as the test split in the retrieval, where there are 80
popular scenes collected from the third level of MIT SUN
scene hierarchy [65] in the second part.

ActivityNet [26] covers a wide range of complex human
activities in the daily living, which contains around 20,000
video clips that classified into 200 categories. Particularly,
those videos are split into training, validation and testing sets
with 10,024, 4,926 and 5,044 videos individually. Generally
we follow the settings of above datasets, where the whole
ActivityNet dataset is split into train and test sets averagely,
about 10,000 videos for each set. However, for the purpose
of making the best of dataset, we use the original testing
videos in the unsupervised training for the labels of those
are not released and take some instances from training videos
to construct the new test set. For all datasets, 1,000 videos
randomly picked up from the test split are used as the query
instances and others form the gallery in the online retrieval.

B. Baselines

Several existing hashing methods are adopted as base-
lines in the experiment, which are Anchor Graph Hashing
(AGH) [6], Submodular video hashing (SubMod) [43], It-
erative Quantization (ITQ) [3] Spectral Hashing (SP) [7],
Multiple Feature Hashing (MFH) [42], Deep Hashing (DH)
[35], Self-Supervised Temporal Hashing (SSTH) [29] and
UDVH-LSTM6 [19]. Deep Video Hashing (DVH) [18] and
Nonlinear Structural Hashing (NSH) [48] are not considered
in this case because both of them are supervised methods. For
the consistency of comparison, the experiments are carried out
with the identical data sets and the best performance is tuned
according to parameter settings in their papers.

C. Implementation Details

Without loss of generality, 20 frames are uniformly selected
as the representation of video clips for each instance in above
datasets. In the feature embedding, 10,000 video features
from Z are randomly picked up and utilized on all datasets.
During the code optimization, r and τ are set to 100 and
0.0005. The experiments are conducted using Matlab 2014a
on Ubuntu server configured with Intel Core i7-5960X CPU,
64 GB of RAM and TITAN 1080i GPUs. However, there are
some minor differences in the implementation processes for
network training for UDVH-TSN when compared to UDVH-
LSTM [19], which are detailed as follows.

Generally, we follow the parameter settings in the release
codes7 and its paper of temporal segment network [20] with
minor adjustments in the network model, which is illustrated
in Sec III. Particularly in this case, we utilize the original RGB
frames and extract their optical flow8 [66] images from videos
in above benchmark datasets by OpenCV as the input streams
to the spatial and temporal networks, where those network

6CNN features in UDVH-LSTM and SSTH are replaced with the frame-
level features from the pre-trained TSNs in the following experiments.

7https://github.com/yjxiong/temporal-segment-networks
8We adopt TV-L1 optical flow algorithm as [20].

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

TABLE II: mAP@20 of different cluster numbers at 128 bits
on three datasets under UDVH-TSN.

Datset UDVH-TSN

C=100 C=200 C=400 C=800 C=1600

FCVID [63] 0.362 0.482 0.504 0.504 0.502

YFCC [64] 0.201 0.274 0.293 0.289 0.291

ActivityNet [26] 0.145 0.198 0.262 0.257 0.261

models are pre-trained on UCF101 [67] dataset according
to [20]. The modified version of Caffe [20] is also kindly
provided by the authors to accelerate the training process. It is
worth mentioning that we utilize the original RGB and optical
flow frames instead of using extracted CNN feature vectors
previously in UDVH-LSTM [19] and evaluate the video ac-
cordingly by the uniformly-sampled 20 frames following [20]
for the purpose of fair comparison in the experiments. In the
network training, however, the mini-batch back-propagation is
only performed in the FC7 and FC8 layers, where the output
numbers are set to 1024 and k. Gaussian distribution and
constant are applied for the initialization of their weights and
bias, respectively. The base learning rate is set to 10−3 with
momentum and weight decay tuned as 0.9 and 0.0005. The
batch size is fixed to 256. The maximal training iteration is set
to 15, 000. Usually, the proposed networks converge within 10
epochs during each loop (t) of the hash function learning.

The pooled video features of 1024-d from global-pool layers
of the pre-trained TSNs models (including spatial and temporal
ConvNets) are averagely fused and utilized in evaluating the
performance of some baselines, such as AGH, ITQ, SP and
DH. While for SSTH and UDVH-LSTM, we extract the frame-
level features (i.e., 20 frames uniformly sampled from video
clips) from the pre-trained TSNs models and then fuse them
frame-by-frame accordingly to obtain the pooled 20 frame
features to facilitate their training processes.

D. Evaluation Metrics

To evaluate the effectiveness of hashing methods, mean
Average Precision at top K (mAP@K) retrieved videos is
adopted as the main performance metric following [29], which
is defined as the mean of average precision of returned relevant
videos number in the top K results [63]. Moreover, Precision-
Recall (PR) curve and Precision at top 100 (Precison@100)
returned samples are adopted as assisted measurements for
systematical evaluation [68]. All of those hashing methods are
estimated based on four different bit sizes, i.e, 16, 32, 64, 128.

