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Abstract: This study reports on the combination of data from a ground penetrating radar (GPR) and1

a gamma ray detector for nonintrusive depth estimation of buried radioactive sources. The use of the2

GPR was to enable the estimation of the material density required for the calculation of the depth of3

the source from the radiation data. Four different models for bulk density estimation were analysed4

using three materials namely: sand, gravel and soil. The results showed that the GPR was able to5

estimate the bulk density of the three materials with an average error of 4.5%. The density estimates6

were then used together with gamma ray measurements to successfully estimate the depth of a 6587

kBq ceasium-137 radioactive source buried in each of the three materials investigated. However,8

a linear correction factor needs to be applied to the depth estimates due to the deviation of the9

estimated depth from the measured depth as the depth increases. This new application of GPR will10

further extend the possible fields of application of this ubiquitous geophysical tool.11

Keywords: Ground penetrating radar; Radiation detection; Bulk density; Nuclear decommissioning;12

Nuclear wastes; Nonintrusive depth estimation13

1. Introduction14

Knowledge of the depth of penetration of radioactive contaminants is critical in characterising15

and decommissioning porous materials such as soil and concrete. This is because it determines the16

expected volume of wastes and subsequent choice of retrieval and disposal strategy [1]. This can have17

significant impact on the decommissioning cost because these materials are usually present in large18

volumes in contaminated sites [2]. Sources of contamination of this porous materials especially soil19

include fall out from nuclear weapons testing; nuclear accidents e.g. the Chernobyl and Fukushima20

accidents; and poor disposal of nuclear wastes [3–5]. In addition, the presence of these contaminants in21

the soil constitute a major public hazard due to their long half-life and chemical behaviour. For instance22

caesium-137 (Cs-137), which is one of the most predominant anthropogenic radioactive contaminants,23

is highly soluble and easily taken up by plants as a substitute for potassium thereby contaminating the24

food chain [6]. Therefore, there is a need to continuously monitor the depth of penetration of these25

contaminants in suspected sites.26

However, traditional methods of depth estimation such as core sampling and logging are slow and27

have limited spatial sampling extent because of their intrusive nature. Furthermore, the nonintrusive28

methods reported in [5,7–14] are either based on regressional models whose parameters typically29

have no physical significance or are limited to specific radioactive sources. Also, other nonintrusive30

methods reported in [15,16] use specialised shielding and collimator arrangements while those that31

employ machine learning [17–19] require significant amount of data to train the algorithms.32

Submitted to Remote Sens., pages 1 – 14 www.mdpi.com/journal/remotesensing

http://www.mdpi.com
https://orcid.org/0000-0002-7536-7777
https://orcid.org/0000-0002-4832-3373
http://www.mdpi.com/journal/remotesensing


Version January 10, 2019 submitted to Remote Sens. 2 of 14

Therefore, a new nonintrusive depth estimation method based on an approximate33

three-dimensional (3D) attenuation model was recently developed [20]. The method is simple to34

setup and can be used to estimate the depth of any gamma emitting radioactive source. However, the35

method requires the density of the material in which the radioactive source is buried to be known36

before it can be used. This is usually not possible in practice without having recourse to intrusive37

density measurement methods [21]. Furthermore, the use of predefined or historical density values can38

result in misleading depth estimates because these values do not account for the changes undergone by39

the material over time due to environmental factors. Hence the need for an in situ density estimation40

technique that is nonintrusive. Ground penetrating radar (GPR) has been extensively used for the41

nonintrusive estimation of the soil moisture content of materials such as concrete and soil [22–25].42

Therefore, it can potentially be used as a complementary sensor to provide this density information to43

the depth estimation process.44

Consequently, this study reports on the combined use of a ground penetrating radar (GPR) and45

a gamma ray detector to estimate the depth of a buried radioactive source. Four different models46

for the estimation of bulk density from GPR were investigated using three different materials. The47

results from the best model were then used together with the data from the gamma ray detector to48

estimate the depth of a Cs-137 radioactive source buried in each of the materials. The rest of this article49

is divided into four sections. The next section describes the theoretical framework of the research while50

Section three presents the material and methods adopted for the research. The results and discussions51

are presented in Sections four and five respectively and the conclusion is presented Section six.52

