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Abstract—The problem of predicting selective transport of
ions through nano-pores from their structure in the biological
and nano-technological systems is addressed. We use a molecular
dynamics simulation to provide insight into the key physical
parameters of nano-pores and develop a self-consistent analytic
theory describing ionic conduction and selectivity through these
devices. We analyse the ion’s dehydration and excess chemical
potential, derive an expression for the conductivity of the nano-
pore, and emphasize the role of fluctuations in its performance.
The theory is verified by comparison of the predicted current-
voltage characteristics with the molecular dynamics results and
experimental data obtained for a graphene nano-pore and the
KcsA biological channel.

Index Terms—Graphene nanopore, biological ion channel,
selectivity, functionalisation, molecular dynamics, statistical the-
ory, kinetic theory.

I. INTRODUCTION

The investigation of ionic transport through nano-pores is
a vast and rapidly expanding field encompassing both the
nano and bio-physics communities. These pores have radii on
sub-nanometer length scales and can be as thin as a single
layer of graphene; and yet their selectivity properties are
difficult to predict and/or control. Interest in these pores is
stimulated both by the wide range of applications including
e.g. the desalination of water [1], and by the novel light they
shed on understanding the function of biological ion channels
[2]. In particular, the bio-inspired functionalisation of these
nano-pores offers a challenging avenue for the composition
of nano-scale devices with pre-defined properties. Another
long-standing problem in the analysis of these devices is the
development of an analytic theory to describe the trade off
between their high selectivity and fast permeability [3]–[5].

In this work we aim to address these challenges by intro-
ducing a self-consistent approach to investigating the effect of
hydration and fluctuations on the performance of nano-pores.
We develop statistical and kinetic theories of their conduc-
tivity and selectivity. Theoretical predictions are compared
with experimental and simulation data of conduction through
a single-layer graphene pore and a biological channel KcsA.

II. ION PERMEATION THROUGH A PORE IN GRAPHENE

In a preliminary simulation study we have compared the
properties of a neutral and a charged pore opened inside a
single graphene sheet. The aim of these simulations is to
highlight the most important factors affecting ion permeation
and investigate the role of hydration shells. Both charged and
neutral systems (left panel on Fig. 1) comprise a single fixed

Fig. 1. Illustration of the simulation set-up. The graphene layer is shown by
the golden sheet and potassium and chloride ions are represented by orange
and cyan spheres respectively. Water molecules are shown in red (oxygen)
and white (hydrogen). (Left) Side view. (Right) Pore cross-section with
depicted first (transparent blue) and second (transparent green) hydration
shells and hydrophobic surface.

graphene layer with a pore hydrated on both sides by a 1M
KCl solution. The minimal carbon-carbon distance in the pore
is ∼ 0.45nm, and so the effective pore radius accounting
for the hydrophobicity is ∼ 0.23nm. The dimension of the
simulation box is 2.6×2.4×4nm, and following Ref. [6] the
geometry of the pore was chosen to match the shape of one
of the four carbonyl rings in the selectivity filter (SF) of
KcsA channel. To create the charged system, four C atoms
on the pore rim were assigned charges −0.5q (matching the
oxygen of the carbonyl groups), and the electro-neutrality of
the system was enforced by a balancing charge of +2.0q
uniformly spread over all the remaining graphene atoms.

In order to obtain the potential of mean force (PMF) of
the permeating potassium ion (K+) the umbrella sampling
method was employed. In these simulations the axial coor-
dinate z of a single K+ was harmonically restrained while
the radial position was subject to a semi-harmonic wall at
0.45nm from the pore axis. We considered 61 axial windows
from z = −1.5nm to 1.5nm with width of 0.05nm. Each
window was run for 1.5ns with the first 0.5ns considered
as equilibration and excluded from the analysis. Using the
implementation by Grossfield [7] the weighted histogram
analysis method (WHAM) [8] was used to calculate the PMF
with a tolerance of 10−7.

