
1

Adding Preemption to TinyOS
Cormac Duffy1, Utz Roedig2, John Herbert1, Cormac J. Sreenan1

1Computer Science Department, University College Cork, Ireland
2InfoLab21, Lancaster University, Lancaster

Abstract—Event-driven operating systems such as TinyOS are
the preferred choice for wireless sensor networks. Alternative
designs such as MANTIS following a classical multi-threaded
approach are also available. Event-based systems are generally
more energy efficient than multi-threaded systems. However,
multi-threaded systems are more capable than event-based sys-
tems of supporting time critical tasks as task preemption is
supported. Timeliness can be traded for energy efficiency by
choosing the appropriate operating system. In our recent work
we have shown that the multi-threaded system MANTIS can be
modified to be as energy efficient as TinyOS. As a result, the
modified MANTIS can be used to fit both sensor network design
goals of energy efficiency and timeliness. This solution is not
considered optimal as most existing sensor network applications
and software libraries are developed for TinyOS. Therefore,
we present a TinyOS modification that adds preemption while
retaining the existing TinyOS structure and features.

I. INTRODUCTION
Sensor nodes must be designed to be energy efficient in

order to allow long periods of unattended network operation.
However, energy efficiency is not the only design goal in a
sensor network. For example, timely processing and reporting
of sensing information is often required as well. This might
be needed to guarantee a maximum delivery time of sensing
information from a sensor, through a multi-hop network, to
a base-station. To be able to give such assurances, network
components with a deterministic behavior will be required.
The operating system running on sensor nodes is one such
component.
Event-based operating systems are considered to be the best

choice for building energy efficient sensor networks as they
require little memory and processing resources. Hence, the
event-based TinyOS [1] is currently the preferred operating
system for sensor networks. Event-based operating systems
are not very useful in situations where tasks have processing
deadlines. As tasks are processed sequentially, prioritizing
important tasks to meet processing deadlines is not possible.
Multi-threaded operating systems are more suitable if such
requirements must be fulfilled. Thread preemption and context
switching enables such systems to prioritize tasks and meet
deadlines. The MANTIS [2] operating system is a multi-
threaded operating system designed specifically for wireless
sensor networks. MANTIS has a relatively high processing
overhead for thread management. This processing overhead is
directly related to reduced energy efficiency because of the
relative increase in CPU activity.
This creates the dilemma that both design goals - energy

efficiency and timeliness - can only currently be optimized
independently. One is forced to choose which goal is of higher

importance in the considered application scenario. Therefore,
it would be good if the dilemma could be resolved by either
making MANTIS more energy efficient or TinyOS more
responsive.
Our previous work [3] concentrated on the first option: A

MANTIS kernel modification to increase power efficiency.
As the results show, MANTIS can be modified to be as
power-efficient as TinyOS without impacting vital kernel func-
tionality. Thus, the modified MANTIS can be used to solve
both important sensor network design goals. The result of
this previous work also shows that the common belief that
“multi-threaded operating systems are not suitable for resource
constrained sensor networks” is not necessarily true.
The modified MANTIS provides a solution for our previ-

ously outlined dilemma but has other considerable limitations.
The sensor network community selected TinyOS as the defacto
standard with most existing applications, libraries and device
drivers available for TinyOS. Therefore, to avoid re-coding
existing software and allow re-usage of existing TinyOS in-
frastructures it is worth exploring the second option: A TinyOS
modification to increase system responsiveness. This paper
presents a modification that adds preemption to TinyOS which
results in a responsive system that retains its existing structure
and features.
The next Section of the paper presents related work. Sec-

tion III describes briefly TinyOS and explains its limitations
in terms of responsiveness. Section IV explains in detail our
TinyOS modifications to add preemption. Section V presents
an evaluation of the modified system. It is shown how ex-
isting applications can take advantage of the new preemptive
scheduler. Section VI concludes the paper.