2. Theoretical framework53

2.1. Approximate 3D linear attenuation model54

Given a radioactive source S buried inside a material at depth z as shown in Figure 1, the ratio
of the intensity I(x,y,z) measured at any position (x, y) on the surface of the material to that measured
from a reference position (i.e. (x, y) = (0, 0)) on the same surface is given by [20]:

loge(J(x,y,z)) ≈ −
µmρb

2z
(x2 + y2) + loge(K(x,y,0)) (1)

where J(x,y,z) =
I(x,y,z)
I(0,0,z)

, µm = mass attenuation coefficient, ρb = bulk density and K(x,y,0) =
I(x,y,0)
I(0,0,0)

.55

Equation (1) is referred to as the approximate 3D attenuation model and can be used to estimate the56

depth of a buried gamma radiation source by fitting it to the data of intensities at a given gamma ray57

energy measured from discrete positions on the surface of the material volume. Both µm and ρ are58

properties of the material in which the source is buried. However, while µm is known to be relatively59

constant for different materials for a given photon energy, ρb must be estimated for the material under60

investigation before the attenuation model can be applied. Therefore, the use of GPR for nonintrusive61

estimation of ρb is the main aim of this study.62
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Figure 1. Radioactive point source S buried in a material volume

2.2. Principles of GPR63

GPR is a geophysical technique for nonintrusive investigation of a wide variety of structures and64

materials e.g. soil, concrete etc. It does this by exploiting the response of these materials to propagating65

electromagnetic waves as illustrated in Figure (2). Electromagnetic waves from the transmitting66

antenna propagates into the surrounding medium at a velocity which is dependent mainly on the67

permittivity of the medium. The permittivity is a measure of the resistance offered by a material to68

the electric field induced by the waves. Furthermore, the measured permittivity of mixtures such as69

soil and concrete is referred to as the effective or bulk permittivity εb. This is because the measured70

permittivity of these materials is a combination of the permittivities of their constituents. In addition,71

the permittivity of a material is typically given as a relative quantity i.e. the ratio of the material’s72

permittivity to that of free space. Therefore, all use of permittivity in this study refers to its relative73

value unless otherwise stated.74

Figure 2. Principles of GPR. Reflected waves from boundaries a recorded by the receiver and displayed
as a time varying signal called an A-scan

When the propagating waves encounter a boundary or interface, i.e. a layer with a different
permittivity, part of the waves is reflected while the remaining is transmitted through the second layer.
The proportion of the reflected wave is determined by the layer’s reflection coefficient R which is given
by:

R =

√
εb,0 −

√
εb,1√

εb,0 +
√

εb,1
(2)

where the εb,0 and εb,1 are the bulk permittivities of the first and second layers respectively. However,75

it should be noted that total reflection of the waves can occur if the second layer is a highly conductive76

material such as metal. The reflected waves are captured by the receiving antenna after which it is77

digitised by the receiver and displayed as a time varying signal commonly referred to as an A-scan78
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(Figure 2). Interfaces encountered by the propagating waves are indicated by pulses in the A-scan79

while the time of arrival of each pulse is an indication of the distance of the interface from the antennas.80

2.3. Bulk density estimation using GPR81

The estimation of the bulk density of a material using GPR consists of two steps namely:82

estimation of the material’s permittivity, and estimation of the bulk density from the permittivity using83

permittivity mixing formulas. These steps are further discussed in the following subsections.84

2.3.1. Estimation of the material’s permittivity85

If the medium of propagation is considered to be made up of layers with different permittivities,
then the relative amplitude of the reflected pulse from the nth layer is given by [26]:

An

Ainc
=

√
εb,n −

√
εb,n+1√

εb,n +
√

εb,n+1

[
n−1

∏
i=0

(1− R2
i )

]
e
−η0 ∑n

i=0
σidi√

εb,i , (3)

where An is the amplitude of the reflected pulse from the nth layer, η0 is the free space impedance, σi is86

the layer conductivity, di is the layer thickness, and Ainc is the amplitude of the incident pulse from87

the GPR system. The value of Ainc is usually obtained by measuring the reflection amplitude due to a88

flat metal surface placed at a fixed distance from the GPR system. This is because the metal surface is89

considered to be perfect electrical conductor with a reflection coefficient of -1. Therefore, the reflected90

pulse from the metal surface is the same as the inverse of the incident pulse from the GPR system.91

For a two layer medium where the first layer is made up of air which has a permittivity of 1, the
permittivity of the second layer can be obtained from Equation (3) by substituting n = 0 i.e.:

εb,1 =

(
1 + [A0/Ainc]

1− [A0/Ainc]