Both the charged and neutral PMF are highlighted in Fig. 2
as red and blue respectively. The neutral pore produces a
barrier of 7.31kT , whilst the charged pore yields a barrier
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Fig. 2. (Left) Potential of Mean Force (PMF) of potassium in the neutral
(blue stars) and charged (red stars) graphene systems. Orange squares
represent the difference between those PMFs yielding the electrostatic energy
contribution. (Right) Dielectric permittivity variation on the way through the
pore.

of 2.81kT agreeing with a similar set up as reported by
Sahu et al. [9], and He et al. [6] for a 4CO system. This
suggests that the height of the barrier is primarily determined
by the charge of the pore and not by the specific geometry or
placement of the functional groups. The fact that this barrier
is much smaller than the one computed for the neutral system
confirms that the presence of negative charges in the pore
favours cation permeation. The PMF in Fig. 2 also shows
the existence of two minima on either side of the graphene
monolayer, centered at z = −0.5nm and +0.5nm. The two
free energy minima arise because in these locations the K+

is close enough to the pore to feel the electrostatic attraction
of the charges but it is still not in the gap region between
the water phase and the graphene layer, so it is still not
significantly dehydrated.

The electrostatic component GC of the charged PMF is
related to the Coulomb potential between nf negative pore
charges, and the ion zq: GC = zq2nf/4πε

∗
wε0Rif . (Here-

after, q is the elementary charge, ε0 is vacuum permittivity,
and Rif is the distance between ion and pore charge.)
Therefore, subtracting the neutral PMF from the charged
one, we can find the effective local permittivity of water
ε∗w (see right panel in Fig. 2), which decreases as the ion
approaches the pore, taking the average value ∼ 9 inside.
This indicates that water in the pore should not be treated as
in the bulk, and can be explained by noting that, despite the
minor dehydration (see subsequent discussion and the right
panel of Fig. 1), the majority of the charge-screening water
molecules in the shells reside outside of the pore.

To investigate the role of hydration in more details, we have
computed the number of water molecules in each hydration
shell surrounding a restrained K+ ion in the windows of the
umbrella sampling simulations. As shown in Fig. 3, both
the first and the second hydration shell lose water upon
crossing the pore but the depletion is more significant for the
second shell, in agreement with the results of Sahu et al. [9].
This occurs because, when the K+ ion crosses the pore, it
tends to stay close to the charged carbon atoms establishing
direct salt bridges, thus minimising the available space for
coordinating waters. On the other hand, the water molecules
of the second shell lying further outside the pore are still
attracted electrostatically to the charged rim as well as the
ion, and thus still remain in the neighborhood of the ion.
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Fig. 3. Potassium hydration profiles in the neutral (left) and charged
(right) graphene systems. Squares represent the number of water molecules
obtained from MD for the first (blue) and second (orange) coordinating
shells. Theoretical predictions of the dehydration fraction fj are given by
solid lines.

For analytic calculations one needs to estimate the de-
hydration energy for each shell. To do so, Zwolak and
coworkers [10] proposed to couple the dehydration energy
and the cost for its change with shell’s surface area. Thus,
the energy barrier becomes a function of the pore radius Rc:
∆U(Rc) =

∑
j(fj(Rc)− 1)U0

j . Here the sum runs over all
j shells, and the dehydration fraction fj is the remaining
portion of shell j left upon permeation through a pore of
radius Rc. The energy U0

j stored in each hydration shell is

U0
j =

zq2

8πε0

( 1

εp
− 1

εw

)( 1

R0
j

− 1

RIj

)
, (1)

where R0
j and RIj are the outer and inner radii of the shell

respectively, and εp is the permittivity of the membrane. The
solid lines on Fig. 3 display this fraction for Rc = 0.23nm
and length Lc = 0.4nm. As long as the fraction is computed
solely from the geometry, the dehydration profiles (1) are
identical for both the neutral and charged systems. Although
the estimation (1) lacks water-water and water-fixed charge
interactions, one sees quite good agreement particularly for
the neutral pore. The differences can be attributed in part
due to the lack of these interactions, but also the influence
of nearby ions and the cylindrical approximation for the pore
geometry.

The above results justify the picture that K+ ion outside
the pore is not significantly dehydrated and hence the strong
electrostatic attraction it faces produces the two free energy
minima flanking the barrier in the PMF (Fig. 2). This inter-
pretation is consistent with Fig. 3 where in positions ±0.5nm
the first hydration shell is practically intact while the second
shell has only lost approximately 40% of its water molecules.

Thus, the results of our preliminary MD simulations indeed
identify two driving forces for ion permeation: (i) the ion-
pore electrostatic interactions and (ii) the dehydration cost
the ion incurs when crossing the pore. This is in agreement
with the seminal theory developed by Eisenman [3]. In the
next section, we incorporate those energy contributions in
statistical theory.