E. Results and Analysis

1) Parameter Analysis: We first investigate the influence on
retrieval performance when selecting different cluster numbers
(C=100, 200, 400, 800, 1600) on three datasets under the
frameworks of UDVH-TSN. As shown in Table II, mAP@20
increases dramatically with the bigger cluster number picked
up at the beginning and then achieves the best performance
when we have about 400 categories. This indicates the cluster
number indeed affects the system performance, where the

1 2 3 4 5 6 7 8 9 10

t

0

500

1000

1500

2000

2500

3000

E
u

c
li

d
e

a
n

 L
o

s
s

128 bits

64 bits

32 bits

16 bits

(a) FCVID

1 2 3 4 5 6 7 8 9 10

t

0

500

1000

1500

2000

2500

3000

E
u

c
li
d

e
a
n

 L
o

s
s

128 bits

64 bits

32 bits

16 bits

(b) YFCC

1 2 3 4 5 6 7 8 9 10

t

0

500

1000

1500

2000

2500

3000

E
u

c
li

d
e

a
n

 L
o

s
s

128 bits

64 bits

32 bits

16 bits

(c) ActivityNet

Fig. 3: The convergence curves on three datasets at various bit
sizes under UDVH-TSN, where the final values of Euclidean
loss remain stable after t = 3 ∼ 5 loops.

0 20 40 60 80 100 120

Dimension

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
a
ri
a
n
c
e

UDVH-TSN

CCA

CCA-ITQ

CCA-BR

Fig. 4: The variance distribution from FCVID at 128 bits under
UDVH-TSN.

similar videos will be classified into the same category by
the sophisticated clustering strategy, thus producing similar
hash codes for those videos. It is a remarkable fact that the
performance gets saturated when the cluster number reaches
400 for all datasets under both UDVH-LSTM [19] and UDVH-
TSN. The reason might be that those datasets contain less
categories than 400, which leads to a quick saturation and
makes the parameter easy to be configured as well.

2) Convergence Study: Next, we plot the curves of Eu-
clidean loss values after 10 iterations (t) of the hash function
learning on three datasets under UDVH-TSN in Fig. 3. Ob-
viously, fast convergence can be easily achieved within about
t = 3 ∼ 5 loops on all datasets, which implies the extremely
high efficiency and feasibility of the proposed framework.
Combined with the training costs from the following efficiency
analysis, it proves that the proposed framework is suitable to
be deployed in the large-scale retrieval tasks.

3) Binarization Investigation: In this section, the retrieval
performance when using balanced rotation in the binarization
is presented carefully, which validates its positive impacts and
the claimed contributions. In this experiment, three competitive
combinations are adopted: CCA-ITQ, PCA-BR and CCA-BR,

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 10

TABLE III: mAP@K of 128 bits when using various banarization schemes separately in the code learning of UDVH-TSN.

Method
FCVID YFCC ActivityNet

K=5 K=20 K=40 K=60 K=80 K=100 K=5 K=20 K=40 K=60 K=80 K=100 K=5 K=20 K=40 K=60 K=80 K=100

PCA-BR 0.463 0.366 0.291 0.241 0.205 0.179 0.298 0.258 0.235 0.219 0.198 0.183 0.221 0.192 0.176 0.158 0.148 0.139

CCA-ITQ 0.555 0.487 0.412 0.356 0.303 0.297 0.304 0.276 0.24 0.222 0.207 0.196 0.268 0.231 0.197 0.175 0.168 0.152

CCA-BR 0.593 0.504 0.42 0.362 0.347 0.328 0.326 0.293 0.246 0.228 0.215 0.202 0.301 0.262 0.223 0.195 0.174 0.159

UDVH-TSN UDVH-LSTM SSTH ITQ SubMod DH SP MFH AGH

0 20 40 60 80 100

K

0.1

0.2

0.3

0.4

0.5

m
A
P
@
K

16bits

(a) FCVID@16 bits

0 20 40 60 80 100

K

0.2

0.3

0.4

0.5

0.6

m
A
P
@
K

32bits

(b) FCVID@32 bits

0 20 40 60 80 100

K

0.2

0.3

0.4

0.5

0.6

m
A
P
@
K

64bits

(c) FCVID@64 bits

0 20 40 60 80 100

K

0.2

0.3

0.4

0.5

0.6

m
A
P
@
K

128bits

(d) FCVID@128 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

16bits

(e) YFCC@16 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

32bits

(f) YFCC@32 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

64bits

(g) YFCC@64 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

0.4

m
A
P
@
K

128bits

(h) YFCC@128 bits

0 20 40 60 80 100

K

0.1

0.2

m
A
P
@
K

16bits

(i) ActivityNet@16 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

32bits

(j) ActivityNet@32 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

m
A
P
@
K

64bits

(k) ActivityNet@64 bits

0 20 40 60 80 100

K

0.1

0.2

0.3

0.4

m
A
P
@
K

128bits

(l) ActivityNet@128 bits

Fig. 5: The mAP@K curves at different bit sizes under UDVH-TSN. Top: FCVID; Middle: YFCC; Bottom: ActivityNet.

