
Self-Boosting First-Order Autonomous Learning Neuro-

Fuzzy Systems

Xiaowei Gu
1,2

 and Plamen Angelov
1,2,3*

1.
 School of Computing and Communications, Lancaster University, Lancaster, LA1 4WA, UK

2.
 Lancaster Intelligent, Robotic and Autonomous Systems Centre (LIRA), Lancaster University, UK

3.
 Honorary Professor, Technical University, Sofia, 1000, Bulgaria

Email: {x.gu3, p.angelov}@lancaster.ac.uk

* Corresponding Author

Abstract: In this paper, a detailed mathematical analysis of the optimality of the premise and consequent parts

of the recently introduced first-order Autonomous Learning Multi-Model (ALMMo) neuro-fuzzy system is

conducted. A novel self-boosting algorithm for structure- and parameter- optimization is, then, introduced to the

ALMMo, which results in the self-boosting ALMMo (SBALMMo) neuro-fuzzy system. By minimizing the

objective functions with the previously collected data, the SBALMMo is able to optimize its system structure

and parameters in few iterations. Numerical examples based benchmark datasets and real-world problems

demonstrate the effectiveness and validity of the SBALMMo, and show the strong potential of the proposed

approach for real applications.

Index Terms: neuro-fuzzy systems, autonomous learning, local optimality, self-boosting, streaming data

processing.

1. Introduction

The initial concepts of evolving intelligent systems (EISs) were conceived around the turn of the 21st century

[1]–[3] and now matured [4]. Nowadays, EISs have been widely applied for real-world problems [5]–[8].

 EISs can be implemented in neuro-fuzzy [2], [9] or fuzzy rule-based structural forms [3]. The main

difference between the EISs and the conventional (neuro-) fuzzy systems [10], [11] is their ability of self-

organizing and self-updating system structure and parameters in real-time mode. Thus, EISs are usually

associated with streaming data processing and can effectively approximate the dynamically changing

environment [12]. Currently, the EISs is an intensively researched area [2], [3], [6], [13]–[18]. The most popular

(neuro-) fuzzy systems include, but not limited to, the evolving Takagi-Sugeno systems (eTS) [1], [3], DENFIS

[2], SAFIS [17], PANFIS [16], GENFIS [19] as well as the more recently introduced CENFS [18] and versions

of the eTS (simpl_eTS [13], eTS+[20]). Interested readers are referred to the recent surveys [21], [22] for more

details regarding the EISs.

Most of the EISs are of “one-pass” type, and they target processing streaming data “on the fly” [6], [13]–

[15], [17], [20]. Although different EISs use different online learning mechanisms to evolve their premise (IF)

parts, the majority of them use the recursive least squares (RLS) algorithm [23] or its extension, i.e. fuzzily

weighted recursive least squares (FWRLS) algorithm [3] to learn the consequent parameters (THEN part).

Despite that the concepts of the EISs have been matured [4] and many of them have been applied in real-

world scenarios successfully, a systematic mathematical study on the local optimality of the premise (IF) and

consequent (THEN) parts of the current EISs has not been conducted yet [24]. The main reason for this is

obvious, as EISs are implemented for handling the data streams with ever-changing data pattern in complex,

nonstationary environments [12]. Currently, only the stability of the consequent (THEN) part of EISs has been

proven [3], [25].

Another problem that the majority of the EISs suffer from is the predefined problem- and user-specific

parameters [2], [5], [9], [16]–[18], [26] for the structure learning algorithms. These parameters require prior

knowledge and/or the assumptions about the nature of the problems to be defined in advance. In addition, they

also influence the objectiveness of the learning results.

First-order Autonomous Learning Multi-Model (ALMMo) neuro-fuzzy system [6] is a new type of multi-

model system introduced on the basis of the first-order AnYa type neuro-fuzzy systems [4], [27]. The ALMMo

system is composed of fully human intelligible IF-THEN rules of AnYa type, and its structure is built upon the

nonparametric data clouds that are free of external constraints enabling the ALMMo system to objectively

approximate the real data distribution. Its system structure and meta-parameters are derived from the data

directly without imposing data generation model with user- or problem- specific parameters. Thus, there is no

requirement of prior knowledge of the problem. The system is also memory- and computation- efficient. Its

system structure is able to evolve online, and its meta-parameters can be recursively updated. Meanwhile,

ALMMo is capable of monitoring the quality of the dynamically evolving structure in real time, which

guarantees the computation- and memory-efficiency of the learning mechanism. All of these allow the ALMMo

neuro-fuzzy system to effectively and efficiently follow the possible shifts and/or drifts in the data pattern for

the case of streaming data [6].

Based on a systematic analysis of the local optimality of the premise (IF) and consequent (THEN) parts of

the ALMMo neuro-fuzzy system, in this paper, we introduce a novel self-boosting algorithm to the ALMMo,

and we call the upgraded ALMMo neuro-fuzzy system: self-boosting Autonomous Learning Multi-Model

(SBALMMo). The concept of a “self-boosting” system means that the system is able to self-optimize its

structure and meta-parameters, and, thus, achieves a better performance. The self-boosting algorithm involves

two independent iterative processes for minimizing the objective functions designed for the premise (IF) and

consequent (THEN) parts based on the historical observations. The proposed SBALMMo is able to guarantee

the local optimality. Moreover, we also introduce a novel quality monitoring mechanism to the SBALMMo,

which assists the system to discard stale fuzzy rules, and thus, further strengths the ability of the SBALMMo to

follow the shifts and/or drifts of the data pattern [12]. To summarize, the main advantages of the SBALMMo

compared with the ALMMo neuro-fuzzy system include:

1) It guarantees periodic local optimization for both the premise (IF) and consequent (THEN) parts of the

neuro-fuzzy system on a solid mathematical basis.

2) It introduces a dynamical quality monitoring mechanism to the rule base.

The remainder of this paper is organized as follows. Section 2 briefly recalls the general architecture and

principles of the ALMMo. The local optimality analysis of the ALMMo neuro-fuzzy system is conducted in

section 3 with the optimization approaches for the both parts of the system given in the same section. The

SBALMMo is described in section 4 and the numerical examples are presented in section 5. Section 6 concludes

the paper.

2. The ALMMo Neuro-Fuzzy System

In this section, the general architecture and learning process of the ALMMo neuro-fuzzy system are briefly

recalled to make this paper self-contained. In this paper, we use the Euclidean distance by default if there is no

special declaration.

2.1. General Architecture

The general architecture of the ALMMo neuro-fuzzy system is depicted in Fig. 1 [6], [27].

𝐼𝐹 (𝒙~𝒑) 𝑇𝐻𝐸𝑁 (𝑦 = 𝒙𝑇𝒂) (1)

where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑀]
𝑇 ∈ 𝐑𝑀 is the input vector of the fuzzy rule; 𝐑𝑀 is the 𝑀 dimensional real data space;

~ denotes the similarity, or a fuzzy degree of satisfaction/membership [27]; 𝒙𝑇 = [1, 𝒙𝑇]; 𝒑 = [𝑝1 , 𝑝2, … , 𝑝𝑀]
𝑇

is the prototype of this fuzzy rule; 𝒂 = [𝑎0, 𝑎1, … , 𝑎𝑀]
𝑇 is the vector of consequent parameters.

Fig. 1. General Architecture of ALMMo fuzzy system

The ALMMo fuzzy system is mathematically modelled as [3], [6], [27]:

𝑦𝐾 = 𝑓(𝒙𝐾) = ∑ 𝜆𝐾
𝑖 𝒙𝐾

𝑇𝒂𝐾
𝑖𝑁𝐾

𝑖=1 (2)

where 𝑦𝐾 and 𝒙𝐾 (𝒙𝐾 ∈ 𝐑
𝑀) are the respective output and input vectors of the ALMMo at the K-th time instance

(we assume that only one data sample arrives at each time instance); 𝒙𝐾
𝑇 = [1, 𝒙𝐾

𝑇]; 𝑁𝐾 denotes the number of

fuzzy rules/data clouds; 𝒂𝐾
𝑖 = [𝑎𝐾,0

𝑖 , 𝑎𝐾,1
𝑖 , … , 𝑎𝐾,𝑀

𝑖]
𝑇
is the consequent parameter vector of the i-th fuzzy rule at

the K-th time instance; 𝜆𝐾
𝑖 is the corresponding firing strength derived from the normalized data density directly

from the data [3], [6], [27], [28].

2.2. The Learning Process Summary

In this subsection, the main procedure of the learning process of the ALMMo neuro-fuzzy system, which

includes both, the system identification and the algorithmic parameters identification processes, is summarized

as follows. One can find the more detailed algorithm description in the original paper [6].

Step 0. System initialization

The ALMMo neuro-fuzzy system is initialized by the first data sample, 𝒙1 (𝐾 ← 1).

The global meta-parameters of the system, namely, the global mean, 𝝁1, global average scalar product, 𝑋1

and the number of existing fuzzy rules/data clouds, 𝑁1 are initialized as:

𝝁1 ← 𝒙1; 𝑋1 ← ‖𝒙1‖
2; 𝑁1 ← 1 (3)

The first data cloud, 𝐂1
1 is initialized by 𝒙1: 𝐂1

1 ← {𝒙1}. The meta-parameters of 𝐂1
1 , which include the

prototype, 𝒑1
1, average scalar product, 𝑋1

1, support, 𝑆1
1, accumulated firing strength, 𝛬1

1, utility, 𝜂1
1 and the time

instance at which 𝐂1
1 is initialized, 𝐼1 are initialized as:

𝒑1
1 ← 𝒙1; 𝑋1

1 ← ‖𝒙1‖
2; 𝑆1

1 ← 1; 𝛬1
1 ← 1; 𝜂1

1 ← 1; 𝐼1 ← 1 (4)

and the consequent parameters, 𝒂1
1 and covariance matrix, 𝚯1

1 of the corresponding fuzzy rule of 𝐂1
1, 𝑹1are

initialized as:

𝒂1
1 ← 𝟎(𝑀+1)×1; 𝚯1

1 ← Ω𝑜𝐈(𝑀+1)×(𝑀+1) (5)

The first fuzzy rule 𝑹1 within the fuzzy rule-base is, then, initialized as:

𝑹1: 𝐼𝐹 (𝒙~𝒑1
1) 𝑇𝐻𝐸𝑁 (𝑦 = 𝒙𝑇𝒂1

1) (6)

Step 1. System output generation

When a new data sample, 𝒙𝐾 is available (𝐾 ← 𝐾 + 1), the local data density of 𝒙𝐾 within each data cloud

(𝑗 = 1,2, … , 𝑁𝐾−1) is calculated as [6]:

𝐷𝐾−1
𝑗 (𝒙𝐾) =

1

1+
(𝑆𝐾−1
𝑗

)
2
‖𝒙𝐾−𝒑𝐾−1

𝑗
‖
2

(𝑆𝐾−1
𝑗

+1)(𝑆𝐾−1
𝑗

𝑋𝐾−1
𝑗

+‖𝒙𝐾‖
2
)−‖𝒙𝐾+𝑆𝐾−1

𝑗
𝒑𝐾−1
𝑗

‖
2

 (7)

Local data density calculated by equation (7) reacts to the potential changes in the data pattern quickly by

incorporating 𝒙𝐾 into the existing data clouds and shifting the corresponding prototypes towards it. This

enlarges the role 𝒙𝐾 plays in the system output and improves the system’s adaptive ability.

