
Activity-Centric Computing Systems
Jakob E. Bardram∗

Technical University of Denmark
Richard Petersens Plads
Kgs. Lyngby DK-2800

jakba@dtu.dk

Steven Jeuris
Technical University of Denmark

Richard Petersens Plads
Kgs. Lyngby DK-2800

sjeu@dtu.dk

Paolo Tell
IT University of Copenhagen

Rued Langgaards Vej
Copenhagen DK-2300

pate@itu.dk

Steven Houben
Lancaster University

South Drive, Campus of Lancs.
Lancaster LA1 4WA

s.houben@lancaster.ac.uk

Stephen Voida
University of Colorado Boulder

Boulder, Colorado CO 80309-0315
svoida@colorado.edu

ABSTRACT
Key Insights

• Activity-Centric Computing (ACC) addresses deep-rooted
information management problems in traditional application-
centric computing by providing a unifying computational
model for human goal-oriented ‘activity,’ cu�ing across
system boundaries.

• We provide a historical review of the motivation for and
development of ACC systems, and highlight the need for
broadening up this research topic to also include low-level
system research and development.

• ACC concepts and technology relate to many facets of
computing; they are relevant for researchers working on
new computing models and operating systems, as well
as for application designers seeking to incorporate these
technologies in domain-speci�c applications.

KEYWORDS
Activity-Centric Computing, Systematic Literature Review, Multi-
tasking
ACM Reference format:
Jakob E. Bardram, Steven Jeuris, Paolo Tell, Steven Houben, and Stephen
Voida. 2019. Activity-Centric Computing Systems. In Proceedings of Com-
munication of the ACM, , �? 2019 (CACM), 8 pages.
DOI: 10.475/123 4

1 INTRODUCTION
Mobile, ubiquitous, social, and cloud computing have brought an
unprecedented amount of information, digitised resources, and
computational power—spanning many di�erent devices—to users
today. Correspondingly, an increasing amount of work and leisure
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CACM,
© 2019 ACM. 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

activity is taking place in this distributed digital computing en-
vironment. For example, in a hospital, the medical record and
bio-signals of patients are digitised and accessed by multiple sta-
tionary, mobile, and wearable devices. At home, digital and social
media, email, photo libraries, and the like are accessed on a wide
range of devices including laptops, smartphones, TV sets, and other
internet-connected appliances. However, this rapid increase in the
diversity and volume of both computational devices and digital con-
tent quickly introduces corresponding organizational challenges,
leading to digital clu�er. Many people feel overwhelmed and bur-
dened by organizing and retrieving their digital resources, which
includes handling, organising, and �nding information—a problem
commonly referred to as information overload. Moreover, handling
multiple and o�en concurrent tasks while coordinating with other
individuals adds an additional level of complexity.

Despite the overwhelming success of new devices and cloud-
based information-sharing infrastructures, the evolution of the user
interface models that people use to interact with these innovations
and the representations with which they organize electronic infor-
mation on these platforms has not kept pace. Although it is much
more common for users to access information through the browser
or on a mobile device today than in the past, most contemporary
user interface models are still fundamentally grounded in the per-
sonal computer metaphor, as part of which electronic resources
are de�ned by the applications used to manipulate them and “�led”
using a desktop metaphor (�les, folders, and application windows).
�is application- and document-centric model leads to a fragmen-
tation of a person’s information. For example, information related
to a speci�c work project is o�en sca�ered across multiple �les,
local folders, cloud folders, and across di�erent applications such as
email, instant messaging, local and cloud-based document editors,
web browsers, and social media channels/communities. Moreover,
this information might be sca�ered across di�erent devices and
accessed by multiple users.

While cloud-based technologies allow users to access and share
�les and documents online and access them across di�erent devices—
including cloud-dedicated devices like the ChromeBook—such tech-
nologies have overwhelmingly maintained use of the �les-and-
folders model for presenting resources and applications to users,
even when new capabilities such as tag-based (e.g., Gmail) and
graph-backed (e.g., Microso� 365) information management schemes

CACM, �? 2019, Jakob E. Bardram, Steven Jeuris, Paolo Tell, Steven Houben, and Stephen Voida

are emerging. Moreover, the introduction of cloud-based services
have for most users just added yet another set of services, applica-
tions, and accounts for them to handle, and has in practice added
yet another layer of information fragmentation and overload to the
picture. �us, even though touch-based phones and tablets look
and feel di�erent, the personal computing model, with its focus on
applications (or apps), is still in many cases the dominant means
for working with electronic information.

Researchers have argued that these problems call for a fundamen-
tally new abstraction for interaction between people and computers.
In this paper, we review a speci�c approach in which ‘activities’
become a new computational abstraction around which interaction
occurs. An activity is an ongoing e�ort in a person’s life towards
a goal. For example, an activity can be a work project, writing a
research paper, implementing a feature in so�ware, designing a
new product, planning an event, treating a patient, or preparing
for a vacation. Activities re�ect goals that people want or need to
achieve in the real world, and a real-world ‘activity’ can be repre-
sented in the computer as an abstraction of computational data,
resources, tools, applications, services, etc. which are needed in
order for users to perform this activity.