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

P
r
e
c
is
io
n

FCVID

(a) FCVID@128 bits

0 0.2 0.4 0.6 0.8 1

Recall

0.2

0.4

0.6

0.8

1

P
re
c
is
io
n

YFCC

(b) YFCC@128 bits

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

UDVH-LSTM

UDVH-TSN

Recall

P
re
c
is
io
n

ActivityNet

ITQ

SubMod

SP

MFH

AGH

DH

SSTH

(c) ActivityNet@128 bits

Fig. 6: The Precision-Recall curves at 128 bits under UDVH-TSN.

16 32 48 64 80 96 112 128

Code Length

0.2

0.3

0.4

0.5

P
re

c
is

io
n

@
1

0
0

FCVID

(a) FCVID

16 32 48 64 80 96 112 128

Code Length

0.1

0.15

0.2

0.25

0.3

0.35

P
re

c
is

io
n

@
1

0
0

YFCC

(b) YFCC

16 32 48 64 80 96 112 128

Code Length

0.05

0.1

0.15

0.2

0.25

0.3

P
re

c
is

io
n

@
1

0
0

ActivityNet

x

UDVH-LSTM

∗

UDVH-TSN

SSTH

ITQ

SubMod

MFH

SP

AGH

DH

(c) ActivityNet

Fig. 7: The Precision@100 curves at various bit sizes under UDVH-TSN.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 11

TABLE IV: mAP@20 at 128 bits when applying various loss
functions accordingly during the hash function learning of
UDVH-LSTM and UDVH-TSN.

Loss Function
UDVH-LSTM [19] UDVH-TSN

FCVID YFCC ActivityNet FCVID YFCC ActivityNet

l2 − norm 0.456 0.261 0.207 0.504 0.293 0.262

l1 − norm 0.442 0.256 0.186 0.483 0.279 0.237

cross− entropy 0.447 0.248 0.192 0.501 0.291 0.252

where the mAP@K results are illustrated in Table III when
using those binarization strategies on three video datasets
separately at the code length of 128.

The results show that the combination of CCA and BR
outperforms the other methods on the datasets substantially.
Two conclusions can be drawn based on this phenomenon:
1) Compared with the PCA methods, better performance
has been achieved by applying CCA in the dimensionality
reduction since more valuable information is concentrated and
preserved in the top eigenvectors when utilizing the dedicated
supervisory information (pseudo labels) from the clustering.
It turns out that the choice of CCA is more sensible and
effective than PCA; 2) The difference between the results of
CCA-ITQ and CCA-BR clearly demonstrates that the retrieval
performance can be improved by balancing the variances
of video features via the proposed balanced rotation, which
indicates the superiority of such framework. In Fig. 4, the
variance of each dimension on FCVID at 128 bits by using
CCA, CCA-ITQ and CCA-BR is plotted to validate the above
conclusions. Again, it is pretty clear that our BR scheme
can always guarantee the flat variance of each dimension,
regardless of which video features are used.

4) Loss Function: As shown in Table IV, we evaluate the
system performance under various loss functions: l2-norm.
l1-norm and cross-entropy, during the network training of
UDVH-LSTM and UDVH-TSN. Compared to using l2-norm
in the objective functions, l1-norm is supposed to be more
robust in anti-noising and cross-entropy converts the hash
function learning into classification problems. According to the
results, however, the effects of using various loss functions are
not obvious. Generally, l2-norm achieves the best performance
with limited improvement (less than 3%) on the same dataset.

5) Comparison with State-of-The-Arts: To demonstrate the
superiority of our method, we further compare it with some
competitive baselines on three large-scale video datasets.

Experiment I on FCVID: We first report the comparison
results on FCVID dataset, where Fig. 5(a)∼(d) show the
mAP@K curves at various code lengths on the datasets when
using different methods separately. As observed from those
figures, the proposed method outperforms the state-of-the-art
hashing approaches in all cases substantially. To be specific,
the mAP@20 value of UDVH-TSN is 50.4% when using
128-bit code on FCVID, which is 4.8% higher than 45.6%
achieved by UDVH-LSTM. That mainly owes to the effective
learning of video-level representation via the combination of
spatial and temporal CovNets provided by TSNs. When it

comes to the most comparable competitor SSTH, the gap
increases to 8.9%, which indicates the tremendous boost on
the system performance achieved by UDVH-TSN. For those
non-deep methods, satisfactory results still have been obtained
because of the powerful feature modeling of the two-stream
architecture adopted in the framework. In order to further
validate the effectiveness of the proposed framework, we
also plot Precision-Recall curves at 128 bits (Fig. 6(a)) and
precision@100 (Fig. 7(a)) of all baselines separately. As can
be seen, the best performance is still achieved by UDVH-TSN
under those evaluation metrics, which is consistent with the
results from mAP@K curves. For example, the precision@100
value of UDVH-TSN at 64 bits is 51%, which is at least about
3.6% higher than the most comparable baselines.