II. RELATED WORK

In [4], the TinyOS operating system is executed within a
multi-threaded AVRX kernel as part of a concurrency analysis
study. Thus, any TinyOS task could be preempted by another
AVRX thread. This solution has some drawbacks. The solution
is bound to AVR based microprocessors. Furthermore, the
AVRX kernel provides many threading features not necessarily
needed for event-based programming. The system has memory
requirements of both, TinyOS and the AVRX kernel.
A similar approach with comparable limitations can be seen

in [5]. Here, the TinyOS operating system is executed as a
thread within the multi-threaded MANTIS operating system.
The resulting TinyMOS system has a large memory footprint
(see Section V). Many context switches (for example, intro-
duced by time-slicing) create a significant processing overhead

2

(see [3]). In addition, TinyOS and MANTIS programming
semantics are mixed which makes TinyMOS usage difficult.
A different approach is described in [6]. Here, a multi-

threading library for TinyOS called TinyThread is presented.
The TinyThread library provides TinyOS programmers with
a thread programming abstraction but does not enable task
preemption. A thread scheduler in the form of a TinyOS task
is periodically placed in the task queue. Threads are then
scheduled and run to completion or until they block. This
approach allows users to multiplex standard TinyOS tasks and
threads, but does not facilitate preemption and cannot provide
any degree of performance control. Furthermore, threads are
programmed in a different fashion to normal TinyOS code
which does not allow a seamless integration of TinyThreads
with existing TinyOS applications.
The approach presented in this paper differs from the

described existing works in major aspects. Thread preemption
is added natively to TinyOS. Context switching is only used
to facilitate task preemption and not to introduce a thread
programming abstraction. Standard TinyOS programming con-
ventions are used such that preemption features are seamlessly
integrated.

III. THE TINYOS ARCHITECTURE
This section first describes the basic TinyOS functionality

affected by our modifications. Thereafter, the limitations of
TinyOS motivating our modifications are discussed.

A. Basic Functionality
The TinyOS system and specialized applications are written

in a component based programming language called nesC. The
components are self contained modules of code that interact
with each other through strict interfaces. A component inter-
face is characterised by a number of event handling functions.
Event-based applications are implemented as series of event-
handlers and tasks. TinyOS tasks are deferred function calls
that are placed in a simple FIFO task-queue for execution.
TinyOS tasks are taken sequentially from the queue and are
run to completion. Once running, a TinyOS task can not
be interrupted (preempted) by another TinyOS task. Event-
handlers are triggered in response to a hardware interrupt
and are able to preempt the execution of a currently running
TinyOS task. Event-handlers perform the minimum amount of
processing to serve the event. Further processing is performed
within a TinyOS task that is normally created within the event
handler. After all TinyOS tasks in the task queue are executed,
the TinyOS system enters a sleep state to conserve energy. The
sleep state is terminated when an interrupt occurs.

B. TinyOS Limitations
A new TinyOS task is normally posted to the scheduler

from within an interrupt and usually processes data that
was obtained during the interrupt routine. For example, the
interrupt could signal sensor activity or the arrival of a network
packet; the corresponding task will then process the sensor
reading or handle the incoming data packet. A new task

Idle Idle

time

Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1 T3

A)

Idle IdleTask
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1 T3

B)

Idle IdleTask
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1

T3 C)

Idle IdleTask
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1A T3

D)

T1B

Fig. 1. TinyOS task processing options

is inserted at the end of the FIFO task queue and it is
executed as soon as all other tasks in the queue have been
processed. Fig 1 A shows an example of four events creating
four different tasks during interrupt handling to process the
data. The problem is that some tasks might be of higher
importance than others and it is desirable to schedule them
before all others. For example, it might be desirable to handle
a network packet before processing new sensor information in
order to assure packet forwarding deadlines. This limitation of
the FIFO task scheduling in TinyOS 1.0 was recognized and
thus the new version TinyOS 2.x offers the option to alter the
task scheduler which allows us to prioritize specific tasks. For
example, as shown in Fig 1 B, task T3 can be queued before
T2 to prioritize processing of the third event. Our TinyOS
modification presented in the next section will make use of
this feature introduced in TinyOS 2.x.
The possibility of re-ordering tasks improves the event-

handling capabilities of the operating system. However, a
severe limitation of the system still exists. If a task is currently
executing, a new task created during an interrupt will be
executed after the current task finishes processing. The time
at which this new task will be scheduled cannot be controlled
in TinyOS 2.x as it is impossible to preempt the currently
running task. In the example Fig 1 B, task T3 is prioritized
but still has to wait for T1 to finish before it is executed. Some
tasks can have a long processing duration which will defer the
execution of an important task for an unacceptably long period
of time1.
Currently, this limitation can be addressed in two different

ways. One option is to move task processing functionality in
the interrupt processing routine (see Fig 1 C). The currently
running task is preempted and high priority processing is
performed in the interrupt context. This solution is not optimal
as interrupts are disabled in TinyOS while executing an