�ere are di�erent approaches to realising Activity-Centric Com-
puting (ACC) systems. (See the sidebar for two conceptual models
proposed for ACC). However, a common theme in these approaches
is to mitigate information fragmentation and overload by integrat-
ing resources (e.g., information), services (e.g., applications), de-
vices, and users into an activity ‘bundle’ that ties these four layers
together. A representation of computational activities is illustrated
in Figure 1. For example, in a so�ware development project, a
debugging activity could encapsulate: (i) a number of source code
�les, unit tests, and test documentation [resources], (ii) a source
code editor, a debugger, a terminal window, and a bug reporting
system [services], (iii) a twin-display debugging setup and several
di�erent smartphone con�gurations for testing [devices], and (iv)
the tester with the two developers who are working on this feature
[users].

�e idea of ACC is not novel. In fact, many researchers who
studied the original personal computer model argued early on that
computing systems should provide high-level support for activi-
ties. In 1983, Liam Bannon and colleagues observed that “[c]urrent
human-computer interfaces provide li�le support for the kind of prob-
lems users encounter when a�empting to accomplish several di�erent
tasks in a single session” [1]. �ey proposed moving away from
computing environments built around applications and �les as �rst-
class computational constructs, focusing rather on the higher-level
activities that people perform on computers.

Since then, quite a lot of research has been done on ACC tech-
nologies, ranging from research on user interface management
technologies to more fundamental distributed middleware and op-
erating system components to support ACC systems. In order to
provide a historical and comprehensive overview of the state-of-
the-art in ACC research, this paper presents a systematic review
of the research literature on ACC systems and technologies and
provides an outlook of their potential and the main implementa-
tion challenges in applying these approaches to contemporary and
emerging computing environments.

ACTIVITY 1

ACTIVITY 2

UsersDevicesServicesResources

Figure 1: �e four layers in computing considered during
the design of Activity-Centric Computing systems.

2 A REVIEW OF ACC SYSTEMS
A three-step procedure was followed to identify a comprehen-
sive corpus of ACC research papers from the computing litera-
ture, which were further processed for data extraction. First, the
authors—all of whom have contributed substantively to the ACC
research domain–identi�ed an initial set of publications (N=38)
that we agree accurately represents core ACC research. Second,
we applied a backward snowballing technique, adding all articles
cited by all of the papers in our initial set (N=984). �ird, a�er
pruning out all duplicates, we screened all retrievable publications
identi�ed in the second step to focus on only those publications
presenting “technologies with a design motivated by the idea of sup-
porting computational activities” as described earlier. �is process
yielded to the selection of 101 primary studies and the identi�cation
of 68 unique technologies1. 58.4% of these papers refer to what we
call ‘activity’ as ‘activity’, whereas 35.6% refers to ‘tasks’, and the
remainder use other terms, such as ‘project’.

�e following coding schemes emerged during the data extrac-
tion process. Each primary study was labeled with tags related
to ‘motivation’ and ‘system type’. Motivation was extracted by
analyzing what kind of challenge(s) each paper stated that it was
addressing, whereas system type was extracted by analyzing the
technological contribution(s). Disagreements and ambiguities in
coding were resolved in meetings involving all authors.

Figure 3 shows the coding schemes and distribution of both
motivation and system type contributions. Note that each paper
may be labeled with multiple tags. For example, the article “Activity-
based computing for medical work in hospitals” [4] presents an
application, a middleware infrastructure, and a smartspace system.

1To the CACM editors and reviewers: We would like to include, or link to, this list
of 101 papers. Either by pu�ing a URL into the paper or by adding supplementary
material to the ACM Digital Library. Please advise on how to best do this.

Activity-Centric Computing Systems CACM, �? 2019,

SIDEBAR – Conceptual Models for Activity-Centric Computing
�e goal of ACC is to replicate the multifaceted and complex nature of human activities in the “real world” in a computational representation.
ACC systems do not provide another application, service, or collaboration tool, but rather integrate existing tools across devices, people,
services, and resources in a manner that re�ects the real-world activity being done. �e design challenge in ACC is to create activity
representations that are simple, yet �exible enough to accommodate di�erent levels of rigidity [6, 14]. To achieve this, di�erent conceptual
models for ACC systems have been proposed, of which the Activity-Based Computing (ABC) and the Uni�ed Activity Management (UAM)
models are the most elaborate ones.

Activity-Based Computing for Medical Work in Hospitals • 10:9

Fig. 2. A computational activity that aggregates a set of computational services, data resources,
and users.

at a hematology department in a large teaching hospital. We have conducted
11 design and evaluation workshops in which the clinicians codesigned, used,
evaluated, and tested the framework. Each workshop lasted 3–6 hours.

To sum up, the design of the activity-based computing approach has been
based on a combination of empirical field studies of medical work in hospi-
tals, theoretical analysis based on Activity Theory, and a user-centered par-
ticipatory design process involving a group of clinicians over a long period of
time.

4. ACTIVITY-BASED COMPUTING

In activity-based computing, a “computational activity” (or just “activity”) is a
computerized representation of a real-world human activity. The purpose of the
computational activity is to reflect the human activity and to provide access to
resources relevant to its execution:

Computational Activity. An aggregation of services, resources, arti-
facts, and users that are relevant for a real world human activity.