Experiment II on YFCC: Next, the experiments are
conducted on YFCC dataset and the results are illustrated as
following. Theoretically, the best performance is supposed to
be given for all hashing methods on YFCC because it contains
the most video clips among three datasets that can be utilized
in the stage of unsupervised training. However, surprisingly,
the retrieval performance drops down for all hashing methods
compared to those on FCVID. Specifically for UDVH-TSN
in Fig. 5(h), the difference between the mAP@20 values
of UDVH-TSN (29.8%) and UDVH-LSTM (26.1%) at 128
bits is reduced to around 3.7%, while the value is 5.8%
when compared with SSTH (24%). The possible explanation
for this behaviour is the most videos in YFCC dataset are
taken by mobile equipments from the amateurs rather than
the professionals in FCVID [64]. The retrieval performance
will be heavily affected when testing the hashing system
with such low-quality video clips in YFCC. However, it is
worth noting that UDVH-TSN still dominates those baselines
with inspiring improvements, even dealing with the extremely
challenging tasks. Similar to Experiment I, Precision-Recall
(Fig. 6(b)) and precision@100 (Fig. 7(b)) curves on YFCC
dataset are plotted as additional evaluations. Specifically, the
precision@100 value at 64 bits when using UDVH-TSN is
30.2%, which is 3.9% higher than that under SSTH (26.3%).
According to the figures, dominant performance still has been
delivered by the proposed frameworks compared to other
hashing methods on such challenging retrieval task, which
consolidates the superiority of UDVH-TSN.

Experiment III on ActivityNet: Regarding the experimen-
tal results on ActivityNet dataset, the worst performance has
been achieved by all hashing methods among three datasets
comparatively. Particularly, the mAP@20 value of UDVH-
TSN is 26.2% on ActivityNet as shown in Fig. 5(l), which is
much lower than those on FCVID (50.4%) and YFCC (29.8%).
A reasonable explanation for the unpleasant performance is
that ActivityNet contains too many untrimmed videos with
enormous intra-class variance, which lowers the hash code
quality heavily and makes the retrieval more intractable [26],
[48] compared to the experiments on FCVID and YFCC.
When evaluating the performance on the same dataset under
various baselines, UDVH-TSN still delivers the best perfor-
mance according to the mAP@K figures as expected. Specifi-
cally, mAP@20 values for the two representative competitors:
UDVH-LSTM and SSTH, are 20.7% and 17.8% respectively,

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 12

16 32 48 64 80 96 112 128

K

0

0.1

0.2

0.3

0.4

0.5

m
A
P
@
5

FCVID

(a) FCVID

16 32 48 64 80 96 112 128

K

0

0.1

0.2

0.3

m
A
P
@
5

YFCC

(b) YFCC

16 32 48 64 80 96 112 128

K

0

0.1

0.2

m
A

P
@

5

ActivityNet

ITQ+TSN Feature

ITQ+CNN Feature

SubMod+TSN Feature

SubMod+CNN Feature

SP+TSN Feature

SP+CNN Feature

MFH+TSN Feature

MFH+CNN Feature

AGH+TSN Feature

AGH+CNN Feature

DH+TSN Feature

DH+CNN Feature

(c) ActivityNet

Fig. 8: The mAP@5 variations when using CNN and TSN features separately in the image-based hashing methods, where the
solid and dot lines represent the results on TSN and CNN features, respectively.

16 32 48 64 80 96 112 128

K

0.1

0.2

0.3

0.4

0.5

0.6

m
A
P
@
5

FCVID

(a) FCVID

16 32 48 64 80 96 112 128

K

0.1

0.2

0.3

m
A
P
@
5

YFCC

(b) YFCC

16 32 48 64 80 96 112 128

K

0.1

0.2

0.3

m
A

P
@

5

ActivityNet

UDVH-TSN

SSTH+TSN Feature

SSTH+CNN Feature

UDVH-LSTM+TSN Feature

UDVH-LSTM+CNN Feature

(c) ActivityNet

Fig. 9: The mAP@5 variations when using CNN and TSN features separately in the video-based hashing methods, where the
solid and dot lines represent the results on TSN and CNN features, respectively.

TABLE V: The training time at various code lengths on FCVID when using SSTH, UDVH-LSTM and UDVH-TSN. The time
unit for network training is hour (h) and the rest processes are reported in second (s).