)2

(4)

where A0 is the reflection amplitude from the interface between the first and second layer. This92

formula is widely used as the surface reflection method for the estimation of the permittivity and other93

properties of soils [27,28] and asphalt pavements [29–31]. Finally, Equation (3) can be used with a94

medium with any number of layers by iteratively applying it to all significant pulses in the A-scan to95

obtain the vertical variation of the medium’s permittivity with depth.96

2.3.2. Permittivity mixing formulas97

Porous media such as soil and concrete can be considered as a mixture of several materials in98

different phases. For example, soil is typically modelled as a mixture of solid particles, water and99

air where the solid particles acts as a background material into which water and air are added as100

inclusions [32]. Permittivity mixing formulas express the bulk permittivity of these porous media as101

function of the permittivities of their constituents and the internal structure of the mixture. A number102

of permittivity mixing formulas have been proposed in the literature and these can be broadly divided103

into two categories.104

The first category of formulas are those derived from the relationship between the induced electric
field and the flux density. Since these category of formulas are derived from the physical laws of
electromagnetism, they incorporate the microstructural properties of the mixture albeit with some
simplifications. The general expression for this category of formulas is given by [33]:

εb − ε0

εb + 2ε0 + v(εb − ε0)
=

n

∑
i=1

fi
εi − ε0

εi + 2ε0 + v(εb − ε0)
(5)

where ε0 is the permittivity of the background material, εi is the permittivity of other constitiuents of
the mixture, fi is the volume fraction of each constituent and v is a positive constant which indicates
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the effect of the polarisation induced in the medium as a result of the propagating electric field.
Furthermore, it was proved in [33] that most of the mixing formulas proposed under this category can
be obtained from Equation (5) by substituting appropriate values for v. The second category of mixing
formulas are the exponential or power law formulas which have the general form:

εα
b =

n

∑
i=1

fiε
α
i (6)

where α is a geometric parameter whose value is obtained by fitting the model to experimental data.105

The common reported values for α are 0.5 [34–36] and 0.65 [37,38]. Furthermore, Equation (6) with106

α = 0.5 is also referred to as the complex refractive index model (CRIM).107

In estimating the density of asphalt pavements using GPR, Leng et al [30] used three permittivity108

mixing formulas namely: Rayleigh [39], Bottcher [40] and CRIM. Therefore, these three models were109

also adopted for this study. Both the Rayleigh and Bottcher formulas can be derived from Equation110

(5) using v = 0 and v = 2 respectively while the CRIM is obtained from Equation (6) with α = 0.5 as111

mentioned in the previous paragraph. In addition, Equation (6) with α = 0.65 was also included in112

this study and will henceforth be referred to as the Dobson mixing formula.113

In summary, for a porous medium consisting of solid particles, air and water, the Rayleigh,114

Bottcher, CRIM and Dobson mixing formulas for the bulk perimittivity are given by:115

εb − εs

εb + 2εs
= (φ− θ)

εa − εs

εa + 2εs
+ θ

εw − εs

εw + 2εs
, (7)

εb − εs

3εb
= (φ− θ)

εa − εs

εa + 2εb
+ θ

εw − εs

εw + 2εb
, (8)

ε0.5
b = (1− φ)ε0.5

s + (φ− θ)ε0.5
a + θε0.5

w , (9)

ε0.65
b = (1− φ)ε0.65

s + (φ− θ)ε0.65
a + θε0.65

w , (10)

respectively where εs, εw, εa are the permittivities of solid particles, water and air respectively, θ is the116

water content of the medium and φ is the porosity of the medium which is related to the bulk density117

by:118

φ = 1− ρb − θ

ρs
(11)

where ρs is the specific density of the solid particles. It should be noted that the volume fractions f of119

the air, water and solid particle depend on the porosity and water content of the medium consequently,120

they were replaced in Equations (7-10) with their respective expressions from [35].121