1The complexity of a sensing operation depends on the phenomenon
monitored, the sensor device used and the data pre-processing required. If,
for example, an ATMEGA128 CPU with a processing speed of 4Mhz is
considered (a currently popular choice for sensor nodes) in conjunction with
a camera, image processing might take some time before a decision is made.
Depending on camera resolution and image processing performed, a sensing
task can easily take more than 100ms [7].

3

interrupt. For example, if in Fig 1 C E4 would occur earlier
during processing of T3 in the context of E3 the handling of
E4 would be deferred to the end of T3. If E4 has a higher
priority than E3, control over execution times will be lost at
this point. Another option is to split longer tasks into smaller
subtasks. For example, in Fig 1 D task T1 is split in two
smaller tasks T1A and T1B. T1A is posted before task T1B and
therefore task T3 can be scheduled before T1B. This solution
is not always optimal, as not all tasks can be split-up easily
into several sub-tasks [7]. In addition, the programmer has to
ensure that task-splitting is organized such that all processes
can meet their deadlines, which is quite difficult to achieve in
a practical scenario.

IV. THE TINYOS MODIFICATIONS

To mitigate the TinyOS limitations described in the previous
section priority scheduling and task preemption is added to the
TinyOS 2.x operating system.

A. Priority Scheduling
TinyOS 2.x facilitates component-based schedulers that can

be included in the operating system if required. The first step in
our TinyOS modification is the development of a new priority
based scheduler component to replace the provided standard
TinyOS 2.x FIFO scheduler. Depending on the performance
requirements of the user application, this new Priority Level
Scheduler (PL scheduler) can be wired into the application to
facilitate greater control over which tasks are processed first.
The PL scheduler provides five different priority levels:

• (P1) High Priority Preemptive
• (P2) High Priority Non-Preemptive
• (P3) Basic Priority (Used for standard TinyOS tasks)
• (P4) Low Priority Non-Preemptive
• (P5) Low Priority Preemptive

In each level, tasks are scheduled in a FIFO manner. The
basic priority level must always be supported as all standard
TinyOS tasks are queued here by default. The adjacent priority
levels provide a non preemptive higher and lower priority
queue. Thus, tasks in either of these queues will be scheduled
according to their priority but will not preempt any actively
running task resulting in a behavior as shown in the example
Fig 1 B. The high priority preemptive task and the low priority
preemptive task queues can be used to schedule preemptive
tasks. A high priority preemptive task will preempt any run-
ning task from the lower priority task levels and any task from
these levels can preempt a running low priority preemptive
task. Implementation details of the preemption mechanism are
described later.
In practice not all levels of priority are necessary and as

such allocating a task queue for five different priority levels
can create a bloated scheduler. The component architecture of
TinyOS facilitates counting up the number of tasks at compile
time. The PL scheduler can determine exactly how many
queues are required and the code elimination features of the
nesC compiler remove redundant interfaces for task priorities
not used. If more than five priority levels are required, the
PL scheduler can be extended to provide these. However, we

Idle Idle

time

Task
Processing
Context 2

Interrupt
Processing

T2

E1 E2 E4E3

T4T1

T3

A)

Task
Processing
Context 1

preempt()

Idle Idle

Task
Processing
Context 2

Interrupt
Processing

T2

E2 E4E3

T4T3

B)

Task
Processing
Context 1

Idle Idle

Task
Processing
Context 2

Interrupt
Processing

E1 E3

T1 T3

C)

Task
Processing
Context 1

grace period t for T3

Fig. 2. Modified TinyOS task processing options

believe that five levels are sufficient to support common sensor
network scenarios.