Method
16 bits 32 bits 64 bits 128 bits

FC BR NT FC BR NT FC BR NT FC BR NT

SSTH [29] / / 8.21h / / 8.23h / / 8.48h / / 8.55h

UDVH-LSTM [19] 260.5s 0.38s 0.39h 263.2s 0.6s 0.39h 262.4s 1.1s 0.41h 265.1s 2.02s 0.41h

UDVH-TSN 267.3s 0.42s 0.74h 265.2s 0.62s 0.79h 270.2s 1.05s 0.81h 271s 2.1s 0.8h

which are at least 5.5% lower than 26.2% achieved by the
proposed framework. Although the improvement is a bit
limited, the retrieval performance by UDVH-TSN is still better
than the most existing hashing methods. Surprisingly, even
compared to some supervised methods like NSH [48] which
utilizes ActivityNets as the benchmark, UDVH-TSN still gives
promising results. For example, the mAP value at 64 bits
of UDVH-TSN is 22.1%, which is 7.3% higher than 14.8%
as reported in their paper of NSH. Followed by the same
experiments on above datasets, other curves such as Precision-
Recall (Fig. 6(c)) and precision@100 (Fig. 7(c)) are plotted
separately to verify the superiority of the proposed framework.
As can be seen from those figures, our framework consistently
ranks top compared to other baselines. For example, the
precision@100 at 64 bits reaches 26.1% under the proposed
framework and the difference over SSTH (20.4%) is 5.7%.
Those results show the superiority of UDVH-TSN clearly.

Above all, the proposed UDVH-TSN achieves excellent
retrieval performance and outperforms the state-of-the-arts
under extensive experiments on the testing datasets. In Fig. 10,
the detailed retrieval results of top-5 returned videos when
using 128 bits achieved by two comparable frameworks,
UDVH-TSN and SSTH [29], are revealed. Due to the lim-

ited space, we randomly pick up some examples from three
video datasets. Given six query videos of different topics,
the proposed algorithm makes fewer mistakes in retrieving
the similar videos for each query compared with SSTH.
The major reason is that the neighborhood structure in the
original data is well preserved in UDVH-TSN by incorporating
the clustering into the unsupervised hashing process, thus
producing more discriminative and effective binary codes for
the nearest neighbour search tasks. It is also worth pointing
out that DH [35], another deep-based hashing method in those
baselines, yields unsatisfactory performance on all datasets,
where three speculations are illustrated for those results as
follows. First of all, it is essentially a deep method in image
hashing, which cannot produce the video hash codes with
temporal awareness [29]. Secondly, DH attempts to generate
the binary codes via optimizing the approximate codes in the
loss function, which lowers the hash code quality because of
the huge gaps between the binary and real-valued spaces. The
last one is that DH still fails to preserve the similarity structure
from the original data in the code learning, which shares the
similar drawback in SSTH.

6) Feature Selection: In this section, we make brief com-
parisons on the performance variations when using CNN

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 13

and TSN features on three datasets, where the mAP@5 re-
sults at various code lengths for the image-based (e.g., ITQ,
AGH, DH) and video-based hashing (SSTH, UDVH-LSTM
and UDVH-TSN) methods are plotted in Fig. 8 and Fig. 9,
respectively. Particularly, CNN features are extracted from the
pre-trained VGG-19 [30] model and the corresponding results
when adopting CNN features are directly reported from [19].
According to those figures, the great improvements have been
achieved by using TSN features in both shallow and deep
based baselines compared to those on CNN features, which
mainly owe to the powerful modelling ability on temporal
information from TSNs. Here, we focused on the video-based
methods, including SSTH, UDVH-LSTM and UDVH-TSN,
in Fig. 9, to estimate the feature impact on video hashing.
Specifically, as shown in Fig. 9(a), the mAP@5 values at 128
bits on FCVID are 50.1% and 57.1% for SSTH and UDVH-
LSTM, which are over 15% higher than the values achieved
when using CNN features. For the other two datasets, the gaps
are reduced to less than 10% because of the poor data quality
as discussed in previous sections.

Moreover, the UDVH-based methods substantially yield
better retrieval performance over SSTH, which is consistent
with the results reported in Fig. 5 and further demonstrates
the superiority of our self-taught training strategy involving
clustering and balanced rotation. For examples, the mAP@5
values at the code length of 128 are 59.3% and 57.1% for
UDVH-TSN and UDVH-LSTM on FCVID, which are at least
7% higher than that in SSTH (50.1%).

7) Efficiency Analysis: The efficiency issue is addressed
in this part because it prevents such deep video hashing
frameworks from being widely deployed in the real-world
retrieval applications. As mentioned above, SSTH, UDVH-
LSTM and UDVH-TSN are specifically designed for video
hashing in those baselines, thus making the comparisons
among them more persuasive. Consequently, the training ex-
penses on FCVID dataset at various code lengths when using
those methods are summarized in Table V. There are three sub
processes during the training of UDVH-LSTM and UDVH-
TSN: feature clustering (FC), balance rotation (BR) and net-
work training (NT). For SSTH [29], we generally follow the
settings in the paper and its released code9 while adjusting
network parameters accordingly and only the network training
is required. The experiments are conducted on the same
hardware configuration reported previously. As can be seen,
the training time on FCVID dataset is around 0.5 and 0.9 hours
per loop, which are calculated as the sum of the time values in
those sub processes, when using UDVH-LSTM and UDVH-
TSN individually. Considering the deep architectures usually
converge within t = 5 loops for the UDVH-based methods,
the total training cost is less than 4.5 hours, which is much
shorter than training SSTH (over 8 hours), thus indicating the
high efficiency of the proposed hashing framework. The most
time-consuming parts of SSTH include the backpropagation
of Binary LSTM units when updating their binary outputs and
the complex network structures [29], which are not adopted in
our algorithm. Moreover, it is worth noting that the proposed

9https://github.com/hanwangzhang/BLSTM

balanced rotation only costs a few seconds, which is highly
competitive in the hashing applications.

