Supersymmetric polarization anomaly in photonic discrete-time quantum walks
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Quantum anomalies lead to finite expectation values that defy the apparent symmetries of a sy-
stem. These anomalies are at the heart of topological effects in electronic, photonic and atomic
systems, where they result in a unique response to external fields but generally escape a more direct
observation. Here, we implement an optical-network realization of a discrete-time quantum walk,
where such an anomaly can be observed directly in the unique circular polarization of a topological
midgap state. We base the system on a single-step protocol overcoming the experimental infeasi-
bility of earlier multi-step protocols. The evolution combines a chiral symmetry with a previously
unexplored unitary version of supersymmetry. Having experimental access to the position and the
coin state of the walker, we perform a full polarization tomography and provide evidence for the
predicted anomaly of the midgap states. This approach opens the prospect to dynamically distil
topological states for quantum information applications.

PACS numbers: 03.67.Ac, 42.50.-p, 03.65.V{

Introduction.— Quantum anomalies take a privileged
position amongst fundamental physics as they equip
quantum systems with robust topological effects. The
historic backdrop for quantum anomalies is provided by
the Atiyah-Singer index theorem for the Dirac operator
[1], which states that the difference of zero modes with
positive and negative chirality is a topological invariant.
These zero modes are of fundamental significance not
only because of their robustness against smooth deforma-
tions, but also since their definite chirality defies an ap-
parent symmetry of the system, which results in an ano-
malous response to symmetry-breaking external fields.
An early practical realization is the Su-Schrieffer-Heeger
model for polyacetylene [2], where the anomalous proper-
ties of a midgap state result in charge fractionalization
and spin-charge separation [3]. Interest in this pheno-
menon therefore quickly transcended the original setting
of continuum and lattice field theories [4], and presently
provides a major motivation for research particularly in
electronic [5-8], superconducting [8-11], photonic [12-25]
and ultracold atomic [26-30] systems. In all these set-
tings, zero-modes represent symmetry-protected midgap
states with unique finite expectation values of a relevant
symmetry operator, resulting in a distinct response when
probed by suitable external fields. This includes the for-
mation of anomalous currents, as recently observed in
Dirac and Weyl semimetals [31, 32]. An equally early
development was the relation of such anomalous behavi-
our to supersymmetry. In this case systems appear with
partners that differ in the number of zero modes, with
the prime example being a Dirac particle exposed to a
magnetic field [33, 34]. This feature is central to field-
theoretic descriptions, but has been much less inquired
in practical systems.

In this work we exploit this link via a previously unex-
plored variant of supersymmetry for the time-evolution

operator, and achieve the direct observation of the ano-
malous expectation value of a zero mode, without the
need of an external probe, in a topological discrete-time
quantum walk (QW) [35-46] implemented by a weak co-
herent laser pulse propagating in a time-multiplexing op-
tical fibre network [47, 48]. In contrast to proposed and
experimentally realised split-step and multi-step proto-
cols in coined QWs [35-45] involving two or more expe-
rimental step operations to implement one application
of the quantum walk unitary, our protocol exhibits a
single step dynamic in which each experimental step di-
rectly corresponds to one step of the protocol, which is
favourable in terms of losses, resource management and
scalability. The combination of chiral symmetry with
supersymmetry results in a topologically non-trivial gap-
ped bandstructure exhibiting four symmetric bands along
the quasienergy circle, revealing a topological structure
on a three-dimensional torus. These topological featu-
res directly relate to an internal degree of freedom, the
coin-state of the random walker, which is embodied in
the polarization of the laser pulses. While in a suita-
ble basis states originating from the bands exhibit linear
polarization, a system with an interface of two topologi-
cally distinct systems also contains midgap states whose
polarization turns out to be circular. This is the direct
manifestation of the anomaly in question. We observe
this effect experimentally by performing polarization to-
mography of the localised output state, as well as by
altering the overlap of the input and the midgap state
via polarization control.

