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Abstract: In this paper, a detailed mathematical analysis of the optimality of the premise and consequent parts 

of the recently introduced first-order Autonomous Learning Multi-Model (ALMMo) neuro-fuzzy system is 

conducted. A novel self-boosting algorithm for structure- and parameter- optimization is, then, introduced to the 

ALMMo, which results in the self-boosting ALMMo (SBALMMo) neuro-fuzzy system. By minimizing the 

objective functions with the previously collected data, the SBALMMo is able to optimize its system structure 

and parameters in few iterations. Numerical examples based benchmark datasets and real-world problems 

demonstrate the effectiveness and validity of the SBALMMo, and show the strong potential of the proposed 

approach for real applications. 

Index Terms: neuro-fuzzy systems, autonomous learning, local optimality, self-boosting, streaming data 

processing.  

 

1. Introduction 

The initial concepts of evolving intelligent systems (EISs) were conceived around the turn of the 21st century  

[1]–[3] and now matured [4]. Nowadays, EISs have been widely applied for real-world problems [5]–[8].  

 EISs can be implemented in neuro-fuzzy [2], [9] or fuzzy rule-based structural forms [3]. The main 

difference between the EISs and the conventional (neuro-) fuzzy systems [10], [11] is their ability of self-

organizing and self-updating system structure and parameters in real-time mode. Thus, EISs are usually 

associated with streaming data processing and can effectively approximate the dynamically changing 

environment [12]. Currently, the EISs is an intensively researched area [2], [3], [6], [13]–[18]. The most popular 

(neuro-) fuzzy systems include, but not limited to, the evolving Takagi-Sugeno systems (eTS) [1], [3], DENFIS 

[2], SAFIS [17], PANFIS [16], GENFIS [19] as well as the more recently introduced CENFS [18] and versions 

of the eTS (simpl_eTS [13], eTS+[20]). Interested readers are referred to the recent surveys [21], [22] for more 

details regarding the EISs. 

Most of the EISs are of “one-pass” type, and they target processing streaming data “on the fly” [6], [13]–

[15], [17], [20]. Although different EISs use different online learning mechanisms to evolve their premise (IF) 

parts, the majority of them use the recursive least squares (RLS) algorithm [23] or its extension, i.e. fuzzily 

weighted recursive least squares (FWRLS) algorithm [3] to learn the consequent parameters (THEN part).  

Despite that the concepts of the EISs have been matured [4] and many of them have been applied in real-

world scenarios successfully, a systematic mathematical study on the local optimality of the premise (IF) and 

consequent (THEN) parts of the current EISs has not been conducted yet [24]. The main reason for this is 

obvious, as EISs are implemented for handling the data streams with ever-changing data pattern in complex, 

nonstationary environments [12]. Currently, only the stability of the consequent (THEN) part of EISs has been 

proven [3], [25].  



Another problem that the majority of the EISs suffer from is the predefined problem- and user-specific 

parameters [2], [5], [9], [16]–[18], [26] for the structure learning algorithms. These parameters require prior 

knowledge and/or the assumptions about the nature of the problems to be defined in advance. In addition, they 

also influence the objectiveness of the learning results. 

First-order Autonomous Learning Multi-Model (ALMMo) neuro-fuzzy system [6] is a new type of multi-

model system introduced on the basis of the first-order AnYa type neuro-fuzzy systems [4], [27]. The ALMMo 

system is composed of fully human intelligible IF-THEN rules of AnYa type, and its structure is built upon the 

nonparametric data clouds that are free of external constraints enabling the ALMMo system to objectively 

approximate the real data distribution. Its system structure and meta-parameters are derived from the data 

directly without imposing data generation model with user- or problem- specific parameters. Thus, there is no 

requirement of prior knowledge of the problem. The system is also memory- and computation- efficient. Its 

system structure is able to evolve online, and its meta-parameters can be recursively updated. Meanwhile, 

ALMMo is capable of monitoring the quality of the dynamically evolving structure in real time, which 

guarantees the computation- and memory-efficiency of the learning mechanism. All of these allow the ALMMo 

neuro-fuzzy system to effectively and efficiently follow the possible shifts and/or drifts in the data pattern for 

the case of streaming data [6]. 

Based on a systematic analysis of the local optimality of the premise (IF) and consequent (THEN) parts of 

the ALMMo neuro-fuzzy system, in this paper, we introduce a novel self-boosting algorithm to the ALMMo, 

and we call the upgraded ALMMo neuro-fuzzy system: self-boosting Autonomous Learning Multi-Model 

(SBALMMo). The concept of a “self-boosting” system means that the system is able to self-optimize its 

structure and meta-parameters, and, thus, achieves a better performance. The self-boosting algorithm involves 

two independent iterative processes for minimizing the objective functions designed for the premise (IF) and 

consequent (THEN) parts based on the historical observations. The proposed SBALMMo is able to guarantee 

the local optimality. Moreover, we also introduce a novel quality monitoring mechanism to the SBALMMo, 

which assists the system to discard stale fuzzy rules, and thus, further strengths the ability of the SBALMMo to 

follow the shifts and/or drifts of the data pattern [12]. To summarize, the main advantages of the SBALMMo 

compared with the ALMMo neuro-fuzzy system include: 

1) It guarantees periodic local optimization for both the premise (IF) and consequent (THEN) parts of the 

neuro-fuzzy system on a solid mathematical basis. 

2) It introduces a dynamical quality monitoring mechanism to the rule base.  

The remainder of this paper is organized as follows. Section 2 briefly recalls the general architecture and 

principles of the ALMMo. The local optimality analysis of the ALMMo neuro-fuzzy system is conducted in 

section 3 with the optimization approaches for the both parts of the system given in the same section. The 

SBALMMo is described in section 4 and the numerical examples are presented in section 5. Section 6 concludes 

the paper. 

2. The ALMMo Neuro-Fuzzy System 

In this section, the general architecture and learning process of the ALMMo neuro-fuzzy system are briefly 

recalled to make this paper self-contained. In this paper, we use the Euclidean distance by default if there is no 

special declaration. 

2.1. General Architecture 

The general architecture of the ALMMo neuro-fuzzy system is depicted in Fig. 1 [6], [27].  

𝐼𝐹 (𝒙~𝒑) 𝑇𝐻𝐸𝑁 (𝑦 = 𝒙𝑇𝒂)                                                                                            (1) 

where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑀]
𝑇 ∈ 𝐑𝑀 is the input vector of the fuzzy rule; 𝐑𝑀 is the 𝑀 dimensional real data space; 

~ denotes the similarity, or a fuzzy degree of satisfaction/membership [27]; 𝒙𝑇 = [1, 𝒙𝑇]; 𝒑 = [𝑝1 , 𝑝2, … , 𝑝𝑀]
𝑇 

is the prototype of this fuzzy rule; 𝒂 = [𝑎0, 𝑎1, … , 𝑎𝑀]
𝑇 is the vector of consequent parameters. 



 

Fig. 1. General Architecture of ALMMo fuzzy system  

The ALMMo fuzzy system is mathematically modelled as [3], [6], [27]: 

𝑦𝐾 = 𝑓(𝒙𝐾) = ∑ 𝜆𝐾
𝑖 𝒙𝐾

𝑇𝒂𝐾
𝑖𝑁𝐾

𝑖=1                                                                                               (2) 

where 𝑦𝐾 and 𝒙𝐾 (𝒙𝐾 ∈ 𝐑
𝑀) are the respective output and input vectors of the ALMMo at the K-th time instance 

(we assume that only one data sample arrives at each time instance); 𝒙𝐾
𝑇 = [1, 𝒙𝐾

𝑇  ]; 𝑁𝐾 denotes the number of 

fuzzy rules/data clouds; 𝒂𝐾
𝑖 = [𝑎𝐾,0

𝑖 , 𝑎𝐾,1
𝑖 , … , 𝑎𝐾,𝑀

𝑖 ]
𝑇
is the consequent parameter vector of the i-th fuzzy rule at 

the K-th time instance; 𝜆𝐾
𝑖  is the corresponding firing strength derived from the normalized data density directly 

from the data [3], [6], [27], [28].  

2.2. The Learning Process Summary 

In this subsection, the main procedure of the learning process of the ALMMo neuro-fuzzy system, which 

includes both, the system identification and the algorithmic parameters identification processes, is summarized 

as follows. One can find the more detailed algorithm description in the original paper [6].  

Step 0. System initialization 

The ALMMo neuro-fuzzy system is initialized by the first data sample, 𝒙1 (𝐾 ← 1).  

The global meta-parameters of the system, namely, the global mean, 𝝁1, global average scalar product, 𝑋1 

and the number of existing fuzzy rules/data clouds, 𝑁1 are initialized as: 

𝝁1 ← 𝒙1; 𝑋1 ← ‖𝒙1‖
2; 𝑁1 ← 1                                                                                      (3) 

The first data cloud, 𝐂1
1  is initialized by 𝒙1: 𝐂1

1 ← {𝒙1}. The meta-parameters of 𝐂1
1 , which include the 

prototype, 𝒑1
1, average scalar product, 𝑋1

1, support, 𝑆1
1, accumulated firing strength, 𝛬1

1, utility, 𝜂1
1 and the time 

instance at which 𝐂1
1 is initialized, 𝐼1 are initialized as: 

𝒑1
1 ← 𝒙1; 𝑋1

1 ← ‖𝒙1‖
2; 𝑆1

1 ← 1; 𝛬1
1 ← 1; 𝜂1

1 ← 1; 𝐼1 ← 1                                     (4) 

and the consequent parameters, 𝒂1
1 and covariance matrix, 𝚯1

1 of the corresponding fuzzy rule of 𝐂1
1, 𝑹1are 

initialized as: 

𝒂1
1 ← 𝟎(𝑀+1)×1; 𝚯1

1 ← Ω𝑜𝐈(𝑀+1)×(𝑀+1)                                                                            (5) 

The first fuzzy rule 𝑹1 within the fuzzy rule-base is, then, initialized as: 

𝑹1: 𝐼𝐹 (𝒙~𝒑1
1) 𝑇𝐻𝐸𝑁 (𝑦 = 𝒙𝑇𝒂1

1)                                                                               (6) 

Step 1. System output generation 

When a new data sample, 𝒙𝐾 is available (𝐾 ← 𝐾 + 1), the local data density of 𝒙𝐾 within each data cloud 

(𝑗 = 1,2, … , 𝑁𝐾−1) is calculated as [6]: 

𝐷𝐾−1
𝑗 (𝒙𝐾) =

1

1+
(𝑆𝐾−1
𝑗

)
2
‖𝒙𝐾−𝒑𝐾−1

𝑗
‖
2

(𝑆𝐾−1
𝑗

+1)(𝑆𝐾−1
𝑗

𝑋𝐾−1
𝑗

+‖𝒙𝐾‖
2
)−‖𝒙𝐾+𝑆𝐾−1

𝑗
𝒑𝐾−1
𝑗

‖
2

                                                      (7) 



Local data density calculated by equation (7) reacts to the potential changes in the data pattern quickly by 

incorporating 𝒙𝐾 into the existing data clouds and shifting the corresponding prototypes towards it. This 

enlarges the role 𝒙𝐾 plays in the system output and improves the system’s adaptive ability. 

