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O Freunde, nicht diese Töne! Oh friends, not these sounds!
Sondern laßt uns angenehmere anstimmen, Let us instead strike up more pleasing
und freudenvollere. and more joyful ones!

Freude! Joy!
Freude! Joy!

Freude, schöner Götterfunken Joy, beautiful spark of divinity,
Tochter aus Elysium, Daughter from Elysium,
Wir betreten feuertrunken, We enter, burning with fervour,
Himmlische, dein Heiligtum! heavenly being, your sanctuary!
Deine Zauber binden wieder Your magic brings together
Was die Mode streng geteilt; what custom has sternly divided.
Alle Menschen werden Brüder, All men shall become brothers,
Wo dein sanfter Flügel weilt. wherever your gentle wings hover.

Ode to Joy, von Schiller and Beethoven
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Abstract

By expanding the limit of miniaturisation to achieve superior materials and

devices properties, nanoscience and nanotechnology create new challenges to un-

derstand materials behaviour at the nanometre length scales. New phenomena re-

quire matching tools that in turn open new investigation perspectives, themselves

launching platforms for new discoveries. Amongst the vast realm of nanoresearch,

thermal properties have gained interest in the past decades due their crucial im-

portance in technological developments, ranging from mainstream semiconductor

microelectronics to cutting edge quantum technologies.

Whereas major standard techniques to measure thermal properties are not

efficient for studying nanosstructured materials, Scanning Thermal Microscopy

(SThM) offers both sensitivity to nanoscale thermal transport and a spatial reso-

lution down to a few nanometres. This thesis develops fundamental aspects of the

SThM technique by increasing its reproducibility and developing an experimental

and analytical framework to analyse experimental data.

These developments are then applied to produce quantitative measurements of

a wide range of materials from vertically aligned carbon nanotubes to metal covered

block copolymers. In brief, we probed the 3D thermal properties distribution

of isotropic and anisotropic materials, such as optoelectronic thin film. We also

measured low dimensional systems of 2D materials heterostructures from franckeite

and graphene on MoS2. Thermoelectric properties of graphene nanoconstrictions

are unveiled using a combined three-terminal approach. Additionally, cryoSThM

is introduced as a new tool with the ability to measure at temperatures below

150K.

The research presented in this thesis has a two-fold impact. On one hand,

major technical SThM challenges are answered and efficient solutions developed.

In this respect, cryoSThM and 3D nanothermal probing of materials open radically

new routes for further investigations. On the other hand, new insights are gained
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from the extraction of materials properties and the observation of new phenomena.

The knowledge gained through this research leads to innovative keys to develop

applications in various fields, ranging from heat management to thermoelectric

energy conversion.
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1. Outline and motivations

Very few methods are available to investigate nanoscale heat transport. Moreover

these methods often lack reliability, spatial resolution or both. Even simple geome-

tries such as thin films on substrate present many challenges to traditional tech-

niques for thermal conductivity measurements. As the need to study nanothermal

properties creates challenges on both scientific and technological sides, there is a

pressing demand for a suitable tool able to address these questions. While Scanning

Thermal Microscopy (SThM) was first developed at the microscale, nanoprobes are

now able to measure local thermal properties down to few nanometers. However,

many open questions remain on both the interpretation of SThM measurements

and their ability to quantify nanomaterials properties.

Achieving stable and reproducible results is crucial in any method. The number

of influencing parameters in the SThM nanothermal system create many uncer-

tainties and renders experiments difficult to compare. Even though qualitative

results are easily obtained, as with many other scanning probe microscopes, there

is a need for quantitative information which SThM struggles to provide. Oppor-

tunities are almost limitless in research and developments for SThM applications

but these hurdles create barriers to its implementation.

The main goal of this thesis is to create and demonstrate a comprehensive

framework in approaching SThM measurements combining both analytical and

experimental developments of SThM systems. This is realised through three ma-

jor achievements. The first combines SThM with a nano-cross-sectioning tool

allowing measurements of materials nanothermal transport in 3 dimensions. The

second creates a temperature controlled cell for stable and reproducible measure-

ments. The last develops a novel measurement setup enabling to study nanoth-
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ermal transport at cryogenic temperatures. The combination of these approaches

achieves quantitative measurements of various nanostructured materials.

While chapter 2 reviews the literature regarding the main concepts used in

this thesis, namely nanothermal transport, SThM principles and thermal resis-

tance modelling, chapter 3 exposes comprehensive frameworks essential to SThM

quantitative measurements. We then apply these frameworks in chapter 4 and ex-

tract thermal properties quantitatively from measurements of standard materials

and novel nanomaterials. Chapter 5 further develops ideas laid down in chapter

4 and adds a third dimension to the map by 3D probing material properties. Us-

ing concepts and systems developed before, we present in chapter 6 quantitative

SThM measurements of low dimensional materials such as carbon nanotubes and

2D materials. Finally, chapter 7 takes another angle and looks at thermometry

of graphene thermoelectric devices. This last chapter opens new areas for SThM

exploration of novel physical phenomena.
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2. Background review

2.1 Introduction

The quest of nanotechnology can be divided in two essential parts: the continuing

down sizing of the systems of interests on one hand, and the hope of discovery

of novel properties appearing at the nanoscale on the other hand. Both trends

coexisted since the early times of nanoscale research with, for example, the inven-

tion of Scanning Tunneling Microscopy (STM)[1], which enables materials study

and manipulation at the atomic level, and the discovery of electronic properties of

silicon paving the way for our contemporary computer era.

Since then, many techniques were developed both for the fabrication and the

characterization of material and devices properties. They highlighted the enor-

mous potential of materials when prepared in a particular configuration. A major

branch of those techniques is formed by the scanning probe microscopy (SPM).

Atomic force microscopy (AFM)[2], Scanning Thermal Microscopy (SThM)[3] and

Ultrasonic Force Microscopy (UFM)[4] will be used in our work.

Although, as confinement and size reduction of materials and devices opened

numerous possibilities and created ever smaller or faster computers, limitations

were also discovered. Heat management, electrical conductivity or band gap limits

are examples of issues facing the future development of electronics. This leads

to the search for new materials, such as two-dimensional (2D) materials, which

have the advantages of being atomically thin and robust, and promises of tunable

properties arising from the diversity of 2D materials present in nature or that can

be synthesised.
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Major issues stall the development of nanoscale systems due to a lack of un-

derstanding of thermal phenomena. Hot spots creation in transistors arrays[5], or

reduction of the thermal conductance in nanostructured materials[6] are examples

that limit further developments and improvements of device efficiency. Theoretical

models are often limited as the ballistic nature of thermal transport needs to be

accounted for and the diffusive approximation is not verified[7].

To address these challenges, a tool was developed based on the generic AFM

principles[8]. The Scanning Thermal Microscope provided the ability to resolve

thermal properties with high sensitivity at high spatial resolution. In many cases,

this high spatial resolution is needed as nanostructures are below resolution (the

diffraction limit) of standard optical techniques[8]. Also, this nanostructuring of

matter creates new phenomena difficult to assess with other techniques.

This literature review can be divided in three interlinked parts. The first part

focuses on heat transfer at the nanoscale and how it differs from the macroscale.

The second one deals with Scanning Thermal Microscopy and explains SThM

measurements. Finally, we review two approaches to thermal resistance modelling

that will be used in this thesis: Finite Element Analysis (FEA) and analytical

expressions of the thermal spreading resistance.

2.1.1 Existing techniques and limitations

In order to gain insights about the heat transport properties of a sample, several

techniques are available and are usually based on a temperature depend phenom-

ena. Two categories can be generally described: electrical and optical methods.

We review some most common techniques and expose their limitations.

Electrical methods Using a microfabricated sensor, such as gold lines or Pt resis-

tors, precise measurements can be performed on a sample at any time. The sensor

can also be buried within the architecture, if needed, such as in packaged devices.

Fabrication processes allow sensors to be very localized or, if necessary, global.

However, detailed pictures of the temperature cannot be obtained and in the case
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that heat sources are smaller than the sensor dimensions, it does not provide a

clear understanding of the temperature distribution of the device. Furthermore,

embedding sensors within or on top of a sample requires extra fabrication processes

which can be costly, time consuming and often impossible to realise.

Optical methods Optical techniques can provide a more versatile tool for ther-

mometry if only surface and near-surface properties are of interest. Three cate-

gories can be drawn[9]: time-domain techniques, frequency-domain techniques and

spectroscopy techniques. Time-domain techniques include notably time-domain

thermoreflectance (TDTR) and the laser flash method. Using TDTR, Cahill et

al. measured interface thermal conductance between dissimilar materials[10] and,

more recently, the thermal conductivity of intercalated molybdenum disulfide thin

film[11]. The laser flash method is usually used for bulk materials[12] as small

thicknesses and interfaces are more challenging for this method. However, it can

be applied to nanoengineered materials such as thermal interface materials using

graphene-polymer composite[13].

Frequency-domain techniques include numerous methods amongst which frequency-

domain thermoreflectance (FDTR) which can be easier to implement than its time-

domain counter part [9] and photothermal emission method. FDTR was used when

Malen et al.[14, 15] investigated phonon mean free path contributions to thermal

conductivity in crystalline semiconductors. Using the photothermal method, Chen

et al.[16] introduced a microscopy technique based on plasmon generation. Their

setup allows high temporal resolution (10 µs).

Many other optical techniques were developed and this space is not the place

to deeply review each of them. We mention a last one often encountered in the

literature: Raman thermography. The basic principle uses the dependence of the

scattered photon spectra on the crystal temperature. Balandin et al. used Raman

techniques to measure thermal conductivity of 2D materials[17, 18]. One of the

drawbacks of using Raman for thermal properties measurements is the need to

know the absorbed power in the sample. This often limits its use to suspended
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materials as in this case heat flow can be considered in only two dimensions[19].

All optical techniques suffer a major hurdle which is the spatial resolution

limitation due to diffraction[20]. Optical methods are under the Rayleigh criterion

constraint (λ/D, where λ is the wavelength and D the characteristic size of an

object to observe) which typically doesn’t allow objects smaller than 100 nm to be

resolved. This issue is easily solved when using Scanning Thermal Microscopy as

the resolution is typically limited by the size of the solid-solid contact and therefore

very fine structures can be imaged. Also, SThM does not require a long fabrication

process compared to electrical methods and is suitable for many sample types. As

we will show in this thesis, it provides a versatile solution for thermal analysis such

as local temperature or thermal conductance. Nevertheless, as is often the case,

the best approach is to combine several techniques and correlate their results as for

example in Gehring et al.[21] where graphene-fullerene thermoelectric nanodevices

were investigated both using SThM, electrical and analytical methods.

2.2 Heat conduction at the nanoscale

If, somewhere in space, there exists a temperature difference between a lower and

higher temperature spots, energy transfer will spontaneously occur. This energy

transfer is the subject of heat transfer physics that aspires to describe in detail all

the transport processes from this temperature difference. Heat transfer is possible

through many mechanisms and media. In macroscopic scales, it is often consid-

ered that conduction transports energy through lattice vibrations or electrons in

solids. In liquids, it is convection that transports heat through fluid movement.

Finally, heat can be transfered by radiation with photons. These phenomena have

been widely studied and are well described in textbooks for macroscopic scales[22].

When the system dimensions are reduced, more mechanisms need to be considered.

Also, laws governing macroscopic scales are not necessarily valid when reaching mi-

croscopic and nanoscopic scales. Near-field radiation can increase the heat transfer

by orders of magnitude[23] compared to far-field. In fluids and solids, conduction
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enters different transport regimes and can become ballistic. However, there is no

general single limit for the different regimes as they are dependent on materials

properties and the temperature. In this section we briefly review how conduction

changes at the nanoscale and upon which conditions. We limit this review to heat

conduction in solid materials as it is the most relevant for the rest of this study.

2.2.1 Diffusive transport and its nanoscale limit

At the macroscale, thermal conduction is governed by Fourier’s law which can be

written for an homogeneous medium as[24]:

φ = −k∇T (2.1)

where φ is the heat flux, k the thermal conductivity and T the temperature. For

a transient temperature distribution, one can derive the following equation

∇(k∇T ) + q̇ = ρcp
∂T

∂t
(2.2)

where q̇ is the volumetric thermal energy generation rate, ρ is the density and

cp the heat capacity. If there is no internal energy conversion and if the thermal

conductivity can be assumed to be temperature independent, we obtain at steady

state:

∇2T = 0 (2.3)

which is known as Laplace’s equation. With sufficient initial temperature distribu-

tion and boundary conditions, it can be solved both analytically for simple cases

and numerically in more complex geometries.

These equations are under the assumption of local equilibrium and allow the

definition of temperature

T =

(
∂U

∂S

)
V,N

(2.4)

as the partial derivative of the system internal energy Uwith respect to entropy
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S at constant volume V and number of particle N . When dealing with small

systems, in time or space, Fourier’s law is invalidated as non-equilibrium processes

are involved. For such systems, the Boltzmann transport equation (BTE) describes

transport phenomena at small length scales and time scales. In fact, Fourier’s law

and macroscopic equations can be derived for the BTE. A detailed analysis of

transport equations would be beyond the scope of this work.

Heat and temperature are local quantities accounting for the energy of a small

volume. When letting this local energy reach equilibrium, it needs to dissipate

through the media. In condensed matter, this is generally realised via two energy

carriers, phonons and electrons[22]. Phonons are quantized modes of vibrations.

Particularly evident in crystalline solids, heat is transferred through atomic vi-

brations. Atoms oscillate around their equilibrium position in the lattice. As

we will see, at the macroscale, phonons have a particle-like behaviour and heat

is transfered as a diffusion process involving many scattering events. At micro

and nanoscales, phonons behave as waves and can travel ballistically across the

media as scattering tends to be diminished. Similarly, in metals, heat conduc-

tion is realised mostly with electrons. Phononic conduction also contributes but

generally electronic conduction dominates[22]. In metals, the electronic thermal

conductivity is generally obtained from the Wiedemann-Franz law relating electri-

cal conductivity σe to thermal conductivity ke[22]

ke = NLσeT = 2.442×−8 σeT (2.5)

where NL is the Lorenz number, supposed to be constant for metals. However this

relation doesn’t hold when low temperatures are reached.

When considering nanoscale systems, different mechanisms have to considered

compared to large scale objects[6]. As the system sizes are reduced, boundaries

start to dominate due to carrier collisions with interfaces. If a heat generating

device is sufficiently small, it can experience an extra resistance arising from the

phonon’s density variation in the device. Finally, nanostructuring materials alters
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their phonon spectra. All these fundamental differences play a key role in under-

standing the temperature distribution in electronic devices and for developing new

technologies.

When phonons are treated as quasi-particles, a mean free path (MFP) is asso-

ciated with the thermal conductivity. In a bulk medium, assuming that all modes

carry the same energy (grey medium assumption)[15], we have:

k =
CvΛ

3
(2.6)

where C is the specific heat per unit volume and v is the speed of sound. In the

bulk, Λ depends on various intrinsic phenomena such as phonon-phonon scattering

and impurity scattering. In a real crystal, phonon dispersion needs to be taken into

account and it gives a more realistic MFP as it considers the frequency dependence

of the specific heat and the group velocity[22]:

k =
1

3

∑
p

∫
C(ω)v(ω)Λ(ω)dω (2.7)

A key number for estimating limits to the diffusive approximation is the ratio

of the phonon mean free path Λ to a characteristic physical length L, the Knudsen

number: Kn = Λ/L. This length depends on the system and can be the film

thickness for a thin film. When Kn < 1, diffusive transport still holds but when

Kn > 1 ballistic contributions need to be included, as schematised on Fig. 2.1.

Two physical effects that will be observed and discussed in this work affect the

Knudsen number: the size effect on the MFP and the nanoscale size of the heat

source. In the first case, size reduction effectively increases phonon scattering. This

is typically observed as a reduction in thermal conductivity. As more scattering

events occur, less phonon modes are available to carry heat away and therefore

thermal conductivity follows. Fig. 2.1a shows the thermal conductivity reduction

as the film thickness is reduced[25], a phenomena observed in nanostructured heat

sources such as nanodevices. If the device size becomes comparable or smaller than
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the substrate phonon MFP, heat spreading is less efficient. This can lead to device

failure and is therefore of great interest in device fabrication. One can think of

this effect as a gas flowing through a constriction. Prasher[26, 27] modelled heat

conduction through a nanosized constriction with such a model. As the heat source

size is similar to the phonon MFP, less modes become populated or it becomes

harder to populate various modes and this effectively creates a resistance.

Figure 2.1: Effect of nanostructuring on thermal transport: thermal conductivity
of silicon as a function of film thickness[25] and diffusive to ballistic transition as
heater size is reduced[28].

Understanding the contribution to conductivity of the various phonons is there-

fore crucial. For example, in silicon, long MFP (> 1µm) contribute mostly to ther-

mal conductivity[15]. Therefore, nanostructuring breaks down long MFP phonons

while short MFP are unaffected. Exploring the thermal conductivity contribution

of the different MFP lengths then helps in understanding the thermal conductiv-

ity reduction of nanostructures[29]. At the nanoscale, Fourier’s law overestimates

thermal conduction when the heat source is smaller than the MFP. In this case, the

characteristic size to estimate the Knudsen number is the dimension of the heat

source. Hoogeboom et al.[28] unveiled a new transport regime using multiple heat
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sources. They showed that when heat sources are closely arranged, they can have

a diffusive-like transport as long MFP phonons interact as if they were coming

from the same heat source (Fig. 2.1b).

More generally, as explained by Siemens et al.[30] a reasonable correction of

Fourier transport is obtained by summing diffusive and ballistic components. In

fact, this can be thought as having a geometrical transformation by adding length

and MFP L→ L+Λ. Similarly, Prasher[27] derived a useful model including both

diffusive and ballistic components of a constriction resistance:

Rc =
1

2ka

[
1 +

8

3π
Kn

]
(2.8)

where k is the thermal conductivity of the material and a the constriction dimen-

sions.

2.2.2 Transport at interfaces

As two media are joined, an interface is created. Interfaces give rise to various phe-

nomena and are typically obstacles for transport, both electrical or thermal. The

study of thermal conductance at interfaces began with experiments on superfluidic

helium. Kapitza[31] in 1941 measured a thermal resistance between helium and a

solid, the Kapitza resistance. Later, models were developed to explain this resis-

tance and it was understood that it would exist between any materials. Precise

control of thermal conductivity was achieved by nanostructuring interfaces to act

as phonon-scattering barriers[32]. Many models and experiments were reported,

however no common framework has appeared to commonly describe thermal trans-

port at interfaces. One of the experimental challenges is to create well-controlled

experiments as many parameters enter into play. For example, the roughness down

to the atomic level is very difficult to know precisely. Also, the crystalline orienta-

tion of the two contacting surfaces cannot be controlled with sufficient certainty.

Similarly to optics, where interfaces refract incoming rays, the difference in

densities and sound speeds creates a boundary for the propagating heat carriers.
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Two models are generally used to represent an interface between dissimilar ma-

terials, the acoustic-mismatch model (AMM) and the diffusive mismatch model

(DMM). The AMM assumes that there is no scattering at interfaces and gives a

phonon transmission coefficient from a material A to a material B[33]:

tab =
4ZAZB

(ZA + ZB)2
(2.9)

where the acoustic impedance is defined as Z = ρc with ρ and c the density and

sound speed, respectively. Therefore, good thermal propagation over an interface

between two materials requires the speed of sound in both material to be similar

either side of the interface[34]. If the two materials are identical then tab = 1 which

doest not represent the system correctly. In the DMM, the assumption is that

incoming phonons scatter at the interface independently of where they are coming

from. The probability of being reflected or transmitted across the interface then

depends on the available phonon density of states on the two sides of the interface.

Generally, AMM is valid for long wavelength phonons while DMM is correct at

short wavelengths[35].

2.3 Scanning thermal microscopy (SThM)

We saw that nanoscale heat transfer presents many challenges for both theory and

experiments and therefore its study is key to deepen our understanding of physical

systems as well as to solve current issues face in technological applications. A

promising tool for investigating nanoscale heat transfer was developed in 1986

even before the invention of the AFM[3]. First thought as a profiler using heat

flux to map a surface topography, similarly to a STM, it rapidly attracted interest

for its local heating capabilities. We first review in this part the development and

principles of Scanning Thermal Microscopy. Then we compare different modes of

operations of the SThM set up including different environment conditions. The

tip-sample system is then described with the various heat transfer mechanisms
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at stake. Finally, before addressing the challenge of what SThM measures, we

review different methods for quantitative nanothermal measurements. However

beforehand, we expose the general principle of scanning probe microscopy.

2.3.0 Scanning probe microscopy

To overcome the optical tools limits, the diffraction limit, a new tool needed to

be developed. This was realised by Binning and Rohrer[1] in 1982 when they

invented the Scanning Tunneling Microscope (STM) and in 1986 were awarded

the Physics Nobel prize for the invention. The same year, Binning, Quate and

Gerber[2] developed the Atomic Force Microscope (AFM). The STM relies on

electron tunnelling between a tip and a surface. This tunnelling current is kept

constant by varying the tip-sample distance. The sample surface therefore needs to

be conducting. The main advantage of AFM is to remove this necessity as instead

of tunnelling current, interatomic forces are kept constant as we will explain later.

Since these early inventions, many scanning probe microscopy (SPM) tech-

niques were developed. Each technique is able to probe on the nanoscale a par-

ticular property of a system, such as electrostatic forces, magnetic forces, thermal

conductance, stiffness, etc. The basic principle of each SPM technique depends

on the feedback mechanism it uses. In this thesis, mainly contact mode AFM

was used. Contact mode relies on interatomic forces to keep the tip-sample forces

constant. Figure 2.2 shows the tip-sample forces as a function of separation dis-

tance. When the tip-sample distance becomes very small, the interaction forces

and capillary forces overcome the spring resistance of the cantilever and it snaps-in

contact. When the probe pulls out, the attraction forces are generally bigger and

therefore a higher separation is needed to break contact.
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Figure 2.2: Schematic tip-sample forces as the probe is approached (blue) to and
retracted (red) from the sample. When the tip is in contact with the sample, it
obeys to Hooke’s law.

In contact mode, the probe-sample distance is slightly varied to keep the force

constant via a feedback loop on the separation. For example, let’s assume the

probe is moving on the sample surface. If a topographical feature approaches

the tip apex, interatomic forces will create first attraction and then repulsion

forces. This causes variations on the probe bending and can be observed through

the deflection of a laser beam on the back of the cantilever. This deflection is

monitored throughout the scanning process. If it changes slightly, the feedback

mechanisms will increase or decrease the tip-sample distance to maintain the same

deflection signal.

An example of SPM technique resting on the contact mode principle is the

Ultrasonic Force Microscopy (UFM) that will be used in the next chapters. UFM

allows nanoscale mapping of local material stiffness variations[4, 36–38]. This tech-

nique uses the same feedback mechanisms as regular contact mode AFM. How-

ever, the sample is oscillated vertically at very high frequencies (>4MHz) through

a piezoeletrical sample holder (see Fig. 2.3). This creates a vertical displacement

from a few angstroms to a few nanometers. The cantilever cannot follow such high

frequency modulation and therefore remains stationary slightly above the sample
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surface. As such, UFM is a quasi-non contact technique and it was shown that

ultrasonic excitation induces a high reduction in friction forces[39].

Figure 2.3: Schematic of the UFM operation principles. The sample is oscillat-
ing vertically at ultrasonic frequencies by a piezotransducer and the response is
measured in the laser deflection signal.

2.3.1 History and principles of SThM

To overcome the STM limitation requiring an electrical conductive surface, several

techniques were developed using different physical mechanisms to map a surface

topography. The first SPM using heat as interacting agent between the probe and

the sample was developed by Williams and Wickramasinghe[3]. The method used a

heated thermocouple sensor as a nearfield noncontact probe. When the tip-sample

distance is changing, the heat flux changes as well and the distance is rectified to

maintain the same heat flux. Thanks to the low air thermal conductivity compared

to solid materials, this method was possible and almost independent on the sample

thermal conductivity. We highlight that the technique didn’t require a laser for the

feedback. Later, using a similar system, the same group reported imaging thermal

conductivity contrast using temperature dependence of the contact potential of

Kelvin Probe Microscopy[40]. Combining AFM and a temperature sensor, today’s

SThM was born.

An SThM consists generally of the following parts[41] (see Fig. 2.4):

• a sharp probe acting as a temperature sensor;
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• a heat source either embedded in the probe itself, external from electromag-

netic radiation or part of the sample itself (e.g. a microscale heater);

• a probe-sample force transducer such as a cantilever;

• Feedback systems for the force and/or the thermal probe.

Figure 2.4: Standard SThM components using the AFM force feedback loop for
positioning and a thermal control unit, usually composed of a Wheatstone bridge,
for measuring the thermal probe electrical resistance[8].

Later, various thermal probes were developed, giving birth to different trends

of SThM practice depending on the temperature dependence phenomena used for

probing heat transfer. Four probes categories can be outlined: thermocouple,

resistive,thermally expansive and fluorescence based[8, 42]. We quickly present

the first three catergories. Also, we note that recently a cryogenic sensor based on

a superconducting quantum interference device (SQUID) was introduced[43].

Thermovoltage probes

Thermocouple probes are based on thermoelectric principles for the determination

of the sensor temperature. Different methods are possible. For example, Sadat

et al.[44] used the creation of a junction between a Pt tip and a sample to map

16



the temperature field of a metallic surface. However this requires conductive sur-

faces.Therefore, a thermocouple junction is usually created at the tip apex. For

example, a gold-palladium[45] junction or gold-chromium[46] were reported. The

main advantage of these probes is the proximity of the sensor with the sample. This

proximity enabled measurements of enhanced radiative transport in the extreme

near field[23].

Resistive probes

Quickly after the first SThM developments, resistive probes appeared[47]. The

Wollaston wire probe[41] has been attractive for many years thanks notably to its

electrical and mechanical robustness. However, with the rise of SThM applications

in nanosciences, it could not be used for lateral resolution below ∼ 1 µm due to

its large active area.

All resistive probes operate on a similar principle of temperature dependence

of the electrical resistance of a sensor:

Rp(T ) = Rp0(1 + α(T − T0)) (2.10)

where Rp0 is the electrical resistance of the probe at a reference temperature T0

and α is the temperature coefficient of the electrical resistance. Therefore, the

resistive element can serve as just a sensor in passive mode for thermometry or as

a heater/sensor in active mode for thermophysical properties measurements. We

develop details of the passive and actives modes in the following section.

In this work, all experiments were performed using resistive probes. Therefore,

we develop the two types of probes which were used, the palladium probe or KNT

probe and the doped silicon probe.

Palladium probes Palladium probes consists of a silicon nitride cantilever (for-

merly silicon oxide)[48] with gold pads and contacts leading to two palladium

films joining at the tip end (see Fig. 2.5a). Thanks to its tall triangular shape
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tip (10µm), the cantilever is partially decoupled from the sample. Also, thanks to

its design, most of the heat is generated at the tip, it allows operation in ambient

conditions. This is an advantage compared to the doped silicon as we will see.

Finally, its 50 nm radius of curvature and relatively fast time response (few tens of

µs) have made this probe attractive and widely used. However, as we will develop

in chapter 3, a comprehensive model is required to fully account for the dimension

of the tip.

Limitations arise from its electrical capabilities. Electron migration limits the

maximum current that the palladium film can sustain to around 1.5 mA [48].

Higher currents lead to resistance drift and ultimately burnt films as seen in figure

2.5b. Also, the cantilever being made of gold films on silicon nitride create an

effective bimorph because of the different thermal expansion coefficient of the two

materials. Variations of the surrounding temperatures change the laser deflection

when used in AFM configuration. New probe designs were developed to counter

this effect using a new geometry of the cantilever[49].

Figure 2.5: (a) SEM image of the KNT probe[8] with the Pd film joining at the
tip end with an apex radius of 50 nm and (b) Burnt KNT probe after excessive
current was applied to the Pd film.