3. Materials and methods122

The three materials investigated in this study are shown in Table 1. The bulk densities of each123

of the material was measured using three different subsamples and the average value recorded. The124

elemental composition of the sand and soil samples were obtained using Scanning Electron Microscopy125

while that of the gravel sample was obtained from [41]. Furthermore, the mass attenuation coefficients126

of all the elements in the three sample were obtained from tables published by the National Institute127

of Standards [42]. These were then used together with the elemental compositions to calculate the128

mass attenuation coefficients of the three materials at 662 keV which is the gamma ray energy at the129

photo peak of the Cs-137 radioisotope used in this study. It can be observed from Table 1 that the mass130

attenuation coefficient is relatively constant for all three materials therefore, an average value of 0.0775131

was used in this study. The solid permittivity of soil and sand were obtained from [37] while that of132

gravel was obtained from [43]. In addition, a specific density of 2.65 g cm-3 [44] was adopted for all133
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three materials. Finally, both the sand and gravel were dry samples while the water content of the soil134

was measured using the oven drying method.135

Table 1. Properties of the materials used in the study

Sand 10 mm Gravel Soil

Bulk density (ρb) (g cm-3) 1.52 1.54 1.26
Mass attenuation coefficient (µm) at 662 keV 0.0776 0.0775 0.0773
Solid permittivity (εs) 4.7 6.5 4.7
Specific density (ρs) (g cm-3) 2.65 2.65 2.65
Water content (θ) (%) 0.0 0.0 6.0

3.1. Gamma ray data acquisition and processing136

The experiment setup for the acquisition of the gamma ray intensity data is as shown in Figure137

3. The material volume is represented by a box in which the different materials were placed. The138

dimension of the box is 40 cm × 50 cm × 40 cm (length × width × height) and it was constructed with139

acrylic sheets with a thickness of 0.8 cm. Acrylic sheet was used because it is relatively transparent140

to gamma rays. The front of the box was divided into 4 × 4 cm2 grids in order to identify each141

measurement position. The gamma ray detector used in the experiment was the CZT/500(s) detector142

from Ritec (Riga, Latvia). This is a cadmium zinc telluride detector which has a sensing volume of 0.5143

cm3 and is sealed in a casing with a diameter of 2.2 cm. Furthermore, the detector was placed inside a144

hollow cylindrical tungsten shield opened at both ends in order to eliminate background radiation145

from the laboratory environment.146

Figure 3. Setup for the gamma ray measurements. The Cs-137 point source was placed at varying
position along the z-axis using a pipe that protruded behind the box while the intensity was measured
at the desired positions on the surface of the box

During the experiment, the box was filled with one of the materials and a 658 kBq Cs-137147

radioactive point source was buried at varying depths from 2 cm to 22 cm at 4 cm intervals along the148

z-axis starting from the origin. This procedure was repeated for each of the materials. At each depth,149

the pulses from the detector were acquired using an oscilloscope (sampling rate = 500 kSa/s) from150

the desired number of grids. An acquisition time of 25 minutes per grid was used throughout the151

experiment. The acquired pulses were then stored and processed in a personal computer using the152

pulse height analysis algorithm described in [45] to generate the spectrum of the source at each grid.153

Therefore, a total of n spectra was acquired per depth where n is the number of grids. In addition, the154

background spectra for each of the three materials were also measured and subtracted from each of the155

generated spectrum. Finally, the photo peak function described in [46] was used to extract the number156

of gamma ray photons (i.e. intensity) at 662 keV from each of the generated spectrum.157
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3.2. GPR data acquisition and processing158

As mentioned in Subsection 2.3, the first step in bulk density estimation using GPR is the159

estimation of the bulk permittivity using Equation (4). This will require the measurement of the160

amplitudes of the reflected pulses from each of the material and that from a metallic surface. The161

setup for the acquisition of the reflected pulses is shown in Figure 4. The orientation of the setup was162

kept the same with that of the gamma ray data acquisition to ensure consistency between the data163

from both experiments. The GPR system used is the MALA CX12 from GuidelineGeo (Sundbyberg,164

Sweden) with a central frequency of 1.2 GHz. In addition, a sampling frequency of 37 GHz and time165

window of 8.4 ns was used for throughout the experiment.166

Figure 4. Setup for the GPR reflected pulse measurements. The antenna was placed 15 cm from the
surface of the box

During the experiment, the GPR antenna was centrally positioned fifteen centimeters (15 cm)167

away from the front of the box while the reflected pulse was measured. This was repeated each time168

the box was filled with a different material. Furthermore, since the bulk permittivity was assumed to169

be uniform throughout the material volume, all the pulses were measured from this fixed position.170

In addition, the reflected pulse when the box was empty was also measured and subtracted from the171

reflected pulses measured when the box was filled with each of the material. This procedure removed172

the contributions of both the direct wave and box to the measured reflected pulses from the materials.173

Finally, the reflected pulse from a flat metal sheet was also measured in order to complete the data174

required to estimate the bulk permittivities of the materials.175

(a) (b)