UDVH-TSNSSTHQuery

Fig. 10: Top-5 retrieval results when using SSTH and UDVH-
TSN at the code length of 128 bits, where examples are
randomly selected from three video datasets. The left column
shows the query videos, the middle blocks and right blocks
show the top-5 returned videos by SSTH and UDVH-TSN,
respectively. Red rectangles indicate mistakes.

V. CONCLUSION

In this paper, we have presented a novel Unsupervised Deep
Video Hashing for fast large-scale similarity search. In contrast
to the previous video hashing approaches, feature learning
and hash function learning are jointly integrated in a self-
taught manner and optimized in alternating way within the
deep architecture of UDVH. With the balance rotation applied
in processing the video features, the variance of dimensions
when projecting them into a low-dimensional space can be
balanced, which improves the code quality. Our approach
yields outstanding performance in the extensive experiments
on three video datasets, which outperforms the state-of-the-
arts significantly in terms of retrieval accuracy and efficiency.
In future work, we will apply the proposed feature binarization
to deal with other applications such as object detection [69],
[70], object tracking [71], [72], and feature fusion [73], [74].

REFERENCES

[1] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for
indexing big dataa survey,” Proceedings of the IEEE, vol. 104, no. 1,
pp. 34–57, 2016.

[2] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[3] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 12, pp. 2916–2929, 2013.

[4] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai, “Harmonious hashing.”
in IJCAI, 2013, pp. 1820–1826.

[5] Z. Lin, G. Ding, J. Han, and J. Wang, “Cross-view retrieval via
probability-based semantics-preserving hashing,” IEEE Transactions on
Cybernetics, vol. 47, no. 12, pp. 4342–4355, 2017.

[6] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
ICML, 2011, pp. 1–8.

[7] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2009,
pp. 1753–1760.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 14

[8] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 3424–3431.

[9] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for
fast similarity search,” in Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information retrieval.
ACM, 2010, pp. 18–25.

[10] Y. Guo, G. Ding, L. Liu, J. Han, and L. Shao, “Learning to hash with
optimized anchor embedding for scalable retrieval,” IEEE Transactions
on Image Processing, vol. 26, no. 3, pp. 1344–1354, 2017.

[11] Y. Guo, G. Ding, and J. Han, “Robust quantization for general similarity
search,” IEEE Transactions on Image Processing, vol. 27, no. 2, pp.
949–963, 2018.

[12] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-modality
search via collective matrix factorization hashing,” IEEE Transactions
on Image Processing, vol. 25, no. 11, pp. 5427–5440, 2016.

[13] W. Kong and W.-J. Li, “Double-bit quantization for hashing.” in AAAI,
vol. 1, no. 2, 2012, p. 5.

[14] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for
video classification,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 4694–4702.

[15] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised
learning of video representations using lstms.” in ICML, 2015, pp. 843–
852.

[16] C. Yan, H. Xie, D. Yang, J. Yin, Y. Zhang, and Q. Dai, “Supervised
hash coding with deep neural network for environment perception of
intelligent vehicles,” IEEE transactions on intelligent transportation
systems, vol. 19, no. 1, pp. 284–295, 2018.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[18] V. E. Liong, J. Lu, Y.-P. Tan, and J. Zhou, “Deep video hashing,” IEEE
Transactions on Multimedia, vol. 19, no. 6, pp. 1209–1219, 2017.

[19] G. Wu, L. Liu, Y. Guo, G. Ding, J. Han, J. Shen, and L. Shao,
“Unsupervised deep video hashing with balanced rotation.” IJCAI,
2017, pp. 3076–3082.

[20] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in European Conference on Computer Vision. Springer,
2016, pp. 20–36.

[21] Z. Lan, Y. Zhu, A. G. Hauptmann, and S. Newsam, “Deep local
video feature for action recognition,” in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2017 IEEE Conference on. IEEE,
2017, pp. 1219–1225.

[22] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman, “Video summarization
with long short-term memory,” in European conference on computer
vision. Springer, 2016, pp. 766–782.

[23] X. Wang, L. Gao, P. Wang, X. Sun, and X. Liu, “Two-stream 3-d convnet
fusion for action recognition in videos with arbitrary size and length,”
IEEE Transactions on Multimedia, vol. 20, no. 3, pp. 634–644, 2018.

[24] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding
recurrent networks,” arXiv preprint arXiv:1506.02078, 2015.