Then, the firing strength of each fuzzy rule to 𝒙𝐾 is calculated (𝑗 = 1,2, … , 𝑁𝐾−1):

𝜆𝐾−1
𝑗

=
𝐷𝐾−1
𝑗

(𝒙𝐾)

∑ 𝐷𝐾−1
𝑘 (𝒙𝐾)

𝑁𝐾−1
𝑘=1

 (8)

and the system output is calculated and exported by equation (9):

𝑦𝐾 = ∑ 𝜆𝐾−1
𝑖 𝒙𝐾

𝑇𝒂𝐾−1
𝑖𝑁𝐾

𝑖=1 (9)

Step 2. Global meta-parameter updating

The global mean, 𝝁𝐾−1 and the average scalar product, 𝑋𝐾−1 of system are, then, updated:

𝝁𝐾 =
𝐾−1

𝐾
𝝁𝐾−1 +

1

𝐾
𝒙𝐾 (10)

𝑋𝐾 =
𝐾−1

𝐾
𝑋𝐾−1 +

1

𝐾
‖𝒙𝐾‖

2 (11)

The data densities at 𝒙𝐾 and 𝒑𝐾,−1
𝑗

 (𝑗 = 1,2, … , 𝑁𝐾−1) are calculated by equation (12a),

𝐷𝐾(𝒛) =
1

1+
‖𝒛−𝝁𝐾‖

2

𝑋𝐾−‖𝝁𝐾‖
2

; 𝒛 = 𝒙𝐾 , 𝒑𝐾−1
1 , 𝒑𝐾−1

2 , … , 𝒑𝐾−1
𝑁𝐾−1

 (12a)

As one can see, the data density calculated by equation (12a) has a more elegant form compared with the

local data density calculated by equation (7). This is because the global mean, 𝝁𝐾 and the average scalar

product, 𝑋𝐾 have both been updated with 𝒙𝐾 by equations (10) and (11) before the calculation. By substituting

𝝁𝐾 and 𝑋𝐾 with 𝝁𝐾−1 and 𝑋𝐾−1, respectively, equation (12a) can be formulated in a similar form as equation

(7):

𝐷𝐾(𝒛) =
1

1+
(𝐾−1)2‖𝒛−𝝁𝐾−1‖

2

𝐾((𝐾−1)𝑋𝐾−1+‖𝒛‖
2)−‖𝒛+(𝐾−1)𝝁𝐾−1‖

2

; 𝒛 = 𝒙𝐾 , 𝒑𝐾−1
1 , 𝒑𝐾−1

2 , … , 𝒑𝐾−1
𝑁𝐾−1

 (12b)

Step 3. System structure updating

Firstly, Condition 1 is checked to see whether 𝒙𝐾 is the prototype of a new data cloud [3]:

Condition 1:

𝐼𝐹 (𝐷𝐾(𝒙𝐾) > max𝑗=1,2,…,𝑁𝐾−1 𝐷𝐾(𝒑𝐾−1
𝑗

))

𝑂𝑅(𝐷𝐾(𝒙𝐾) < min𝑗=1,2,…,𝑁𝐾−1 𝐷𝐾(𝒑𝐾−1
𝑗
))

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)

 (13)

The rationale behind Condition 1 is that if 𝐷𝐾(𝒙𝐾) is larger than the data densities at the prototypes of the

existing data clouds, 𝒙𝐾 is more descriptive and it has more summarization power than all the other prototypes.

In contrast, if 𝐷𝐾(𝒙𝐾) is smaller than the minimum data density at any of the prototypes, 𝒙𝐾 represents a new

pattern that no existing data clouds can describe. Therefore, in both cases, 𝒙𝐾 becomes a new prototype and a

new data cloud is initialized by it.

If Condition 1 is met, Condition 2 is, then, checked to see whether this new data cloud is overlapping with

any of the existing data clouds:

Condition 2: 𝐼𝐹 (𝐷𝐾−1
𝑗 (𝒙𝐾) ≥ 0.8) 𝑇𝐻𝐸𝑁 (𝒑𝐾−1

𝑗
 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝒙𝐾) (14)

If both, Conditions 1 and 2 are satisfied, the nearest data cloud, 𝐂𝐾−1
𝑛∗ to 𝒙𝐾 is identified by equation (15):

𝑛 ∗= argmin𝑗=1,2,..,𝑁𝐾−1(‖𝒙𝐾 − 𝒑𝐾−1
𝑗
‖) (15)

where ‖𝒙𝐾 − 𝒑𝐾−1
𝑗
‖ = √∑ (𝑥𝐾,𝑙 − 𝒑𝐾−1,l

𝑗
)𝑀

𝑙=1 denotes the Euclidean distance between 𝒙𝐾 and 𝒑𝐾−1
𝑗

.

𝒙𝐾 is assigned to 𝐂𝐾−1
𝑛∗ (𝐂𝐾

𝑛∗ ← 𝐂𝐾−1
𝑛∗ + 𝒙𝐾) with the meta-parameters of 𝐂𝐾−1

𝑛∗ , including the prototype,

𝒑𝐾−1
𝑛∗ , average scalar product, 𝑋𝐾−1

𝑛∗ and support, 𝑆𝐾−1
𝑛∗ , updated as:

𝒑𝐾
𝑛∗ ←

𝒑𝐾−1
𝑛∗ +𝒙𝐾

2
; 𝑋𝐾

𝑛∗ ←
𝑋𝐾−1
𝑛∗ +‖𝒙𝐾‖

𝟐

2
; 𝑆𝐾

𝑛∗ ← ⌈
𝑆𝐾−1
𝑛∗ +1

2
⌉ (16)

If Condition 1 is met, Condition 2 is unsatisfied, a new data cloud with 𝒙𝐾 as the prototype is added to the

system (𝑁𝐾 ← 𝑁𝐾−1 + 1): 𝐂𝐾
𝑁𝐾 ← {𝒙𝐾}, and the meta-parameters of 𝐂𝐾

𝑁𝐾 are initialized as:

𝒑𝐾
𝑁𝐾 ← 𝒙1; 𝑋𝐾

𝑁𝐾 ← ‖𝒙1‖
2; 𝑆𝐾

𝑁𝐾 ← 1; 𝛬𝐾−1
𝑁𝐾 ← 0; 𝜂𝐾−1

𝑁𝐾 ← 1; 𝐼𝑁𝐾 ← 𝐾 (17)

The consequent parameters of the fuzzy rule corresponding to 𝐂𝐾
𝑁𝐾 are initialized as:

𝒂𝐾−1
𝑁𝐾 ←

1

𝑁𝐾−1
∑ 𝒂𝐾−1

𝑗𝑁𝐾−1
𝒋=𝟏 ; 𝚯𝐾−1

𝑁𝐾 ← Ω𝑜𝐈(𝑀+1)×(𝑀+1) (18)

where Ω𝑜 is a user-controlled parameter initializing covariance matrix [29]. This is representing the standard for

recursive least squares algorithms. The recommended setting for Ω𝑜 is given at the end of this section.

The fuzzy rule corresponding to 𝐂𝐾
𝑁𝐾 is initialized as:

𝑹𝑁𝐾: 𝐼𝐹 (𝒙~𝒑𝐾−1
𝑁𝐾) 𝑇𝐻𝐸𝑁 (𝑦 = 𝒙𝑇𝒂𝐾−1

𝑁𝐾) (19)

Otherwise, when, both, Conditions 1 and 2 are unsatisfied, the nearest data cloud, 𝐂𝐾−1
𝑛∗ to 𝒙𝐾 is identified

by equation (15), and the meta-parameters are updated as:

𝑆𝐾
𝑛∗ ← 𝑆𝐾−1

𝑛∗ + 1; 𝒑𝐾
𝑛∗ ←

𝑆𝐾−1
𝑛∗

𝑆𝐾
𝑛∗ 𝒑𝐾−1

𝑛∗ +
1

𝑆𝐾
𝑛∗ 𝒙𝐾; 𝑋𝐾

𝑛∗ ←
𝑆𝐾−1
𝑛∗

𝑆𝐾
𝑛∗ 𝑋𝐾−1

𝑛∗ +
1

𝑆𝐾
𝑛∗ ‖𝒙𝐾‖

2 (20)

For each 𝐂𝐾−1
𝑗

∈ {𝐂} that does not receive new member at this time instance, there is 𝐂𝐾
𝑗
← 𝐂𝐾−1

𝑗
, and its

meta-parameters are set as:

𝒑𝐾
𝑗
← 𝒑𝐾−1

𝑗
; 𝑋𝐾

𝑗
← 𝑋𝐾−1

𝑗
; 𝑆𝐾

𝑗
← 𝑆𝐾−1

𝑗 (21)

Step 4. Fuzzy rule quality monitoring

The local data density of 𝒙𝐾 within each data cloud is calculated by the following equation (𝑗 = 1,2, … , 𝑁𝐾):

𝐷𝐾
𝑗 (𝒙𝐾) =

1

1+
‖𝒙𝐾−𝒑𝐾

𝑗
‖
2

𝑋𝐾
𝑗
−‖𝒑𝐾

𝑗
‖
2

 (22)

and the firing strength of each fuzzy rule is calculated (𝑗 = 1,2, … , 𝑁𝐾):

𝜆𝐾
𝑗
=

𝐷𝐾
𝑗
(𝒙𝐾)

∑ 𝐷𝐾
𝑘(𝒙𝐾)

𝑁𝐾
𝑘=1

 (23)

Then, the accumulated firing strength 𝛬𝐾−1
𝑗

 is updated to 𝛬𝐾
𝑗

 for each fuzzy rule (𝑗 = 1,2, … , 𝑁𝐾):

𝛬𝐾
𝑗
← 𝛬𝐾−1

𝑗
+ 𝜆𝐾

𝑗
 (24)

and the utility 𝜂𝐾
𝑗

 of each fuzzy rule is calculated (𝑗 = 1,2,… , 𝑁𝐾):

𝜂𝐾
𝑗
←

1

𝐾−𝐼𝑗
𝛬𝐾
𝑗
 (25)

After this, Condition 3 is, then, checked to remove the data cloud and fuzzy rule that contributes little to the

overall system output [4], [20]:

Condition 3: 𝐼𝐹 (𝜂𝐾
𝑗
< 𝜂𝑜) 𝑇𝐻𝐸𝑁 (𝐂𝐾

𝑗
 𝑎𝑛𝑑 𝑹𝑗 𝑎𝑟𝑒 𝑟𝑒𝑚𝑜𝑣𝑒𝑑) (26)

where 𝜂𝑜 is another user-controlled parameter for monitoring the quality of fuzzy rules. The recommended

setting of 𝜂𝑜 is given at the end of this section.

If 𝐂𝐾
𝑗

 and 𝑹𝑗 satisfy Condition 3, they are removed from the system and fuzzy rule base with 𝑁𝐾 ← 𝑁𝐾 − 1.

Step 5. Consequent parameter updating

The consequent parameters of the fuzzy rules in the rule-base are updated using the FWRLS method as

(𝑗 = 1,2, … , 𝑁𝐾) [3]:

𝚯𝐾
𝑗
← 𝚯𝐾−1

𝑗
−
𝜆𝐾
𝑗
𝚯𝐾−1
𝑗

�̅�𝐾�̅�𝐾
𝑇𝚯𝐾−1

𝑗

1+𝜆𝐾
𝑗
�̅�𝐾
𝑇𝚯𝐾−1

𝑗
�̅�𝐾

 (27)

𝒂𝐾
𝑗
← 𝒂𝐾−1

𝑗
+ 𝜆𝐾

𝑗
𝚯𝐾−1
𝑗
𝒙𝐾(𝑦𝐾 − 𝒙𝐾

𝑇𝒂𝐾−1
𝑗
) (28)

Step 6. Fuzzy rule-base updating

Update the fuzzy rules in the rule base with the newly updated antecedent and consequent parameters

(𝑗 = 1,2, … , 𝑁𝐾):

𝑹𝑗: 𝐼𝐹 (𝒙~𝒑𝐾
𝑗
) 𝑇𝐻𝐸𝑁 (𝑦 = 𝒙𝑇𝒂𝐾

𝑗
) (29)

After this, the system goes back to Step 1 if new data samples are available.

As it was analysed in [6], Ω𝑜 is used for initializing the covariance matrix for each new fuzzy rule added to

the rule base, and 𝜂𝑜 is used for monitoring the quality of the existing fuzzy rules.

In practice, 𝜂𝑜 subtly influences the system structure. The recommended value range of 𝜂𝑜 is [0, 0.1] [4].

The larger 𝜂𝑜 is, the faster the system removes the fuzzy rules that contribute very little to the overall system

output from its rule base, the more efficient the system will be, and vice versa. However, it may deteriorate the

performance as the system forgets the acquired knowledge too fast if the value of 𝜂𝑜 is too large [4]. While Ω𝑜

influences the convergence of the consequent part. The system performance may deteriorate if the value of Ω𝑜 is

set too large or too small [3].

Same as [6], in this paper, we use Ω𝑜 = 10 and 𝜂𝑜 = 0.1. However, we have to stress that both of them have

marginal influence on the performance of ALMMo neuro-fuzzy system as well as on the optimization process,

which will be introduced in the later sections. This will be empirically verified through numerical examples in

section 5.1.