Then, the firing strength of each fuzzy rule to  𝒙𝐾  is calculated (𝑗 = 1,2, … , 𝑁𝐾−1): 

𝜆𝐾−1
𝑗

=
𝐷𝐾−1
𝑗

(𝒙𝐾)

∑ 𝐷𝐾−1
𝑘 (𝒙𝐾)

𝑁𝐾−1
𝑘=1

                                                                                                         (8) 

and the system output is calculated and exported by equation (9): 

𝑦𝐾 = ∑ 𝜆𝐾−1
𝑖 𝒙𝐾

𝑇𝒂𝐾−1
𝑖𝑁𝐾

𝑖=1                                                                                                        (9) 

Step 2. Global meta-parameter updating 

The global mean, 𝝁𝐾−1 and the average scalar product, 𝑋𝐾−1 of system are, then, updated: 

𝝁𝐾 =
𝐾−1

𝐾
𝝁𝐾−1 +

1

𝐾
𝒙𝐾                                                                                                      (10) 

𝑋𝐾 =
𝐾−1

𝐾
𝑋𝐾−1 +

1

𝐾
‖𝒙𝐾‖

2                                                                                                 (11) 

The data densities at 𝒙𝐾 and 𝒑𝐾,−1
𝑗

 (𝑗 = 1,2, … , 𝑁𝐾−1) are calculated by equation (12a),  

𝐷𝐾(𝒛) =
1

1+
‖𝒛−𝝁𝐾‖

2

𝑋𝐾−‖𝝁𝐾‖
2

; 𝒛 = 𝒙𝐾 , 𝒑𝐾−1
1 , 𝒑𝐾−1

2 , … , 𝒑𝐾−1
𝑁𝐾−1

                                                   (12a) 

As one can see, the data density calculated by equation (12a) has a more elegant form compared with the 

local data density calculated by equation (7). This is because the global mean, 𝝁𝐾 and the average scalar 

product, 𝑋𝐾 have both been updated with 𝒙𝐾 by equations (10) and (11) before the calculation. By substituting 

𝝁𝐾 and 𝑋𝐾 with 𝝁𝐾−1 and  𝑋𝐾−1, respectively, equation (12a) can be formulated in a similar form as equation 

(7): 

𝐷𝐾(𝒛) =
1

1+
(𝐾−1)2‖𝒛−𝝁𝐾−1‖

2

𝐾((𝐾−1)𝑋𝐾−1+‖𝒛‖
2)−‖𝒛+(𝐾−1)𝝁𝐾−1‖

2

; 𝒛 = 𝒙𝐾 , 𝒑𝐾−1
1 , 𝒑𝐾−1

2 , … , 𝒑𝐾−1
𝑁𝐾−1

                (12b) 

Step 3. System structure updating 

Firstly, Condition 1 is checked to see whether 𝒙𝐾 is the prototype of a new data cloud [3]: 

Condition 1: 

𝐼𝐹 (𝐷𝐾(𝒙𝐾) > max𝑗=1,2,…,𝑁𝐾−1 𝐷𝐾(𝒑𝐾−1
𝑗

))

𝑂𝑅(𝐷𝐾(𝒙𝐾) < min𝑗=1,2,…,𝑁𝐾−1 𝐷𝐾(𝒑𝐾−1
𝑗
))

𝑇𝐻𝐸𝑁 (𝒙𝐾 𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)

                                                (13) 

The rationale behind Condition 1 is that if 𝐷𝐾(𝒙𝐾) is larger than the data densities at the prototypes of the 

existing data clouds, 𝒙𝐾 is more descriptive and it has more summarization power than all the other prototypes. 

In contrast, if 𝐷𝐾(𝒙𝐾) is smaller than the minimum data density at any of the prototypes, 𝒙𝐾 represents a new 

pattern that no existing data clouds can describe. Therefore, in both cases, 𝒙𝐾 becomes a new prototype and a 

new data cloud is initialized by it. 

If Condition 1 is met, Condition 2 is, then, checked to see whether this new data cloud is overlapping with 

any of the existing data clouds: 

Condition 2: 𝐼𝐹 (𝐷𝐾−1
𝑗 (𝒙𝐾) ≥ 0.8) 𝑇𝐻𝐸𝑁 (𝒑𝐾−1

𝑗
 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝒙𝐾)                    (14) 

If both, Conditions 1 and 2 are satisfied, the nearest data cloud, 𝐂𝐾−1
𝑛∗  to 𝒙𝐾 is identified by equation (15): 

𝑛 ∗= argmin𝑗=1,2,..,𝑁𝐾−1(‖𝒙𝐾 − 𝒑𝐾−1
𝑗
‖)                                                                           (15) 

where ‖𝒙𝐾 − 𝒑𝐾−1
𝑗
‖ = √∑ (𝑥𝐾,𝑙 − 𝒑𝐾−1,l

𝑗
)𝑀

𝑙=1  denotes the Euclidean distance between 𝒙𝐾 and 𝒑𝐾−1
𝑗

. 

𝒙𝐾 is assigned to 𝐂𝐾−1
𝑛∗   (𝐂𝐾

𝑛∗ ← 𝐂𝐾−1
𝑛∗ + 𝒙𝐾) with the meta-parameters of 𝐂𝐾−1

𝑛∗  , including the prototype, 

𝒑𝐾−1
𝑛∗ , average scalar product, 𝑋𝐾−1

𝑛∗  and support, 𝑆𝐾−1
𝑛∗ , updated as: 

𝒑𝐾
𝑛∗ ←

𝒑𝐾−1
𝑛∗ +𝒙𝐾

2
; 𝑋𝐾

𝑛∗ ←
𝑋𝐾−1
𝑛∗ +‖𝒙𝐾‖

𝟐

2
; 𝑆𝐾

𝑛∗ ← ⌈
𝑆𝐾−1
𝑛∗ +1

2
⌉                                                  (16) 



If Condition 1 is met, Condition 2 is unsatisfied, a new data cloud with 𝒙𝐾 as the prototype is added to the 

system (𝑁𝐾 ← 𝑁𝐾−1 + 1): 𝐂𝐾
𝑁𝐾 ← {𝒙𝐾}, and the meta-parameters of  𝐂𝐾

𝑁𝐾 are initialized as: 

𝒑𝐾
𝑁𝐾 ← 𝒙1; 𝑋𝐾

𝑁𝐾 ← ‖𝒙1‖
2; 𝑆𝐾

𝑁𝐾 ← 1; 𝛬𝐾−1
𝑁𝐾 ← 0; 𝜂𝐾−1

𝑁𝐾 ← 1; 𝐼𝑁𝐾 ← 𝐾              (17) 

The consequent parameters of the fuzzy rule corresponding to 𝐂𝐾
𝑁𝐾 are initialized as: 

𝒂𝐾−1
𝑁𝐾 ←

1

𝑁𝐾−1
∑ 𝒂𝐾−1

𝑗𝑁𝐾−1
𝒋=𝟏 ; 𝚯𝐾−1

𝑁𝐾 ← Ω𝑜𝐈(𝑀+1)×(𝑀+1)                                                     (18) 

where Ω𝑜 is a user-controlled parameter initializing covariance matrix [29]. This is representing the standard for 

recursive least squares algorithms. The recommended setting for Ω𝑜  is given at the end of this section. 

The fuzzy rule corresponding to 𝐂𝐾
𝑁𝐾 is initialized as: 

𝑹𝑁𝐾: 𝐼𝐹 (𝒙~𝒑𝐾−1
𝑁𝐾 ) 𝑇𝐻𝐸𝑁 (𝑦 = 𝒙𝑇𝒂𝐾−1

𝑁𝐾 )                                                                  (19) 

 

Otherwise, when, both, Conditions 1 and 2 are unsatisfied, the nearest data cloud, 𝐂𝐾−1
𝑛∗  to 𝒙𝐾 is identified 

by equation (15), and the meta-parameters are updated as: 

𝑆𝐾
𝑛∗ ← 𝑆𝐾−1

𝑛∗ + 1; 𝒑𝐾
𝑛∗ ←

𝑆𝐾−1
𝑛∗

𝑆𝐾
𝑛∗ 𝒑𝐾−1

𝑛∗ +
1

𝑆𝐾
𝑛∗ 𝒙𝐾; 𝑋𝐾

𝑛∗ ←
𝑆𝐾−1
𝑛∗

𝑆𝐾
𝑛∗ 𝑋𝐾−1

𝑛∗ +
1

𝑆𝐾
𝑛∗ ‖𝒙𝐾‖

2             (20) 

For each 𝐂𝐾−1
𝑗

∈ {𝐂} that does not receive new member at this time instance, there is 𝐂𝐾
𝑗
← 𝐂𝐾−1

𝑗
, and its 

meta-parameters are set as: 

𝒑𝐾
𝑗
← 𝒑𝐾−1

𝑗
;  𝑋𝐾

𝑗
← 𝑋𝐾−1

𝑗
; 𝑆𝐾

𝑗
← 𝑆𝐾−1

𝑗                                                                          (21) 

Step 4. Fuzzy rule quality monitoring 

The local data density of 𝒙𝐾 within each data cloud is calculated by the following equation (𝑗 = 1,2, … , 𝑁𝐾): 

𝐷𝐾
𝑗 (𝒙𝐾) =

1

1+
‖𝒙𝐾−𝒑𝐾

𝑗
‖
2

𝑋𝐾
𝑗
−‖𝒑𝐾

𝑗
‖
2

                                                                                                        (22) 

and the firing strength of each fuzzy rule is calculated (𝑗 = 1,2, … , 𝑁𝐾): 

𝜆𝐾
𝑗
=

𝐷𝐾
𝑗
(𝒙𝐾)

∑ 𝐷𝐾
𝑘(𝒙𝐾)

𝑁𝐾
𝑘=1

                                                                                                                 (23) 

Then, the accumulated firing strength  𝛬𝐾−1
𝑗

  is updated to 𝛬𝐾
𝑗

 for each fuzzy rule (𝑗 = 1,2, … , 𝑁𝐾): 

𝛬𝐾
𝑗
← 𝛬𝐾−1

𝑗
+ 𝜆𝐾

𝑗
                                                                                                               (24) 

and the utility 𝜂𝐾
𝑗

 of each fuzzy rule is calculated (𝑗 = 1,2,… , 𝑁𝐾): 

𝜂𝐾
𝑗
←

1

𝐾−𝐼𝑗
𝛬𝐾
𝑗
                                                                                                                      (25) 

After this, Condition 3 is, then, checked to remove the data cloud and fuzzy rule that contributes little to the 

overall system output [4], [20]: 

Condition 3: 𝐼𝐹 (𝜂𝐾
𝑗
< 𝜂𝑜) 𝑇𝐻𝐸𝑁 (𝐂𝐾

𝑗
 𝑎𝑛𝑑 𝑹𝑗  𝑎𝑟𝑒 𝑟𝑒𝑚𝑜𝑣𝑒𝑑)                                  (26) 

where  𝜂𝑜 is another user-controlled parameter for monitoring the quality of fuzzy rules. The recommended 

setting of 𝜂𝑜 is given at the end of this section. 

If  𝐂𝐾
𝑗

 and 𝑹𝑗 satisfy Condition 3, they are removed from the system and fuzzy rule base with 𝑁𝐾 ← 𝑁𝐾 − 1. 

Step 5. Consequent parameter updating 

The consequent parameters of the fuzzy rules in the rule-base are updated using the FWRLS method as 

(𝑗 = 1,2, … , 𝑁𝐾) [3]: 

𝚯𝐾
𝑗
← 𝚯𝐾−1

𝑗
−
𝜆𝐾
𝑗
𝚯𝐾−1
𝑗

�̅�𝐾�̅�𝐾
𝑇𝚯𝐾−1

𝑗

1+𝜆𝐾
𝑗
�̅�𝐾
𝑇𝚯𝐾−1

𝑗
�̅�𝐾

                                                                                          (27) 

𝒂𝐾
𝑗
← 𝒂𝐾−1

𝑗
+ 𝜆𝐾

𝑗
𝚯𝐾−1
𝑗
𝒙𝐾(𝑦𝐾 − 𝒙𝐾

𝑇𝒂𝐾−1
𝑗
)                                                                        (28) 

Step 6.  Fuzzy rule-base updating 

Update the fuzzy rules in the rule base with the newly updated antecedent and consequent parameters 

(𝑗 = 1,2, … , 𝑁𝐾 ): 



𝑹𝑗: 𝐼𝐹 (𝒙~𝒑𝐾
𝑗
) 𝑇𝐻𝐸𝑁 (𝑦 = 𝒙𝑇𝒂𝐾

𝑗
)                                                                           (29) 

After this, the system goes back to Step 1 if new data samples are available. 