The computational activity used to represent the work done in Figure 1 is
illustrated in Figure 2. This computational activity aggregates and links ser-
vices, resources, documents, and users that are relevant to the real-world activ-
ity of treating Mrs. Pedersen for leukemia. Among other things it gives access
to the patient’s medical records, information on the medicine administered, and
medical images. Access to these materials is mediated by the respective com-
puter systems involved: the electronic patient record system (EPR); the elec-
tronic medication system (EMS); and the picture, archiving, and communication

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 2, Article 10, Publication date: June 2009.

by providing a unified way to
represent business activities,
enabling different systems to
interoperate, enabling the evo-
lution of business practices, and
integrating with formally mod-
eled business processes.

We think of Activity descrip-
tions as metadata—the glue

tying together system resources around the generic
semantics of activity. Thus we encode Activity
descriptions in RDF. The Semantic Web is an ideal
platform to provide the flexibility, extensibility, and
data integration necessary to support the inherent
variability and adaptability of business activities.

We are developing an OWL ontology of Unified
Activity. The core ontology captures the essential fea-
tures and structure of the generic concept of collabo-
rative activity, which enables activity-like information

from different applications and contexts to be unified,
exchanged across systems and companies, and pre-
sented in a consistent vocabulary to people. The core
ontology is extensible to accommodate the specific
features of different business activity domains (analo-
gous to the analysis of processes in [2]). Thus, activ-
ity-like entities in different business domains (for
example, tasks in a workflow) can be exchanged and
understood at the level of the core activity semantics.

The default mode of UAM is to support flexible
and open interactions between people. Some interac-
tions need more structure; and we are exploring exten-
sions, such as access control policies and constraint
handling, in order to interoperate with formal
processes, such as project planning and workflows,
without turning UAM into another workflow lan-
guage. The philosophy of UAM is to rely on social
interaction mechanisms to control activities and to
impose only as much constraint as is needed. Thus,

COMMUNICATIONS OF THE ACM December 2005/Vol. 48, No. 12 69

Moran fig 2 (12/05)

Activity

Semantic Model of Unified Activity

Business Process
or B2B Workflow

Activity
Metadata
Repository

John's Workplace

Jane's Workplace

Activity

Event

Model
State

Activity

Activity

Other

Activity

Actor

Artifact

Tool

Activity

Flow
Operator

Action
Message

Activity
Pattern

Activity
Pattern

Step

Step

Task

Task

Step

LDAP
Server

Content
Manager Calendar Email

super-activity
bound

role
instance

result
resource

log

sub-activity

prototype

depend-on

Description

Start

End

Figure 2. UAM specifies
a semantic model of
Unified Activity
integrating formal
business processes
with the informal
collaborations needed to
accomplish business
objectives.

THE PHILOSOPHY of UAM is to rely on social interaction
mechanisms to control activities and to impose only as much restraint

as is needed. Thus, UAM is a natural complement to
formal workflow and B2B processes.

Figure 2: Le�: �e Activity-Based Computing model. Right : �e Uni�ed Activity Management semantic model.

Activity-Based Computing (ABC) – In ABC, a ‘computational activity’ (or just ‘activity’) is a computerised representation of a real-world
human activity [4]. �e purpose of the computational activity is to re�ect the human activity and to provide access to resources relevant
to its execution. �e ABC approach was developed to support hospital work and can be used to model the work done as part of treating
patients. As illustrated in Figure 2 (le�) a computational activity aggregates and links services, resources, documents, and users that are
relevant to the real-world activity of treating Mrs. Pedersen for leukemia. Among other things it gives access to the patient’s medical records,
medicine charts, and medical images. Access to these materials is mediated by the respective computer systems involved: the electronic
patient record system (EPR); the electronic medication system (EMS); and the picture, archiving, and communication system (PACS). Hence,
ABC extends computational support ‘upwards’ from the level of application and document to the level of the overall activity. In the ABC
model, this is called ‘Activity-Centered Resource Aggregation’, which is the �rst of six core design principles:

Activity-Centered Resource Aggregation – Aggregation of relevant resources, services, applications, documents, data, and users
in a one logical bundle. �is principle supports information and task management.

Activity Suspension and Resumption – Suspending an activity means its state is stored and removed from the active workspace,
while resuming an activity restores it. �is principle supports multitasking and interruptions in work.

Activity Roaming – Activities are stored in an infrastructure and hence can be accessed from multiple devices. �is allows suspending
an activity on one device and resuming it on another device. �is principle supports mobility across multiple devices.

Activity Adaptation – When an activity roams (migrates) from one device to another, it adapts to the runtime and resources available
on the local device. �is principle supports mobile code execution which can take advantage of technical resources like processing
power, memory, network, and display size.

Activity Sharing – Activities are per default shared and can be accessed, used, and modi�ed by all users who are ‘participants’ of the
activity. �is principles supports collaboration, including access control.

Activity Awareness – Computational activities are always representations of real-world activities and these representations need
to build and maintain an ‘awareness’ of—i.e., knowledge about—this real-world context. �is principles supports context-aware
adaptation to the users’ (work) context.

Uni�ed Activity Management (UAM) – Developed by IBM Research, UAM speci�es a semantic model as a uni�ed model for integrating
formal business processes with the informal collaboration needed to accomplish business objectives [17]. In UAM, an ‘activity description’
articulates the actors (people) and roles involved, the resources used (tools, artifacts, people), the results produced, the events it is bounded
by, and its relationships to other activities (such as sub-activities or dependent activities). All the people involved can see the activity
descriptions and they can modify and extend the descriptions. An ‘activity’ is metadata, i.e. the glue tying together system resources around
the generic semantics of an activity. In a reference implementation of UAM, activity descriptions were implemented in semantic web
technology using RDF and OWL. Figure 2 (right) summarizes UAM in which activity representations are managed in an RDF-based Activity
Metadata Repository that integrates information from various external services like email, calendars, etc.