III. THEORY OF SELECTIVE CONDUCTION OF
MOLECULAR PORE: ROLE OF FLUCTUATIONS

The preceding discussion demonstrates that, to take explicit
account of dehydration and strong interaction between con-
ducting and fixed ions at the pore, a self consistent theory



has to be defined at the molecular level. We note further
that under typical experimental conditions the thermal de
Broglie wavelength Λi of ions of i-th type in the solution
is of the order of ∼ 0.03nm. This is much less than the
average distance ((V/ni)1/3) between ions in the bulk and
even in narrow pores and so the system is classical and
the ions obey Boltzmann statistics. Therefore the physical
properties of the whole system, comprising a pore and two
bulk reservoirs, are determined by the canonical ensemble
assuming that it conserves total volume V , temperature T
and the total number of particles of each species Ni. The
total energy of this ensemble has the form [11]–[13]

E({nj}, nf ) = E0 + (Nw − nw)µ̄bw + nwµ̄
c
w

+
∑
i

[
(Ni − ni)µbi + niµ

c
i

]
− kT ln

(
K!

nw!

∏
i

1

ni!

)
+ E

(
{nj}, nf

)
.

(2)

Here, {nj} is a set of ions in the pore, E0 = TS−pV is the
thermodynamic part of system’s energy for a given entropy S
and pressure p. The next two terms in the first row explicitly
account for the energy changes due to the transfer of the
water molecules between bathing solutions and the pore.

The second row describes the energy required to add ni
ions of the i-th type to the pore. In the last row the first term
accounts for permutations of ions of each type and water
molecules, while E({nj}, nf ) corresponds to ion-ion and ion-
fixed charge interactions inside the pore. The electrochemical
potential of the ions is µb,ci = µb,c0,i + µ̃b,ci , where µb,c0,i

represents its ideal part and µ̃b,ci = µ̄b,ci + qφb,c consists of
the electric φb,c and excess chemical µ̄b,ci potentials in the
bulk (b) or in the pore (c). In what follows we neglect the
difference in the thermal wavelength and the internal degrees
of freedom between the bulk and the pore, and the effect
of electric field on the motion of water molecules because
zw ∼ 0.

The single-file conduction of ions through the pore with
a finite number of binding sites K defines the set of en-
ergy states of the pore and its total occupancy [12]–[17].
Observing that transitions of ions from the bulk to the pore
correspond to small fluctuations in the total energy of the
system [11] and canceling out constant terms in the energy
Eq. (2) we obtain [12], [13] the free energy of such transitions

G({nj}, nf ) = E({nj}, nf ) +
∑
i

ni
[
µ̃ci − µ̃bi

]
− kT ln

(
1

nw!

∏
i

(xbi )
ni

ni!

)
.

(3)

The corresponding grand-canonical ensemble reads

P ({nj}, nf ) =
1

Znw!

∏
i

(xbi )
ni

ni!
e

∑
i ni[µ̃ci−µ̃bi ]−E({nj},nf )

kT

(4)

where the grand partition function Z is defined from the
normalisation condition

∑
{nj} P ({nj}, nf ) ≡ 1, and yields

the grand potential

Ω = −kT lnZ. (5)

Thus we arrive at a statistical model of the pore that takes
explicit account of dehydration (via µ̄i) and strong interaction
(via E) between ions inside the pore.

In order to estimate µ̄i and E , and to introduce their
analytic approximations, we notice that the probabilities
P ({ni}, nf ) for a given configuration of ions ni in the
pore are related to the binding probabilities B({nj}, nf ) ∼
P ({ni}, nf )/P ({0}, nf ) introduced by Roux [18], [19] lead-
ing to,

e−
(∑i ni[µ̄ci−µ̄bi ]+E({nj},nf))

kT ∼
∫
e−
W(r1,...,rni

)−niµ̄
b
i

kT drni

(6)
with W(r1, ..., rni) standing for the n-ion PMF of the pore
and the integration runs over the pore volume. The analysis
in Sec. II shows that the main contributions into the n-ion
PMF are due to dehydration Eq. (1) [10] and to the local
interactions between the mobile ion and surrounding charges.
The latter can be approximated by electrostatic interactions
with effective dielectric permittivity of the pore.

