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Abstract. This paper proposes a new approach that is based on the
recently introduced semi-supervised deep rule-based classifier for remote
sensing scene classification. The proposed approach employs a pre-trained
deep convoluational neural network as the feature descriptor to extract
high-level discriminative semantic features from the sub-regions of the
remote sensing images. This approach is able to self-organize a set of
prototype-based IF...THEN rules from few labeled training images through
an efficient supervised initialization process, and continuously self-updates
the rule base with the unlabeled images in an unsupervised, autonomous,
transparent and human-interpretable manner. Highly accurate classifi-
cation on the unlabeled images is performed at the end of the learning
process. Numerical examples demonstrate that the proposed approach is
a strong alternative to the state-of-the-art ones.

Keywords: Deep rule-based · Remote sensing scene classification · Semi-
supervised learning.

1 Introduction

The fast development of remote sensing techniques in the past decades results
in a very large volume of high-resolution remote sensing images. These images
are a data source of great importance for us to observe the ground surface of the
Earth with detailed structures, and are instrumental for many real-world appli-
cations. Because of the drastically increasing number of remote sensing images
and the very high complexity in terms of the semantic contents within these im-
ages, it is particularly difficult to label them manually. Therefore, the automatic
classification of remote sensing scenes becomes a hotly studied problem.
The large majority of the existing approaches use fully supervised machine
learning techniques for remote sensing scene classification [1–12]. Supervised
approaches learn the classification model from the labeled images. In particular,
as the state-of-the-art in the remote sensing domain, deep convoluational neural
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networks (DCNNs) require a large amount of labeled images for training [6,9,12].
In reality, labeled remote sensing images are scarce and expensive to obtain, but
unlabeled images are plentiful. Supervised approaches, however, are unable to
use the unlabeled images. On the other hand, semi-supervised machine learning
approaches [13–16] consider both the labeled and unlabeled images for classifica-
tion, and, thus, they are able to utilize information from the unlabeled images to
a greater extent. Nonetheless, there are only very few published works applying
semi-supervised techniques to remote sensing scene classification [17–19].
Semi-supervised deep rule-based (SSDRB) approach [20] is introduced as an
semi-supervised learning extension of the deep rule-based (DRB) approach [11,
21] for image classification. In comparison with alternative approaches [13–
19], the SSDRB classifier is able to perform semi-supervised learning in a self-
organizing, fully transparent and human-interpretable manner thanks to its
prototype-based nature. By exploiting the idea of “pseudo labeling”, the SS-
DRB classifier can learn from unlabeled images offline and identify new classes
actively without human expertise involvement. It further supports online learn-
ing on a sample-by-sample or chunk-by-chunk basis
In this paper, a new SSDRB-based approach is proposed for remote sensing
scene classification. The proposed approach extends the idea of our previous
works [11,22] by conducting semi-supervised learning on the local regions of the
remote sensing images. Using a DCNN-based feature descriptor [23] to extract
high-level semantic features from the images locally, the SSDRB classifier is able
to self-organize a set of prototype-based IF...THEN rules [24] from the local re-
gions of, both, labeled and unlabeled images, and classify the unlabeled images
based on the score of confidence obtained from each sub-region locally.

2 The Proposed Approach

The general architecture of the SSDRB classifier used in this paper is given by
Fig. 1. As one can see from this figure, the SSDRB classifier is composed of the
following components:

1. segmentation layer;
2. mean subtraction layer;
3. feature descriptor layer;
4. IF...THEN rule-based layer;
5. decision-maker,

and, their functionalities are described in the following five subsections, respec-
tively.

2.1 Segmentation Layer

This layer crops each remote sensing image into five different sub-images [3],
namely, 1 upper-left corner; 2 upper-right corner; 3 lower-left corner; 4 lower-
right corner; 5 center with the required size (224 × 224 pixels) by the feature
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Fig. 1: The general architecture of SSDRB classifier.

descriptor [23]. In comparison with using the whole image for classification, seg-
menting the image in this way enables the feature descriptor to extract the
semantic features locally, and, thus, improve the generalization ability of the
proposed approach.

