
A Compiler for the Smart Space

Urs Bischoff, Gerd Kortuem

Lancaster University, Lancaster LA1 4YW, UK

Abstract. Developing applications for smart spaces is a challenging
task. Most programming systems narrowly focus on the embedded com-
puter infrastructure and neglect the spatial aspect of this fusion between
a physical and a virtual environment. Hence, application logic is not im-
plemented for the smart space but for the embedded network, which is
only one aspect of the system. Our programming system supports an
abstract model of a smart space. A high-level language is used to im-
plement the application logic for this model. In this paper we show how
a compiler translates code written for this abstract model into a dis-
tributed application that can be executed by a computer infrastructure.
The compiler allows for a clear separation between the application code
and its execution in a concrete network. This simplifies the development
and maintenance of an application because the application programmer
can focus on the actual application logic for the smart space instead of
issues related to a concrete network.

1 Introduction

High-level programming languages provided the basis for the development of
complex computing systems. Compared to assembly programming early pro-
gramming languages (e.g. COBOL or FORTRAN) simplified the programming
task considerably. Even though these languages were developed in the 50’s, mil-
lions of lines of code written in these languages are still in use today. The secret
behind this success is that they were designed for an abstract computer model
instead of a concrete hardware platform. A compiler is responsible for the trans-
lation between the code written for the abstract computer model and code that
can be executed by the computer hardware. This separation allowed the inde-
pendent development of hardware and software over the years.

Today, we are working on the ubiquitous computing vision of smart spaces
consisting of large numbers of sensors and actuators. And we are faced with
the challenging task of programming this new type of computer infrastructure.
Similar to how assembly programming did not scale to complex applications,
system design focused on individual network nodes does not scale to networks
consisting of large numbers of sensor and actuator nodes. We must consider how
to model these smart spaces and design suitable programming abstractions.

A smart space embeds interconnected technologies that are, more or less,
responsive to the state of the environment. A problem pointed out in [1] is that
our experience in building smart spaces is limited by the set of concepts we



know at the time of development; we are constantly faced with better technol-
ogy becoming available. Unlike a mobile phone it is not possible to replace the
infrastructure of a smart space every few months. As emphasised by Rodden
and Benford [2], living and work environments are also subject to continuous
transformation; they are modified by the people who inhabit them in a variety
of ways, for a variety of purposes and with different frequencies. This observation
also has an effect on the requirements of a computing infrastructure of a smart
space and its applications. As such, they are subject to similar changes as the
rest of our living and work environments. As users we want to change or extend
the application logic from time to time. With better technology becoming avail-
able, the network or parts of it should be exchanged without greatly affecting the
running applications. Or by adding nodes and replicating tasks we want to make
the application more reliable. Upgrading and modifying embedded software is
difficult because of the generally tight coupling between hardware and software.
Having to deal with distributed applications makes changes to the application
even harder.

In this paper we present a novel programming paradigm and compiler for
smart spaces. In our programming paradigm a smart space is not just the end
product of a fusion between a physical and virtual environment but it is a fun-
damental abstraction that is used during the whole life cycle from the design to
the deployment of such a space. The application developer does not implement
the application logic for a network that happens to be embedded in a physi-
cal environment, but for an abstraction of the actual space that should exhibit
smart behaviour. A high-level language is used to define the application logic for
this space abstraction. A compiler translates the high-level application code into
a representation that can be executed by the embedded network. It splits the
application code into a set of tasks and operators, and assigns them to individ-
ual network nodes. This top-down approach allows the application programmer
to move away from system problems of the individual nodes to the actual pro-
gramming problem of the smart space as a whole. Hence, the global application
does not have to be expressed in terms of a set of distributed tasks for individ-
ual nodes. Furthermore, because the logic is implemented for the smart space
itself (and not for the embedded network), the network infrastructure can evolve
independently of the application logic.

This paper is organised as follows. Section 2 presents the abstract concept
of a programmable smart space. In Sec. 3 we describe our programming system
that integrates this smart space model. Section 4 introduces an application sce-
nario that is used in this paper to illustrate the technical detail of the compiler
addressed in Sec. 5. In Sec. 6 we focus on the mapper, which is a core component
of the compiler. We evaluate it in terms of a case study. Section 7 gives a brief
overview of related work. Finally, Sec. 8 concludes this paper.