[25] Y. Peng, Y. Zhao, and J. Zhang, “Two-stream collaborative learning with
spatial-temporal attention for video classification,” IEEE Transactions on
Circuits and Systems for Video Technology, 2018.

[26] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles,
“Activitynet: A large-scale video benchmark for human activity under-
standing,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 961–970.

[27] C. Yan, H. Xie, S. Liu, J. Yin, Y. Zhang, and Q. Dai, “Effective uyghur
language text detection in complex background images for traffic prompt
identification,” IEEE transactions on intelligent transportation systems,
vol. 19, no. 1, pp. 220–229, 2018.

[28] R. Veltkamp, H. Burkhardt, and H.-P. Kriegel, State-of-the-art in
content-based image and video retrieval. Springer Science & Business
Media, 2013, vol. 22.

[29] H. Zhang, M. Wang, R. Hong, and T.-S. Chua, “Play and rewind:
Optimizing binary representations of videos by self-supervised temporal
hashing,” in ACM Multimedia. ACM, 2016, pp. 781–790.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[31] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” arXiv preprint arXiv:1408.2927, 2014.

[32] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised
hashing with kernels,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2074–2081.

[33] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash: Improved
matching with smaller descriptors,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 34, no. 1, pp. 66–78, 2012.

[34] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2013, pp. 2938–2945.

[35] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in CVPR, 2015, pp. 2475–2483.

[36] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning and
hash coding with deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
3270–3278.

[37] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for image
retrieval via image representation learning.” in AAAI, vol. 1, 2014, p. 2.

[38] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[40] J. Lu, V. E. Liong, and J. Zhou, “Deep hashing for scalable image
search,” IEEE Transactions on Image Processing, vol. 26, no. 5, pp.
2352–2367, 2017.

[41] Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear discrete hashing,” IEEE
Transactions on Multimedia, vol. 19, no. 1, pp. 123–135, 2017.

[42] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple feature
hashing for real-time large scale near-duplicate video retrieval,” in ACM
Multimedia. ACM, 2011, pp. 423–432.

[43] L. Cao, Z. Li, Y. Mu, and S.-F. Chang, “Submodular video hashing:
a unified framework towards video pooling and indexing,” in ACM
Multimedia. ACM, 2012, pp. 299–308.

[44] M. Douze, H. Jégou, and C. Schmid, “An image-based approach to video
copy detection with spatio-temporal post-filtering,” IEEE Transactions
on Multimedia, vol. 12, no. 4, pp. 257–266, 2010.

[45] H. Wang and C. Schmid, “Action recognition with improved trajecto-
ries,” in ICCV, 2013, pp. 3551–3558.

[46] G. Ye, D. Liu, J. Wang, and S.-F. Chang, “Large-scale video hashing via
structure learning,” in Proceedings of the IEEE International Conference
on Computer Vision, 2013, pp. 2272–2279.

[47] M. Li and V. Monga, “Robust video hashing via multilinear subspace
projections,” IEEE transactions on image processing, vol. 21, no. 10,
pp. 4397–4409, 2012.

[48] Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear structural hashing for
scalable video search,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 28, no. 6, pp. 1421–1433, 2018.

[49] Y. Hao, T. Mu, R. Hong, M. Wang, N. An, and J. Y. Goulermas,
“Stochastic multiview hashing for large-scale near-duplicate video re-
trieval,” IEEE Transactions on Multimedia, vol. 19, no. 1, pp. 1–14,
2017.

[50] Y. Hao, T. Mu, J. Y. Goulermas, J. Jiang, R. Hong, and M. Wang, “Un-
supervised t-distributed video hashing and its deep hashing extension,”
IEEE Transactions on Image Processing, vol. 26, no. 11, pp. 5531–5544,
2017.

[51] J. Song, H. Zhang, X. Li, L. Gao, M. Wang, and R. Hong, “Self-
supervised video hashing with hierarchical binary auto-encoder,” IEEE
Transactions on Image Processing, vol. 27, no. 7, pp. 3210–3221, 2018.

[52] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[53] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[54] H. Zhang, L. Liu, Y. Long, and L. Shao, “Unsupervised deep hashing
with pseudo labels for scalable image retrieval,” IEEE Transactions on
Image Processing, vol. 27, no. 4, pp. 1626–1638, 2018.

[55] P. Zhang, W. Zhang, W.-J. Li, and M. Guo, “Supervised hashing with
latent factor models,” in Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval.
ACM, 2014, pp. 173–182.

[56] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE,
2010, pp. 3304–3311.

[57] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan, “Fast supervised discrete hash-
ing,” IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 2, pp. 490–496, 2018.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2882155, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 15

[58] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable
deep hashing with regularized similarity learning for image retrieval
and person re-identification,” IEEE Transactions on Image Processing,
vol. 24, no. 12, pp. 4766–4779, 2015.

[59] Z. Wen and W. Yin, “A feasible method for optimization with orthog-
onality constraints,” Mathematical Programming, vol. 142, no. 1-2, pp.
397–434, 2013.