B. Preemption

Task preemption is facilitated by the PL scheduler for
situations in which a cooperative task schedule will not meet
the application’s temporal requirements.
1) Conceptual Idea: Task preemption requires costly con-

text switches that have to be supported by the operating
system. These context switches must be implemented care-
fully to avoid a significant increase in system overhead and
energy consumption. Our previous research [3] on optimizing
preemptive scheduling for the multi-threaded MANTIS system
highlighted that it is of paramount importance to reduce the
number of context switches. With this design requirement in
mind the PL scheduler avoids preemption where possible using
two different principles.
As a first principle, a context switch is only performed if

it is necessary to match processing deadlines. An example of
this behavior is illustrated in Fig 2. Task T1 is executing with
basic priority P3 and a task T3 with priority P1 (high priority
preemptive) is scheduled at the end of the interrupt routine
E3. A context switch is now necessary to process the high
priority task T3. Thereafter, the context is switched back and
the original task T1 executes to completion (see Fig 2 A).
If the same high priority task T3 is scheduled in a scenario
where the system is idle (see example Fig 2 B), no context
switch is performed and the task executes immediately. In this
case the high priority task T3 will be executed in the standard
context. In other words, a context switch is not associated with
the priority level of a task, it is associated with the need for
preemption. This mechanism reduces the number of context
switches compared to existing preemption techniques in multi-
threaded systems where the execution of a higher prioritized
thread is normally bound to a context switch (for example,
[5]).

4

Algorithm 1 Priority Task Structure
1: Module SomeComponentC{
2: uses interface PriorityTask<HighPreempt>;
3: }
4: Implementation{
5: event void someEvent(){
6: call PriorityTask.postTask()
7: }
8:
9: event PriorityTask.runTask(){
10: //task code
11: }
12: }

13: Configuration SomeComponent{
14: }
15: implementation{
16: components new PriorityTask() as PremptingTask;
17: components SomeComponentC,
18: SomeComponetC.PriorityTask->PremptingTask;....
19: }

As a second principle to reduce context switches, a grace
period t for preemption is used. It is assumed that many high
priority tasks need to be executed within a specific time frame
but not necessarily immediately. A timer is used to mark the
latest possible point in time when the task must be executed to
match deadlines. If currently running lower prioritized tasks
complete before the grace period t, all tasks can be executed
without preemption. Such a scheduling situation is depicted in
Fig 2 C. Task T1 is executing with basic priority P3 and a task
T3 with priority P1 (high priority preemptive) is scheduled at
the end of the interrupt routine E3. Task T3 has a grace period
of t and thus, preemption is not necessary to schedule the high
priority task in time.
The PL scheduler requires memory for three separate stacks

to store the processing state of the three preemptive task
priority levels (P1, P3, P5). As there are only three preemptive
priorities only three stacks need to be allocated. The number
of required stacks is dependent on the number of preemptive
priority levels and not on the number of tasks used. Due to the
fixed number of stacks used, a calculation of required stack
sizes is simplified. In practice, the bulk of all tasks will be run
in the same stack as regular TinyOS tasks are defaulted to the
basic priority level P3.
2) Implementation Specifics: A component specifies a pri-

ority task by wiring a priority task interface to the PL scheduler
component and by implementing the interface event runTask().
This procedure conforms to the TinyOS Enhancement Pro-
posal (TEP) 106 on tasks and schedulers.
An example of an implemented priority task can be seen

in Alg. 1. For a component to use a priority task it must
implement the PriorityTask interface and specify the task
priority as one of the interface parameters (Alg. 1, line 2). The
interface provides a postTask command which is the same as
the basic task syntax post [task name] (Alg. 1, line 6) and
the runTask event handler which stores the task functionality
(Alg. 1, line 9). The event handler is invoked by the scheduler
when the task is scheduled to be processed.
Each task must then be wired up to one of the five param-

eterized taskPriority interfaces provided by the PL Scheduler
(Alg. 2, link 2-6). The wiring process is somewhat simplified
by the generic PriorityTask component (Alg. 1, line 16), which

