
RuleCaster: A Macroprogramming System for Sensor
Networks

Urs Bischoff
Lancaster University

Lancaster
LA1 4YW

u.bischoff@comp.lancs.ac.uk

Gerd Kortuem
Lancaster University

Lancaster
LA1 4YW

kortuem@comp.lancs.ac.uk

ABSTRACT
Progress in the development of small low-powered hardware,
wireless networking, sensor technology and software services
make it possible to build radically new kinds of applications.
These sensor network applications are built on top of a large
number of low-powered sensor nodes. Writing software for
this kind of network can be a challenging task. Commonly
used programming abstractions force the programmer to ex-
press the global behaviour of a network in terms of local
actions taken at individual nodes. We argue that global
programming abstractions are needed to express global be-
haviour of a network. We propose RuleCaster — a system
for programming sensor network applications. Instead of
writing applications for the networked node, RuleCaster al-
lows to implement an application for the network as a whole.
A compiler automatically splits this application specification
into several individual tasks and distributes them in the net-
work. Nodes execute the individually assigned tasks.

1. INTRODUCTION
A lot of progress has been made in sensor network research

in recent years. Advances in the development of small low-
powered hardware, wireless networking and software services
(e.g. localisation, time synchronisation) allow us to move be-
yond data-driven centralised sensor network solutions. The
execution of application logic can be “pushed” into the ac-
tual network — closer to where actual sensor data is col-
lected. The network is not just a simple tool for data collec-
tion; the network is an intelligent tool for data processing.
Despite all this research progress it is still difficult to write
and easily deploy applications. Sensor networks consist of
small, low-powered nodes each with limited computation,
sensing and communication abilities. From a programmer’s
point of view we face one important problem: how can we
implement an application for a large number of these sensor
nodes? What we need are suitable methods for designing,
implementing and deploying applications.

Programming each individual node is not feasible. This
would be too time consuming, too costly and too error prone.
This is even more relevant if we consider a dynamic environ-
ment with often changing application configurations.

There are no well-established protocols and services. It
is difficult to define protocols because different applications
can have totally different requirements. Existing networking
protocols (e.g. TCP/IP) were not designed for this kind of

Submitted to OOPSLA 2006 Workshop on Building Software for Sensor
Networks.

network. These are reasons why a lot of applications have
to be built from scratch.

Sensor network applications are generally implemented
bottom-up; applications are built for the single sensor node
that uses the network for communication. This does not re-
flect the way a sensor network application is designed. We
argue that instead of focusing on each individual node in-
dependently we need to focus on programming the entire
network as a whole. Knowing the individual node that exe-
cutes the application is of less interest.

We propose a solution that addresses the network as a
whole. Rather than expressing global behaviour of the sen-
sor network in terms of complex, local node-level actions,
we envision a global approach. This approach is based on
four concepts: (1) a high-level language for application def-
inition, (2) a dynamic model of the sensor network describ-
ing its nodes’ capabilities and location, (3) a compiler that
splits the application into individual tasks and assigns them
to nodes and (4) a run-time system that allows the nodes
to receive new tasks and execute them in collaboration with
other nodes in the sensor network.

The key advantage of our approach is threefold. Firstly,
the high-level abstraction reduces the mental gap between
the design model of the application and the application lan-
guage. Secondly, non-relevant hardware details are hidden
from the application programmer; hardware specific optimi-
sations, for example, are automatically dealt with by our
system. And finally, by being able to focus on programming
the network as a whole, the programmer does not have to
deal with low-level details (e.g. synchronisation, data con-
sistency, different hardware platforms etc.) which make the
development of distributed applications difficult and error-
prone.

2. THE RULECASTER SYSTEM
We have developed RuleCaster, a system for implement-

ing applications for sensor networks. RuleCaster deals with
the network as one distributed entity. The whole network
can be seen as a server that can execute requests from clients
to run applications. Basically the server is a highly dis-
tributed computer that has to be programmed. Internally
this network is based on a service-oriented architecture. A
service is a component that simply transforms input events
into output events, adding new semantic information as nec-
essary; they can transform low-level sensor events into se-
mantically meaningful high-level events. Figure 1 depicts
the architecture of the RuleCaster system.

In the following sections the four core parts — high-level



Application Definition

Compiler

Execution plan
for node 1 

Execution plan
for node 2

Execution plan
for node n

 

R
equest

C
lie

nt
S

er
ve

r

Network Model

Network

Figure 1: The architecture of the RuleCaster sys-
tem.

language, compiler, network model and runtime system —
of RuleCaster are described in more detail.