CACM, �? 2019, Jakob E. Bardram, Steven Jeuris, Paolo Tell, Steven Houben, and Stephen Voida

Figure 3: �e coding schemes and distribution of ‘stated mo-
tivation’ and ‘system type contribution’ for all 101 ACC pa-
pers.

Figure 4 shows a historical distribution of identi�ed design moti-
vations over time. From this overview, we can identify three ACC
waves in the literature: an initial wave in the the 1980s, motivated
by the Bannon et al. paper; a second wave in the 2000s; and a recent
third wave beginning in 2012 and continuing today. Note that the
decline shown beginning in 2015 is a methodological issue; since
this review was completed in 2017 and is built from referenced
papers, the collection of papers is by nature backward-looking and
historical.

In terms of motivation for incorporating support for computa-
tional activities, we can identify three broad areas:

Green – motivated by the belief that activities are a be�er
representation of how humans think and/or to provide sup-
port for task switching, improved resource management,
and automating the overhead of task management.

Blue – motivated to provide support for collaboration, mobil-
ity, process optimization, and awareness (of the workspace,
task, people, and resources).

Red – motivated to address information fragmentation, in-
cluding information fragmented across devices.

Based on the data, we can derive that a signi�cant part of ACC
research has addressed multitasking (34%), resource management

(60%), and collaboration (39%), especially during the 1st and 2nd
wave. On the other hand, li�le research at this stage focused on
resource management automation (8%), work�ow automation (2%),
or awareness (6%). During the 2nd wave, support for collaboration,
mobility and awareness (blue) was given increased focus, and in
the 2nd and 3rd waves, research was increasingly motivated by the
challenges of information and device fragmentation (red).

In terms of system types, we can also identify three broad areas:
Magenta – end-user oriented applications and user interface

technology.
Yellow – middleware, �le management, and distributed sys-

tem support
Cyan – low-level operating system support, processes, and

I/O.
From the �gures, we can see that the majority of papers have

focused on end-user applications (45%), user interface management
systems (UIMS) (47%) (magenta), and middleware technologies
(yellow)—especially �le management (42%) and middleware frame-
works (38%). Less focus has been directed toward more low-level
issues (cyan) like operating systems (6%), processes (3%), and I/O
(2%).

From the review, we can identify a set of common topics and
technologies, which we unpack as examples of core ACC research
contributions.

2.1 Multitasking
Many (34%) ACC systems were motivated by providing support for
multitasking, which also represents some of the earliest research
in this space. �ese systems enabled multitasking by supporting
suspension of the current activity and resumption of another. �is
focus recalls the original study by Bannon et al., who argued that
a “workspace system should support digression while providing
[…] easy return to previous activities” [1]. �is implies that people
can pause their work on one activity and simply save the entire
state of the activity including the con�guration of applications,
�les, windows, and other resources. A�erwards, they can easily
switch to another activity, thus, loading the con�guration of �les,
documents, applications, and collaborative tools associated with
that activity.

One of the �rst ACC technologies was the ‘Rooms’ system pre-
sented by Xerox PARC in 1987 [7], which was directly motivated
by the Bannon et al. study. Even though this study was based on
observations of users interacting with a command-line interface
(Unix), similar problems of limited support for multitasking were
also observed in the graphical user interfaces developed at Xerox
PARC. In Rooms, separate windows associated with the same task
could be collated into distinct ‘rooms,’ and users could switch be-
tween these rooms in order to switch tasks. In many ways, Rooms
was the predecessor of the ‘virtual desktop’ systems we know today.
Kimura is a more recent (2001) example of an ACC system focusing
on supporting multitasking by augmenting the entire o�ce envi-
ronment [15]. In contrast to Rooms, which limits interaction to the
desktop monitor, Kimura leveraged interactive peripheral displays
on the walls of the o�ce, allowing users to switch between activi-
ties while maintaining a peripheral awareness of other activities in
the background.

Activity-Centric Computing Systems CACM, �? 2019,

Figure 4: Distribution of motivation for ACC papers in a historical outline.

Figure 5: ActivityBar for Windows XP.

2.2 Window Management in Desktop
Interfaces

As the user interface in all contemporary OSs (macOS, Windows,
Linux) materialized around the desktop metaphor using overlap-
ping windows, icons, menus, and a mouse pointer (also known
as the WIMP paradigm), it was evident that this model provided
limited explicit support for human activity, including multitasking.
�erefore, many (47%) ACC systems have provided models that
integrate support for activities into the user interface.