2 Programming a Smart Space

An application programmer wants to write an application for a space to make it
“smart”. For example, a room should turn off its lights if nobody is inside. This
point of view is in contrast to the prevalent programming paradigm focused on
the embedded network infrastructure. Implementing this example, the applica-
tion programmer would have to address the motion sensors to find out whether
there is motion in the room. And if no motion is detected, a command can be
sent to the light switch to turn the lights off. The ubiquitous computing vision of
technologies that weave themselves into the fabric of everyday life until they are
indistinguishable from it [3] cannot support such an explicit technology focus on
programming. Our novel programming paradigm supports the definition of the
application logic for the smart space. The actual technology disappears in the
background; it is irrelevant for the logic and is interchangeable.

Figure 1 illustrates this programming paradigm. It shows a floor of an office
building. Each room should be made “smart” by embedding some logic into it.
For example, each room should turn off its light when nobody is inside. Addi-
tionally, the office occupants might want to individualise their office and update
it with additional logic. The kitchen is a different type of space which requires
different logic; it should detect when the stove is turned on and nobody is mon-
itoring it. Finally, there is a fire alarm that concerns the whole floor. What is
important to notice is that we want to embed logic into the actual room. The
embedded sensor and actuator network is not relevant at this point. Our pro-
gramming paradigm supports this point of view. By focusing on the space instead
of the embedded computer infrastructure, we can separate the implementation
of the application logic from the underlying hardware. The application developer
can deal with the space abstraction instead of the details of the underlying net-
work such as types and number of nodes. A compiler is responsible for mapping
the application logic onto the computer infrastructure of a smart space.

2.1 Abstract Smart Space Model

In order to support this programming paradigm, an abstract model of a smart
space is necessary. Figure 1 shows that there can be several separate smart spaces
(e.g. offices and kitchen), which are all contained within another smart space
(office floor). And each space exhibits its own logic. Communication between
these spaces might be necessary (e.g. the kitchen might want to send an alarm
to an occupied office if the stove is turned on).

Figure 2 illustrates an example of the abstract model of smart spaces. There
are several smart spaces. Some are contained within another one. Each smart
space has four distinct interfaces. One interface is used to observe the environ-
ment and another one to affect the environment. The two remaining interfaces
provide the communication channels to send/receive state information to/from
other smart spaces. A space uses its sensor observations to update its internal
state. It can then use this state information to affect the state of the physical
environment.



Office-1 Office-2

Office-3 Kitchen

Fig. 1. A floor in an office building as a
smart space.

space­1 space­2

space­4space­3

space­5

Fig. 2. Example of the abstract model of
five smart spaces. Each one has interfaces
for communication with other spaces and
the physical environment.

2.2 Infrastructure Assumption

The computer model of a standard high-level programming language is based
upon several requirements for the the underlying computer (e.g. computer has
memory and can do comparisons). Similarly, the abstract smart space model
makes some assumptions about the structure and capabilities of the underlying
network:

– Nodes in the network can communicate with each other.
– A node belongs to a symbolic location that it is assigned to or it can as-

sign itself to (e.g. node 23 is in room 213). This information is necessary
to find a mapping between the smart space model and the actual network
infrastructure.

– Properties of network nodes are known (e.g. node 23 has a temperature
sensor). The nodes could either describe themselves or the properties are
well-known facts.

3 System Overview

The programming paradigm introduced in Sec. 2 is directly supported by our
system called RuleCaster. It provides a high-level language and implementation
for the smart space model. In the following we outline this system with a focus
on the two main problems mentioned earlier: (1) defining the global application
in terms of separate local actions, and (2) accommodating changes.

By dealing with smart space not only as a physical entity but also as an
abstract computer model we realised the concept of a programmable space. The
advantage of this approach is that the application developer can implement
applications for the smart space as one logical entity; the smart space is the



computer. The application developer is provided with a high-level language for
application development.

As mentioned earlier, dealing with evolutionary changes to the application
requirements and the infrastructure is a complex job for application developers,
which touches upon several life-cycle phases. We can identify three major classes
of changes that a smart space application undergoes throughout its life-cycle.
These are changes to the

– logical structure,
– physical structure and
– computing infrastructure.

The logical structure describes how functional elements and application states
are connected for describing the application logic. Changes to the logical struc-
ture refer to changes in the observable behaviour of an application. For example,
while an application might initially be defined to open the window when the
room is too hot, a new application logic might turn on the air conditioning
instead.