2.1 RuleCaster Application Language
RCAL (RuleCaster Application Language) is a high-level

language used to implement sensor network applications. Its
unique feature is that it does not specify where and how the
application is executed in the network; it only specifies what
the network as a whole has to do and what results the client
expects. An application is expressed in terms of rules. Rules
are natural — they can be understood by both humans and
computers [1].

Example 1 An example of a simple application definition.

SPACE(kitchen), TIME(SIMULTANEOUS),

STATE(kitchen:normal) {

STATE stoveOn :- stoveOn(), monitored().

monitored() :- pressure(X), X>50.

}

SPACE(door), STATE(kitchen:stoveOn) {

STATE hazard :- leaving().

}

SPACE(door), STATE(door:hazard) {

ACTION alarm(10).

}

Example 1 illustrates an application for a sensor network
in a home environment. It detects when there is a safety
hazard because the stove is on and nobody is monitoring it;
it then triggers an alarm when a person is leaving the house.

An RCAL application consists of several rule blocks (there
are three rule blocks in Ex. 1). Each rule block can specify
a space, time and state constraint. These constraints have

to be satisfied in order to evaluate the rules inside the rule
block. STATE(door), for example, constrains the evaluation
of the rule to a space called door. TIME(SIMULTANEOUS)
specifies that all conditions of a rule inside the rule block
have to be satisfied simultaneously. The state constraint is
a pre-condition that has to be satisfied; in the given example
one of the network states has to be door:hazard in order to
trigger an action (i.e. ACTION alarm()). A rule consists of
a goal and conditions. The goal is reached if all conditions
are satisfied. A special type of rule is the state rule (labelled
with the STATE keyword). If a state rule is satisfied, the
state is added to the current network states.

2.2 Network Model
The second core part of our approach is the network model

(cf. Fig. 1). It is the interface of the network. The model
specifies available services and properties of the network.
We assume that the network model is generated and dynam-
ically updated by a self-monitoring network infrastructure.
Each node in the network provides a description of its prop-
erties and services. Other sources of information are used
to complete the network model (e.g. known location of a
node).

Example 2 Description of node 6 in the network model.

STATIC PROPERTY(ID, 6);

STATIC PROPERTY(TYPE, "tmoteSky");

DYNAMIC PROPERTY(CONNECTIVITY, 5);

DYNAMIC PROPERTY(ENERGY, 5);

DYNAMIC SERVICE("leaving");

DYNAMIC SERVICE("entering");

DYNAMIC SERVICE("alarm", IN);

STATIC SPACE("door");

...

Example 2 shows the interface of one node in the network
model. Node 6, for example, can determine whether some-
one is leaving (DYNAMIC SERVICE(“leaving”)) or enter-
ing (DYNAMIC SERVICE(“entering”)) the house. The
keyword DYNAMIC means that a call to this service can
have a different effect at different points in time. Actua-
tors are also announced as services: e.g. DYNAMIC SER-
VICE(“alarm”, IN). It accepts one input parameter; here,
it is the sound volume of the alarm.

2.3 RuleCaster Compiler
The third core part of our approach is a process that dy-

namically generates the distributed application. It splits an
RCAL-application into several tasks. Analogously to a com-
piler for a single device application the compiler translates
the rule-based application into a distributed application for
the network given by the network model.

The compiler generates an individual task for each node.
A task is represented as a set of execution plans. An execu-
tion plan is a model of how a device has to evaluate a rule
that defines a network state.

Figure 2 shows the layout of our example sensor network.
It is a small network consisting of 6 nodes. Nodes 1-4 can
detect whether the stove is turned on. Node 6 is a pressure
mat on the floor that can detect if something is on top of it.
Node 5 is connected to two break-beams; it can determine
whether someone is entering or leaving the house.



1 2

3 4

5

6

Figure 2: The layout of a simple sensor network.

local
pressure(X)

remote: node 1
stoveOn()

local
X>50

STATE: stoveOn

remote: node 2
stoveOn()

remote: node 3
stoveOn()

remote: node 4
stoveOn()

local
pressure(X)

local
pressure(X)

local
pressure(X)

local
X>50

local
X>50

local
X>50

Figure 3: An execution plan in the task sent to node
6.

