Testing Stationarity with Unobserved Components Models

Morley, James and Panovska, Irina B. and Sinclair, Tara M. (2017) Testing Stationarity with Unobserved Components Models. Macroeconomic Dynamics, 21 (1). pp. 160-182. ISSN 1365-1005

Full text not available from this repository.


In the aftermath of the global financial crisis, competing measures of the trend in macroeconomic variables such as U.S. real GDP have featured prominently in policy debates. A key question is whether large shocks to macroeconomic variables will have permanent effects—i.e., in econometric terms, do the data contain stochastic trends? Unobserved-components models provide a convenient way to estimate stochastic trends for time series data, with their existence typically motivated by stationarity tests that allow at most a deterministic trend under the null hypothesis. However, given the small sample sizes available for most macroeconomic variables, standard Lagrange multiplier tests of stationarity will perform poorly when the data are highly persistent. To address this problem, we propose the use of a likelihood ratio test of stationarity based directly on the unobserved-components models used in estimation of stochastic trends. We demonstrate that a bootstrap version of this test has far better small-sample properties for empirically relevant data-generating processes than bootstrap versions of the standard Lagrange multiplier tests. An application to U.S. real GDP produces stronger support for the presence of large permanent shocks using the likelihood ratio test than using the standard tests.

Item Type:
Journal Article
Journal or Publication Title:
Macroeconomic Dynamics
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
15 Jan 2019 17:10
Last Modified:
22 Nov 2022 06:53