Figure 5. (a) Measured reflected pulses from the air-soil and air-metal interfaces without time-offset
correction. Both pulses can be seen to arrive between 1.4-2.6 ns; (b) Envelope of the Hilbert transform
of both pulses



Version January 10, 2019 submitted to Remote Sens. 8 of 14

After acquisition, the pulses were filtered using a finite impulse response bandpass filter with176

lower and upper frequencies of 0.5 GHz and 2.5 GHz respectively to remove unwanted frequency177

components. The filtered pulses from both the soil and metal sheet are shown in Figure 5a. The178

amplitude values of the pulses were obtained from the peak of the envelope of the Hilbert transform179

of the pulses. This is also shown in Figure 5b for the pulses from the soil and the metal sheet. Having180

obtained the required amplitude values, the bulk permittivities of the three materials were then181

estimated using Equation (4) and are shown in Table 2. The bulk permittivities of both the sand and182

gravel are consistent with the values reported in [43,47] while that of the soil is higher than both183

materials because of the water content. Also, note that the bulk permittivity of the gravel is higher than184

that of the sand despite both materials having approximately the same measured bulk densities. This185

difference is due to the solid permittivity of gravel which is higher than that of sand. Finally, using the186

estimated bulk permittivities, the bulk densities of each of the materials were then estimated using the187

four permittivity mixing formulas i.e. Equations (7 - 11) where the permittivities of water and air were188

taken to be 80.1 and 1 respectively. These results are presented and discussed in the next section.189

Table 2. Estimated bulk permittivity for the three materials using Equation (4).

Sand Gravel Soil

Bulk permittivity (εb) 2.93 3.57 4.84

4. Results190

4.1. Bulk density estimation191

The error in the estimated bulk densities for the four mixing formulas are shown in Figure 6. It192

can be observed that all the formulas yielded reasonably good estimates for both sand and gravel193

with an average error of 5% and 3.75% respectively. However, the Rayleigh and Dobson formulas194

had the best performance for sand with an error of 3% and 2% respectively. Conversely, the Bottcher195

and CRIM formulas had the best performance for the gravel with an error of 3% and -1% (negative196

errors means that the bulk density was under estimated). However, the significant difference in the197

performance of the formulas can be observed in the result for soil where all the formulas except the198

Dobson formula performed very poorly. The overestimation of the bulk density of soil by over 70%199

by both the Rayleigh and Bottcher formulas can be attributed to the fact that both formulas assume200

that the mixture is homogeneous [33] which is relatively true for both the sand and gravel samples.201

Conversely, soil is typically a complex mixture of sand, clay, silt, water, organic matter and other202

inorganic minerals consequently, the assumption of homogeneity is not valid.203
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Figure 6. Error in the estimated bulk densities of the three materials under investigation

The very good performance of the Dobson formula for soil compared to the poor performance of204

the CRIM formula is likely due to the inclusion of the effect of bound water by Dobson et al [37] in their205

estimation of the value of α in Equation (6). This is because at low water content (as is with the case of206

the soil used in this study), the water in the soil exists predominantly as bound water [37], i.e. as a207

thin film around the solid soil particles. Due to their restricted molecular motion, these bound water208

have a lower permittivity compared to free water in the pore of the soil matrix [35]. Therefore, the209

assumption that all the water in the soil behaves as free water (see [36]) which is the basis for arriving210

at a value of 0.5 for α is not correct. However, this assumption can be valid at high water content where211

the behaviour of free water dominates. This was further confirmed by [32] who observed that an α212

value of 0.5 seems to be appropriate for fully water-saturated porous media. Finally, since the Dobson213

formula had the least average error of 4.5% for all materials, its bulk density estimates were used in214

the subsequent sections to calculate the depth of the buried Cs-137 source.215

4.2. Depth estimation of the buried Cs-137 radioisotope216

The measured gamma ray intensities when the source was buried at 14 cm in the three materials217

are shown in the top row of Figure 7 as normalised raster images. The intensities were measured218

from a total of 7 × 7 grids covering a total scan area of 28 × 28 cm2. Furthermore, each pixel value of219

the image represents the number of gamma ray photons at 662 keV recorded by the detector at that220

position. The fitting of the attenuation model (i.e. Equation (1)) to the data from each of raster images221

using the density estimates from the Dobson mixing formula are shown in the corresponding bottom222

row of Figure 7. A good model fit can be observed for all three materials as indicated by the high223

adjusted r-squared values.224
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Figure 7. Normalised raster images of the Cs-137 source buried at a depth of 14 cm for each of the
material (top row). Corresponding fit of the attenuation model for each of the depth images (bottom
row).

