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Abstract

Abstract

Although metaphor processing has fascinated linguists and psychologists
alike, the conceptual representations involved have not been fully examined. In
the present thesis, I propose metaphor processing should be viewed as an aspect of
language processing, involving conceptual representations that are both embodied
and linguistic. The thesis includes five self-contained papers, which showed a
detailed picture of conceptual representation that was flexible and dynamic.

In the paper contained in Chapter 3, I proposed an operational definition of
the e�ort to generate embodied simulation (i.e., the ease-of-simulation measure, or
EoS). As a composite measure, EoS accounted for the speed of successful metaphor
processing better than other rating tasks, which suggested that EoS could account
for the underlying mechanism of metaphor processing, thus assumed to be embod-
ied simulation. In papers reported in Chapters 4, 5 and 7, I studied influences of
embodied simulation and linguistic distributional patterns on metaphor process-
ing. These two components were both found to contribute to metaphor processing,
and the interplay between them were were influenced by factors such as the depth
of processing required and the time available for responses. Papers reported in
Chapter 6 and 7 examined the EEG activations of embodied and linguistic com-
ponents, in literal language processing and metaphor processing respectively. Both
studies revealed that embodied and linguistic components performed various func-
tions, each being activated at several time points. The linguistic component was
activated first between 200ms-400ms after the stimulus onset, suggesting that it
was involved in lexical and sublexical processing, which also supported the idea
that it had a speed advantage compared to the embodied component. The lat-
ter was activated around 400ms, being responsible for semantic representations.
Moreover, both components were activated again at the later stage of processing,
indicating that both components were used and integrated for decision making.

Word count: 57320 words
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CHAPTER 1

A New Look on Metaphor Processing

1.1 Introduction

Metaphor is a use of language where a term or a phrase is applied to an ob-

ject to which the term or phrase cannot be applied literally. Various parts of speech

can all be used metaphorically, including nouns (e.g., My surgeon is a butcher),

verbs (e.g., Susan flew down the street on her bike), or adjectives (e.g., bright fu-

ture). Researchers have found that metaphors are pervasive in language, appearing

more often than noticed (Coulson & Van Petten, 2002). Furthermore, compre-

hension of metaphors can be automatic and irrepressible (Glucksberg, Gildea, &

Bookin, 1982). In other words, metaphors do not seem to register as an artifice

or require extra e�ort to process. Instead, they are an indispensable part of our

daily language. If that is the case, how do people comprehend a metaphor? What

gives rise to the metaphoric meaning?

Research on metaphor comprehension has been carried out in various disci-

plines such as pragmatics, cognitive science and psycholinguistics. In this review,
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the focus is on the theoretical and empirical work of psycholinguists and cogni-

tive scientists. Through their e�ort, many factors have been identified as a�ecting

metaphor processing (e.g., conventionality, familiarity or aptness); however, as I

will argue later, the definitions of these factors have been inconsistent and am-

biguous, which limits their utility in further understanding metaphor processing.

Therefore, the goal of my thesis is to depart from this traditional approach and

take a new perspective, which treats language processing as a process which re-

lies on grounded conceptual representations. I will further argue that metaphor

processing is an aspect of language processing, so it should rely on grounded con-

ceptual representations in the same way. While this thesis will focus on metaphor

processing, its findings should have wider implication on our understanding of

language processing in general.

In the present thesis, I will use adjectival/predicative metaphors in the em-

pirical component. Before proceeding, I will briefly clarify the issue of terminology.

Various terms have been used to refer to the di�erent components in a predicative

or nominal metaphor, because of the wide range of research rooted in di�erent

disciplines. In a predicative metaphor “A is B”, A is the subject and B is the ob-

ject/predicate judging from the syntactic component they play. They could also

be called the topic (or tenor) and the vehicle of a metaphor for linguists and prag-

matists. For cognitive scientists, A is referred to as the target and B the source.

Properties of the source domain (B) are attributed to the target domain (A). For

the sake of consistency, I will use target and source to refer to the components in

this chapter and throughout the thesis.
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1.1.1 What makes metaphors easy to understand?

Researchers in the cognitive and psycholinguistic field set out to answer

the question, what makes some metaphors easier to understand than others. Sev-

eral factors have emerged throughout the years, such as salience, conventionality

and aptness. They were found to a�ect the speed of processing, and were even

suggested to change the mechanism of comprehension.

1.1.1.1 Salience

Salience has been proposed to capture the priority a meaning enjoys in lan-

guage processing. Giora, in her Graded Salience Hypothesis (GSH), suggested that

salience could be a result of “conventionality, frequency, familiarity or prototypical-

ity” (Giora, 1997, 2002). Meanings that enjoy high salience (e.g., bright student or

bright daylight) are activated prior to those with low salience (e.g., bright solution

or bright cellar) regardless of its metaphoricity. Salient meanings were shown to be

activated faster and with less di�culty in both behavioural (Giora & Fein, 1999)

and electrophysiological studies (Coulson & Van Petten, 2002; De Grauwe, Swain,

& Holcomb, 2010; Lai, Curran, & Menn, 2009; Laurent, Denhières, Passerieux,

Iakimova, & Hardy-Baylé, 2006; Pynte, Besson, Robichon, & Poli, 1996).

GSH has also been joined with the fine-coarse coding theory, suggesting that

the left hemisphere is specialised in rapid interpretation and activation of closely

linked meanings while the right hemisphere is prone to perform coarser computa-

tions and maintain broader meanings (Jung-Beeman, 2005). The joint hypothesis

suggests that salient meanings should activate the left hemisphere more whereas
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non-salient meanings should activate the right hemisphere more (Mashal, Faust,

& Hendler, 2005). When applied to metaphors, it suggests that only unfamiliar

or novel metaphors will specifically involve the activation of the right hemisphere.

Evidence for the lateralisation of metaphor processing has been drawn from pa-

tients with hemispheric damage (Giora, Zaidel, & Soroker, 2000), neural imaging

(Mashal et al., 2005; Pobric, Mashal, Faust, & Lavidor, 2008) and the divided

visual field paradigm (Faust & Mashal, 2007).

Although GSH and its joint hypothesis with the fine-coarse coding theory

have been supported to some extent by empirical evidence, some studies have indi-

cated that the left and right hemispheres are di�erent in more ways than the sen-

sitivity to salience. For example, the two hemispheres are di�erent in their ability

to represent the context (Coulson & Severens, 2007), which is important because

salience can be altered by context (Giora & Fein, 1999). Thus, the lateralised

sensitivity to salient/non-salient meanings may well reflect reliance on context.

Furthermore, evidence has also emerged which opposes the joint hypothesis. Some

studies have shown that non-salient meanings elicited bilateral activation (Dav-

enport & Coulson, 2011) or even more left hemisphere activation (Mashal, Faust,

Hendler, & Jung-Beeman, 2009), instead of right hemisphere activation. The prob-

lem may be due to the lack of power and control in the original studies. First,

many of these studies were run on a small sample. Giora et al. (2000) study on

hemispheric-damaged patients tested 27 right-hemisphere damaged patients, and

31 left-hemisphere damaged patients with only four metaphors; whereas Mashal

et al. (2009) tested only 15 participants though with a larger stimulus set of 96

stimuli (including conventional and novel metaphors, as well as literal word pairs

4



and semantically unrelated word pairs). Having such a small size increased the

risk of false positive and poor precision in estimating e�ect sizes.

Later studies were indeed better powered (e.g., Faust & Mashal, 2007), but

a further problem was that these studies all have neglected the random variability

in the materials. Since GSH broke down the barrier between literal and metaphoric

language, many studies included distinct figures of speech and linguistic devices.

For instance, Giora and colleagues’ (2000) study on hemispheric-damaged patients

compared conventional metaphor processing with sarcasm processing, using com-

pletely di�erent stimuli. Other studies on metaphor processing also used entirely

di�erent sets of words for novel metaphors, conventional metaphors and literal

word pairs (Faust & Mashal, 2007; Mashal et al., 2005, 2009). Thus, the e�ect

of salience was confounded with the poorly controlled novelty, figurativeness and

discourse. The evidence for the joint hypothesis, or the lack thereof, may be due

to factors other than salience.