For example, the ActivityBar [2] (Figure 5) suggests replacing
the Windows XP Taskbar with an ‘ActivityBar’ that gives direct
access to switching among activities. Each activity groups multi-
ple application windows with associated resources, such as docu-
ments, spreadsheets, webpages, etc. �is approach was later ex-
tended to also support sharing and collaborative awareness in the
‘co-Activity Manager’ system [8] and the entire temporal activity
lifecycle in Laevo [11]. Similarly, Microso� Research (MSR) has
proposed a number of ACC extensions to Windows, including the
TaskGallery [20] and ScalableFabric [19] window management sys-
tems, as well as ‘Colle�a’, which is an extension of the Windows
UI that supports lightweight management of the user’s activities
through tagging [18]. On the MacOS, Giornata [22] (Figure 6)
provides support for multitasking through virtual desktop man-
agement, tagging of activities, lightweight �le management using
the desktop surface, and collaborative awareness of the co-workers
relevant to each activity.

Figure 6: Giornata for MacOS.

2.3 Automation of File and Resource
Management

Managing multiple �les and resources across multiple activities
and multiple applications has proven to be a signi�cant challenge
in all OSs. For example, keeping track of �les related to a speci�c
customer case across folders, email, applications, and cloud-based
services is inherently cumbersome. Activity-centric resource and
�le management technologies have been proposed to address these
problems and—as is evident from the magnitude of the correspond-
ing columns in Figure 3—have been central themes in ACC research.

However, even the act of managing computational activity rep-
resentations incurs some overhead. One approach that has been
proposed for further minimizing this cost (but that has been rela-
tively lightly explored, according to our review; see also Figure 3)
is in augmenting activity representations with automation to au-
tomatically handle some of this organizational work on the user’s
behalf.

For example, by logging interactions with applications used in
knowledge work (e.g., email, word processing, spreadsheets, and
internet browsers), both the UMEA [12] and TaskTracer [5] system
automatically organize resources (e.g., documents, folders, URLs,
and contacts) into computational activities. �is classi�cation is
used in, for example, �le management interfaces where an open �le
dialog box opens by default in a folder associated with the current
activity, and quick access is provided to �les most likely needed as

CACM, �? 2019, Jakob E. Bardram, Steven Jeuris, Paolo Tell, Steven Houben, and Stephen Voida

part of ongoing work. Similarly, Mylar [13] uses a degree-of-interest
model to capture activity contexts in an integrated development
environment (IDE) by monitoring the interactions of a programmer
with source code. �ese activity contexts are managed in a ’task
list’ view which can be used to �lter the IDE to only show those
elements relevant to the selected task (e.g., implementing a feature
or working on a bug �x).

2.4 Collaboration and Awareness
Collaboration is core to human activity and a number of ACC sys-
tems (39%) have targeted support for collaborative activity. Activity
sharing aims to enable people to work on the same digital activity
representations and its resources, without the need for using any
‘external’ or 3rd party collaboration tool, application, or system.
Instead, support for collaboration support is simply built into ACC
system support. Additionally, because collaboration and coopera-
tion practices di�er across individuals and teams and can change
over time, ACC systems have supported di�erent collaboration
styles, ranging from full real-time synchronous cooperation within
an activity to simpler ways of packaging and sending an activity to
other users to support asynchronous collaboration. ACC collabora-
tion mechanisms have also experimented with providing a �exible
way for people to de�ne access rights, roles, and the shared context
for each activity they are using. �ese collaborative features have
also been used to de�ne and enforce complex organizational work,
facilitating the kinds of coordination o�ered by other work�ow-
based collaborative systems.

For example, the Activity Explorer [6] and the Uni�ed Activity
Management [16] systems developed by IBM Research support the
notion of ‘activity-centric collaboration,’ which aims to support
collaboration via activity models, de�ned as a logical unit of work
that incorporates all the tools, people, and resources needed to get
a job done. In contrast to prior personal information management
systems, the IBM approach had an explicit focus on supporting
collaboration by suggesting a uni�ed activity model for business
processes across people and organizational boundaries. Activity-
centric support for collaboration was implemented as part of the
IBM Lotus Workplace groupware system. In a hospital domain, the
‘Activity-Based Computing’ (ABC) system provided support for the
extensive collaboration related to medical treatment of hospitalized
patients [4]. �e ABC system demonstrated the role of activities in
fostering both co-located and remote collaboration, and supported
scenarios ranging from a co-located team meeting between doctors
and nurses to remote video conferencing between, for example, a
radiologist in the radiology department and a physician during a
ward round.

2.5 Interactive Surfaces and Cross-Device
Interaction

Recently, we have witnessed an explosion in the variety and popu-
larity of mobile and ubiquitous computing devices such as smart-
phones, tablets, whiteboards, tabletops, and game consoles. Tra-
ditional cross-device interaction has been accomplished through
sending �les or documents from one device to another, using avail-
able on-device tools to show or use the document. However, this
‘basic’ cross-device operation does not support moving a complex

Figure 7: �e electronic laboratory workbench (eLabBench)
(from [21]).

Figure 8: ReticularSpaces: Collocated activity sharing across
multiple devices in a smart space environment (from [3]).

work context from one device to another seamlessly. In the 3rd wave
of ACC research, researchers have thus proposed that ACC can help
manage this complexity by using the notion of a device-agnostic
‘activity’ to bundle together resources accessible across multiple
devices and facilitate con�guration of these device ecosystems to
suit the needs of speci�c real-world activities.