In addition, the global ion-ion interaction in a charged
water-filled pore can be approximated analytically [15], [17],
[20] using the notion of the charging energy of the pore
familiar from the Coulomb blockade theory of quantum dots,
see e.g. [21], [22]. The resulting expression is

E ({nj} , nf ) =
q2Lc

8πε0εwR2
c

(
nf +

∑
i

zini

)2

(7)

where the prefactor1, can be denoted by Uc = q2/2Cs with
the pore capacitance being Cs.

IV. SELECTIVITY VS CONDUCTIVITY TRADE-OFF

The current density ji through the pore can be written
in general form [19], [23]–[25] as ji = −σiq ∇µi, where
the conductivity σ is defined using the generalised Einstein
relation [12], [26], [27]

σi = q2Di
∂ci
∂ηi

∝ 〈∆n2
i 〉 = −kT

(
∂2Ω

∂η2
i

)
T,V

, (8)

where ci = 〈ni〉/Vc is the concentration, Di is the diffusivity
and ηi is the chemical potential in the pore with volume Vc.
The current is directly proportional to the fluctuations in the
number of ions and, accordingly, current is largest when the
rate of these fluctuations is maximal.

In the particular case of a three level system {0}, {X},
{Y }, where the ground state 0 corresponding to a given set
{nj} of ions in the system is excited by adding an ion of
type X or Y to the pore, the conductivity of each ion type
is

〈∆n2
X〉 =

e−∆GX/kT + e−(∆GY +∆GX)/kT(
1 + e−∆GX/kT + e−∆GY /kT

)2 (9)

where ∆Gi = G(ni + 1, nf )−G(ni, nf ) stands for the free
energy barriers and an analogous expression for Y is obtained
by exchanging symbols X and Y .

It follows from equation (9) that maximum conductivity
for a given type of ions (e.g. X) is achieved when

∆GX ∼ 0, and ∆GX � ∆GY ,

1This charging paramater reflects the strength of interaction between the
mobile ions and the pore charge.



hold simultaneously. The first relation represents the condi-
tion for barrier-less conduction. Given that transitions occur
between N and N + 1 states, one recognises the knock-
on mechanism. Eventually, the last condition embodies the
strong selectivity regime. Thus, maximising the noise (vari-
ance) of pore occupancy, one derives the optimal conduction
and selectivity properties. We note that it is surprising that
exactly these conditions are found in Nature, namely in the
biological KcsA channel.

Thus the optimal parameters of the nano-pore for selective
conduction at nearly the diffusion rate can be now obtained
analytically in the form

n∗f =
Cs
q2

(
∆µ∗X − kT ln

[
(nX + 1)

(K − nX − nY )

])
−
(
nX +

1

2

)
, (10)

the optimal chemical potential difference (∆µ∗X = µbX−µcX )
is given by

∆µ∗X =
1

nX
E(nX , n

∗
f ) +

kT

nX
ln [(nX)!(K − nX − nY )!] .

(11)
It is clear therefore that the pore allows for the unhindered
(but still diffusion-limited) passage of these favoured ions,
while selectively blocking the other species. The pore is tuned
to satisfy this condition, resulting in the following energy
barrier for an ion of the same valence

∆∆G = (µ̄cY − µ̄bY )− (µ̄cX − µ̄bX) + kT ln
cX
cY

+ kT ln
nY + 1

nX + 1
. (12)

Provided that the free energy barrier for each type of ion
to enter the pore Eq. (3) is a global function of the pore
parameters, for ions of the same valence the difference
between these barriers is determined mainly by the local
interactions in the pore as envisaged by Eisenman [3]. This
result is intuitively reasonable since on distances of a few
ionic radii, the ions behave as point changes and cannot be
distinguished. The above analysis is equally applicable for
uncharged pores, different pore radii or lengths and ions of
different valence.

Hence, we have shown that a generalised form (12) of
Eisenman’s selectivity relation follows directly from the
condition for the diffusion-limited conduction of K+ ions.
The corresponding conductivity of the favoured ion can now
be written as

σX =
q2DXe

−∆GX/kT

VckT
(
1 + e−∆GX/kT

)2 , (13)

V. KINETIC THEORY

To investigate non-equilibrium responses we will introduce
a self-consistent kinetic theory, describing permeation with
rate Γ through the discrete state space identified in the
previous section. The behavior can be analysed with a discrete

set of master equations, where the transiting ion is denoted
by n∗i ,

Ṗ ({nj}) = −
∑
i

∑
b

∑
J=

{
nj+n

∗
i

nj−n∗i

}
?