A further and more crucial problem is salience was proposed to be the un-

derlying essence (i.e., the priority of a meaning) which manifests itself in many

factors such as conventionality, prototypicality, etc. As a result, the operational

definition of high versus low salience is often ambiguous and lacks control. For

instance, according to Mashal and colleagues, metaphors from poetry (e.g., con-

science storm) can be regarded as non-salient while metaphors from daily life (e.g.,

transparent intention) as salient (Mashal & Faust, 2008; Mashal et al., 2005, 2009).

Similarly, Giora and colleagues (2000) chose sarcasm (e.g., saying a lawyer “did

a great job” after a failed court case) and conventional metaphors (e.g., broken

heart) to define the contrast between high and low salience.
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These attempts to test of role of salience lacked a clear metric against which

degrees of salience can be measured. Therefore in later studies, the operational

definition of salience was narrowed down to mainly conventionality or familiarity,

which was quantified in a rating test (Arzouan, Goldstein, & Faust, 2007; Colum-

bus et al., 2015; Davenport & Coulson, 2013; L. L. Jones & Estes, 2006). This move

was detrimental to GSH because the concept of salience itself, the conglomerate

of familiarity, conventionality, prototypicality and many other potentially crucial

factors of metaphor processing, had to fade away from the focus of researchers

and be replaced by more concrete and measurable factors. However, for the same

reason, this move was beneficial to the research, because participants could devise

a larger amount of materials that were better controlled in terms of metaphoricity,

ambiguity and other confounding factors.

1.1.1.2 Conventionality

Conventionality does not only play an important role in GSH, but is also

seen as a critical factor to determine the mechanism of processing, according to

the career of metaphor theory (Bowdle & Gentner, 2005). This theory has two

crucial components, one accounting for the mechanism of processing (i.e., struc-

ture mapping; (Gentner, 1983; Gentner & Wol�, 1997; Wol� & Gentner, 2011)),

and the other accounting for the what happens after conventionalisation (i.e., cat-

egorisation; (Glucksberg, 1991; Glucksberg & Keysar, 1990)). Structure mapping

delineates two steps of metaphor processing. First, people compare the conceptual

structures of the source and target by aligning the predicates of the two concepts

(as shown in Figure 1.1). After such structural alignment, the predicate unique to
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Figure 1.1: Structure of target and source domain in Socrates is a midwife (Bowdle
& Gentner, 2005).

the source will be projected to the target, based on the specific dimension deter-

mined by the target. For instance, in the metaphor Socrates was a midwife (Figure

1.1), the source (midwife) has several properties, such as “helping MOTHER” and

“MOTHER producing CHILD”, while the target (Socrates) has properties such

as “teaching STUDENTS” and “STUDENTS producing IDEAS”. These proper-

ties are aligned based on their conceptual structures, but midwife also produces

a property that is unique, that is, “MOTHER has CHILD developed within her”,

which is not obvious to the target. By projecting this property to the target do-

main, the relationship between student and idea can be deduced, that is: IDEA has

been developing in STUDENT all along. Socrates did not simply teach an idea,

but he helped students realise the idea that has been developing in the student.

Structure mapping is pivotal to the career of metaphor theory and related

research on metaphor processing. Because of the specific roles of source and tar-

get according to the structure-mapping theory, researchers proposed new opera-

tionalised definition of conventionality (as well as aptness in the next section).

Conventionality is accordingly defined as the association between the source and

the property it produces (Bowdle & Gentner, 2005; Cardillo, Schmidt, Kranjec,
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& Chatterjee, 2010; Chiappe, Kennedy, & Smykowski, 2003; L. L. Jones & Estes,

2005, 2006; Mashal, 2013; Pierce & Chiappe, 2008; Roncero & Almeida, 2014a,

2014b). When a metaphor such as “Socrates is a midwife” is novel, the association

between the source (midwife) and the property (helping Object 1 produce Object

2) is weak. People cannot activate the property automatically when they encounter

the sentence. Rather, they need to compare the conceptual structure of Socrates

with the concept of midwife as we did above in order to arrive at this property.

However, as the metaphor is encountered repeatedly, the property becomes more

readily activated.

This process of repeated activation leads to the second component of the

career of metaphor theory, that is metaphor processing based on categorisation.

When a metaphor is conventionalised, the property that is readily activated be-

comes an abstract category of which the source word is a prototypical member.

A conventional metaphor, in fact, is processed as what Glucksberg and colleagues

called a class-inclusion assertion. For example, after the metaphor Socrates is

a midwife is conventionalised, people comprehend it as a sentence which means

that “Socrates is a member of the metaphoric category in which midwife is a

prototypical exemplar (i.e., people or instruments that assist the deliverance of

something that exists in the object)”. In other words, understanding Socrates is

a midwife e�ectively evokes the same mechanism which is used to understand A

robin is a bird. The metaphoric category for which midwife represents becomes

more refined. Imaging studies have supported this suggestion by showing that

as a metaphor becomes conventionalised, the activation of irrelevant properties

of the literal meanings are suppressed (Cardillo, Watson, Schmidt, Kranjec, &

8



Chatterjee, 2012; Desai, Binder, Conant, Mano, & Seidenberg, 2011; McGlone &

Manfredi, 2001).

Another implication of the career of metaphor theory (especially metaphor

processing by categorisation) is that other properties of class-inclusion assertions

can be applied to conventional metaphors but no to novel metaphors. One of

such properties is non-interchangeability between metaphors and similes. Simile

is a figure of speech where one thing is likened to another (e.g., Figurative simile:

Socrates is like a midwife. Literal simile: Copper is like tin.). It is processed

solely by comparing the two concepts themselves, not the category of objects to

which these concepts belong. In a literal simile such as Copper is like tin, it is

particularly clear that both copper and tin refer to the substance of these two

metals, which is why it is not appropriate to say Copper is tin (a class-inclusion

assertion). However, it is acceptable to say Robin is a bird (a class-inclusion

assertion) but unacceptable to say Robin is like a bird (a simile), because the latter

is comparing the concept of robin with the concept of bird without assigning robin

to the category of bird.

This distinction between literal class-inclusion assertions and similes should

similarly exist for figurative language (i.e., conventional metaphors and figura-

tive similes). If conventional metaphors are processed as class-inclusion assertions

while novel metaphors are processed using comparison and structure mapping, it

should be more appropriate to use the metaphoric form to express a conventional

metaphor and the simile form to express a novel metaphor (Bowdle & Gentner,

2005; Lai & Curran, 2013). This prediction has been supported by studies which

create a process of conventionalisation. For instance, participants were asked to
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read novel similes such as An acrobat is like a butterfly and A figure skater is like

a butterfly. After such a process of conventionalisation, participants found that a

similar figurative expression (e.g., A ballerina is (like) a butterfly) more acceptable

in the metaphor form than in the simile form. In other words, conventionality in-

deed appeared to be a critical factor to determine whether a metaphor is processed

using categorisation.

Problems with the career of metaphor theory are primarily rooted in its en-

dorsement of the structure-mapping mapping. Since the structure-mapping theory

suggests that it is the source term (e.g., midwife) that provides the property (e.g.,

facilitate the deliverance of a baby) which gets projected to the target term (e.g.,

Socrates), the conventionality of a metaphor is ultimately decided by the asso-

ciation between the source term and the property, regardless of the target term

(Campbell & Raney, 2015; Cardillo et al., 2010; Katz, Paivio, Marshark, & Clark,

1988; Roncero & Almeida, 2014a). In other words, Socrates is a midwife is no more

conventional than metaphors such as Noam Chomsky is a midwife or Beyoncé is

a midwife (both of which is clearly not the case). Indeed, Thibodeau & Durgin

(2011) have found that conventionality is dependent on the context, especially the

immediate context of the target term.