As it was analysed in [6], Ω𝑜 is used for initializing the covariance matrix for each new fuzzy rule added to 

the rule base, and 𝜂𝑜 is used for monitoring the quality of the existing fuzzy rules.  

In practice,  𝜂𝑜 subtly influences the system structure. The recommended value range of  𝜂𝑜 is [0, 0.1] [4]. 

The larger 𝜂𝑜 is, the faster the system removes the fuzzy rules that contribute very little to the overall system 

output from its rule base, the more efficient the system will be, and vice versa. However, it may deteriorate the 

performance as the system forgets the acquired knowledge too fast if the value of 𝜂𝑜  is too large [4]. While Ω𝑜 

influences the convergence of the consequent part. The system performance may deteriorate if the value of Ω𝑜 is 

set too large or too small [3]. 

Same as [6], in this paper, we use Ω𝑜 = 10 and 𝜂𝑜 = 0.1. However, we have to stress that both of them have 

marginal influence on the performance of ALMMo neuro-fuzzy system as well as on the optimization process, 

which will be introduced in the later sections. This will be empirically verified through numerical examples in 

section 5.1.  

3. Local Optimality Analysis of the ALMMo 

It has been proven in [25] that the stability of (neuro-)fuzzy system is always guaranteed on condition that the 

FWRLS algorithm is used for consequent parameters updating globally. Furthermore, this proof can also be 

applied to the FWRLS algorithm for consequent parameters updating per rule [25]. However, there is no 

guarantee on the optimality of the parameters of such kind of NFSs (in both the premise (IF) and consequent 

(THEN) parts) within a finite number of training samples in a nonstationary environment. Optimality is of great 

importance for a learning system, but is seldom analysed because of the complex nature of the problem itself.  

In this section, we will discuss the optimality of the ALMMo system. However, it has to be stressed that the 

optimality analysis also applies to other fuzzy systems of AnYa type that use FWRLS algorithm for consequent 

parameter updating. As the ALMMo comprises of the premise (IF) part and the consequent (THEN) part that are 

identified via two independent processes, the optimality of the two parts are analysed separately. 

3.1. Optimization of the Premise Part 

The optimality of the premise (IF) part of a traditional (Mamdani type [10] or Takagi-Sugeno type [30]) 

fuzzy system is not an easy question to answer because of the handcrafting involved in the design process of 

these fuzzy systems, i.e. the linguistic terms and the membership functions. However, the important 

simplification of the AnYa type fuzzy rule by replacing the traditional premise part with a simpler form (a 

prototype) [27] provides the possibility to systematically study the system optimality. This is because the 

optimality of the premise (IF) part of an AnYa type neuro-fuzzy system is reduced to the problem of obtaining 

the optimal partition of the data space, which can be considered as achieving locally optimal clustering. The 

formal mathematical condition for this can be formulated in the form of a mathematical programming problem 

[31]. 

Considering that the ALMMo neuro-fuzzy system partitions {𝒙}𝐾  into 𝑁𝐾 data clouds, the local optimization 

problem of the ALMMo is formulated as the following mathematical programming problem for clustering/data 

partitioning [31]: 

Problem 1:𝐹(𝑾𝐾 , 𝑷𝐾) = ∑ ∑ 𝑤𝐾
𝑖,𝑗
‖𝒙𝑗 − 𝒑𝐾

𝑖 ‖𝐾
𝑗=1

𝑁𝐾
𝑖=1 ,                                                       (30) 

where 𝑾𝐾 = [𝑤𝐾
𝑖,𝑗
] is a 𝑁𝐾 × 𝐾 real matrix; 𝑷𝐾 = [𝒑𝐾

1 , 𝒑𝐾
2 , … , 𝒑𝐾

𝑁𝐾] ∈ 𝐑𝑀×𝑁𝐾 is a 𝑀 ×𝑁𝐾  matrix consisting of 

all the identified prototypes at the K-th time instance. 𝑾𝐾 is subject to the following constrains (𝑖 =

1,2, … , 𝑁𝐾, 𝑗 = 1,2, … , 𝐾): 

𝑤𝐾
𝑖,𝑗
≥ 0 𝑎𝑛𝑑 ∑ 𝑤𝐾

𝑖,𝑗𝑁𝐾
𝑖=1 = 1.                                                                                             (31) 

Problem 1 is a nonconvex problem and the local minimum point does not need to be global minimum [31]. 

A local minimum point of 𝐹(𝑾𝐾 , 𝑷𝐾) is a locally optimal solution of Problem 1. 



It can be mathematically proven that the prototype-based (neuro-)fuzzy systems of “one-pass” type do not 

guarantee the locally optimal solutions after the learning process, which is also applies to the ALMMo. At the i-

th time instance, the data sample, 𝒙𝑖 (𝑖 < 𝐾) is observed, there is a guarantee that 𝒙𝑖 is assigned to the nearest 

prototype, 𝒑𝑖
𝑛𝑖 thanks to equation (15) [32]: 

∑ 𝑤𝑖
𝑗,𝑖
‖𝒙𝑖 − 𝒑𝑖

𝑗
‖ = ‖𝒙𝑖 − 𝒑𝑖

𝑛𝑖‖
𝑁𝑖
𝑗=1                                                                                     (32) 

where 𝑛𝑖 denote the index of the nearest prototype to 𝒙𝑖 at the i-th time instance; 𝐂𝑖
𝑛𝑖 is the corresponding data 

cloud which 𝒙𝑖 is assigned to, namely 𝒙𝑖  ∈ 𝐂𝑖
𝑛𝑖. 

However, with the new data samples arrive, 𝒙𝑖+1, 𝒙𝑖+2, … , 𝒙𝐾, the prototype, 𝒑𝑖
𝑛𝑖, would not stay the same 

because of the shifts and/or drifts of the data pattern [12], which means that: 

 𝒑𝑖
𝑛𝑖 ≠ 𝒑𝐾

𝑛𝑖  𝑎𝑛𝑑 ‖𝒙𝑖 − 𝒑𝑖
𝑛𝑖‖ ≠ ‖𝒙𝑖 − 𝒑𝐾

𝑛𝑖‖                                                                        (33) 

In addition, because of the newly observed data samples, new data clouds will also be initialized, and the 

following inequality is established: 

‖𝒙𝑖 − 𝒑𝐾
𝑛𝑖‖ ≥ ‖𝒙𝑖 − 𝒑𝐾

𝑛∗‖ = min𝑗=1,2,…,𝑁𝐾(‖𝒙𝑖 − 𝒑𝐾
𝑗
‖)                                                  (34) 

However, because of the “one-pass” type nature of the learning process of the ALMMo neuro-fuzzy system, 

once a data sample is assigned to a particular data cloud, it is discarded by the system and a later re-partition is 

not possible. Considering this and combining equations (32) and (34), there is: 

∑ 𝑤𝐾
𝑗,𝑖
‖𝒙𝑖 − 𝒑𝐾

𝑗
‖

𝑁𝐾
𝑗=1 = ‖𝒙𝑖 − 𝒑𝐾

𝑛𝑖‖ ≥ min𝑗=1,2,…,𝑁𝐾(‖𝒙𝑖 − 𝒑𝐾
𝑗
‖)                                    (35) 

Therefore, one can conclude that ∑ 𝑤𝐾
𝑗,𝑖
‖𝒙𝑖 − 𝒑𝐾

𝑗
‖

𝑁𝐾
𝑗=1  does not achieve the minimum value at the K-th time 

instance and the partition is not a locally optimal solution. 

To solve this problem, we propose a feasible solution for ALMMo system to achieve local optimality by 

further applying an iterative process to minimize  𝐹(𝑾𝐾 , 𝑷𝐾), i.e. using the well-known K-means clustering 

algorithm [31], [32]. To make this paper self-contained, we summarize the iterative processing in the following 

pseudo code. 

Algorithm 1 

While 𝐹(�̂�𝐾 , �̂�𝐾) ≠  𝐹(𝑾𝐾 , 𝑷𝐾) 

i. Obtain 𝑾𝐾 based on 𝑷𝐾 by the following expression (𝑖 = 1,2, … , 𝑁𝐾, 𝑗 = 1,2, … , 𝐾):  

{
𝑤𝐾
𝑖,𝑗
= 1 𝑖 = argmin𝑙=1,2,…,𝑁𝐾 (‖𝒙𝑗 − 𝒑𝐾

𝑙 ‖
2
)

𝑤𝐾
𝑖,𝑗
= 0 𝑖 ∈ 𝑒𝑙𝑠𝑒

                                                               (36) 

ii. Calculate 𝐹(𝑾𝐾 , 𝑷𝐾) using equation (30); 

iii. Obtain  �̂�𝐾  based on 𝑾𝐾 by the following expression (𝑖 = 1,2, … , 𝑁𝐾): 

�̂�𝐾
𝑖 =

1

∑ 𝑤𝐾
𝑖,𝑗𝐾

𝑗=1

∑ 𝑤𝐾
𝑖,𝑗
𝒙𝑗

𝐾
𝑗=1                                                                                                   (37) 

iv. Obtain �̂�𝐾 based on �̂�𝐾 by equation (36); 

v. Calculate 𝐹(�̂�𝐾 , �̂�𝐾) using equation (30); 

vi. Set 𝑷𝐾 ← �̂�𝐾; 

End While 

By applying Algorithm 1 to the partitioning results obtained by the ALMMo neuro-fuzzy system, one can 

always guarantee the local optimality of the premise (IF) part. Furthermore, numerical examples in section 5 

demonstrates that Algorithm 1 can converge to the locally optimal solution in a finite number of iterations (the 

detailed theoretical proof can be found in  [31]). 



3.2. Optimization of the Consequent Part 

The stability of the (neuro-)fuzzy system with consequent parameters updated globally using the FWRLS 

algorithm has been analysed in [25]. It has been proven that the error between the system output and the 

reference output, which is caused by the parameter errors, converges to a small neighbourhood of zero in which 

the average identification error satisfies [25]: 

 lim𝐾→∞
1

𝐾
∑ 𝑒𝑘

2𝐾
𝑘=1 ≤ 𝜀0                                                                                                   (38) 

where 𝑒𝑘 = �̂�𝑘 − 𝑦𝑘;  �̂�𝑘 and 𝑦𝑘  are the system output and reference output; 𝜀0 is a certain upper bound of the 

average identification error. The detailed proof can be found in [25].  

The consequent parameters of the ALMMo neuro-fuzzy system are updated using the FWRLS algorithm per 

sub-model (fuzzy rule). The locally updated FWRLS (per fuzzy rule) is significantly less influenced by the 

system structure evolution than the globally updated FWRLS and is significantly less computationally 

expensive [3], [4]. Therefore, the locally updated FWRLS is more likely to achieve the theoretical optimality for 

the RLS condition [3], [4]. 

In practice, with a finite number of observations (𝐾 ≪ ∞), a “one-pass” type parameter learning mechanism 

is usually unable to guarantee an optimal solution. This is because of the lack of an iterative search process, 

which allows the consequent parameters converging to the locally optimal. Therefore, a common practice is to 

approximate the locally optimal parameters by repeating the learning process until the overall training error 

converges into an acceptable range [33]. 

At the K-th time instance (𝐾 ≪ ∞), the overall error function of the learning process is formulated as the 

following mathematical programming problem [34]: 

Problem 2: 𝐸(�̂�, 𝒚) =
1

𝐾
∑ 𝑒𝑘

2𝐾
𝑘=1                                                                                       (39) 

With the identified 𝑁𝐾 fuzzy rules with the respective prototypes denoted as 𝒑𝐾
𝑖  (𝑖 = 1,2, … , 𝑁𝐾), Problem 2 

can be reformulated as: 

𝐸(�̂�, 𝒚) =
1

𝐾
∑ (∑ 𝜆𝑘

𝑖 𝒙𝑘
𝑇𝒂𝑘

𝑖𝑁𝐾
𝑖=1 − 𝑦𝑘)

2𝐾
𝑘=1                                                                             (40) 

where 𝜆𝑘
𝑖  is calculated using equation (23) (𝑘 = 1,2, … , 𝐾) and is fixed throughout the whole iteration process 

since the prototypes (𝒑𝐾
𝑖 ) stay the same. 