2.2 Mean Subtraction Layer

This layer pre-processes the segments by mean subtraction for feature extraction.
This operation centers the three channels (R, G, B) of the segments around the
zero mean, which helps the feature descriptor to perform faster since gradients
act uniformly for each channel.

2.3 Feature Descriptor Layer

This layer is used for extracting high-level semantic feature vectors from the sub-
regions of the images for the learning process. In this work, we use a pretrained
VGG-VD-16 DCNN model [23] for feature extraction, and the 1× 4096 dimen-
sional activations from the first fully connected layer are used as the feature
vector of each segment.

2.4 IF...THEN Rule-Based Layer

This layer is a massively parallel ensemble of zero-order IF...THEN rules of AnYa
type, which is the “core” of the SSDRB classifier. The SSDRB classifier is, firstly,
trained in a fully supervised manner with the labeled training set [20, 21]. As-
suming that there are the C known classes based on the labeled remote sensing
images, C IF...THEN rules are initialized in parallel from the segments of la-
beled images of the corresponding classes (one rule per class).
After the supervised initialization process, the identified C IF...THEN rules are
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continuously updated based on the segments of the unlabeled images in a self-
organizing manner. The SSDRB classifier is also able to perform active learning
without human interference [20], but, we only consider the semi-supervised learn-
ing in this paper. Once the whole learning process is finished, one can obtain a
set of IF...THEN rules in the following form [11,20,21] (c = 1, 2, 3, ..., C):

IF (s ∼ Pc,1)OR (s ∼ Pc,2)OR ...OR (s ∼ Pc,Nc
) THEN (class c) (1)

where “∼” denotes similarity, which can also be seen as a fuzzy degree of mem-
bership; s is a segment of a particular image, and x is the corresponding feature
vector extracted by the DCNN model; Pc,i stands for the ith visual prototype
of the cth class, and pc,i is the corresponding feature vector; i = 1, 2, ..., Nc; Nc

is the number of identified prototypes from the segments of images of the cth

class.

2.5 Decision-Maker

During the validation process, for each segment of the unlabeled remote sensing
images, the C IF...THEN rules will generate a vector of scores of confidence:

λ(sk,j) = [λ1(sk,j), λ2(sk,j), ..., λC(sk,j)] (2)

where sk,j denotes the jth(j = 1, 2, 3, 4,Ko;Ko = 5) segment of the kth unlabeled
image, Ik ; λc(sk,j) stands for the score of confidence given by the cth IF...THEN
rule using the following equation:

λc(sk,j) = max
i=1,2,...,Nc

(e−||xk,j−pc,i||2) (3)

where xk,j corresponds to the feature vector of the visual prototype, Pc,i.
The label of the remote sensing image is decided based on the vectors of scores
of confidence calculated from all the segments:

Label(Ik)← class c∗; c∗ = argmax
c=1,2,...,C

(
1

Ko

Ko∑
j=1

λc(sk,j)) (4)

Due to the limited space of this paper, we skip the details of the supervised
and semi-supervised learning processes of the SSDRB classifier. The detailed de-
scription of the algorithmic procedure can be found in [20] and Chapter 9 of the
book [25]. One can download the open source software implemented on Matlab
platform from the following web link with a detailed instruction provided in the
Appendix C of the book [25]:

https://uk.mathworks.com/matlabcentral/fileexchange/69012-empirical-
approach-to-machine-learning-software-package?s tid=prof contriblnk
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3 Numerical Examples

In this section, numerical examples based on benchmark problems in the remote
sensing domain are presented to demonstrate the performance of the proposed
approach.

3.1 Experimental Setup

In this paper, we consider the following widely used benchmark datasets:

1. Singapore dataset;
2. WHU-RS dataset;
3. RSSCN7 dataset.

Singapore dataset [26] is a recently introduced benchmark image set for re-
mote sensing scene classification. This image set consists of 1086 images of size
256×256 pixels with nine categories: i) airplane,ii) forest, iii) harbor, iv) indus-
try, v) meadow, vi) overpass, vii) residential, viii) river, and ix) runway. This
image set is imbalanced, and the number of images in each class varies from 42
to 179. Examples of images of the nine classes are given in Fig. 2(a).