Secondly, structure mapping cannot account for the existence of emer-

gent properties (Gineste, Indurkhya, & Scart, 2000; Glucksberg & Haught, 2006;

Haught, 2013). During metaphor comprehension, people often attribute properties

to the target concept which do not originate from the source concept, but emerge

as a result of the integration of the source domain properties with the target con-

cept (for accounts of emergent properties see (Clement, Mawby, & Giles, 1994)
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cited in (Bowdle & Gentner, 2005; Gineste et al., 2000; D. Wilson & Carston,

2006)). For example, when reading Some ideas are diamonds, people often comes

up with interpretations that ideas can be “creative” and “insightful”, which are not

applicable to the concept of diamonds. If metaphor comprehension is the process

whereby the properties of the source domain are projected to the target domain,

the resulting representation of the target should only include the properties that

originally belong to the source (e.g., ideas are “rare” or “precious”). Therefore,

simple structure mapping cannot account for all the mechanism of metaphor pro-

cessing without further assumptions about how emergent properties arise. Aside

from issues related to structure mapping as discussed above, the importance of

conventionality is further questioned by the results from research on dual refer-

ence by Glucksberg and colleagues, which advocates for the importance of aptness

in metaphor processing (see next section).

1.1.1.3 Aptness

In place of conventionality, many have argued that aptness (i.e., how well

a metaphor expresses the speaker’s intention) is the critical factor that decides

whether metaphors are processed by categorisation or by comparison. Numerous

studies have found that when aptness is taken into account, the e�ect of con-

ventionality on metaphor processing (e.g., the preference for a metaphor over a

simile) disappeared (Chiappe & Kennedy, 1999; Chiappe et al., 2003; Glucksberg

& Haught, 2006; Haught, 2013; L. L. Jones & Estes, 2005, 2006; Pierce & Chiappe,

2008; Roncero & Almeida, 2014b).

Aptness has a high-level, qualitative definition which is how well or ap-
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propriately a metaphor can convey the speaker’s intention (Blasko & Connine,

1993; Campbell & Raney, 2015; Katz et al., 1988). However, researchers have also

operationalised it, in relation to structure mapping, as how well the properties

specified by the source can capture important aspects of the target (Chiappe &

Kennedy, 1999; Chiappe et al., 2003; L. L. Jones & Estes, 2005, 2006; Pierce &

Chiappe, 2008; Roncero & Almeida, 2014b). Instead of stressing the association

between the property and the source as conventionality (e.g., midwife as someone

who assists the deliverance of something which has been developing in the object),

aptness emphasises the how appropriately the property fits the target term (i.e.,

Socrates). Since a property needs to be projected to a specific dimension of the

target, the better the property fits the target, the more apt the metaphor is deemed

to be. An example often used to illustrate the point is the sentence A rooster is

an alarm clock is more apt than A robin is an alarm clock, because the property

of “reliably waking you up in the morning” fits rooster more appropriately than

robin.

At least two issues could be raised concerning the latter treatment towards

aptness. First of all, it is questionable whether this operational definition mea-

sures the same thing as the theoretical, high-level idea of aptness (i.e., how well

a metaphor conveys the speaker’s intention). Even when a source term can pro-

vide a property suitable for the target (e.g., Deserts are ovens. Property: hot),

the metaphor is not necessarily rated as apt (aptness rating = 2.85 on a 7-point

scale; see Roncero et al., 2014a). This could be because aptness is also correlated

with other linguistic characters such as familiarity and conventionality (see next

section). It is also not independent from cognitive factors such as working memory
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capacity (Pierce & Chiappe, 2008). People with a higher working memory capac-

ity are better at interpreting metaphors and using the metaphoric form instead

of the simile form. Furthermore, context has been found to be an important fac-

tor which influences the aptness rating (Thibodeau & Durgin, 2011; Thibodeau,

Sikos, & Durgin, 2017). The operational definition of aptness (i.e., how well the

property fits the target of a metaphor) only takes into account still a very narrow

context. Although it is an improvement over conventionality to incorporate the

target into metaphor processing, it still treats aptness as an intrinsic feature of

a metaphor in an isolated phrase/sentence. However, simply from the example

above, we can conceive of scenarios where A robin is an alarm clock is highly

apt (e.g., in the woods. Robins are among the first birds to start the dawn cho-

rus. https://www.rspb.org.uk/birds-and-wildlife/wildlife-guides/bird-a-z/robin/

robin-redbreast-song/). In summary, although aptness was found to be a bet-

ter predictor than conventionality, it could also be confounded by many external

factors.

1.1.2 Challenges with psycholinguistic factors

In the previous section, I have introduced several factors that could facili-

tate metaphor processing (i.e., salience, conventionality and aptness). Apart from

the criticisms to each factor individually, they could be further challenged by some

mutual problems.

The primary challenge comes from the lack of a clear, unambiguous def-

inition. For instance, familiarity and conventionality, two important factors of

salience, are often used interchangeably to refer to the dichotomy, on one end of
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which is an expression or concept that is frequently encountered, and at the other

end completely novel, even though only conventionality, not familiarity, is seen as

the critical factor in the career of metaphor. Throughout the literature, famil-

iarity/conventionality can be defined in two di�erent ways, sometimes as famil-

iarity towards the expression (Blasko & Connine, 1993; Bowdle & Gentner, 2005;

Cardillo et al., 2012; Faust & Mashal, 2007; Glucksberg, 2003; Lai et al., 2009;

Mashal, 2013; Mashal et al., 2005) and other times as familiarity to the concepts

to which it refers (Bowdle & Gentner, 2005; Campbell & Raney, 2015; Cardillo et

al., 2010; Gentner & Wol�, 1997; Giora, 1997; Jones & Estes, 2006; Peleg, Giora,

& Fein, 2001). However, it is conceivable that such operational definitions could

measure two di�erent things. An expression could have high familiarity while the

concept has low familiarity (e.g., hard Brexit; people may often encounter the term

but hazy about what it means), and vice versa (e.g., warm reception; people may

encounter the situation often but rarely use the term; for similar arguments, see

(Andrews, Vigliocco, & Vinson, 2009; Brysbaert, Warriner, & Kuperman, 2014)).

Similarly, aptness faces the same problem of ambiguous definitions. As

we discussed before, aptness could have two definitions, a high-level definition of

metaphor suitability and a low-level definition of association between the target

term and the property. Studying these factors largely relies on the collecting of

subjective ratings in norming studies (Campbell & Raney, 2015; Cardillo et al.,

2010; Katz et al., 1988; Roncero & Almeida, 2014a) or as part of a study where

the norms are not published (Chiappe et al., 2003; L. L. Jones & Estes, 2006;

Lai et al., 2009). Participants were often required to rate metaphors based on

the operational definitions given. As such, ambiguity in the definitions of critical
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concepts could greatly limit the utility of these ratings in the research of metaphor

processing.

Another challenge arises from the interdependency between these factors.

While conventionality (as well as familiarity) measures the amount of exposure

to a metaphor, aptness could conceivably be confounded by the amount of expo-

sure as well. Only apt metaphors, those that can accurately convey the speaker’s

meaning, get used, and thus encountered, frequently. Conversely, previous usage

of a metaphor could make it seem more apt (L. L. Jones & Estes, 2006; Pierce &

Chiappe, 2008; Thibodeau & Durgin, 2011). Indeed, these subjective ratings are

often highly correlated. Ratings of aptness and familiarity are highly correlated

(r = .73-.98: Campbell & Raney, 2015; Katz et al., 1988; Roncero & Almeida,

2014a), as are ratings of aptness and corpus frequency counts of the metaphoric

expression (r = .41-.57: Roncero & Almeida, 2014b; Thibodeau & Durgin, 2011).

In a novel, large-scale study of existing ratings of nominal metaphors, Thibodeau

and colleagues looked at existing norming studies on various scales including con-

ventionality, familiarity, aptness, as well as imagibility, metaphoricity, etc. and

found that these factors could be collapsed to two distinct principal components

(PC). The first PC was processing fluency, referring to the ease of activating the

metaphoric meaning which is largely subject to context and previous exposure.

All the factors we have discussed above loaded heavily on this PC. This means

that there is a core interdependency between these factors that is not too trivial

to disentangle. Subjective ratings on these factors may simply be measuring the

same underlying concept from di�erent perspectives. Thus, it is futile to keep all

these factors, or compare them in the same study because they are confounded
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and will cause the problems related multicolinearity, such as imprecise estimation

of regression coe�cients and overfitting.