The physical structure describes where computational elements are executed
and where application states are stored in the network infrastructure. Changes
to the physical structure of an application refer to changes in the distribution of
computing tasks to individual nodes. For example, a task initially performed by
a central node is distributed over several nodes in order to improve reliability
and decrease energy consumption.

The infrastructure is the actual network that stores and computes the appli-
cation states. It is the distributed runtime environment. Changes to the infras-
tructure refer to changes in the underlying hardware and runtime system (e.g.
network system). For example, the infrastructure might need to be updated when
a new generation of hardware devices becomes available with different processor,
memory or radio. Another example is modifying the infrastructure by adding or
removing nodes.

Our programming system supports these classes of changes by separating
them into three separate models: logical structure, physical structure and infras-
tructure. Changes to any of these three models can be directly propagated to
the running application by recompilation and re-deployment.

Figure 3 illustrates the architecture of our system. The logical structure of
an application is defined in the RuleCaster Application Language (RCAL) — a
high-level language designed for the smart space model. The physical structure
is implicitly described by the compiler that translates the logical structure into
an executable representation.

The infrastructure consists of the actual sensor-actuator node hardware run-
ning a middleware that executes the application. This middleware is based
around a service-based architecture. Services give access to the interface between
the network and the physical world (i.e. sensors and actuators).

In this paper we exclusively focus on the description of the compiler and the
generation of the physical structure of an application.



Application Definition

Compiler

Task 1 Task 2 Task n

Network
Model

Middleware
logical

structure
physical
structure

infrastructure

Fig. 3. The system architecture.

4 Application Scenario

In order to simplify the discussion in the remainder of this paper we introduce
a simple application scenario. As an example we use a smart office building.

4.1 Scenario

Bob is the environmental officer at Green University. He wants to reduce the
electrical energy consumption. One of the first ideas is to turn off the lights in
an office if there is enough day light coming through the windows or if nobody is
in the office. And instead of using the HVAC system to control the temperature,
he wants the windows to be opened automatically if the outside temperature
can be used to reduce the office temperature.

4.2 Scenario Implementation in RCAL

The scenario application is implemented in RCAL — a state-based programming
language for a smart space (i.e. office). Based on sensor observations the smart
space determines the current state of the space. Rules are used to define the
state transitions. And states can trigger the activation of an actuator. More
information about this language can be found in [4]. Figure 4 shows a simplified
version of the application code. For space reasons we only show a small part
of the whole application, which we are going to use in the rest of this paper.
Communication with other spaces is not shown. Lines 2-8 declare the interface
of the office space. For example, line 3 declares a sensor indoorTemperature
that delivers one value at a time (i.e. the indoor temperature).

Lines 10-14 define the first state transition rule. This rule is applied if the
space is in a state lightOn (the rule that defines this state is not shown). If the



rule in line 11 or the one in line 13 is satisfied, the state lightOn changes into a
state lightShouldBeOff, which means that the lights should be turned off. The
rule in line 11 is satisfied if both conditions light.average(X) and bright(X)
are satisfied. The condition light.average(X) delivers the average light sensor
reading of this space in the variable X. The condition bright(X) is defined in a
rule in line 12. It accepts the light value X as input. It is satisfied if this value is
more than 20. Similarly the rule in line 13 is satisfied if the observed motion is
less than 2.

Lines 16-18 define the transition from the state lightShouldBeOff to the
state lightOff. This transition depends on the rule in line 17 that is satisfied if
the condition lightSwitch(0) is satisfied. As a side-effect this condition turns
the light off.

1 SPACE(office) {
2 INTERFACE:
3 SENSOR(indoorTemperature/1),
4 SENSOR(outdoorTemperature/1),
5 SENSOR(motion/1),
6 SENSOR(light/1),
7 ACTUATOR(window/1),
8 ACTUATOR(lightSwitch/1).
9
10 PRE_STATE(lightOn) [
11 STATE :­ light.average(X), bright(X).
12 bright(X) :­ X>20.
13 STATE :­ motion(X), X<2.
14 ] POST_STATES(lightShouldBeOff).
15
16 PRE_STATE(lightShouldBeOff) [
17 STATE :­ lightSwitch(0).
18 ] POST_STATES(lightOff).
19
20 ...
21 ...
22
23 }

Fig. 4. The implementation of the application scenario.