Single step quantum walk protocol.— The quantum
walk protocol and its experimental realization are illus-
trated in Fig. 1. The state
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FIG. 1. Supersymmetric single-step quantum walk realizing an interface between two topologically distinct phases. (a)
Coin structure in the interface configuration, where each disk represents the action of a coin that rotates the polarization by the
denoted angles @1 or ¢2. Across the interface the positions of these coins in the unit cells (red and blue boxes) are interchanged.
(b) Alternating circular polarization of the spatially localised midgap states trapped by the interface. The fading of the color
strength away from the interface indicates the intensity decay of the localized midgap state. All extended states display a
linear polarization (not shown). (c) Winding of states from the bands around the three-dimensional torus (a, 8,7), revealing
the topological structure of the supersymmetric quantum walk on both sides of the interface. (d) Quasi-energy band structure
A(k) = exp(—ie(k)) comprising four symmetric bands (colored arcs, here shown for 1 = 1, ¢ = 0.2). We realize the midgap
states pinned to A = £i (red dots). (e) Experimental setup using a time-multiplexing optical fibre-loop; see text for details.

of the quantum walker is defined by the discrete positions
x and the coin state ¢, which in our experiments is rea-
lized via a train of weak coherent laser pulses and their
polarization (H for horizontal, V for vertical). The ini-
tial pulse is spatially localised on site z = 1 with a preset
input polarization. This state changes over a time step
via the application of position-dependent coin operation
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cos(¢y)
rotating the polarization in the H/V basis, followed by a
step-operation
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resulting in a unitary evolution governed by U = SC(¢,).
In the following we consider the bulk configuration, in
which the coin angles ¢; and 9 are alternately applied
from site to site, and the interface configuration in which
a semi-infinite chain with alternating ¢; and ¢ is con-
nected at x = 1 to a chain with alternating s and ¢
(see Fig. 1a).

Supersymmetry in quantum walks.— We first identify
the hidden supersymmetry in the quantum walk, and
then use this to predict the anomalous properties of the
zero mode in the interface configuration. As typical in
the study of topological systems, the key is to connect
the features of the zero mode to symmetry constraints of
the infinitely periodic bulk system, which we here cast in
terms of a unitary variant of supersymmetry that leads
to an enlarged set of topological winding numbers.

Previous work considered the bulk system to be peri-
odic after two round trips, so that each wave packet has
visited both coins. The hidden symmetry becomes appa-
rent when we consider a single round trip, but follow the

amplitudes in a two-site unit cells (blue in Fig. 1a), where
each site carries two polarizations. Applying Floquet-
Bloch theory [35, 38, 49], this gives rise to a 4-dimensional
unitary evolution parameterized by a wave number k,
which is of the explicit form
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Here the blocks (with Pauli matrix o,) operate on the
polarization degree of freedom on a given site.

The bulk bands ¥(k) are stationary under the appli-
cation of this evolution, wu(k)¥ (k) A(k)¥(k), where
A(k) = exp(—ie(k)) is a propagation factor that can be
cast in terms of quasi-energies e(k). These quasi-energies
play the role of the band structure known from auto-
nomous settings, but are to be taken modulo 27w. For
the Floquet-Bloch operator (4) the bands are determi-
ned by the condition Re[\?(k)] = cos(¢1) cos(p2) cos(k)—
sin(p1) sin(y2). A sample bandstructure, folded around
the unit circle, is shown in Fig. 1d. We note that the four
bands are related by A1 (k) = \5(k) = —A3(k) = —Xi(k),
and separated by gaps at A = +1 and \ = +4.

It is clear that these bulk features should arise from
general properties of the system. Their topological origin
becomes manifest in the symmetric basis
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in which the Floquet-Bloch operator reads
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This displays the two symmetries u/T(k) = oyu/(k)oy,
where the Pauli matrix o, operates on the polarization
degrees of freedom, as well as v’ (k) = =X,/ (k)X,, where
the Pauli matrix ¥, operates on the two positions in the
unit cell [49]. The symmetry induced by o, constitutes
a conventional chiral symmetry for a Floquet operator
[35, 38] and constraints its eigenvalues to occur in pairs
(A, A*), hence quasienergies (e, —¢), protecting the gaps
at A = £1. The additional symmetry induced by X,
constraints eigenvalues to occur in pairs (A, —\), hence
quasienergies (¢, € + ), and does not have a counterpart
in previous investigations.

To identify its origin, we notice that according to
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upon iteration the Floquet-Bloch evolution (4) se-
parates into two partner problems wuja(k)usi(k) and
us1 (k)u12(k), which happen to recover the previously em-
ployed split-step protocols [35, 36, 38]. This reduction
of a problem with symmetries into two partner pro-
blems provides a unitary analogy to the concept of su-
persymmetry for autonomous Hamiltonians of the form
[33, 34, 49, 50]

(0 AT s [ATA 0
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where AYA and AAT represent the supersymmetric part-
ners [51]. In this light we will call the symmetry induced
by X, unitary supersymmetry.