In summary, it is problematic to study metaphor processing using these

single factors. The ambiguity in their definitions and their core interdependency

are detrimental to our understanding of metaphor processing. Therefore, in my

thesis, I decide to leave these factors behind to seek a better theoretical construct

to account for the online processing of metaphors.

1.2 Metaphor Processing from the Grounded

Perspective

As the psycholinguistic research is troubled by many issues, in this the-

sis I propose a new perspective which examines metaphor processing from the

perspective of grounded conceptual representation.

1.2.1 Grounded Views of Conceptual Representations

According to the grounded views, a mental representation draws on two

types of information, that is information about linguistic distributional patterns,

and information about embodied simulation (Barsalou, Santos, Simmons, & Wil-

son, 2008; Connell & Lynott, 2014b; Louwerse & Jeuniaux, 2008; Vigliocco, Mete-

yard, Andrews, & Kousta, 2009). Both types of information activate specific neural

circuits in the brain during the acquisition of a new concept and leave traces for

conceptual representations. For instance, to acquire the concept of bright, peo-
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ple encounter the linguistic label “bright” with its context as well as the sensory

(mainly visual) properties of bright objects. The neural activity evoked by the

linguistic label happens synchronously with the neural activity evoked by the sen-

sory properties. Thus, the neurons responsive to each type of information are

“wired together”, which makes it faster to activate the circuits for representation

next time when the concept is encountered (Hebb, 1949). During conceptual pro-

cessing, these traces of neural activation get partially re-enacted, resulting in the

simulation of sensory, motor, a�ective and other bodily experiences.

Linguistic distributional patterns and embodied simulation came from dis-

tinct origins and philosophical backgrounds, until recently when they were found

to be two interacting and complementing components (see Andrews, Vigliocco, &

Vinson, 2009 for a review). In this section, I will review evidence for these two

components and their interaction in detail, and in the next section I will explore

its application to metaphor processing and some challenges along the way.

Linguistic distributional patterns have been argued to be critical for mental

representation of meaning (Landauer & Dumais, 1997). As Firth (1957) famously

put it, which is often quoted by researchers, “You shall know a word by the com-

pany it keeps.” We can acquire the meaning of a word, at least partially, by

the context in which it appears. This approach of defining word meaning by the

linguistic context is formalised in many ways, such as latent semantic analysis

(LSA; Landauer & Dumais, 1997), hyperspace analogue of language (HAL; Lund

& Burgess, 1996), and latent Dirichlet allocation (LDA; Blei, Ng, & Jordan, 2003).

These methods create a high-dimensional space for each word based on large body

of texts in which the word appears (e.g., encyclopaedia, fictions, etc.). Such a
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space, thus, can represent the meaning of a word using linguistic distributional

patterns. These methods are powerful enough to capture many aspects of language

processing, such as priming and reading times (Vigliocco et al., 2009), and the geo-

graphical positions of cities in China and the Middle East (Louwerse, Hutchinson,

& Cai, 2012), or even Tolkien’s Middle Earth (Louwerse & Benesh, 2012). Mean-

while, co-occurrence frequency within a small five-word window can also predict

important features in the real world. Co-occurrence frequency between sensory

adjectives could to some extent distinguish their perceptual modalities (Louwerse

& Connell, 2011). This is because objects, places, events or concepts that usually

appear in the same situation should often appear close proximity in context.

Although the linguistic distributional pattern is powerful, it cannot be all

there is to conceptual representation. If the meaning of a linguistic symbol is only

defined by other linguistic symbols around it, we would be trapped in an endless

loop. This is the famous grounding problem: at some point, linguistic symbols

need to refer to objects and concepts in the real world (Harnad, 1990; Searle,

1980). Embodied simulation is proposed to solve this problem. It suggests that

conceptual representation requires the partial activation of motor, sensory, a�ective

and other systems of bodily experiences (Barsalou, 1999; Connell & Lynott, 2016;

Glenberg & Gallese, 2012).

Compelling evidence for such an embodied simulation comes from neural

imaging studies. Words with sensory-motor properties were found to engage the

same or similar distributed networks that respond to corresponding sensory-motor

stimuli. For example, nouns with sound-related properties (e.g., thunder) selec-

tively activated the auditory association cortex (Bonner & Grossman, 2012; R.
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F. Goldberg, Perfetti, & Schneider, 2006; Kiefer, Sim, Herrnberger, Grothe, &

Hoenig, 2008); same with taste-related words (e.g., salt; Barrós-Loscertales et al.,

2012) and colour words (e.g., yellow; R. F. Goldberg et al., 2006); action words

referring to di�erent parts of the body (e.g., face, arm or leg) would selectively

activate the motor and premotor regions that corresponds with each body part

(Boulenger et al., 2008; Desai, Conant, Binder, Park, & Seidenberg, 2013; Hauk,

Johnsrude, & Pulvermüller, 2004; Speed, Dam, Hirath, Vigliocco, & Desai, 2017).

Embodied simulation has also been borne out by numerous behavioural

e�ects, which collectively suggest that language comprehension requires modality-

specific resources. Connell, Lynott and colleagues collected rating norms on the

sensory strength of words, which quantified on a 7-point Likert scale how strongly

a concept or property referred to by a word could be experienced by each of

the five major sensory modalities (i.e., vision, audition, haptics, gustation and

olfaction; Lynott & Connell, 2009, 2013). Not only could these norms account

for many semantic e�ects better than traditional semantic variables such as fre-

quency, concreteness and imagibility, but studies on the norms also demonstrated

that conceptual representation during language comprehension co-opted modality-

specific perceptual systems. Thus for example, when people performed a lexical

decision task (i.e., reading and pressing buttons), because the task required and

therefore pre-activated the visual system only, the visual strength of the referent

concept facilitate the judgement of the word (i.e., faster to judge bright than loud

or warm); but when they performed a word naming task (i.e., reading words out

loud), because both visual and auditory attention was engaged, both visual and

auditory strength of the referent concept facilitated the judgement of the word
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(Connell & Lynott, 2014a).

Modality switching costs also supported the proposal that conceptual repre-

sentation is embodied in modality-specific systems. In a perceptual task (Spence,

Nicholls, & Driver, 2001), there is a delay in response to a stimulus in one percep-

tual modality (e.g., a beep) when the previous stimulus was in a di�erent modality

(e.g., a flash) because people need to redirect their attention from one perceptual

modality to another. Similarly, people also slow down in a property verification

task if they make a decision concerning a property of one modality (e.g., HEELS

– clicking) if the previous trial has been of a di�erent modality (e.g., CANDLE –

flickering) compared to one of the same modality (e.g., BLENDER – loud; Connell

& Lynott, 2011; Pecher, Zeelenberg, & Barsalou, 2003)). This cost could not be

fully explained by the linguistic distributional pattern of the sensory properties

(Louwerse & Connell, 2011). Furthermore, such costs occur when the switch hap-

pens between a perceptual stimulus in a modality (e.g., a beep) and verifying a

perceptual word of a di�erent modality (e.g., CANDLE – flickering; Van Dantzig,

Pecher, Zeelenberg, & Barsalou, 2008); taxing the perceptual system (e.g., memo-

rising visual shapes) impairs the property verification of the specific modality (e.g.,

visual properties; Vermeulen, Corneille, & Niedenthal, 2008). Thus, it was sug-

gested that processing sensory or motor language requires specific representation

of sensory and motor properties of a concept.
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1.2.2 Interplay between linguistic distribution and embod-

ied simulation

Although linguistic distribution and embodied simulation were studied in-

dependently, they should not be considered as mutually exclusive. Although as

mentioned previously, linguistic distribution can capture important aspects of the

real world, it is conceivable that linguistic distribution and embodied simulation

do not entirely overlap for at least two reasons. First, some aspects of features of

embodied experiences, which are often encountered by bodily perceptions, are less

communicated through language (Brysbaert, Mandera, & Keuleers, 2018). The

reason could be that these features are default and invariant to the concept. For

example, the word sun does not co-occur with the word round (436 times per

million times sun occurs according to the Web1T corpus) as often as the word

moon does (918 times per million times moon occurs), even though the sun is

always round but the moon is round visually only every 27 days. In this sense,

the linguistic distributional pattern does not accurately depict the occurrence of

sensorimotor properties in the real-world experiences, even though it can capture

it (i.e., round can co-occur with both sun and moon because both the sun and the

moon can be round). Rather, the linguistic information is capable of highlight-

ing important aspect of the real-world experiences, some of which in fact occur

relatively rarely.