3. Local Optimality Analysis of the ALMMo

It has been proven in [25] that the stability of (neuro-)fuzzy system is always guaranteed on condition that the

FWRLS algorithm is used for consequent parameters updating globally. Furthermore, this proof can also be

applied to the FWRLS algorithm for consequent parameters updating per rule [25]. However, there is no

guarantee on the optimality of the parameters of such kind of NFSs (in both the premise (IF) and consequent

(THEN) parts) within a finite number of training samples in a nonstationary environment. Optimality is of great

importance for a learning system, but is seldom analysed because of the complex nature of the problem itself.

In this section, we will discuss the optimality of the ALMMo system. However, it has to be stressed that the

optimality analysis also applies to other fuzzy systems of AnYa type that use FWRLS algorithm for consequent

parameter updating. As the ALMMo comprises of the premise (IF) part and the consequent (THEN) part that are

identified via two independent processes, the optimality of the two parts are analysed separately.

3.1. Optimization of the Premise Part

The optimality of the premise (IF) part of a traditional (Mamdani type [10] or Takagi-Sugeno type [30])

fuzzy system is not an easy question to answer because of the handcrafting involved in the design process of

these fuzzy systems, i.e. the linguistic terms and the membership functions. However, the important

simplification of the AnYa type fuzzy rule by replacing the traditional premise part with a simpler form (a

prototype) [27] provides the possibility to systematically study the system optimality. This is because the

optimality of the premise (IF) part of an AnYa type neuro-fuzzy system is reduced to the problem of obtaining

the optimal partition of the data space, which can be considered as achieving locally optimal clustering. The

formal mathematical condition for this can be formulated in the form of a mathematical programming problem

[31].

Considering that the ALMMo neuro-fuzzy system partitions {𝒙}𝐾 into 𝑁𝐾 data clouds, the local optimization

problem of the ALMMo is formulated as the following mathematical programming problem for clustering/data

partitioning [31]:

Problem 1:𝐹(𝑾𝐾 , 𝑷𝐾) = ∑ ∑ 𝑤𝐾
𝑖,𝑗
‖𝒙𝑗 − 𝒑𝐾

𝑖 ‖𝐾
𝑗=1

𝑁𝐾
𝑖=1 , (30)

where 𝑾𝐾 = [𝑤𝐾
𝑖,𝑗
] is a 𝑁𝐾 × 𝐾 real matrix; 𝑷𝐾 = [𝒑𝐾

1 , 𝒑𝐾
2 , … , 𝒑𝐾

𝑁𝐾] ∈ 𝐑𝑀×𝑁𝐾 is a 𝑀 ×𝑁𝐾 matrix consisting of

all the identified prototypes at the K-th time instance. 𝑾𝐾 is subject to the following constrains (𝑖 =

1,2, … , 𝑁𝐾, 𝑗 = 1,2, … , 𝐾):

𝑤𝐾
𝑖,𝑗
≥ 0 𝑎𝑛𝑑 ∑ 𝑤𝐾

𝑖,𝑗𝑁𝐾
𝑖=1 = 1. (31)

Problem 1 is a nonconvex problem and the local minimum point does not need to be global minimum [31].

A local minimum point of 𝐹(𝑾𝐾 , 𝑷𝐾) is a locally optimal solution of Problem 1.

It can be mathematically proven that the prototype-based (neuro-)fuzzy systems of “one-pass” type do not

guarantee the locally optimal solutions after the learning process, which is also applies to the ALMMo. At the i-

th time instance, the data sample, 𝒙𝑖 (𝑖 < 𝐾) is observed, there is a guarantee that 𝒙𝑖 is assigned to the nearest

prototype, 𝒑𝑖
𝑛𝑖 thanks to equation (15) [32]:

∑ 𝑤𝑖
𝑗,𝑖
‖𝒙𝑖 − 𝒑𝑖

𝑗
‖ = ‖𝒙𝑖 − 𝒑𝑖

𝑛𝑖‖
𝑁𝑖
𝑗=1 (32)

where 𝑛𝑖 denote the index of the nearest prototype to 𝒙𝑖 at the i-th time instance; 𝐂𝑖
𝑛𝑖 is the corresponding data

cloud which 𝒙𝑖 is assigned to, namely 𝒙𝑖 ∈ 𝐂𝑖
𝑛𝑖.

However, with the new data samples arrive, 𝒙𝑖+1, 𝒙𝑖+2, … , 𝒙𝐾, the prototype, 𝒑𝑖
𝑛𝑖, would not stay the same

because of the shifts and/or drifts of the data pattern [12], which means that:

 𝒑𝑖
𝑛𝑖 ≠ 𝒑𝐾

𝑛𝑖 𝑎𝑛𝑑 ‖𝒙𝑖 − 𝒑𝑖
𝑛𝑖‖ ≠ ‖𝒙𝑖 − 𝒑𝐾

𝑛𝑖‖ (33)

In addition, because of the newly observed data samples, new data clouds will also be initialized, and the

following inequality is established:

‖𝒙𝑖 − 𝒑𝐾
𝑛𝑖‖ ≥ ‖𝒙𝑖 − 𝒑𝐾

𝑛∗‖ = min𝑗=1,2,…,𝑁𝐾(‖𝒙𝑖 − 𝒑𝐾
𝑗
‖) (34)

However, because of the “one-pass” type nature of the learning process of the ALMMo neuro-fuzzy system,

once a data sample is assigned to a particular data cloud, it is discarded by the system and a later re-partition is

not possible. Considering this and combining equations (32) and (34), there is:

∑ 𝑤𝐾
𝑗,𝑖
‖𝒙𝑖 − 𝒑𝐾

𝑗
‖

𝑁𝐾
𝑗=1 = ‖𝒙𝑖 − 𝒑𝐾

𝑛𝑖‖ ≥ min𝑗=1,2,…,𝑁𝐾(‖𝒙𝑖 − 𝒑𝐾
𝑗
‖) (35)

Therefore, one can conclude that ∑ 𝑤𝐾
𝑗,𝑖
‖𝒙𝑖 − 𝒑𝐾

𝑗
‖

𝑁𝐾
𝑗=1 does not achieve the minimum value at the K-th time

instance and the partition is not a locally optimal solution.

To solve this problem, we propose a feasible solution for ALMMo system to achieve local optimality by

further applying an iterative process to minimize 𝐹(𝑾𝐾 , 𝑷𝐾), i.e. using the well-known K-means clustering

algorithm [31], [32]. To make this paper self-contained, we summarize the iterative processing in the following

pseudo code.

Algorithm 1

While 𝐹(�̂�𝐾 , �̂�𝐾) ≠ 𝐹(𝑾𝐾 , 𝑷𝐾)

i. Obtain 𝑾𝐾 based on 𝑷𝐾 by the following expression (𝑖 = 1,2, … , 𝑁𝐾, 𝑗 = 1,2, … , 𝐾):

{
𝑤𝐾
𝑖,𝑗
= 1 𝑖 = argmin𝑙=1,2,…,𝑁𝐾 (‖𝒙𝑗 − 𝒑𝐾

𝑙 ‖
2
)

𝑤𝐾
𝑖,𝑗
= 0 𝑖 ∈ 𝑒𝑙𝑠𝑒

 (36)

ii. Calculate 𝐹(𝑾𝐾 , 𝑷𝐾) using equation (30);

iii. Obtain �̂�𝐾 based on 𝑾𝐾 by the following expression (𝑖 = 1,2, … , 𝑁𝐾):

�̂�𝐾
𝑖 =

1

∑ 𝑤𝐾
𝑖,𝑗𝐾

𝑗=1

∑ 𝑤𝐾
𝑖,𝑗
𝒙𝑗

𝐾
𝑗=1 (37)

iv. Obtain �̂�𝐾 based on �̂�𝐾 by equation (36);

v. Calculate 𝐹(�̂�𝐾 , �̂�𝐾) using equation (30);

vi. Set 𝑷𝐾 ← �̂�𝐾;

End While

By applying Algorithm 1 to the partitioning results obtained by the ALMMo neuro-fuzzy system, one can

always guarantee the local optimality of the premise (IF) part. Furthermore, numerical examples in section 5

demonstrates that Algorithm 1 can converge to the locally optimal solution in a finite number of iterations (the

detailed theoretical proof can be found in [31]).

3.2. Optimization of the Consequent Part

The stability of the (neuro-)fuzzy system with consequent parameters updated globally using the FWRLS

algorithm has been analysed in [25]. It has been proven that the error between the system output and the

reference output, which is caused by the parameter errors, converges to a small neighbourhood of zero in which

the average identification error satisfies [25]:

 lim𝐾→∞
1

𝐾
∑ 𝑒𝑘

2𝐾
𝑘=1 ≤ 𝜀0 (38)

where 𝑒𝑘 = �̂�𝑘 − 𝑦𝑘; �̂�𝑘 and 𝑦𝑘 are the system output and reference output; 𝜀0 is a certain upper bound of the

average identification error. The detailed proof can be found in [25].

The consequent parameters of the ALMMo neuro-fuzzy system are updated using the FWRLS algorithm per

sub-model (fuzzy rule). The locally updated FWRLS (per fuzzy rule) is significantly less influenced by the

system structure evolution than the globally updated FWRLS and is significantly less computationally

expensive [3], [4]. Therefore, the locally updated FWRLS is more likely to achieve the theoretical optimality for

the RLS condition [3], [4].

In practice, with a finite number of observations (𝐾 ≪ ∞), a “one-pass” type parameter learning mechanism

is usually unable to guarantee an optimal solution. This is because of the lack of an iterative search process,

which allows the consequent parameters converging to the locally optimal. Therefore, a common practice is to

approximate the locally optimal parameters by repeating the learning process until the overall training error

converges into an acceptable range [33].

At the K-th time instance (𝐾 ≪ ∞), the overall error function of the learning process is formulated as the

following mathematical programming problem [34]:

Problem 2: 𝐸(�̂�, 𝒚) =
1

𝐾
∑ 𝑒𝑘

2𝐾
𝑘=1 (39)

With the identified 𝑁𝐾 fuzzy rules with the respective prototypes denoted as 𝒑𝐾
𝑖 (𝑖 = 1,2, … , 𝑁𝐾), Problem 2

can be reformulated as:

𝐸(�̂�, 𝒚) =
1

𝐾
∑ (∑ 𝜆𝑘

𝑖 𝒙𝑘
𝑇𝒂𝑘

𝑖𝑁𝐾
𝑖=1 − 𝑦𝑘)

2𝐾
𝑘=1 (40)

where 𝜆𝑘
𝑖 is calculated using equation (23) (𝑘 = 1,2, … , 𝐾) and is fixed throughout the whole iteration process

since the prototypes (𝒑𝐾
𝑖) stay the same.

To have a convergence of the overall error function 𝐸(�̂�, 𝒚) into a small range close to 0 with the

observations {𝑦}𝐾 and {𝒙}𝐾 , we use the following iterative process by repeating the consequent parameters

updating process, which is essentially equivalent to approximate 𝒂𝑘
𝑖 (𝑘 = 1,2, … , 𝐾, 𝑖 = 1,2, … , 𝑁𝐾) to the

optimal values throughout the whole iteration, see Algorithm 2 below (𝜀1 is the stopping threshold for the

iterative process, which is a small number close to 0, in this paper, we use 𝜀1 = 10
−5).

Algorithm 2

i. Set 𝒂0
𝑖 = [0,0, … ,0⏞

𝑀+1

] and 𝚯0
𝑖 = Ω𝑜𝐈(𝑀+1)×(𝑀+1) (𝑖 = 1,2, … , 𝑁𝐾);

ii. Calculate 𝜆𝑘
𝑖 (𝑖 = 1,2, … , 𝑁𝐾 , 𝑘 = 1,2, … , 𝐾) using equation (23);

iii. While ‖𝐸1 − 𝐸0‖ ≥ 𝜀1:

* Set 𝑘 ← 1; 𝐸0 ← 𝐸1; 𝐸1 ← 0;

* While 𝑘 ≤ 𝐾:

- Read 𝑦𝑘 and 𝒙𝑘;

- 𝐸1 ← 𝐸1+(∑ 𝜆𝑘
𝑖 𝒙𝑘

𝑇𝒂𝑘−1
𝑖𝑁𝐾

𝑖=1 − 𝑦𝑘)
2
;

- Update 𝒂𝑘−1
𝑖 and 𝚯𝑘−1

𝑖 to 𝒂𝑘
𝑖 and 𝚯𝑘

𝑖 using FWRLS algorithm (equations (27) and (28));

- 𝑘 ← 𝑘 + 1;

* End While

* Set 𝐸1 ←
1

𝐾
𝐸1;

* Set 𝒂0
𝑖 ← 𝒂𝐾

𝑖 and 𝚯0
𝑖 ← 𝚯𝐾

𝑖 ;

iv. End While

We have to admit that in practice, it is very hard to let the overall error function 𝐸(�̂�, 𝒚) converge to 0 due to

the complexity of the real problems. In section 5 we will demonstrate that using Algorithm 2, the overall error

function will converge to a small nonzero value in a few iterations.