The RCAL-rule does not specify where the tasks are eval-
uated. Several distribution strategies are possible: a cen-
tralised or a distributed solution are two examples. In the
centralised solution, the compiler generates only one task:
a task for node 6. In order to evaluate certain conditions
node 6 has to query the other nodes. The second strategy
is distributed. The nodes in the kitchen evaluate the rules
that are concerned with the detection of the kitchen hazard;
nodes 1-4 have to collaborate with node 6 in order to detect
such a situation. The task of node 5 detects when someone
is leaving the building. It then queries one of the kitchen
nodes whether there is a potential hazard in the kitchen. If
the reply is positive, it triggers an alarm. The centralised
solution requires more communication but less processing
on a single node. The distributed solution reduces the com-
munication cost; however, redundant processing is possible.
The advantage of the distributed solution is its robustness.

Figure 3 illustrates an example of an execution plan in
the task of node 6. This directed graph represents the state
rule stoveOn. The directed edges mark the dependencies
of the conditions, which are shown as tree nodes in this
representation. If one leaf condition (i.e. no other condition
depends on this condition) is satisfied the whole state rule
is satisfied. Some of the conditions (e.g. stoveOn()) in the
execution plan cannot be evaluated locally. Thus, node 6
has to query services running on nodes 1-4.

Many more distribution strategies are possible. An op-
timal distribution depends on the application requirements:
minimal energy consumption, minimum number of messages
or reliability are examples.

2.4 RuleCaster Runtime System
The RuleCaster runtime system is running on each node

in the sensor network. It is responsible for executing the
assigned tasks. Tasks are sent to the nodes by the client’s
compiler in a binary representation — a serialised form of
the execution plan tree. The runtime system receives the

Communication

Remote Query Remote Service Configurator

Execution

Local Service

Execution Plans

Figure 4: The architecture of the runtime system.

assigned tasks and starts the execution. Furthermore it can
describe its properties and services, which is used for the
generation of the network model.

Figure 4 illustrates the modular architecture of the run-
time system. The Execution module is responsible for the
execution of the execution plans. It uses the Local Service
if a condition can be evaluated locally. If the execution plan
specifies a remote condition, it uses the Remote Service mod-
ule to query a service running on other nodes. The runtime
system also accepts service requests from other nodes; the
Remote Query module in collaboration with the Local Ser-
vice module deals with these requests. Finally the Configu-
rator accepts new tasks generated by a compiler. It decodes
the tasks and forwards the contained execution plans to the
Execution module.

Example 3 Example of an execution plan representation
received by node 6 (cf. Fig. 3).

0: stoveOn() @ node 1

1: branch 6

2: pressure(X) @ local

3: branch 6

4: X>50

5: END

6: stoveOn() @ node 2

7: branch 12

8: pressure(X) @ local

...

Example 3 illustrates the execution plan representation
received by node 6. It is a serialised form of the execution
plan shown in Fig. 3. If all constraints of this execution
plan are satisfied, the Execution module starts execution at
line 0. It queries Remote Service (which forwards the query
to node 1) whether the stove is turned on. If the reply is
positive, the branch at line 1 is not taken and execution
continues at line 2. If the reply is negative, it takes the
branch and execution continues at line 6; thus, it asks node
2 if the stove is turned on. If the execution reaches an END
command, it succeeds and adds the state stoveOn to the
network states. Execution is stopped if no command is left
or if the evaluation of a condition is not successful and there
is no branch statement.

3. RELATED WORK
Implementing sensor network applications by expressing

global network behaviour is referred to as macroprogram-



ming in the wireless sensor network literature. An example
is Kairos [3], which provides high-level abstractions for ac-
cess to neighbour nodes in the network and for sharing data
between neighbours. They show that these abstractions al-
low to write distributed applications in a centralised fashion.
Compared to our approach Kairos is still node-dependent.
In other words they provide explicit abstractions for nodes.
Whereas our runtime system interprets tasks, their back-
end system generates the complete application binary; this
makes it expensive to change the running application. In
contrast to their imperative language the declarative nature
of our approach allows to clearly separate the definition from
the execution of an application.

In terms of the declarative nature of the language Regi-
ment [11] is similar to our approach. Regiment is a func-
tional language. They argue that functional languages are
intrinsically more compatible with distributed implementa-
tion over volatile substrates than are imperative languages.
Similar to Kairos Regiment is node-dependent; this gives
them less flexibility in distributing tasks in the network.
Furthermore RuleCaster’s tasks can be much more specialised
and different to each other, which is more suitable for a het-
erogeneous network infrastructure. In both systems — Reg-
iment and Kairos — the programmer is required to define
operations on the raw sensor data in order to interpret their
meaning. This makes it difficult to quickly change these op-
erations. Our service-based approach absolves the program-
mer of making these low-level decisions when implementing
an application; the programmer deals with data on a seman-
tic level. Nodes could even provide the same service using
two different low-level methods. This gives the RuleCaster
compiler more freedom in assigning tasks to nodes.