Fig. 2: Example images of the benchmark datasets.

WHU-RS dataset [27] is a popular benchmark problem collected from Google
Earth (Google Inc.). This image set consists of 950 images with size 600 × 600
pixels uniformly distributed in 19 scene classes, which include: i) airport,ii)
beach, iii) bridge, iv) commercial, v) desert, vi) farmland, vii) football field,
viii) forest, ix) industrial, x) meadow,xi) mountain, xii) park, xiii) parking lot,
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xiv) pond, xv) port, xvi) railway, xvii) residential, xviii) river, and xix) viaduct.
There are very high variations within the images in terms of illumination, scale,
resolution, etc., which makes this a difficult classification problem. Examples of
images of this problem are given in Fig. 2(b).

RSSCN7 dataset [28] is a benchmark problem also collected from Google
Earth. This image set is composed of images of seven different classes, which
include i) grassland, ii) forest, iii) farmland, iv) parking lot, v) residential re-
gion, vi) industrial region, vii) river and lake. Each class has 400 images of size
400× 400 pixels. This dataset is a very challenging one due to the fact that the
images of each class are sampled on four different scales (100 images per scale)
with different imaging angles. Examples of images of this problem are given in
Fig. 2(c).
In this paper, we use the offline semi-supervised learning strategy for the SS-
DRB classifier, and the user-controlled parameter required, namely, Ω1, is set
to Ω1 = 1.2. The reported experimental results are the average after five times
Monte Carlo experiments. The images of the WHU-RS dataset have been re-
scaled into the same size as the images of the RSSCN7 dataset, namely, 400×400
pixels, to avoid the loss of information during the segmentation operation.
We further involve the following seven popular approaches for comparison:

1. Deep rule-based classifier (DRB) [21];
2. Support vector machine classifier with linear kernel function (SVM) [29];
3. k-nearest neighbor classifier (kNN) [30];
4. AnchorGraphReg-based semi-supervised classifier with kernel weights (An-

chorK) [16];
5. AnchorGraphReg-based semi-supervised classifier with Local Anchor Em-

bedding weights (AnchorL) [16];
6. Greedy gradient Max-Cut based semi-supervised classifier (GGMC) [14];
7. Laplacian SVM semi-supervised classifier (LapSVM) [15,17].

In the following numerical examples, the value of k for kNN is set to k = 5. The
user-controlled parameter of AnchorK and AnchorL, s (number of the closest
anchors) is set to s = 3, and the iteration number of Local Anchor Embedding
(LAE) for AnchorL,is set to 10 as suggested in [16]. GGMC uses the KNN graph
with k = 5. LapSVM employs the one-versus-all strategy, and it uses a radial
basis function kernel with σ = 10. The two user-controlled parameters γI and γA
are set to 1 and 10−6, respectively; the number of neighbour, k, for computing the
graph Laplacian is set to 15 as suggested in [15]. For the comparative algorithms,
we follow the common practice by averaging the 1 × 4096 dimensional feature
vectors of the five sub-regions to generate an overall image representation as the
input feature vector [3].

3.2 Experimental Results on the Singapore Dataset

Firstly, we randomly select L = 5, 8, 10, 12, 15 images from each class of the
Singapore dataset as the labeled training images, and use the remaining as the
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unlabeled ones to test the performance of the proposed approach. The classifi-
cation accuracy on the unlabeled images obtained by the proposed approach is
given in Table 1. We also report the results obtained by the seven comparative
approaches in the same table.
Secondly, we follow the commonly used experimental protocol [26] by randomly
selecting out 20% of images from each class as the labeled training images and
using the remaining as the unlabeled ones, and report the classification perfor-
mance of the eight approaches in Table 2. The state-of-the-art results reported
by other approaches are also provided for a better comparison.

Table 1: Classification performance comparison on the Singapore dataset with different
number of labeled training images.