To have a convergence of the overall error function 𝐸(�̂�, 𝒚) into a small range close to 0 with the 

observations {𝑦}𝐾 and {𝒙}𝐾 , we use the following iterative process by repeating the consequent parameters 

updating process, which is essentially equivalent to approximate 𝒂𝑘
𝑖  (𝑘 = 1,2, … , 𝐾, 𝑖 = 1,2, … , 𝑁𝐾) to the 

optimal values throughout the whole iteration, see Algorithm 2 below (𝜀1 is the stopping threshold for the 

iterative process, which is a small number close to 0, in this paper, we use 𝜀1 = 10
−5). 

Algorithm 2 

i. Set 𝒂0
𝑖 = [0,0, … ,0⏞    

𝑀+1

] and 𝚯0
𝑖 = Ω𝑜𝐈(𝑀+1)×(𝑀+1) (𝑖 = 1,2, … , 𝑁𝐾); 

ii. Calculate 𝜆𝑘
𝑖  (𝑖 = 1,2, … , 𝑁𝐾 , 𝑘 = 1,2, … , 𝐾) using equation (23); 

iii. While ‖𝐸1 − 𝐸0‖ ≥ 𝜀1: 

* Set 𝑘 ← 1; 𝐸0 ← 𝐸1; 𝐸1 ← 0;  

* While 𝑘 ≤ 𝐾: 

- Read 𝑦𝑘  and 𝒙𝑘; 

- 𝐸1 ← 𝐸1+(∑ 𝜆𝑘
𝑖 𝒙𝑘

𝑇𝒂𝑘−1
𝑖𝑁𝐾

𝑖=1 − 𝑦𝑘)
2
; 

- Update  𝒂𝑘−1
𝑖  and 𝚯𝑘−1

𝑖  to 𝒂𝑘
𝑖  and 𝚯𝑘

𝑖  using FWRLS algorithm (equations (27) and (28)); 

-  𝑘 ← 𝑘 + 1; 



* End While 

* Set  𝐸1 ←
1

𝐾
𝐸1; 

* Set 𝒂0
𝑖 ← 𝒂𝐾

𝑖  and 𝚯0
𝑖 ← 𝚯𝐾

𝑖 ; 

iv. End While 

We have to admit that in practice, it is very hard to let the overall error function  𝐸(�̂�, 𝒚) converge to 0 due to 

the complexity of the real problems. In section 5 we will demonstrate that using Algorithm 2, the overall error 

function will converge to a small nonzero value in a few iterations. 

4. The Proposed SBALMMo Neuro-Fuzzy System  

In this section, we propose a novel self-boosting algorithm to upgrade the ALMMo neuro-fuzzy system, and 

thus, we introduce the SBALMMo. A new type of quality monitoring mechanism is also added. It has to be 

stressed that the self-boosting and quality monitoring mechanisms are actually very flexible and universal, and 

they can be applied to other neuro-fuzzy and fuzzy rule-based systems of AnYa type with the FWRLS 

consequent parameters updating algorithm. On the other hand, we have to admit that with the self-boosting 

algorithm, the learning process of the SBALMMo becomes incremental instead of being of “one-pass” type. 

4.1. Self-Boosting Algorithm with Quality Monitoring Mechanism 

In this subsection, we will describe the self-boosting algorithm for the SBALMMo in detail, which is 

conducted on a chunk-by-chunk basis. Nonetheless, alternative approaches to activate the self-boosting can be 

considered as well, i.e. the self-boosting can be activated at each time the structure and parameters of 

SBALMMo are self-updated (which will be computationally expensive) or when the error between the system 

output and the reference output exceeds a certain threshold [24]. Moreover, there are different ways for the 

system to use the observed data, i.e. the learning system can choose to keep all the previously collected data 

chunks in memory for self-boosting, and, thus, optimize the system with all the previously gained information; 

the learning system may also discard the processed chunks and only use the most recently collected chunk (or a 

few recent ones) to follow the time-changing data pattern effectively.  

During the learning process of the ALMMo neuro-fuzzy system presented in section 2, the processed data 

samples are discarded automatically to relief the memory burden. However, with the self-boosting algorithm, 

the ALMMo sends each processed data sample and the corresponding reference output sequentially to a data 

pool with the maximum capacity of 𝑄 (which can be in external memory). It has to be stressed that 𝑄 is not a 

problem- or user-specific parameter. 

Once the maximum capacity of the data pool is reached, which means the data pool has collected the most 

recently arrived 𝑄 data samples and the corresponding reference outputs, the ALMMo will encapsulate the 𝑄 

data samples and outputs into a data chunk, denoted by {�́�, �́�}𝑄 and empty the pool for the next round.  

Before the ALMMo processes the next new data sample (between Steps 5 and 6), the ALMMo boosts itself 

with the data chunk {�́�, �́�}𝑄 by applying Algorithm 1 firstly to optimize the positions of the identified 

prototypes in the data space, namely, obtain the locally optimal prototypes. After this, the premise (IF) part of 

the ALMMo is optimized based on {�́�, �́�}𝑄 , and the optimized prototypes are re-denoted by �́�𝐾
1 , �́�𝐾

2 , … , �́�𝐾
𝑁𝐾.  

Then, we need to identify the stale fuzzy rules that are less activated before Algorithm 2 is used for 

optimizing the consequent parameters further. The stale fuzzy rules are usually generated due to the shifts and/or 

drifts of the changing data pattern [12]. We calculate the activation level of each data sample within {�́�, �́�}𝑄 to 

each fuzzy rule using equation (23), denoted by �́�𝑘
𝑖  (𝑖 = 1,2, … , 𝑁𝐾 , 𝑘 = 1,2, … , 𝑄) with the optimized 

prototypes. The stale fuzzy rules are identified using Condition 4: 

Condition 4:  𝐼𝐹  (∑ �́�𝑘
𝑖  𝑄

𝑘=1 < (1 − Ω1) ∙ �́�0) 𝑇𝐻𝐸𝑁  (�́�𝐾
𝑖  𝑖𝑠 𝑎 𝑠𝑡𝑎𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 )    (41) 

where 𝑖 = 1,2, … , 𝑁𝐾; �́�0 =
1

𝑁𝐾
∑ ∑ �́�𝑘

𝑖  
𝑁𝐾
𝑖=1

𝑄
𝑘=1 ; Ω1 is a small value (|Ω1| < 1), and the recommended value range 

of Ω1 is 0 ≤ Ω1 ≤ 0.1, which means that the SBALMMo neuro-fuzzy system will discard up to half of the 

identified prototypes and the corresponding fuzzy rules that are less activated. 



Condition 4 is used for identifying the fuzzy rules that are activated much less compared with others, which 

indicates that the prototypes of these fuzzy rules are not as representative as others, and they do not stand for the 

local modes of the data density anymore. Once a prototype, for instance, �́�𝐾
𝑖 , is recognized as a stale one, the 

corresponding data cloud will be removed from the system structure, and the fuzzy rule will be removed from 

the rule base as well.  

In contrast with other criteria for identifying stale fuzzy rules, for example, the utilities [4], [20] (Condition 3 

in this paper) or the ages [12] of the fuzzy rules, Condition 4 is able to react quickly to the shifts and/or drifts 

[12] of the data pattern because it concerns only the more recently observed data samples instead of all the 

previously observed data set.  

Following the quality monitoring, Algorithm 2 is applied to optimize the consequent parameters further. 

After both, the premise (IF) and consequent (THEN) parts of the ALMMo have been optimized, the system goes 

back to the normal status and processes the newly arrived data samples on a sample-by-sample basis until the 

data pool is full again. 

4.2. Algorithm Summary 

The main procedure of the self-boosting algorithm used in the SBALMMo system is summarized as follows. 

Self-Boosting Algorithm 

i. Send the processed input and output to the data pool; 

ii. If (data pool is full) Then: 

* Encapsulate {�́�, �́�}𝑄 and empty the data pool; 

* Execute Algorithm 1; 

* Remove stale fuzzy rules using Condition 4; 

* Execute Algorithm 2; 

iii. End If 

The flowchart of the learning process of the SBALMMo neuro-fuzzy system is presented in Fig. 2, where the 

self-boosting algorithm is executed in Step 5.5. 



 

Fig. 2. The flowchart of the learning process of the SBALMMo neuro-fuzzy system 

4.3. Computational Complexity Analysis 

In this subsection, the computational complexity of each step of the SBALMMo neuro-fuzzy system (as 

presented in Fig.2) is analysed. However, since the system structure of the proposed approach is dynamically 

changing all the time, we assume that the computational complexity analysis is conducted at the K-th time 

instance.  

Step 0: The computational complexity of this step is negligible since this step concerns the system 

initialization only, and the computation related to this step would not be performed if 𝐾 > 1. 

Step 1: The computational complexity of calculating the local data density-based firing strength is 

𝑂(𝑁𝐾−1𝑊) thanks to the recursive calculation form (equation (7)), and the complexity of producing 

the system output is 𝑂(𝑁𝐾−1𝑊) as well. Therefore, the computational complexity of this step is 

𝑂(𝑁𝐾−1𝑊). 

Step 0. System initialization 
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Step 2. Global meta-parameter 
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Step 4. Fuzzy rule quality 
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Step 2: The computational complexities for updating the global meta-parameters (𝝁𝐾 and 𝑋𝐾) and 

calculating the data densities are 𝑂(𝑁𝐾−1𝑊) and 𝑂((𝑁𝐾−1 + 1)𝑊), respectively, and thus, the 

computational complexity of this step is 𝑂((𝑁𝐾−1 + 1)𝑊). 

Step 3: This step mainly concerns updating the existing fuzzy rule or adding a rule to the rule base, and thus, 

the computational complexity of this step is 𝑂(𝑊).  

Step 4: The most of the computations in this step are related to calculating the firing strength of each fuzzy 

rule in the rule base. Therefore, similarly to the steps 1 and 2, the computational complexity of this 

step is  𝑂(𝑁𝐾𝑊). 

Step 5: Updating the consequent parameters of fuzzy rules requires significantly more computational 

resources because the FWRLS method requires the covariance matrices, 𝚯𝐾
𝑗

(𝑗 = 1,2, … , 𝑁𝐾) to be 

updated, and the computational complexity of this step is 𝑂(𝑁𝐾𝑊
2). 

Step 5.5: This is the extra step that the proposed SBALMMo system has in comparison with the ALMMo 

system. Algorithms 1 and 2 in this step consume most of the computational resources though they 

are activated only when the data pool is full.  

When the data pool reaches its storage capacity, Algorithm 1 is used firstly to optimize the premise 

parts of the fuzzy rules with the accumulated 𝑄 historical data samples based on the distances 

between the historical data samples and the prototypes of the fuzzy rules. Therefore, the 

computational complexity of Algorithm 1 is 𝑂(𝑄𝑁𝐾𝑊). 

After Algorithm 1 has been finished and the stale fuzzy rules have been removed, Algorithm 2 is 

executed. Algorithm 2 is for optimizing the consequent parts of the fuzzy rules, and the most of the 

computation resources are used for updating the covariance matrices for the fuzzy rules. Therefore, 

the computational complexity of Algorithm 2 is 𝑂(𝑄𝑁𝐾𝑊
2). 

Therefore, the overall computational complexity of step 5.5 is 𝑂(𝑄𝑁𝐾𝑊
2) when Algorithms 1 and 

2 are activated. Otherwise, the computation of step 5.5 is negligible.  