RuleCaster provides node-independent abstractions. A
distributed sensor network application is expressed in a net-
work independent way; there are no explicit abstractions for
nodes. There has been some work in this direction based on
SQL-like language abstractions [6, 16]. The sensor network
is seen as a distributed database. SQL-like query statements
can be used collect sensor data from the network. While
these systems provide useful tools for collecting sensor read-
ings, they do not focus on processing data in the network.
The RuleCaster system collects data, interprets it and reacts
to it in the sensor network.

The usefulness of providing semantic sensor data abstrac-
tions are pointed out in [5]. They present a service-based
system. Low-level events (i.e. sensor data) are transformed
into high-level semantic events by a composition of services.
They propose a planner that automatically generates this
service composition in order to answer a high-level user
query [15]. This composition of services is similar to the
hierarchical structure of rules used in RuleCaster. Their fo-
cus is on providing semantically useful sensor data to the
user, whereas RuleCaster focuses on sensor data collection,
processing and actuation in the network.

4. CHALLENGES
The novel nature of our approach brings a variety of new

challenges with it. We address them in the following sec-
tions. We focus on the research questions. Some of them
have been answered in earlier sections, others are open for
future research.

4.1 Network Model

The network model is generated and dynamically updated
by a network monitoring process. A lot of information is
gathered from the nodes. This process has to be efficient;
energy, for example, may be a scarce resource in some sensor
networks. There can be other information sources apart
from the nodes; well-known position of nodes and hardware
specifications are two examples. All these sources have to
be fused into one consistent network model.

In Sec. 2.2 we presented our network model representa-
tion. Is this representation useful? Wireless networks can
be very dynamic. So the characteristics can quickly change;
communication links, for example, appear and disappear. It
is an open question whether and how uncertain information
can be represented in the network model. This is related to
the question about how often and when the network model
has to be updated. Some aspects of the network are static
(e.g. hardware), others are predictive (e.g. energy consump-
tion), while some can be random. It is important to consider
these aspects when deciding on an update strategy.

4.2 Compiler
There are a lot of possible distribution strategies. An op-

timal choice can depend on the network characteristics or
the application requirements. It is important to base the
distribution process on some well-defined criteria. Minimis-
ing energy consumption could be a possible criterion. It
is an open question how these criteria can be clearly speci-
fied. We use the idea of a cost function; every operation (e.g.
processing, communication) comes with a certain price. The
distribution process tries to minimise the cost. The problem
is that certain things are difficult to define in a cost func-
tion. Redundant processing, for example, might be desirable
to increase overall stability of the system.

The network model is dynamic. At some point the com-
piler has to decide on a certain distribution of the tasks.
In related work these dynamic network properties are de-
scribed as non-computational aspects of services [5]. They
suggest that the execution of services (i.e. tasks) must dy-
namically adapt to resource variations to preserve quality
requirements. How dynamic adaptation can be described
in the tasks and how it can be done is an open challenge
and is highly related to challenges addressed in Sec. 4.3. A
more in-depth discussion and proposal for adaptive resource
allocation is given in [7].

It is clear that the distribution can affect the outcome
of the application execution. By using redundant process-
ing and communication, for example, reliability could be
increased for a short period of time while the higher energy
demands reduce the lifetime of the network. These aspects
of an application must be conveyed to the application pro-
grammer so that the right design choices can be made.

Finally, the tasks have to be sent to the actual nodes
in the network. Each node is assigned an individual task.
Depending on the distribution strategy there might be a
lot of redundant data if each task is individually sent to its
respective node. A compression scheme based on similarities
of tasks could make distribution more efficient with respect
to energy consumption or time. The difference to previous
work on code distribution (e.g. Deluge [4]) is that there is
no application image that is the same for each node in the
network. Others extended Deluge and focused on updating
only those parts of the application image that have changed
[8].



4.3 Runtime System
The runtime system poses a lot of difficult challenges.

Group collaboration is a major one. The difficulty is to
address a group of nodes and communicate with them reli-
ably and efficiently. There is some prior art on group com-
munication in wireless sensor networks [10, 14, 13]. These
abstractions can build a useful basis for a runtime system.
However, collaboration is more than just communication. It
is about finding a solution under the given rule, spatial and
temporal constraints.

The advantage of our approach is that lower-level details
are hidden from the application programmer. The commu-
nication stack could be exchanged without directly affecting
the application written in RCAL. Because of the spatial and
temporal constraints in RCAL rules we expect characteristic
communication patterns. This knowledge could be used in
the design of specific (energy efficient) communication pro-
tocols used by the runtime system.