The second reason why embodied and linguistic information may not com-

pletely overlap is that linguistic distributional pattern may encode unique infor-

mation that is not directly experienced with sensory and motor systems. Here the
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information mainly refers to our knowledge of abstraction and conceptual relation-

ship. Take the concept of FOOD as an example. Andrews et al. (2009) showed that

the embodied information from speaker-generated feature norms encodes mainly

sensory and motor information such as bodily sensations (e.g., hunger, thirst, taste)

and actions (e.g., swallow, ingest, enjoy); whereas the linguistic information from

large corpus mainly encodes taxonomically or functionally related, abstract con-

cepts such as drinks, lunch, diet. Because of the di�erent types of information

encoded in these components, the combined model can explain language process-

ing better than either alone (see also Johns & Jones, 2012; Louwerse & Connell,

2011). Therefore, in order to fully represent a concept, both components need to

be utilised. In this thesis, I will study metaphor processing with both of these com-

ponents in view. Specifically, my research will have the specific question in view

regarding the function of the linguistic component. However, before proceeding

to this specific question, two more questions concerning grounded representations

need to be addressed.

1.2.3 Questions concerning grounded representations

1.2.3.1 Is embodied simulation epiphenomenal?

One challenge for embodied simulation suggests that the activation of

modality-specific neural regions is merely epiphenomenal (Leshinskaya & Cara-

mazza, 2016; Mahon, 2015; Mahon & Caramazza, 2008). In other words, concepts

and sensorimotor processing belong to separate levels. Although there might

be no denying that conceptual processing could involve neural regions specific
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to processing sensory and motor stimuli, there is another level of conceptual

representation that is “amodal” and “symbolic” (not to be confused with the lin-

guistic distributional patterns that deal with linguistic symbols). This conceptual

level interacts with the perceptual and motor level, but it could stand alone for

conceptual representation without activating the sensorimotor level. Thus, the

recruitment of modality-specific regions during conceptual representation could be

explained by the spreading of neural activation from the amodal conceptual cores

to the sensorimotor regions. In short, the argument against the embodied view

goes like this: according to the embodied view, conceptual representation equates

sensorimotor processing. Therefore, any evidence for the activation of other

neural regions during conceptual processing counts as evidence for higher-level,

stand-alone, amodal representation.

This argument, first and foremost, is a straw-man. Only the most radical re-

ductionists will propose to do away with conceptual representation altogether and

equate conceptual representations sensorimotor processing. For most proponents

of the embodied view, conceptual representation can be hierarchically organised,

with convergence zones processing information from multiple modalities (Simmons

& Barsalou, 2003) and linguistic distributional patterns as symbolic placeholders

(Zwaan, 2016).

Another argument against the amodalist “attack” is that the latter part

of the argument gives the amodal view an unfair advantage. It is a logical fal-

lacy, a “black hole in conceptual space” as coined by (Barsalou, 2016), to sug-

gest that anything that is not reducible to sensorimotor processing is by default

amodal. Much evidence was found that conceptual representation activates mul-
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timodal neural regions and adjacent regions to the sensory and motor areas (e.g.,

Bonner & Grossman, 2012; Fernandino et al., 2016; Kiefer et al., 2008). Such

findings could be evidence for the hierarchical organisation of embodied concepts.

If conceptual representation is indeed symbolic or amodal, its interface with the

sensorimotor areas should be arbitrarily organised (i.e., independent to where the

modality-specific regions are). This is analogous to defining language as an arbi-

trary symbolic system, in that the linguistic symbols (e.g., horse) do not bear an

analogous relationship with its referent (the four-legged farm animal with hooves

and mane). It might be equally a logical fallacy to argue that anything short of

such arbitrariness should be regarded embodied representation. The point is that

it is the responsibility of the amodalists to define what amodal, symbolic concepts

are, instead of the responsibility of the embodiists to rescue evidence for embodied

simulation. Furthermore, the fact that it is di�cult to draw a clear line between

embodied and amodal concepts should be an argument in itself for abandoning the

distinction between the separate levels of concepts and sensorimotor processing.

1.2.3.2 To what extent are linguistic symbols grounded?

As both components exist in conceptual representation, it is of interest to

understand to what extent linguistic symbols are grounded. In simpler terms,

if there exists a continuum of “groundedness”, at one end of which conceptual

representation is entirely symbolic and disembodied, while at the other end all

linguistic symbols are fully grounded in sensorimotor processing, where does con-

ceptual representation realistically stand, given that both embodied and linguistic

components exist although some have proposed theories at the two extremes (e.g.,
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a fully symbolic and abstract view by Kintsch & Dijk (1978), or radical embodied

science by Chemero (2009))? Most researchers support a combinatorial view. For

example, Harnad (1990) proposed that there is a group of “elementary symbols”

which are grounded in sensorimotor experiences, while higher order symbols are

related to sensorimotor experiences via these elementary symbols. If this proposal

is true, people should be able to learn new symbols via the linguistic context and

retain traces of sensorimotor experiences for embodied simulation during future

conceptual representation.

To test this hypothesis, Dudschig, Kaup and colleagues asked participants

to learn novel objects or words whose meanings were associated with the vertical

space. When participants were learning the objects and the associated word labels,

the objects were consistently presented in the upper half or the lower half of the

visual space (Öttl, Dudschig, & Kaup, 2017); whereas when participants were

learning the novel words only, the words (without any objects) were presented in

pairs with either “up” or “down” or in a sentential context (Günther, Dudschig, &

Kaup, 2017). They found that participants were able to judge explicitly whether

the words’ meanings were associated with the upper or lower spaces after the

learning phase, but only after they had learned the words through the visual

space could the participants activate the sensorimotor experiences automatically

later during an implicit judgement task (i.e., they were faster to associate up

words with upward movements or visual space, and down words with downward

movements or visual space). These findings made it explicit how important the

mode of learning is to conceptual representations. Linguistic symbols can only

be grounded in embodied simulation when they are learned through sensorimotor
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experiences but not via the association between linguistic symbols.

The implication of these findings is great. It seems to suggest a more lim-

ited role of embodiment, than researchers formerly think. Although research on

embodied simulation has largely focused on concrete concepts, many researchers

would agree that processing both concrete and abstract concepts relies on embod-

ied simulation (Barsalou, 1999; Zwaan, 2014), not to mention that concrete con-

cepts are defined as concepts whose referents have sensorimotor features (Paivio,

1986). These novel word acquisition studies, in contrast, suggest that embod-

ied simulation is not a necessary condition of conceptual representation even for

many concrete concepts, thus pushing our position on the groundedness continuum

more towards the disembodied end. If a student in a land-locked country has only

learned about shark from a textbook, without every seeing a picture or watching

a TV show about sharks, they will not simulate the concept of a shark in the sea

(its colour, its speed, etc.) via their knowledge about the category membership of

shark and their available sensorimotor experiences with a gold fish in a tank.

Two counterarguments could be raised against such a conservative view of

embodiment. First, it is unclear whether the short-term learning of novel words

is comparable to the long-term acquisition of concepts in real life. In a learning

phase as brief as in those studies, participants were not required and may not

have enough time to engage in any deep processing of the sensorimotor features of

the words “up” and “down” or the simulated representation of the linguistic con-

text (more about the importance of deep processing in next section). This could

mean that the traces of sensorimotor experiences had never been activated in the

learning phase. However, when children build up their vocabulary, they are often
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required to engage in deep processing repeatedly in various reading and writing

tasks. Therefore, people are more likely to engage in embodied simulation in real

life than in those studies. Second, in real life, few concepts are acquired through

linguistic association alone, totally devoid of bodily experiences. Few, if any, of us

learned our first language by memorising a dictionary. Even an abstract concept

is often accompanied by a large amount of useful sensorimotor information, and

children are able to learn abstract concepts by generalisation over similar senso-

rimotor experiences (Colunga & Smith, 2003). For instance, we have learned the

concept of democracy by second- or first-hand experiences of going to the polling

booth (i.e., seeing other people vote or voting ourselves); so is the case with other

words such as mathematics, frustration, etc. In a word, conceptual representation,

from its acquisition to its processing, relies on the interaction between embodied

and linguistic components. Therefore, it is high time to study this interaction,

which will be the focus of my thesis.