Doped silicon probes Initially designed by IBM for nanolithography purposes

such as high density data storage, the cantilever is made of two highly doped Si

legs connected at their end to a low doped resistive region (see figure 2.6). Using

a similar fabrication process to regular AFM probes, the tip placed below the
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resistive element has a conical shape (around 5 µm high). Its apex radius can

reach 10 nm. Unlike for the palladium probe, the maximum currents that the

doped silicon probe can sustain are much higher and this leads to high excess

temperature, more than 150 K according to the manufacturer. However, at high

current, the resistance change is not linear any more and second order corrections

need to be taken into account.

Furthermore, the sample is separated from the heating/sensing region by the

conical tip which is highly thermally resistive due to its sharpness. Therefore, when

used in ambient conditions, the effective volume probed is made of a much bigger

volume than the one just below the apex[50]. Vacuum environment is essential for

using these probes in SThM at high resolution.

Figure 2.6: SEM of the doped silicon probe with high doped, low electrical
resistance, Si regions and a low doped, high electrical resistance, Si implant used
as a heater.

Thermal expansion

A last category of SThM uses thermal expansion for monitoring heating processes.

Invented slightly after the first SThM developments by Majumdar et al.[51, 52], it

monitored the deflection of an standard AFM probe when an embedded resistor

was heated by Joule heating. Later, thermal expansion was implemented using an

infrared beam where generally the laser source is pulsed and therefore generates
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a heating oscillation within the sample material. Creating a thermal expansion

movement, this oscillation can be detected by the AFM probe deflection[53]. We

note that this technique also enables spectroscopic measurements of a sample[54]

for example for chemical and biological investigations.

Thermal expansion SThM can also rely just on the probe itself when two metals

are used for the cantilever. The different thermal expansion coefficients can create

significant bending of the cantilever which in turn can be detected by regular AFM

detection[55]. Because the cantilever bending acts as a sort of mechanical amplifier,

very small temperature changes can be detected, as small as 10−5 K[56]. King

and Pop et al. used thermal expansion SThM to detect thermoelectric effects in

nanodevices such as graphene[57], carbon nanotube[58], and memory devices[59].

2.3.2 Basic operation possibilities

As all the following work has been performed using resistive probes, we explain

here the methodology commonly used in SThM setups. Traditionally, the resistive

probe is part of a resistor bridge, e.g. a Wheatstone bridge (see figure 2.7). This

configuration allows the detection of small resistance variation. Different bridge

balance conditions are possible through a parallel variable resistor (Re on the fig-

ure). The bridge can be balanced when power is applied to the probe or the bridge

is balanced at low power. Both DC and AC operations are possible. However, AC

setups are believed to be more sensitive, have lower drift and smaller uncertain-

ties[60]. AC measurements can be performed with the 3-ω method[61, 62] where

the third harmonic of the bridge output can be shown to directly relate to the

probe self-heating and therefore the heat losses[63].
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Figure 2.7: Typical Wheatstone bridge for a SThM probe. Ra and Rb are fixed
resistors and Re is variable to balance the probe resistance. The bridge is biased
by Vin and the bridge output is the difference between A and B.

Three typical applications can be highlighted: thermometry, thermal conduc-

tivity/conductance characterization and for local heating purposes[8]. In all these

applications and for most SThM setups, the probe-sample system is similar (see

figure 2.8). In a common situation the microscope temperature Tm and the sample

temperature Tsample are equal. Therefore, when some heat Q is provided at the

sensor, two heat channels are possible: through the cantilever thermal resistance

Rp and through the tip to the sample via the tip-sample resistance Rts. We de-

velop further the different physical mechanisms for heat transfer between the tip

and the sample (see section 2.3.3).
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Figure 2.8: Schematic of the probe-sample system. Some heat Q is supplied
at the sensor which is at Tsensor. Sample and microscope are at Tsample and Tm,
respectively. Heat can flow through the cantilever thermal resistancce Rp and
through the tip-sample thermal resistance Rts.

Thermometry

For thermometry application, Rts is a significant unknown as it can be difficult to

estimate and measure. It also suffers from artefacts such as topography-related

contrast[64] which arise due to modulation of the effective probe-sample contact

area. In most cases, Rts needs to be calibrated and a calibration factor is applied

to extract the sample temperature Tsample such as in Kim et al.[65] even when the

sensor is in direct contact with the sample.

To overcome this limitation, different methods were developed: the null-point

method[66] and the dual-sensing technique of Menges et al.[67]. The null-point

method, which has the advantage of being applicable in air, is based on a double

scan approach [68, 69]. The first scan is performed out of contact immediately

before the contact and the second scan is in contact with the sample (see figure

2.9).
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Figure 2.9: Null-point method principles[68]. Two measurements are performed
one just before contact and one in contact. This allows to eliminate the parasitic
air heat transfer, Qair, contribution and measure sample-tip heat transfer, Qts.

Similar to the null-point method, Menges et al.[70] have mapped the temper-

ature of a silicon nanowire by a double scan technique with a first scan at room

temperature and a second one with the nanowire heating the sample. Modulating

the temperature of the sample enables the determination of both the thermal resis-

tance and the temperature of the sample. They further improved their technique

by applying an AC bias creating an oscillating temperature distribution and using

lock-in detection at the bias frequency, they achieved 7 mK resolution [67, 71].

Thermal conductance measurements

When the sensor is heated, the heat flux to the sample can be measured. However,

the sample temperature is often assumed to be equal to the heat sink temperature.

It was shown that this assumption holds for high thermally conductive materi-

als[50] but, for lower ones, it might not be the case, especially when measuring

in ambient conditions. For example, polymers get heated by the probe before it

enters into contact.

SThM can be a powerful tool to investigate heat transfer in nanostructures.

Thin films on substrate [72–74] or even 2D materials[68, 75, 76] have been inves-

tigated. Complex structures can also be scanned as long as the surface is smooth

enough to avoid dominance of topography-related artefacts[77–79].
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Local heating element

A third application uses SThM in active mode to create a local temperature varia-

tion. Most uses reported are for phase change temperature such as glass transition

temperature or melting temperature of polymers[41, 80]. Lee et al.[81] used a

thermocouple probe to induce local heating in a Si p-n junction and map with

nanoscale resolution the Seebeck coefficient. We will show in chapter 7 similar

measurements using the SThM as a local heating element allowing to measure

thermoelectric effect in graphene constrictions.

Environments

These modes of operations have been reported in various environmental conditions.

Aside from ambient air conditions, pressure dependence has been investigated[82]

as well as the impact of humidity[83] and pressure[84]. Vacuum and high vacuum

SThM have also been developed. Vacuum operations are usually more quantifiable

as both liquid meniscus and air conduction are removed therefore increasing the

thermal and spatial resolutions. Kim et al. used an ultra-high vacuum technique

and obtained 15 mK temperature resolution and 10 nm spatial resolution.

Under liquid immersion, SThM has also been demonstrated. A liquid environ-

ment provides very gentle scanning and is therefore suitable for soft materials such

as biological samples[85]. Forces between the probe and the sample are about 10

times smaller than in air[86]. Aigouy et al.[87] developed a setup working in liquid

(70% water and 30% glycerol) using a fluorescence probe to monitor self-heating

of a nickel microheater. This technique thus requires an active sample which limits

its uses. More recently, Tovee et al.[88] designed an immersion SThM (iSThM)

working with a resistive probe. The design is shown on figure 2.10. In order to

avoid corrosion of the probe, they used dodecane as surrounding liquid. In their

experiments, they achieved 30 nm spatial resolution.
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Figure 2.10: Immersion SThM setup design[88]. The liquid forms a meniscus
between the liuquid holder and a glass slide above the SThM tip.

2.3.3 Heat transfer mechanisms in the tip-sample system

Each system has a different configuration be it a different probe, a different oper-

ation mode or environment. However, the physics underlying these systems is, in

the majority of cases, similar. We review in this section the different heat trans-

fer mechanisms between the tip and the sample. Four mechanisms are generally

present: heat conduction at the solid-solid contact, transfer through the water

meniscus, air or surrounding medium heat transfer and thermal radiation. De-

pending on the environment, some heat transfers can be removed. For example,

in vacuum, air is removed and therefore the water meniscus is greatly reduced. In

liquid or in a specific atmosphere, water meniscus is removed as well. The SThM

output is ultimately depending on these mechanisms and a correct interpretation

of the data depends on the understanding of the phenomena at stake.
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Figure 2.11: Schematics of the heat transfer mechanisms in the tip-sample sys-
tem at different lenght scales[8]. The main components are diffusive and ballistic
conduction through the surrounding gas, conduction through mechanical contact
and through the water meniscus.

Solid-solid contact heat conduction

When the mechanical contact is created, heat can be transferred through the solid-

solid interface. We already discussed the nanoscale size effect on interface thermal

transport earlier. A major challenge for any SThM measurement is to determine

the nature of the contact. It is also important to ensure a constant solid-solid

junction otherwise signal variations would be difficult to attribute to the contact

change or to the probed material itself. Aside from carrier propagation through the

interface, crucial experimental factors will affect the solid-solid heat conduction:

contact area and sample roughness.

The physical contact area is very difficult to measure and the true nature of the

26



contact probably is better represented as a multiasperity contact[8]. Mechanical

contact theories can be applied to gain some insights and find approximations

of the contact radius. Also, SEM imaging can be a complementing technique

to measure the tip apex radius. With the contact radius, the interface thermal

resistance can be estimated by normalising the interface resistance per unit area:

Rint = rint/πa
2 (2.11)

where a is the contact radius and rint is the interface thermal resistance or bound-

ary thermal resistance and has units m2KW−1[8, 89]. This approach is, however,

slightly artificial as there is no proof that the macroscopic interface thermal resis-

tance simply scales with the contact area.

Roughness of both tip and sample can strongly influence the thermal transport.

In some sense, it corresponds to a contact area issue. Gotsmann and Lantz[90]

studied the forces dependence of the tip-sample thermal transport for various tip

roughnesses in vacuum. They argue that the thermal transport is quantized across

atomic-scale contacts and developed a model taking into account the nanoscale

roughness effect. Pettes and Shi[91] studied similar systems for a Si-Si contact

and modelled the interface thermal resistance using a nanoconstriction model.

Water meniscus

As two objects form a contact in ambient conditions, a water meniscus appears due

to the presence of water in ambient air and capillary condensation. The size of this

meniscus depends on several parameters: materials, humidity and temperature. As

this will increase the effective thermal contact between the probe and the sample,

it reduces the spatial resolution. Little literature exists on the subject. Shi and

Majumdar[92] reported that, for a metal surface, the water meniscus conduction

was of the same order of magnitude as the solid-solid conduction. Assy and Gomès

[83] studied heat transfer through this meniscus for the doped silicon and the

palladium probes. The found that the meniscus conductance was dependent on the
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probe temperature and could reach 6% of the total conductance for the palladium

probe and 4% for the doped silicon probe.

Gas and surrounding medium heat transfer

When operating in ambient conditions, air heat transfer is a major component of

the tip-sample system and depends on the probe design. For example, the doped

silicon probe suffers from poor sensitivity when operating in air[50] because of the

distance between the heater/sensor to the sample. Therefore, the palladium probes

are more suitable. For a Wollaston wire probe, up to 65% of the heat transferred

to the sample is carried by the surrounding air[8]. Three mechanisms can occur

depending on the heat-sample distance. When considering large distances, air

convection transports heat by gas flow. At distances smaller than a few microme-

ters, heat diffusion becomes the dominant mechanism. Finally, when considering

a few hundreds of nanometers, ballistic conduction occurs as the carrier mean free

path of air is around 70 nm[8]. For a palladium probe, air heat transfer is in the

conduction regime partly diffusive and partly ballistic. It is therefore difficult to

model and measure such effects.

Thermal radiation

As the length scales considered are similar and smaller than the typical wavelength

λ defined by Wien’s displacement law (λT = 2897 µm K), classical and near-field

radiation transport must be considered. In fact, it has been demonstrated that

near-field transfer can be increased by orders of magnitude compared to far-field[23,

93]. However, radiative heat transfer requires particular conditions to acquire

intensity such as similar optical spectra of the materials[94]. Also, when working

at room temperature, radiation is considered negligible[42, 84]. The importance

of radiation in SThM has been and remains under discussion.
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2.3.4 What is measured?

Before moving to the last section of this literature review and after this short re-

view of SThM techniques, it is worth thinking about the physical nature of the

tip-sample system. When the hot SThM tip enters in contact with a sample, heat

propagates to the sample. The amount of heat transferred depends on parameters

such as the contact area or the material properties and temperature. An interest-

ing comparison can be made between an SThM probe and our body’s temperature

perception ability. If we place two blocks of different materials, let’s say one of

aluminium and one of glass, and ask someone which block is colder, the answer

would be the aluminium one. Although, the two blocks are at the same tempera-

ture. The skin senses heat fluxes. When contacting the aluminium, because of its

larger thermal conductivity than the glass, a greater heat flux occurs than when

the finger touches the glass.

This simple example shows that temperature and heat flux measurements have

always been deceiving. An SThM experiment output comparing heat conductance

of gold and silicon oxide can be surprising and counter-intuitive because of the

difficulty to interpret the result itself. As we saw many parameters influence this

output and depending on the measurement procedure, different results are possible

even in very simple cases. Temperature itself can be hard to define because of some

non-equilibrium processes at stake. Also, the temperature distribution across the

tip-sample interface is discontinuous because the temperature cannot be defined

at the interface. Furthermore, at the nanoscale, when does a thin film become

an interface? For example, can we define the temperature of a graphene layer

on silicon oxide? The question is whether thermodynamic equilibrium can be

assumed. As we will see in the next section, to face these questions, we are often

left with classical classical concepts that probably need revision in the future.

Operating in active mode, some reports demonstrated the ability to measure

thermal conductivity[8, 95, 96]. However, the method always include a calibration

step against standard samples. There is, however, a bias in such a method. The
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calibration set might just include one type of material, for example only phononic

materials. Also, the sample probed might have a different surface state (for exam-

ple different roughness) than the calibration set and the measurement would then

lead to a systematic error. This difficulty to measure thermal conductivity with

SThM has two origins:

• Thermal conductivity as a local property is fully defined for bulk materials.

• SThM measures heat fluxes. Depending on the formalism and setup used,

the output of an SThM experiment is thermal resistance or conductance

between the heater/sensor and the sample heat sink. Sample heat sink

temperature and heater temperature are related by the thermal resistance

Theater = Tsample +RtsQts. The thermal resistance R(ts) is the effective ther-

mal resistance between the sensor and the heat sink and thus comprises sev-

eral components including the thermal resistance of the sample itself which

in many cases is the goal of the SThM measurement.

2.4 Modelling and simulations

Since SThM measures thermal resistances, it is of interest to attempt some mod-

elling of such resistances. Even if thermal resistance can provide crucial informa-

tion about nanoscale heat transfer, it can also be used to extract other quantities

such as thermal conductivity or interface resistance. The process is therefore in

two steps. First, the thermal resistance is measured and only then it can be mod-

elled to extract other quantities. The quantities extracted represent often effective

quantities as they are obtained through a model which might not represent ac-

curately the physics of the system. We address two modelling techniques in this

section as they are the ones used in the rest of this thesis: finite elements modelling

(FE) and analytical formulations.
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2.4.1 Finite Element Analysis compared to analytical formu-

lations

As computing power increased drastically, it is now possible to create complex FE

models including sophisticated geometries assigning various materials to different

regions. For example, the full probe-sample system can be modelled, for example,

to study radiation thermal transport[93], immersion SThM and probe sensitiv-

ity in various environments[50, 88], time-constant of the probe and tip-sample

resistance[65] or even topography-related arterfacts[97]. Thus FE modelling is be-

coming a necessary tool for investigating tip-sample systems complementary to

analytical analysis as it handles difficult geometries and multiphysical problems.

In many cases, these models are still based on macroscopic laws and thus do not

represent the exact nature of the system. For example, air heat transfer modelling

is challenging when dealing with micrometer length scales. Effective parameters

can be introduced to account for some nanoscale effects.

However, the specificity and complexity of these models and FE tools make

them still difficult to use on a daily basis. As the goal of the SThM measure-

ments modelling is to extract quantitatively physical properties, an alternative is

to model only heat propagation within the sample. This reduces the computing

time and removes some difficult aspects of FE for nanoscale systems such as effec-

tive parameters for the air heat transfer. For example, El Sachat et al.[98] used

FE models to compare with experimental data and extract thermal conductivities

of Si1−xGex nanowires. Martinek et al. developed FE models to fit onto SThM of

supported and suspended thin films[99].

Modelling only the sample can be an attractive approach as various geome-

tries are possible even complex multilayer packaging for light-emitting diode[100].

Nevertheless, FE is relatively time consuming, especially if parameters analysis is

required. Large meshes are also required even for simple film-on-substrate geom-

etry. An alternative is provided by analytical formulations which, as we will see,

can also be complex but, for simple cases, are more efficient and straightforward.
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2.4.2 Spreading resistance of layered systems

Heat spreading analysis is crucial for the packaging industry[101] and started in the

1950s for applications in electronics. However, it requires advanced mathematical

treatment. We will explain the solution for the semi-infinite case of a single layer on

a substrate as derived by Dryden[102]. Later, Yovanovich[103] and Muzychka[104]

developed this solution for various systems.

The model uses cylindrical symmetry as in figure 2.12. The heat spot has a

radius a and is in perfect thermal contact with an infinite half-plane with a material

1 of thickness t and thermal conductivity k1. This layer rests on a substrate of

material 2 with a thermal conductivity of k2. The equation to solve is the Laplace

equation for the temperature T in both regions.

∇2T1 = 0 r > 0, 0 < x < t (2.12)

∇2T2 = 0 r > 0, x > t (2.13)

In an axisymmetric coordinates system, the Laplacian is

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂x2
(2.14)

Then, requiring continuity of the temperature and heat flux at the interface

between the two materials

T1 = T2 r > 0, x = t (2.15)

k1
∂T1

∂x
= k2

∂T2

∂x
r > 0, x = t (2.16)

Boundary conditions are also required at the surface:

∂T1

∂x
= −f(r) a > r > 0, x = 0 (2.17)

∂T1

∂x
= 0 r > a, x = 0 (2.18)
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with the isothermal flux distribution f(r):

f(r) =
Q

2πa(a2 − r2)1/2
(2.19)

and assuming that the temperature field vanishes as we go away from the heat

source, that is:

(r2 + x2)1/2 →∞⇒ T1 → 0 and T2 → 0 (2.20)

Figure 2.12: Model of a heating spot of radius a on a half-plane coating of
thickness t on a substrate with boundary conditions[102]. Note that the system
has cylindrical symmetry.

Then using a Hankel transform (details can be found in the references) on the

Laplace equations and continuity and boundary conditions, the temperature field

in the first material is described by

T1(r, x) =

∫ ∞
0

ξT̄1(ξ, x)J0(ξr)dξ (2.21)

where T̄1 is the expression for T in the Hankel space and J0 is the Oth order Bessel

function of the first kind.

The spreading resistance, or constriction resistance R, of a hotspot is defined

as

R =
∆T

Q
=
T̂

Q
(2.22)
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where ∆T is the temperature increase and Q is the heat flux through the hotspot.

The temperature increase is equal to the average temperature T̂ of the contact

spot:

T̂ =
1

πa2

∫ a

r=0

T1(r, 0)2πrdr (2.23)

We then arrive at the solution for the thermal spreading resistance of a layer

on substrate.

Rspr =
1

πk1a

∫ ∞
0

[
1 +K exp(−2ξt/a)

1−K exp(−2ξt/a)

]
J1(ξ) sin(ξ)

dξ

ξ2
(2.24)

where J1 is the 1st order Bessel function of the first kind and K is defined as

K =
1− k2/k1

1 + k2/k1

(2.25)

This solution is valid however only for isotropic thermal conductivities and

a perfect thermal interface. More complexity can be added when considering

interface resistance at the layer-substrate boundary and orthotropic systems. Or-

thotropic materials are a class of anisotropic where a property is different depend-

ing on the direction of measurement. However, orthotropic materials still conserve

some symmetries. For example, graphite is an orthotropic material with different

in-plane and out-of-plane thermal conductivities. To extend the solution developed

above, Muzychka used the method of stretched coordinates[105–107]. This elegant

method transforms the orthotropic system into an isotropic one thus making it

possible to use the same solution already derived.

The transform is sketched in figure 2.13. In the first layer the z direction

becomes ξ = z/
√
k1,z/k1,xy and in the second layer it becomes ζ = z/

√
k2,z/k2,xy.

Then orthotropic conductivities and thicknesses are used to define isotropic ones:

k1 =
√
k1,xyk1,z t̄ = t1/

√
k1,z/k1,xy (2.26)

k2 =
√
k2,xyk2,z t̄ = t2/

√
k1,z/k1,xy (2.27)

(2.28)
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In the case a of semi-infinite single layer on a substrate, we can include the

interface conductance hc in the isotropic thickness and we are left with:

k1 =
√
k1,xyk1,z t̄ = t1/

√
k1,z/k1,xy + k1/hc (2.29)

(2.30)

Figure 2.13: Transformation from an orthotropic system to effective isotropic
properties[107] and multilayers fluxtube model[108].

Such models were originally derived for compound flux tubes including there-

fore lateral dimensions with adiabatic boundary conditions on the side of the tube.

These solutions are usually not useful for nanoscale SThMmeasurements as the size

of the contact spot is much smaller than the lateral dimensions of the films stud-

ied. Hence, the derivation is not developed here. However, they can be of interest

as some models were derived for multilayer systems. Palisoc et al.[109] demon-

strated a solution for a four layers system, also with embedded heat source[110].

However, their solution is not straight forward to implement and requires large

computing time rendering it unsuitable for parametric studies[100]. Similarly to

Muzychka[104], Ha[108] solved the Laplace equation for a multilayer structure and

computed parameters up to four layers tube (see figure 2.13). We simply state the

solution here:

Rmultilayer =
1

πr2
2

(
n∑
i=1

ti
ki

)
+

2

k1πr1

∞∑
l=1

J1

(
r1
r2
αl

)
α2
l J

2
0 (αl)

φn (2.31)
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with

αl =
βl
4

(
1− 6

β2
l

+
6

β4
l

− 4716

5β4
l

+
3902418

70β4
l

)
(2.32)

and βl = π(4l + 1).

We note that Muzychka also derived equations for the thermal resistance

of non-circular heat sources and show small dependence on the shape of the

hotspot[104]. Also, they addressed the question of a moving heat source on an

half space which could be interesting for SThM measurements[111]. Gholami et

al.[112] studied similar systems including several hotspots arbitrarily located.

The spreading resistance models exposed above were directly used by SThM

experimentalists to obtain thermal conductivities of layer on substrate systems.

The first report we found was Gomes et al.[73] using an analytical solution to

study meso-porous silicon. Then, all reports to dates used Dryden’s solution or

Yovanovich’s and Muzychka’s adaptations. For example, Menges et al.[113] in-

vestigated orthotropic transport in graphene and few layers graphene on different

substrates. This work was also used by other groups studying thermal trans-

port in 2D materials. In very similar systems, Tortello et al.[76] studied reduced

graphene oxide flakes and Hwang et al.[68], suspended graphene disks and sup-

ported graphene on silicon oxide. Sadeghi et al.[114] used the same model to

analyse heat spreading of graphene devices on flexible substrate. Finally, Juszczyk

et al.[74] made a more general use of these solutions for oxide layers. We also

note that these analytical solutions can be useful for sample design as for example

Ge et al. who developed a topography-free sample for SThM probe characteriza-

tion. The use of these analytical diffusive models for nanometric samples can be

questioned. In many systems diffusive transport might not be relevant or at least

combined with a ballistic contribution. However they provide a useful framework

of understanding. Using effective quantities is useful to compare different exper-

iments performed in similar conditions. Comparison with other methods can be

more challenging but in some case outputs similar results.
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2.5 Summary

Heat transfer presents great challenges from an experimental and theoretical point

of view. Various techniques were developed trying to gain insights into nanoscale

systems. We reviewed the main differences between macroscale and nanoscale heat

transfer. Nanoscale SPM techniques and SThM demonstrated their strength to

address commonly faced issues of standard techniques. Various types of SThM and

the different environments were explained as well as the various components of a

SThM measurement. However, SThM still demands experimental developments

and theoretical understanding in order to achieve quantitative and reproducible

measurements. Once a good understanding of the measurement process is es-

tablished, various modelling approaches are available. We limited the approach to

spreading resistance analysis of simple geometry and finite elements modelling. As

we demonstrate in the following chapters, a combination of SThM setup develop-

ments, measurements procedures and modelling results provide a robust approach

for quantitative nanothermal measurements of nanostructures in SThM.
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3. SThM experimental models and

setups for exploring nanoscale heat

transport

3.1 Precise nanothermal measurements via spa-

tially distributed scanning thermal microscope

3.1.1 Introduction

Over the last two decades scanning probe microscopy has become an indispens-

able tool supporting developments in the nanoscience and nanotechnology thanks

to its atomic-scale spatial resolution and sensitivity to a wide variety of physi-

cal properties. In particular, scanning thermal microscopy (SThM) has enabled

measurements of heat transport and temperatures at arbitrary selected points of

the probed surface with lateral resolution down to a few nm. SThM’s outstand-

ing performance is largely due to a range of nanofabricated probes that are both

sensitive and easy to use. From biological applications to active semiconductor

devices, SThM is becoming the ultimate tool for probing thermal properties at

the nanoscale[7, 8, 42, 92, 115]. Among the variety of thermal probes developed,

the commercially available family of Pd resistive probes (PdRP)[45, 48] based on

microfabricated SiNx cantilevers is one of the most extensively used amongst the

SThM community. The heater of PdRP also functions as a temperature sensing

element with its position close to the sample surface and a nanoscale sharp tip
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apex. Combined with a good stability over time, this probe is efficient for both

temperature and thermal conductance mapping in contact or semi-contact modes.

Moreover, its main advantage is its ability to work in a range of conditions from

vacuum [34, 75] and air[49] to liquids[88]. Very significantly, its ability to per-

form relevant measurements of thermal transport in ambient conditions, that has

been a limiting factor for other SThM probes[116], render PdRPs as the main-

stream probe for nanothermal characterisation, they have been used extensively

for a variety of applications from biological studies [117, 118] to soft matter[119]

and condensed matter sciences[78, 120, 121].

However, merging the nanoscale resolution and high thermal sensitivity of a

PdRP probe comes at a price - the heat flow through the nanoscale sized tip results

in a temperature distribution which is detected by a thermal sensing element of

several microns long. As a result, any analysis of sensor response must consider

the heat transfer inside the spatially distributed heater and a highly heterogeneous

probe, and corresponding sensor response have to be analysed in order to allow

precise nanothermal measurements, and to, ultimately, enable fully quantitative

measurements of nanoscale thermophysical parameters. Here we will: derive a con-

cise model with a minimal number of parameters to correctly interpret the output

of SThM measurements; compare these with experimental data of SThM operating

in air and vacuum; and demonstrate the modification of the measurement setup

allowing improvement of the stability, precision and quantitative interpretation of

the measurements to be improved.

The typical PdRP sensor is composed of a 200 µm Si3N4 cantilever ending with

a triangular beak-shaped tip of 14 µm length. Two Pd lines (∼1 µm wide) are

deposited on the sides of this triangular tip and joining at the tip apex. The sensor

is included in a precision electrical circuit (usually a Wheatstone bridge)[50] which

allows both the measurement of the probes resistance, which is linearly dependent

on the temperature averaged over the sensor area, and to apply elevated currents

(up to ∼1 mA) for Joule heating the sensor and hence the probe. An example of
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the effect of finite dimensions of the heater can be seen on Fig. 3.1a which shows

the Finite Element Analysis (FEA) of the probe temperature distribution due to

Joule self-heating in the Pd lines. Fig. 3.1b shows the probe heated only by the

contact with the heated sample. In both cases the temperatures of the tip apex

are identical. For the self-heated probe (Fig. 3.1a) the temperature distribution

along the length of the triangular tip is approximately linear. At the same time,

for the heat flowing through the tip apex, the temperature distribution changes

drastically (Fig. 3.1b) with temperature rising predominantly in the area around

the heater apex. With the temperature sensing Pd lines extending along the whole

length of the triangular tip, it is qualitatively clear that these temperature distri-

butions will result in different probe resistance changes (and hence apparent probe

temperatures) for the identical probe tip temperatures. The model developed here

allows us to account for this difference.