Algorithm 2 Priority Scheduler Structure
1: Module PLScheduler{
2: provides interface TaskPriority<HighPreempt>[id];
3: provides interface TaskPriority<HighNonPreempt>[id];
4: provides interface TaskBasic[id];
5: provides interface TaskPriority<LowNonPreempt>[id];
6: provides interface TaskPriority<LowPreempt>[id];
7: }

uses the interface parameter information to determine the
task priority and uniquely wire each task to the appropriate
scheduler interface.
The PL scheduler, is an extension of the TinyOS 2.x FIFO

scheduler. Depending on the number of task priorities of
the operating system, up to five different task queues are
initialized. A bit field is initialized to keep track of which
task priorities are either preempted or actively processing. On
receiving a posted task the scheduler first ensures that the task
has not already been posted (TinyOS TEP 106 requirement).
Second, the scheduler checks if the task will be delayed by a
lower priority task actively running. If preemption is required,
the scheduler will perform a context switch or set a grace
period timer to delay the context switch. The grace period
time t is a fixed global value for all tasks in the current
implementation.
The context switch requires that the current registers are

saved to the current stack and the stack pointer register is then
directed to the next stack context containing the preempted
queue scheduler. The preempted queue scheduler executes all
tasks sequentially starting from the highest priority task down
as far as the priority of the preempted task. The scheduler can
therefore process multiple high priority tasks waiting on the
preempted task to finish requiring only 2 context switches to
execute a set of high priority tasks. When there are no more
tasks enqueued waiting on the preempted task, the context is
switched back to the preempted task context and the preempted
task can finish executing.
The stack size of the required stacks is currently specified

and allocated at compile time. To obtain a good estimate of
the required stack size, a tool as proposed in [6] can be used.
Unlike preemptive multi-threaded systems such as [5], [6]

thread blocking procedures are not necessary. The PL sched-
uler schedules and executes all tasks according to the event-
based architecture.

C. Race Conditions
The PL scheduler adheres to all the finalized TinyOS 2.x

TEP specifications on TinyOS tasks and schedulers with one
exception: tasks are not guaranteed to execute in a sequential
manner. Only tasks within the same priority are guaranteed
to execute sequentially. A higher priority task can preempt
a lower priority task and modify shared memory creating a
race condition. Currently, the TinyOS nesC compiler is not
designed to detect such race conditions. Thus, the programmer
must be aware of these additional programming complications
introduced in using a preemptive scheduler.
In TinyOS, the defacto method to prevent race conditions

is to enclose the race condition sensitive code in an atomic

5

statement. The atomic statement prevents race conditions by
disabling hardware interrupts, which are the only events that
can cause race conditions in the TinyOS concurrency model.
However, in the modified TinyOS, race conditions can also
occur when a task preemption occurs. To ensure that the
atomicity of atomic sections is preserved, the PL Scheduler
checks that the active task is not executing atomic code before
preempting.

V. EVALUATION OF THE MODIFIED TINYOS
The usability of the TinyOS modifications to extend exist-

ing application code to provide preemption is evaluated. In
addition, the modified TinyOS is compared with the existing
solutions TinyMOS [5] described in the related work section.

A. Usability Evaluation
Tmote Sky nodes with a cc2420 zigbee radio transceiver

are used for the evaluation. To test the TinyOS modification
a slightly modified version of the well known TinyOS 2.x
RadioCountToLeds application is used. The application period-
ically broadcasts a 3 bit message to other nodes every tblink =

250ms and displays any received messages by toggling the
LEDs. The RadioCountToLeds application uses the standard
TinyOS communications stack to send and receive messages.
After receiving a message, the cc2420 radio stack posts a task
receiveDone_task() to signal to higher level components that
a message has been received. In addition, a timer is used to
post a computationally expensive task every tcomp = 1000ms.
This task requires 100ms to finish on the Tmote Sky node.
This computational expensive task is not part of the standard
RadioCountToLeds application and is used to visualize the
advantage of preemption features.