�e ReticularSpaces system [3] (Figure 8) suggests a uniform user
interface across multiple interactive surfaces (tablet, wall, tabletop)
that allows users to access and collaborate on shared resources,
organized into activities. For example, during a so�ware develop-
ment stand-up meeting, all requirement documentation, so�ware
architecture descriptions, and source code for a particular feature
under review are available across all devices. Similarly, the Ac-
tivitySpace [10] system allows users to synchronize �les across
tablets, smartphones, and desktop devices by using the notion of an
‘activity’ as the means for switching among di�erent collections of
content. Finally, the electronic laboratory bench (eLabBench) [21]
(Figure 7) provides an example of how resources for a biology
experiment can be bundled together and made accessible on an
interactive lab bench during experimental work inside the lab.

Activity-Centric Computing Systems CACM, �? 2019,

3 OUTLOOK AND FUTURE CHALLENGES
Research on Activity-Centric Computing (ACC) has been ongoing
since the early 1980s and has achieved much in terms of demon-
strating how support for multitasking, mobility, collaboration, and
cross-device interaction can be incorporated into computing plat-
forms as well as end-user applications across di�erent domains.
Based on a thorough review of 101 papers, we found that ACC has
proposed conceptual and technological models to be�er support
window management, �le management, work�ow management,
distributed systems, interactive smart space technology, and cross-
device / ubiquitous computing. As such, ACC as a research theme,
cuts across several computer science disciplines and o�ers a poten-
tially valuable series of approaches for addressing the contemporary
and signi�cant problems of information fragmentation and infor-
mation overload.

However, our review also revealed a set of limitations to ACC.
First, most research has focused on end-user applications (45%)
and user interface management (47%), and less on more basic tech-
nologies like how to incorporate ACC into operating systems, �le
management, distributed computing, and networking technologies.
At the same time, the development of ACC applications presented
in the research literature has been cumbersome exactly due to this
lack of underlying technological support. �us, more basic research
on the lower-level technological components supporting ACC is
needed—especially investigations of how support for ACC can be
incorporated into or exposed by mainstream operating systems. As
an example, one of the most pervasive examples of this kind of miss-
ing support from our literature review relates to the need for ACC
systems to support suspension of the current activity and resump-
tion of another. Because activity models are stateful, each activity
must maintain state information in a persistent way, allowing the
state of that activity to be saved (during suspension) and restored
(during resumption) at a later time. Enabling a full-stack stateful
activity management system has proven to be one of the major chal-
lenges in ACC since this requires access to detailed runtime state
information spanning the entire computer stack; from end-user
applications to the window manager’s layout and on down to the
underlying �le, networking, and process-level state—information
that is not readily available in contemporary operating systems
(like Windows and macOS) nor from most applications.

Second, from a conceptual point-of-view, a notable barrier to the
adoption of ACC technologies is the fact that ACC systems require
either end users or ACC systems to manage the computational rep-
resentations of activities—work that is “invisibly” delegated to the
end users in current, application-centered computing environments.
�e manual management of ‘activities’—i.e., the manual creation
of a computational activity and organization of its associated re-
sources (such as �les and users)—introduces an extra overhead to
information management, similar to managing �les in a hierarchi-
cal folder structure. However, these activity representations may
more closely replicate the multifaceted clusters of digital resources,
services, and users that map to an individual’s discrete real-world
tasks, making this organizational work easier, more meaningful, or
more memorable [14] than are our current, fragmentation-prone
interfaces. An alternative approach is to liberate users from this
kind of manual custodial work by relying on content extraction and

pa�ern recognition to automatically organize computing resources
into indexed activities. �is solution also comes with a cost, how-
ever; users must give up some degree of control in the de�nition
of their digital activities, which might lead to mismatches between
computational and cognitive representations of activities. �ese
systems might also be semi-automatic, providing speci�c options
or possibilities, without being fully prescriptive. For example, the
physical location of a user and their device(s) could be leveraged
to �lter possible activities or to only show activities that were pre-
viously used at that physical location. Striking the right balance
among these approaches in future ACC systems will be essential
to encourage adoption.

�ird, despite the fact that most major computer science com-
panies (e.g., IBM, Microso�, Apple, and Google) have contributed
to research on ACC or experimented with ACC research systems,
we have still seen a relatively limited impact of this research on
the so�ware architecture of shipping consumer platforms; that
is, resource organization at the level of the operating system or
task management at the level of the window manager. Even with
nearly thirty years of research and development into the bene�ts
of ACC approaches, the application- and document-centered inter-
action paradigm continues to reign. We have found a few notable
examples of success stories: IBM has incorporated computational
activity representations into its Lotus Connections suite of enter-
prise collaboration tools; KDE’s Plasma desktop environment uses
multifaceted activity representations to enhance a typical virtual
desktop-driven computing workspace; and Mylar [13] has been
introduced as Mylyn2 in the popular Eclipse IDE as a task-focused
interface for programmers. However, for each of these success
stories, there are similar examples of systems that did not make
it into the mainstream—for example, Apple’s application-agnostic
OpenDoc platform and Microso�’s proposed (and cancelled) WinFS
relational �lesystem. �is underslines the challenges involved in
opening up and redesigning the underlying computational architec-
ture to more completely support ACC systems. And it emphasizes
the importance of clearly articulating the bene�ts that end-users
stand to gain by investing time and e�ort to learn and adopt activity-
centered interaction paradigms.