4. The Proposed SBALMMo Neuro-Fuzzy System

In this section, we propose a novel self-boosting algorithm to upgrade the ALMMo neuro-fuzzy system, and

thus, we introduce the SBALMMo. A new type of quality monitoring mechanism is also added. It has to be

stressed that the self-boosting and quality monitoring mechanisms are actually very flexible and universal, and

they can be applied to other neuro-fuzzy and fuzzy rule-based systems of AnYa type with the FWRLS

consequent parameters updating algorithm. On the other hand, we have to admit that with the self-boosting

algorithm, the learning process of the SBALMMo becomes incremental instead of being of “one-pass” type.

4.1. Self-Boosting Algorithm with Quality Monitoring Mechanism

In this subsection, we will describe the self-boosting algorithm for the SBALMMo in detail, which is

conducted on a chunk-by-chunk basis. Nonetheless, alternative approaches to activate the self-boosting can be

considered as well, i.e. the self-boosting can be activated at each time the structure and parameters of

SBALMMo are self-updated (which will be computationally expensive) or when the error between the system

output and the reference output exceeds a certain threshold [24]. Moreover, there are different ways for the

system to use the observed data, i.e. the learning system can choose to keep all the previously collected data

chunks in memory for self-boosting, and, thus, optimize the system with all the previously gained information;

the learning system may also discard the processed chunks and only use the most recently collected chunk (or a

few recent ones) to follow the time-changing data pattern effectively.

During the learning process of the ALMMo neuro-fuzzy system presented in section 2, the processed data

samples are discarded automatically to relief the memory burden. However, with the self-boosting algorithm,

the ALMMo sends each processed data sample and the corresponding reference output sequentially to a data

pool with the maximum capacity of 𝑄 (which can be in external memory). It has to be stressed that 𝑄 is not a

problem- or user-specific parameter.

Once the maximum capacity of the data pool is reached, which means the data pool has collected the most

recently arrived 𝑄 data samples and the corresponding reference outputs, the ALMMo will encapsulate the 𝑄

data samples and outputs into a data chunk, denoted by {�́�, �́�}𝑄 and empty the pool for the next round.

Before the ALMMo processes the next new data sample (between Steps 5 and 6), the ALMMo boosts itself

with the data chunk {�́�, �́�}𝑄 by applying Algorithm 1 firstly to optimize the positions of the identified

prototypes in the data space, namely, obtain the locally optimal prototypes. After this, the premise (IF) part of

the ALMMo is optimized based on {�́�, �́�}𝑄 , and the optimized prototypes are re-denoted by �́�𝐾
1 , �́�𝐾

2 , … , �́�𝐾
𝑁𝐾.

Then, we need to identify the stale fuzzy rules that are less activated before Algorithm 2 is used for

optimizing the consequent parameters further. The stale fuzzy rules are usually generated due to the shifts and/or

drifts of the changing data pattern [12]. We calculate the activation level of each data sample within {�́�, �́�}𝑄 to

each fuzzy rule using equation (23), denoted by �́�𝑘
𝑖 (𝑖 = 1,2, … , 𝑁𝐾 , 𝑘 = 1,2, … , 𝑄) with the optimized

prototypes. The stale fuzzy rules are identified using Condition 4:

Condition 4: 𝐼𝐹 (∑ �́�𝑘
𝑖 𝑄

𝑘=1 < (1 − Ω1) ∙ �́�0) 𝑇𝐻𝐸𝑁 (�́�𝐾
𝑖 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒) (41)

where 𝑖 = 1,2, … , 𝑁𝐾; �́�0 =
1

𝑁𝐾
∑ ∑ �́�𝑘

𝑖
𝑁𝐾
𝑖=1

𝑄
𝑘=1 ; Ω1 is a small value (|Ω1| < 1), and the recommended value range

of Ω1 is 0 ≤ Ω1 ≤ 0.1, which means that the SBALMMo neuro-fuzzy system will discard up to half of the

identified prototypes and the corresponding fuzzy rules that are less activated.

Condition 4 is used for identifying the fuzzy rules that are activated much less compared with others, which

indicates that the prototypes of these fuzzy rules are not as representative as others, and they do not stand for the

local modes of the data density anymore. Once a prototype, for instance, �́�𝐾
𝑖 , is recognized as a stale one, the

corresponding data cloud will be removed from the system structure, and the fuzzy rule will be removed from

the rule base as well.

In contrast with other criteria for identifying stale fuzzy rules, for example, the utilities [4], [20] (Condition 3

in this paper) or the ages [12] of the fuzzy rules, Condition 4 is able to react quickly to the shifts and/or drifts

[12] of the data pattern because it concerns only the more recently observed data samples instead of all the

previously observed data set.

Following the quality monitoring, Algorithm 2 is applied to optimize the consequent parameters further.

After both, the premise (IF) and consequent (THEN) parts of the ALMMo have been optimized, the system goes

back to the normal status and processes the newly arrived data samples on a sample-by-sample basis until the

data pool is full again.

4.2. Algorithm Summary

The main procedure of the self-boosting algorithm used in the SBALMMo system is summarized as follows.

Self-Boosting Algorithm

i. Send the processed input and output to the data pool;

ii. If (data pool is full) Then:

* Encapsulate {�́�, �́�}𝑄 and empty the data pool;

* Execute Algorithm 1;

* Remove stale fuzzy rules using Condition 4;

* Execute Algorithm 2;

iii. End If

The flowchart of the learning process of the SBALMMo neuro-fuzzy system is presented in Fig. 2, where the

self-boosting algorithm is executed in Step 5.5.

Fig. 2. The flowchart of the learning process of the SBALMMo neuro-fuzzy system

4.3. Computational Complexity Analysis

In this subsection, the computational complexity of each step of the SBALMMo neuro-fuzzy system (as

presented in Fig.2) is analysed. However, since the system structure of the proposed approach is dynamically

changing all the time, we assume that the computational complexity analysis is conducted at the K-th time

instance.

Step 0: The computational complexity of this step is negligible since this step concerns the system

initialization only, and the computation related to this step would not be performed if 𝐾 > 1.

Step 1: The computational complexity of calculating the local data density-based firing strength is

𝑂(𝑁𝐾−1𝑊) thanks to the recursive calculation form (equation (7)), and the complexity of producing

the system output is 𝑂(𝑁𝐾−1𝑊) as well. Therefore, the computational complexity of this step is

𝑂(𝑁𝐾−1𝑊).

Step 0. System initialization

Step 1. System output generation

Step 2. Global meta-parameter

updating

Step 3. System structure updating

Step 4. Fuzzy rule quality

monitoring

Step 5. Consequent parameter

updating

Step 5.5. Self-boosting algorithm

execution

Step 6. Fuzzy rule-base updating

Export fuzzy rule-base

Step 2: The computational complexities for updating the global meta-parameters (𝝁𝐾 and 𝑋𝐾) and

calculating the data densities are 𝑂(𝑁𝐾−1𝑊) and 𝑂((𝑁𝐾−1 + 1)𝑊), respectively, and thus, the

computational complexity of this step is 𝑂((𝑁𝐾−1 + 1)𝑊).

Step 3: This step mainly concerns updating the existing fuzzy rule or adding a rule to the rule base, and thus,

the computational complexity of this step is 𝑂(𝑊).

Step 4: The most of the computations in this step are related to calculating the firing strength of each fuzzy

rule in the rule base. Therefore, similarly to the steps 1 and 2, the computational complexity of this

step is 𝑂(𝑁𝐾𝑊).

Step 5: Updating the consequent parameters of fuzzy rules requires significantly more computational

resources because the FWRLS method requires the covariance matrices, 𝚯𝐾
𝑗

(𝑗 = 1,2, … , 𝑁𝐾) to be

updated, and the computational complexity of this step is 𝑂(𝑁𝐾𝑊
2).

Step 5.5: This is the extra step that the proposed SBALMMo system has in comparison with the ALMMo

system. Algorithms 1 and 2 in this step consume most of the computational resources though they

are activated only when the data pool is full.

When the data pool reaches its storage capacity, Algorithm 1 is used firstly to optimize the premise

parts of the fuzzy rules with the accumulated 𝑄 historical data samples based on the distances

between the historical data samples and the prototypes of the fuzzy rules. Therefore, the

computational complexity of Algorithm 1 is 𝑂(𝑄𝑁𝐾𝑊).

After Algorithm 1 has been finished and the stale fuzzy rules have been removed, Algorithm 2 is

executed. Algorithm 2 is for optimizing the consequent parts of the fuzzy rules, and the most of the

computation resources are used for updating the covariance matrices for the fuzzy rules. Therefore,

the computational complexity of Algorithm 2 is 𝑂(𝑄𝑁𝐾𝑊
2).

Therefore, the overall computational complexity of step 5.5 is 𝑂(𝑄𝑁𝐾𝑊
2) when Algorithms 1 and

2 are activated. Otherwise, the computation of step 5.5 is negligible.

Step 6: This step updates fuzzy rules in the rule base with the latest premise and consequent parameters, and

the computational complexity of this step is negligible as well.

5. Numerical Examples & Discussions

In this section, a number of numerical examples are performed to validate the proposed concepts and the

method. The overall performance of the proposed approach is evaluated on benchmark datasets as well as on

real-world problems. Details of the comparative algorithms used in this paper are provided in Table 1.

The algorithms were developed using MATLAB R2018a, the performance was evaluated on a PC with dual

core processor 3.60 GHz×2 and 16 GB RAM.

5.1. Performance on Benchmark Regression Problems

In this subsection, firstly, the following widely used benchmark datasets are used for numerical examples to

demonstrate the performance of the proposed SBALMMo:

1) Autos;

2) Triazines;

3) Delta Ailerons, and

4) California Housing.

The details of the problems are given in Table 2. Following the common practice, the input and output

attributes are normalized to the range of [0,1] in advance [18], [25].

Table 1. Details of the comparative algorithms

Abbreviation Full Name

Online/

Offline

Training

Parameter

Setting

AnYa
AnYa neuro-fuzzy system with eClustering

learning algorithm [27]
Online Same as in [27]

CEFNS
Correntropy-based evolving fuzzy neural

system[18]
Online Same as in [18]

DENFIS
Dynamic evolving neural-fuzzy inference system

[2]
Online Same as in [2]

ESAFIS
Extended sequential adaptive fuzzy inference

system [35]
Online Same as in [35]

eTS Evolving Takagi-Sugeno fuzzy model [3] Online Same as in [3]

FCMMS Fuzzily connected multi-model system [36] Online Same as in [36]

McFIS Meta-cognitive neuro-fuzzy inference system [37] Online Same as in [37]

PANFIS
Parsimonious network based on fuzzy inference

system[16]
Online Same as in [16]

SAFIS Sequential adaptive fuzzy inference system [17] Online Same as in [17]

SeroFAM
Self-reorganizing fuzzy-associative learning

system [38]
Online Same as in [38]

Simpl_eTS
A simplified method for learning evolving Takagi-

Sugeno fuzzy model [13]
Online Same as in [13]

EFuNN Evolving fuzzy neural network [39] Offline Same as in [39]

OLSLR Least square linear regression algorithm [40]

SWLSLR
Sliding window least square linear regression

algorithm [41]

Window size:

200 samples

Table 2. Details of the benchmark datasets for regression

Dataset Attributes Training Samples, 𝐾𝑇 Validation Samples, 𝐾𝑉

Autos 15 inputs + 1 output 80 79

Triazines 60 inputs + 1 output 100 86

Delta Ailerons 5 inputs + 1 output 3000 4129

California Housing 8 inputs + 1 output 10320 10320

In the first numerical example, the relationship between the size of the data pool, 𝑄 and the performance of

the SBALMMo is investigated. In this example, the SBALMMo is trained based on the training set and, then,

tested on the validation set. During the validation stage, the SBALMMo stops updating itself. Since the

cardinality of the four benchmark problems are different, to make the results comparable, we set 𝑄 =
𝐾𝑇

5
,
𝐾𝑇

4
,
𝐾𝑇

3
,
𝐾𝑇

2
, 𝐾𝑇 and Ω1 = 0 , and report the results in terms of root mean square error (RMSE), number of

fuzzy rules (rule#) and execution time (texe, in seconds) in Table 3. The average time consumption for each self-

boosting during the training stage is given to illustrate the computational complexity of the proposed approach.