Step 6:  This step updates fuzzy rules in the rule base with the latest premise and consequent parameters, and 

the computational complexity of this step is negligible as well. 

5. Numerical Examples & Discussions 

In this section, a number of numerical examples are performed to validate the proposed concepts and the 

method. The overall performance of the proposed approach is evaluated on benchmark datasets as well as on 

real-world problems. Details of the comparative algorithms used in this paper are provided in Table 1. 

The algorithms were developed using MATLAB R2018a, the performance was evaluated on a PC with dual 

core processor 3.60 GHz×2 and 16 GB RAM. 

5.1. Performance on Benchmark Regression Problems 

In this subsection, firstly, the following widely used benchmark datasets are used for numerical examples to 

demonstrate the performance of the proposed SBALMMo:  

1) Autos;  

2) Triazines;  

3) Delta Ailerons, and  

4) California Housing.  

The details of the problems are given in Table 2. Following the common practice, the input and output 

attributes are normalized to the range of [0,1] in advance [18], [25].  

 

 



Table 1. Details of the comparative algorithms 

Abbreviation Full Name 

Online/ 

Offline 

Training 

Parameter 

Setting 

AnYa 
AnYa neuro-fuzzy system with eClustering 

learning algorithm [27] 
Online Same as in [27] 

CEFNS 
Correntropy-based evolving fuzzy neural 

system[18] 
Online Same as in [18] 

DENFIS 
Dynamic evolving neural-fuzzy inference system 

[2] 
Online Same as in [2] 

ESAFIS 
Extended sequential adaptive fuzzy inference 

system [35] 
Online Same as in [35] 

eTS Evolving Takagi-Sugeno fuzzy model [3] Online Same as in [3] 

FCMMS Fuzzily connected multi-model system [36] Online Same as in [36] 

McFIS Meta-cognitive neuro-fuzzy inference system [37] Online Same as in [37] 

PANFIS 
Parsimonious network based on fuzzy inference 

system[16] 
Online Same as in [16] 

SAFIS Sequential adaptive fuzzy inference system [17] Online Same as in [17] 

SeroFAM 
Self-reorganizing fuzzy-associative learning 

system [38] 
Online Same as in [38] 

Simpl_eTS 
A simplified method for learning evolving Takagi-

Sugeno fuzzy model [13] 
Online Same as in [13] 

EFuNN Evolving fuzzy neural network [39] Offline Same as in [39] 

OLSLR Least square linear regression algorithm [40]   

SWLSLR  
Sliding window least square linear regression 

algorithm [41] 
 

Window size: 

200 samples 

 

Table 2. Details of the benchmark datasets for regression 

Dataset Attributes Training Samples, 𝐾𝑇 Validation Samples, 𝐾𝑉 

Autos 15 inputs + 1 output 80 79 

Triazines 60 inputs + 1 output 100 86 

Delta Ailerons 5 inputs + 1 output 3000 4129 

California Housing 8 inputs + 1 output 10320 10320 

 

In the first numerical example, the relationship between the size of the data pool, 𝑄 and the performance of 

the SBALMMo is investigated. In this example, the SBALMMo is trained based on the training set and, then, 

tested on the validation set. During the validation stage, the SBALMMo stops updating itself. Since the 

cardinality of the four benchmark problems are different, to make the results comparable, we set   𝑄 =
𝐾𝑇

5
,
𝐾𝑇

4
,
𝐾𝑇

3
,
𝐾𝑇

2
, 𝐾𝑇 and  Ω1 = 0 , and report the results in terms of root mean square error (RMSE),  number of 

fuzzy rules (rule#) and execution time (texe, in seconds) in Table 3. The average time consumption for each self-

boosting during the training stage is given to illustrate the computational complexity of the proposed approach. 

We also report the results obtained by ALMMo as a baseline.  

 

Table 3. Performance on benchmark regression datasets using different value of 𝑄 (Ω1 = 0) 

Algorithm SBALMMo ALMMo 

Dataset Measure 

𝑄 

 𝐾𝑇
5

 
𝐾𝑇
4

 
𝐾𝑇
3

 
𝐾𝑇
2

 𝐾𝑇 

Autos 

RMSE 0.0879 0.0509 0.0494 0.0457 0.0452 0.0568 

rule# 2 3 3 4 4 8 

texe (s) 0.30 0.32 0.38 0.30 0.18 0.02 

texe per Self-boosting (s) 0.05 0.08 0.12 0.14 0.17  



Triazines 

RMSE 0.0411 0.0322 0.0070 0.0046 0.0022 0.0078 

rule# 2 2 1 1 3 7 

texe (s) 2.18 1.18 1.41 1.40 2.48 0.19 

texe per Self-boosting (s) 0.40 0.28 0.39 0.64 2.34  

Delta 

Ailerons 

RMSE 0.0513 0.0513 0.0513 0.0511 0.0512 0.0512 

rule# 1 1 2 5 4 10 

texe (s) 1.30 1.71 1.44 1.79 1.78 0.47 

texe per Self-boosting (s) 0.17 0.30 0.32 0.65 1.08  

California 

Housing 

RMSE 0.0773 0.0773 0.0771 0.0771 0.0771 0.0777 

rule# 5 5 2 2 5 10 

texe (s) 9.56 10.49 7.31 5.47 6.96 1.84 

texe per Self-boosting (s) 1.62 2.21 1.95 1.92 5.46  

 

Remark 1:  Table 3 demonstrates that, in general, the SBALMMo with the data pool of a larger size is able 

to achieve a better regression performance in terms of RMSE. This is because a smaller data pool can only 

provide a small proportion of data samples for optimization process, and the structure and meta-parameters of 

the SBALMMo are more likely to converge to a local minimum solution that is only optimal for this small 

proportion of data only. By using a larger data pool, the proposed SBALMMo can achieve a better performance 

since the premise (IF) and consequent (THEN) parts of the ALMMo system are optimized based on the majority 

of the data (even the whole dataset). On the other hand, a larger data pool will require more time for the self-

boosting algorithm to reach the locally optimal solution. This is in accordance with the computational 

complexity analysis in subsection 4.3. A smaller data pool allows the SBALMMo system to be able to perform 

the self-boosting algorithm more efficiently, but, since the self-boosting algorithm has to be activated more 

frequently, this might increase the overall computational time.  

Secondly, the relationship between the forgetting factor, Ω1 and the performance of the SBALMMo is 

investigated based on the four benchmark problems. Similar to the previous example, in this example, the 

SBALMMo is trained based on the training set and, then, tested on the validation set. We set 𝑄 = 𝐾𝑇 and 

change the value of Ω1 as  Ω1 = −0.02,0,0.02,0.04,0.06,0.08 and 0.1. The root mean square error (RMSE) and 

number of fuzzy rules (rule#) of the regression results are reported in Table 4. 

 

Table 4. Performance on benchmark regression datasets using different value of Ω1 (𝑄 = 𝐾𝑇) 

Algorithm SBALMMo ALMMo 

Dataset Measure 
Ω1 

 
−0.02 0 0.02 0.04 0.06 0.08 0.10 

Autos 
RMSE 0.0455 0.0452 0.0452 0.0452 0.0452 0.0446 0.0446 0.0568 

rule# 3 4 5 5 5 6 6 8 

Triazines 
RMSE 0.0022 0.0022 0.0022 0.0022 0.0023 0.0023 0.0022 0.0078 

rule# 3 3 3 3 5 6 7 7 

Delta 

Ailerons 

RMSE 0.0512 0.0512 0.0512 0.0512 0.0512 0.0512 0.0512 0.0512 

rule# 2 4 9 10 10 10 10 10 

California 

Housing 

RMSE 0.0771 0.0771 0.0770 0.0770 0.0770 0.0770 0.0770 0.0777 

rule# 1 5 9 9 10 10 10 10 

 

Remark 2:  Table 4 demonstrates that the performance of the SBALMMo is less influenced by the value of 

Ω1, generally. However, with a smaller value of Ω1, the system complexity of the SBALMMo is largely 

decreased.  

Based on Remarks 1 and 2, we use = 𝐾𝑇  ,Ω1 = 0 as the default setting in the following numerical examples 

of this subsection, 

In the following two numerical examples, the influence of the user-controlled parameters, Ω0 and 𝜂𝑜 on the 

performance of the SBALMMo system is investigated. Following the same experimental protocol, firstly, we 



use the recommended value of 𝜂𝑜, namely, 𝜂𝑜 = 0.1, and change the value of Ω0 as follows:  Ω0 = 1,5,10,25 

and 100. The root mean square error (RMSE) and number of fuzzy rules (rule#) of the regression results are 

reported in Table 5. 

 

Table 5. Performance on benchmark regression datasets using different value of Ω0 (𝜂𝑜 = 0.1) 

Dataset Measure 
Ω0 

1 5 10 25 100 

Autos 
RMSE 0.0447 0.0450 0.0452 0.0456 0.0460 

rule# 4 4 4 4 4 

Triazines 
RMSE 0.0032 0.0024 0.0022 0.0018 0.0013 
rule# 3 3 3 3 3 

Delta 

Ailerons 

RMSE 0.0512 0.0512 0.0512 0.0512 0.0512 

rule# 4 4 4 4 4 

California 

Housing 

RMSE 0.0772 0.0771 0.0771 0.0770 0.0770 

rule# 5 5 5 5 5 

 

Then, we use the recommended value of Ω0, namely, Ω0 = 10, and change the value of 𝜂𝑜 as follows:   

𝜂𝑜 = 0.01,0.03,0.05,0.10 and 0.20 to repeat the numerical experiments. The root mean square error (RMSE) 

and number of fuzzy rules (rule#) of the regression results are reported in Table 6. 

 

Table 6. Performance on benchmark regression datasets using different value of  𝜂𝑜 (Ω0 = 10) 

Dataset Measure 
𝜂𝑜 

0.01 0.03 0.05 0.10 0.20 

Autos 
RMSE 0.0452 0.0452 0.0452 0.0452 0.0455 

rule# 4 4 4 4 3 

Triazines 
RMSE 0.0022 0.0022 0.0022 0.0022 0.0020 

rule# 3 3 3 3 3 

Delta 

Ailerons 

RMSE 0.0512 0.0512 0.0512 0.0512 0.0512 

rule# 15 15 11 4 2 

California 

Housing 

RMSE 0.0771 0.0771 0.0770 0.0771 0.0770 

rule# 3 3 3 5 3 

 

Remark 3:  Tables 5 and 6 demonstrate that, Ω𝑜 has negligible influence on the optimization process. While,  

𝜂𝑜 has subtle influence on the optimization process since it changes the number of fuzzy rules in the rule base. 

Nonetheless, the performance of the SBALMMo system in terms of RMSE is only marginally influenced by 

both of them. 

For a better demonstration of the effectiveness of the system structure and parameter optimization algorithm, 

the corresponding changes of the values of 𝐹(𝑾𝐾 , 𝑷𝐾) and 𝐸(�̂�, 𝒚) during the self-boosting process on Autos, 

Triazines, Delta Ailerons and California Housing dataset are depicted in Fig. 3, where one can see that the 

values of 𝐹(𝑾𝐾 , 𝑷𝐾) and 𝐸(�̂�, 𝒚) converge to the minimum in few iterations. 

 



 

Fig. 3. Changes of the values of 𝑓(𝑾𝐾 , 𝑷𝐾) and 𝐸(�̂�, 𝒚) during self-boosting operations. 

 

The performance of the SBALMMo is further compared with the well-known “state-of-the-art” algorithms 

based on the four benchmark datasets, the results are reported in Table 7 in terms of root mean square error 

(RMSE) and number of fuzzy rules (rule#). All the algorithms involved in the comparison are trained with the 

training set and tested on the validation set. During the validation stage, the involved algorithms will stop 

updating. The parameter settings of these algorithms have been given in Table 1.  