Standard TinyOS: In the standard TinyOS system, the
computational expensive task blocks the task posted by the
cc2420 radio stack that finally processes incoming messages.
Therefore LEDs are toggled with a delay of 100ms if the
computational expensive task was just scheduled. Delayed
toggling of LEDs is obviously not a serious problem but this
demonstrates problems in TinyOS driven sensor networks if
they are to be used in time critical application scenarios.

Modified TinyOS: In the modified TinyOS system a low
priority P5 is assigned to the computationally expensive task.
This is done by re-wiring this task to the correct priority
level of the PL scheduler. The rest of the application re-
mains unaltered. Now the computationally expensive task is
preempted by the cc2420 task posted after receiving a radio
message as standard TinyOS tasks run in priority level P3. The
LEDs now toggle state as in the original RadioCountToLeds
application; the computationally expensive task is executing
in the background. Only a minimal application modification
is necessary to achieve the desired application behavior.

B. Comparative Evaluation
The previously described RadioCountToLeds application

version was implemented using the TinyMOS concept. In
the TinyMOS variation the computationally expensive task is

implemented as a MANTIS thread running at a lower priority
than the thread carrying the TinyOS system. Thus, the resulting
application has the same behavior as the system using the
modified TinyOS with PL scheduler.
However, both solutions differ in important aspects. First,

the computational expensive task has to be implemented using
MANTIS semantics. A programmer has to be familiar with
both TinyOS and MANTIS syntax to develop the application.
A seamless integration of preemption features in TinyOS is
not achieved. Second, the TinyMOS solution has a signifi-
cantly higher processing overhead as more context switches
than in the presented PL scheduler solution are required.
This additional overhead translates to an increase in energy
consumption as less idle-time is available for sleep periods.
However, as shown in [3] this processing overhead can be
reduced to acceptable levels. Third, the TinyMOS solution
has a larger memory footprint. Adding the TinyMOS solution
to the modified RadioCountToLeds application increases the
code size by 10926 byte, the RAM size by 267 byte. Adding
the PL scheduler solution to the modified RadioCountToLeds
application, increases the code size by 864 byte and the RAM
size by 30 byte. Space necessary for stacks is not included
here for either solution. The, presented TinyOS modification
has a significantly smaller memory requirement than TinyMOS
(92% less code size increase, 89% less RAM size increase).

VI. CONCLUSION
As it is shown in the paper, it is possible to add pre-

emption to the TinyOS system without introducing overheads
used in multi-threaded systems. The established event driven
processing concepts can be retained while adding preemption
through context switching. Established TinyOS programming
conventions can be used which ensures that existing applica-
tion code can be re-used. Preemption features can be integrated
seamlessly in existing TinyOS infrastructures.

REFERENCES
[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,

“System architecture directions for networked sensors,” in ACM SIGOPS
Operating Systems Review, vol. 34, pp. 93–104, December 2000.

[2] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker,
and R. Han, “MANTIS: System support for multimodal networks of in-
situ sensors,” in 2nd ACM International Workshop on Wireless Sensor
Networks and Applications, pp. 50–59, September 2003.

[3] C. Duffy, U. Roedig, J. Herbert, and C. J. Sreenan, “Improving the Energy
Efficiency of the MANTIS Kernel,” in Proceedings of the 4th IEEE
European Workshop on Wireless Sensor Networks (EWSN2007), Delft,
Netherlands, Jan. 2007.

[4] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, “Evolving real-
time systems using hierarchical scheduling and concurrency analysis,”
in 24th IEEE Internation Real-Time Systems Symposium, pp. 25–36,
December 2003.

[5] E. Trumpler and R. Han., “A systematic framework for evolving TinyOS,”
in IEEE Workshop on Embedded Networked Sensors, pp. 61–65, May
2006.

[6] W. P. McCartney and N. Sridhar, “Abstractions for safe concurrent
programming in networked embedded systems,” in Proceedings of the 4th
international conference on Embedded networked sensor system, pp. 167
– 180, October 2006.

[7] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin,
and M. Srivastava., “Cyclops: In situ image sensing and interpretation in
wireless sensor networks,” in In proc. 3rd international conference on
Embedded Networked Sensor Systems,, pp. 192–204, November 2005.