Ramifications.— While for Hamiltonians of the form
(8) the constraint ¥,HY., = —H coincides with a chiral
symmetry, in the Floquet setting the constraints induced
by chiral symmetry and unitary supersymmetry are in-
dependent and inequivalent, and in combination protect
the gaps at A = £i. In consequence, the two partner
problems exhibit the same spectrum; however, they con-
stitute topologically distinct phases as they are separated
by transitions where the gaps at A = +i close.

The topological distinction can be asserted by transla-
ting these spectral constraints to constraints on the bulk
wavefunctions. For our study of particular relevance is
the condition (¥,0,) = 0 unless A = =+4, which follows
from

0= (S.opu’ +uTS.0y) = A+ A 0,0, (9)

By similar arguments we can derive the conditions (o) =
(¥,) = 0, which generally apply when A # +i,+1 [49].
Physically, the symmetry constraints (o) = (X,0,) =0
imply a linear polarization of the bulk Bloch states in
the H'/V’ basis. Mathematically, these conditions con-
fine the states to geometrically wind around a three-

dimensional torus defined by three angles (a, 3,7),

(cos(a), sin(a)) = ((02(1 + Xz)), (0:(1 + X)),
(COS(/B)a Sln(ﬁ)) = (<Ux(1 - Ez)>’ <0z(1 - Zz)>)7 (10)
(cos(7),sin(7)) = ((Zz (1 — ay)), (Xy(1 = 0y))),

as shown in Fig. lc.

In the interface configuration, two regions with incom-
patible winding topology are joined together [52]. Ap-
plying the bulk-boundary principle [39, 49, 53], the in-
terface configuration is then guaranteed to supplement
the extended bulk states by spatially confined midgap
states, which furthermore are expected to display ano-
malous finite expectation values of the relevant symmetry
operators. In our setting, this results in a pair of midgap
states pinned to A = ¢ with finite (¥,0,) = —1, which
thus display with an anomalous finite circular polariza-
tion that alternates from site to site (see Fig. 1b). This
is the polarization anomaly that we now set out to detect
experimentally.

Ezxperimental implementation.— In the experiments
(see Fig. le), the position-dependent coin operations are
realized by a Soleil-Babinet compensator (SBC) and a
fast switching electro-optic modulator (EOM, red shaded
area) [42, 48, 54]. The shift operation is performed in a
time-multiplexing scheme by splitting up the two polari-
zation components at a polarizing beam splitter (PBS)
and routing them through fibres of different lengths (blue
shaded area), which introduces a well-defined time delay
between the pulses. In each roundtrip a small portion of
the light is coupled out and measured by a pair of ava-
lanche photo diodes (APD) in the photon counting mode
(green shaded area). After letting the pulses evolve in
the loop for several roundtrips we can analyse the pulse
trains, in which each arrival time bin uniquely represents
a particular position in a given step. The output signal
can be measured in three different bases (H/V, diagonal
and circular), giving access to the complete polarization
state at each site. This detection scheme enables us to
observe the polarization-resolved time evolution of the
walker and perform a full polarization tomography of the
midgap state [49].

Results: Light trapping in interface and bulk.— We
compare a bulk configuration, in which the coin angles
alternate between the values ¢; = 1.29, ¢y = 0.17, with
an interface configuration, in which the coins are inter-
changed in half of the system (see Fig. 1a). The bulk con-
figuration only supports spatially extended states, which
are organised in quasienergy bands (k) = exp(—ie(k))
(see Fig. 1d). However, in the interface configuration
there additionally exist midgap states pinned to A = 41,
which are spatially localized around the interface. In the
experiments, the difference between the bulk and inter-
face configurations is analysed in detail in Fig. 2. Here,
we compare the two configurations for different input po-
larizations of the initial excitation at x = 1, and study
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FIG. 2. Light trapping for the interface configuration (a,b)
compared to the interface-free bulk system (c,d). The exem-
plary input polarizations are |H) in a and ¢, Cqwp (137°)|H)
in b and Cuwp(50°)|H) in d as defined in egs. (S17) and
(S18). The dependence of the trapped light intensity on the
initial polarization is further characterized in e for interface
(orange lines, black dots) and bulk (green lines and symbols)
configuration. It shows the total intensity after step 13 at
position 0 as a function of the initial polarization set by the
angle o of the QWP in front of the incoupler (vertical ticks
indicating error bars: experimental data; continuous curves:
numerical prediction for 13 step; dashed curve: numerical
prediction for 100 steps).