4.3 The Smart Space Model and Infrastructure

In order to execute the application logic a smart space requires certain services
from the underlying infrastructure. Figure 5 depicts the smart space model of an
office space on the left hand side and the infrastructure of an office on the right
hand side. The logic implemented for the smart space model requires a number
of services for observing and affecting the physical environment: for example,
the service indoorTemperature/1 is required to get the indoor temperature.
The infrastructure can provide these services with its sensors and actuators.
The compiler is responsible for mapping the smart space model onto a concrete
infrastructure. In general there is not a one-to-one mapping; as shown in this
example, the indoor temperature is measured by three different sensor nodes.



outdoor
temperature

sensor
2

4 5 6

indoor
temperature

sensors

1 3

motion
sensors

automatic
windows

7 8
lights

9 10
light

sensors
Input:

indoorTemperature/1,
outdoorTemperature/1,

motion/1,
light/1.

Output:
window/1,

lightSwitch/1.

requires

provides

Fig. 5. The smart space model and a possible infrastructure.

5 Compiler

Applications are written for an abstract computer model of a smart space. A
compiler has to find a mapping between this abstract model and the concrete
smart space infrastructure. In other words it has to translate the high-level ap-
plication code into executable code for the network. The compiler consists of
several subcomponents that implement the different phases of the whole compi-
lation process. Figure 6 depicts these components. In the following we address
each component individually.

RCAL code

Scanner

Parser

Optimiser

Pre-Mapper

Mapper

Code Generator

Network Model

Mapper-specific
Parameters

Fig. 6. The architecture of the compiler.

Transition-1

Pre-State:
lightOn

Post-State-1:
lightShouldBeOn

Rule-1 Condition: light.average(X)

Condition: bright(X)

Goal: STATE

Rule-2
Condition: X>20

Goal: bright(X)

Rule-3 Condition: motion(X)

Condition: X<2

Goal: STATE

Fig. 7. The syntax tree of a state transi-
tion rule.



5.1 Scanner

The scanner reads the application code and builds an internal representation of
the syntax as a tree. State transitions are the core part of the application code.
In the following we focus on one transition to illustrate the different compiler
phases. Figure 7 depicts the syntax tree of the transition rule in lines 10-14 of
Figure 4. This tree is a direct translation of the application code syntax. The
root node is the transition node, which has a pre-state, one post-state and three
rule nodes as children. Each rule node has a goal and several condition children.
Additionally there is a number of other nodes in this tree that represent the
other elements of the application code, which are not shown.

5.2 Parser

The input to the parser component is the syntax tree. The parser translates this
syntax representation into a semantic representation. A semantic representation
contains information about the actual execution of the application. The core
part of the semantic representation are the task graphs. Each transition rule
tree is transformed into a task graph consisting of several operators connected
with communication channels. The parser proceeds in several steps:

1. Initialise a START, OR and END operator and connect them with a channel.
2. Extract the top-level state rules. These are the rules whose satisfaction cause

a state change. Their rule goal is STATE. Initialise a representative operator
for each condition and connect them with a channel. Rename the variables
because the scope of a variable is changed from the individual rule to the
whole task graph. Attach these operators to task graph between the START
and OR operators.

3. Traverse task graph and replace operators whose corresponding condition is
defined by an additional rule (e.g. the condition bright(X) is defined by a
rule). The rule is transformed into an operator-channel list and integrated
into the task graph at the replaced operator’s position. The variables are
renamed to conform with the existing variable names.

4. Assign types to operators. Operators that correspond to a sensor or actuator
interface declaration are labelled with either SENSOR or ACTUATOR.

Figure 8 depicts the task graph generated by the parser. Each operator rep-
resents a condition. A task graph specifies the execution of a transition rule.
Execution starts at the operator labelled with START and proceeds along the
outgoing channels towards the operator END. In this task graph there are two
parallel execution paths. The execution along an execution path is stopped if
the evaluation of a condition fails (e.g. if the motion value V2 is less than 2).
If one execution path reaches the END operator, it causes a transition from the
pre-state to the post-states.



START ENDOR

SENSOR:
light.average(V1) V1>20

SENSOR:
motion(V2) V2<2

Fig. 8. The task graph of a rule.