[60] J. Nocedal and S. J. Wright, Sequential quadratic programming.
Springer, 2006.

[61] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[62] W. Kong and W.-J. Li, “Isotropic hashing,” in Advances in Neural
Information Processing Systems, 2012, pp. 1646–1654.

[63] P. Over, J. Fiscus, G. Sanders, D. Joy, M. Michel, G. Awad, A. Smeaton,
W. Kraaij, and G. Quénot, “Trecvid 2014–an overview of the goals,
tasks, data, evaluation mechanisms and metrics,” in Proceedings of
TRECVID, 2014, p. 52.

[64] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,
D. Borth, and L.-J. Li, “The new data and new challenges in multimedia
research,” arXiv preprint arXiv:1503.01817, vol. 1, no. 8, 2015.

[65] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in CVPR.
IEEE, 2010, pp. 3485–3492.

[66] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime
tv-l 1 optical flow,” Pattern Recognition, pp. 214–223, 2007.

[67] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

[68] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in ICML. ACM, 2006, pp. 233–240.

[69] J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, “Advanced deep-
learning techniques for salient and category-specific object detection: A
survey,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 84–100,
2018.

[70] J. Han, R. Quan, D. Zhang, and F. Nie, “Robust object co-segmentation
using background prior,” IEEE Transactions on Image Processing,
vol. 27, no. 4, pp. 1639–1651, 2018.

[71] G. Ding, W. Chen, s. Zhao, J. Han, and Q. Liu, “Real-time scalable
visual tracking via quadrangle kernelized correlation filters,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp.
140–150, 2018.

[72] J. Han, E. Pauwels, P. de Zeeuw, and P. de With, “Employing a rgb-
d sensor for real-time tracking of humans across multiple re-entries
in a smart environment.” IEEE Transactions on Consumer Electronics,
vol. 58, no. 2, pp. 255–263, 2012.

[73] J. Han, E. Pauwels, and P. de Zeeuw, “Fast saliency-aware multi-
modality image fusion,” Neurocomputing, vol. 111, pp. 70–80, 2013.

[74] Q. Zhang, Y. Liu, R. Blum, J. Han, and D. Tao, “Sparse representation
based multi-sensor image fusion for multi-focus and multi-modality
images: A review,” Information Fusion, vol. 40, pp. 57–75, 2018.

Gengshen Wu is currently a Ph. D. candidate with the School of Computing
and Communications at Lancaster University, Lancaster, U.K.. His research
interests include information retrieval, computer vision, and deep learning.

Jungong Han is a senior lecturer with the School of Computing and Commu-
nications at Lancaster University, Lancaster, U.K and was with the Department
of Computer Science at Northumbria University, UK. Previously, he was a
senior scientist (2012-2015) with Civolution Technology (a combining synergy
of Philips CI and Thomson STS), a research staff (2010-2012) with the Centre
for Mathematics and Computer Science, and a researcher (2005-2010) with
the Technical University of Eindhoven in Netherlands.

Yuchen Guo received his B. Sc. degree from School of Software, and B. Ec.
from School of Economics and Management, Tsinghua University, Beijing,
China in 2013, and currently is a research fellow in School of Software in the
same campus. His research interests include multimedia information retrieval,
computer vision, and machine learning.

Li Liu received the Ph.D. degree from the Department of Electronic and Elec-
trical Engineering, The University of Sheffield, Sheffield, U.K., in 2014. He
is currently a research scientist at Inception Institute of Artificial Intelligence,
Abu Dhabi, UAE. Previously, he was a research fellow with the School of
Computing Sciences at the University of East Anglia, Norwich, UK.

Guiguang Ding received his Ph.D degree in electronic engineering from
Xidian University, China, in 2004. He is currently an associate professor
of School of Software, Tsinghua University. He has published 80 papers in
major journals and conferences, including the IEEE TIP, TMM, TKDE, SIG
IR, AAAI, ICML, IJCAI, CVPR, and ICCV. His current research centers on
the area of multimedia information retrieval, computer vision and machine
learning.

Qiang Ni is a Professor with the School of Computing and Communications,
and with the Data Science Institute at Lancaster University, Lancaster, U.K.
He received the B.Sc., M.Sc., and Ph.D. degrees in engineering from the
Huazhong University of Science and Technology, China. His main research in-
terests include the area of future generation communications and networking,
including 5G and 6G, SDN, cloud networks, energy harvesting, IoTs, cyber
physical systems, AI, machine learning, big data analytics, urban surveillance
systems and smart city. He has authored or co-authored over 200 papers in
these areas.

Ling Shao is the CEO and Chief Scientist of the Inception Institute of
Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates. His research
interests include computer vision, machine learning and medical imaging.
He is an associate editor of IEEE Transactions on Image Processing, IEEE
Transactions on Neural Networks and Learning Systems, and several other
journals. He is a fellow of the IAPR, the IET and the BCS.