Figure 3.1: Finite Element Simulation of (a) the self-heated probe and (b) the
sample-heated probe with the same temperature of 65 K (as represented by the
color scale). (c) Schematic representation of the probe and the main sources of
uncertainty.

Here we also consider other experimental parameters which can influence SThM

measurements during the experiment namely variations in sample temperature and

microscope temperature, affecting the temperature of the base of the sensor (Fig.

3.1c). These temperature variations - often referred to as "ambient temperature"

- arise mainly from electrical effects arising from SThM operation, such as the

feedback control of the position and laser illumination for positioning. In par-

ticular, the temperature variations due to laser illumination on the SThM probe

[122] are difficult to quantify[123] as they vary depending on: i) the position of the

laser beam on the cantilever which affects reproducibility of the measurements; ii)
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the laser source-cantilever distance which is not constant and thus causes varia-

tions of the probe temperature as it approaches the sample surface and iii) laser

influenced artefacts arising from high topographical features and change of the

sample reflectance. Indeed, a rise of 0.1 K was typically observed over a 30 minute

timescale in our experiments as shown below. Such variations present a significant

fraction of the probe temperature[48], and even small variations of either of those

temperatures can cause significant loss in the measurements reproducibility.

In order to tackle these challenges, we modified our custom-made SThM setup

with three elements:

• Monitoring of the sample and the probe mount (microscope) temperatures

via high sensitivity calibrated thermistor temperature sensors to enable quan-

tification of the thermal drift in the system and its correlation with the SThM

signal variation.

• Active feedback stabilisation of those two temperatures using Peltier modules

mounted under the sample and on the probe holder.

• For the single-point measurements, we incorporated a second step in the

measurements procedure - firstly measurement with the laser illumination to

obtain a force curve and secondly without the laser illumination for thermal

characterisation.

3.1.2 Combined analytical model and high-precision SThM

setup

Analytical model of the SThM sensor

To allow quantitative SThM measurements, we have built a model assuming a

thermal resistance formalism consistent with the system’s physics (see Fig. 3.2a).

The model is based on the regular triangular geometry of the probe and linear

geometry of the Pd heater layer, as well as the environmental temperatures influ-

encing the SThM measured signal. We solve the heat equation for the spatially
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distributed heater, with a finite number of input parameters, including power to

the heater, temperatures of the sample, probe-holder and the temperature of air

cell around the probe. The output of the model is the link between the tip-sample

thermal resistance and "apparent" probe temperature measured via the change of

the probe total electrical resistance, and its dependence on the input parameters.

As the characteristic dimensions of the probe and sample often lie in the transi-

tional regime between ballistic and diffusive heat transport[6], we have formulated

measurements in terms of effective thermal resistances, similar to those reported

in[124, 125]. In Fig. 3.2a, the probe and tip are represented in green and the Pd

film heater as two red strips. Tm, Tair and Ts are respectively microscope, ambient

air and sample temperatures that act as the fixed-temperature heat-sinks for any

heat flowing into the probe or generated in the probe heater, Qh.

The finite dimensions of the Pd heater mean that the measured resistance is

actually the electrical resistance averaged along the length of the heater. Dur-

ing the calibration procedure, the probe resistance Rel is linked to a calibration

temperature Tcal by external uniform heating[50]. The relation established is the

following: Rel ∝ T̂h where T̂h is the average heater temperature and T̂h = Tcal

in this case. For the self-heating, this average temperature differs from the tem-

perature at the tip, Tt, due to the spatial distribution of the temperature over

the heater dimensions (seen qualitatively in Fig. 3.1a). This gives rise to a tem-

perature distribution T (l) in the heater. This distribution should depend on the

geometrical and physical specificities of the heater as well as on the environment

conditions.
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Figure 3.2: Thermal resistance network with spatially distributed heater and
measured probe temperature as a function of tip-sample surface distance. Sample,
microscope, and surrounding air heat baths are at temperatures TS, TM , and
Tair, respectively. Heat produced Q in the heater at the position l is exchanged
through 3 channels: QB through the cantilever resistance RB, Qair through the
surrounding air resistance Rair, and QS through the air gap proximity resistance
Rp and through the contact resistance Rx. The average heater temperature T̂h is
obtained by averaging the temperature at each position l between the tip apex
temperature Tt and the temperature at the cantilever junction TB

As the heater-sensor is distributed along the cantilever tip, the heat equation

needs to describe a triangular system. First we consider the balance between the

total heat generated in the heater and the different heat fluxes. Three heat channels

are open: 1) through the cantilever base and its thermal resistance RB, towards

the microscope with temperature TM ; 2) through Rair to the ambient environment

with temperature Tair; 3) to the sample with temperature Ts through both air

proximity resistance Rp and tip-sample contact resistance Rx (where Rx is only

present when the direct contact between the tip and the surface is established).

From the heat equation, we therefore can write

Qh =
TB
RBA

− TM
RB

− Tair
Rair

+
Tt
Rxp

− Ts
Rxp

(3.1)

where TB is the temperature at the junction between the Pd heater and the can-
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tilever, 1
RBA

= 1
RB

+ 1
Rair

and 1
Rxp

= 1
Rp

+ 1
Rx

.

It should be noted that the proximity air resistance is strongly dependent on

the tip-surface distance in the range of 10-15 µm (as measurement shown in Fig.

3.2 inset) - the same order as the dimensions of the triangular part of the PdRP

probe.

To see the main features of this model, we first consider the system in vacuum

where Rair = Rp =∞. The linear shape of the heater leads to the equal distribu-

tion of the Joule heat produced along the heater length. Due to the symmetry of

the system, and the direction of the heat propagation along the axis of the probe,

we can establish a link between TB and Tt as

TB − Tt = aQh

(
ln(1 + b)

b
− 1

)
+
a(Tt − TS) ln(1 + b)

Rxp

(3.2)

where b = lh/lt and lh is the heater length and lt is the length of the truncated

tip and a = lh+lt
2hkrb

where h, k and rb are the heater thickness, effective thermal

conductivity and half width at the cantilever junction, respectively.

From Eqs. 3.1 and 3.2, we remove TB and obtain Tt. Then we can write the

temperature distribution in the heater as:

Th(l) = Tt −
aQh(l − lt)

blt
+ a

(
Qh

b
+
Tt − Ts
Rxp

)
ln
l

lt
. (3.3)

Eqs. 3.2 and 3.3 are obtained by integration of the heat equation along the direc-

tion l

Finally, in order to get the average heater temperature which is the parameter

measured during experiment, we need to average this distribution over the heater

length:

T̂h =
1

lh

∫ lt+lh

lt

Th(l)dl. (3.4)

Eq. 3.3 shows that the temperature distribution due to the self-heating is linear

along the probe (second term in Eq. 3.3), whereas the temperature distribution in

the probe due to the heat produced by the tip (third term in Eq. 3.3) has a non-
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linear logarithmic dependence. Together Eqs. 3.3 and 3.4 provide the temperature

of the probe as the function of the probe-sample resistance. It is this resistance

that is the ultimate parameter to be measured in SThM experiments.

High precision SThM setup

The ambient system was based on a Bruker (previously Veeco) Multimode head

and Nanoscope III controller. Figs. 3.3 show the AFM/SThM setup. The main

feature consists in adding a temperature control module. This module is made of:

• A Peltier plate below the sample.

• A temperature sensor reading this Peltier plate temperature (Pt resistor or

thermistor) glued on the plate.

• A Peltier plate on the probe holder controlling the probe base temperature.

Note the spring used both for keeping the Peltier in place and also for ther-

mally connecting the Peltier to the surrounding.

• A temperature sensor for the second Peltier plate. This sensor is not glued

directly on the Peltier but on the probe holder. This allows to monitor the

temperature of the holder if the Peltier is not activated.

This module is controlled using a home-made LabView program which allows to

control temperatures via feedback loops.
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Figure 3.3: Ambient SThM setup with Peltier modules and sensors for temper-
ature control.

In order to compare experimental data with our model, we first need to address

several common sources of error that affect PdRP as well as any other SThM

probes. We now report an experimental setup and measurement sequence which

improves the stability and the precision of SThM measurement.

A set of typical electrical signals measured in an SThM are shown in Fig. 3.4

for ambient (a) and vacuum (b) conditions. The electrical SThM signal (V as a

voltage) is proportional to the resistance of the self-heated probe and is recorded

as the probe approaches to and then retracts from the sample surface. The SThM

signal is directly proportional to the excess temperature of the heater wth respect

to the ambient temperature (V ∝ T ). When the probe snaps in and solid-solid

contact is established, a sharp drop is observed linked with the increase of the heat

transport through the Rx channel (Fig. 3.2). During retraction, adhesion forces

require an increased negative force to rupture the contact, hence the approach and
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retract curves do not overlap, creating hysteresis[126]. In air, adhesion forces are

higher mainly due to the liquid meniscus; the increased hysteresis in air can be

clearly observed when comparing air and vacuum curves. The voltage is recorded

immediately prior to probe-sample contact Vnc then as again in contact Vc. From

these two voltages, we extract the SThM response dV/V where dV
V

= Vnc−Vc
Vnc

.

Figure 3.4: Approach (blue) - Retraction (red) SThM curves acquired with PdRP
in ambient (a) and vacuum (b) conditions on a SiO2/Si sample. Inset: Thermal
response (dV/V ) obtained when aligning the laser at 3 positions (A,B,C) and
compared to response without laser.

Whilst, from the model developed above, it can be shown that dV/V depends

most strongly on the tip-sample heat transfer, the laser illumination on the back

of the cantilever can drastically affect the SThM signals (as mentioned above).

The inset of Fig. 3.4 shows SThM responses for different laser positions on the

probe with different laser alignments leading to a data scatter error of up to 30%

of the absolute measured value. Additionally, the laser illumination can cause

interference with the electrical signals affecting the measurement precision (see
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Fig. 3.5). Therefore, as initially observed by our group[122] and later confirmed

elsewhere[123], conducting measurements in the absence of a laser can greatly

improve the stability of SThM measurements. In all experiments reported below,

the laser was shut off during thermal measurements.

In standard AFM Force-Spectroscopy, the laser deflection on the cantilever is

related to the spring constant of both probe and sample. If the same procedure

is applied with an SThM probe, both force and thermal signal can be recorded

simultaneously as on Fig. 3.5.

Figure 3.5: Approach (blue) - Retraction (red) force curve (top) andSThM curve
(bottom) acquired simultaneously with PdRP in ambient conditions on a alu-
minium oxide sample. Note the periodic noise observed in both signals due to
laser interferences.

Fig. 3.6 shows the effect of the sample and probe base temperatures on the

reproducibility of the SThM response. We performed 240 consecutive approach-

retraction cycles on a Si sample at the same point while monitoring Ts and TM .

The SThM signals, corresponding to T̂h before (open circles, Fig. 3.6b) and after
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the contact (closed circles, Fig. 3.6b) were measured simultaneously with those of

the sample (open circles, Fig. 3.6a) and microscope temperature (closed circles,

Fig. 3.6a). One can observe that the thermal signals in- and out-of-contact are

changing with time with a similar trend as the sample and microscope tempera-

tures - confirming the model conclusion in Eq. 3.3.

Figure 3.6: (a) Temperature of the microscope (red filled circles) and sample
(yellow open cirles) vs time and (b) the corresponding measured SThM signal
(excess probe temperature) (V) for tip out of contact (blue open circles) and
in-contact (red filled circles) during consecutive point contacts on Si sample vs
time. (c) Thermal response (dV/V ) acquired from consecutive point contacts
at controlled (constant sample-microscope temperature) (green filled circles) and
non-controlled (red open circles) sample temperature.

During an experiment, the thermal response is expected to be constant at the

same point of a sample, when taking consecutive measurements. Instead, in the

SThM setup with uncontrolled sample and probe base temperatures, we observe

that the thermal response varied with time (see Fig. 3.6c, open circles). To

compensate for this temperature drift, we used Peltier plates mounted underneath
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the sample and on the probe holder, enabling a close loop control of temperatures

Ts, TM via thermistors attached to the sample and the probe base. The repeated

measurements in this setup (Fig. 3.6c, filled green points) showed about 5-10 fold

stability increase over the same measurement time. These results indicate that

keeping the sample and probe holder temperatures constant leads to significantly

more reproducible SThM measurements.

3.1.3 Results and discussion

Experimentally measured model parameters

In order to measure accurately the main thermal resistances of the model, a specific

procedure needs to be followed. First, we place the probe in vacuum. In this case,

T̂h is given by

T̂h = (RB + γsh)Qh + Tm (3.5)

where γsh = lh+lt
2hkrblh

[
lh
2

+
l2t
lh

ln
(
lt+lh
lt

)
− lt

]
. Then, knowing the power Qh injected

in the probe and the excess temperature T̂h− Tm, we can measure the probe total

thermal resistance RB + γsh. The contribution of the triangular tip with finite

dimensions of the heater is often neglected in the literature[127–129] and values

reported for the probe thermal resistance just take into account γsh. Our approach

gives therefore a more precise understanding of the heat transfer within the probe.

Decoupling RB from γsh is difficult experimentally. However, Finite Element

analysis previously reported[50] or an analytical model such as the one proposed

by Ge et al.[130] show that RB accounts for around 25 to 50% of the total thermal

resistance measured and γsh for the rest. We measured the total probe thermal

resistance to be RB + γsh = 7± 0.5× 104 KW−1 which gives RB = 1.8± 0.1× 104

KW−1 and γsh = 5.3± 0.4× 104 KW−1 assuming RB

RB+γsh
= 0.25.

In air and far away from the sample surface, we have

T̂h = Tm
Rair

RB +Rair

+ Tair
RB

RB +Rair

+Qh

(
γsh +

RBRair

RB +Rair

)
(3.6)

50



As we deduced RB and γsh from the previous step, we now can obtain Rair if

we know Tair. We obtained Rair = 5± 1× 105 KW−1.

Finally, if we move the probe toward the sample surface, we notice a drop in

the probe average excess temperature (see Fig. 3.2). This arises from the heat

conductance through the air gap "proximity" which we called Rp. Comparing the

signal far away from the surface to the one just before snap-in, we can measure Rp

for a given power Qh. As we will discuss in the last section, the proximity effect

plays a strong role in measurements performed in air. Measured values for the

model parameters RB, γsh, Rair and Rp are given in the Table 3.1.

The final expression for the average heater temperature in air and in contact

with the sample is given by:

T̂h = αQh + βTm + γTs + δTair (3.7)

where coefficients α, β, γ and δ are functions of RB, Rair, Rp, Rx and lh, lt which

are probe physical and geometrical parameters. These coefficients depend on the

probe conditions, namely whether the probe is in contact with the surface or not.

The key consequence of the model summarised in Eq. 3.7 is that it links the

key value measured in SThM ("measurand") T̂h with environmental temperatures

Tm, Ts, Tair and heat (Joule heating in the probe) Qh. The proposed calibration

protocol - air resistance calibration, vacuum α, β, γ calibration and air δ calibration

- allow the full quantification of all properties of a particular probe.

Parameter Measured value (KW−1)

RB 1.75± 0.08× 104

γsh 5.25± 0.08× 104

Rair 5± 1× 105

Rp 7± 1× 105

Table 3.1: Measured nominal values of the model parameters.

The essential feature of the model developed above is that it accounts for the
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probe geometry. As the heater is distributed on the triangular tip, a temperature

gradient is inevitably formed. This gradient is different in and out of contact.

It is also different depending on whether the heat is generated within the probe

(self-heating case) or is coming from the sample through the tip. In Fig. 3.7a,

temperature distributions are displayed for self-heating of the probe and for heat

flowing from the sample. One can see that the distributions are drastically differ-

ent. Note that in Fig. 3.7a we compared Finite Element modelling to our analytical

model (Eq. 3.3) and found a similar trend which supports the analytical model

presented.

Furthermore, a key finding of our model is the comparison of heat fluxes to the

self-heated probe and to the sample. When power is provided to the heater (via the

Pd film), the excess temperature rises with dT̂h
dQh

= 20.5± 0.5 Km−1W−1. However,

when the same amount of heat is sent through the tip apex, the excess temperature

is higher than the self-heating one. In this case, the excess temperature rises with
dT̂h
dQs

= 31.9 ± 0.5 Km−1W−1. This fundamental difference of more than 50%, is

often neglected in the interpretation of SThM results. Thus, a model taking into

account the heater dimensions allows to correct a major parameter of the probe

and significantly improves the measurement accuracy.
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Figure 3.7: (a) Heater temperature distribution for the self-heated case (trian-
gles) and heating through the tip (circles) as obtained from finite element mod-
elling (open circles and triangles) and analytical model (filled circles and triangles).
(b) Values of computed temperature rise obtained for the same electrical reading:
color of the heater at the edge of the probe schematically represents temperature
distribution in the probe. The two temperatures are often considered to be the
same.

As we mentioned earlier, in the non-contact case and far away from the sample,

the tip temperature Tt is always higher than the average heater temperature T̂h .

In Fig. 3.7b, we compute and compare these two temperatures. For the same elec-

trical reading, e.g. electrical resistance, two different temperatures are obtained.

Full curves are shown in Figure 3.8. Importantly, self-heating and tip temperature

differ by more than 40%. This model result highlights the importance of taking

into account the heater dimensions in order to extract physical quantities of the

SThM measurement.
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Figure 3.8: Modelled temperature rise dependence on the electrical resistance
for the average heater temperature (dotted blue) and the tip temperature (green
line).

Model outputs vs multiparametric experiments

We performed experiments in different conditions in order to compare our model

with experimental data. A set of SThM measurements on a single crystalline dia-

mond sample (Element Six, UK) were realised. Diamond was chosen for its high

thermal conductivity (> 1000 Wm−1K−1) and therefore the main component of

the thermal response will be the contact resistance at the probe apex leading to

minimal effect of the sample itself. The SThM response dV/V for different powers

was measured for 3 sample temperatures from below to above microscope temper-

ature. This experiment was performed both in vacuum and in air environments.

Model parameters were then changed to correspond to experimental conditions.

The outputs of measurements and model were subsequently compared (Figures

3.9).

As we see at Fig. 3.9a, a linear trend is obtained in vacuum for both model

and experiment. Model results are plotted in solid lines. Noticeably, when the mi-

croscope and sample temperatures are equal, the SThM response does not depend

on the power injected in the heater. Such measurement conditions (vacuum and

equal sample and microscope temperatures) provide the best system for precise

and repeatable SThM measurements.

In air, the situation differs drastically (see Fig. 3.9b). The proximity effect
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is playing a key role through the air gap resistance between the heater and the

sample surface. To account for this effect, we changed the value of the air gap

resistance for the different powers. It is likely that different excess temperatures of

the probe would lead to different proximity resistances. We assumed an inversely

proportional air gap resistance with input power. As we can see in Fig. 3.9b, when

microscope and sample temperatures are equal, the SThM response for different

probe temperature deviates by 0.5%. Finally, we also notice that our model does

not account fully for this proximity effect as such non-linear effects observed on

the experimental data could not be reproduced numerically. This result highlights

the importance of the proximity effect in ambient SThM measurements.

Figure 3.9: Experimental (solid circles) and model (solid lines) results for the
thermal response dV/V as a function of sample temperature in vacuum (left) and in
air (right) for three average heater excess temeprature (5K, 8K and 17K). Dashed
lines in panel (b) are a guide for the eye.

3.1.4 Summary

This section explored a sensitivity of SThM based on the most widely used com-

mercial metal resistive probe capable to operate in air, vacuum and liquid en-

vironments. By building a simple semi-analytical model, we demonstrated the

importance of taking into account the finite dimensions of the SThM sensor. The

model and experiments show that, with the same amount of heat, the probe self-

heating and heating through the tip result in different probe response as large as
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50% for a typical probe. Furthermore, crucial parameters impacting the experi-

mental results were found - namely the influence of the laser providing position

feedback in typical SThM setup, and small variations of the sample and micro-

scope temperatures, often assumed to be equal, were shown to significantly affect

the measurements reproducibility and precision.

By adding Peltier temperature control of the sample and the probe holder, we

substantially decreased data scatter from 5.5% to 0.5%. Allowing two step mea-

surements - first with a laser to monitor the sample topography and then blocking

the laser for SThM measurements - further improved the SThM reproducibility as

the laser was found to add up to 30% to the data scatter. Overall, we obtained

good agreement between our model and experiments when the system is under

vacuum. In air, we could partially reproduce the experiment by changing the

proximity thermal resistance. This result shows the importance of the proximity

effect in scanning thermal microscopy measurements which requires more precise

modelling.

Both the modelling and experimental aspects of this study allow a significant

improvement in precision of current scanning thermal microscopy techniques. The

increased precision and interpretation of the SThM measurements may provide

significant insight into the mainstream semiconductor sector looking for nanoscale

heat dissipation in advanced processors, novel nanostructured thermoelectrics and

thermal interface materials.

3.2 Introducing cryoSThM - nanothermal trans-

port measurements at cryogenic temperatures

The model presented above demonstrated the crucial impact of the ambient air

on the experimental outputs. Also the impact of the probe sensor geometry was

highlighted. In this section, we demonstrate SThM measurements at cryogenic

temperatures. As cryogenic environment benefits from vacuum conditions, we
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use a simpler system working in vacuum environment and with a doped silicon

probe. Temperature dependent studies are of great interest as thermal properties

are likely to vary with temperature. Promises of new thermal phenomena drove

the development of this cryoSThM.

Here we derive the impact on the sample temperature on the SThM response

in the first part and we show how the thermal resistance between the sensor and

the sample heat sink is linked to the SThM response. In the second part, we

demonstrate this model on bulk materials of known properties and discuss the

different effects of the sample temperature on the thermal resistance measured.

3.2.1 Vacuum SThM setup for measurements at cryogenic

temperatures

SThM measurements performed in vacuum can be realised with the doped silicon

probe providing better spatial resolution and increased sensitivity to high thermal

conductivity materials[50]. Turbomolecular and ions pumps ensure high quality

vacuum while the SThM microscope is suspended on a magnetic damping system

for minimal mechanical noise (see Fig. 3.10a).
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Figure 3.10: (a) Vacuum SThM chamber with cooling capabilities. (b)
cryoSThM sample holder thermally insulated from the surrounding via Teflon
spacers.

As we see in Fig. 3.10a, a liquid nitrogen dewar is connected to the vacuum

chamber. This dewar connects to a copper braid that is thermally linked to the

sample holder. Personal Protection Equipment (PPE) must be worn when manip-

ulating the liquid nitrogen.

When the sample is cooled down, the pressure will be greatly reduced compared

to ambient temperature pressure. This is due to the braid acting as a cryo-pump.

In such a case, the turbomolecular pump can be switched off with the ion pump

keeping the vacuum. That will further reduce mechanical noise on the SThM

images.

Fig. 3.10b shows the sample holder for low temperatures measurements. This

all copper holder is connected to the copper braid and therefore linked to the

liquid nitrogen dewar. In order to thermally separate it from the microscope stage

system, plastic screws and spacers are used. The temperature on the sample holder

is obtained from the calibrated resistance measurement of a Pt resistor and read

through a LabView program. Due to the several components and connections

between the liquid nitrogen and the sample stage, the lowest temperature ever
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recorded at our lab was 140 K. Surface mounted resistors were placed below the

sample stage and used as controllable heaters to stabilise the sample temperature.

Low temperature SThM measurements have to be performed in good quality

vacuum to avoid contamination of the sample surface. As the braid and sample are

cooling down, they act as a cryo-pump and any residual moisture or contamination

will condensate on the cold surfaces. Therefore, it is important to ensure that the

pressure is below 1× 10−6 Torr and in the best case, that the vacuum chamber is

clean. This can be improved by baking the whole system regularly.

CryoSThM experiments are usually performed as follows:

• Prepare the system and sample, and pump the chamber down until 1× 10−6

Torr is reached.

• Perform room temperature measurements on the sample that will be used

as control.

• Pour liquid nitrogen in the dewar. Keep the sample at room temperature

while the braid is cooling down to avoid the sample acting as a cryo-pump.

• Perform low temperature experiments and use surface a mounted resistor to

gradually increase the sample holder temperature if desired.

• Finally, perform room temperature measurements again to control repeata-

bility of the experiment.

3.2.2 Measurement model

As we pointed out in the literature review, the doped silicon probe sensor can

be represented by a simple point heater model without considering its geometrical

dimensions[70]. This is due to the relative size and position of the heater located at

the end of two silicon legs and on top of a triangular tip. When the probe is under

an applied power load (e.g. ∼ 1.2 mW), it gives rise to an excess temperature (e.g.

∆T ∼ 100 K) with respect the probe base temperature. This excess temperature
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then relates to the SThM output voltage, V , by a calibration factor α:

∆T = αV. (3.8)

When out-of-contact, the only heat transfer channel is through the probe and

cantilever themselves. We have ∆Tnc = αVnc = Q × Rp where Rp is the thermal

resistance of the cantilever. Knowing the excess temperature and total power Q,

we measure Rp = 5.4± 0.1× 104 KW−1.

Figure 3.11: Schematic diagram of the cryoSThM system in vacuum. The sample
holder is connected to a Dewar via a copper braid. The probe heater is at the
temperature Th thermally connected to the microscope at temperature TM through
the probe thermal resistance Rp and to the sample at temperature TS through RX

that is made of the conical tip thermal resistance Rtip; the interface resistance Rint

and the spreading resistance of the sample Rspr.

When the probe is brought into contact with a sample, a new heat transfer

channel is open going from the heater to the sample heat sink. If both the probe

base and the sample heat sink are at the same temperature then we can write:

∆Tc = Q×Req = Q× RpRX

Rp +RX

(3.9)

where Req = RpRX

Rp+RX
and where RX is the thermal resistance of the opened heat

transfer channel. This thermal resistance is made of several components in series.

First, the constriction resistance of the sharp conical tip Rtip. Then, the interface

resistance between the tip apex and the sample surface Rint. Finally, the spreading
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resistance of the sample Rspr which might be made of several components. Finding

RX is the last step of the experimental measurement. From there, a model is always

needed.

By bringing the probe in and out of contact while its temperature is recorded,

we obtain the normalized temperature change between out and in contact:

∆Tnc −∆Tc
∆Tnc

=
Vnc − Vc
Vnc

=
Rp −Req

Rp

=
Rp

Rp +RX

. (3.10)

As we can see, the SThM response dV/V depends only on the probe thermal re-

sistance and the measured thermal resistance which can then be obtained directly.

This general introduction assumed that all heat sinks where at the same tem-

perature: TM = TS = T0. In the general case (see Fig. 3.11), this might not always

be true, especially when dealing with cryogenic systems. In such a system we have

the following relation for the heat conservation:

Qh = QB +QS (3.11)

where Qh is the total heat generated in the probe heater and where QB and QS

are heats going to the probe base and sample heat sinks respectively.

If we call T nch and T ch, the absolute heater temperature out of- and in-contact

with the sample, respectively, we can write for the non-contact and in-contact

cases:

Qh =
T nch − TM

Rp

and Qh =
T ch − TM
Rp

+
T ch − TS
RX

. (3.12)

By rearranging, we find the heater temperature out and in contact:

T nch = RpQh + TMT
c
h =

(
RpRX

Rp +RX

)(
Qh +

TM
Rp

+
TS
RX

)
(3.13)

We are not measuring absolute temperatures but only excess temperatures

with respect to the temperature at which the bridge balance was realized. This

temperature is TM . So for both in and out contact we have: T c,nch = αVc,nc + TM
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We can now write the equivalent expression as Eq. 3.10 taking into account

the sample and microscope temperatures:

Vnc − Vc
Vnc

=
T nch − TM − T ch + TM

T nch − TM
=

1

Rp +RX

(
Rp +

TM − TS
Qh

)
(3.14)

or rearranging for RX :

RX =
Vnc

Vnc − Vc

(
Rp +

TM − TS
Qh

)
−Rp (3.15)

As we can see, if TM = TS, Eq. 3.15 simplifies to Eq. 3.10. Otherwise, the

temperature difference between the microscope and the sample has to be taken

into account in the measured thermal resistance.