5.3 Optimiser

The optimiser is an optional component. It accepts a task graph as input and
produces a task graph as output. The goal of the optimiser is to minimise the
flow of information between the operators by rearranging them without altering
the observable behaviour of the application. Actuators need special attention be-
cause they provide the interface for output to the environment, which is directly
observable.

The optimiser of our system tries to “push” an operator that uses data as
close as possible to the operator that produces the relevant data. The following
operation is applied to rearrange operators:

Two operators that are directly connected with a channel can swap po-
sition if both have exactly one input and one output channel, none of
them is an ACTUATOR, START or END operator and the successor
operator does not depend on data of the predecessor operator.

The optimiser cannot rearrange any operator in our example because neigh-
bouring operators depend on each other; e.g. the operator with condition V2<2
depends on the output of motion(V2). Figure 9 shows a different example where
two operators could be swapped. The advantage of the new task graph is that
the execution could already be stopped at the second operator if the comparison
condition cannot be satisfied.

SENSOR:
sensa(X)

SENSOR:
sensb(Y) X>50 Y<10

SENSOR:
sensa(X) X>50 SENSOR:

sensb(Y) Y<10

Fig. 9. The optimiser rearranges the operators of the task graph.

5.4 Pre-Mapper

The pre-mapper component prepares the task graph for the actual mapping
process. As shown in Figure 6 it requires the network model as input. The



network model contains an abstract representation of every network node. This
representation consists of three parts:

Services. Each node offers a number of services. For example, a node that has a
light sensor, offers a sensor service that can deliver a light value. Or another
node provides a service that compares two numbers.

Attributes. Each node has some static features called attributes. The attributes
that are used by the pre-mapper are the symbolic locations. Each node can
belong to several locations (e.g. node-3 belongs to office and building-CS ).

Properties. Properties are dynamic features of nodes. The battery level or
connectivity information are properties. The pre-mapper does not need any
node property information.

The pre-mapper is responsible for the following steps:

1. It identifies each sensor operator in the given task graph. If the operator
explicitly specifies an aggregator (e.g. average), it splits the operator into an
aggregator operator and a sensor operator. Otherwise it attaches a generic
OR aggregator to the sensor operator.

2. For each sensor/actuator operator in the task graph it counts all nodes in
the respective space that provide the corresponding sensor/actuator service.
Then, it splits the corresponding sensor/actuator operator into several in-
stances and assigns one to each of the corresponding sensor/actuator service
nodes (i.e. it labels the operator with the id of the node).

The output of the pre-mapper component is depicted in Figure 10. After the
pre-mapper phase every sensor and actuator operator is assigned to a network
node.

START ENDOR

SENSOR:
light(V1)
@node-9 V1>20

SENSOR:
motion(V2)
@node-1 V2<2

SENSOR:
light(V1)
@node-10

AGGREGATOR:
average(V1)

SENSOR:
motion(V2)
@node-3

OR

Fig. 10. The pre-mapper splits the sensor/actuator operators into several instances
and assigns each one to a separate node that can provide the required service.



5.5 Mapper

The mapper is the core component of the compiler. It assigns the operators
(that have not been assigned yet by the pre-mapper) given by the task graph to
nodes in the smart space network. Those nodes will be responsible for the execu-
tion of the assigned operators. Similarly to the pre-mapper it requires network
information given by the network model.

The observable behaviour of an application is defined in the logical struc-
ture of the application. The observable behaviour must not be changed by the
mapper. However, the mapper can influence the quality of an application. For
example, a centralised solution and fully distributed solution have different char-
acteristics in terms of reliability and energy consumption [5]. Depending on the
requirements the compiler can use a different mapper. And different mapper
components require different mapper-specific parameters.

In general terms, the mapping problem can be reduced to finding a matrix
P such that P (k, i) = 1 if operator k is assigned to node i under the constraint
C. We assume that an operator k can only be assigned to one node i, thus
P (k, j) = 0 for all j 6= i. Although redundant placement of operators can be
useful, we do not consider this in the paper. Let C denote a constraint matrix
such that C(k, i) = 0 if operator k has to be assigned to node i, 0 < C(k, i) < δ
if operator k can be assigned to node i, and C(k, i) = δ if operator k cannot
be assigned to node i given a constant δ. The elements of the constraint matrix
could be seen as preferences to where operators should be placed. Or they could
be interpreted as the cost for executing a certain operator k on a node i. We will
give more details about two specific mapper components in Sec. 6.