There are many open questions concerning the content and structure of con-

ceptual representation. In this thesis on metaphor processing, I will focus on two

characteristics of the combined, simulation-linguistic conceptual representation.

First, linguistic distribution and embodied simulation are activated at di�erent

speeds; and second, they play di�erent roles based on the task demands.

1.2.3.3 Linguistic shortcut hypothesis

Linguistic distributional information gets activated faster than embodied

simulation. Barsalou and colleagues in their language and situated simulation

(LASS) theory suggested that the linguistic system becomes engaged first in a
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language processing task (Barsalou et al., 2008; Connell & Lynott, 2014b; Louw-

erse & Jeuniaux, 2008). Once a word is perceived (e.g., food), the neural activity

spreads to adjacent and connected areas in the brain which encodes similar stimuli,

that is, in the case of language processing, associated words based on linguistic

distributional patterns (e.g., drinks, lunch, etc.). As this linguistic information is

similar to the perceived word in memory, the spread of activation is rapid. Once the

word is recognised, it will also activate simulation of embodied experiences as well

(e.g., hunger, swallow, etc.). Such activation information encoded in the sensory

and motor systems, is more distant, but it encodes more information. Thus, the

linguistic component will reach the peak of its activity earlier than the simulation

component. Evidence from behavioural studies and neuroimaging studies supports

this hypothesis. For example, modality switching costs show that people respond

to a sensory property (e.g., bright) slower if the previous property they encounter

was of a di�erent modality (e.g., loud). This e�ect could be accounted for by

both embodied simulation (i.e., switch between sensory modalities) and linguistic

distributional frequency (i.e., switch between di�erent co-occurrence clusters), yet

the latter explained fast response better while the former explained slow response

better (Louwerse & Connell, 2011). In another study, when people were asked to

generate a list of properties for a concept, properties bearing a linguistic association

would be generated before properties originating from embodied simulation (San-

tos, Chaigneau, Simmons, & Barsalou, 2011). This temporal di�erence was also

borne out by neuroimaging evidence which shows that early conceptual processing

activates cortical regions specifically for language processing such as the left iFG,

left superior temporal gyrus and the medial inferior frontal cortex; whereas late
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conceptual processing activates multiple cortical regions associated with process-

ing perceptual stimuli such as the parietal cortex (Louwerse & Hutchinson, 2012;

Santos et al., 2011; Simmons, Hamann, Harenski, Hu, & Barsalou, 2008).

Although it has been argued that the linguistic component reaches the

peak of its activation rapidly, it does not imply that embodied simulation is slow

or regarded ine�ectual during early stage of conceptual processing. In fact, the

motor cortex, for example, can be activated very quickly (within 200ms from word

onset) when a word like kick is encountered (Hauk & Pulvermüller, 2004; Pulver-

müller, Shtyrov, & Ilmoniemi, 2005). However, the important point here is that

the role and importance of embodied and linguistic components could vary dur-

ing the process of conceptual representation. Because the linguistic component

is activated faster and is less precise, it has the potential to form good-enough

representations (Ferreira, Bailey, & Ferraro, 2002), which can be taken advantage

of when the context and task requirements allow (Connell & Lynott, 2014b; Louw-

erse & Hutchinson, 2012). In line with this argument, Connell & Lynott (2013)

proposed the cognitive triage mechanism to account for the interaction of the two

components in language processing. They suggested that linguistic distributional

information could be a pointer for further processing before embodied simulation is

fully engaged. If the linguistic component indicates that future processing is likely

to fail (i.e., the words rarely co-occur in the same context and so their combined

meaning might not be simulated successfully, e.g., cactus beetle), then it could

abandon the processing before any more cognitive e�ort is expended by the em-

bodied component. On the other hand, if the linguistic component indicates that

future processing is likely to succeed (i.e., the words often co-occur in the same
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context and so their combined meaning can probably be simulated successfully,

e.g., military plan), then it could either inform to accept the word combination

immediately (i.e., based on the linguistic shortcut alone) or allow the embodied

component to continue developing a detailed simulation of meaning.

Since whether or not people take the linguistic shortcut depends on the

requirements of conceptual representation tasks, it is worthwhile to study which

condition exactly encourages the use of the linguistic shortcut. One possible can-

didate is relatively shallow processing – people should be more likely to rely on

the linguistic distributional information when it does not require a detailed ac-

count of the representation to complete the task. Indeed, many studies which

show e�ects of simulation often required deep and deliberate processing such as

producing interpretation for a sentence or judging specific aspect (e.g., location in

space, relationship between the semantic representation of two concepts (Borghi,

Caramelli, & Setti, 2005; Lebois, Wilson-Mendenhall, & Barsalou, 2015; see review

Louwerse & Jeuniaux, 2010). Meanwhile, the linguistic component is more promi-

nent when participants are engaged in relatively shallow processing. For example,

Connell & Lynott (2013) applied the same set of noun-noun compounds to two

tasks: a sensibility judgement task which required only a simple yes/no response,

or an interpretation generation task which required participants to type down the

interpretation to the compounds. Although the sensibility judgement task is often

considered as a “deep” semantic task, it does not explicitly require an elaborate,

verbal account of the conceptual representation, thus relatively shallower than the

interpretation generation task. By introducing such a contrast, it was found that

the linguistic component only had an e�ect on the performance of the shallow
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sensibility judgement task. In summary, shallow processing could be a condition

that encourages the use of the linguistic shortcut, which will be a hypothesis tested

throughout this thesis.

1.3 Grounded metaphor processing

1.3.1 Grounded language processing

Grounded conceptual representation has been studied for more than two

decades, with a special focus on literal, concrete language. This aspect of lan-

guage processing is easy to study because we can safely assume that processing

a sensory word (e.g., bright) mainly requires the reactivation and “re-living” of

sensory experiences denoted by the word (i.e., emitting much light; Zwaan, 2004).

Researchers have found both behavioural and imaging evidence in favour of this

view. Meanwhile, some researchers have tried to bridge the gap between general

language processing and metaphor processing. Most of them have tried to use a

specific theory, the conceptual metaphor theory, as a way to explore simulation

during metaphor processing. However, such an exploration has not been successful

empirically. In the next section, I will discuss the conceptual metaphor theory and

related empirical research in detail, and I will argue why this path will eventually

lead to a dead end.

Embodied simulation during literal language processing has been tested

both behaviourally and with imaging techniques. People can represent the per-

ceptual features of a concept described in a sentence/word (e.g., an eagle with
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spread wings after reading The ranger saw the eagle in the sky) and preferring

a matching image faster to a mismatch image (Engelen, Bouwmeester, Bruin, &

Zwaan, 2011; Lynott & Connell, 2009; Spivey, Tanenhaus, Eberhard, & Sedivy,

2002; Zwaan & Pecher, 2012; Zwaan & Yaxley, 2003). Other behavioural stud-

ies have also found that people can represent the spatial feature of concepts in

an iconic manner (e.g., preferring the word attic above the word basement to

the reversed arrangement; Zwaan & Yaxley, 2003) and the direction of an action

described in a verb (e.g., being faster at moving the arm towards the body after

reading open the drawer ; Glenberg & Kaschak, 2002). However, the iconicity e�ect

could also be attributed to the linguistic distributional pattern (i.e., attic appears

more often in context before basement than the reversed; Louwerse & Jeuniaux,

2008); and the action-sentence compatibility e�ect was found to be generally weak

(Papesh, 2015), and related to the planning of motor response, instead of semantic

processing or conceptual representation (Borreggine & Kaschak, 2006; T. Brouil-

let, Heurley, Martin, & Brouillet, 2010; T. M. C. Miller, Schmidt, Blankenburg, &

Pulvermüller, 2018).