3.2.3 CryoSThM demonstration

To demonstrate the cryo-SThM and assess the temperature effect on the mea-

surements, we used two bulk samples with known thermal properties: a 280 nm

silicon oxide film on silicon and a silicon wafer. Silicon oxide thermal conductivity

is reducing with decreasing temperature[131] whereas silicon thermal conductivity

first increases when temperature decreases, up to Tsample ≈ 30 K where it starts

decreasing[132]. As we only reach a minimum of 140 K, we consider that silicon

thermal conductivity only increases with reducing temperature. Note that this in-

creasing conductivity arise from a general increase of the phonon mean free path.

In fact, as temperature decreases, the Umklapp and isotope scattering length in-

crease drastically[133] therefore increasing the phonon mean free path. This will

play a crucial role as we will observe.

We performed measurements of the SThM response dV/V for silicon oxide and

silicon in the range of 140 to 300 K. These materials were chosen for their different

thermal conductivity behaviour with temperature. Using the model derived above,

we obtained the thermal resistance measured between the heater and the sample

heat sink. Results are shown in Fig. 3.12. For silicon oxide, we observe a general
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increase with decreasing temperature while for silicon, first resistance increases and

then decreases after a small plateau between 170 and 220 K. In order to correctly

interpret these results, it is important to remember what components create this

thermal resistance. Between the heater and the sample heat sink there are three

main thermal resistances: the conical tip resistance, Rtip, the interface between

the tip and the sample, Rint, and the spreading resistance within the sample, Rspr:

RX = Rtip +Rint +Rspr (3.16)

Figure 3.12: Measured thermal resistance in contact with SiO2 (left) and Si
(right) at various sample temperatures with two probe heater temperatures at
350K (blue) and 450K (red). The measurement on silicon oxide can be modelled
by a standard diffusive model (green dotted line) but the silicon results require
more interpretation. For silicon oxide, the two heater temperatures do not coincide
highlighting that the hot probe heats the sample and therefore changes the thermal
conductivity locally. For silicon, this is not observed as silicon as a much higher
thermal conductivity.

Given the last two components of the measured thermal resistance, it is diffi-

cult to decouple the effect of one or the other on the SThM signal change. The

spreading resistance in a bulk system is inversely proportional to thermal conduc-

tivity k (Rspr = 1/4ka with a the contact radius). This is observed on the silicon

oxide where resistance increases with reducing temperature due to the decreasing

silicon oxide thermal conductivity. We plotted Rtip + Rint + 1/4kSiOx(T )a using

temperature dependent thermal conductivity values from literature[131]. Esti-
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mating the contact radius a = 40 nm from SEM imaging (see Appendices) and

assuming Rtip +Rint = 3.5× 106KW−1, the measured thermal resistance variation

corresponds well to the change of temperature dependent thermal conductivity, as

observed on Fig. 3.12.

For silicon, the results obtained require more interpretation. The first increase

in the measured resistance can be attributed to the increasing phonon mean free

path. As the tip radius was measured to be around 40 nm by SEM, it is much

lower than the bulk phonon mean free path of silicon[133]. Furthermore, as we

mentioned earlier, when temperature reduces, scattering lengths increase and thus

the mean free paths become larger[15]. In silicon, the average mean free path at

room temperature is around 300 nm while at 150 K it increases to around 1µm.

The 40 nm radius heat source is then smaller than these mean free path values

and ballistic effects need to be accounted for.

Following Prasher[27] model for a nanoscale constriction, a nanoscale heat

source will experience a ballistic resistance at the contact when the mean free

path is comparable or bigger than the heat source dimensions. Diffusive and bal-

listic components of the constriction resistance can be added to obtain a realistic

estimate:

Rc =
1

2ka

(
1 +

8

3π

Λ

a

)
(3.17)

where Λ is the phonon mean free path. It follows that if the mean free path

increases, so will the constriction resistance.

However, when temperature is further reduced, we obtained a reduction of the

measured resistance below 200 K. We provide possible qualitative explanations.

First, as explained by Hoogeboom et al.[28], a nanoscale heat source creates an

effective phonon modes suppression filter. Phonon modes with mean free path

smaller than the heat source will be effectively suppressed. Therefore, to under-

stand the temperature behaviour, the full phonon spectrum needs to be examined

as in Wang et al.[134], where they computed the temperature dependence of vari-

ous modes.
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Linked to this first explanation, a second inspection of Eq. 3.17 provides a

possible answer. The ballistic contribution is Rball = 4
3πa2

Λ
k
is proportional to Λ

k
.

In our range of temperatures, both Λ and k increase. So, in a general framework,

the variation of Rball depends on the relative changes of k and Λ. It could be that

in different temperature range, different relative changes are received. Further-

more, various phonon modes have various temperature dependence and thermal

conductivity contributions. Inspection of the phonon spectrum, mean free path

variations and thermal conductivity contribution could provide an answer for the

behaviour observed.

Also, the tip and the silicon sample are covered by a native silicon oxide layer

of few nanometers. The effect of the native oxide on the resistance is difficult to

estimate. It could play a simple interface role but also could act as an extra filter on

the phonon propagation, increasing or reducing the phonon modes associated with

a given mean free path. We performed an experiment on a silicon sample etched

by hydrofluoric acid, measuring its SThM response after various exposure time to

ambient air, and therefore increasing native oxide thickness. Results are shown

in Fig. 3.13. We obtained a reduction of the SThM response in vacuum which

transposes in an increase of the thermal resistance measured. This highlights the

effects of the native oxide on the resistance measured. Note that the non-etched

response obtained in Fig. 3.13 doesn’t follow the trend measured. This can be

attributed to etching effect on the surface state.
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Figure 3.13: SThM response dV/V measured in vacuum as a function of sample
air exposition time for two heat temperatures (black and red dots). As time
increases, the response diminishes which transposes in an increase of the measured
thermal resistance.

Finally, we discuss the contribution of the silicon tip resistance, Rtip. For a tip

in contact with a sample, almost 90% of the temperature gradient occurs in the first

100 nm from the sample within the tip[89]. This can be seen on Fig. 3.14 where

we used a diffusive model to obtain the temperature distribution in the conical tip

in contact with a sample at two different temperatures. The model is presented

in the appendices. Therefore, when the tip is in contact with a cooled sample, the

portion of the silicon tip that is at cryogenic temperature is small, on the order of

200 nm. In this small part of the tip, thermal transport is dominated by interfaces

and the phonon mean free path will be dependent on the probe geometry. Hence,

we don’t expect to have a strong effect of the cryogenic temperature on the tip

thermal resistance.
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Figure 3.14: Temperature distribution in a conical tip using a diffusive model
for two sample temperatures, 300 K (blue) and 150 K (green). Most of the tem-
perature drop within the tip occurs within the first 100 nm.

However, to investigate the effect of local sample heating by the probe, we per-

formed measurements using two heater temperatures: 350 and 450 K. It has been

shown[50], that samples with high thermal conductivity do not get heated locally

by the hot tip. However, for low thermal conductivity samples, some heating is

expected. This is observed on the measurements performed on silicon and silicon

oxide (see Fig. 3.12). On the silicon, the two heater temperatures produce similar

resistance measurements while, on the silicon oxide, the measurements performed

with Theater = 450 K are lower than measurements with 350 K. We attribute this

result to local sample heating from the probe. The silicon high thermal conduc-

tivity renders it difficult to heat locally with a nanoscale probe. Thus, the same

resistance is produced. The situation is different for the silicon oxide. When the

probe is hotter, some volume of the sample gets heated and the thermal con-
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ductivity is no longer the conductivity of the sample heat bath. Higher heater

temperature means increase of sample temperature for SiO2 and therefore lower

thermal resistance probed.

3.2.4 Summary

In this section, we developed and demonstrated cryoSThM measurements. The

setup was described and measurements procedure briefly introduced. A dedicated

measurement model was developed to translate SThM response dV/V into mea-

sured thermal resistance to account for the sample temperature. Then, we demon-

strated the cryoSThM measurements of bulk silicon and silicon oxide samples.

While measurements of silicon oxide were coherent with the temperature change of

thermal conductivity reported in the literature, silicon results were more challeng-

ing to interpret. We provided here qualitative explanations and basic mechanisms

that can explain the trend received.

We believe that further experiments are needed to fully understand tempera-

ture resistance variations of high mean free path materials. The challenge is to

understand the various phonon modes contributions to the conductance arising

from a heat source smaller than the average phonon mean free path. However, for

low thermal conductivity and low mean free paths materials, cryoSThM provides

a powerful tool for nanothermal properties investigations. In the next chapters,

results using this setup are presented and further demonstrate cryoSThM possi-

bilities.

3.3 Dynamic SThM: quasi non-contact method

for multiparametrical investigation

In this section, we demonstrate the principle of quasi-non-contact immersion Scan-

ning Thermal Microscopy (iSThM). We show that by combining standard thermal

measurements with the principle of Ultrasonic Force Microscopy (UFM) - by def-
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inition a technique which can only operate in the quasi-non-contact regime - we

can simultaneously map the thermal and nanomechanical properties of an im-

mersed sample. We show that the application of ultrasound does not significantly

affect the thermal response and, furthermore, that via correlation of iSThM and

UFM responses during force spectroscopy measurements we can identify optimum

conditions for measurements. However influence of ultrasonic displacement and

thermal conductance through liquids on measurements has presented interesting

challenges to quantitatively understand probe-sample interactions. This requires

further complementary modelling.

3.3.1 Introduction

Scanning Thermal Microscopy (SThM) is the leading tool for nanoscale mapping

of thermal properties, but it is often negatively affected by unstable tip-surface

thermal contacts. It would be very tempting to use liquid immersion in SThM

to improve both the thermal contact between the probe tip and the sample as

well as contact uniformity. The approach would be somewhat similar to one used

in ultrasonic imaging where dedicated gel is used to achieve better acoustic cou-

pling or optical microscopy where immersion reduces light reflection, refraction and

scattering at the interfaces. This approach is called immersion Scanning Thermal

Microscopy (iSThM) and has previously been successfully demonstrated[88].

Non-contact approaches to SThM are desirable as they provide a method of

significantly reducing topographical artefacts which can adversely affect thermal

conductivity contrast. However, non solid-solid contact methods are inherently

limited for non-flat samples due to problems of accurate probe-sample separation;

furthermore mechanical information relating to the sample is not available without

solid-solid contact.

Here we propose to combine the uniform thermal contact and massively re-

duced probe-sample mechanical adhesion[135] of iSThM with the quasi non-contact

methodology of Ultrasonic Force Microscopy (UFM). This approach will allow us
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to simultaneously map the thermal and nanomechanical properties of sample and

directly correlate contributions to the thermal response arising from intrinsic ma-

terial properties as well as buried or sample-substrate interfaces. We note that

under-liquid UFM feasibility has already been demonstrated[135, 136].

3.3.2 Methodology

Ambient and under-liquid (dodecane) SThM measurements were performed us-

ing a Bruker Multi-Mode, Nanoscope III with a custom "half-moon" under-liquid

SThM probe holder shown in Figure 3.15 and an already described PdRP (Kelvin

Nanotechnology).

Figure 3.15: Custom under-liquid SThM probe holder. A glass disk is placed
above the probe in order to create a meniscus covering the probe and the sample
allowing stable refraction of the laser beam.

In both ambient and under-liquid operations, the thermal probe represents part

of a balanced Maxwell electric bridge with a 4 VAC signal at 91 kHz frequency, pro-

vided by a precision function generator (Model 3390, Keithley instruments), used

for resistance measurements and a DC offset providing probe Joule self-heating[50].

The probe’s electrical resistance was recorded as a function of applied voltage and

temperature, using the method described elsewhere[75, 88]. For UFM, samples

were mounted on a piezoceramic transducer (Physik Instrumente) using a thin

layer of water-soluble high temperature wax resulting in good coupling of longi-
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tudinal and shear ultrasonic vibrations at frequencies up to several tens of MHz.

The sample-piezotransducer system was then bonded inside a Teflon bowl (Figure

3.16) which in turn was mounted on a metallic disk.

Figure 3.16: Schematic representation of the liquid Teflon holder containing the
piezotransducer and the sample.

Transducer mounted samples were oscillated at typically 4 MHz, well above any

cantilever resonances, with a peak to peak amplitude of 1, 2, 3 or 4 V resulting

in vertical displacements a of ca. 0.5, 1, 1.5 and 2 nm, respectively, as deter-

mined by laser Doppler vibrometer (Polytec Inc). These result data are consistent

with previously reported values of displacement[36, 137]. To enable detection of

the 4 MHz oscillation, the signal amplitude was modulated with a gated saw-tooth

shaped waveform of 1.7 kHz, the cantilever deflection at this modulation frequency

corresponds to the nonlinear UFM response and was subsequently detected by a

lock-in amplifier (Stanford Research Systems, SRS-830) as well documented in lit-

erature[4, 137] . In addition to image channels (topography, SThM and UFM), we

collected normal force spectroscopy (approach-retract curves[138, 139]) enabling

quantitative comparison of the nonlinear and thermal responses and identification

of the quasi-non-contact regime.
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3.3.3 Results

Figure 3.17 shows the simultaneous scanning of topography, UFM and SThM for

an exfoliated multi-layer graphene flake on SiO2 substrate in ambient conditions

and immersed in dodecane solution. Furthermore, for comparison, the imaging for

both environments without UFM switched on are also given.

A
m

b
ie

nt
:

n
o

U
F
M

Topography SThM UFM

A
m

b
ie

nt
:

w
it

h
U

F
M

Im
m

er
si

on
:

n
o

U
F
M

Im
m

er
si

on
:

w
it

h
U

F
M

Figure 3.17: Topographical, SThM (thermal) and UFM (nanomechanical) re-
sponses with UFM off and on, in ambient and dodecane liquid environments. All
channels are captured simultaneously using a KNT probe operating in active mode.
The sample is an exfoliated multi-layer graphene flake on a SiO2 substrate.

We clearly see the feasibility of both iSThM and the simultaneous monitoring

of both thermal and nonlinear nanomechanical responses in ambient and immersed

72



conditions. We elucidate the nature of the probe-sample interaction, whilst im-

mersed, via approach-retract spectroscopy of all three channels, shown in Figure

3.18. Here we show the responses obtained on SiO2 however graphene results are

comparable.

Figure 3.18: SThM (plain lines) and UFM spectroscopic (dotted lines) responses
as a function of normal force during probe approach to SiO2 substrate in dode-
cane immersion for various oscillation amplitude. The quasi non-contact regime is
signified by the orange shaded region.

Forces were calculated from the linear region of the approach-retract curve

which demonstrated no discernible snap-in and negligible (<5 nN) adhesion forces

during retraction; the measured cantilever z-position is used to correlate the dif-

ferent channel responses. During SThM approach, we observe a smooth transition

between non-contact and contact regions (here 0 nN corresponds to the sample

surface position) due to lack of snap in and uniform thermal conductance to the

liquid. Significantly, we can identify peak nonlinear response in the UFM channel
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close to the onset of solid-solid probe-sample contact, which reduces at higher nor-

mal forces as expected. Unlike ambient conditions, UFM spectroscopy response

does not return to zero at higher normal forces due to acoustic pressure exerted on

the cantilever in viscous dodecane[136]. By definition, UFM nonlinear response is

only observed in the quasi-non-contact regime, we can therefore accurately identify

the normal forces necessary to achieve the equivalent quasi-non-contact iSThM,

indicated by the orange shaded region in Figure 3.18.

In UFM spectroscopy measurements, the sample is vibrated in the oscillating

(harmonic) way at high frequency (HF) well above cantilever free and contact

resonances. Due to the extreme dynamical rigidity of the cantilever the vibration of

the sample is not transferred to the cantilever and therefore one can safely assume

that the tip-surface distance is also oscillated at the same ultrasonic frequency f

and the amplitude a. Due to the highly nonlinear dependence of the interaction

force on the tip-surface distance[36, 37] such oscillation is "rectified" producing an

additional "ultrasonic" force that can be defined as a function Fm(h1, a) dependent

on the initial indentation h1, the ultrasonic amplitude a and original force-vs-

distance dependence in the absence of the ultrasonic vibration F (h). The new

force Fm can be calculated as follows:

Fm(h1, a) =
1

T

∫
T

F (h1 − a cos(2πft))dt (3.18)

where F (h) is the force dependence on the indentation depth without ultrasonic

vibration and the integral is taken over a period T = 1/f . The initial cantilever

deflection z0 is defined by set force F0 = kcz0 where kc is the cantilever spring

constant, however the additional ultrasonic force leads to an additional cantilever

deflection za such that new equilibrium position of the cantilever z = z0 +za. From

Figure 3.18, this change in equilibrium position may have a small offset effect on

SThM without altering either its relative response (non-contact to contact) or

shape, however it is more likely that this offset arises due to the acoustic pressure

exerted on the cantilever by the ultrasonic oscillations of the sample.
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Further quantification using a combined nanomechanical indentation model

(comprising three components describing the classical Hertzian contact force be-

tween a sphere and flat plane (FHertz)[140], Van der Waals adhesive[141] between

tip and sample (FDMT ) (the Derjaguin-Muller-Toporov model) and short-range

hydration forces in water, (FHyd) [142] and nanoscale thermal contact models will

be explored.

3.3.4 Summary

• We have demonstrated quasi non-contact SThM in ambient and liquid im-

mersion (iSThM) environments via the principle of UFM allowing significant

reduction of the shear (friction) forces without affecting the SThM signal.

• We show that a small offset in thermal response is experienced during com-

bined scanning which we believe is due to acoustic pressure acting on the

cantilever.

• By monitoring the peak-nonlinear response we can accurately identify the

optimum applied normal force between probe and sample to achieve quasi-

non-contact scanning.

• Working in this optimal regime allows simultaneous monitoring of both ther-

mal and nanomechanical properties of immersed samples.

• Further investigation of the true nature of the nanoscale thermal contact

during ultrasonic oscillation is required and will be performed using a com-

bination of analytical and finite element modelling.
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4. Quantitative thermal transport

measurements in nanostructures

Based on the experimental and analytical framework developed in the previous

chapter, we develop here the requirements needed for quantitative comparison

and estimation of thermal properties. Using an analytical model for the thermal

spreading resistance in the sample, quantities such as thermal conductivity and

interface thermal resistance can be deduced from SThM measurements. We ap-

ply similar models to relatively simple samples, oxide layers on silicon substrates

to demonstrate the principles underlying these models. Finally, metal covered

block copolymers thin films are mapped and their thermal resistances measured

to extract effective thermal conductivities.

4.1 Principles and applications of layer analytical

model

The previous chapter demonstrated how to understand an SThM measurement in

terms of thermal resistance. Different probes need different models to extract the

thermal resistance out of the measured signal. Once a proper model is developed,

the interpretation starts. We highlight here again that the measurement output is

a thermal resistance. This resistance has to be understood in light of the system

particularities.

For example, when measuring bulk samples, the thermal resistance measured

depends on three parameters (in a simplified case): the resistance from the sensor
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to the tip apex Rtip, the interface resistance between the apex and the sample Rint

and the spreading resistance Rspr. Let’s assume the goal of the measurement is

the thermal conductivity of the given sample. This parameter is mostly hidden

within the spreading resistance which in the case of bulk sample is expressed as

Rspr = 1
4ka

with a the contact radius and k the thermal conductivity. Even if

we know exactly the contact radius and Rint which is a difficult task on its own,

Rint remains coupled with Rspr. Rint can be modelled and measured with other

techniques but it is never certain that these models and measurements represent

the same physics as Rint, especially in the case of a nanoscale probe. In summary,

extracting material properties from a single measurement is a very difficult task.

Figure 4.1 shows the SThM response dV/V as a function of thermal conduc-

tivity of the bulk material. As we observe while measurements are generally re-

producible, the two quantities can hardly be correlated. Whether this arises from

nanoscale phenomena or different sample surface states is debatable. However, it

shows that comparison between different SThM experiments can be difficult, even

when using the same setup.

Figure 4.1: SThM response dV/V as a function of bulk sample thermal conduc-
tivity for metallic (red) and non-metallic (black) samples measured in ambient air
conditions. Even within one type of sample, it is difficult to extract a link between
thermal conductivity and SThM response.
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How could then SThM measurement become quantitative and produce material

properties quantitative insights? One approach, presented in the next chapter, uses

a new technique able to output material properties such as thermal conductivity

and interface conductance from a single sample using varied thickness of a sample.

This technique can also be used in a simpler form that we demonstrate here.

The background assumption is the following. From two thermal resistance

measurements RX1 and RX2 , the variation ∆R depends only on the spreading

resistance variation:

∆R = RX2−RX1 = Rtip+Rint+Rspr2−Rtip+Rint+Rspr1 = Rspr2−Rspr1 . (4.1)

For this assumption to be valid, both Rtip and Rint need to be the same for the

two samples. If Rtip is likely to stay the similar between various experiments,

Rint will depend on many parameters such as surface roughness and chemistry,

or material properties. Thus, comparison can only be valid if Rint can safely be

assumed the same. This is typically realised when the same materials are creating

the tip-sample interface but also when these materials where prepared using the

same preparation procedure.

Once this assumption is valid, the measurement difference ∆R can be under-

stood in terms of material properties. Spreading resistance as we discussed earlier,

can be modelled analytically for simple systems whereas more geometrically com-

plex samples can be modelled with finite elements programs as we show in the

next chapter. We then proceed to demonstrate how to obtain quantitative esti-

mates of materials properties using these requirements. Two types of samples are

used: silicon oxide and aluminium oxide layers. At the end of this chapter, similar

models are used for modelling thermal transport in nanostructures.

To present the underlying method used below, we first demonstrate it on simple

systems. The first samples "set" is several silicon oxide steps thermally grown on

a silicon substrate (see Fig. 4.2a). These steps are selectively etched to create like

a staircase with each step having a different thickness. As these steps were grown

78



on the same substrate, they don’t really form a sample set composed of different

samples. However this sample provide a very useful standard system as it doesn’t

require extensive experimental manipulation. The second set is made of several

aluminium oxide layers grown on a silicon substrate using atomic layer deposition

(ALD). In this case, different Si substrates were used for the different thicknesses.

The oxide steps sample was fabricated by partners at Glasgow University and

Kelvin Nanotechnology while the ALD was performed by Picosun.

Figure 4.2: Optical microscope image of the silicon oxide steps. Each step is
around 10× 10 µm2 and its thickness indicated in nm.

To model such systems of layer on substrate, we introduced the spreading

resistance models in the background review chapter 2. We use the analytical

expression derived by Yovanovich and Muzychka[103, 105] for an isotropic layer

on a isotropic substrate. When the probe contacts the sample surface, heat is

transferred to the sample and this thermal resistance from the probe to the sample

is measured through the probe’s electrical resistance. We can split this resistance

into two main components: the interface between the sensor and the sample and

the thermal spreading resistance:

RX = Rint +Rspr (4.2)

Further distinction can be made for the former for example by distinguishing

heat resistances of the tip itself and the tip-sample interface. The latter can also
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be split into several components such as the water meniscus conductance[83] and

solid-solid contact interface. Here we consider an effective interface resistance

including all components. As often in SThM measurements, we consider the tip

in contact with the sample surface as a disk of radius a. Water meniscus and

multi-asperity contact are included in this effective radius which might not then

represent the exact physical dimension of the probe-sample contact.

The thermal spreading resistance depends on the structure and materials com-

posing the sample. In the simple case of a bulk isotropic material, it is given

by:

Rspr =
1

4ka
(4.3)

with k the thermal conductivity of the material and a the effective contact radius

between the probe and the sample.

In the present case, we are dealing with a single layer on a substrate. Therefore,

we need to develop a model taking into account the heat spreading in the layer

resting on the substrate as well as the interface resistance between the layer and the

substrate. Muzychka et al.[105, 107] derived a model using an effective thickness

defined by the interface resistance (teff = t+ rintklayer). Note that this model can

be extended to an orthotropic system[113] but here we use a simplified form.

Rspr(t) =
1

πklayera

∫ ∞
0

1 +K exp
(
−2ξteff

a

)
1−K exp

(
−2ξteff

a

)
 J1(ξ) sin(ξ)

dξ

ξ2
(4.4)

where J1 is the first Bessel function of the first kind and where K is defined as

K =
1−ksub/klayer
1+ksub/klayer

. If the layer is thick enough, the spreading resistance returns to

Eq 4.3.

Thus, assuming that Rint is independent on the thickness, Eq. 4.2 becomes:

RX(t) = Rint +Rspr(t) (4.5)

with all changes in the measured thermal resistance arising from the thickness
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variation. Eq. 4.4 can then be used to model those changes and extract materials

properties.

4.1.1 Silicon oxide steps

We measured the SThM response dV/V of each step using the setup described in

the previous chapter 3 and converted this response in thermal resistance using the

model derived in the same chapter. We can therefore fit the analytical expression

from Eq. 4.2 to our data. There are four unknowns: the interface resistance Rint,

the contact radius a, the thermal conductivity of the layer k and the interface

thermal resistance between the layer and the substrate rint. Figure 4.3 shows the

experimental data and the fitted curve. To fit the model to the experimental data,

we applied some reasonable boundaries to the fitting parameters. For example, we

would not expect a contact radius smaller than 20 nm and bigger than 200 nm, or

a thermal conductivity bigger than 10 Wm−1K−1.

Figure 4.3: Oxide steps thermal resistance measured and the fitted curve using
the spreading resistance model with the following parameters: Rint = 2.6 × 106

KW−1, a = 65.5 nm, k = 1.0 Wm−1K−1 and rint = 4.91× 10−8 m2KW−1.

We obtained a realistic contact radius of a = 65.5 nm as well as for the ther-
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mal conductivity of the silicon oxide layers k = 1.0 Wm−1K−1 being in a good

agreement with optical technique measurements of similar sample[143]. The value

of interface thermal resistance obtained (rint = 4.91 × 10−8 m2KW−1) is around

one order of magnitude higher than that found by Chien et al.[144] but similar to

that found by Zhu et al.[145].

4.1.2 ALD aluminium oxide layers

A similar experiment was then performed on ALD grown aluminium oxide samples.

The sample set consists of 9 samples with thicknesses increasing from 2 nm to 500

nm. Using the same procedure, we fitted the results with the spreading resistance

model. Figure 4.4 shows the results. We received a higher contact radius a = 130

nm which is still plausible as a different probe was used and as this effective

radius includes all heat transfer effects from the probe to the sample. The thermal

conductivity obtained is k = 1.81 Wm−1K−1 which is close to the value obtained by

Al Mohtar et al.[143] on similar samples. Again we note a high interface thermal

resistance rint = 4.95 × 10−8 m2KW−1. This high value could arise from a high

inhomogeneous interface from the ALD deposition.
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Figure 4.4: Aluminium oxide layers thermal resistance measured and the fitted
curve using the spreading resistance model with the following parameters: Rint =
2.1× 106 KW−1, a = 130 nm, k = 1.81 Wm−1K−1 and 4.95× 10−8 m2KW−1.

4.2 Thermal transport in metal covered block copoly-

mers

In this section, we report SThM measurement performed in vacuum (∼ 10−6 Torr)

with the doped silicon probe. First we present results on chromium covered block

copolymer layers. These layers are mostly used for nanofabrication process. There-

fore knowing their thermal properties can be essential for procedure improvement.

These samples were fabricated at the Catalan Institute of Nanoscience and Nan-

otechnology (ICN2) and the work presented here was performed in partnership

with Dr. Alexandros El Sachat and Dr. Francesc Alzina.

The block copolymer (BCP) consisting of mixed polyethylene oxide (PEO) and

polystyrene (PS) presents interesting self-arrangement. Depending on the fabri-

cation process, either pillars or lines morphologies are observed. The fabrication

is as follows (see Fig.4.5a). First, a solution is spin coated on a silicon substrate.

Then upon annealing microphase separation occurs in PEO pillars embedded in a
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PS matrix. If during the annealing step, a mixed chloroform and toluene atmo-

sphere is introduced, the microseparation provokes PEO lines formation on a PS

layer. Then, BCP layers are covered by a chromium layer by thermal evaporation.

The chromium thickness was varied from 0 to 5 nm. SEM images of the different

morphologies are presented in Fig.4.5b-f.