The output of the mapper component is a task graph whose operators are
assigned to network nodes. Figure 11 depicts the assignment of a mapper.

START
@node-1

END
@node-8

OR
@node-4

SENSOR:
light(V1)
@node-9 V1>20

@node-7

SENSOR:
motion(V2)
@node-1 V2<2

@node-4

SENSOR:
light(V1)
@node-10

AGGREGATOR:
average(V1)
@node-7

SENSOR:
motion(V2)
@node-3

OR
@node-5

Fig. 11. The mapper assigns every operator of the task graph to a network node.

5.6 Code Generator

The code generator transforms the task graph into byte code that can be exe-
cuted by the stack machine interpreter in our system-specific middleware. The



execution of an application is based on the idea of a token that is passed from
operator to operator along the execution paths. Tokens transport relevant sensor
data from one operator to the next one. Each node has a handler that accepts
tokens and forwards them to the required operator. An operator extracts the
relevant data from the token and evaluates the given rule condition. If the con-
dition cannot be satisfied, the token is killed. Aggregators combine several input
tokens into one output token. For each output channel the operator generates a
token containing the data required by its successor operators and sends it to the
node executing the first successor operator.

Figure 12 illustrates the byte code of an operator that is executed by node-7,
which is responsible for the evaluation of the condition V1>20. Operators send
and receive data through channels that connect them with other operators. In
line 1 data field 0 of the token in incoming channel 0 is loaded and pushed onto
the stack. The value 20 is pushed onto the stack in line 2. The command eval
calls a node service; in this example it is the service lessThan, which pops the
two top numbers from the stack and compares them. If the comparison succeeds,
it pushes the value 1 onto the stack. If it fails, the value 0 is pushed onto the
stack. In line 4 the top stack value is removed and compared to 0. If it is equal
to 0, execution jumps over the next line. If the top stack value is 1, execution
continues at line 5, where the send command tells the outgoing channel 0 to
send a token through the channel to the next operator. These channels are set
up at the beginning when the operators are deployed. In this example, the token
does not have to carry any application data (e.g. sensor data) because successor
operators do not require any specific data. The end command in line 6 finishes
execution.

1 iload 0 0 //push data field 0 from channel 0 onto stack
2 ipush 20 //push the value 20 onto the stack
3 eval lessThan //call the service lessThan
4 ifeq 2//jump over next line if service evaluation has returned 0
5 send 0 //send data in channel 0
6 end //operator execution finished

Fig. 12. Operator code that is interpreted by the middleware of our system.

6 Mapper Component

The mapper component of the compiler was introduced in Sec. 5.5. It is the core
part of the compiler. Deciding where operators are executed and states are stored
in the network are its main tasks. The decision where the states are stored is
equivalent to the decision where the START and END operators of a task graph
are placed.

In this section we describe two exemplary mappers that can be selected as
compiler plugins at compile-time. Both mappers assign task operators to nodes



that are contained in the smart space that is described by the smart space model;
i.e. if the smart space is an office, all operators are executed by nodes that are
actually in the office. In general this is not a necessary requirement, because free
operators, which are operators that are not of type SENSOR or ACTUATOR,
could be executed anywhere; e.g. sensor data could be analysed anywhere.

Both mappers initialise the following parameters for mapping the task t (cf.
Sec. 5.5):

– S is the set of nodes contained in the space of t.
– C(k, i) = 0 if operator k has already been assigned to node i by the pre-

mapper.
– C(k, i) = 1 if node i ∈ S and node i can execute operator k.
– C(k, i) = 2 if node i /∈ S or node i cannot execute operator k.
– P (k, i) = 0 for every k and i.

6.1 Centralised Operator Mapping

The first mapper chooses one random node in the space that corresponds to the
task that has to be mapped onto the infrastructure. It then assigns every free
operator to this node. If it cannot find such a node that is able to execute the
required operators, the compilation fails and the mapper returns a description
of the additional requirements for the infrastructure. Pseudocode of the mapper
is shown in Figure 13.

1 for each k do
2 if there is i such that C(k,i)=0 then
3 P(k,i) = 1; mark k;
4
5 find random i such that
6 for each unmarked k C(k,i)==1
7 if found i then
8 for every unmarked k
9 P(k,i) = 1;
10 if not found i then
11 ERROR;

Fig. 13. Algorithm of centralised operator mapping.