Looking forward, this review has helped us to enumerate excit-
ing open research areas within ACC. Given the explosion in the
number of devices and their heterogeneity and interconnectivity,
ACC is a strong candidate for a computing paradigm that can help
address these complex challenges in service of a more coherent user
experience. Limited research has been conducted on cross-device
management (9%) and smartspace technology (17%) in the ACC
domain, and here there is still much work to be done.

Currently, a major shi� towards cloud-based computing is taking
place and all major so�ware companies are investing in infrastruc-
tures for cloud-based computing. As we have argued and demon-
strated earlier [9], cloud-based technologies provides an excellent
platform for ACC; it provides the ability to share, distribute, and
synchronize heterogeneous resources in realtime across multiple
users, devices, and locations. However, as mentioned in the intro-
duction, the current state-of-art of cloud-based computing is to
provide services similar to local resources like cpu power, �les, and

2h�ps://www.eclipse.org/mylyn/

https://www.eclipse.org/mylyn/

CACM, �? 2019, Jakob E. Bardram, Steven Jeuris, Paolo Tell, Steven Houben, and Stephen Voida

applications. If these were aggregated into cloud-based ‘activities’,
a solid foundation for enabling ACC would be available. Recently,
Microso� have announced its ‘Microso� 365’ environment, which
have support for resource aggregation, suspend / resume, and cross-
device coordination via constructs called ‘Sets’ and ‘Graphs’, all
of which seems promising building blocks for supporting ACC. In
general, we would argue that higher-level support, such as ACC,
would be central to the success of a scalable user experience in
future development of cloud-based computing.

Furthermore, applying ACC principles, concepts, and technolo-
gies to the development of end-user applications in industry is
potentially bene�cial for many di�erent domains. �e research
literature reviewed here points out a few areas that have been well-
explored to date — information work, medical work, and so�ware
development — but many other domains would likely bene�t from
having direct computational support for domain-speci�c activities.

In summary, going forward, ACC still presents a variety of impor-
tant and challenging research topics for researchers and practition-
ers in many di�erent computing �elds—from basic infrastructure
to end-user interfaces and applications—to address.

REFERENCES
[1] Liam Bannon, Allen Cypher, Steven Greenspan, and Melissa L Monty. 1983.

Evaluation and analysis of users’ activity organization. In Proceedings of the
SIGCHI conference on Human Factors in Computing Systems. ACM, 54–57.

[2] Jakob Bardram, Jonathan Bunde-Pedersen, and Mads Soegaard. 2006. Support
for Activity-based Computing in a Personal Computing Operating System. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, 211–220. h�ps://doi.org/10.1145/1124772.1124805

[3] Jakob Bardram, So�ane Gueddana, Steven Houben, and Søren Nielsen. 2012.
ReticularSpaces: Activity-based Computing Support for Physically Distributed
and Collaborative Smart Spaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, New York, NY, USA, 2845–2854.
h�ps://doi.org/10.1145/2207676.2208689

[4] Jakob E Bardram. 2009. Activity-based Computing for Medical Work in Hospitals.
ACM Trans. Comput.-Hum. Interact. 16, 2 (June 2009), 10:1–10:36. h�ps://doi.org/
10.1145/1534903.1534907

[5] Anton N Dragunov, �omas G Die�erich, Kevin Johnsrude, Ma�hew McLaugh-
lin, Lida Li, and Jonathan L Herlocker. 2005. TaskTracer: A Desktop Environment
to Support Multi-tasking Knowledge Workers. In Proceedings of the 10th Interna-
tional Conference on Intelligent User Interfaces. ACM, New York, NY, USA, 75–82.
h�ps://doi.org/10.1145/1040830.1040855

[6] W. Geyer, M. J. Muller, M. T. Moore, E. Wilcox, L.-T. Cheng, B. Brownholtz, C.
Hill, and D. R. Millen. 2006. Activity Explorer: Activity-centric collaboration
from research to product. IBM Systems Journal 45, 4 (2006), 713–738. h�ps:
//doi.org/10.1147/sj.454.0713

[7] D Austin Henderson Jr and Stuart Card. 1986. Rooms: �e Use of Multiple Virtual
Workspaces to Reduce Space Contention in a Window-based Graphical User
Interface. ACM Trans. Graph. 5, 3 (July 1986), 211–243. h�ps://doi.org/10.1145/
24054.24056

[8] Steven Houben, Jakob E Bardram, Jo Vermeulen, Kris Luyten, and Karin Coninx.
2013. Activity-centric Support for Ad Hoc Knowledge Work: A Case Study
of Co-activity Manager. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, New York, NY, USA, 2263–2272. h�ps:
//doi.org/10.1145/2470654.2481312

[9] Steven Houben, Søren Nielsen, Morten Esbensen, and Jakob E Bardram. 2013.
NooSphere: An Activity-centric Infrastructure for Distributed Interaction. In Pro-
ceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia.
ACM, New York, NY, USA, 13:1–13:10. h�ps://doi.org/10.1145/2541831.2541856

[10] Steven Houben, Paolo Tell, and Jakob E Bardram. 2014. ActivitySpace: Managing
Device Ecologies in an Activity-Centric Con�guration Space. In Proceedings of
the Ninth ACM International Conference on Interactive Tabletops and Surfaces.
ACM, New York, NY, USA, 119–128. h�ps://doi.org/10.1145/2669485.2669493

[11] Steven Jeuris, Steven Houben, and Jakob Bardram. 2014. Laevo: A Temporal
Desktop Interface for Integrated Knowledge Work. In Proceedings of the 27th
Annual ACM Symposium on User Interface So�ware and Technology. ACM, New
York, NY, USA, 679–688. h�ps://doi.org/10.1145/2642918.2647391

[12] Victor Kaptelinin. 2003. UMEA: Translating Interaction Histories into Project
Contexts. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, New York, NY, USA, 353–360. h�ps://doi.org/10.1145/642611.