Figure 4.5: (a) Schematic illustration of the fabrication process. SEM images of
(b) the fabricated microphase separated BCP film on Si substrate and the BCP
templates with nominal Cr coatings of (c) 1 nm, (d) 2 nm and (e) 5 nm. The
darker regions are the PEO domains that were degraded, and the lighter region
the PS matrix. SEM images of (f) the fabricated BCP template after the solvent
annealing showing the modified morphology and the BCP templates with (g) 2
nm and (h) 5 nm Cr layers

First we study individual regions of the BCP films to understand how the

interfaces between the two blocks after the reorganization of their chains in the

phase separated structure affect the heat dissipation in their volume. In Fig. 4.6 we
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present topography and thermal resistance images of the BCP templates without

Cr layer obtained by simultaneous mapping the local variations in height (Figs. 4.6

a,c) and tip-sample thermal resistance (Figs. 4.6b,d). The high-resolution thermal

image of the BCP template with the cylinder morphology shows thermal contrast

between the PS matrix and the PEO cylindrical domains. The PEO phase of

the BCP appears darker than the PS matrix in the thermal image (figure 4.6b),

indicating a reduced tip-sample heat flux when the tip is in contact with the PS

matrix. However, in the BCP template with the lamellae morphology the thermal

contrast is reversed (see Figs. 4.6).

Figure 4.6: (a),(c) Topography and (b),(d) thermal resistance images of the
nominal BCP templates. Scale bars are 100 nm. PS and PEO regions are indcated
by arrows.

Since the two polymers have similar intrinsic thermal conductivities, the ori-

gin of the contrast could be related to a topography artefact. Nevertheless an

alternative explanation is possible taking into account that heat spreading to the
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substrate is present and, consequently, affects the tip-sample heat transfer. For

a given sample, either the pristine BCP template or a BCP with a Cr layer, if

there are no spatial variations of the thermal conductivity and of the Cr layer

thickness, the only parameter that can change the heat spreading to the substrate

is the thickness of the BCP. As the samples show a marked surface topography

with the PEO cylinders thinner that the PS matrix, this BCP thickness modula-

tion results to a related thermal conductance change and in the contrast in the

thermal images. Therefore, the thermal contrast is not related to variations of the

thermal conductivity between constituent blocks, but to the relative thickness of

the different domains and, therefore, to the distance of the heater to the substrate.

The same trend has been observed in the BCP templates with different Cr layers

as is shown in Fig.4.7.
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Figure 4.7: (a),(c) Topography and (b),(d) thermal images of the BCP tem-
plate with 1 nm Cr layer. Topography and thermal images of the modified BCP
templates with 2 (e),(g) and (f),(h) 5 nm Cr layers, respectively.

Next we apply a model in order to gain more quantitative information regarding

the heat dissipation in the BCP films. Particularly, when the probe is in contact

with the sample, the heat generated in the SThM heater can only transfer to two

heat sinks: the probe cantilever to the microscope and the sample. By monitoring
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the change in probe excess temperature in and out contact, we measure the total

thermal resistance between the tip and the sample as explained in chapter 3.

Considering the very low thermal conductivity of the BCP films, here we as-

sume the thermal transport as entirely diffusive. This is supported by the high

probability of phonon scattering whithin polymer chains. Thus the phonon MFP

is considered very small for this system. Therefore, similar analytical expressions

as used in previous sections for the estimation of the Rspr can be used. However, in

this case, the system is made of two layers on a substrate. A model for multilayer

contacts was also derived by Muzychka et al.[104]. The solution was derived for an

isothermal heat flux on a tube of radius b which accounts for boundary effects. In

our case these effects can be neglected and taking b arbitrarily large corresponds

to the half-space solution. The mathematical treatment is heavier than the single

layer case. The spreading resistance of a double coated surface is given by the

following equation:

R2−layers
spr =

Ψ

4k3a
(4.6)

with the spreading resistance parameter given by

Ψ =
16

πε

∞∑
n=1

δnε

2

J1(δnε)

δ3
nJ

2
0 (δn)

φ+

φ−
K21K32 (4.7)

where φ± = (1 + K21)(1 + K32) ± (1 − K21)(1 + K32)e−2δnετ1 + (1 − K21)(1 −

K32)e−2δnετ2 ± (1 +K21)(1−K32)e−2δnε(τ1+τ2). We summarize here the main equa-

tions and parameters are given in Table 4.1.
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ki
Thermal conductivity of the i-th layer

with i = 3 corresponding to the substrate

Kij = ki/kj Thermal conductivity ratio

ti Thickness of the i-th layer

τi = ti/a Relative thickness of each coating

ε = a/b
Contact spot aspect ratio

(extremely small in our case)

δn = βn
4

[
1− 6

β2
n
+ 6

β4
n
− 4716

5β6
n
+ 3,902,418

70β8
n

] Approximated eigenvalues of

the characteristic equation J1(δn) = 0

βn = π(4n+ 1) with n ≥ 1

Table 4.1: Parameters of the 2 layers spreading resistance model.

Critical parameters are t1, t2, k1 and k2, the thicknesses and thermal conduc-

tivities of the first and second layer, respectively, a, the contact radius of the probe

with the sample and k3, the thermal conductivity of the substrate. For a Si sub-

strate we have k3 = 148 Wm−1K−1[132]. Then, the Cr and BCP layer thicknesses,

t1 and t2, have been obtained from the TEM measurements not reported here.

The estimation of the contact radius of the probe is more challenging, particularly

in soft materials, where the deformation of the sample surface is more likely.

By inspecting the thermal profile shown in Fig. 4.8d, we can see that as the tip

is moving from the higher level (PEO) towards the edge of the PS phase, the probe

voltage increases. This 13 mV increase of the probe voltage on top of the PS matrix

indicates an increase of the heat conduction from the probe to the sample, i.e.,

a decrease of the tip-sample thermal resistance. However, topographic artefacts

have to be carefully distinguished from true variations in the voltage signal that

are not related to the geometrical change in tip-sample contact area. Comparing

the 20 nm flat area in the topography line scan in Fig. 4.8c (square red box) and

the corresponding thermal signal in Fig. 4.8d, we can estimate the thermal spatial

resolution is in the sub-20 nm range. In this region there is not cross talk between

topography and thermal signals, indicating that the contact between the tip and
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the sample does not change significantly and the acquired signal is not related to

topography-induced artefact. Taking into account this lateral resolution obtained

from the thermal images, we estimated a = 10± 2 nm.

Figure 4.8: High resolution (a) topography and (b) thermal images of the modi-
fied BCP template in vacuum environment. (c) Topography and (d) voltage signal
profiles along the dashed lines in the images.

For the BCP thin films without Cr the unknown parameters are k2 and Rint

since we can estimate Rspr from the analytical thin-film approximation derived by

Dryden[102]. This estimation requires the knowledge of the thermal conductivity

of the BCP films. Typical values for the individual BCP blocks are ranging from

0.1 − 0.17 Wm−1K−1[146–148] for PS and 0.2 − 0.4 Wm−1K−1 for the PEO[149].

However, the intrinsic thermal conductivity of the polymers can be affected by

many factors such as molecular weight[146] or confinement[150, 151]. Furthermore,

when subject to pressure, as it is the case under a sharp tip, the polymer thermal
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conductivity can be increased[89]. In the case of our BCP films, it is challenging to

estimate this increased thermal conductivity. Therefore, we use a weighted average

(considering the volumes of PS and PEO) thermal conductivity keff and similarly,

weighted average BCP film thickness teff . With these values we estimated Rspr

between 7 × 106 KW−1 and 4.4 × 107 KW−1. Then, we used the last unknown

Rint to reproduce the experimental data. We note that this model assumes perfect

interfaces in between the layers and between the second layer and the substrate.

The measurements show that by increasing the Cr layer thickness, the thermal

resistance decreases (Fig. 4.9). For the BCPs with the metal coating the unknown

parameters are k1 and Rint. By fitting these parameters to the trend observed in

the experiment, we obtained k1 = 1.7± 1 Wm−1K−1 as shown in Fig. 4.9 showing

the total thermal resistance variations of the SThM signal. Note that we measured

negligible differences in the thermal resistance between the first and the second set

of samples. By analysing the thermal images and taking into account Rint and the

injected power in the probe, we estimated in percentage of the thermal resistance

variations when the tip is in contact with the PEO and PS matrix (inset graph

in Fig. 4.9). We note that these values include the error derived by topography

related changes of the tip-sample contact geometry and film thickness modulations.
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Figure 4.9: Total tip-sample thermal resistance variations as a function of the
Cr thickness (black stars) and the two layers on substrate analytical model. The
inset graph shows the percentage of the thermal resistance variations between PS
and PEO in the BCP films with the pillar (blue spheres) and lamellae (green)
morphology.

Considering the small tip apex of the thermal probe, it is reasonable to assume

that the tip-sample thermal exchange is localized at the point contact. Particu-

larly, in high vacuum experimental conditions the heat transfer through the liquid

meniscus and air is eliminated and, neglecting the conductance due to radiation,

the dominant heat transfer mechanism is the conduction due to the mechanical

contact of the probe with the sample. Here, the heat source size is comparable

to the thickness of the Cr layer and the influence of the Cr layer dominates over

the substrate. Therefore the increase of the Cr layer enhances heat dissipation or

conductance within the sample giving the trend seen in figure 4.9. Furthermore

the decrease of the thermal resistance seen in the measurement on the sample with

1 nm Cr layer compared to the measurement on the pristine sample indicates that
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the heat spreading due to the presence of the metal dominates over the Cr-BCP

interface thermal resistance. Finally, the fact that the total thermal resistance

measured in the pristine samples without the metal coating remains the same,

indicates that the intrinsic thermal conductivity of the BCP film does not change

or cannot be detected after the reorganization of the block copolymer chains into

aligned lamellae.

4.3 Summary

In this chapter, we explained the necessity and the main assumptions needed for

thermal resistance measurements. Under specific conditions, SThM measurements

of thermal resistance can be compared. Then, when comparison is possible, an ap-

propriate model of the thermal resistance between the sensor and the sample heat

sink is needed. This chapter demonstrated models based on spreading resistance

analysis of single and double layers on a substrate as well as a simple resistances

network. We first obtained quantitative values for oxide layers (silicon and alu-

minium oxides) demonstrating the principle of using spreading resistance models.

Finally, for metal-covered block copolymers a double layer model was introduced

and fitted to the experimental data.

It is worth noting that our work is based on nanoscale SThM probes in the

specific measurements procedures we described. Therefore, some conclusions might

not be applicable to a microscale probe such as the Wollaston wire or to different

measurements procedures. For example, calibration of the SThM response dV/V

on the thermal conductivity could not be realised in our lab but has been reported

for the Wollaston wire[73, 96] and nanoscale probe[152].

However, measurements uncertainties can arise in SThM practice as we have

shown in the chapter 3. Hence, a further increase of the SThM precision and

reproducibility can be achieved by minimising experimental operations such as

sample changing or probe repositioning. A sample such as the silicon oxide steps

provides already a good improvement but requires to change the probe position
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for each step. In the next chapter, we present a powerful method taking the ideas

reported in this chapter one step further.
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5. Three dimensional mapping of

thermal properties

In this chapter, we demonstrate that the combination of a unique cross-sectional

polishing tool and SThM provides many advantages for nanothermal investigations

of buried materials properties. From isotropic and anisotropic thin films, to ther-

mal interface materials, nanothermal properties are extracted using appropriate

models.

5.1 Introduction

As nanomanufacturing enters commercial markets, rapid and versatile investiga-

tions of materials and devices on the nanoscale become a key requirement. Com-

mon microscopy tools reach their limit when measurement of specific physical

properties at the nanoscale is needed and standard techniques cannot address

challenges faced by nanofabrication processes. One of the key characteristics of

materials at the nanoscale is their ability or inability to transfer heat. For exam-

ple, the microelectronics industry is struggling to dissipate heat generated by hot

spots in transistors arrays[5, 153], stalling Moore’s law for increase of processor

speed for more than a decade. Measurements of thermal conductivity in a simple

geometry such as thin films on a substrate present many difficulties to traditional

techniques for layer thickness smaller than 100 nm[24]. In particular, decoupling

the thermal conductivity and the effect of interface resistance between the film

and the substrate, as well as between the nanoscale probe and the film, is difficult
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and is often not possible.

Furthermore, as device architecture become more complex and using three

dimensional (3D) stacks, multilayer processes and 3D geometry to gain space and

capacity, a new approach is required to probe thermal transport in buried layers

and the interfaces. Standard thermal techniques are limited to either surface or

bulk probing and cannot assess thermal transport in buried nanostructures.

Nanothermal microscopy techniques such as scanning thermal microscopy (SThM)

are gaining interest as they resolve thermal properties well below the light diffrac-

tion limit[8, 154]. However, accessing intrinsic and subsurface properties remains

challenging. Several groups[77, 78, 155–157] have probed temperature and heat

conductance in 3D using SThM. While Park et al.[78] reported measurements of

ErAs/GaAs MBE superlattices with 6 nm RMS roughness, Juszczyk et al.[77] used

craters in photonic structures to access subsurface materials. Cleaving devices is

also possible to probe subsurface as demonstrated by Jung et al. [155] where a

LED was cut to map its temperature distribution. All methods reported lack re-

producibility, adaptability to different structures and most prominently ill-defined

surface which create major hurdles for SThM measurements.

To address these challenges, we used a unique nano-sectioning tool using Ar-

ion beams impinging on the side of a sample at shallow angle (∼ 5◦) and exiting

through the sample surface, beam-exit cross-sectional polishing (BEXP)[158, 159].

The cross-sectioned surface obtained has an open angle wedge-like geometry and

sub-nm surface roughness making it easily suitable for studies via standard scan-

ning probe microscopy methods (see Fig. 5.1). Equally essential, the glancing

beam-angle and inert nature of Ar create negligible surface damage and practi-

cally no modification of the measured physical properties of studied materials[158,

159].

The BEXP process enables the measurements of the SThM response as a func-

tion of layer thickness. By analysing the SThM signal of the wedge-shaped section,

we were able to extract the thermal conductivity of the layer itself by applying
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an appropriate analytical model. We confirm capabilities of this new method

using standard materials and then explore buried thermal conductance of semi-

conductor and optoelectronic nanostructures, observing the variation in the heat

conductance due to local composition and dislocation density. The ease of use of

our approach renders it suitable for a broad range of samples and opens new paths

for fundamental and applied research.

5.2 Combining BEXP and SThM

In the quest of accessing subsurface physical properties with scanning probe mi-

croscopy, we used a unique sample preparation tool. By cutting the sample at a

shallow angle with Ar ion beams in BEXP configuration as represented on Fig.

5.1a ), we create an easily accessible surface well suited for scanning probe methods

as reported elsewhere[158, 160].

In the case of SThM, the BEXP procedure is particularly powerful as it enables

the measurement of a sample thermal resistance as the material thickens from the

substrate to the surface. Furthermore, several reports have shown the necessity in

SThM experiments to measure samples with several thicknesses to deduce quan-

titative properties[72–74, 161]. This often requires a change of manufacturing

process, preparation of special samples and does not allow measurement of the

real devices. The combination of SThM and BEXP drastically reduces these hur-

dles. Using a single and one measurement step, the thermal resistance of various

materials and thicknesses are obtained.

We demonstrate the usefulness and precision of the method on a molecular

beam epitaxy (MBE) grown multilayer sample of Si/SixGe1−x/Ge/Ge0.9Sn0.1 that

has potential use in Si based optoelectronics due to the potential of achieving

direct bandgap in such a structure. First, a 100 nm Ge layer is grown on a

silicon substrate. During the process, Si atoms diffuse inside the Ge layer due

to the high process temperatures[162] and therefore create SiGe alloy of varying

concentrations. Si concentration is difficult to estimate in the first few nanometers
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of the Ge layer. However Si concentration decreases with increasing thickness as

diffusion does not reach 100 nm[163]. Then, another 100 nm Ge layer is grown

creating a virtual Ge substrate. Finally, 200 nm of Ge0.9Sn0.1 are grown on the

Ge virtual substrate. These MBE grown samples were prepared by the Institute

of Semiconductor Engineering at the University of Stuttgart and interpretation of

the results was realised in collaboration with Linda Haenel and Jorg Schulz.

Figure 5.1: (a) Schematic beam-exit cross-section polishing (BEXP) principles.
Ar ions are impinging the sample surface at shallow angle (∼ 5◦) creating a SPM
friendly surface. (b) Thermal resistance as a function of height starting from the
first SiGe layer. Inset: 3D topography overlaid with SThM response. Arrow
indicates the direction of the average thermal resistance profile.

Thermal properties of Si1−xGex alloys have been studied extensively. Its ther-

mal conductivity changes drastically with Ge concentration[164] and always re-

duces compared to the bulk values of both Si and Ge. When the SThM probe

scans across the different layers, the thermal resistance at the tip apex will be

affected by the thermal transport happening at a particular nanoscale volume in

the 3D space of the sample. This transport depends on the local thermal conduc-

tance which is determined by both the local thermal conductance in the material,

and for the nano-section, corresponding thickness of the subsurface layer along the

z-coordinate.

Fig. 5.1b shows the thermal resistance at the tip apex as a function of height

inside the sample and a 3D topography representation overlaid with SThM con-

trast. Three regions corresponding to the silicon substrate, the virtual substrate
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and the Ge0.9Sn0.1 layer are observed. We can distinguish the relatively low re-

sistance silicon substrate then a sharp increase at the transition to the Si1−xGex

layer with high density of misfit dislocations, followed by a decrease and roughly

constant signal in the relaxed dislocation free Ge layer. Finally, as the tip enters

the Ge0.9Sn0.1 layer, the heat resistance increases again.

As we will explain in the following section, the thermal spreading resistance of a

layer on a substrate is expected to increase (decrease) if the thermal conductivity

of the layer is smaller (larger) than that of the substrate ( klayer
ksubstrate

< 1 or >

1). Therefore, the resistance lowering observed in the Si1−xGex region is counter

intuitive as, for any Ge content, the thermal conductivity of Si1−xGex is always

lower than that of silicon[164]. However, the Ge content is varying from around

80% to 100%. In this region, the thermal conductivity of Si1−xGex is increasing.

It can be shown that in such case of an increasing layer thermal conductivity,

the spreading resistance will first increase and then reduce as the thickness in-

creases and the probe contacts more thermally conductive material. Using Finite

Element modelling with a fine mesh, we can model the spreading resistance of a

40 nm diameter heat source on the surface. The spreading resistance is defined as

Rspr =
Tav − T0

Q
(5.1)

where Tav is the average temperature over the heat source surface and T0 is the

boundary temperature and Q is the total power set on the heat source. We can

then model the spreading resistance as a function of sample thickness probed.

Due to the thermal conductivity profile, the material under the heat source has

a gradually increasing thermal conductivity. It can be seen in Fig. 5.2 that the

spreading resistance is first increasing and then reducing with increasing thickness

(blue triangles), whereas with a constant conductivity, the resistance monotonously

increases (red circles).
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Figure 5.2: Thermal spreading resistance computed for a constant (red cirlces)
and an increasing (blue triangles) layer thermal conductivity and the modelled
increasing layer thermal conductivity distribution of SiGe.

This explains the trend observed in the SiGe layer and demonstrates the po-

tential applications of the BEXP-SThM combination. It is remarkable therefore

that nano-section and SThM allow the detection of variation of the local thermal

conductance due to the composition and crystalline defects in the layers with a

vertical resolution of around 5 nm in thickness.

In order to perform quantitative analysis of inhomogeneous and anisotropic

gradient SixGe1−x and Ge0.9Sn0.1 samples, we present an analytical model for the

nanothermal characterization of ultrathin layers and confirm the accuracy of the

method using well defined isotropic layered samples.
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5.3 Quantitative measurements of thermal con-

ductivity and interface resistance

When the probe contacts the sample surface, heat is transferred to the sample

and this thermal resistance from the probe to the sample is measured through the

probe’s electrical resistance. We can split this resistance into two main compo-

nents: the interface between the sensor and the sample and the thermal spreading

resistance (see Eq. 4.2)

Figure 5.3: (a) Topography image of the BEXP polished 300 nm silicon oxide
sample. The image is flattened on the oxide area. (b) Total thermal resistance
map of the 300 nm silicon oxide on silicon. (c) Average profile along the green
arrow direction in (b) fitted with spreading resistance model. Inset is a schematic
view of the SThM scanning along the polished sample with increasing thickness.

The thermal spreading resistance depends on the structure and materials com-

posing the sample. In the simple case of a bulk isotropic material, it is given

by:

Rspr =
1

4ka
(5.2)

with k the thermal conductivity of the material and a the effective contact radius

between the probe and the sample. This resistance corresponds to the substrate

response as represented on the inset of Fig. 5.3c.

In the present case, we are dealing with a single layer on a substrate. Therefore,

we use a model taking into account the heat spreading in the layer resting on the

substrate as well as the interface resistance between the layer and the substrate.

Such model derived by Muzychka et al.[105, 107] was already introduced (see
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Eq. 4.4). For thin films and nanoscale systems, diffusive models might not be

representing the exact physical nature of hte heat transfer. For example, ballistic

transport might become relevant. However, this spreading resistance model offers

a good framework of understanding and provides useful discussion tools. Thus,

the quantities extracted are therefore effective quantities and might not be the

physical ones.

To quantify thermal properties such as the thermal conductivity, we investi-

gated standard materials used in various places across the semiconductor indus-

try[165, 166]: 300 nm silicon dioxide, 60 nm spin-on carbon and 10 nm spin-on

glass. All layers are resting on a Si substrate. These materials provide a case study

and a test system demonstrating principles of the techniques.

After polishing at shallow angle, we obtained a smooth surface easily accessi-

ble by our thermal probe. The thermal signal received accounts for the thermal

resistance from the probe to the sample. With an appropriate model explained in

Chapter 3, we can link this signal to the thermal resistance at the tip apex. This

model takes into accounts major heat channels of the system: conductance through

the cantilever to the microscope, heat dissipation to the environment through the

air and heat transfer through the air gap to the sample. It also includes the ge-

ometrical characteristic of the heater shape which creates a different temperature

gradient in or out of contact.

To confirm the accuracy of the measurements performed in air, we compared

experiments performed in air and vacuum on the same sample (see Fig. 5.4).

Similar results were obtained and features observed on the surface. We note a

slightly better sensitivity in vacuum which can be attributed to a smaller effective

contact area, as expected in vacuum. However, the good agreement between both

measurements supports the measurements performed in air as the air thermal

resistance variations don’t affect the profile measured.

102



Figure 5.4: Comparison of air and vacuum measurements of the same sample.
Top: thermal maps of the same sample in air and vacuum. Bottom: SThM profiles
normalized to the substrate and top surface measurement.

Fig. 5.3a-b show the topography and thermal resistance maps of a 300 nm

thermal oxide on silicon. Silicon response is lower than that of silicon oxide as

expected. At the transition between the polished area and the top surface, ther-

mal resistance is varying non-uniformly. This can be attributed to the change of

contact area as the angle between the probe and the sample is changing. In Fig.

5.3c, a profile was taken along the green arrow direction of Fig. 5.3b. This profile

is averaged perpendicularly to the arrow direction. An increase of the thermal

resistance is obtained with increasing oxide thickness corresponding to an increas-

ing spreading resistance. At the silicon-oxide interface, a dip in the signal can

be observed. This can be attributed to the change of the angle due to different

polishing (< 2◦ different) or change of the interface resistance between the apex

and the surface.

When the probe is solely in contact with the oxide layer, we can assume that

this interface resistance remains constant within the whole layer. In other words,

Rint of Eq. 4.2 is constant for the same material. Then we can apply the analytical

model describe above (Eq. 4.4) and using unknown parameters as fitting param-

eters. There are four unknowns in such system: the interface resistance between
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the tip apex and the sample, the effective contact radius, the layer thermal con-

ductivity and the interface thermal resistance between the layer and the substrate.

With an appropriate fitting function, as described hereafter, we can remove the

tip-sample interface resistance as it is considered constant and deduce its value

afterwards.

Eq. 4.4 has a major unknown, typical for any SThM conductance measurement:

the effective interface resistance between the probe and the sample, Rint. The

second terms, Rspr depends on the sample structure and materials and is often the

target of the experiment. In our case, the spreading resistance is a function of the

thickness Rspr = Rspr(t) and we assume that Rint remains constant for the same

material. To remove the contribution of Rint in the experimental data, we can

define a new fitting function accounting only for the spreading resistance effect:

f(t) = RX −RX0 = Rspr(t)−Rspr(t0) (5.3)

where t0 is a given reference thickness. Using f(t) to fit the data removes temporar-

ily Rint as all variations in the data come from the spreading resistance variations

only. Rint can be obtained afterwards by simply finding the offset to match the

measured resistance.

Then, we can use the 300 nm oxide sample as a calibration sample for the

effective contact radius. By assuming literature values for the thermal conductivity

(kSiO2 ≈ 1W/mK[143, 167]) and the interface thermal resistance between silicon

oxide and silicon (rintSi−SiO2
≈ 1 × 10−9m2K/W [143, 168]), we are left only with

the effective contact radius. With these parameters, we obtained a = 56.1nm .

We note that the fit quality (see Fig. 5.3c) is reasonable.

Applying the same method and using the calibrated contact radius, we could

measure thermal conductivities and the interface resistances of 60 nm spin-on (SO)

carbon and 10 nm spin-on glass. Results are displayed in Table 5.1. We note a

general coherence in the data obtained as spin-on carbon is expected to be more

thermally conductive than spin-on glass. Experimental data and fitted curves are
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shown on Fig. 5.5.

Fitting parameters 300 nm SiOx 60 nm SO carbon 10 nm SO glass

klayer (Wm−1K−1) 1 0.8± 0.1 0.3± 0.1

rint (m2K−1W−1) 1× 10−9 4± 2× 10−9 2± 2× 10−9

Rint (KW−1) 9.0± 0.1× 106 5.3± 0.1× 106 6.0± 0.2× 106

a (nm) 56.1 56.1 56.1

Table 5.1: parameters obtained by fitting equation 4.4 to experimental data.
For silicon oxide, literature values are used to obtain a and Rint. Bold values are
assumed from literature and italic value is derived from the SiO2 calibration.

Figure 5.5: Thermal maps and resistance profiles for the 60 nm spin-on carbon
(left) and 10 nm spin-on glass samples (right). The fitted data is shown in red.

5.4 Thermal transport in anisotropic media

The discussion above is valid for isotropic and diffusive systems of layers on a

substrate. In some situations, this is not applicable when for example, thermal

conductivity is changing with the thickness or when ballistic transport becomes

important. In this section, we investigate nanoscale transport in anisotropic sys-

tems. First, we qualitatively compare thermal conductivities in anisotropic layers.
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Using FEA, we then quantify the thermal conductance of gradient anisotropic

nanolayered materials.

An example of anisotropic system was shown in Fig. 5.1. Carrying on these

multi-layered structures, we investigate 2 samples having similar composition but

different processing. It was demonstrated that GeSn alloys are metastable[169–171]

and their crystal quality can be altered upon annealing at high temperature[172].

Sn mobility inside the Ge can increase drastically with temperature and tend to

form clusters and segregate[170]. To assess these effects, we compared two samples:

one sample was BEXP cross-sectioned as grown and the other one was annealed

at 500◦C prior cross-sectioning and characterization.

Figure 5.6 shows the thermal resistance for these two samples. Note that the

resistance was normalized both to Si and Ge. The increase and further decrease

found in the Si1−xGex region was already discussed in the introduction and is

attributed to the reduction of Si concentration in Ge. We can observe a slight

difference in the peak of the Si1−xGex region. The annealed sample is less resistive

than its as grown counterpart. This striking result assesses the effect of annealing

on the alloy structure. Upon annealing, Si1−xGex reorganisation occurs and results

in a less resistive media.

In the pure Ge region, we obtained an almost flat response which indicates that

the spreading resistance isn’t affected by the increase of Ge layer thickness. Then,

when entering the Ge0.9Sn0.1 layer, the resistance increases for both samples. This

can be expected because of the lower thermal conductivity of GeSn alloys[173,

174] (between 1 and 10 W/mK) compared to pure Ge (∼ 20 Wm−1K−1 for 100

nm film[173, 175]).