P ({nj})Γb,inj ,J − P ({J})Γb,iJ,nj .

(14)

The left hand side of the equation delineates the temporal
behavior and must equal zero in the steady-state regime. The
sums run over species i, both left and right bulks b, and for
clarity conditions ?. These conditions require that the state of
the pore must remain within the state space and the transitions
be physically possible i.e. the number of ions cannot exceed
the number of sites, and an ion can only exit if it is already
occupying the pore. Formally this can be defined as 0 ≤ J ≤
K−nw and when removing an ion nj−n∗i 6=

∑
i′ 6=i ni′−n∗i

where
∑
i′ 6=i ni′ denotes the sum over all ions not including

the transiting ith species. For notational clarity we drop the
functional dependence on nf although it remains present in
the energy barrier.

The steady-state current can be defined as in standard
practice from the balance of fluxes, such that Kirchoff’s laws
are satisfied. It is defined such that its positivity defines ionic
flow from left to right,

Ibi = ±q
K−1−nw∑
nj=0

P ({nj})Γb,inj ,nj+n∗i −P ({nj +n∗i })Γ
b,i
nj+n∗i ,nj

.

(15)
The transition rates are defined such that at equilibrium the
detailed balance conditions equate to the Boltzmann ratio
with the equilibrium free energy barrier given by equation
(3). The energy profile is assumed to take the form of a
binding site whereby the particle must escape and therefore
the influence from the potential drop is assumed to be solely
inside the pore [28]. We note that this can be extended to
include a chemical gradient if needed. The rates therefore
take the following form,

Γb,inj+n∗i ,nj
= Aie

(∆Gi−ziq(φb−φc))/kT , (16)

Γb,inj ,nj+n∗i
= Ai, where: Ai =

2Di

L2
c

(
1 + e∆Gi/kT

) . (17)

The equilibrium normalisation Ai must relate to the general
energy profile of the system and in its linear response must
reproduce Ohm’s and Fick’s laws for the favoured ion as
calculated earlier in equation (13). It is important to note,
however, that we do not include a transition state and nor do
we explicitly track the motion of ions through sites. These
developments will be considered in further publications.

VI. COMPARISON WITH EXPERIMENTAL DATA

A. Example 1: Graphene nanopore

The results from He et al. [6] provide an excellent test
of our theory, because the authors simulate a set of charged
graphene nanopores which are similar to the selectivity filters
of biological channels. The pore diameters are comparable
to these filters although the length is smaller ∼ 0.4nm;
meanwhile different charges are added with the intention of
reproducing K+ or Na+ selectivity. These charges are either
carbonyl groups with a negative partial oxygen charge or
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Fig. 4. Comparison of theoretical current (solid lines) to simulated con-
duction through single-layer graphene (circles) [6]. The diffusion coefficient
in the pore is found to be smaller than in the bulk 0.125Db

i , as expected
in narrow pores [29]. The linear responses were fit against equation (13)
with free energy barriers: 3.02kT and 3.28kT for K+ and Na+ in 4CO and
-3.51kT and -1.38kT for K+ and Na+ in 4COO. The non-ohmic current
through 3COO was fit against our equation (15) and the energy barriers were
-3.85kT and -1.41kT for K+ and Na+ respectively and the pore was highly
asymmetrical with the binding site experiencing ∼ 1/5 of the voltage drop
(φc ∼ φL/5).

carboxylate groups with a permanent charge of −1q. We
shall consider all three pores: the four carbonyl (4CO), four
carboxylate (4COO) and three carboxylayte (3COO). Both
4CO and 4COO demonstrate linear responses and so are
compared with our linearised expression of current (13);
and so the non-Ohmic 3COO pore is compared with our
kinetic equation (15). The system was set up with constant
temperature 300K and mixed KCl and NaCl solutions of
0.5M each, and Cl− does not permeate the pore. Thus we
can consider the system as having one binding site, and
competing single cation permeation because the charging
parameter is relatively small Uc ∼ 9 to 27kT when an
averaged value in the pore of ε∗w = 9 is used. Fitting is
provided in Fig. 4 with the fitting parameters given in the
caption; and we note that the diffusion coefficient in the pore
is smaller than in the bulk as expected [29]. In general the
fitting is good with a small residual standard error for each
data set, which are given as error bars.