how this excitation spreads over the system. The dif-
ference between the bulk and interface configurations is
immediately visible. The midgap state, which we expect
to be centered at the interface between sites x = 0 and
1, can trap the initial wave packet (see panels a,b). This
effect displays a strong polarization dependence, and is
particularly pronounced for H input polarization (a). In
contrast, the bulk configuration (c,d) traps a much smal-
ler amount of light, which displays a much weaker po-
larization dependence. The polarization dependence is
further quantified in panel (e). Here, we record the de-
tection probability of the quantum walker after 13 steps
at the x = 0 position while varying the angle of a quarter
waveplate (QWP) in front of the incoupler. For the inter-
face system large variations of the trapped light compo-
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FIG. 3. Anomalous polarization of the trapped mid-
gap state from tomography of the polarization state in the
interface configuration after step 17 at x = 0. Note that due
to the strong spatial localisation the other positions are hardly
occupied. The reconstructed complex density matrix from the
experiment (a,b) is compared with the numerical prediction
in the H'/ V' timeframe (c,d). The input polarization is |H).
We observe an almost equal amplitude for the H' and the V’
component on the diagonal elements of the real part, while the
off-diagonal elements of the imaginary part clearly display a
/2 phase shift, corresponding to right-handed circular pola-
rization. From the experimental data we find the polarization
state (0.7040.03)|H') + (0.7140.02) exp((0.47£0.02)i7)| V'),
while numerically 0.72|H") + 0.69 exp(0.50im)|V").

nent can be observed, ranging from below 0.3 up to 0.82
(black symbols). The experimentally observed polariza-
tion dependence agrees well with the results of numerical
simulations (solid orange curve), which model the quan-
tum walk in detail [49]. In the bulk system (green sym-
bols and curves) the range of the polarization-dependent
variations is much less pronounced. The numerical si-
mulations allow us to extrapolate these results to large
step numbers (dashed curves), where a pronounced po-
larization dependence only remains for the interface con-
figuration. We also analysed the position dependence of
the trapping when exciting the walk not directly at the
interface, but scan different input positions (see Fig. S2
in [49]), where we observe the expected intensity decay
when the spatial overlap between the initial and the mid-
gap state is reduced. For the polarisation resolved proba-
bility histograms demonstrating the spatial localisation
of the midgap state for two exemplary input polarization
in contrast to the interface-free bulk system see Fig. S1
in [49]. These observations uncover a strong and charac-
teristic polarization dependence of the excitability of the
midgap state.

Results: Detection of the quantum anomaly.— In or-
der to demonstrate the anomalous polarization of the



midgap state precisely, we measure the full polarization
state of the walker after 17 steps on site z = 0 by
performing a tomographic measurement [49]. The ex-
perimental data presented in Fig. 3 provides the den-
sity matrix of the state (0.70 £ 0.03)|H’) + (0.71 +
0.02) exp((0.47 £+ 0.02)im)|V') at = 0, which is in ex-
cellent agreement with the expected right-handed cir-
cular polarization /1/2(|H’) + i|V')) on the even si-
tes. Analogously, we find left-handed circular polariza-
tion /1/2(|H'Y — 4|V’)) on the odd sites (see Fig. S3
in [49]). These results verify the anomalous expectation
values directly, without relying on currents induced by
symmetry-breaking external fields.

Discussion.— In conclusion, we designed a quantum
walk that displays a distinctly polarised midgap state.
This midgap state is spatially localized at the interface
of two topologically distinct systems and situated in a
quasi-energy band gap that arises from the combination
of a chiral symmetry and a unitary supersymmetry. In
a suitable basis, this gives rise to a circular polarization
of the localized midgap state. In contrast the bulk states
are linearly polarized and spatially extended. Our experi-
mental realization with a time-multiplexing discrete-time
quantum walk can directly access this midgap state. In
particular, we demonstrated how to address this state via
variation of the input polarization, and characterized it
via a full polarization state tomography. The excitation
of a single eigenstate in a quantum system generally re-
quires accurate control of the input state. In our setting,
however, we benefit from the characteristic polarization
of the midgap state as a selection mechanism which com-
plements the strong localization of this state at the in-
terface. This mechanism therefore serves as an avenue
to selectively excite a midgap state, as well as to sepa-
rate it from other eigenmodes by polarization-controlling
elements, which both are useful features for possible clas-
sical and quantum information and communication ap-
plications.
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