 

Table 7. Performance comparison on benchmark datasets  

Dataset Algorithm RMSE rule# Dataset Algorithm RMSE rule# 

Autos 

SBALMMo 0.0452 4 

Delta 

Ailerons 

SBALMMo 0.0512 4 

ALMMo [6] 0.0568 8 ALMMo [6] 0.0512 10 

AnYa [27] 0.0942 3 AnYa [27] 0.0983 2 

CEFNS [18] 0.0666 2 CEFNS [18] 0.0502 3 

ESAFIS [35] 0.0604 3 ESAFIS [35] 0.0506 13 

eTS [3] 0.0535 3 eTS [3] 0.0513 4 

McFIS [37] 0.0687 3 McFIS [37] 0.0509 15 

SAFIS [17] 0.1184 5 SAFIS [17] 0.0549 14 

Simpl_eTS [13] 0.0689 10 Simpl_eTS [13] 0.0512 4 

Triazines 

SBALMMo 0.0022 3 

California 

Housing 

SBALMMo 0.0771 5 

ALMMo [6] 0.0078 7 ALMMo [6] 0.0777 10 

AnYa [27] 0.0754 5 AnYa [27] 0.1044 4 

CEFNS [18] 0.0452 6 CEFNS [18] 0.0878 2 

ESAFIS [35] 0.0331 19 ESAFIS [35] 0.0892 6 

eTS [3] 0.0179 9 eTS [3] 0.0772 3 

McFIS [37] 0.0556 12 McFIS [37] 0.0822 15 

SAFIS [17] 0.0581 9 SAFIS [17] 0.0988 12 

Simpl_eTS [13] 0.0197 9 Simpl_eTS [13] 0.0773 3 

 



As one can see from Table 7, the proposed SBALMMo neuro-fuzzy system is able to achieve the best 

performance on the Autos, Trazines and California Housing datasets. In addition, the SBALMMo neuro-fuzzy 

system has a lighter system structure compared with the ALMMo, which means that it is able to provide a better 

interpretability for users. 

Furthermore, for a better evaluation, we randomly descramble the order of the training samples of the four 

benchmark datasets to train the SBALMMo neuro-fuzzy system and test the statistical performance based on the 

validation set. We also involve other well-known algorithms for comparison. The statistical results are given in 

Table 8 in terms of the means and standard deviations of the three measures, namely, RMSE, rule# and texe. 

 

Table 8. Statistical result comparison on benchmark datasets 

Dataset Algorithm 
Mean ± Stand Deviation 

RMSE rule# texe (s) 

Autos 

SBALMMo 0.0456±0.0002 3.6±0.9 0.16±0.05 

ALMMo [6] 0.0549±0.0028 7.3±2.2 0.02±0.01 

FCMMS [36] 0.1238±0.0806 1.2±0.4 0.02±0.01 

AnYa [27] 0.1095±0.0305 3.0±0.5 0.01±0.01 

ESAFIS [35] 0.0437±0.0032 2.2±0.4 0.10±0.05 

SAFIS [17] 0.1752±0.0443 2.4+0.8 0.02±0.01 

Triazines 

SBALMMo 0.0022±0.0001 3.5±0.8 2.12±0.71 

ALMMo [6] 0.0092±0.0012 7.1±1.3 0.06±0.02 

FCMMS [36] 0.0326±0.0086 1.0±0.0 0.03±0.01 

AnYa [27] 0.0944±0.0304 5.5±0.5 0.14±0.06 

ESAFIS [35] 0.0103±0.0034 2.4±0.5 0.29±0.12 

SAFIS [17] 0.2033±0.0452 2.5±0.9 0.03±0.01 

Delta 

Ailerons 

SBALMMo 0.0512±0.0000 5.0±1.0 1.51±0.34 

ALMMo [6] 0.0516±0.0008 9.6±1.3 0.42±0.01 

FCMMS [36] 0.0703±0.0167 4.5±3.3 0.39±0.09 

AnYa [27] 0.1160±0.0274 2.0±0.0 0.11±0.02 

ESAFIS [35] 0.0508±0.0002 2.0±0.0 0.67±0.12 

SAFIS [17] 0.0652±0.0197 5.7±1.3 0.21±0.03 

California 

Housing 

SBALMMo 0.0771±0.0000 3.8±1.4 5.23±1.54 

ALMMo [6] 0.0782±0.0012 9.8±1.1 1.53±0.08 

FCMMS [36] 0.1013±0.0174 3.1±2.6 1.64±0.23 

AnYa [27] 0.1112±0.0278 3.7±0.5 0.70±0.11 

ESAFIS [35] 0.0789±0.0121 2.1±0.8 2.40±0.72 

SAFIS [17] 0.0939±0.0028 10.9±1.7 1.63±0.30 

 

As one can see from the comparison, despite that the training samples are re-ordered randomly, the 

SBALMMo neuro-fuzzy system always performs better and more stable in terms of the values of the mean and 

the standard deviation of RMSE. This is because that the structure and the meta-parameters of the SBALMMo 

have, both, been optimized with the training data, and thus, the influence of the order of the training samples on 

the system is minimized. 

Comparing between ALMMo and SBALMMo, one may notice that SBALMMo requires 3 to 35 times more 

execution time for the training process because of the iterative search process for the optimal solution. 

Nonetheless, it is noticeable that the average RMSE of the results obtained by the SBALMMo reduces by 1% to 

75%, and the standard deviation of the RMSE is very close to zero. In addition, the number of fuzzy rules in the 

SBALMMo is only half of the number of rules generated by ALMMo. This means that the SBALMMo system 

is able to provide accurate regression results with a simpler system structure and much higher robustness. The 

simpler system structure further improves the human interpretability of the learning results.  



5.2. Performance on Foreign Currency Exchange Data 

In this subsection, we test the proposed SBALMMo neuro-fuzzy system on the following three of the most 

widely currency pairs trading all around world: 

1) Euro versus United States Dollar (EUR/USD) 

2) Australian Dollar versus United States Dollar (AUD/USD) 

3) Euro versus United States Dollar (EUR/USD) 

The historical currency exchange prices of the three currency pairs from the 2 January 2002 – 30 December 

2016 are obtained from [42]. Each dataset (one per currency pair) is composed of the following five attributes: 

1) data/time tag, 𝐾,  

2) open price, 𝑥𝐾,1,  

3) high price, 𝑥𝐾,2,  

4) low price, 𝑥𝐾,3 and  

5) close price, 𝑥𝐾,4. 

In the following numerical example, the datasets are divided into a training set and a testing set with a ratio 

of 𝐾𝑇: 𝐾𝑉 = 7: 3. The open price, 𝑥𝐾,1, high price, 𝑥𝐾,2,  low price, 𝑥𝐾,3 and  close price, 𝑥𝐾,4 of the current day 

is used to predict the close price of the next data, namely,  �̂�𝐾+1,4 = 𝑓 (𝒙𝐾 = [𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]
𝑇
). The 

SBALMMo neuro-fuzzy system will stop updating its system structure and meta-parameters during the 

validation stage. In this subsection, 𝑄 and  Ω1 are set as  𝑄 = 𝐾𝑇 ,Ω1 = 0 . 

The prediction performance of the SBALMMo system on the currency exchange data is tabulated in Table 9 

in terms of root mean square error (RMSE), number of fuzzy rules (rule#) and execution time (texe, in seconds). 

It is also compared with other well-known approaches under the same experimental protocol, and the 

comparison results are also reported in Table 9. We also report the results obtained by dummy prediction 

method in Table 9, which takes the closing price of the current day as the predicted closing price of the next day 

(namely, �̂�𝐾+1,4 ← 𝑥𝐾,4), as the baseline. The prediction results obtained by SBALMMo are depicted in Fig. 4 

for illustration. 

 

Table 9. Performance comparison on foreign currency exchange data 

 Algorithm RMSE rule# texe (s) 

EUR/USD 

SBALMMo 0.0060 4 1.03 

ALMMo [6] 0.0062 8 0.46  

FCMMS [36] 0.0131 5 0.95 

AnYa [27] 0.0060 2 0.28 

eTS [3] 0.0065 6 31.98 

ESAFIS [35] 0.0066 2 1.28 

SAFIS [17] 0.0190 2 0.33 

Dummy 
a
 0.0060   

AUD/USD 

SBALMMo 0.0050 5 1.52 

ALMMo [6] 0.0052 7 0.42 

FCMMS [36] 0.0337 12 1.12 

AnYa [27] 0.0112 2 0.27 

eTS [3] 0.0050 8 32.80 

ESAFIS [35] 0.0050 2 1.39 

SAFIS [17] 0.0198 2 0.31 

Dummy 0.0050   

GBP/USD 
SBALMMo 0.0078 5 1.08 

ALMMo [6] 0.0080 7 0.62 



FCMMS [36] 0.0110 9 1.23 

AnYa [27] 0.0085 2 0.31 

eTS [3] 0.0131 8 32.08 

ESAFIS [35] 0.0082 2 1.37 

SAFIS [17] 0.0427 2 0.29 

Dummy 0.0078   
                                                                                                         a

 The prediction result obtained by the dummy method. 

 

As one can see from Table 9, the SBALMMo is able to provide highly accurate prediction on all three 

currency exchange pairs outperforming other alternative approaches, which demonstrates the strong potential of 

the SBALMMo neuro-fuzzy system in real-world applications.  

 

 

Fig.4. Prediction results on the currency exchange data by SBALMMo 

 

It is also quite interesting to notice that the dummy prediction method actually is able to provide the 

prediction results in the same level as the SBALMMo. This is because of the stationary nature of this problem, 

the foreign currency exchange data usually does not change dramatically in a short time. There is no big 

difference between the close price of one day and the close price of the next day (see Fig. 4). Since all the 

regression algorithms have inherent approximation errors, when the data is stationary, the approximation errors 

play a more significant role in their performance. 

In order to demonstrate the interpretability of the created fuzzy rules, the rule base obtained after the training 

processes by the SBALMMo system are tabulated in Table 10, where we can see that the interpretability of the 

fuzzy rules comes from the prototype-based nature [43]. Prototypes are the most representative data samples, 

and they represent the local models in the data distribution. The prototypes also make the decision process of the 

SBALMMo system interpretable. For each newly arrived data sample, the system compares it with all the 

existing prototypes. The fuzzy rules with prototypes closer to the new data sample have larger firing strengths, 

which means they contribute more to the system output. 