However, when looking at the derivative of the thermal resistance in this layer,

a difference can be observed between the as-grown sample and the annealed one.

The derivative value is higher, for the annealed sample. Therefore, the spreading

resistance is increasing faster in the annealed sample indicating a lower thermal

conductivity of the annealed GeSn layer compared to the as grown sample. Simi-
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larly to the Si1−xGex region, we can explain this result by a different GeSn crystal

quality. As it is expected, annealing is likely to create clusters of Sn inside the Ge.

These aggregates act as phonon scattering elements, hence reducing the thermal

conductivity.

Figure 5.6: Thermal resistance as a function of height for as-grown (blue) and
annealed (green) samples. Different slopes of the GeSn region are indicated and
are possibly due to different crystal quality in this region.

Modelling anisotropic systems remains challenging especially in cases where

ballistic transport becomes important as solutions to Boltzmann transport equa-

tion need to be found. We limit the discussion to diffusive systems and address

the question of thermal conductivity anisotropy using finite element analysis. Dif-

fusive transport assumption remains valid if the heat source dimension a is bigger

than the carrier mean free path (MFP), l. That is if the system Knudsen number

(Kn = l/a) is smaller than 1 (Kn << 1). In our system, phonon MFP is greatly

reduced compared to bulk values due to interface scattering and impurities[164].

Except for Si where l ∼ 300 nm[15], MFPs are smaller than 100 nm, the effective

contact radius[173].

To further investigate the anisotropy effect, we cross-sectioned a Si1−xGex sam-

ple with a gradient composition of Ge. The layer was grown on a Si substrate with

a Ge concentration going from 0% at the bottom to 23% at the top surface, 220
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nm away from the substrate. We opted to model this sample as a series of steps

as sharp angles increase dramatically the computation time. In this model, we as-

sumed a linear increase of the Ge content (xGe) with the height inside the layer (t):

xGe = t0.23
220

. We chose an analytical expression for the alloy thermal conductivity

from the literature[176–178] and implemented it in our Finite Element model as

shown on Figure 5.7. This sample of gradient Si1−xGex alloy on a silicon substrate

was grown by collaborators from ICN2 in Barcelona.

Figure 5.7: Left: Finite Element model geometry with several steps mimicking
the cross-sectioned surface. Right: thermal conductivity profile across the model
steps

Fig. 5.7 shows the thermal conductivity inside the material from top to bottom

set as material property for the first 220 nm. On the top of the layer, the thermal

conductivity is that of Si0.97Ge0.23 and as we go deeper inside the steps, it is

increasing toward the bulk Si thermal conductivity value.

In Fig. 5.8, results of the modelling are compared directly to experimental

results. The thermal resistance measured from the SThM tip is normalized to Si

thermal resistance for the comparison purpose. The thermal resistance measured

here accounts for both contact (interface) thermal resistance between the tip and

the sample and the spreading resistance inside the material. We modelled the

probe behaviour on different steps corresponding to different heights from the

silicon substrate and compute the corresponding thermal resistance. This thermal
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resistance was also normalized to the Si substrate.

Figure 5.8: Polished Si1−xGex on silicon sample. Modelled and measured thermal
resistance as a function of height and thus increasing Ge composition are compared.

Few comments can be made on the comparison between the model and exper-

iments. First, the observed increases in thermal resistance are similar and can be

explained mainly by the distance to the substrate and reduction of thermal con-

ductivity. Then, when reaching the top of the layer, a deviation is seen that can

be connected wuth the following reasons. Ge concentration is not known precisely

and composition measurements are required for a more detailed knowledge of the

Ge content. It is also possible that the Ge content does not increase linearly inside

the layer and that some Ge accumulated at the top. Finally, we model thermal

conductivity using bulk thermal conductivity values whereas this value can be

greatly reduced in thin film[164, 175].

5.5 Characterisation of Thermal Interface Mate-

rials

Thermal interface materials are used in industry for heat management purposes.

They usually help to control over heating in devices by interfacing a hot side to

a cold heat sink. In thermal interfaces materials (TIM) developments, carbon

nanotubes have attracted numerous studies and prototypes have been realised
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using CNTs relying on their high thermal conductivity. In this section, we study

TIM morphology and nanoscale thermal properties using several systems. All TIM

investigated here are formed by CNTs grown on a silicon substrate and capped by

a polymer layer. This polymer layer is usually covered by another material either

for protection or for serving as a heat bath. The samples were prepared at Thales

by Odile Bezencenet and collaborators.

First, we used the nano-cross-sectioning BEXP approach described before to

unveil buried morphology of the TIM. SEM and UFM were used to describe the

nanotubes arrangement and the penetration of the polymer inside the nanotubes

layer. Then, combining SThM with various sample preparation techniques, we

attempted to study nanothermal properties of TIMs. This last section, even if not

fully conclusive, provides a strong background for further nanothermal studies of

TIMs.

5.5.1 Buried morphology and structure

Internal structure of thermal interface materials is always a major unknown when

measuring their physical properties. Interfaces preparation involving several manu-

facturing steps changes the morphology of its constituents and a precise knowledge

of the materials between either side is crucial for improvement.

A common challenge faced when using carbon nanotubes for efficient thermal

interfacing is the contact resistance at both ends. It was shown that using a

capping polymer layer can significantly improve the thermal coupling between the

nanotubes and a copper heat sink[179]. However, control of the CNTs penetration

inside the polymer layer is needed to study the coupling efficiency.

Standard cross-sectional tools such as Focused Ion Beam (FIB) and TEM in-

vestigations requires long and costly preparations. We therefore used BEXP which

used shallow angle to create a smooth wedge-like layer suitable for any standard

AFM or SEM technique as explained earlier. This technique also has the advan-

tage, compared to other cross-sectioning tools, to unveil internal morphology over
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a wide area of few mm2, instead in a small region of few µm2. Therefore inhomo-

geneity can be assessed at various places. This is a major bonus as inhomogeneities

are likely to differ from one place to another.

To characterize the nano-cross-sectioned TIM, we used SEM imaging and UFM

to map nanomechanical properties and gain insights on the internal morphology

of the interface. In this case, the interface consists of vertically aligned CNTs on

a seed layer and capped with a polymer layer covered by a silicon oxide thin film

for protection. SEM images are displayed on Figs. 5.9. First, we observe a high

heterogeneity within the nanotubes layer (Fig. 5.9a). The nanotubes that were

vertically aligned in the previous section appear mixed with different orientation

(Fig. 5.9d and 5.9e). This can be attributed to the manufacturing process. When

the vertically grown nanotubes are covered, due to their relative low bending

strength, they can start folding. This is clearly seen on Fig. 5.9c which shows

the first part of the nanotubes on top of the seed layer. The tubes almost appear

as lying on the substrate, thus showing high bending in this region.

111



Figure 5.9: Images of the full interface polished with BEXP. (a) Large view of
whole layers, from left to right: capping oxide, polymer, CNTs, seed layer, silicon,
scale bar is 50 µm. (b) UFM image detailing the CNTs-polymer mixing, scale
bar is 2 µm. (c) Detail of the seed layer-CNTs interface, scale bar is 2 µm. (d)
Detail of CNTs region highlighting different CNTs orientation, scale bar is 5 µm.
(e) Detail of CNT bundles. Scale bar is 500 nm.

Finally, on Fig. 5.9b, we imaged the interface between the polymer layer and

the nanotubes. This interface appears to span around several microns laterally,

We imaged this region with UFM to highlight the presence of polymer within the

nanotubes. The different layer composing the top of the TIM can be observed.

Especially, the polymer layer is observed penetrating the nanotubes at least 300

nm below the capping layer. This is observed on Fig. 5.10 where a 3D topography
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image is overlaid with UFM contrast. Stiffer material appears brighter. Below the

capping layer, the polymer forms an interface with the nanotubes ends. The latter

appears interspersed with the polymer layer over several 10s of nanometers. As

such, the polymer layer is expected to produce a good thermal contact with the

nanotubes layer and enhanced the TIM efficiency.

Figure 5.10: 3D topography overlaid with UFM signal.

5.5.2 Nanoscale thermal mapping of full interface

After inspecting the internal morphology of the thermal interface, we turn to fully

assembled TIM structures. A full TIM is usually composed of two sides thermally

connected with composite materials, in this case nanotubes. As nanotubes are

grown on a silicon substrate, it serves as one heat bath of the TIM. On the other

side, as we saw, a polymer layer is covering the top of the nanotubes for increasing

conductance and usually capped with an extra layer for a second heat bath. As

we already described, the nanotubes loose their vertical alignment and they form

big clusters during this fabrication process. The impact of the manufacturing on

the nanothermal properties is a key interest for the TIM efficiency improvement.

In this last section, we attempt to explore these nanothermal properties using

three different approaches. As 3D probing and access to buried interfaces are

required, all approaches involve a sample preparation step that will be described.

First, we used a similar polishing tool as for BEXP but in this case, the polishing

angle was set at ∼ 90◦ to obtain a perpendicular cross-section. The second sample

was prepared using the same process as for a TEM characterization. Finally, the

113



third TIM was polished on one of its edges using FIB. Each sample fabrication

method offer advantages and disadvantages that we describe. SThMmeasurements

on each sample were not fully conclusive being affected by the tip-sample contact

area. However, this work provides a good test bed for future TIM characterisation.

Perpendicular BEXP

The sample used for perpendicular BEXP was as described above with a copper

heat sink over the polymer layer. Fig. 5.11 represents the sample and how it is

mounted for SThM characterisation. Note that as there was more material to be

polished than in traditional BEXP, the process took around three times longer

(∼ 15 hours). However, the resulting surfaces were smooth compared to other

methods described later.

Figure 5.11: Perpendicular BEXP schematic, not to scale. The sample is
mounted on its edge and the polished side is accessible with the SThM probe.

We observed a dip between the polymer layer and the copper that could have

the following origins (see Fig. 5.12). First, from the TIM fabrication, it is possible

that the copper and polymer layer were not fully in contact, especially on the

sample where we performed the polishing. This is supported by the depth of this

gap which was measured to be at least 400 nm with AFM whereas the space

between the polymer and the copper was around 2 µm large.

The other explanation could be that the perpendicular cross-sectioning impacts

the interface between the polymer and the copper. As Ar ions impinges the sample

from the silicon side, the polymer is removed first, followed by the copper. The
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polymer is expected to be easily polished by these nearly 90◦ incident angle ions

rays while the copper, formed of heavy atoms will be less affected. Therefore,

the ions rays, after having removed the polymer materials strike the heavy copper

atoms and could then deflect, or even heat the copper, and affect the polymer

below. This way, a dip could be formed at the copper-polymer interface.

Figure 5.12: SEM image of the full TIM as obtained from perpendicular nano-
cross-sectioning. The scale bar is 2µm. The dip between the polymer and copper
is observed.

We performed SThM measurements in ambient environment (see Fig. 5.13).

The top of the SThM scan shows a small region of the silicon substrate and at

the bottom we observe the polymer layer. The former appears more thermally

conductive (darker) than the latter, as expected from the bulk thermal conduc-

tivity of these materials. Aside from the disorder already observed in the CNT

layer, various SThM signals are received. It is hard to distinguish the components

of this signal as topography artefacts are likely to dominate due to the highly

inhomogeneous surface of the CNTs.
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Figure 5.13: Topography (left) and SThM (right) maps of the BEXP perpendic-
ularly polished sample.

TIM sample section via TEM preparation procedure

In this second sample, a TEM sample preparation method was used. A small piece

of the material is isolated using precise manipulation systems. Then it is encased

in a platinum frame and attached to a grid/holder as shown on Fig. 5.14. Ambient

SThM setup was also used here for thermal characterisation. We remark that this

very fragile size of the sample, surrounded by voids, was creating many challenges

for performing experiments.
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Figure 5.14: Optical microscope image of the TIM sample prepared for TEM
imaging.

Results are displayed on Fig. 5.15. All layers appear clearly on the SThM

signal. We observe a general decrease in the signal from a high silicon response

to a low copper one. We attributed this observation to the different air volume

surrounding the SThM probe at each position. When the probe is in contact

with the silicon, on the outer part of the TEM section, the effective air volume

connecting the probe to the sample is smaller than when the probe contacts the

copper where the whole probe body and sensor are close to the TEM section holder.

Therefore more heat is transferred to the sample when scanning the copper and

polymer whose response appear more conductive than the silicon, which is highly

unlikely.
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Figure 5.15: Topography (left) and SThM (right) maps and profile of the TEM-
like prepared TIM sample.

Studies of FIB sectioned TIM sample

The last sample examined for nanothermal properties of full thermal interface

materials was prepared by FIB polishing in a small region of its edge. To this

end, the traditional copper heat sink was replaced by a thin gold layer covering

the polymer (see Fig. 5.16). To fully understand its thermal behaviour, a new
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experiment was designed. Vacuum SThM measurements are performed in the FIB

sectioned area while a temperature gradient is applied between both sides (Fig.

5.16).

Figure 5.16: (a) Schematic of the FIB section sample experiment. While applying
a temperature gradient on both sides, the temperature distribution is measured
along the TIM. (b) SEM image of the FIB section.

To realise this temperature gradient, a new setup was built within the vacuum

chamber as shown on Fig. 5.17. The sample is mounted on a L-shape copper

support glued on a Peltier plate. This enables to keep the silicon heat sink side

at a constant temperature (∼ 300 K). Then, to create a temperature gradient,

a small 22 Ohm resistor was used as a heat source. This resistor was thermally

connected to the sample gold layer side via a gold coated copper foil. To ensure

constant mechanical contact, small magnets where used on both sides of the sam-

ples, therefore maintaining mechanical contact between the foil and the sample.

Then, we could approach the FIB section with the SThM (Fig. 5.17). Note that,

similarly to the TEM like sample, the area of interest was small and challenging

to reach with the SThM system, due to poor optical positioning setup.
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Figure 5.17: TIM temperature distribution setup and voltage bias applied on
the heating resistor.

The temperature gradient was then created while applying a square voltage on

the resistor (Fig. 5.18). The absolute value of the temperature rise could not be

estimated. A large sample heating cycle (75s) was chosen in order to clearly observe

the heating effect on the image. Results are displayed on Fig. 5.18. We note first

that the FIB section leaves very rough surfaces even for the silicon material. On the

top of the image, the probe is mechanical contact with the sample. We can observe

the different layers in the TIM. The slow square heating is visible as creating an

oscillation in the SThM signal. However, when the mechanical contact is removed,

a residual variation is also observed in the SThM signal. We attributed this to

heat transfer from the resistor to the probe base through the whole microscope.

Then, to distinguish the signal variation coming from the probe and the one

coming from the tip, we need to subtract the non contact oscillation from the in

contact signal. The resulting image is also shown on Fig. 5.18. As we observe, after

subtraction, the oscillation largely disappears, meaning that most of the heating

related signal variations are linked to the probe base heating.
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Figure 5.18: Topography (top left) and SThM (top right) temperature maps
of the FIB sectioned sample when the probe is in- and out-of-contact with the
sample. Schematic applied voltage on the resistor to create a temperature gradient
(bottem left). Resulting SThM map (bottom right) obtained by substracting the
non-contact signal from the in-contact one.

5.5.3 Perspectives on nanothermal characterisation of TIM

The three sample preparations presented above each present issues and challenges.

First, concerning the surface state after preparation, it appears that the perpen-

dicular BEXP leaves very smooth surfaces but could possibly create void due to

different polishing rate. The FIB cut was found to be very rough which is a major

challenge for SThM measurements, although, in the case of thermometry, Menges

et al.[67] introduced a powerful method which would be less affected by variation

of the topography.

This brings us to measurements procedure. In the case of a TEM-like prepa-

ration, vacuum measurements would be beneficial as they would rule out parasitic

air contribution to heat transfer. Although, the TEM-like procedure does not

seem to offer many advantages over the FIB cut as similar system are used and
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the TEM-like ultra-thin samples are very fragile.

The last measurement procedure attempt is quite promising for TIM develop-

ments as it would allow to understand the temperature profile across the interface.

The method we used was a first attempt which was proven to be ineffective. A bet-

ter approach would combine either microheater located very near the FIB cut or a

laser spot also heating only the area around the cut. The idea is that the heating

should be preferably very local. A combination of the perpendicular BEXP and

the temperature gradient approach could be promising and easily doable whereas

laser heating provides a versatile, robust and easily modulated heating procedure.

We hope this foundation work will provide insights for future studies of ther-

mal interface materials. We strongly believe that SThM can provide fundamental

understanding of TIMs efficiency and powerful answers for future developments.

5.6 Summary

Combining a universal nano-cross-sectional tool and scanning thermal microscopy,

we developed a unique method for thermal conductivity and interface thermal

resistance measurements of nanostructures. Nanoscale heat transfer of materi-

als can be investigated in 3D and provides crucial insights for new technological

applications.

With an appropriate modelling approach, we were able to deduce quantitative

values of thermal conductivity in thin films of materials used in semiconductor

industry. This approach can be extended to different materials covering a wide

range of applications.

Furthermore, we were able to quantitatively measure heat transport in anisotropic

systems which is often a burden for standard techniques and demonstrated the

ability to measure thermal transport in multilayered samples. Local changes of

thermal resistance where successfully related to composition variations and crys-

talline defects. Finally, the comparison of experimental data with finite element

analysis results confirms the anisotropic nature of the materials measured.
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As nanomanufacturing is becoming paramount nowadays, its thermal aspects

need increasing attention. Direct applications of our results to different research

areas can provide significant knowledge for advances and developments of tomor-

row technologies.
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6. Nanoscale thermal transport in

low dimensional materials

6.1 Introduction

Nanomaterials offer great promises of improved properties in the realisation of

advanced technologies. Especially, nanostructured two dimensional (2D) and one

dimensional (1D) materials exhibit interesting behaviour thanks to their low di-

mensionality. The exploration of heat transfer in such systems is therefore cru-

cial for their application but requires nanoscale measurement capabilities. In this

chapter, we used SThM to measure such properties of 2D and 1D systems. First,

we report for the first time temperature dependent thermal conductivity of nat-

urally occurring heterostructure franckeite and interface resistance of MoS2 and

graphene. Then, we directly measure thermal conductivity in vertically aligned

carbon nanotubes structures.

6.2 Heat transport in two dimensional materials

and their heterostructures

In this section, we report the first SThM measurements of naturally occurring het-

erostructure franckeite as well as monolayer heterostructure of MoS2 on graphene.

Heterostructures have been proposed as building blocks to tomorrow’s technolog-

ical developments. Stacking individual layers of different materials, as one would

assemble Lego bricks together, has been proposed to form van der Waals het-
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erostructures and create on-demand new materials combining novel properties of

the individual layers[180]. Stacking various layered materials has already been

demonstrated. Hexagonal boron nitride has been demonstrated as a high qual-

ity substrate for graphene, enhancing its electronic properties[181]. For example,

encapsulated graphene in hexagonal boron nitride shows a room temperature bal-

listic electronic transport with micrometer scale[182]. Recently, Tielrooil et al.[183]

demonstrated an increased electron-phonon coupling between graphene encased in

boron nitride[182] suggesting an efficient heat dissipation of such devices.

Using our unique low temperature SThM setup we could measure thermal

conductivity and interface resistance of natural heterostructure material franckeite

on silicon oxide, which, for the best of our knowledge, has not been reported so

far. Then, with the same system, we explored manually stacked single layer MoS2

on monolayer graphene, resting on silicon oxide. With similar models as presented

above, thermal properties can be deduced for temperature between 150 and 300

K. The samples were prepared by Dr. Aday Molina-Mendoza and Assoc. Prof.

Thomas Mueller from the Institute of Photonics, TU Wien.

6.2.1 Franckeite

In the quest to find interesting properties in the wide variety of layered materi-

als available, natural 2D materials heterostructures are appealing. Natural het-

erostructures are layered materials whose atomic structure changes at each layer up

to form a unit cell of several layers. The advantage of such a material is evident

from a fabrication point of view. Having a naturally occurring heterostructure

could then potentially solve the long and costly fabrication process of non-natural

heterostructures while at the same time improving the sample cleanness and de-

crease the randomness introduced by the fabrication. It could also have improved

interfaces properties between individual layers.

Franckeite has been proven attractive for its narrow bandgap and p-type doping

and, combined with MoS2, successfully created a mid-infrared detector[184]. The
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Franckeite atomic structure contains stacked alternating SnS2 like and PdS-like

layers[185]. Some variability in the stoichiometry was reported[184] but a general

structure can be outlined. A unit cell of Franckeite is composed of stacked pseu-

dohexagonal H and pseudotetragonal Q layers, see Fig. 6.1. The H layer contains

disulfide compounds NX2 where N can be either Sn or Fe and X=S while the Q

layer consists of MX where M is Pb, Sn or Sb and X=S. It is worth noting that

M or N atoms are varying within a single layer. For example, a single Q layer will

have Pb, Sn and Sb atoms and will not consists only of one atom type[185].

Figure 6.1: Optical microscope image of the Franckeite flake with various num-
bers of layer and franckeite unit cell structure where M can be Pb, Sn or Sb, N is
either Sn or Fe and X is S.

While franckeite electrical and optical properties have been reported[186], its

thermal properties have to be investigated to realise fully functioning devices. Due

to the microscale of exfoliated flakes, standard measurement techniques are not

the optimum choice to understand nanoscale thermal transport within franckeite

nanostructures. It is therefore natural to turn to Scanning Thermal Microscope

to measure franckeite nanoscale heat transport.

Using the vacuum SThM setup with a doped Si probe described in chapter
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3, we mapped franckeite thermal response (see Fig.6.2). The area was chosen

using optical microscopy as it was presenting various thicknesses estimated to be

from 3 to 39 layers. Optical microscope image is displayed on Fig. 6.1. The

thermal resistance can be seen to increase with increasing franckeite thickness.

Such behaviour is expected when the layer thermal conductivity is smaller than

the one of the substrate.

Figure 6.2: Topography (left) and SThM (right) maps of an exfoliated franckeite
flake. Several thickness can be observed with different thermal response. As
the franckeite thickness increases, its thermal resistance increases as well. This
behaviour is the signature of a lower thermal conductivity material than the silicon
oxide substrate.

To get a quantitative estimate of the thermal conductivity of franckeite and

the thermal interface resistance between the flake and the silicon oxide, we turn

to similar spreading resistance models as used in previous chapters. We model

the flake as a uniform layer on a substrate similarly to the oxide layers presented

above and using Eq. 4.4. The thermal contact radius (40 nm) between the probe

and the sample is estimated from SEM imaging of the tip and inspection of the

thermal images (see Appendices).

By using Eq. 4.4, we here ignore the anisotropy of the franckeite crystal struc-

ture and obtain therefore effective quantities. As already observed in Fig. 6.2, a

lower thermal resistance is obtained from the franckeite as compared to the silicon

oxide substrate. This behaviour is the signature of a low effective thermal conduc-

tivity material and the diffusive assumption is realistic in this material measured

at these length scales. Indeed, considering the relatively big contact radius and
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the structure of the franckeite, the phonon MFP will be much smaller than the

heat source contact. Due to the high anisotropy and high composition variations,

phonon scattering will be important and lead to a very small phonon MFP.

Fig. 6.3 shows the franckeite thermal resistance as a function of the layer

thickness for various sample temperatures. We fitted the experimental data with

the spreading resistance model as represented on the graph. To quantify the

thermal conductivity and interface resistance values obtained, we need to analyse

the tip and tip-sample resistances.

In the equation RX = Rtip + Rint + Rspr, we tried two approaches for the

unknown Rtip +Rint. In first approach, we estimate it from the thermal resistance

obtained on the silicon oxide substrate. As for the substrate Rspr = 1
4kSiOxa

is

known at various temperature, we can deduce Rtip + Rint, obtaining resistances

between 3 and 5×106 KW−1. These values therefore include the contribution of the

conical tip and the interface between the silicon oxide covered oxide tip and silicon

oxide substrate. Assuming that Rtip is the same when contacting the franckeite is

reasonable but Rint is likely to be different due to difference surface roughness and

mismatch.
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Figure 6.3: Thermal resistance received from the SThM meaurements as a func-
tion of franckeite thickness for temperatures from 156 to 301 K. The experimental
data is plotted with symbols while the spreading resistance model of Eq. 4.4 is
shown in dashed lines.

In a general approach, we left Rtip + Rint as a fitting parameter and obtained

values slightly higher between 4 and 5×106 KW−1. Having higher values is not

counter intuitive as the mismatch is expected to be more important between the

silicon oxide covered tip and the franckeite than between the tip and silicon oxide

substrate. However, the data obtained confirm the accuracy of the fitting method.

For the thermal conductivity k and interface resistance rint, we applied both

approaches for Rtip + Rint in the fitting function applied the experimental data.

Both methods produced similar values within 10% for k and rint. These results ob-

tained from the general approach are shown in Fig. 6.4. The thermal conductivity

is decreasing with decreasing temperature while rint increases. A decreasing con-

ductivity is also found in supported graphene[187], encased graphene and ultrathin

graphite[188].

The interface resistance increase with decreasing temperature can be compared
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to results obtain on artificial heterostructures. Graphene on hexagonal boron ni-

tride[189] and graphene on MoS2[190] interface resistances were reported to in-

crease by almost an order of magnitude in our range of temperature, similarly to

the results obtained between franckeite and silicon oxide.

Figure 6.4: Interface thermal resistance rint and thermal conductivity of franck-
eite as a function of temperature as obtained from the fitting of Eq. 4.4 on the
data shown in Fig. 6.3.

These measurements report for the first time thermal transport properties of

franckeite on silicon oxide. We hope that these results will provide fruitful insights

to fully exploit franckeite potential in device applications.

6.2.2 Heterostructure of MoS2 on graphene

In the previous section, we studied a naturally occuring hetersostructure and now

we proceed to a fabricated one consisting of a monolayer graphene and monolayer

MoS2 on silicon oxide. The monolayer was deposited on top of the graphene flake

by a pick-and-place method that allows to pick-up an atomically-thin flake from a

substrate with the subsequent transfer on another substrate[191]. Graphene and

MoS2 where exfoliated by standard scotch tape method on a silicon oxide (280 nm)
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substrate and the atomically-thin flakes were identified by optical microscopy. The

MoS2 monolayer was then picked-up and transferred on top of the graphene flake,

ensuring a clean interface between the two materials (see Fig. 6.5).

Figure 6.5: Optical microscope image of the MoS2 on graphene heterostructure.

An example of topography and SThM image is shown in Fig. 6.6. The image

shows areas of graphene on SiO2, MoS2 on SiO2 and MoS2 on top of graphene

on SiO2. The SThM image shows the thermal resistance response of each area.

As expected, graphene, with its high conductance, reduces the thermal resistance

compared to the substrate. Interestingly, for MoS2 whose thermal conductivity

on silicon oxide has been reported around 55 Wm−1K−1[192, 193], the thermal

resistance obtained is higher than the oxide substrate. When scanning the het-

erostructure, the probe is contacting the MoS2 resting on the graphene. Here we

can compare all resistances of areas of SiO2, graphene on SiO2, MoS2 on SiO2 and

MoS2 on top of graphene on SiO2

131



Figure 6.6: Topography and SThM images of MoS2 on graphene heterostructure
obtained at 220 K. The graphene has a lower resistance than the MoS2 and it
appears that graphene lower the resistance of the MoS2 when it is below. Scale
bar is 500 nm.

We discuss first the interesting contrast obtained on the monolayer MoS2 rest-

ing on oxide. As we mentioned the layer thermal conductivity is higher than

that of the substrate. Therefore one would expect from the spreading resistance

model to obtain a lower response compared to the oxide response. Furthermore,

the resistance measured on graphene is lower than that of silicon oxide. Thus,

clearly, the layer thermal conductivity doesn’t play a major role in the thermal

resistance sensed by the SThM tip. When looking at values reported in the litera-

ture for interface resistance between MoS2 or graphene and silicon oxide, we find a

potential explanation to the contrast observed. The interface MoS2-oxide has val-

ues reported between 4×10−8 to 2.27×10−6 m2KW−1[192, 194, 195]. In contrast,

the interface resistance between graphene and silicon oxide is lower. Values from

5.6×10−9 to 2×10−8 m2KW−1 have been reported[187, 196, 197].