We also report the results obtained by ALMMo as a baseline.

Table 3. Performance on benchmark regression datasets using different value of 𝑄 (Ω1 = 0)

Algorithm SBALMMo ALMMo

Dataset Measure

𝑄

 𝐾𝑇
5

𝐾𝑇
4

𝐾𝑇
3

𝐾𝑇
2

 𝐾𝑇

Autos

RMSE 0.0879 0.0509 0.0494 0.0457 0.0452 0.0568

rule# 2 3 3 4 4 8

texe (s) 0.30 0.32 0.38 0.30 0.18 0.02

texe per Self-boosting (s) 0.05 0.08 0.12 0.14 0.17

Triazines

RMSE 0.0411 0.0322 0.0070 0.0046 0.0022 0.0078

rule# 2 2 1 1 3 7

texe (s) 2.18 1.18 1.41 1.40 2.48 0.19

texe per Self-boosting (s) 0.40 0.28 0.39 0.64 2.34

Delta

Ailerons

RMSE 0.0513 0.0513 0.0513 0.0511 0.0512 0.0512

rule# 1 1 2 5 4 10

texe (s) 1.30 1.71 1.44 1.79 1.78 0.47

texe per Self-boosting (s) 0.17 0.30 0.32 0.65 1.08

California

Housing

RMSE 0.0773 0.0773 0.0771 0.0771 0.0771 0.0777

rule# 5 5 2 2 5 10

texe (s) 9.56 10.49 7.31 5.47 6.96 1.84

texe per Self-boosting (s) 1.62 2.21 1.95 1.92 5.46

Remark 1: Table 3 demonstrates that, in general, the SBALMMo with the data pool of a larger size is able

to achieve a better regression performance in terms of RMSE. This is because a smaller data pool can only

provide a small proportion of data samples for optimization process, and the structure and meta-parameters of

the SBALMMo are more likely to converge to a local minimum solution that is only optimal for this small

proportion of data only. By using a larger data pool, the proposed SBALMMo can achieve a better performance

since the premise (IF) and consequent (THEN) parts of the ALMMo system are optimized based on the majority

of the data (even the whole dataset). On the other hand, a larger data pool will require more time for the self-

boosting algorithm to reach the locally optimal solution. This is in accordance with the computational

complexity analysis in subsection 4.3. A smaller data pool allows the SBALMMo system to be able to perform

the self-boosting algorithm more efficiently, but, since the self-boosting algorithm has to be activated more

frequently, this might increase the overall computational time.

Secondly, the relationship between the forgetting factor, Ω1 and the performance of the SBALMMo is

investigated based on the four benchmark problems. Similar to the previous example, in this example, the

SBALMMo is trained based on the training set and, then, tested on the validation set. We set 𝑄 = 𝐾𝑇 and

change the value of Ω1 as Ω1 = −0.02,0,0.02,0.04,0.06,0.08 and 0.1. The root mean square error (RMSE) and

number of fuzzy rules (rule#) of the regression results are reported in Table 4.

Table 4. Performance on benchmark regression datasets using different value of Ω1 (𝑄 = 𝐾𝑇)

Algorithm SBALMMo ALMMo

Dataset Measure
Ω1

−0.02 0 0.02 0.04 0.06 0.08 0.10

Autos
RMSE 0.0455 0.0452 0.0452 0.0452 0.0452 0.0446 0.0446 0.0568

rule# 3 4 5 5 5 6 6 8

Triazines
RMSE 0.0022 0.0022 0.0022 0.0022 0.0023 0.0023 0.0022 0.0078

rule# 3 3 3 3 5 6 7 7

Delta

Ailerons

RMSE 0.0512 0.0512 0.0512 0.0512 0.0512 0.0512 0.0512 0.0512

rule# 2 4 9 10 10 10 10 10

California

Housing

RMSE 0.0771 0.0771 0.0770 0.0770 0.0770 0.0770 0.0770 0.0777

rule# 1 5 9 9 10 10 10 10

Remark 2: Table 4 demonstrates that the performance of the SBALMMo is less influenced by the value of

Ω1, generally. However, with a smaller value of Ω1, the system complexity of the SBALMMo is largely

decreased.

Based on Remarks 1 and 2, we use = 𝐾𝑇 ,Ω1 = 0 as the default setting in the following numerical examples

of this subsection,

In the following two numerical examples, the influence of the user-controlled parameters, Ω0 and 𝜂𝑜 on the

performance of the SBALMMo system is investigated. Following the same experimental protocol, firstly, we

use the recommended value of 𝜂𝑜, namely, 𝜂𝑜 = 0.1, and change the value of Ω0 as follows: Ω0 = 1,5,10,25

and 100. The root mean square error (RMSE) and number of fuzzy rules (rule#) of the regression results are

reported in Table 5.

Table 5. Performance on benchmark regression datasets using different value of Ω0 (𝜂𝑜 = 0.1)

Dataset Measure
Ω0

1 5 10 25 100

Autos
RMSE 0.0447 0.0450 0.0452 0.0456 0.0460

rule# 4 4 4 4 4

Triazines
RMSE 0.0032 0.0024 0.0022 0.0018 0.0013
rule# 3 3 3 3 3

Delta

Ailerons

RMSE 0.0512 0.0512 0.0512 0.0512 0.0512

rule# 4 4 4 4 4

California

Housing

RMSE 0.0772 0.0771 0.0771 0.0770 0.0770

rule# 5 5 5 5 5

Then, we use the recommended value of Ω0, namely, Ω0 = 10, and change the value of 𝜂𝑜 as follows:

𝜂𝑜 = 0.01,0.03,0.05,0.10 and 0.20 to repeat the numerical experiments. The root mean square error (RMSE)

and number of fuzzy rules (rule#) of the regression results are reported in Table 6.

Table 6. Performance on benchmark regression datasets using different value of 𝜂𝑜 (Ω0 = 10)

Dataset Measure
𝜂𝑜

0.01 0.03 0.05 0.10 0.20

Autos
RMSE 0.0452 0.0452 0.0452 0.0452 0.0455

rule# 4 4 4 4 3

Triazines
RMSE 0.0022 0.0022 0.0022 0.0022 0.0020

rule# 3 3 3 3 3

Delta

Ailerons

RMSE 0.0512 0.0512 0.0512 0.0512 0.0512

rule# 15 15 11 4 2

California

Housing

RMSE 0.0771 0.0771 0.0770 0.0771 0.0770

rule# 3 3 3 5 3

Remark 3: Tables 5 and 6 demonstrate that, Ω𝑜 has negligible influence on the optimization process. While,

𝜂𝑜 has subtle influence on the optimization process since it changes the number of fuzzy rules in the rule base.

Nonetheless, the performance of the SBALMMo system in terms of RMSE is only marginally influenced by

both of them.

For a better demonstration of the effectiveness of the system structure and parameter optimization algorithm,

the corresponding changes of the values of 𝐹(𝑾𝐾 , 𝑷𝐾) and 𝐸(�̂�, 𝒚) during the self-boosting process on Autos,

Triazines, Delta Ailerons and California Housing dataset are depicted in Fig. 3, where one can see that the

values of 𝐹(𝑾𝐾 , 𝑷𝐾) and 𝐸(�̂�, 𝒚) converge to the minimum in few iterations.

Fig. 3. Changes of the values of 𝑓(𝑾𝐾 , 𝑷𝐾) and 𝐸(�̂�, 𝒚) during self-boosting operations.

The performance of the SBALMMo is further compared with the well-known “state-of-the-art” algorithms

based on the four benchmark datasets, the results are reported in Table 7 in terms of root mean square error

(RMSE) and number of fuzzy rules (rule#). All the algorithms involved in the comparison are trained with the

training set and tested on the validation set. During the validation stage, the involved algorithms will stop

updating. The parameter settings of these algorithms have been given in Table 1.

Table 7. Performance comparison on benchmark datasets

Dataset Algorithm RMSE rule# Dataset Algorithm RMSE rule#

Autos

SBALMMo 0.0452 4

Delta

Ailerons

SBALMMo 0.0512 4

ALMMo [6] 0.0568 8 ALMMo [6] 0.0512 10

AnYa [27] 0.0942 3 AnYa [27] 0.0983 2

CEFNS [18] 0.0666 2 CEFNS [18] 0.0502 3

ESAFIS [35] 0.0604 3 ESAFIS [35] 0.0506 13

eTS [3] 0.0535 3 eTS [3] 0.0513 4

McFIS [37] 0.0687 3 McFIS [37] 0.0509 15

SAFIS [17] 0.1184 5 SAFIS [17] 0.0549 14

Simpl_eTS [13] 0.0689 10 Simpl_eTS [13] 0.0512 4

Triazines

SBALMMo 0.0022 3

California

Housing

SBALMMo 0.0771 5

ALMMo [6] 0.0078 7 ALMMo [6] 0.0777 10

AnYa [27] 0.0754 5 AnYa [27] 0.1044 4

CEFNS [18] 0.0452 6 CEFNS [18] 0.0878 2

ESAFIS [35] 0.0331 19 ESAFIS [35] 0.0892 6

eTS [3] 0.0179 9 eTS [3] 0.0772 3

McFIS [37] 0.0556 12 McFIS [37] 0.0822 15

SAFIS [17] 0.0581 9 SAFIS [17] 0.0988 12

Simpl_eTS [13] 0.0197 9 Simpl_eTS [13] 0.0773 3

As one can see from Table 7, the proposed SBALMMo neuro-fuzzy system is able to achieve the best

performance on the Autos, Trazines and California Housing datasets. In addition, the SBALMMo neuro-fuzzy

system has a lighter system structure compared with the ALMMo, which means that it is able to provide a better

interpretability for users.

Furthermore, for a better evaluation, we randomly descramble the order of the training samples of the four

benchmark datasets to train the SBALMMo neuro-fuzzy system and test the statistical performance based on the

validation set. We also involve other well-known algorithms for comparison. The statistical results are given in

Table 8 in terms of the means and standard deviations of the three measures, namely, RMSE, rule# and texe.

Table 8. Statistical result comparison on benchmark datasets

Dataset Algorithm
Mean ± Stand Deviation

RMSE rule# texe (s)

Autos

SBALMMo 0.0456±0.0002 3.6±0.9 0.16±0.05

ALMMo [6] 0.0549±0.0028 7.3±2.2 0.02±0.01

FCMMS [36] 0.1238±0.0806 1.2±0.4 0.02±0.01

AnYa [27] 0.1095±0.0305 3.0±0.5 0.01±0.01

ESAFIS [35] 0.0437±0.0032 2.2±0.4 0.10±0.05

SAFIS [17] 0.1752±0.0443 2.4+0.8 0.02±0.01

Triazines

SBALMMo 0.0022±0.0001 3.5±0.8 2.12±0.71

ALMMo [6] 0.0092±0.0012 7.1±1.3 0.06±0.02

FCMMS [36] 0.0326±0.0086 1.0±0.0 0.03±0.01

AnYa [27] 0.0944±0.0304 5.5±0.5 0.14±0.06

ESAFIS [35] 0.0103±0.0034 2.4±0.5 0.29±0.12

SAFIS [17] 0.2033±0.0452 2.5±0.9 0.03±0.01

Delta

Ailerons

SBALMMo 0.0512±0.0000 5.0±1.0 1.51±0.34

ALMMo [6] 0.0516±0.0008 9.6±1.3 0.42±0.01

FCMMS [36] 0.0703±0.0167 4.5±3.3 0.39±0.09

AnYa [27] 0.1160±0.0274 2.0±0.0 0.11±0.02

ESAFIS [35] 0.0508±0.0002 2.0±0.0 0.67±0.12

SAFIS [17] 0.0652±0.0197 5.7±1.3 0.21±0.03

California

Housing

SBALMMo 0.0771±0.0000 3.8±1.4 5.23±1.54

ALMMo [6] 0.0782±0.0012 9.8±1.1 1.53±0.08

FCMMS [36] 0.1013±0.0174 3.1±2.6 1.64±0.23

AnYa [27] 0.1112±0.0278 3.7±0.5 0.70±0.11

ESAFIS [35] 0.0789±0.0121 2.1±0.8 2.40±0.72

SAFIS [17] 0.0939±0.0028 10.9±1.7 1.63±0.30

As one can see from the comparison, despite that the training samples are re-ordered randomly, the

SBALMMo neuro-fuzzy system always performs better and more stable in terms of the values of the mean and

the standard deviation of RMSE. This is because that the structure and the meta-parameters of the SBALMMo

have, both, been optimized with the training data, and thus, the influence of the order of the training samples on

the system is minimized.