642673
[13] Mik Kersten and Gail C. Murphy. 2006. Using Task Context to Improve Pro-

grammer Productivity. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of So�ware Engineering. ACM, New York, NY, USA,
1–11. h�ps://doi.org/10.1145/1181775.1181777

[14] Alison Kidd. 1994. �e Marks Are on the Knowledge Worker. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’94). ACM,
New York, NY, USA, 186–191. h�ps://doi.org/10.1145/191666.191740

[15] Blair MacIntyre, Elizabeth D Myna�, Stephen Voida, Klaus M Hansen, Joe Tullio,
and Gregory M Corso. 2001. Support for Multitasking and Background Awareness
Using Interactive Peripheral Displays. In Proceedings of the 14th Annual ACM
Symposium on User Interface So�ware and Technology. ACM, New York, NY, USA,
41–50. h�ps://doi.org/10.1145/502348.502355

[16] P Moody, D Gruen, M. J. Muller, J Tang, and T P Moran. 2006. Business activity
pa�erns: A new model for collaborative business applications. IBM Systems
Journal 45, 4 (2006), 683–694. h�ps://doi.org/10.1147/sj.454.0683

[17] �omas P. Moran, Alex Cozzi, and Stephen P Farrell. 2005. Uni�ed Activity
Management: Supporting People in e-Business. Commun. ACM 48, 12 (Dec.
2005), 67–70. h�ps://doi.org/10.1145/1101779.1101811

[18] Gerard Oleksik, Max L Wilson, Craig Tashman, Eduarda Mendes Rodrigues,
Gabriella Kazai, Gavin Smyth, Natasa Milic-Frayling, and Rachel Jones. 2009.
Lightweight Tagging Expands Information and Activity Management Practices.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, 279–288. h�ps://doi.org/10.1145/1518701.1518746

[19] George Robertson, Eric Horvitz, Mary Czerwinski, Patrick Baudisch,
Dugald Ralph Hutchings, Brian Meyers, Daniel Robbins, and Greg Smith. 2004.
Scalable Fabric: Flexible Task Management. In Proceedings of the Working
Conference on Advanced Visual Interfaces. ACM, New York, NY, USA, 85–89.
h�ps://doi.org/10.1145/989863.989874

[20] George Robertson, Maarten Van Dantzich, Daniel Robbins, Mary Czerwinski,
Ken Hinckley, Kirsten Risden, David �iel, and Vadim Gorokhovsky. 2000. �e
Task Gallery: A 3D Window Manager. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, New York, NY, USA, 494–501.
h�ps://doi.org/10.1145/332040.332482

[21] Aurélien Tabard, Juan David Hincapié-Ramos, Morten Esbensen, and Jakob E
Bardram. 2011. �e eLabBench: An Interactive Tabletop System for the Biology
Laboratory. In Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces. ACM, New York, NY, USA, 202–211. h�ps://doi.org/10.
1145/2076354.2076391

[22] Stephen Voida, Elizabeth D Myna�, and W Keith Edwards. 2008. Re-framing
the Desktop Interface Around the Activities of Knowledge Work. In Proceedings
of the 21st Annual ACM Symposium on User Interface So�ware and Technology.
ACM, New York, NY, USA, 211–220. h�ps://doi.org/10.1145/1449715.1449751

https://doi.org/10.1145/1124772.1124805
https://doi.org/10.1145/2207676.2208689
https://doi.org/10.1145/1534903.1534907
https://doi.org/10.1145/1534903.1534907
https://doi.org/10.1145/1040830.1040855
https://doi.org/10.1147/sj.454.0713
https://doi.org/10.1147/sj.454.0713
https://doi.org/10.1145/24054.24056
https://doi.org/10.1145/24054.24056
https://doi.org/10.1145/2470654.2481312
https://doi.org/10.1145/2470654.2481312
https://doi.org/10.1145/2541831.2541856
https://doi.org/10.1145/2669485.2669493
https://doi.org/10.1145/2642918.2647391
https://doi.org/10.1145/642611.642673
https://doi.org/10.1145/642611.642673
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1145/191666.191740
https://doi.org/10.1145/502348.502355
https://doi.org/10.1147/sj.454.0683
https://doi.org/10.1145/1101779.1101811
https://doi.org/10.1145/1518701.1518746
https://doi.org/10.1145/989863.989874
https://doi.org/10.1145/332040.332482
https://doi.org/10.1145/2076354.2076391
https://doi.org/10.1145/2076354.2076391
https://doi.org/10.1145/1449715.1449751

	Abstract
	1 Introduction
	2 A Review of ACC Systems
	2.1 Multitasking
	2.2 Window Management in Desktop Interfaces
	2.3 Automation of File and Resource Management
	2.4 Collaboration and Awareness
	2.5 Interactive Surfaces and Cross-Device Interaction

	3 Outlook and Future Challenges
	References