The estimated depths of the buried Cs-137 radioisotope from the fitted attenuation model are225

shown in Figure 8 for all three materials. A consistent linear deviation of the estimated depth from the226

measured depth as the depth increases can be observed in all three materials. This deviation can be227

attributed to the fact that the attenuation model does not account for the inverse square reduction in228

the gamma ray intensity as the depth increases. However, a linear correlation between the estimated229

and measured depths can be visually observed in the figure for all three materials. This means that the230

measured depth can be predicted from the estimated depth by fitting a linear polynomial to the scatter231

graph. The fitted linear polynomials for the three materials are given in Table 3. The high adjusted232

r-squared values is indicative of the good linear correlation between the estimated and measured233

depths. Finally, it was shown in [45] that the parameters of these linear polynomials (i.e. the gradient234

and intercept) can be obtained using simulation tools such as MCNPX [48] and then used to correct235

estimated depths measured from field data.236

Figure 8. Estimated depths of the buried Cs-137 source for the three materials.
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Table 3. Linear polynomials fitted to the scatter graph of Figure 8 where zest is the estimated depth and
zmea is the measured depth. This can be used as calibration equations to correct for the deviation of the
estimated depth from the measured depth.

Material y = ax + b ± error R2
adj

Sand zest = 0.64zmea + 2.2 ± 1.1 0.99
Gravel zest = 0.63zmea + 1.9 ± 1.2 0.99

Soil zest = 0.59zmea + 1.5 ± 1.9 0.95

5. Discussions237

The results presented in the previous section has proven the potential of GPR as a tool for238

estimating the material bulk density required for nonintrusive estimation of the depth of buried239

radioactive sources. This in situ density estimation will improve the accuracy in determining the240

depth of penetration of radioactive contaminants in materials such as soil and concrete compared to241

the use of historical density values. Furthermore, the nonintrusive nature of GPR will ensure that242

the contaminated material subsurface is not disturbed thereby preventing further spreading of the243

contamination.244

However, one of the potential challenges in applying this depth estimation technique in the field245

is the time required to move a single gamma detector across the scan area. This can be eliminated by246

using a square array of gamma detectors since each detector and its shielding covers only a relatively247

small area of 4× 4 cm2. The detector array can then be mounted on a trolley to scan the ground surface248

of the contaminated area. It should also be noted that the 25 minutes per grid measurement time taken249

to measure the gamma rays is due to the fact that each signal from the detector was first digitised by an250

oscilloscope and then transferred to a computer for processing. This time will be substantially reduced251

by using commercial multichannel analysers. These are dedicated high-speed electronics that process252

the output from a gamma detector and generate the spectrum of the radioactive source in real-time.253

Another difficulty that maybe encountered in the field is the fact that Equation (4) depends only254

on the change in permittivity at the air-material interface. Consequently, it is unable to estimate the255

vertical variation in the bulk permittivity inside the material which can occur when investigating at256

greater depths e.g. up to 1 m. This difficulty can be resolved by iteratively applying Equation (3) to257

every significant pulse identified in the measured A-scan. This will yield the vertical variation of the258

permittivity inside the material from which the variation in density can be obtained using the Dobson259

mixing formula.260

6. Conclusion261

The use of GPR as a complementary sensor to provide in situ material density data required for262

the nonintrusive estimation of the depth of buried radioactive sources from radiation data have been263

demonstrated using three different materials. The results showed that the Dobson permittivity mixing264

formula provided the best bulk density estimates across the range of materials investigated. Therefore,265

its results were used with the radiation data to estimated the depth of a buried Cs-137 source using266

an approximate 3D attenuation model. In addition, different geometries for the measurement of the267

radiation data were analysed and it was found that measuring along a diagonal pattern can significantly268

reduce the measurement time and amount of data required to estimate the depth. However, a linear269

correction factor needs to be applied to the depth estimates to account for deviation of the estimated270

depth from the measured depth as the depth increases. This limitation will be further investigated in271

order to make the attenuation model more robust.272

Finally, the benefits of combining GPR and radiation detectors are not limited to material density273

estimation. It also opens the possibility of nonintrusive three dimensional reconstruction of the274

contaminated subsurface by fusing GPR and radiation images. This will enhance visual monitoring of275
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these type of contaminated environments and provide guidance for autonomous decommissioning276

systems.277
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