Greater support for grounded language comprehension is found through

imaging studies. It was consistently supported that processing words or sentences

whose meanings are related to specific sensory modality (e.g., thunder), action

(e.g., kick) or a�ection (e.g., story about getting compliment) activated specific

neural regions associated with processing such stimuli (R. F. Goldberg et al., 2006;

Hauk & Pulvermüller, 2004; Raposo, Moss, Stamatakis, & Tyler, 2009). More-

over, the activations of modality specific regions were found beyond the processing

of single words and sentences, and existed during comprehension of stories and
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discourse (Chow et al., 2014; Kurby & Zacks, 2013). Such activations were cru-

cially influenced by the context, such that a coherent representation of the context

produced the strongest activations in the modality specific regions; and modality

specific activations of a single word can be overridden by the context. For example,

the word kick activates the motor and premotor cortex to di�erent degrees when

it was embedded in di�erent context. It elicited greater activation when read in

isolation than in a literal phrase such as kick the ball (Raposo et al., 2009).

1.3.2 Conceptual metaphor theory

Studies on grounded metaphor processing have spawned from the studies

above on grounded language comprehension. However, a particular interest has

been paid on the modality-specific activations of the source domain properties, and

here I will argue that this approach in fact limits our understanding of metaphor

processing. The rationale behind this research is based on the theory of concep-

tual metaphor (Lako� & Johnson, 1999). A conceptual metaphor establishes an

analogous relationship between an abstract concept with the sensory-motor expe-

riences. For example, KNOWING IS SEEING is a conceptual metaphor which

draws an analogy between the conceptual behaviour of KNOWING with the phys-

ical behaviour of SEEING. These analogous relationships are argued to derive

from a strong correlation between the abstract concept and sensory-motor expe-

riences. SEEING a physical object entails that the object (at least its existence)

is KNOWN. The conceptual metaphor theory as such has been used to account

for the grounding of abstract concepts into sensori-motor experiences (Boroditsky,

2000; Hurtienne & Meschke, 2016; Lako� & Johnsen, 2003). Because KNOWING
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IS SEEING, when we say “I see your point”, motor experiences of seeing a physical

object is activated, but the object to be seen and thus known is the intentioned

meaning of “you”.

The conceptual metaphor theory was used to account for the simulation

process activated during metaphor comprehension. As a conceptual metaphor es-

tablishes an analogous relationship between two concepts, people could use the

conceptual structure, the sensory and motor properties, of one concept (i.e., the

source domain) to understand the conceptual structure of another concept (i.e.,

the target domain), which is often more abstract (Gibbs, 2006; Gibbs, Costa Lima,

& Francozo, 2004). For example, a linguistic metaphor such as “a bright student”

is to draw an analogy between the sensorimotor experience of bright with the ab-

stract concept of intellect. Thus, to understand “a bright student” is to ground

the intellect of a student to the sensorimotor experience with something bright.

According to our past experiences, if something is bright (e.g., the sun), we will

be able to see things clearly because of it. As KNOWING IS SEEING according

to the conceptual metaphor, a “bright” student who is able to see things clearly is

a student whose intellect enables them to learn and know things quickly. In other

words, people use linguistic metaphors in language in accordance with the concep-

tual metaphor in our mind, such that the related sensorimotor experiences can be

simulated for us to comprehend the abstract concept in the linguistic metaphor.

Evidence for this kind of embodiment needs to show that metaphor compre-

hension activates the sensorimotor experiences of the source domain. To achieve

this aim, the action compatibility e�ect (ACE) is studied (Glenberg & Kaschak,

2002). It was found that reading sentences with metaphorical actions (e.g., rise to
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power) facilitates the physical action in the same direction (e.g., vertical upward

movement) but impedes actions in the opposite direction (Santana & Vega, 2011).

This suggests that the motor properties of rising are activated when people process

metaphoric actions even though the meaning of the metaphor does not include a

physical vertical motion.

Although research on conceptual metaphor has o�ered many ingenious at-

tempts to study the embodied simulation in metaphor processing, this approach

is limited because it has constricted the definition of embodied simulation to the

re-enactment of properties from the source domain. Although the behavioural ef-

fect supports the activation of such source domain properties, there is no direct

evidence showing the activation of neural regions specific to the processing of per-

ceptual and motor stimuli during metaphor processing. The behavioural e�ects

described above, which has been interpreted as a result of embodied simulation,

can be accounted for by established principles of perception, language and memory

(Casasanto & Gijssels, 2015). When people read about a metaphoric action (e.g.,

rise to power), their response could be facilitated because the word rise can prime

the upward response space. Therefore, even if there is the simulation of sensori-

motor experiences of some sort, the evidence does not show that such a process is

essential to metaphor comprehension.

Indeed, there has been little neuro-imaging evidence showing activations

in exclusively sensorimotor regions when people engage in metaphor processing.

Many fMRI studies have examined action verbs hoping to find activation in specific

motor/pre-motor regions associated with the body parts that perform the action.

However, metaphors with action verbs (e.g., grasping the idea; My mind is run-
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ning) do not activate the motor and premotor cortices to the same extent as literal

use of the same verbs (Aziz-Zadeh, Wilson, Rizzolatti, & Iacoboni, 2006; Raposo

et al., 2009; Romero Lauro, Mattavelli, Papagno, & Tettamanti, 2013). Not only

so, metaphors do not activate the primary cortices any more than their literal

counterpart. For example, if a rough day had recruited the somatosensory cortex

more than a bad day, or a bright student had recruited the primary visual cor-

tex more than a clever student, we might have been able to argue that metaphor

processing involves the embodied simulation of sensorimotor experiences. How-

ever, such evidence was not found. Comparison using fMRI between perceptual

metaphors and their literal counterparts (e.g., She had a rough day vs She had

a bad day) did not find greater activation in the primary sensorimotor cortices

(Citron & Goldberg, 2014; Desai et al., 2013; Romero Lauro et al., 2013; Yang &

Shu, 2016). Although they have found activations in other regions associated with

processing sensorimotor stimuli, these regions are also activated in other cognitive

and perceptual processes not related to the specific sensory and motor modalities

(Casasanto & Gijssels, 2015).

These null e�ects from neuro-imaging studies actually should not be sur-

prising to researchers on metaphor processing, because metaphors by definition

should be detached from its source domain properties. After all, the definition

of metaphor is the use of language where the metaphoric term does not refer to

its literal meaning, whether this literal meaning pertains to the sensory, motor or

other bodily experiences or abstract senses. Many studies have found that the lit-

eral meaning of the source domain is quickly suppressed by the context, even when

it is activated at the initial stage of processing (Glucksberg & Haught, 2006; Mac-
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Gregor, Bouwsema, & Klepousniotou, 2015; Mashal, 2013; Raposo et al., 2009).

The word bright may activate the primary visual cortex at the beginning of the

processing, pertaining to its literal meaning (i.e., emitting much light), but people

should be able to suppress this activation in the context of bright student, favour-

ing the metaphoric meaning (i.e., quick-witted and intelligent). In a metaphor

that is conventional and apt, source domain properties should not have sustained

activity which competes with the metaphoric meaning (Desai et al., 2013).

One possibility is that the activation of source-domain properties is brief.

However, fMRI is not able to pick up such fast activations and suppression due to

its low temporal resolution. Only one study, to my knowledge, has used MEG to

study the timecourse of neural activation during metaphor processing (Boulenger,

Shtyrov, & Pulvermüller, 2012). It indeed found that source domain activation

only happened at the early time window (150-250ms). Although it lends support

to the idea that metaphor processing activates some sensorimotor features of the

source domain, it also suggests that such source domain activation is suppressed in

metaphor comprehension, instead of activated to facilitate comprehension as the

conceptual metaphor theory suggests.
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1.4 The present thesis: metaphor processing in-

volving simulation-linguistic conceptual rep-

resentations

While pointing out the lack of evidence for embodied conceptual metaphors,

it is not my intention to suggest that metaphor comprehension is not grounded in

any past bodily experiences. It is unprofitable for researchers to be limited by the

current definition of simulation based on the conceptual metaphor theory. Instead,

we should align our view of metaphor processing with the current understanding of

grounded language processing, that is to define the simulation involved in metaphor

processing simply as the partial re-enactment of sensory, motor, introspective,

a�ective and other experiences related to the concept. In other words, when we

use the phrase “a bright student”, we do not need to picture a student with a

light-bulb flashing above their head; but we should still reactivate our physical,

emotional and psychological experiences with a quick-witted student in order to

achieve comprehension.