Comparing between ALMMo and SBALMMo, one may notice that SBALMMo requires 3 to 35 times more

execution time for the training process because of the iterative search process for the optimal solution.

Nonetheless, it is noticeable that the average RMSE of the results obtained by the SBALMMo reduces by 1% to

75%, and the standard deviation of the RMSE is very close to zero. In addition, the number of fuzzy rules in the

SBALMMo is only half of the number of rules generated by ALMMo. This means that the SBALMMo system

is able to provide accurate regression results with a simpler system structure and much higher robustness. The

simpler system structure further improves the human interpretability of the learning results.

5.2. Performance on Foreign Currency Exchange Data

In this subsection, we test the proposed SBALMMo neuro-fuzzy system on the following three of the most

widely currency pairs trading all around world:

1) Euro versus United States Dollar (EUR/USD)

2) Australian Dollar versus United States Dollar (AUD/USD)

3) Euro versus United States Dollar (EUR/USD)

The historical currency exchange prices of the three currency pairs from the 2 January 2002 – 30 December

2016 are obtained from [42]. Each dataset (one per currency pair) is composed of the following five attributes:

1) data/time tag, 𝐾,

2) open price, 𝑥𝐾,1,

3) high price, 𝑥𝐾,2,

4) low price, 𝑥𝐾,3 and

5) close price, 𝑥𝐾,4.

In the following numerical example, the datasets are divided into a training set and a testing set with a ratio

of 𝐾𝑇: 𝐾𝑉 = 7: 3. The open price, 𝑥𝐾,1, high price, 𝑥𝐾,2, low price, 𝑥𝐾,3 and close price, 𝑥𝐾,4 of the current day

is used to predict the close price of the next data, namely, �̂�𝐾+1,4 = 𝑓 (𝒙𝐾 = [𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]
𝑇
). The

SBALMMo neuro-fuzzy system will stop updating its system structure and meta-parameters during the

validation stage. In this subsection, 𝑄 and Ω1 are set as 𝑄 = 𝐾𝑇 ,Ω1 = 0 .

The prediction performance of the SBALMMo system on the currency exchange data is tabulated in Table 9

in terms of root mean square error (RMSE), number of fuzzy rules (rule#) and execution time (texe, in seconds).

It is also compared with other well-known approaches under the same experimental protocol, and the

comparison results are also reported in Table 9. We also report the results obtained by dummy prediction

method in Table 9, which takes the closing price of the current day as the predicted closing price of the next day

(namely, �̂�𝐾+1,4 ← 𝑥𝐾,4), as the baseline. The prediction results obtained by SBALMMo are depicted in Fig. 4

for illustration.

Table 9. Performance comparison on foreign currency exchange data

 Algorithm RMSE rule# texe (s)

EUR/USD

SBALMMo 0.0060 4 1.03

ALMMo [6] 0.0062 8 0.46

FCMMS [36] 0.0131 5 0.95

AnYa [27] 0.0060 2 0.28

eTS [3] 0.0065 6 31.98

ESAFIS [35] 0.0066 2 1.28

SAFIS [17] 0.0190 2 0.33

Dummy
a
 0.0060

AUD/USD

SBALMMo 0.0050 5 1.52

ALMMo [6] 0.0052 7 0.42

FCMMS [36] 0.0337 12 1.12

AnYa [27] 0.0112 2 0.27

eTS [3] 0.0050 8 32.80

ESAFIS [35] 0.0050 2 1.39

SAFIS [17] 0.0198 2 0.31

Dummy 0.0050

GBP/USD
SBALMMo 0.0078 5 1.08

ALMMo [6] 0.0080 7 0.62

FCMMS [36] 0.0110 9 1.23

AnYa [27] 0.0085 2 0.31

eTS [3] 0.0131 8 32.08

ESAFIS [35] 0.0082 2 1.37

SAFIS [17] 0.0427 2 0.29

Dummy 0.0078
 a

 The prediction result obtained by the dummy method.

As one can see from Table 9, the SBALMMo is able to provide highly accurate prediction on all three

currency exchange pairs outperforming other alternative approaches, which demonstrates the strong potential of

the SBALMMo neuro-fuzzy system in real-world applications.

Fig.4. Prediction results on the currency exchange data by SBALMMo

It is also quite interesting to notice that the dummy prediction method actually is able to provide the

prediction results in the same level as the SBALMMo. This is because of the stationary nature of this problem,

the foreign currency exchange data usually does not change dramatically in a short time. There is no big

difference between the close price of one day and the close price of the next day (see Fig. 4). Since all the

regression algorithms have inherent approximation errors, when the data is stationary, the approximation errors

play a more significant role in their performance.

In order to demonstrate the interpretability of the created fuzzy rules, the rule base obtained after the training

processes by the SBALMMo system are tabulated in Table 10, where we can see that the interpretability of the

fuzzy rules comes from the prototype-based nature [43]. Prototypes are the most representative data samples,

and they represent the local models in the data distribution. The prototypes also make the decision process of the

SBALMMo system interpretable. For each newly arrived data sample, the system compares it with all the

existing prototypes. The fuzzy rules with prototypes closer to the new data sample have larger firing strengths,

which means they contribute more to the system output.

Table 10. Fuzzy rules identified from the training process

 # Fuzzy Rules

EUR/USD

1
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.9285,0.9285,0.9285,0.9285])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0025 + 0.2497𝑥𝐾,1 + 0.2493𝑥𝐾,2 + 0.2497𝑥𝐾,3 + 0.2495𝑥𝐾,4)

2
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.3037,1.3038,1.3036,1.3037])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0057 + 0.2492𝑥𝐾,1 + 0.2490𝑥𝐾,2 + 0.2486𝑥𝐾,3 + 0.2489𝑥𝐾,4)

3
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.3985,1.3986,1.3983,1.3985])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0053 + 0.2493𝑥𝐾,1 + 0.2489𝑥𝐾,2 + 0.2488𝑥𝐾,3 + 0.2489𝑥𝐾,4)

4
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.5108,1.5109,1.5107,1.5108])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0049 + 0.2494𝑥𝐾,1 + 0.2488𝑥𝐾,2 + 0.2491𝑥𝐾,3 + 0.2490𝑥𝐾,4)

AUD/USD

1
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.5560,0.5561,0.5560,0.5560])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0014 + 0.2493𝑥𝐾,1 + 0.2497𝑥𝐾,2 + 0.2495𝑥𝐾,3 + 0.2500𝑥𝐾,4)

2
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.6525,0.6526,0.6524,0.6525])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0016 + 0.2492𝑥𝐾,1 + 0.2497𝑥𝐾,2 + 0.2494 𝑥𝐾,3 + 0.2500𝑥𝐾,4)

3
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.9289,0.9290,0.9288,0.9289])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0017 + 0.2491𝑥𝐾,1 + 0.2496𝑥𝐾,2 + 0.2494𝑥𝐾,3 + 0.2499𝑥𝐾,4)

4
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.8544,0.8545,0.8543,0.8544])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0017 + 0.2491𝑥𝐾,1 + 0.2496𝑥𝐾,2 + 0.2494𝑥𝐾,3 + 0.2499𝑥𝐾,4)

5
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.0331,1.0332,1.0329,1.0331])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0018 + 0.2490𝑥𝐾,1 + 0.2496𝑥𝐾,2 + 0.2495𝑥𝐾,3 + 0.2500𝑥𝐾,4)

GBP/USD

1
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.6492,1.6493,1.6491,1.6492])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0040 + 0.2494𝑥𝐾,1 + 0.2491𝑥𝐾,2 + 0.2502𝑥𝐾,3 + 0.2490𝑥𝐾,4)

2
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.9889,1.9890,1.9888,1.9889])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0039 + 0.2493𝑥𝐾,1 + 0.2488𝑥𝐾,2 + 0.2506𝑥𝐾,3 + 0.2491𝑥𝐾,4)

3
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.8643,1.8644,1.8643,1.8643])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0038 + 0.2493𝑥𝐾,1 + 0.2488𝑥𝐾,2 + 0.2505𝑥𝐾,3 + 0.2492𝑥𝐾,4)

4
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.4517,1.4518,1.4515,1.4517])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0033 + 0.2497𝑥𝐾,1 + 0.2492𝑥𝐾,2 + 0.2503𝑥𝐾,3 + 0.2489𝑥𝐾,4)

5
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.7686,1.7687,1.7685,1.7686])

𝑇𝐻𝐸𝑁 (𝑦 = 0.0039 + 0.2494𝑥𝐾,1 + 0.2490𝑥𝐾,2 + 0.2503𝑥𝐾,3 + 0.2491𝑥𝐾,4)

To further evaluate the statistical performance of the proposed SBALMMo on this real-world problem, we

apply the five-fold cross-validation method by dividing each dataset into five subsets evenly following the

timeline, and each time we use four subsets for training and leave one subset out for validation. We also involve

other well-known algorithms for comparison. The statistical results are given in Table 11 in terms of the means

and standard deviations of the three measures, namely, RMSE, rule# and texe. The results obtained by the

dummy prediction method are also given in the table as the baseline.

From Table 11 it can be concluded that, in this numerical example, the SBALMMo system outperforms all

the comparative algorithms. Despite that the overall training time consumption increased by two to three times

compared with the ALMMo system, the self-boosting algorithm significantly reduces the complexity of the

SBALMMo system structure.

Table 11. Statistical performance comparison on foreign currency exchange data

 Algorithm
Mean ± Stand Deviation

RMSE rule# texe (s)

EUR/USD

SBALMMo 0.0073±0.0019 4.3±0.5 1.06±0.06

ALMMo [6] 0.0074±0.0019 7.5±0.6 0.46±0.02

FCMMS [36] 0.0163±0.0054 7.4±4.3 0.96±0.25

AnYa [27] 0.0075±0.0019 2.0±0.0 0.22±0.05

ESAFIS [35] 0.0074±0.0017 1.8±0.4 1.36±0.34

SAFIS [17] 0.0669±0.0927 1.8±0.4 0. 36±0.17

Dummy 0.0072±0.0019

AUD/USD

SBALMMo 0.0062±0.0019 5.3±1.5 1.40±0.43

ALMMo [6] 0.0063±0.0019 9.5±2.6 0.43±0.02

FCMMS [36] 0.0265±0.0085 6.4±3.4 0.81±0.11

AnYa [27] 0.0080±0.0028 2.0±0.0 0.25±0.04

ESAFIS [35] 0.0063±0.0017 2.0±0.0 1.48±0.39

SAFIS [17] 0.0513±0.0590 1.8±0.4 0.38±0.02

Dummy 0.0058±0.0020

GBP/USD

SBALMMo 0.0088±0.0022 6.8±2.2 1.38±0.26

ALMMo [6] 0.0089±0.0022 12.3±3.5 0.46±0.04

FCMMS [36] 0.0364±0.0206 11.0±5.3 1.01±0.09

AnYa [27] 0.0098±0.0022 2.0±0.0 0.24±0.05

ESAFIS [35] 0.0092±0.0020 1.8±0.4 1.67±0.46

SAFIS [17] 0.2463±0.0643 2.0±0.0 0.27±0.06

Dummy 0.0086±0.0023

5.3. Performance on Nonstationary Regression Problems

Nonstationary regression problems usually have much more frequent and intensive changes in the data

pattern, and they are more challenging compared with other types of problems due to their nonlinear,

nonstationary, erratic and time-variant behaviour. Since it is of great importance for a learning algorithm to be

able to successfully follow the ever-changing data pattern, the nonstationary regression problems are very useful

for evaluating this ability.

In this subsection, we consider the following two real-world high frequency trading (HFT) problems:

1) QuantQuote second resolution market dataset [44] and

2) Standard and Poor index dataset [45]

to evaluate the performance of the SBALMMo neuro-fuzzy systems on nonstationary regression problems.

The QuantQuote second resolution market dataset contains tick-by-tick data on all NASDAQ, NYSE and

AMEX securities from 1998 to the present moment. The dataset contains 19144 observations with the following

attributes:

1) time tag, 𝐾,

2) open price, 𝑥𝐾,1,

3) high price, 𝑥𝐾,2,

4) low price, 𝑥𝐾,3 and

5) close price, 𝑥𝐾,4.