Figure 15 illustrates the output of this mapper when applied to our example
task. The sensor operator on nodes 1, 3, 9 and 10 send their data to node 7,
which executes the remaining operators and stores the state information.

6.2 Decentralised Operator Mapping

In contrast to the first mapper, the decentralised operator mapper chooses a
different random node for each free operator. Similar to the first mapper this
mapper can also fail to find a node for every operator. In such a case it can



1 for each k do
2 if there is i such that C(k,i)=0 then
3 P(k,i) = 1; mark k;
4
5 for each unmarked k do
6 find random i such that
7 C(k,i)==1
8 if found i then
9 P(k,i)=1; mark k;
10 if not found i then
11 ERROR;

Fig. 14. Algorithm of decentralised operator mapping.

provide an exact description of the additional requirements for the infrastructure.
Figure 14 illustrates algorithm of the mapper component.

Figure 16 depicts the output of this mapper. The sensor operators on nodes
9 and 10 send their tokens to an operator on node 7 that computes the average.
This average is compared with 20 by another operator on node 7. Then, the
token is forwarded to node 4. Sensor nodes 1 and 2 send their tokens to an
aggregator on node 5. The resulting token is forwarded to node 4. Node 4 sends
the token to the END operator on node 8.

9

1

10

2

4 5 6

3

7 8

Fig. 15. The first mapper assigns oper-
ators in their corresponding space cen-
trally.

9

1

10

2

4 5 6

3

7 8

Fig. 16. The second mapper assigns op-
erators to random nodes in their corre-
sponding space.

6.3 Discussion

The observable behaviour of the application is not directly affected by the chosen
mapper. However, the mapper can influence the qualitative (or non-functional)
aspects such as energy consumption, privacy or reliability of the running appli-
cation. The main focus of this paper is on the technical aspects of the compiler;
and we want to leave a qualitative discussion open for future work.



7 Related Work

The development of small low-powered computers, sensors and wireless radios
has made impressive progress in recent years. This is only partly the consequence
of Moore’s law and better materials being developed in research labs. The po-
tential economic impact of this technology (not just for the smart space, but in
general) shows great potential beyond research labs (e.g. [6]). Several compa-
nies produce ready to use hardware platforms (e.g. Crossbow, Ember, Freescale
or Texas Instruments) and industry-driven communication standards have been
published (e.g. Zigbee [7]).

This technological development and the trend of moving away from a single
computer per user has cleared the way to the development of smart spaces.
Several research groups have developed first-generation prototypes of the smart
home as an example of a smart space to study the computing needs in our
everyday lives ([8–10]).

Currently, the main technological focus is on integrating suitable hardware
into the environment, and on developing services that analyse sensory data in
order to identify high-level contexts. One existing problem is that these sys-
tems are generally purpose-built. This makes the development or maintenance
of applications a challenging task because expert knowledge is required.

RuleCaster is related to macroprogramming approaches, which have emerged
as a potential solution for simplifying the development of applications for these
embedded distributed computers. Common to all these approaches is that they
address the whole network as one programmable unit instead of the individual
nodes.

The Kairos macroprogramming system [11] extends traditional programming
languages with three specific abstractions: node, one-hope neighbours of a node
and remote data access. Its runtime system supports the execution of applica-
tions using these abstractions. In contrast to Kairos RuleCaster provides node-
independent abstractions. A RuleCaster application is expressed in a network-
independent way. Kairos provides node-dependent abstractions and therefore
forces the programmer to express global application behaviour in terms of nodes
and node state. Accordingly, every node executes the same code. The RuleCaster
compiler has more freedom and generates specific code for each individual node
depending on the properties and capabilities of the respective node, which is
more suitable for a heterogeneous network environment.

Similar to RuleCaster Regiment [12] is also based on a declarative language.
Functional programming constructs are used to build applications. As a fun-
damental programming abstraction it uses the concept of a region, which is a
collection of data signals originating from a set of nodes. Regiment applica-
tions describe the manipulation of regions. This is related to the abstract smart
space model used in RuleCaster. However, Regiment addresses a different class
of applications. While RuleCaster focuses on state-based sensor-actuator appli-
cations, Regiment is designed for extracting time-varying sensor data streams
from a sensor network.