B. Example 2: K+ biological ion channel (KcsA)

KcsA is a bacterial K+ ion channel strongly favouring
K+ over Na+ at ratios of 1000:1 [2]. First crystallised in
1998 [30], it represents a model ion channel because of its
shared homology with other K+ channels particularly within
the narrow selectivity filter. We approximate this filter as
a cylinder2 of length 1.2nm and radius 0.15nm. Inside it
contains four binding sites due to attractive dipolar carbonyl
oxygen atoms (which exclude anions); with a fifth binding
site at on its extra-cellular boundary. In contrast to graphene
the charging paramater is large and on the order of the bulk
hydration energy, Uc ∼ 160kT (with ε∗w ∼ 9 although it
is likely to be smaller). This indicates strong interactions
between the ions and the pore, resulting in highly coordinated
motion with fluctuations between 2 and 3 ions in the filter. In
the experimental set-up, symmetrical KCl solutions were used
with concentrations ranging from 0.25-1.5M, and current-
voltage curves were produced. To model this we reduce the
state space and consider a two-level cation filter, with the

2Although we note that structural fluctuations are of order 0.075nm [31].
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Fig. 5. (left) Theoretical fitting (solid) of Eq. (15) to data (circles) for
KcsA [32] and the linear regime at low voltages (right). The diffusion
coefficient was 0.2Db

i , and the pore was symmetrical with (φc ∼ φL/2).
The energy barriers from mixing, global and local interactions for each
concentration starting at 0.25M to 1.5M were: 3.6kT , 3.68kT , 3.94kT ,
4.04kT , and 4.33kT respectively.

results of fitting in Fig. 5. The theory produces a good fit
to the data, although the current is slightly underestimated
in the lower concentrations. The right panel contains the
linear response calculated from equation (8) (with appropriate
prefactor), which is equivalent of the linearised solution to
the kinetic equations. Unlike the graphene pore, the filter
characteristics were found to be symmetrical because the
fraction of the voltage drop was 1/2 and the energy barriers
from mixing, local and global interactions were found to be
monotonically increasing with concentration.

VII. CONCLUSIONS

In summary, we have presented a multi-scale analysis of
ionic conduction and selectivity through subnanometer pores.
This includes a multi-species statistical theory describing the
state space or occupancy of the pore. Our theory accounts
for the properties of the pore such as its charge or geometry,
the ionic composition of the surrounding solutions, the global
interactions inside the pore, the local interactions specifically
at the binding site, and any external driving forces. The
important results from this theory have been: the explicit
demonstration that noise (fluctuations) in the occupancy of
the pore are directly proportional to the rate of conduction
through the pore, and the derivation of optimal conducting pa-
rameters: the tuned fixed charge n∗f and the optimal chemical
potential difference ∆µ∗i . In addition we have extended the
theory far from equilibrium with a set of master equations.
Both theories provide excellent agreement when compared
with the experimental and simulated data from the graphene
nanopore and the biological KcsA channel.

We have also introduced a molecular dynamics investiga-
tion into the role of interactions during the permeation of ions
through charged and neutral graphene pores. In both systems
the geometry was comparable with a narrow pore. This
narrow pore produces geometrical dehydration because water
molecules are physically prevented from aligning around the
ion as they do in the bulk reservoir (see [10]). Hence the
fraction of water molecules lost can be calculated, and we
find this to be in good agreement with our simulation data
particularly for the uncharged pore. The small differences to
the charged pore can be attributed to the lack of water-water
and water-pore charge interactions. Consequently the effec-
tive continuum of water inside the pore must significantly



differ to the bulk reservoir with a smaller effective dielectric
coefficient ε∗w. We confirm this through comparisons of the
PMFS and Coulomb’s law.

To extend the applicability of our theory, we aim to explore
the importance of coordinated motion which by describing it
as the motion of a quasi-particle [16], [33], [34], with the
expectation that it can lead to an improved continuous model
of the current through the pore based on a coupled set of
differential Chapman-Kolmogorov equations. In addition we
would also like to note that the distribution functions (4) are
related to the BBGKY hierarchy of kinetic equations [35];
and we plan to further explore this connection. Finally, we
believe that the application of our methods will lead to new
insights in both technology and biophysics.
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