In the following example, we, firstly, investigate the relationship between the size of the data pool, 𝑄 and the

regression performance of the SBALMMo. In this example, Ω1 = 0 is fixed and 𝑄 is set to be

1000,2000,3000,4000,5000 and 6000. We use the current four prices 𝒙𝐾 = [𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]
𝑇
to predict

the close price 5 steps ahead, 𝑥𝐾+5,4 = 𝑓(𝒙𝐾) in a sample-by-sample manner and the performance is tabulated

in Table 12 in terms of non-dimensional error index (NDEI), number of fuzzy rules (rule#) and execution time

(texe, in seconds). The average time consumption for each self-boosting is given for evaluation of the

computational complexity of the proposed approach. The performance of the ALMMo neuro-fuzzy system is

also tabulated in Table 12 as a baseline. The data samples are standardized online before prediction. The NDEI

is calculated based on the following equation [6]:

𝑁𝐷𝐸𝐼 = √
1

𝐾
∑ 𝑒𝑗

2𝐾
𝑗=1

𝜎𝑦
2 (42)

where 𝑒𝑗 = �̂�𝑗 − 𝑦𝑗; �̂�𝑗 is the system output at the j-th time instance; 𝑦𝑗 is the corresponding real output; 𝜎𝑦 is

the standard deviation of the real output.

Table 12. Performance on benchmark regression datasets using different value of 𝑄 (Ω1 = 0)

Algorithm SBALMMo ALMMo

Measure
𝑄

1000 2000 3000 4000 5000 6000

NDEI 0.1301 0.1299 0.1294 0.1292 0.1299 0.1296 0.1339

rule# 7 8 5 5 5 7 6

texe (s) 14.87 10.81 9.87 9.90 9.44 10.55 2.16

texe per self-boosting (s) 0.60 0.87 1.17 1.72 2.15 2.64

As one can see from Table 12, size of the data pool, 𝑄 has only very minor influence on the performance of

the SBALMMo. Nonetheless, since the SBALMMo achieves the best NDEI and the simplest system structure

when 𝑄 = 4000, we use 𝑄 = 4000 in the remaining numerical examples of this subsection.

Remark 4: For nonstationary streaming data, a data pool of smaller size allows the SBALMMo to perform

self-boosting in real time. However, the performance might be influenced by the smaller data pool as the

parameters of the premise (IF) and consequent (THEN) parts of the system converge to a locally minimum

solution. Therefore, a trade-off between the performance and computational efficiency needs to be made

depending on the preferences/requirements of the problem.

Similar to the previous subsection 5.1, we investigate the relationship between the forgetting factor, Ω1 and

the regression performance of the SBALMMo on the high frequency trading problem. In the following

numerical example, we use the same experimental protocol as the previous example, but set 𝑄 = 4000 and

change the value of Ω1 as Ω1 = −0.02,0,0.02,0.04,0.06,0.08 and 0.1. The prediction performance is reported

in Table 13.

Table 13. Performance comparison using different value of Ω1 (𝑄 = 4000)

Algorithm SBALMMo ALMMo

Measure
Ω1

−0.02 0 0.02 0.04 0.06 0.08 0.10

NDEI 0.1297 0.1292 0.1295 0.1289 0.1296 0.1296 0.1292 0.1339

rule# 4 5 6 7 7 9 9 6

texe (s) 6.80 9.90 10.38 14.21 14.95 17.97 20.68 2.16

As one can see from Table 13, a larger value of Ω1 (Ω1 > 0.04) would result in lower computational

efficiency, more complex system structure. While a very small value of Ω1 will also influence the regression

accuracy. By making a trading-off between the performance and computational efficiency as well as the system

complexity, we use Ω1 = 0 in the remaining numerical examples of this subsection, which is the same as we

used before.

In the next example, we conduct the following experiments using the QuantQuote second resolution market

dataset:

1) use the four prices of the current step, 𝒙𝐾, to predict the close price 5 steps ahead, 𝑥𝐾+5,4 = 𝑓(𝒙𝐾);

2) use the four prices of the current step, 𝒙𝐾, to predict the close price 10 steps ahead, 𝑥𝐾+10,4 = 𝑓(𝒙𝐾);

3) use the four prices of the current step, 𝒙𝐾, to predict the close price 15 steps ahead, 𝑥𝐾+15,4 = 𝑓(𝒙𝐾);

4) use the four prices of the current step, 𝒙𝐾, to predict the close price 20 steps ahead, 𝑥𝐾+20,4 = 𝑓(𝒙𝐾);

The prediction performance in terms of non-dimensional error index (NDEI), number of fuzzy rules (rule#)

and execution time (texe, in seconds) obtained during the numerical experiments are reported in Table 14.

The prediction results obtained by the SBALMMo and ALMMo neuro-fuzzy systems, respectively, on the

third experiment 𝑥𝐾+15,4 = 𝑓(𝒙𝐾) are depicted in Fig. 5 (a), and the corresponding changes of the number of

fuzzy rules are given in Fig. 5(b). We also present the zoomed-in prediction results of six periods:

Period 1: 𝐾 ∈ [4000,4500],

Period 2: 𝐾 ∈ [5500,6000],

Period 3: 𝐾 ∈ [8000,8500],

Period 4: 𝐾 ∈ [8500,9000],

Period 5: 𝐾 ∈ [16000,16500], and

Period 6: 𝐾 ∈ [18500,19000],

in Fig. 6 for a better illustration. Furthermore, we depict the curves of the accumulated square error, ∑ 𝑒𝑗
2𝐾

𝑗=1 at

each time instance obtained by the ALMMo and SBALMMo during the same numerical experiment in Fig. 7,

and the corresponding zoomed-in periods are depicted in Fig. 8. From Figs. 5~8 one can see that the self-

boosting algorithm effectively increases the prediction accuracy of the SBALMMo system.

(a) Prediction results

(b) Changes of the number of fuzzy rules

Fig. 5. Prediction performance on QuantQuote second resolution market dataset

Fig. 6. The zoomed-in prediction results

Fig. 7. The curves of the accumulated square error

Fig. 8. The six zoomed-in periods of the curves of the accumulated square error

We also involve a number of well-known approaches for comparison under the same experimental protocol,

and the results are reported in the same table. Similar to Table 9, the results obtained by dummy prediction

method are reported in Table 14 as the baseline, which takes the current closing price as the predicted closing

price. From Table 14, one can see that the SBALMMo neuro-fuzzy system is able to outperform all other

approaches during the experiments.

Table 14. Performance comparison on high frequency trading dataset

 Algorithm NDEI rule# texe (s)

Input: 𝒙𝐾

Output: 𝑥𝐾+5,4

SBALMMo 0.1292 5 9.90

ALMMo [6] 0.1339 6 2.11

FCMMS [36] 0.1322 4 5.31

AnYa [27] 0.1487 4 3.41

OLSLR [40] 0.1607 6.67

SWLSLR [41] 0.1517 0.51

eTS [3] 0.1405 4 185.28

SAFIS [17] 0.7692 14 6.45

Dummy 0.5139

Input: 𝒙𝐾

Output: 𝑥𝐾+10,4

SBALMMo 0.1575 5 9.60

ALMMo [6] 0.1620 6 2.15

FCMMS [36] 0.1599 4 5.30

AnYa [27] 0.1744 4 3.12

OLSLR [40] 0.1874 6.33

SWLSLR [41] 0.1625 0.49

eTS [3] 0.1723 4 182.49

SAFIS [17] 0.8129 14 8.98

Dummy 0.5212

Input: 𝒙𝐾

Output: 𝑥𝐾+15,4

SBALMMo 0.1726 5 9.41

ALMMo [6] 0.1771 6 2.12

FCMMS [36] 0.1781 4 5.34

AnYa [27] 0.1931 4 3.43

OLSLR [40] 0.2056 6.411

SWLSLR [41] 0.1826 0.50

eTS [3] 0.1870 4 183.66

SAFIS [17] 0.6847 16 10.12

Dummy 0.5251

Input: 𝒙𝐾

Output: 𝑥𝐾+20,4

SBALMMo 0.1875 5 9.51

ALMMo [6] 0.1920 6 2.34

FCMMS [36] 0.1945 4 5.97

AnYa [27] 0.2138 4 3.33

OLSLR [40] 0.2237 8.92

SWLSLR [41] 0.2056 0.53

eTS [3] 0.2130 3 193.13

SAFIS [17] 0.6940 21 12.73

Dummy 0.5293

To further evaluate the statistical performance of the proposed SBALMMo on this nonstationary problem, we

apply the five-fold cross-validation method by dividing this dataset into five subsets evenly following the

timeline, and each time we use four subsets for training and leave one subset out for validation. We also involve

other well-known algorithms for comparison. The results are given in Table 15 in terms of the means and

standard deviations of the three measures, namely, RMSE, rule# and texe.

From Table 15 one can see that in the four numerical experiments, the self-boosting algorithm effectively

improves the accuracy of the prediction results obtained by the SBALMMo as well as its robustness. The

average NDEI is reduced by around 20%, and the standard deviation of NDEI is reduced by around 50%.

Comparing with ALMMo, the system structure complexity of the SBALMMo is also reduced by 33%.

Meanwhile, this comes at the price that the overall computation time of the SBALMMo system is around four

times longer than that of the ALMMo system.

Table 15. Statistical Performance comparison on high frequency trading dataset

 Algorithm
Mean ± Stand Deviation

NDEI rule# texe (s)

Input: 𝒙𝐾

Output: 𝑥𝐾+5,4

SBALMMo 0.3646±0.1274 6.4±0.9 8.36±2.12

ALMMo [6] 0.4668±0.2634 9.8±2.9 1.73±0.27

FCMMS [36] 0.4518±0.1266 9.8±2.9 4.54±0.61

AnYa [27] 0.3697±0.2591 2.4±0.5 1.97±0.16

ESAFIS [35] 0.9403±0.6731 2.8±0.8 4.96±0.25

SAFIS [17] 0.9665±0.3755 12.6±2.3 1.84±0.19

Dummy 1.2441±0.7375

Input: 𝒙𝐾

Output: 𝑥𝐾+10,4

SBALMMo 0.4212±0.1270 6.2±0.8 7.91±1.28

ALMMo [6] 0.5194±0.2716 9.0±3.4 1.75±0.25

FCMMS [36] 0.5777±0.3912 7.2±2.8 4.47±0.51

AnYa [27] 0.4625±0.2350 3.0±0.0 1.91±0.08

ESAFIS [35] 1.2510±0.7753 2.6±0.9 5.38±0.49

SAFIS [17] 0.8337±0.4904 10.8±0.8 1.85±0.19

Dummy 1.2535±0.7303

Input: 𝒙𝐾

Output: 𝑥𝐾+15,4

SBALMMo 0.4549±0.1440 5.4±0.9 7.53±1.24

ALMMo [6] 0.5567±0.2631 9.6±2.8 1.78±0.31

FCMMS [36] 0.5514±0.1864 5.0±1.6 4.47±0.20

AnYa [27] 0.5329±0.2068 3.8±0.4 2.04±0.12

ESAFIS [35] 1.0190±0.6665 3.2±0.8 5.93±1.10

SAFIS [17] 1.3247±0.7819 14.4±2.2 2.00±0.29

Dummy 1.2614±0.7249

Input: 𝒙𝐾

Output: 𝑥𝐾+20,4

SBALMMo 0.5011±0.1377 6.20±0.8 8.30±1.47

ALMMo [6] 0.6156±0.2741 9.6±2.8 2.03±0.50

FCMMS [36] 0.7957±0.4396 7.2±1.6 4.61±0.84

AnYa [27] 0.6419±0.2987 3.8±0.4 2.08±0.05

ESAFIS [35] 0.6593±0.2914 3.4±0.9 6.08±0.91

SAFIS [17] 1.4510±0.8920 17.0±5.3 2.75±1.14

Dummy 1.2693± 0.7201

The Standard and Poor index dataset contains 14893 observations acquired from January 3, 1950 to March

12, 2009. The input and output relationship of the system is governed by

𝑥𝐾+1 = 𝑓([𝑥𝐾 , 𝑥𝐾−1, 𝑥𝐾−2, 𝑥𝐾−3, 𝑥𝐾−4]
𝑇). The online prediction performance on the Standard and Poor index

dataset obtained by the regression algorithms is tabulated in Table 16 in terms of NDEI and rule#. Similarly, the

dummy prediction method, which uses the current observation as the predicted one, namely, 𝑥𝐾+1 ← 𝑥𝐾 , is used

as the baseline approach in the comparison. From Table 16 we can see that both, the SBALMMo and ALMMo

achieve the best performance, but the SBALMMo has a simpler system structure than ALMMo.