Algorithm
L
5 8 10 12 15

The proposed 0.9634 0.9661 0.9747 0.9746 0.9781
DRB 0.9353 0.9339 0.9558 0.9568 0.9574
SVM 0.9155 0.9533 0.9606 0.9608 0.9689
kNN 0.9375 0.9381 0.9548 0.9576 0.9592
AnchorK 0.9591 0.9469 0.9538 0.9524 0.9546
AnchorL 0.9501 0.9314 0.9438 0.9489 0.9487
GGMC 0.8999 0.8828 0.9422 0.9286 0.9447
LapSVM 0.7858 0.9609 0.9679 0.9658 0.9588

Table 2: Classification performance comparison on the Singapore dataset under the
commonly used experimental protocol.

Algorithm Accuracy Algorithm Accuracy Algorithm Accuracy

The proposed 0.9793 DRB 0.9573 SVM 0.9643
kNN 0.9768 AnchorK 0.9678 AnchorL 0.9551
GGMC 0.9578 LapSVM 0.9293 TLFP [26] 0.9094
BoVW [31] 0.8741 VLAD [32] 0.8878 SPM [33] 0.8285

3.3 Experimental Results on the WHU-RS Dataset

In the following numerical example, we follow the commonly used experimen-
tal protocol [7] by randomly selecting out 40% of images from each class as the
labeled training images and using the remaining as the unlabeled ones. The accu-
racy of the classification results obtained by the eight approaches are tabulated
in Table 3, where the selected state-of-the-art results by other approaches are
also reported.
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Table 3: Classification performance comparison on the WHU-RS dataset under the
commonly used experimental protocol.

Algorithm Accuracy Algorithm Accuracy Algorithm Accuracy

The proposed 0.9387 DRB 0.9228 SVM 0.9291
kNN 0.9235 AnchorK 0.9013 AnchorL 0.9126
GGMC 0.9073 LapSVM 0.9305 BoVW (SIFT) [7] 0.7526
VLAD (SIFT) [7] 0.7637 SPM (CH) [7] 0.5595 CaffeNet [7] 0.9511
VGG-VD-16 [7] 0.9544 GoogLeNet [7] 0.9312 salM3LBP-CLM [8] 0.9535

3.4 Experimental Results on the RSSCN7 Dataset

As a common practice [7], we randomly pick out 20% of images from each class,
namely, 80 images per class as the labeled training images and use the remaining
as the unlabeled ones, and conduct the experiments with the eight approaches.
The experimental results are tabulated in Table 4. Similarly, the selected state-
of-the-art results produced by other approaches are also reported in the same
table.

Table 4: Classification performance comparison on the RSSCN7 dataset under the
commonly used experimental protocol.

Algorithm Accuracy Algorithm Accuracy Algorithm Accuracy

The proposed 0.8670 DRB 0.8422 SVM 0.8529
kNN 0.8532 AnchorK 0.8413 AnchorL 0.8465
GGMC 0.7705 LapSVM 0.8398 BoVW (SIFT) [7] 0.7633
VLAD (SIFT) [7] 0.7727 SPM (CH) [7] 0.6862 CaffeNet [7] 0.8557
VGG-VD-16 [7] 0.8398 GoogLeNet [7] 0.8255 DBNFS [28] 0.7119

3.5 Discussion

Tables 1-4 demonstrate that the proposed SSDRB approach consistently out-
performs the seven comparative approaches. The accuracy of the classification
results it produced is above or at least at the same level with the state-of-the-
art approaches. In addition, our previous works [20] also show that the SSDRB
classifier can achieve very high performance even with only one single labeled
image per class, and is able to learn new classes actively without human exper-
tise involvement.
Therefore, one can conclude that the proposed approach is a strong alliterative
to the state-of-the-art ones for remote sensing scene classification problems.
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4 Conclusion

In this paper, a semi-supervised deep rule-based (SSDRB) approach is proposed
for remote sensing scene classification. By extracting the high-level features from
the sub-regions of the images, the proposed approach is capable of capturing
more discriminative semantic features from the images locally. After the su-
pervised initialization process, the proposed approach self-organizes its system
structure and self-updates its meta-parameters from the unlabeled images in
a fully autonomous, unsupervised manner. Numerical examples on benchmark
datasets demonstrate that the proposed approach can produce state-of-the-art
classification results on the unlabeled remote sensing images surpassing the pub-
lished alternatives.
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