Fig. 6.7 shows the thermal resistance as a function of sample temperature for

the four different areas and the sample. For all temperatures, the same contrast

as observed on Fig. 6.6 is preserved. A general increasing trend is received with

decreasing temperature. This links directly with the reducing thermal conductivity

of the silicon oxide substrate as discussed in the previous chapter.
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Figure 6.7: Thermal resistance as a function of sample temperature for the dif-
ferent areas of the sample. A general increase of the thermal resistance is observed
for all regions.

If we assume that the thermal resistance is dominated by interface effects,

we have the following relations on the different areas for the thermal resistance

between the heater and the sample heat bath:

Oxide: (6.1)

Rtip +Rintox−ox +Rsprox (6.2)

Graphene on oxide: (6.3)

Rtip +Rintox−gr +Rgr +Rintox−gr +Rsprox (6.4)

MoS2 on oxide: (6.5)

Rtip +Rintox−MoS2
+RMoS2 +Rintox−MoS2

+Rsprox (6.6)

MoS2 on graphene on oxide: (6.7)

Rtip +Rintox−MoS2
+RMoS2 +RintMoS2−Gr

+Rgr +Rsprox (6.8)
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The conical tip resistance Rtip is unknown but the spreading resistance into

the silicon oxide is defined as Rsprox = 1/4kSiOxa where a is the contact radius

(40 nm from SEM imaging and image inspection, see Appendices) and kSiOX

the temperature dependent oxide thermal conductivity. We adopt a macroscopic

expression for interface resistances and define Rint as the interface resistance rint

(expressed in m2KW−1) normalised to the contact area: Rint = rint/πa
2. Finally,

based on the observation described above that layer thermal conductivity isn’t

affecting strongly the measured resistance, we assume that for graphene and MoS2,

Rlayer ≈ 0. This assumption is similar to work performed by Chen et al.[196].

However, their work is based on microscopic heaters while in our case such an

assumption has limitations.

If we assume some values for Rtip, then we can deduce rintgr−ox , rintMoS2−ox

and ultimately rintMoS2−gr
. To estimate Rtip, we can remove the contribution of

the spreading resistance from the measurements performed on the oxide substrate.

However, we still need to estimate Rintox−ox , the interface between the oxide covered

tip and the oxide. Such resistance is unknown and is one of the main challenges

of SThM measurements. We will therefore need to renormalise the Rintox−ox value

such that it would give similar values for rintgr−ox found in the literature, obtaining

Rintox−ox = 7.9× 106KW−1.

Using the model presented here, we can extract interface thermal resistance

for MoS2 and graphene to silicon oxide as well as MoS2 to graphene. Results are

displayed on Fig. 6.8. As in the literature, the MoS2 to oxide interface has higher

thermal resistance than the graphene to oxide interface.
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Figure 6.8: Measured interface thermal resistance as a function of sample tem-
perature for various interfaces.

We reported here SThM measurements of heterostructure composed of MoS2

on graphene at temperatures from 150 K to 300 K. Thermal resistances were

extracted for various areas corresponding to different materials and interfaces. A

general increase of the thermal resistance is received corresponding to the change

of the substrate properties. Furthermore, with a realistic heat transport model,

we could obtain interface thermal resistance values for MoS2 and graphene to

oxide as well as for the MoS2-graphene interface. Considering the simplicity and

assumptions of our model, the values obtained are comparable to literature values.
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6.3 Temperature dependent thermal resistance of

length varying vertically aligned carbon nan-

otubes

Carbon nanotubes (CNTs) forests are being studied for high thermally conductive

thermal interface applications[179, 198–200]. Thanks to their high thermal conduc-

tivity, they could enhance heat dissipation and serve in thermal management. To

design better thermal interface materials (TIM), two aspects need to be addressed:

nanoscale thermal properties and thermal properties of buried CNT-sample inter-

face. In this section, we address both questions and report measurements using

the BEXP-SThM method introduced in chapter 5.

Vertically aligned nanotubes grown on a silicon substrate were polished at

shallow angle using BEXP. Thanks to this procedure softness, the alignment and

structure was preserved and an array of length increasing nanotubes was created.

After assessing the sample structure with SEM imaging, we measure the thermal

resistance using a sharp SThM probe in vacuum. From the resistance variation

observed with increasing nanotubes height, we can deduce thermal conductivities

both along and perpendicularly to the nanotubes axis. Finally, we probe the

temperature dependence of the thermal transport in these structures by cooling

the sample to 200 K. A sharp thermal resistance increase is observed linked to the

reduction of CNT thermal conductivity.

This work reports for the first time a unique sample preparation opening new

study perspectives of high aspect ratio 1D materials nanostructures. Our results

provide useful information for nanotubes array applications and design of ther-

mal interface materials. Samples investigated in this section were provided by

Thales collaborators, in particular Dr. Odile Bezencenet. Also, SEM imaging was

performed by Dr. Kunal Lulla, in Lancaster.
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6.3.1 Sample preparation and description

A forest of vertically aligned carbon nanotubes was grown on a silicon substrate.

The average nanotube diameter is 10 nm. The sample was then polished using

BEXP[159]. Fig. 6.9 shows SEM images of the cross-sectioned nanotubes that

reveal aligned nanotubes. A major observation is that the nanotubes keep their

arrangement and verticality and are found not to be affected by the BEXP process.

This opens a new range of possibilities of this polishing technique for new potential

studies and applications. For example, vertically grown nanowires could be studied

similarly. Also, a useful result we can observe is that the BEXP process created an

array of CNTs with increasing height. This will be exploited hereafter to obtain

the thermal conductivity of the nanotubes forest using an approach described in

chapters 4 and 5.

However, as observed on Fig.6.9b and on SEM images of Fig.6.10, the CNTs

form bundles consisting of several individual aggregated nanotubes. The average

bundle diameter was estimated to be around 24 nm. This would correspond to

approximately 3 nanotubes bundled together. In fact, it appears that this bundling

effect almost begins at the seed layer. Also, from SEM imaging and standard

wetting experiments performed by the sample provider, the CNT coverage obtained

is around 28±2%.
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Figure 6.9: (a) SEM imaging of the nanotubes bundles with increasing height,
scale bar is 1µm. (b) Magnified SEM image of the CNT bundles. Scale bar is 100
nm.

SThM was used in vacuum with a sharp doped silicon probe to map the topog-

raphy and thermal conductance of these bundles (Figs. 6.10b-c). The topography

image shows a distribution of bundle sizes as expected from the SEM images.

Furthermore, a dip is obtained between the bundles highlighting the sharpness of

the probe used. Higher SThM signal is received between the bundles. This is at-

tributed to increased contact area between the tip and the sample. As individual

bundles are resolved both in topography and SThM maps, we deduce that the

tip-sample contact diameter is smaller than the bundle diameter.
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Figure 6.10: (a) Top view SEM image showing around 28 ± 2% coverage of
CNTs. Scale bar is 200 nm. (b)-(c) Topography (left) and SThM (right) maps of
the nanotubes bundles. Scale bars are 100 nm (b) and 50 nm (c).

6.3.2 Thermal resistance measurement and models

The voltage measured in the experiment can be linked to an absolute temperature

via a calibration of the probe resistance. We have V = α∆T = α(Th − T0). As

we measure the probe thermal resistance (Rp ≈ 4.5± 0.1× 104 KW−1, see chapter

3) and the probe base and sample temperatures (TB = Ts = T0 = 300 K), we

can extract the total thermal resistance measured Rx as we explained in chap.

3. Fig. 6.11a shows a plot of this resistance as a function of the bundle height

as measured by the SThM. We located the x-axis origin at the beginning of the

vertically aligned CNTs layer for convenience. Hence, negative heights correspond

to materials below the nanotubes.

On Figs. 6.11b-c, SThM and UFM maps of this sample are shown. The
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UFM response describes the sample stiffness. As it can be expected, the silicon

substrate is stiffer than the nanotubes bundles as bending stiffness is low due to

their flexibility. On the SThM map, the silicon substrate appears less thermally

resistive. There are two main explanations for this observation. First, it is likely

that the thermal contact between the probe and the silicon is better than the one

between the probe and the bundles. Second, the bundles, or any layer, act as an

extra resistance between the sensor and the sample heat sink and as such appear

more resistive. On Fig. 6.11a, the seed layer between the silicon and the nanotubes

can be also resolved.

Figure 6.11: (a) Thermal resistance measured as a function of nanotubes height
and fitting models applied. Inset shows the thermal resistances included between
the sensor and the heat sink. SThM (b) and UFM (c) maps of the silicon-nanotubes
interface, scale bars are 1 µm.

The thermal resistance measured is composed of several resistances in series:

first, the resistance of the tip itself created mostly by the constriction in the conical

tip; then, as in any thermal contact, a material dependent interface resistance

between the tip apex and the sample; and finally, the spreading resistance inside

the sample. In summary, we have:

RX = Rtip +Rint +Rspr (6.9)

Rtip can be assumed to be constant for all the sample but Rint is likely to

change drastically between the tip-Si substrate and the tip-nanotubes contacts as
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we discussed from the SThM and UFM maps on Figs. 6.11b-c. However, we can

assume that while scanning within the same layer, for example, the nanotubes only,

the interface thermal resistance Rint remains constant. So, for the same material,

the sum Rtip +Rint can be reasonably considered constant.

To extract thermal conductivity values of the cross-sectioned nanotubes, two

models can be applied to Rspr. These models are all diffusive and don’t consider

any ballistic transport that could occur in this system. We will discuss ballistic

transport contribution in the next section when low temperature transport is in-

vestigated. In the two diffusive models we develop here, we estimate that phonon

scattering between the nanotubes forming each bundle greatly reduce the mean

free path[201, 202]. Also, as the probe-bundle contact area is on a similar order of

magnitude, a ballistic constriction resistance is not expected.

The first model considers the sample as an array of vertically aligned cylinders

and assumes one dimensional (1D) transport along these cylinders. The thermal

resistance can be written as a function of the bundle height Lbundle:

Rbundle =
Lbundle
kbundleA

(6.10)

where A is the cross-sectionnal area of the bundle and its thermal conductivity.

Cross-sectional area is ill-defined in the case of a single nanotube and thus for

nanotubes bundles[203]. For a single tube, it can be defined as A = πdδ where d

is the tube diameter and δ the layer separation of graphite. However, as in our

case we are dealing with bundles, we consider the bundles as isotropic materials

and as such we find a lower bound of the thermal conductivity[65].

As we see from the data in Fig. 6.11a, the thermal resistance measured sat-

urates around 40 nm enlightening the fact that heat spreading also occurs per-

pendicularly to the nanotubes axis. Then to model our samples as an array of

cylinders, we will use only the transition part between 10 and 30 nm. Studies

have shown that for a single nanotube, the thermal conductivity saturates when

it reaches 15 nm long[201]. In this region, we obtained a roughly linear trend
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with the height on the tubes. The derivative of the thermal resistance measured

should then compare to dRbundle

dL
. Significantly, this derivative does not depend on

the tip-sample interface resistance Rtip + Rint, contact area and interface contact

resistance at the tubes-substrate interface.

An easy and simple model would be to assume thermal isotropy of the layer.

However, from the thermal, UFM and SEM images we can see that it is surely not

the case. This is also confirmed by the SEM. For our system, we expect a high

thermal conductivity along the bundle axis and a low thermal conductivity per-

pendicularly. This particular form of anisotropy is called orthotropy. In our case,

the thermal conductivity has different values in different directions of the material.

It is the case for layered material such as graphene but also for the CNTs array as

different conductivities parallel to the nanotube axis, k‖, and perpendicular to the

axis, k⊥ are expected. For orthotropic systems, Muzychka et al.[105] derived the

spreading resistance of a heat source of radius a including the interface resistance

rint between the material and the substrate. This model is effectively the same

as the one for an isotropic layer on substrate presented in chapter 4. However it

defines effective quantities keff and teff replacing the physical ones as follows:

klayer → keff =
√
k‖k⊥ (6.11)

t→ teff = t
√
k⊥/k‖ + rintkeff (6.12)

(6.13)

From the thermal images, we assume a contact radius a of around 5 nm (we

used the same probe as with the BCP sample of chapter 4). This is also in good

agreement with measurements of the silicon tip resistance[89]. Then, four fitting

parameters can be adjusted to match the experimental data: Rtip + Rint, rint, k‖

and k⊥.

Using both models presented above, we fitted the SThM measurements. The

major difference between the two approaches is when considering bundles as cylin-

ders that have only a one dimensional heat transport, no information is obtained on
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the heat dissipation between the bundles. The orthotropic model gives a non-zero

thermal conductivity value perpendicular to the bundle axis.

Model Bundle thermal conductivity (Wm−1K−1)

One dimensional kbundle = 38± 6

Orthotropic k‖ = 48± 5, k⊥ = 8± 1

Table 6.1: Thermal conductivity obtained with the two models applied.

Applying these two models, we obtained thermal conductivity values, sum-

marised in Table 6.1. Before comparing these results, we note that the interface

resistance obtained by the orthotropic model between the nanotubes bundles and

the substrate was found relatively low (∼ 1 × 10−10 m2KW−1). Although, it is

important to remember that the orthotropic model considers a uniform layer on a

substrate. This does not represent the measured sample, as bundles are not fully

covering the surface. As we mentioned above, the estimated coverage is around

27%. Therefore, the interface resistance as well as the thermal conductivity along

the bundle direction need to be normalised to this coverage. We thus obtained

rint ≈ 3 × 10−9 m2KW−1 which is in good agreement with previous studies[201]

considering that bundling effects will reduce the interface resistance.

Thermal conductivity values obtained by both models are similar with a slightly

higher value along the bundle axis for the orthotropic model. This is coherent as

perpendicular transport is also considered. The same reasoning concerning the

CNT coverage can be applied here. As thermal conductivity values were obtained

through the average thermal resistance measured over bundle height variations,

these values need to be scaled by the coverage factor of 27%. However, this only

applies to the orthotropic model. Indeed, when considering a one-dimensional

heat transport, we consider that the tip contacts a single bundle and measures a

resistance variation from the bundle length change. Thus the coverage does not

need to be taken into account.

We obtain a thermal conductivity along the bundle axis of k‖ = 177± 20
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Wm−1K−1. Perpendicularly to the bundle axis, no scaling is required as the ob-

tained value of 8±1 Wm−1K−1 already reflects the thermal transport occurring

between the bundles and as such takes the CNT density into account. If we

compute the effective conductivity obtained from the scaled parallel thermal con-

ductivity, keff =
√
k‖k⊥, we obtain keff = 37 Wm−1K−1 which agrees very well

with kbundle = 38± 6 Wm−1K−1 and supports the validity of both models used.

6.3.3 Low temperature thermal transport

Using the setup described in chapter 3, we could cool down the cross-sectioned

nanotubes forest to a temperature of around TS = 200 K and perform the same ex-

periment as described already. Low temperature (LT) thermal resistance measured

is shown on Figure 6.12 and compared to room temperature (RT) measurements.

Interestingly, we observe a giant increase in thermal resistance of almost one order

of magnitude. We also note that the silicon substrate appears more resistive as

expected and already describe in chapter 3 due to the increase of phonon mean free

paths. In this range of temperature, thermal conductivity of single nanotubes or

bundled was shown to decrease with decreasing temperature[202–204]. Thus, the

high resistance measured is expected. We also note that the very small bundles

(smaller than 20 nm) don’t follow the same trend as the longer one. We didn’t

observe this behaviour at RT and could be linked to the sample BEXP processing

which is known to create 1 to 3 nm of disordered materials at the surface[159].

When turning to modelling, instead of applying the same recipes as before, we

assume a one dimensional thermal transport within the bundles but compute the

length dependent thermal conductivity from Rx = Rint + L/kA. For each bundle

length L, we can obtain its thermal conductivity as

k(L) =
L

A(RX −Rint)
. (6.14)

Again, here we use A = π×122nm2 from the average bundle diameter. To estimate

Rint we use data measured at very small height as in this case, Rx is dominated
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by Rint.

The obtained thermal conductivities are displayed in the inset of Fig. 6.12.

Room temperature conductivities appear higher than their LT counterparts. This

is due to the high difference in thermal resistance measured and is in line with

the thermal conductivity temperature dependence reported in literature[202–204].

The absolute values obtained, even if they approach values reported in Kim et

al.[202] for nanotubes bundles, are nevertheless smaller than generally found in

other works. However, these works often report values for single nanotube (single

wall or multiwall) and work on single bundles are scarce. A relatively low thermal

conductivity for the bundles is expected from as inter-tubes as well as inter-bundles

interactions create phonon scattering points and reduce the heat propagation.

Mingo and Broido[205] derived the ballistic thermal conductance of nanotubes.

They found that in our temperature range the conductance normalised to the

cross-sectional area can be approximated by σ/A ≈ 0.6 × 106 T3/2 Wm2K5/2.

Using their model, we plotted the ballistic limit of the length varying thermal

conductivity (dashed lines on the inset of Fig.6.12). Higher temperature leads to

higher thermal conductivities as we measured. However, the difference between

the ballistic limit and our measurement highlights the diffusive resistance of the

thermal transport.
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Figure 6.12: Nanotubes bundles thermal resistance as a function of their height
for low temperature (∼ 200K) and room temperature (∼ 300K). Inset: bundle
thermal conductivity assuming 1D transport for both temperatures. Dashed lines
are the ballistic limits.

A simple way to account for mixed ballistic-diffusive transport is to simply add

both components as in R = Rballistic +Rdiffusive[30]. This helps to understand the

underlying mechanisms behind our results. As temperature reduces, the ballistic

resistance and the diffusive resistance increase. Decoupling both effects is difficult

as they have the same impact on the measurement. Thus, comparing slopes of the

inset of Fig. 6.12 is misleading as it appears that the ballistic contribution to the

transport is more important at room temperature. However, this could simply be

due to a higher thermal conductivity of the bundles.

In conclusion, we performed measurements on a unique sample composed of

length increasing CNT bundles. This sample was prepared by BEXP allowing shal-

low angle polishing. As the nanotubes kept their structure and alignment after the

polishing, this opens new perspectives of materials study. The nanothermal and

nanomechanical response was measured using a sharp SThM probe in vacuum. At

room temperature, two coherent modelling were applied and obtained an effective

thermal conductivity of around 37 Wm−1K−1. The anisotropy could be estimated
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using an orthotropic model accounting for the thermal conductivity along and

perpendicular to the bundle axis taking into account the measure CNT coverage

of the sample. Significantly, we found non negligible lateral thermal conductance

between the nanotubes bundles. Finally, we compared room temperature to low

temperature thermal transport. A drastic increase in the thermal resistance was

measured and is related to the reducing CNT thermal conductivity with reducing

temperature. Applying one dimensional heat transport simple model, the length

varying thermal conductivity could be deduced and compared to the ballistic limit.

This work introduces a new perspective for vertical structures investigations. It

also provides information on the temperature dependence of the nanoscale thermal

transport of vertically aligned CNT bundles. This has direct implications for ther-

mal interface materials designs and applications. In the next sections, we further

study thermal interface materials drawing on similar procedures introduced.

6.4 Summary

This chapter reported quantitative SThM measurements of low dimensional sys-

tems of 2D and 1D materials. For the first time, thermal conductivities and in-

terface thermal resistance of naturally occurring heterostructure franckeite were

reported at temperatures between 150 K and 300 K. MoS2 on graphene on silicon

oxide was also investigated in this temperature range and interface properties were

deduced. Then using BEXP, we obtained length varying vertically aligned nan-

otubes whose thermal conductivities were extracted both along the tubes axis and

perpendicularly. With these novel results, we demonstrated SThM advantages for

studying nanoscale thermal transport in 1D and 2D materials.
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7. Thermoelectric phenomena in

graphene constrictions

7.1 Introduction

This last chapter is dedicated to measurements performed in collaborations with

Oxford Materials Department. Results are presented as the collaboration devel-

oped: first gold microheaters are measured using SThM for thermometry, then

similar devices are tested but with graphene constrictions used as heating sources.

This work is thus realised in direct and intense partnership with several persons

from Oxford Materials, namely, Achim Harzheim and Pascal Gehring, now at TU

Delft.

In the first section, a quantitative estimate is obtained for the temperature

distribution created by a gold heater. This estimate is needed to know the tem-

perature of either sides of a graphene constriction as reported in Gehring et al.[21].

Such constrictions are used as a platform to study thermoelectric properties of

molecular junctions. We performed measurements at room temperature and at

low temperature.

Then, after this preliminary study, another use of these devices was explored.

Instead of applying a voltage on the gold microheater, the bias is applied on the

graphene constriction itself. That is, current is flowing from one contact to the

other through the graphene. With these devices, thermometry SThM is employed

to map the temperature distribution. We therefore were able to directly observe

with nanoscale resolution the Peltier effect due to the geometry of the graphene
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constriction for the first time. Finally, using the SThM tip as a local heating source,

we could map the thermovoltage arising from a local Seebeck effect, establishing

a new SPM technique we called Scanning Thermal Gate Microscopy.

These results show the great potential of SThM for thermoelectric studies and

thermometry in general. Potential applications are listed in the concluding chapter.

7.2 Microheater thermometry

We present results from measurements performed on a graphene junction heated by

a 100 nm thick gold heater. Results are divided in three parts: temperature maps

and gradient measurements, null-point determination of the heater temperature

and finally, some notes on low temperature thermometry.

7.2.1 Temperature mapping of the junction heater

By using the SThM setup in a passive mode, temperature maps could be retrieved

from the sample surface. Passive SThM requires the use of a low power bias

on the probe sensing element in order to avoid any self-heating. However, as it

will be explained later, even with a power of about 0.06 mW, the probe is still

slightly heated and this leads to active mode components and, hence, artefacts in

the temperature maps. Those artefacts can arise from different topography and

materials on the surface. A protruding feature means that the probe is further

away from the surface and thus the air gap is bigger which renders a cooler probe

even if the actual temperature on the surface is the same. Also, different materials

transmit the heat differently to the probe depending on their intrinsic properties.

Nevertheless, using a null measurement described below similar to Chung et al.[66],

those issues can be fully accounted for during the analysis leading to the absolute

temperature measurement results.

We performed 4 scans using 4 different bias voltages on the junction heater: 1.5

V, 1.3 V, 1.06 V and 0.75 V. They correspond to 4 power levels: maximum power,
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(x0.75) power, (x0.5) power and (x0.25) power. SThM scans are shown in Fig. 7.1

where a calibration is applied to get the weighted temperature of the probe heater.

It is to be noted that those values are somewhat approximate as the temperature

sensing during the process of scanning is affected by other phenomena such as

heat transfer to the probe which are yet to be fully modelled. For example, as

the probe scans at a certain speed across the surface, the equilibrium temperature

distribution between the sample temperature and the sensor can vary. Similar

effects have been observed before, and we believe that the thermal contact is

non-trivial during scanning. In order to obtain a quantitative measure of the

temperature generated by the heater, we will have to use the force-spectroscopy

capability of our AFM machine and to proceed through a null-point method as

explained below.

Figure 7.1: SThM temperature maps for 4 different bias voltages on the junction
heater. From left to right: 1.5 V, 1.3 V, 1.06 V and 0.75 V. The temperature scale
on the images is the excess temperature with respect to the surrounding and is a
guide value.

The gradient of the temperature distribution can be extracted by fitting the

SThM signal along lines on the images. Traces for the four different bias voltages

are shown in Fig. 7.2. Performing a linear fit and measuring the slope in the

graphene junction region, we find higher slope for the 1.5 V and 1.3 V traces and

somewhat lower for 1.06 V and 0.75 V traces (see Table 7.1).
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Figure 7.2: SThM traces along the junction direction for various heater voltages.
The temperature gradient was estimated in the graphene junction region.

Applied voltage Linear fit (mK/µm) ∆T/∆x (mK/µm)

1.5 V 22.7± 0.8 32.6± 0.5

1.3 V 28.3± 0.6 21.8± 0.3

1.06 V 13.4± 0.2 20.3± 0.3

0.75 V 21.1± 0.4 20.4± 0.2

Table 7.1: Temperature gradient for the 4 bias voltages as obtained by linear fit
and slope measurement.

By applying a square waveform to the heater with two different frequencies (14

Hz and 70 Hz), we could test the limits of our detection system and also compare,

in the same image, the thermal signal when the heater is modulated. As seen

in Fig. 7.3, at 70 Hz the temperature does not equilibrate as opposed to 14 Hz

modulation. It should be noted that there is evident heating of the wider sample

area even where apparently there is no gradient present (strips in the top of the

images). The characteristic time corresponds to about 7 ms (the acquisition and

probe time constants were on the order of 1 ms).
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Figure 7.3: SThM images and line traces of 14 Hz and 70 Hz square pulses
applied to the heater. For 70 Hz, thermal equilibrium is not reached as seen in the
SThM signal.

7.2.2 Null-point measurement of heater excess temperature

In order to obtain a quantitative estimation of the heater temperature, we used the

so-called null-point method. This method consists in measuring the temperature

jump between out and in contact for different probe temperatures as well as sample

temperatures[66]. For this purpose, spectroscopic SThM curves are recorded. The

probe is brought from out to in-contact with the sample and back (Fig. 7.4). As

the probe snaps into contacts, a temperature jump occurs due to different probe-

sample temperature. This jump can be processed for different sample and probe

temperatures. Results are shown in Fig. 7.4. Temperature jumps measured were

always positive (Tnon−contact−Tcontact) meaning that the probe was always warmer

than the sample even at very low power and with the heater biased. In principle,

as we were maintaining the back of the device at 30◦C and as the back of the

probe was around 32◦C, a positive jump is always expected except if the heater

temperature is higher than 2◦C. Given the fact that the lowest power we used (0.06
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mW) raises the average probe temperature by about 5◦C, in order to get a negative

jump, the heater would need to produce around 7◦C temperature difference. This

is in line with the following results.

Figure 7.4: Left: example of a typical SThM scan showing approach (blue)
and retract (red) SThM signal. Right: temperature jump as a function of probe
excess temperature for two heater temperatures. The green arrow highlights the
temperature difference sensed by the probe between heated and non-heated sample.

By measuring the probe temperature difference for the same value of temper-

ature jump (shown by the arrow on Fig. 7.4), we obtain a ∆T of the weighted

probe heater temperature that corresponds to a heated and non-heated sample

temperature difference. This ∆T was measured to be 0.8 ± 15% K. The error

comes from both the analysis of the temperature jumps (5%) and the probe excess

temperature calibration (10%). We also need to link the weighted heater temper-

ature difference with the tip temperature. As shown in Fig. 7.5 where a Finite

Element simulation of the probe, the temperature distribution in the probe needs

to be taken into account. The ratio of the average probe temperature and the tip

temperature is found to be about 2.1±0.1, giving a tip temperature of 1.68±0.25

K.
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Figure 7.5: Finite element simulation of the SThM probe temperature. Weighted
tip heater temperature is around 307 K that is around 14 K above the ambient T,
whereas the probe tip temperature is around 323 K that is 30 K above the ambient
T.

7.2.3 Low temperature thermometry

Experiments were also performed at low temperature on similar devices. The in-

vacuum SThM measurements were performed in a NT-MDT HV Solver system

that operates at pressures 10−6 − 10−7 Torr. For precise temperature control the

sample was attached to a Peltier heater/cooler stage via a heat conductive varnish;

the plate temperature was monitored with a calibrated Pt resistive thermometer,

the stage temperature Tst = T0 was controlled via PID closed-loop control within

50 mK in the range from 300 K to 200 K.

We developed here a novel method for quantitative thermometry. The method

uses the fact that the total temperature of the sample is the sum of the temperature

of sample stage Tst and the heater Ts = Tst+∆Ts. Linearity of the SThM response

allows then to quantify a temperature increase generated by the micro-heater.

Importantly, we implemented the subtraction method in high vacuum conditions,

eliminating the through-the-air heat conductance between the sample and the

probe, that may provide spurious contrast for topographical variations. The wide

temperature range high precision Pt thermometer for Tst provided results with a

total relative error of the temperature increase of 10%. It should be noted that both
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the null and addition methods for determining absolute temperature increase do

not depend on the sample-tip thermal resistance due to their differential nature and

therefore provide reliable absolute measurements within the error budget specified.