COSMOS [13] is comprised of a programming language and an operating sys-
tem. Similar to Regiment it addresses processing and aggregation of time-varying
sensor data streams. The basic building blocks of a COSMOS application are
functional components (FCs) that transform input streams into output streams.
These FCs are interconnected via asynchronous data channels to implement a
sensor network application. Compared to RuleCaster, COSMOS is on a much
lower abstraction level which makes application development hard and error-
prone. The assignment of functional components to nodes (or classes of nodes)
is specified by the application programmer. This simplifies the mapping process
but makes the development of complex applications difficult.

At the core of an ATaG [14] macroprogram are abstract tasks. An abstract
task encapsulates the processing of data. The flow of information between ab-
stract tasks is defined in terms of input/output relations. To achieve this, ab-
stract channels are used to connect tasks. ATaG is a suitable approach for imple-
menting high-level sensor network applications. However, the separation between
the logical structure and the physical structure is not as strict as in RuleCaster.
On the one hand this simplifies the task of the compiler. On the other hand, it
makes it more difficult to change the physical structure of an application.

8 Conclusion

Our compiler-based approach provides support for programming and maintain-
ing a smart space through a number of measures:

– Our approach does not force the application programmer to express the
application logic of a smart space in terms of distributed actions for the
underlying infrastructure. This method would be cumbersome because the
programmer has to deal with many issues related to distributed programming
which make application development difficult, time-consuming and error-
prone. Instead the application programmer can program the smart space as
one logical entity. And the compiler is responsible for the distribution.

– Our smart space model addresses the evolutionary changes of a smart space
by separating the infrastructure from the application logic. They can evolve
independently. The compiler accommodates changes by finding a new map-
ping of the application logic onto the infrastructure.

Smart spaces promise a visionary concept about how computers and the
physical environment can create an integrated system. If we want to realise this
vision outside research labs, we have to address issues related to programming
and maintenance of the related computer infrastructure. We believe that provid-
ing a unified abstraction of the environment and the embedded infrastructure in
terms of a smart space model is a step into the right direction.

References

1. Helal, S.: Programming pervasive spaces. IEEE Pervasive Computing 4(1) (2005)
84–87



2. Rodden, T., Benford, S.: The evolution of buildings and implications for the design
of ubiquitous domestic environments. In: Proceedings of the SIGCHI conference
on Human factors in computing systems, New York, NY, USA, ACM Press (2003)
9–16

3. Weiser, M.: The computer for the 21st century. Scientific American (1991)
4. Bischoff, U., Sundramoorthy, V., Kortuem, G.: Programming the smart home. In:

Proceedings of the 3rd IET International Conference on Intelligent Environments.
(2007)

5. Ahn, S., Kim, D.: Proactive context-aware sensor networks. In: Proceedings of the
Third European Workshop on Wireless Sensor Networks (EWSN). (2006)

6. Hatler, M., Chi, C.: Wireless sensor networks: Growing markets, accelerating de-
mand. OnWorld (2005)

7. Alliance, Z.: Zigbee specification. http://www.zigbee.org (2006)
8. Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyere, B.,

Mynatt, E., Starner, T.E., Newstetter, W.: The aware home: A living laboratory
for ubiquitous computing research. In: Proceedings of the International Workshop
on Cooperative Buildings (CoBuild 1999). (1999) 191–198

9. Intille, S.S.: Designing a home of the future. IEEE Pervasive Computing 1(2)
(2002) 76–82

10. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The
gator tech smart house: A programmable pervasive space. Computer 38(3) (2005)
50–60

11. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor
networks using Kairos. In: Distributed Computing in Sensor Systems: First IEEE
International Conference (DCOSS 2005). (2005)

12. Newton, R., Morrisett, G., Welsh, M.: The Regiment macroprogramming sys-
tem. In: IPSN ’07: Proceedings of the 6th international conference on Information
processing in sensor networks, New York, NY, USA, ACM Press (2007) 489–498

13. Awan, A., Jagannathan, S., Grama, A.: Macroprogramming heterogeneous sensor
networks using COSMOS. SIGOPS Oper. Syst. Rev. 41(3) (2007) 159–172

14. Pathak, A., Mottola, L., Bakshi, A., Prasanna, V.K., Picco, G.P.: Expressing sen-
sor network interaction patterns using data-driven macroprogramming. In: Pro-
ceedings of the Fifth IEEE International Conference on Pervasive Computing and
Communications Workshops. (2007)