Wireless communication is very expensive in terms of en-
ergy consumption. In order to evaluate certain rules, a node
has to use services offered by other nodes. A query/reply
protocol seems to be the obvious choice for this kind of com-
munication. However, the queries might be repeated several
times and the reply might be the same. An event-based sys-
tem is an alternative. However it is not clear if it is suitable
for a dynamic and unreliable network. Some researchers
propose the use of data models to predict remote sensor
values in order to reduce communication [12, 2]. We are
working on a semantic data level; the transformation from
low-level data events into semantic data events can be seen
as a data reduction technique. Thus, predictive techniques
(or intelligent caching) could be an interesting approach to
communication reduction because the space of possible data
values is smaller.

An optimal distribution of tasks depends on the network
model. The network can be very dynamic. Should it be
the responsibility of the compiler to regenerate and update
the tasks in the network? Or should the runtime system
adapt the tasks to the changing environment? If the runtime
system is allowed to adapt the tasks, we have to find a way
to describe what it is allowed to do; each node should know
what the overall application goal of the execution is.

An RCAL rule depends on several constraints (time, space
and state). We have already talked about the communica-
tion aspect of the spatial constraint. The temporal con-
straint adds an additional dimension to the problem. Other
researchers propose dynamic spatio-temporal data structures
as an abstraction to this problem [11]. These abstractions
are a very powerful theoretical construct for macroprogram-
ming; however they fail to show how it could be imple-
mented.

5. CONCLUSION
We implemented the RuleCaster compiler as a PC appli-

cation. The runtime system was developed under TinyOS
for the tmote sky platform [9]. In the current version we
assume that the network model is given; we use a static
description of the network as input to our compiler.

By having a distributed sensor network application au-
tomatically generated from a high-level implementation the
application developer does not have to directly deal with
communication, synchronisation or other low-level optimisa-

tion problems which make distributed applications complex
and error-prone.

RCAL — a rule-based language — reduces the mental
gap between the application domain model and the pro-
gramming language. It makes it easier for an application
developer who does not have the expert knowledge of the un-
derlying network infrastructure to implement applications.

Sensor network applications are generally designed for a
whole network. This notion should be reflected in the way
a sensor network is programmed. We believe that providing
abstractions and support that allow the programming of the
network as a whole is a step into the right direction.

6. REFERENCES
[1] A. D. Dey, T. Sohn, S. Streng, and J. Kodama. iCAP:

Interactive prototyping of context-aware applications.
In PERVASIVE, 2006.

[2] S. Goel, T. Imielinski, and A. Passarella. Using
buddies to live longer in a boring world. percomw,
0:342–346, 2006.

[3] R. Gummadi, O. Gnawali, and R. Govindan.
Macro-programming wireless sensor networks using
Kairos. In DCOSS, 2005.

[4] J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming
at scale. In SenSys’04, 2004.

[5] J. Liu and F. Zhao. Towards semantic services for
sensor-rich information systems. In BROADNETS,
2005.

[6] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, 2005.

[7] G. Mainland, D. C. Parkes, and M. Welsh.
Decentralized, adaptive resource allocation for sensor
networks. In NSDI, May 2005.

[8] P. J. Marron, M. Gauger, A. Lachenmann, D. Minder,
O. Saukh, and K. Rothermel. FlexCup: a flexible and
efficient code update mechanism for sensor networks.
In EWSN, 2006.

[9] moteiv. tmote sky. http://www.moteiv.com, 2005.

[10] L. Mottola and G. P. Picco. Logical neighboorhoods:
A programming abstraction for wireless sensor
networks. In DCOSS, 2006.

[11] R. Newton and M. Welsh. Region streams: functional
macroprogramming for sensor networks. In DMSN,
pages 78–87, New York, NY, USA, 2004. ACM Press.

[12] D. Tulone and S. Madden. PAQ: Time series
forecasting for approximate query answering in sensor
networks. In EWSN, 2006.

[13] M. Welsh and G. Mainland. Programming sensor
networks using abstract regions. In NSDI, 2004.

[14] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: a neighborhood abstraction for sensor
networks. In MobiSys, pages 99–110, New York, NY,
USA, 2004. ACM Press.

[15] K. Whitehouse, F. Zhao, and J. Liu. Semantic
streams: A framework for composable semantic
interpretation of sensor data. In EWSN, 2006.

[16] Y. Yao and J. Gehrke. Query processing in sensor
networks. In CIDR, 2003.