Figure 7.6: (a) Experimental setup with T controlled Peltier stage. (b) Experi-
mental measurement and (c) explanation of the principle of additive approach to
the calibration of the absolute rise of the sample temperature due to the heater. A
rectangular heating voltage on the heater results in a change of the SThM signal
∆Vh, the stage temperature was then increased by ∆T0 = 5K leading to a shift of
SThM response by ∆Vst.

In this measurement, a rectangular heating voltage on the heater was switched

between 0 and 3 V with a period of 1 Hz resulting in the change in the SThM signal

∆Vh as shown in the experimental trace in Fig. 7.6b). The stage temperature was

then increased by ∆T0 = 5 K resulting in a corresponding shift of SThM response

by ∆Vst (see cartoon in Fig. 7.6c). Due to linearity of SThM response, the rise

of the chip surface temperature is then found directly as ∆Th = ∆Tst(∆Vh/Vst) =

5K(∆Vh/Vst).

This approach was extended to measurements of the spatial distribution of

the heater temperature. For this measurement, the micro-heater was operated at
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about 70 Hz frequency (that was confirmed to be well below the heater time con-

stant) with a second lock-in amplifier measuring the local heating at this frequency.

While this required large time constants of the second lock-in amplifier and long

acquisition times of the heating image, the differential approach allowed practically

complete elimination of the spurious signals as well as thermal drift. The image in

Fig. 7.7a shows the temperature distribution image of the two heater lines (Fig.

7.7b). We note that, due to its differential nature, this approach allows to map

directly the additional surface heating ∆Th. The map shows that the temperature

of the silicon oxide area close to the Au heater is about 0.75±0.05 of the Au heater

temperature which is attributed to the thermal interface resistance between the Au

heater and the substrate. At the same time, for the passive Au line (i.e. the source

contact, Fig 7.7a,b), this thermal resistance does not affect the local temperature of

the sample with the passive line showing the same temperature as the surrounding

silicon oxide surface. The temperature profiles were compared to finite elements

modelling which shows a good agreement between experimentally measured and

modelled temperature distributions. The measurements using this method show

that, at 300 K, the 3 V applied to the heater produced ∆Th = 7.1± 0.4 K for the

Au heater, while, at 200 K, the temperature was ∆Th = 10.3± 0.7 K.
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Figure 7.7: Topographical (a) and thermal (b) images of the active heater with
the corresponding profiles (c, d) along the lines shown in the images.

7.3 Exploring thermoelectric effects in graphene

constrictions

This section is dedicated to measurements performed in continuation of the col-

laboration established in the previous section. Similar device architectures are

investigated but the measurements differ. As previously a temperature map was

obtained from the heated gold line, now the temperature field is created by the

graphene constriction itself.

If an electrical bias is applied, Joule heating is expected where the current

density is the highest, that is, in the constriction itself. Less intuitive is that
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we also obtained thermoelectric related phenomena, e.g. Peltier effect, at the

constriction and on its sides.

7.3.1 Thermometry measurement principles

To investigate thermoelectric phenomena in electrically biased graphene constric-

tions, we used measurement principles as proposed by Menges et al.[67, 71]. The

idea is to apply an AC bias to the device and measure the first and second harmonic

responses of the SThM sensor. The first harmonic corresponds to Peltier effects as

Q = ΠI while the second harmonic corresponds to Joule heating Q = RI2[67]. At

the same time, the overall SThM tip temperature is elevated and the heat transfer

to the sample is recorded as in regular SThM thermal resistance measurements.

The combination of an oscillating sample temperature field and heated probe

allows to take into account the variations of the tip-sample conductance which can

affect the temperature measured. Menges et al.[67] derived a governing equation

for the sample temperature:

∆Tsample = ∆Tsensor0
VAC

VAC − VDC
(7.1)

where ∆Tsensor0 is the heater temperature out-of-contact, VAC is the AC variation

of the SThM signal at the first or second harmonic and VDC is variation of the

regular SThM signal.

The constraint on the measurement is to set an AC bias frequency small enough

to always ensure thermal equilibrium in the sample. We estimated that 17 Hz was

satisfying this requirement from inspection of the signal time dependence.

7.3.2 Scanning Thermal Gate Microscopy (SThGM)

Another perspective of SThM uses was during these experiments. The entire work

presented before in this thesis relied on the ability of SThM to either measure

temperature variations or conductance variations. Doing so, we could measure
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local variations of the Seebeck coefficient translating into an intense Peltier effect

in the graphene constriction, as shown hereafter. Here, we inverse this picture and

obtain the negative of the same image. The SThM probe is used not as a sensor

but as a local heater to create a local temperature gradient.

By applying a slow AC bias on the SThM probe, the heater temperature is os-

cillating at the AC frequency ω. Then, when contacting a sample, a small portion

of the sample volume get locally heated, especially when the sample thermal con-

ductivity is small, as discussed in previous chapters. If, then, contacts are present,

as in the graphene constriction devices, the voltage at the contacts can be mea-

sured precisely. This voltage arises from similar thermoelectric effects (Seebeck

effect) that we observed already in the Peltier effect measurements.

Using a high-impedance amplifier and a lock-in, we measure the voltage at

frequency 2ω which directly links to the thermovoltage from

S = −∆V

∆T
(7.2)

where ∆T is the local temperature gradient created by the probe, S the Seebeck

coefficient of the material and ∆V the thermovoltage created by the temperature

gradient.

7.3.3 Main results

The first investigated geometry was the same as the one presented above, a bowtie

shaped graphene constriction. The space between the two contacts is about 4µm

and the narrowest width in the middle of the bowtie is around 100 nm. A typical

topography image is shown on Fig. 7.8. We note that resist residues were often

observed on the samples even after a prolonged annealing of the chip. However,

these residues can usually be removed by scanning the device several times with

the SThM tip. The sample of Fig. 7.8 is a few layer graphene sample. Monolayer

sample were also investigated and presented similar features.
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Figure 7.8: Topography of a few layers graphene bowtie constriction.

We then measured the Peltier and Joule signals when applying an AC bias on

the graphene device. Due to the low frequency ensuring thermal equilibrium, the

SThM rate was set low enough so that several periods are measured at each point

and fed into the lock-in amplifier. Therefore, each image presented below represent

between 2 and 4 hours scanning. Over such a time scale, temperature variations

of the system can greatly affect the measurements, especially the thermal drift

of the piezo positioning. However, the room was kept at a constant temperature

minimising this drift.

Figs. 7.9 show the Peltier and Joule images received from the bowtie constric-

tion. The striking observation is the butterfly-like shape of the Peltier response

with positive and negative signal. This change of sign corresponds to a 180◦ phase

change of the first harmonic signal. The Joule images can be easily interpreted as

the current density, creating proportionally a Joule heating which is expected to

be higher in the center of the constriction.
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Figure 7.9: Peltier and Joule heating images of a few layers graphene bowtie
constriction. Scale bar is 500 nm.

Before discussing the origin of this Peltier signal, we show the corresponding

picture obtained from Scanning Thermal Gate microscopy. Fig. 7.10 shows the

thermovoltage arising from the hot tip scanning on the sample. The same butterfly-

like shape response is obtained. We also note another sign change in the left side

of the constriction. The biggest signal change occurs near the constriction and not

close the electrodes. Electrodes doping has been reported and Peltier effect at the

electrodes already observed[57, 206].

161



Figure 7.10: Thermovoltage map of a few layers graphene bowtie constriction.
Scale bar is 500 nm.

The origin of such behaviour is still under discussion. We suspect a geometry

effect on the Seebeck coefficient of the graphene. For example, if the electron

mean free path is affected by the geometry, the Seebeck coefficient is likely to

change. As such, an effective thermocouple junction would be formed on either

side of the constriction. Another possible explanation could be the Thomson

effect, that is temperature dependence of the Seebeck coefficient. However, the

range of temperature change is small and, thus, the Seebeck coefficient change

on temperature is most likely negligible. Also, as the thermovoltage map shows

similar effects without the presence of any electrical current, we can rule out this

explanation.

In order to investigate further this geometric effect, we then measured two

different geometries as summarised in Fig. 7.11. In the first one, a long nanoribbon

was patterned between two large graphene pads. The second one connects the large

graphene pads via three nanoribbons through two islands. This second geometry
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will rule out the possibility of contact doping and enhance the fact that the Seebeck

coefficient change comes from the material geometry itself.

Figure 7.11: Topography and Joule heating images of a few layers graphene
bowtie constriction.

We investigated first the long ribbon using the same setup as for the bow tie.

Figs. 7.12 show Peltier, Joule and thermovoltage images. As expected, Joule

heating occurs over the whole ribbon. The Peltier image displays several sign

changes along the ribbon. The same is observed on the thermovoltage map. While

in the bow tie geometry, we could postulate a geometric effect on the Seebeck

coefficient, in the nanoribbon, as the geometry is fairly constant along the ribbon,

such hypothesis does not hold. However, edge doping and charge puddles[57] are

likely to be responsible for the response obtained.

Figure 7.12: Peltier, Joule heating and thermovoltage images of the long ribbon
geometry. Scale bar is 200 nm.
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The last geometry investigated consists of three nanoribbons connecting large

islands. Figs. 7.13 show the Peltier, Joule and thermovoltage maps obtained from

this device. As we observed, each constriction between an island and a nanoribbon

displays a sign change in the signal. Furthermore, the amplitude of this sign change

is similar for each constriction. With this observation, doping from the contact is

ruled out as we would otherwise obtain different amplitudes at each constrictions.

Similar features are observed on the thermovoltage map. Thus, the effect is arising

from the graphene geometry itself as we hypothesised above.

Figure 7.13: Peltier, Joule heating and thermovoltage images of the mutliple
islands geometry. Scale bar is 500 nm.
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7.4 Summary

With the SThM thermometry capabilities, we could map the temperature distri-

bution arising from a gold line heater. This was realised both at room temperature

and at low temperature and allowed the knowledge of the temperature gradient

across molecular junctions investigated for thermoelectric applications.

Then, based on the experience acquired in these first experiments, we develop a

three-terminal approach to study thermoelectric phenomena in nanoscale devices.

This three-terminal setup consists of the SThM tip acting either as a temperature

sensor or as a temperature gradient supply and two electrical contacts for either

current supply or thermovoltage sensing.

With this three-terminal approach, we could unveil new thermoelectric phe-

nomena in graphene devices. Geometrically shaping the graphene creates Peltier

and Seebeck effects. Theories and models are needed to fully understand such re-

sults which open new perspectives for 2D materials uses as thermoelectric energy

converters.
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8. Conclusion and perspectives

SThM has been proven to be a successful tool to assess nanothermal phenomena.

However, performing meaningful comparison and understanding the output of an

experiment remained a challenge due to the versatility and diversity of SThM prac-

tices. Therefore clear definitions and measurements models are needed to better

analyse results, enhance reproducibility and create a framework of understanding.

The first focus of this thesis was in line with this goal as we developed ex-

perimental and analytical tools achieving stable and comparable results. Then,

applying this framework to various materials, we extracted thermal properties di-

rectly from the SThM measurements. We summarised here the main outcomes of

our work.

8.1 Major achievements of this thesis

• Comprehensive model and experimental setup for high precision

SThM

Understanding the heat transfer in a distributed heater was essential to ex-

tract thermal resistance arising from materials probed. We achieved bet-

ter understanding of measurements and avoided numerous systematic errors

usually ensuing from the lack of such a model. In parallel with analyti-

cal developments, experimental errors from the unstable environment were

unveiled. Drifting surrounding temperatures and laser related uncertainties

were the major sources of errors. The measurement cell temperature is con-

trolled via feedback loop using Peltier devices, thus eliminating thermal drift
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and improving the precision up to 10 fold. We note that this setup could also

be used for many other studies such as thermoelectrics or any temperature

related phenomena. Experiments without laser were performed and showed

to greatly increase stability and reproducibility.

• cryoSThM

SThM measurements could be performed for the first time at low tempera-

tures by thermally connecting the sample holder in vacuum to an external

liquid nitrogen dewar. We achieved temperatures below 150 K. We devel-

oped a simple model to account for the low sample temperature and extract

sample related properties.

• Nanothermal probing of materials in three dimensions

We showed the possibility of performing 3D investigations of nanothermal

properties through the combination of BEXP and SThM. This combina-

tion also allows to extract thermal properties such as thermal conductivity.

This contrasts with standard techniques facing challenges with nanoscale

systems. Adaptable to a wide range of materials, BEXP suits particularly

well the SThM needs of well defined surfaces. By 3D probing SiGe and GeSn

alloys, we could assess the anisotropy of such materials. Moreover, sample

processing effects were proposed as responsible for a decrease in nanoscale

heat conductance. This is of major interest in devices fabrication and testing

as failure often arise from heat management aspects.

• Quantitative thermal transport in low dimensional materials

We measured for the first time temperature-dependent thermal conductivity

of naturally occurring heterostructure franckeite and its interface resistance

with silicon oxide using our cryoSThM setup. We also studied the MoS2-

graphene interface. Our results provide crucial insights for the realisation

of devices using 2D materials. Furthermore, we created an array of CNTs

bundles with increasing length and extracted their anisotropic thermal con-
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ductivity at low and room temperature. These arrays are currently developed

to act as heat spreading materials and their utility is assessed by our results.

• Dynamic SThM quasi non-contact method

A non negligible realisation is the combination of the UFM quasi non-contact

principles with SThM measurements to create a dynamic SThM method.

Non-contact SThM methods are needed for soft matter probing and our

method provide a simple approach allowing simultaneous nanothermal and

nanomechanical experiments both in air and in liquid.

• New thermoelectric phenomena in nanostructured graphene

Finally, we investigated new thermoelectric systems by adopting a three-

terminal approach. This method allows a double-sided understanding of

the same system. The thermal and electrical sides are both unveiled using

the same setup. We obtained thermoelectric junctions formed by graphene

nanoconstrictions thus implying that the Seebeck coefficient varies with ge-

ometry. These findings open new possibilities for thermoelectric energy con-

version.

8.2 Perspectives and challenges for nanoscale ther-

mal measurements

While working on this thesis, many SThM advances were realised in various groups

creating a dynamic nanothermal community. However, SThM hurdles will always

remain present as in any scanning probe microscopy technique. As we believe is

clear from our work, when one performs SThM experiments, one actually studies

three systems: a given sample, measurement instrument and the combination. We

think that seeking an SThM black box, similar to standard techniques providing

directly material properties, is like entering a maze. The numerous factors and

parameters participating to an SThM experiment, even without considering the

various SThM techniques, create as many difficulties to create SThM standards.
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Nevertheless, non-standard techniques have great potentials as they have the

possibility to discover non-standard properties. Many materials thermal properties

are to be explored at the nanoscale both experimentally and through modelling.

SThM is the ultimate tool to study nanothermal phenomena. When used for the

right purpose, quantitative outcome is possible. The question of the adequacy

between the object and the tool is fundamental and requires a very deep under-

standing of both the tool and the object. A screw driver does not brew tea, but it

balances a Wheatstone bridge.
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A. Appendices

A.1 Estimation of the contact radius

Two typical methods are used to estimate the contact radius, crucial parameter

to obtain quantitative values from SThM measurements. The first method uses

SEM imaging of the tip apex as on Fig. A.1 that we used for the 2D materials

heterostructure measurements and bulk samples at cryogenic temperatures.

Figure A.1: Doped silicon tip SEM image used for estimation of the contact
area. Scale bar is 200 nm

The other method is based on inspection of the thermal image as explained

by Menges et al.[113]. If the topography change between two regions is minimal

(ideally no topography variation), the change of the thermal signal can be used

to estimate the contact radius. We used this method with the BCP samples and

hence with the vertically aligned nanotubes.
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Figure A.2: Comparison of topography and thermal signal to estimate the tip
contact radius from [113].

We note also that samples like the silicon oxide steps or the BEXP cross-

sectioned silicon oxide on silicon can also provide estimation of the contact radius

as we showed in chapter 3 and 5.

A.2 Conical tip temperature distribution model

In order to model the temperature distribution in the doped silicon conical tip, we

assume the following:

• a truncated conical tip of known apex radius, r0, half-angle α and length lt;

• diffusive transport in the whole tip;

• power Q flowing uniformly through the tip.

The tip model is represented on Fig. A.3.
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Figure A.3: Schematic of the conical tip.

The heat equation can be written in the case of 1D heat conduction as

Q = −kA(l)
dT

dl
(A.1)

whereQ is the rate of heat conduction, k is the thermal conductivity of the material

and A(l) is the section of cone at the position l.

From trigonometry, we have

tanα =
r0

l0
=

r

lt − l + l0
(A.2)

Thus, A(l) is given by

A(l) = πr2 (A.3)

In order to get the temperature distribution in the tip, we need to integrate
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the heat equation

∫ T (l)

T=T0

=

∫ l

l=0

− Q

πk((lt − l) tanα + r0)2
dl (A.4)

This gives

T (l) = T0 −
Ql

((lt − l) tanα + r0)πk(lt tanα + r0)
(A.5)

with T0, the temperature at the heater side.

By defining Q from the heat flowing from the heater to the sample through the

whole tip:

Q =
(Theater − Tsample)r0πk(lt tanα + r0)

lt
(A.6)

we can plot the temperature distribution within the conical silicon tip.

A.3 Description of experimental setups

In this section, we describe briefly the SThM experimental setups used in this

thesis. First, general SThM components and uses are described. Then SThM box

comprising the modified Wheatstone bridge is introduced and finally we explain

laser management in our different systems.

A.3.1 General SThM setup components and uses

Fig. A.4 shows the various components of the SThM.
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Figure A.4: Principals SThM components.

Many SThM setups are possible. Some group work with constant probe tem-

perature, while others with constant power applied, with DC load or AC load. In

Lancaster, we work with constant applied power and a combination of AC+DC

bias.

Constant power means that the bias on the probe is fixed. As power is defined

by P = V 2/R, and changes in the resistance are small, then the power is con-

stant. The assumption on the resistance is satisfied because resistance variations

experienced by the probe during experiments are tiny.

The voltage bias on the probe is composed of an AC part and a DC part. The

AC component, at 91 kHz provides a high signal-to-noise ratio and is detected by

a lock-in (Stanford research, SR-830). This alternating bias also creates some self-

heating of the probe as we explain hereafter. The DC part provides self-heating.

Care must be taken in the applied load as the current should not be higher than

1.5 mA for the KNT probe.

When balancing the bridge, a small power is applied on the probe in order to

minimise the self-heating. Typically, we use 0.1 Vpp. In regular operations, 4 Vpp

provide a nice signal combined with 2 or 3 Vdc for the KNT probe. Same AC

signal can be used with the doped silicon probe but the DC offset depends on the

desired probe temperature.
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A.3.2 SThM box

Figure A.5: SThM box with precise amplification.

The circuit inside the SThM box is presented in Fig. A.6. To resistors (R2 and

R3) and two capacitors (C1 and C2) are used to balanced the bridge in standard

operations. Usually R4 is set at the same resistance as the probe when the probe

is changed. In the best scenario, R4 is checked from time to time while using the

same probe. One of the major design tricks to balance the balance the capacitance

of the bridge is to have use two cables of the same length (75 cm) to connect the

probe and R4. Note that in the vacuum system, as extra connections and cables

are needed between the SThM box and the probe, we soldered an extra capacitor

in parallel with C2.

The main advantage of this SThM box is that it includes an ultra-low noise

amplifier. No precise assessment of the noise reduction was performed but from

experience, we could clearly observe an improvement in the signal-to-noise ratio

between the new version of this SThM and the previous one. Even with very low

amplitude signal, variations of dV/V and on images are observed.

Some practical tips for the use of this SThM box:

• Batteries: if using rechargeable batteries, with a heavy use, they last around

one to two months. Strange signals might arise from low batteries, even if

the LED is still bright on.

• R1 is used to limit to current applied on the probe and therefore its value
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depends on the the probe used. It is typically adjusted by measure the "box

ratio": apply 1 Vdc on the box input and measuring the voltage across the

probe (or a similar resistance fixed resistor). This ratio should be around

0.1: if applying 1 Vdc, the multimeter should read 0.1 Vdc. Once R1 is fixed,

it shouldn’t be changed.

• When balancing the bridge, for a new probe, first R4 should be adjusted at

the probe resistance value. This requires to open the SThM box and is not

very user-friendly. Then, R2 and R3 can be adjusted. R2 has a greater effect

on the balance while R3 is for fine tuning.

• The capacitors are crucial to balance the bridge. To achieve a nice bridge

balance, a good iterative process is to adjust the resistors to minimise the

signal then to adjust the capacitors and to repeat this sequence.

• The SThM box components are soldered on a PCB board. They need to be

manipulated with care. Especially the resistors R2 and R3 which can detach

if strong forces are applied with screw drivers.
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Figure A.6: SThM box circuit with preamplifier.
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A.3.3 Laser management

As explained in chapter 3, the laser illumination on the back of the probe causes

reproducibility and stability issues on SThM measurements. When taking point

measurements, we then decided to avoid this illumination.

In air, the Bruker system does not allow to switch of the laser while keeping

the piezovoltages active. Therefore, we used a blocking paddle (see Fig. A.7) to

stop the laser illuminating the probe when necessary. Note that, when using the

KNT probe, the deflection of the probe is affected by the laser heating.

Figure A.7: Laser blocking nanopaddle

In the vacuum system, the NT-MDT software allows to switch the laser. How-

ever, this has the effect to turn the feedback on the z-position off. Then, the

approach the probe from the surface, the motor must be used carefully, step by

step.
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A.4 Python code for approach-retract curve anal-

ysis

We developed a Python code to analyse approach-retract SThM measurements.

This code, while fully functional, requires some practice in order to understand

the outputs and important parameters to achieve the best analysis.

from pylab import *

from scipy import *

import numpy as np

import matplotlib.pyplot as plt

from os import listdir

font = {’family’ : ’serif’,

’color’ : ’red’,

’weight’ : ’bold’,

’size’ : 56,

}

###General settings###

#Files loading and saving#

folder = ’C:\Users\spiece\Desktop/’ #Path of older A-R data .txt

folderresults = ’C:\Users\spiece\Desktop/’ #Path where .txt results will be saved

files = np.array(listdir(folder)) #Makes 1D array with names of .txt files

N = 3078 #Number of data points

save = 1 #Set 0 if don’t want to save results

plot_all = 0 #Set 1if you want to plot all A-R curves

results = [] #Declare results array to be filled in in the ’for’ afterwards

for j in np.arange(0,len(files),1): #Takes all the .txt files in folder from 0 to your number of .txt files

data = loadtxt(folder+files[j], skiprows=1) #Load a particular .txt file that will be treated

data = np.array(data) #Transform the .txt files in a readable numpy array

#####Gradient due to air gap calculation#####

x = data[:N/2,0] #Calculation and fit will be done on the first half of the data point. Make sure jump-in happens after that.

y = data[:N/2,4] #Reduce/increase N/2 if necessary

mgrad = np.polyfit(x, y, 1, full=True)

gradient,bgrad = mgrad[0]

if plot_all == 1:

fig, ax1 = plt.subplots()

ax1.set_title(files[j])

ax1.plot(data[:,0], gradient*data[:,0]+bgrad, ’--k’)

ax1.plot(data[:,0],data[:,4],".",color=’b’)

ax1.plot(data[:,1],data[:,5],".",color=’r’)

#ax1.grid()

ax1.set_xlabel(r’$Position$ $(nm)$’,fontsize=20)

179



ax1.set_ylabel(r’$Thermal$ $Response$ $(V)$’,fontsize=20)

#############################

#####Vbefore calculation##### The tricky bit

for i in np.arange(N/2,len(data[:,4])-10,1):

delta = data[i,4]-data[i+3,4]

if delta>0.01: #The condition on delta depends on the noise of the data and on the jump value

Vbefore = data[i,4] #Collect thex and y position a point just before jump.

ibefore = i

break

if delta<0.01:

ibefore = N - 20

Vbefore = data[N-20,4]

############################

#####Slope before snap in#########Computes the slope around Vbefore

x = data[ibefore-N/15:ibefore,0]

y = data[ibefore-N/15:ibefore,4]

mb = np.polyfit(x, y, 1, full=False, cov=True)

ab,bb = mb[0]

dab = sqrt(mb[1][0,0])

dbb = sqrt(mb[1][1,1])

if plot_all == 1:

ax1.plot(data[ibefore-N/35:ibefore+N/35,0], ab*data[ibefore-N/35:ibefore+N/35,0]+bb, ’--k’)

#####step slope calculation##### Computes the slope of the jump

x = data[ibefore+2:ibefore+8,0]

y = data[ibefore+2:ibefore+8,4]

mss = np.polyfit(x, y, 1, full=False, cov=True)

ass,bss = mss[0]

dass = sqrt(mss[1][0,0])

dbss = sqrt(mss[1][1,1])

if plot_all == 1:

ax1.plot(data[ibefore-3:ibefore+8,0], ass*data[ibefore-3:ibefore+8:,0]+bss, ’--k’)

#############################

#####gradient after calculation##### Computes the slope after the jump.

#Note a choice is possible between approach or retract data

x = data[:500,1] #decides if V_after is from approach or

y = data[:500,5] #retract curve!

#x = data[ibefore+10:,0]

#y = data[ibefore+10:,4]

ma = np.polyfit(x, y, 1, full=False, cov=True)

aa,ba = ma[0]

daa = sqrt(ma[1][0,0])

dba = sqrt(ma[1][1,1])

if plot_all == 1:

ax1.plot(data[:,0], aa*data[:,0]+ba, ’--k’)

#############################

#####Vbefore and Vafter recalculation##### Computes the actual results of Vbefore and Vafter
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#from the intersection of the slope before snap-in,

#the slope of the jump and the slope after the jump.

xb = (bss-bb)/(ab-ass)

Vbefore = ab*xb+bb

xa = (ba-bss)/(ass-aa)

Vafter = aa*xa+ba

dxb = (dbss+dbb)*(1/(ab-ass))+(dab+dass)*(bss-bb)/(ab-ass)**2 #Errors on results

dxa = (dba+dbss)*(1/(ass-aa))+(dass+daa)*(ba-bss)/(ass-aa)**2 #

#####deltaV calculation#####

deltaV = Vbefore-Vafter

deltaV_V = deltaV/Vbefore

dVbefore = dab*xb+dxb*ab+dbb

dVafter = daa*xa+dxa*aa+dba

ddV = dVbefore+dVafter #Errors on the results

ddV_V = ddV/Vbefore+dVbefore*(deltaV/Vbefore**2)

############################

##### Results - Step ########### Introduce a distance between each point measurements.

#To be change to make graph coherent. Or just remember what the course of your measurements was.

edgedist = j*100

results.append([edgedist,gradient,Vbefore,Vafter,deltaV,100*deltaV_V,ddV_V])

results = np.array(results)

mean = np.array(mean)

####Plots the results###

fig, ax2 = plt.subplots()

ax2.ticklabel_format(useOffset=False)

ax2.set_xlabel(r’$Edge$ $distance$ $(nm)$’,fontsize=20)

ax2.set_ylabel(’$\Delta$$V$ $(V)$’,fontsize=20)

ax2.grid()

ax2.plot(results[:,0],results[:,4],’*’,ms=12)

fig, ax3 = plt.subplots()

ax3.ticklabel_format(useOffset=False)

ax3.set_xlabel(r’$Edge$ $distance$ $(nm)$’,fontsize=20)

ax3.set_ylabel(r’$\frac{\Delta V}{V}$ $(\%)$’,fontsize=20)

ax3.grid()

ax3.errorbar(results[:,0],results[:,5], yerr=results[:,6],ms=22,fmt=’.’,lw=3,markeredgewidth=3,capsize=5,color=’r’)

if save == 1:

savetxt(folderresults+’.txt’,results)

show()
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HF etching of native oxide from silicon

Figure A.8: HF etched and non-etched silicon wafer with water droplet showing
different contact angle.
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Ultrahigh precision nanolab

Ultra stable shelves

Thermal insulation setup for ultra stable measurements

Ultra precise laser alignement setup for 2D materials deposition

View of the lab in ultra confortable arrangement

Nanofuel for ultracool experiments

Ultra-nanofractured clavicle
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