 

Table 10. Fuzzy rules identified from the training process 

 # Fuzzy Rules 

EUR/USD 

1 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.9285,0.9285,0.9285,0.9285]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0025 + 0.2497𝑥𝐾,1 + 0.2493𝑥𝐾,2 + 0.2497𝑥𝐾,3 + 0.2495𝑥𝐾,4)
 

2 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.3037,1.3038,1.3036,1.3037]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0057 + 0.2492𝑥𝐾,1 + 0.2490𝑥𝐾,2 + 0.2486𝑥𝐾,3 + 0.2489𝑥𝐾,4)
 

3 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.3985,1.3986,1.3983,1.3985]) 

𝑇𝐻𝐸𝑁 (𝑦 =  0.0053 + 0.2493𝑥𝐾,1 + 0.2489𝑥𝐾,2 + 0.2488𝑥𝐾,3 + 0.2489𝑥𝐾,4)
 

4 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.5108,1.5109,1.5107,1.5108]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0049 + 0.2494𝑥𝐾,1 + 0.2488𝑥𝐾,2 + 0.2491𝑥𝐾,3 + 0.2490𝑥𝐾,4)
 

AUD/USD 

1 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.5560,0.5561,0.5560,0.5560]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0014 + 0.2493𝑥𝐾,1 + 0.2497𝑥𝐾,2 + 0.2495𝑥𝐾,3 + 0.2500𝑥𝐾,4)
 

2 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.6525,0.6526,0.6524,0.6525]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0016 + 0.2492𝑥𝐾,1 + 0.2497𝑥𝐾,2 + 0.2494 𝑥𝐾,3 + 0.2500𝑥𝐾,4)
 

3 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.9289,0.9290,0.9288,0.9289]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0017 + 0.2491𝑥𝐾,1 + 0.2496𝑥𝐾,2 + 0.2494𝑥𝐾,3 + 0.2499𝑥𝐾,4)
 

4 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[0.8544,0.8545,0.8543,0.8544]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0017 + 0.2491𝑥𝐾,1 + 0.2496𝑥𝐾,2 + 0.2494𝑥𝐾,3 + 0.2499𝑥𝐾,4)
 

5 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.0331,1.0332,1.0329,1.0331]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0018 + 0.2490𝑥𝐾,1 + 0.2496𝑥𝐾,2 + 0.2495𝑥𝐾,3 + 0.2500𝑥𝐾,4)
 

GBP/USD 

1 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.6492,1.6493,1.6491,1.6492]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0040 + 0.2494𝑥𝐾,1 + 0.2491𝑥𝐾,2 + 0.2502𝑥𝐾,3 +  0.2490𝑥𝐾,4)
 

2 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.9889,1.9890,1.9888,1.9889]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0039 + 0.2493𝑥𝐾,1 + 0.2488𝑥𝐾,2 + 0.2506𝑥𝐾,3 + 0.2491𝑥𝐾,4)
 

3 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.8643,1.8644,1.8643,1.8643]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0038 + 0.2493𝑥𝐾,1 + 0.2488𝑥𝐾,2 + 0.2505𝑥𝐾,3 +  0.2492𝑥𝐾,4)
 

4 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.4517,1.4518,1.4515,1.4517]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0033 + 0.2497𝑥𝐾,1 + 0.2492𝑥𝐾,2 + 0.2503𝑥𝐾,3 + 0.2489𝑥𝐾,4)
 

5 
𝐼𝐹([𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]~[1.7686,1.7687,1.7685,1.7686]) 

𝑇𝐻𝐸𝑁 (𝑦 = 0.0039 + 0.2494𝑥𝐾,1 + 0.2490𝑥𝐾,2 + 0.2503𝑥𝐾,3 + 0.2491𝑥𝐾,4)
 

 

To further evaluate the statistical performance of the proposed SBALMMo on this real-world problem, we 

apply the five-fold cross-validation method by dividing each dataset into five subsets evenly following the 

timeline, and each time we use four subsets for training and leave one subset out for validation. We also involve 

other well-known algorithms for comparison. The statistical results are given in Table 11 in terms of the means 

and standard deviations of the three measures, namely, RMSE, rule# and texe. The results obtained by the 

dummy prediction method are also given in the table as the baseline. 

From Table 11 it can be concluded that, in this numerical example, the SBALMMo system outperforms all 

the comparative algorithms. Despite that the overall training time consumption increased by two to three times 

compared with the ALMMo system, the self-boosting algorithm significantly reduces the complexity of the 

SBALMMo system structure. 

 

 



Table 11. Statistical performance comparison on foreign currency exchange data 

 Algorithm 
Mean ± Stand Deviation 

RMSE rule# texe (s) 

EUR/USD 

SBALMMo 0.0073±0.0019 4.3±0.5 1.06±0.06 

ALMMo [6] 0.0074±0.0019 7.5±0.6 0.46±0.02 

FCMMS [36] 0.0163±0.0054 7.4±4.3 0.96±0.25 

AnYa [27] 0.0075±0.0019 2.0±0.0 0.22±0.05 

ESAFIS [35] 0.0074±0.0017 1.8±0.4 1.36±0.34 

SAFIS [17] 0.0669±0.0927 1.8±0.4 0. 36±0.17 

Dummy 0.0072±0.0019   

AUD/USD 

SBALMMo 0.0062±0.0019 5.3±1.5 1.40±0.43 

ALMMo [6] 0.0063±0.0019 9.5±2.6 0.43±0.02 

FCMMS [36] 0.0265±0.0085 6.4±3.4 0.81±0.11 

AnYa [27] 0.0080±0.0028 2.0±0.0 0.25±0.04 

ESAFIS [35] 0.0063±0.0017 2.0±0.0 1.48±0.39 

SAFIS [17] 0.0513±0.0590 1.8±0.4 0.38±0.02 

Dummy 0.0058±0.0020   

GBP/USD 

SBALMMo 0.0088±0.0022 6.8±2.2 1.38±0.26 

ALMMo [6] 0.0089±0.0022 12.3±3.5 0.46±0.04 

FCMMS [36] 0.0364±0.0206 11.0±5.3 1.01±0.09 

AnYa [27] 0.0098±0.0022 2.0±0.0 0.24±0.05 

ESAFIS [35] 0.0092±0.0020 1.8±0.4 1.67±0.46 

SAFIS [17] 0.2463±0.0643 2.0±0.0 0.27±0.06 

Dummy 0.0086±0.0023   

 

5.3. Performance on Nonstationary Regression Problems 

Nonstationary regression problems usually have much more frequent and intensive changes in the data 

pattern, and they are more challenging compared with other types of problems due to their nonlinear, 

nonstationary, erratic and time-variant behaviour. Since it is of great importance for a learning algorithm to be 

able to successfully follow the ever-changing data pattern, the nonstationary regression problems are very useful 

for evaluating this ability. 

In this subsection, we consider the following two real-world high frequency trading (HFT) problems: 

1) QuantQuote second resolution market dataset [44] and  

2) Standard and Poor index dataset [45]  

to evaluate the performance of the SBALMMo neuro-fuzzy systems on nonstationary regression problems.  

The QuantQuote second resolution market dataset contains tick-by-tick data on all NASDAQ, NYSE and 

AMEX securities from 1998 to the present moment. The dataset contains 19144 observations with the following 

attributes:  

1) time tag, 𝐾,  

2) open price, 𝑥𝐾,1,  

3) high price, 𝑥𝐾,2,  

4) low price, 𝑥𝐾,3 and  

5) close price, 𝑥𝐾,4.  

In the following example, we, firstly, investigate the relationship between the size of the data pool, 𝑄 and the 

regression performance of the SBALMMo. In this example, Ω1 = 0  is fixed and 𝑄 is set to be  

1000,2000,3000,4000,5000 and 6000. We use the current four prices 𝒙𝐾 = [𝑥𝐾,1, 𝑥𝐾,2, 𝑥𝐾,3, 𝑥𝐾,4]
𝑇
to predict 

the close price 5 steps ahead, 𝑥𝐾+5,4 = 𝑓(𝒙𝐾) in a sample-by-sample manner and the performance is tabulated 



in Table 12 in terms of non-dimensional error index (NDEI),  number of fuzzy rules (rule#) and execution time 

(texe, in seconds). The average time consumption for each self-boosting is given for evaluation of the 

computational complexity of the proposed approach. The performance of the ALMMo neuro-fuzzy system is 

also tabulated in Table 12 as a baseline. The data samples are standardized online before prediction. The NDEI 

is calculated based on the following equation [6]: 

𝑁𝐷𝐸𝐼 = √
1

𝐾
∑ 𝑒𝑗

2𝐾
𝑗=1

𝜎𝑦
2                                                                                                              (42) 

where 𝑒𝑗 = �̂�𝑗 − 𝑦𝑗;  �̂�𝑗 is the system output at the j-th time instance; 𝑦𝑗 is the corresponding real output; 𝜎𝑦 is 

the standard deviation of the real output. 

 

Table 12. Performance on benchmark regression datasets using different value of  𝑄 (Ω1 = 0) 

Algorithm SBALMMo ALMMo 

Measure 
𝑄 

 
1000 2000 3000 4000 5000 6000 

NDEI 0.1301 0.1299 0.1294 0.1292 0.1299 0.1296 0.1339 

rule# 7 8 5 5 5 7 6 

texe (s) 14.87 10.81 9.87 9.90 9.44 10.55 2.16 

texe per self-boosting (s) 0.60 0.87 1.17 1.72 2.15 2.64  

 

As one can see from Table 12, size of the data pool, 𝑄 has only very minor influence on the performance of 

the SBALMMo. Nonetheless, since the SBALMMo achieves the best NDEI and the simplest system structure 

when 𝑄 = 4000, we use 𝑄 = 4000 in the remaining numerical examples of this subsection. 

Remark 4: For nonstationary streaming data, a data pool of smaller size allows the SBALMMo to perform 

self-boosting in real time. However, the performance might be influenced by the smaller data pool as the 

parameters of the premise (IF) and consequent (THEN) parts of the system converge to a locally minimum 

solution. Therefore, a trade-off between the performance and computational efficiency needs to be made 

depending on the preferences/requirements of the problem.  

Similar to the previous subsection 5.1, we investigate the relationship between the forgetting factor, Ω1 and 

the regression performance of the SBALMMo on the high frequency trading problem. In the following 

numerical example, we use the same experimental protocol as the previous example, but set 𝑄 = 4000  and 

change the value of  Ω1 as  Ω1 = −0.02,0,0.02,0.04,0.06,0.08 and 0.1. The prediction performance is reported 

in Table 13.  

Table 13. Performance comparison using different value of Ω1 (𝑄 = 4000) 

Algorithm SBALMMo ALMMo 

Measure 
Ω1 

 
−0.02 0 0.02 0.04 0.06 0.08 0.10 

NDEI 0.1297 0.1292 0.1295 0.1289 0.1296 0.1296 0.1292 0.1339 

rule# 4 5 6 7 7 9 9 6 

texe (s) 6.80 9.90 10.38 14.21 14.95 17.97 20.68 2.16 

 

As one can see from Table 13, a larger value of Ω1 (Ω1 > 0.04) would result in lower computational 

efficiency, more complex system structure. While a very small value of Ω1 will also influence the regression 

accuracy. By making a trading-off between the performance and computational efficiency as well as the system 

complexity, we use  Ω1 = 0 in the remaining numerical examples of this subsection, which is the same as we 

used before. 

In the next example, we conduct the following experiments using the QuantQuote second resolution market 

dataset: 

1) use the four prices of the current step, 𝒙𝐾, to predict the close price 5 steps ahead, 𝑥𝐾+5,4 = 𝑓(𝒙𝐾); 



2) use the four prices of the current step,  𝒙𝐾, to predict the close price 10 steps ahead, 𝑥𝐾+10,4 = 𝑓(𝒙𝐾); 

3) use the four prices of the current step, 𝒙𝐾, to predict the close price 15 steps ahead, 𝑥𝐾+15,4 = 𝑓(𝒙𝐾); 

4) use the four prices of the current step, 𝒙𝐾, to predict the close price 20 steps ahead, 𝑥𝐾+20,4 = 𝑓(𝒙𝐾); 

The prediction performance in terms of non-dimensional error index (NDEI),  number of fuzzy rules (rule#) 

and execution time (texe, in seconds) obtained during the numerical experiments are reported in Table 14.  

The prediction results obtained by the SBALMMo and ALMMo neuro-fuzzy systems, respectively, on the 

third experiment 𝑥𝐾+15,4 = 𝑓(𝒙𝐾) are depicted in Fig. 5 (a), and the corresponding changes of the number of 

fuzzy rules are given in Fig. 5(b). We also present the zoomed-in prediction results of six periods: 

Period 1: 𝐾 ∈ [4000,4500], 

Period 2:  𝐾 ∈ [5500,6000], 

Period 3: 𝐾 ∈ [8000,8500], 

Period 4: 𝐾 ∈ [8500,9000], 

Period 5: 𝐾 ∈ [16000,16500], and 

Period 6:  𝐾 ∈ [18500,19000], 

in Fig. 6 for a better illustration. Furthermore, we depict the curves of the accumulated square error, ∑ 𝑒𝑗
2𝐾

𝑗=1  at 

each time instance obtained by the ALMMo and SBALMMo during the same numerical experiment in Fig. 7, 

and the corresponding zoomed-in periods are depicted in Fig. 8. From Figs. 5~8 one can see that the self-

boosting algorithm effectively increases the prediction accuracy of the SBALMMo system. 