Table 16. Performance comparison on the Standard and Poor dataset

Algorithm NDEI rule#

SBALMMo 0.013 7

ALMMo [6] 0.013 8

AnYa [27] 0.018 11

OLSLR [40] 0.020

SWLSLR [41] 0.018

FCMMS [36] 0.014 5

eTS [3] 0.015 14

DENFIS [2] 0.020 6

SAFIS [17] 0.209 6

EFuNN [39] 0.154 114.3

SeroFAM [38] 0.027 29

Simpl_eTS [13] 0.045 7

PANFIS [16] 0.014 4

Dummy 0.029

To further evaluate the statistical performance of the proposed SBALMMo on this problem, we firstly divide

this dataset into five subsets evenly following the timeline. Then, we assemble the five subsets in a random

order into a new sequence and perform the online prediction using the same experimental protocol as used in the

previous experiment. The statistical results are given in Table 17 after 10 Monte-Carlo experiments in terms of

the means and standard deviations of the three measures, namely, RMSE, rule# and texe. We also involve other

well-known algorithms for comparison.

Table 17. Performance comparison on the Standard and Poor dataset

Algorithm
Mean ± Stand Deviation

NDEI rule# texe (s)

SBALMMo 0.0145±0.0038 5.8±3.5 35.17±9.70

ALMMo [6] 0.0148±0.0039 8.6±3.5 2.10±0.24

FCMMS [36] 0.0178±0.0062 6.0±4.4 4.10±0.30

AnYa [27] 0.0290±0.0048 11.0±3.1 3.21±0.12

ESAFIS [35] 0.1815±0.2043 1.2±0.4 4.50±0.97

SAFIS [17] 0.1878±0.0731 5.9±28 1.62±0.56

Dummy 0.0287±0.0000

From Table 17 one can see that, there is a marginal improvement in the NDEI in the proposed SBALMMo

compared with the ALMMo. The system structure complexity of the SBALMMo is reduced by around 33%, but

the overall execution time is increased 17 times.

5.4. Discussions

Form the numerical examples provided in this section one can see that the proposed self-boosting algorithm

is able to effectively optimize the system structure and meta-parameters in few iterations. In comparison with

alterative techniques, the unique advantages that the self-boosting algorithm brings to the proposed SBALMMo

neuro fuzzy system include:

1) improving the accuracy of the regression and prediction results;

2) improving the robustness of the system performance;

3) reducing the system structure complexity.

The proposed SBALMMo is able to produce better results in different benchmark datasets and real-world

problems compared with the “state-of-the-art” approaches. In addition, it is able to perform prediction on

nonstationary problems with higher accuracy, and is capable of performing self-boosting in real time. Therefore,

one may conclude that the SBALMMo can serve as a strong alternative to other approaches.

The practical implementation of the self-boosting algorithm is very flexible, and can be triggered based on

different criteria. The main aim of this paper is to deliver the concepts and the principles, and, thus, we only

applied the general implementations to the numerical examples. Alternative criteria for triggering the self-

boosting can be, for example, when the accumulated errors or the error between the system output and the

reference output exceeds a certain threshold [24]. However, this requires a deeper study since the accuracy of a

learning algorithm in terms of regression error is highly dependent on the problem itself (one can see from the

previous numerical examples), and it is out of the scope of this paper.

The proposed self-boosting algorithm is a generic optimization algorithm that can be used in other neuro-

fuzzy systems of AnYa type with FWRLS consequent parameter updating algorithm. This work touches the

very foundation of EISs.

6. Conclusion

In this paper, we conducted a deep analysis on the optimality of the premise (IF) and consequent (THEN)

parts of the recently introduced ALMMo neuro-fuzzy system, and further proposed a self-boosting mechanism

that consists of the structure- and parameter-optimization algorithm to enable the ALMMo system to self-

optimize its system structure and meta-parameters. We named the upgraded ALMMo learning system as self-

boosting autonomous learning multi-model (SBALMMo) neuro-fuzzy systems. Numerical examples based on

benchmark datasets and real-world problems demonstrate the validity of the concepts and principles. It shows

the strong potential of the SBALMMo for real applications.

As future work, we will further improve SBALMMo neuro-fuzzy systems by employing more intelligent

triggering mechanisms for the self-boosting operation, i.e. based on the accumulated errors. We will also apply

the self-boosting algorithm to other types of neuro-fuzzy systems.

7. References

[1] P. Angelov and R. Buswell, “Evolving rule-based models: a tool for intelligent adaption,” in IFSA

World Congress and 20th NAFIPS International Conference, 2001, pp. 1062–1067.

[2] N. K. Kasabov and Q. Song, “DENFIS : Dynamic Evolving Neural-Fuzzy Inference System and Its

Application for Time-Series Prediction,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, 2002.

[3] P. P. Angelov and D. P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy models,”

IEEE Trans. Syst. Man, Cybern. - Part B Cybern., vol. 34, no. 1, pp. 484–498, 2004.

[4] P. Angelov, Autonomous learning systems: from data streams to knowledge in real time. John Wiley &

Sons, Ltd., 2012.

[5] L. Maciel, R. Ballini, and F. Gomide, “Evolving possibilistic fuzzy modeling for realized volatility

forecasting with jumps,” IEEE Trans. Fuzzy Syst., vol. 25, no. 2, pp. 302–314, 2017.

[6] P. P. Angelov, X. Gu, and J. C. Principe, “Autonomous learning multi-model systems from data

streams,” IEEE Trans. Fuzzy Syst., vol. 26, no. 4, pp. 2213–2224, 2018.

[7] A. B. Asghar and X. Liu, “Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal

rotor speed for variable-speed wind turbine,” Neurocomputing, vol. 272, pp. 495–504, 2018.

[8] A. B. Asghar and X. Liu, “Estimation of wind speed probability distribution and wind energy potential

using adaptive neuro-fuzzy methodology,” Neurocomputing, vol. 287, pp. 58–67, 2018.

[9] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference network and its

applications,” IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12–32, 1998.

[10] E. H. Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant,” Proc. Inst.

Electr. Eng., vol. 121, no. 12, p. 1585, 1974.

[11] J. S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst. Man

Cybern., vol. 23, no. 3, pp. 665–685, 1993.

[12] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data streams with evolving fuzzy

systems,” Appl. Soft Comput., vol. 11, no. 2, pp. 2057–2068, 2011.

[13] P. Angelov and D. Filev, “Simpl _ eTS : A simplified method for learning evolving Takagi-Sugeno

fuzzy models,” in IEEE International Conference on Fuzzy Systems, 2005, pp. 1068–1073.

[14] P. Angelov, E. Lughofer, and X. Zhou, “Evolving fuzzy classifiers using different model architectures,”

Fuzzy Sets Syst., vol. 159, no. 23, pp. 3160–3182, 2008.

[15] R. D. Baruah, P. P. Angelov, and J. Andreu, “Simpl _ eClass : simplified potential-free evolving fuzzy

rule-based classifiers,” in IEEE International Conference on Systems, Man, and Cybernetics (SMC),

2011, pp. 2249–2254.

[16] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “PANFIS : a novel incremental learning

machine,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 55–68, 2014.

[17] H. J. Rong, N. Sundararajan, G. Bin Huang, and P. Saratchandran, “Sequential adaptive fuzzy inference

system (SAFIS) for nonlinear system identification and prediction,” Fuzzy Sets Syst., vol. 157, no. 9, pp.

1260–1275, 2006.

[18] R. Bao, H. Rong, P. P. Angelov, B. Chen, and P. K. Wong, “Correntropy-based evolving fuzzy neural

system,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1324–1338, 2018.

[19] M. Pratama, S. G. Anavatti, and E. Lughofer, “Genefis: toward an effective localist network,” IEEE

Trans. Fuzzy Syst., vol. 22, no. 3, pp. 547–562, 2014.

[20] P. Angelov, “Evolving takagi-sugeno fuzzy systems from streaming data (eTS+),” in Evolving

intelligent systems: methodology and applications, John Wiley & Sons., 2010.

[21] E. Lughofer, Evolving fuzzy systems-methodologies, advanced concepts and applications. Berlin:

Springer, 2011.

[22] E. Lughofer, “Evolving fuzzy systems—fundamentals, reliability, interpretability, useability,

applications,” in Handbook on Computational Intelligence, P. Angelov, Ed. New York: World

Scientific, 2016, pp. 67–135.

[23] R. M. Johnstone, C. Richard Johnson, R. R. Bitmead, and B. D. O. Anderson, “Exponential convergence

of recursive least squares with exponential forgetting factor,” Syst. Control Lett., vol. 2, no. 2, pp. 77–

82, 1982.

[24] D. Ge and X. J. Zeng, “Learning evolving T-S fuzzy systems with both local and global accuracy - a

local online optimization approach,” Appl. Soft Comput., vol. 86, pp. 795–810, 2018.

[25] H.-J. Rong, P. Angelov, X. Gu, and J.-M. Bai, “Stability of evolving fuzzy systems based on data

clouds,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2774–2784, 2018.

[26] G. Leng, G. Prasad, and T. M. McGinnity, “An on-line algorithm for creating self-organizing fuzzy

neural networks,” Neural Networks, vol. 17, no. 10, pp. 1477–1493, 2004.

[27] P. Angelov and R. Yager, “A new type of simplified fuzzy rule-based system,” Int. J. Gen. Syst., vol.

41, no. 2, pp. 163–185, 2011.

[28] P. Angelov and X. Zhou, “Evolving fuzzy-rule based classifiers from data streams,” IEEE Trans. Fuzzy

Syst., vol. 16, no. 6, pp. 1462–1474, 2008.

[29] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and

control,” IEEE Trans. Syst. Man. Cybern., vol. 15, no. 1, pp. 116–132, 1985.

[30] W. H. Ho and J. H. Chou, “Design of optimal controllers for Takagi-Sugeno fuzzy-model-based

systems,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans, vol. 37, no. 3, pp. 329–339, 2007.

[31] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: a generalized convergence theorem and

characterization of local optimality,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 1, pp.

81–87, 1984.

[32] X. Gu, P. P. Angelov, and H.-J. Rong, “Local optimality of zero-order autonomous learning neuro-fuzzy

systems,” Under Rev., 2018.

[33] M. R. Azimi-Sadjadi and R. J. Liou, “Fast learning process of multilayer neural networks using

recursive least squares method,” IEEE Trans. Signal Process., vol. 40, no. 2, pp. 446–450, 1992.

[34] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind.

Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[35] H. J. Rong, N. Sundararajan, G. Bin Huang, and G. S. Zhao, “Extended sequential adaptive fuzzy

inference system for classification problems,” Evol. Syst., vol. 2, no. 2, pp. 71–82, 2011.

[36] P. Angelov, “Fuzzily connected multimodel systems evolving autonomously from data streams,” IEEE

Trans. Syst. Man, Cybern. Part B Cybern., vol. 41, no. 4, pp. 898–910, 2011.

[37] K. Subramanian and S. Suresh, “A meta-cognitive sequential learning algorithm for neuro-fuzzy

inference system,” Appl. Soft Comput. J., vol. 12, no. 11, pp. 3603–3614, 2012.

[38] J. Tan and C. Quek, “A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative

learning,” IEEE Trans. Neural Networks, vol. 21, no. 6, pp. 985–1003, 2010.

[39] N. Kasabov, “Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based

learning,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 31, no. 6, pp. 902–918, 2001.

[40] C. Nadungodage, Y. Xia, F. Li, J. Lee, and J. Ge, “StreamFitter: A real time linear regression analysis

system for continuous data streams,” in International Conference on Database Systems for Advanced

Applications, 2011, pp. 458–461.

[41] K. Tschumitschew and F. Klawonn, “Effects of drift and noise on the optimal sliding window size for

data stream regression models,” Commun. Stat. - Theory Methods, vol. 46, no. 10, pp. 5109–5132, 2017.

[42] “Foreign Currency Exchange Data,” http://www.histdata.com/. .

[43] P. Angelov and X. Gu, Empirical approach to machine learning. Springer International Publishing,

2018.

[44] “QuantQuote Second Resolution Market Database,” https://quantquote.com/historical-stock-data. .

[45] “Standard and poor (S&P) index data,”

https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC. .