 

 

(a) Prediction results 



 

(b) Changes of the number of fuzzy rules 

Fig. 5. Prediction performance on QuantQuote second resolution market dataset 

 

Fig. 6. The zoomed-in prediction results 



 

 

Fig. 7. The curves of the accumulated square error 

 

Fig. 8. The six zoomed-in periods of the curves of the accumulated square error  

 



We also involve a number of well-known approaches for comparison under the same experimental protocol, 

and the results are reported in the same table. Similar to Table 9, the results obtained by dummy prediction 

method are reported in Table 14 as the baseline, which takes the current closing price as the predicted closing 

price. From Table 14, one can see that the SBALMMo neuro-fuzzy system is able to outperform all other 

approaches during the experiments.  

 

Table 14. Performance comparison on high frequency trading dataset 

 Algorithm NDEI rule# texe (s) 

Input: 𝒙𝐾 

Output:  𝑥𝐾+5,4 

SBALMMo 0.1292 5 9.90 

ALMMo [6] 0.1339 6 2.11 

FCMMS [36] 0.1322 4 5.31 

AnYa [27] 0.1487 4 3.41 

OLSLR [40] 0.1607  6.67 

SWLSLR [41] 0.1517  0.51 

eTS [3] 0.1405 4 185.28 

SAFIS [17] 0.7692 14 6.45 

Dummy 0.5139   

Input: 𝒙𝐾 

Output: 𝑥𝐾+10,4 

SBALMMo 0.1575 5 9.60 

ALMMo [6] 0.1620 6 2.15 

FCMMS [36] 0.1599 4 5.30 

AnYa [27] 0.1744 4 3.12 

OLSLR [40] 0.1874  6.33 

SWLSLR [41] 0.1625  0.49 

eTS [3] 0.1723 4 182.49 

SAFIS [17] 0.8129 14 8.98 

Dummy 0.5212   

Input: 𝒙𝐾 

Output: 𝑥𝐾+15,4 

SBALMMo 0.1726 5 9.41 

ALMMo [6] 0.1771 6 2.12 

FCMMS [36] 0.1781 4 5.34 

AnYa [27] 0.1931 4 3.43 

OLSLR [40] 0.2056  6.411 

SWLSLR [41] 0.1826  0.50 

eTS [3] 0.1870 4 183.66 

SAFIS [17] 0.6847 16 10.12 

Dummy 0.5251   

Input: 𝒙𝐾 

Output: 𝑥𝐾+20,4 

SBALMMo 0.1875 5 9.51 

ALMMo [6] 0.1920 6 2.34 

FCMMS [36] 0.1945 4 5.97 

AnYa [27] 0.2138 4 3.33 

OLSLR [40] 0.2237  8.92 

SWLSLR [41] 0.2056  0.53 

eTS [3] 0.2130 3 193.13 

SAFIS [17] 0.6940 21 12.73 

Dummy 0.5293   

 

To further evaluate the statistical performance of the proposed SBALMMo on this nonstationary problem, we 

apply the five-fold cross-validation method by dividing this dataset into five subsets evenly following the 

timeline, and each time we use four subsets for training and leave one subset out for validation.  We also involve 

other well-known algorithms for comparison. The results are given in Table 15 in terms of the means and 

standard deviations of the three measures, namely, RMSE, rule# and texe. 

From Table 15 one can see that in the four numerical experiments, the self-boosting algorithm effectively 

improves the accuracy of the prediction results obtained by the SBALMMo as well as its robustness. The 

average NDEI is reduced by around 20%, and the standard deviation of NDEI is reduced by around 50%. 

Comparing with ALMMo, the system structure complexity of the SBALMMo is also reduced by 33%. 



Meanwhile, this comes at the price that the overall computation time of the SBALMMo system is around four 

times longer than that of the ALMMo system. 

 

Table 15. Statistical Performance comparison on high frequency trading dataset 

 Algorithm 
Mean ± Stand Deviation 

NDEI rule# texe (s) 

Input: 𝒙𝐾 

Output:  𝑥𝐾+5,4 

SBALMMo 0.3646±0.1274 6.4±0.9 8.36±2.12 

ALMMo [6] 0.4668±0.2634 9.8±2.9 1.73±0.27 

FCMMS [36] 0.4518±0.1266 9.8±2.9 4.54±0.61 

AnYa [27] 0.3697±0.2591 2.4±0.5 1.97±0.16 

ESAFIS [35] 0.9403±0.6731 2.8±0.8 4.96±0.25 

SAFIS [17] 0.9665±0.3755 12.6±2.3 1.84±0.19 

Dummy 1.2441±0.7375   

Input: 𝒙𝐾 

Output: 𝑥𝐾+10,4 

SBALMMo 0.4212±0.1270 6.2±0.8 7.91±1.28 

ALMMo [6] 0.5194±0.2716 9.0±3.4 1.75±0.25 

FCMMS [36] 0.5777±0.3912 7.2±2.8 4.47±0.51 

AnYa [27] 0.4625±0.2350 3.0±0.0 1.91±0.08 

ESAFIS [35] 1.2510±0.7753 2.6±0.9 5.38±0.49 

SAFIS [17] 0.8337±0.4904 10.8±0.8 1.85±0.19 

Dummy 1.2535±0.7303   

Input: 𝒙𝐾 

Output: 𝑥𝐾+15,4 

SBALMMo 0.4549±0.1440 5.4±0.9 7.53±1.24 

ALMMo [6] 0.5567±0.2631 9.6±2.8 1.78±0.31 

FCMMS [36] 0.5514±0.1864 5.0±1.6 4.47±0.20 

AnYa [27] 0.5329±0.2068 3.8±0.4 2.04±0.12 

ESAFIS [35] 1.0190±0.6665 3.2±0.8 5.93±1.10 

SAFIS [17] 1.3247±0.7819 14.4±2.2 2.00±0.29 

Dummy 1.2614±0.7249   

Input: 𝒙𝐾 

Output: 𝑥𝐾+20,4 

SBALMMo 0.5011±0.1377 6.20±0.8 8.30±1.47 

ALMMo [6] 0.6156±0.2741 9.6±2.8 2.03±0.50 

FCMMS [36] 0.7957±0.4396 7.2±1.6 4.61±0.84 

AnYa [27] 0.6419±0.2987 3.8±0.4 2.08±0.05 

ESAFIS [35] 0.6593±0.2914 3.4±0.9 6.08±0.91 

SAFIS [17] 1.4510±0.8920 17.0±5.3 2.75±1.14 

Dummy 1.2693± 0.7201   

 

 

The Standard and Poor index dataset contains 14893 observations acquired from January 3, 1950 to March 

12, 2009. The input and output relationship of the system is governed by 

𝑥𝐾+1 = 𝑓([𝑥𝐾 , 𝑥𝐾−1, 𝑥𝐾−2, 𝑥𝐾−3, 𝑥𝐾−4]
𝑇). The online prediction performance on the Standard and Poor index 

dataset obtained by the regression algorithms is tabulated in Table 16 in terms of NDEI and rule#. Similarly, the 

dummy prediction method, which uses the current observation as the predicted one, namely, 𝑥𝐾+1 ← 𝑥𝐾 , is used 

as the baseline approach in the comparison. From Table 16 we can see that both, the SBALMMo and ALMMo 

achieve the best performance, but the SBALMMo has a simpler system structure than ALMMo. 

 

Table 16. Performance comparison on the Standard and Poor dataset 

Algorithm NDEI rule# 

SBALMMo 0.013 7 

ALMMo [6] 0.013 8 

AnYa [27] 0.018 11 

OLSLR [40] 0.020  

SWLSLR [41] 0.018  

FCMMS [36] 0.014 5 



eTS [3] 0.015 14 

DENFIS [2] 0.020 6 

SAFIS [17] 0.209 6 

EFuNN [39] 0.154 114.3 

SeroFAM [38] 0.027 29 

Simpl_eTS [13] 0.045 7 

PANFIS [16] 0.014 4 

Dummy 0.029  

 

To further evaluate the statistical performance of the proposed SBALMMo on this problem, we firstly divide 

this dataset into five subsets evenly following the timeline. Then, we assemble the five subsets in a random 

order into a new sequence and perform the online prediction using the same experimental protocol as used in the 

previous experiment. The statistical results are given in Table 17 after 10 Monte-Carlo experiments in terms of 

the means and standard deviations of the three measures, namely, RMSE, rule# and texe. We also involve other 

well-known algorithms for comparison. 

 

Table 17. Performance comparison on the Standard and Poor dataset 

Algorithm 
Mean ± Stand Deviation 

NDEI rule# texe (s) 

SBALMMo 0.0145±0.0038 5.8±3.5 35.17±9.70 

ALMMo [6] 0.0148±0.0039 8.6±3.5 2.10±0.24 

FCMMS [36] 0.0178±0.0062 6.0±4.4 4.10±0.30 

AnYa [27] 0.0290±0.0048 11.0±3.1 3.21±0.12 

ESAFIS [35] 0.1815±0.2043 1.2±0.4 4.50±0.97 

SAFIS [17] 0.1878±0.0731 5.9±28 1.62±0.56 

Dummy 0.0287±0.0000   

 

From Table 17 one can see that, there is a marginal improvement in the NDEI in the proposed SBALMMo 

compared with the ALMMo. The system structure complexity of the SBALMMo is reduced by around 33%, but 

the overall execution time is increased 17 times. 

5.4. Discussions 

Form the numerical examples provided in this section one can see that the proposed self-boosting algorithm 

is able to effectively optimize the system structure and meta-parameters in few iterations. In comparison with 

alterative techniques, the unique advantages that the self-boosting algorithm brings to the proposed SBALMMo 

neuro fuzzy system include: 

1) improving the accuracy of the regression and prediction results; 

2) improving the robustness of the system performance; 

3) reducing the system structure complexity. 

The proposed SBALMMo is able to produce better results in different benchmark datasets and real-world 

problems compared with the “state-of-the-art” approaches. In addition, it is able to perform prediction on 

nonstationary problems with higher accuracy, and is capable of performing self-boosting in real time. Therefore, 

one may conclude that the SBALMMo can serve as a strong alternative to other approaches.  

The practical implementation of the self-boosting algorithm is very flexible, and can be triggered based on 

different criteria. The main aim of this paper is to deliver the concepts and the principles, and, thus, we only 

applied the general implementations to the numerical examples. Alternative criteria for triggering the self-

boosting can be, for example, when the accumulated errors or the error between the system output and the 

reference output exceeds a certain threshold [24]. However, this requires a deeper study since the accuracy of a 



learning algorithm in terms of regression error is highly dependent on the problem itself (one can see from the 

previous numerical examples), and it is out of the scope of this paper.  

The proposed self-boosting algorithm is a generic optimization algorithm that can be used in other neuro-

fuzzy systems of AnYa type with FWRLS consequent parameter updating algorithm. This work touches the 

very foundation of EISs. 

6. Conclusion 

In this paper, we conducted a deep analysis on the optimality of the premise (IF) and consequent (THEN) 

parts of the recently introduced ALMMo neuro-fuzzy system, and further proposed a self-boosting mechanism 

that consists of the structure- and parameter-optimization algorithm to enable the ALMMo system to self-

optimize its system structure and meta-parameters. We named the upgraded ALMMo learning system as self-

boosting autonomous learning multi-model (SBALMMo) neuro-fuzzy systems. Numerical examples based on 

benchmark datasets and real-world problems demonstrate the validity of the concepts and principles. It shows 

the strong potential of the SBALMMo for real applications. 

As future work, we will further improve SBALMMo neuro-fuzzy systems by employing more intelligent 

triggering mechanisms for the self-boosting operation, i.e. based on the accumulated errors. We will also apply 

the self-boosting algorithm to other types of neuro-fuzzy systems.  
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