To propose a new definition of simulation in metaphor processing is in-

deed the first challenge I will face in my thesis. Since simulation is complex and

subconscious (Connell & Lynott, 2016), this definition needs to capture the ef-

fort for simulation as a whole, allowing us to remain agnostic about the specific

experiences reactivated. Throughout my thesis, this definition will be scrutinised

and validated in both behavioural studies and EEG studies. Furthermore, I will

study how embodied simulation can be coupled with linguistic distributional pat-
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terns. Specifically, I will investigate the conditions under which each component

is involved, and their interplay to create conceptual representations.

1.4.1 Thesis Outline

Thus, in my thesis, I will first propose an index of ease of simulation and

generate a body of metaphoric sentences that vary independently on the measure

of ease of simulation and the linguistic distributional frequency (Chapter 3). On

the one hand, the ease of simulation measure will capture metaphor comprehension

as a whole, measuring the e�ort required to arrive at a successful representation.

On the other hand, linguistic distributional frequency will be defined in a minimal

fashion, capturing the distributional patterns of metaphors’ constituent words in

close proximity, within a narrow five-word window (e.g., Louwerse & Connell,

2011). This treatment of linguistic distributional frequency will advocate strongly

for the e�cacy of the linguistic information in following chapters.

Then I will investigate whether metaphor processing relies on both embod-

ied simulation and linguistic distributional information, as the grounded approach

suggests in the following chapters (Chapters 4-7). If both components play a role

in metaphor processing, then the ease of simulation and linguistic distributional

frequency should each contribute to the performance of metaphor processing with

a unique portion. Furthermore in Chapter 4, I will test the hypothesis that the

linguistic component can act as a shortcut when the task requires only shallow

processing. Thus, I will contrast shallow and deep processing with two sentence

processing tasks as Connell & Lynott (2013): that is, a shallower sensibility judge-

ment task and a deeper interpretation generation task.
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Studies in the following chapters (Chapter 5 and 7) will develop upon the

same paradigm as the study in Chapter 4, in order to further examine the inter-

play between ease of simulation and linguistic distributional frequency. Chapter

5 will continue to test the linguistic shortcut hypothesis and investigate the role

linguistic distributional frequency plays under time constraint. If people use the

distributional pattern of words as a shortcut to make judgments, the e�ect should

be larger when the time resource is limited. Accordingly, the e�ect of embodied

simulation will be smaller when the time resource is limited because to engage in

embodied simulation is time-consuming.

Then in Chapters 6 and 7, I will search for the neurophysiological manifes-

tations of the embodied and linguistic components using electroencephalography

(EEG). Chapter 6 will identify these two components in literal language process-

ing, and Chapter 7 will match them with metaphor processing. Using EEG will

o�er us greater insights into the online processing during metaphor comprehen-

sion with high temporal resolution. However, the conventional practice among the

EEG literature is problematic and prone to Type I error, for reasons discussed in

the next chapter (Chapter 2). Therefore, apart from studying metaphor process-

ing, another mission of my research in these chapters will be to develop a more

rigorous way to analyse EEG data for psycholinguistic research.

Finally in the conclusions chapter (Chapter 8), I will summarise the theoret-

ical and empirical advances in this thesis, specifically in relations to the linguistic

shortcut hypothesis. I will discuss, first, how well current theories of grounded

conceptual representations can be applied to the research on metaphor processing.

Second, I will also discuss the implications of my thesis on grounded language pro-
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cessing. Since starting point of my thesis is to cast metaphor processing under the

big framework of language processing. My findings will increase our understand-

ing of conceptual representations in general and point out a direction for future

studies on grounded language processing.
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CHAPTER 2

Using EEG to Study Metaphor Processing

2.1 Introduction

In my thesis, as discussed in the previous chapter, I will study the con-

ceptual representation during metaphor with the specific question regarding the

role of linguistic distributional patterns in mind. To test the linguistic shortcut

hypothesis, it is important to validate a crucial condition for the linguistic compo-

nent to become a shortcut: that is the linguistic component reaches the peak of its

activation before the embodied component. In other words, it is necessary for the

linguistic component to have a temporal advantage over the embodied component

(though both components are activated simultaneously) for the linguistic compo-

nent to become a valid guide for the processing of embodied simulation. Therefore,

a crucial component of my research is the use of electroencephalography (EEG).

In order to study the grounded representation with EEG, it is important to

identify and di�erentiate the e�ect of the embodied and linguistic components on

the EEG waveforms. In previous research, the study of EEG waveforms primarily
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relies on the identification of event-related potential (ERP) components, which are

segments of EEG waveforms circumscribed to a period of time and an area on the

scalp. Several ERP components have been found to be associated with semantic

processing and even embodied conceptual representations (e.g., N400 and late

positivity complex). However, as well be discussed in this review, the study of

ERP components su�ers from great problems, such as high researcher degrees of

freedom and the use of ANOVA. Therefore, it is a mission of my research to seek

a more rigorous way to study EEG, by limiting researcher degrees of freedom and

using better statistical tools (i.e., linear mixed-e�ect model plus Bayes factor). In

this chapter, I will first review available findings of the ERP markers of conceptual

representation and argue why the current way to study EEG lacks the needed

rigour. Finally, I will propose a better way to analyse EEG data, which will be

used in studies of Chapters 6 and 7 in my thesis.

2.2 EEG in psycholinguistics

EEG is the electrical neural activity measured at the scalp over time. It is

recorded at various sites on the scalp, as the summation of all the electrical fields

generated by the neural activities in the brain (Coulson, 2007). What is of interest

to psycholinguistic research is the event-related potential (ERP), an average of

several EEG waveforms during or after similar events, such as the presentation

of a word. ERP provides di�erent parameters that could be informative to the

researchers, such as the amplitude, the latency and the scalp topography (Figure

2.1). These parameters are used to make functional inferences about the processing
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in the brain (Otten & Rugg, 2005). For example, if participants are presented with

concrete words (e.g., weapon) and abstract words (e.g., fashion) matched on other

variables while their ERP is recorded, the di�erences in ERPs can be interpreted

as the di�erence in concreteness (Barber, Otten, Kousta, & Vigliocco, 2013). If

the amplitude to concrete words is larger than abstract words, we may infer that

this change in amplitude reflects retrieval of sensorimotor features. If concrete

and abstract words produces di�erent topographies, we can also infer that the

conceptual representation of these words relies on di�erent neural population. It

is now even possible to infer with some accuracy the neural activities from the

scalp topography whereby knowing which area(s) in the brain is responsible for

the processing (Koles, 1998; Slotnick, 2005), though it is not common practice

among psycholinguists. Rather, the greatest advantage of EEG is its high temporal

resolution. It could capture the online, immediate electrical activity on the scalp

to the precision of several milliseconds.

2.2.1 The N400 component

The most common way to characterise ERP waveforms is to capture them

in ERP “components”, which are segments of a waveform within a period of time

“with a circumscribed scalp distribution and a circumscribed relationship to ex-

perimental variables” (Otten & Rugg, 2005). Many ERP components have been

identified since EEG was first applied to psychology research, among which most

relevant to my thesis is the N400 component. N400 is a segment of relative nega-

tive going waveform around 400ms after the onset of a stimulus, commonly found

in the centro-parietal sites (Kutas & Federmeier, 2011).
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Figure 2.1: A schematic drawing of ERP from the right frontal electrode (F4).
The crucial parameters of ERP are amplitude: the magnitude of the waveform in
microVolts from 0 (i.e., the vertical axis of the waveform on the right); latency:
the time between the stimulus onset (0 milliseconds) and the peak or start of a
component, e.g. N1 (i.e., the horizontal axis); and scalp topography: amplitude of
the whole scalp at a certain point of time. Pictures from Wikipedia.com.

N400 component was initially found to be a marker of semantic anomaly,

such as He took a sip from the transmitter comparing to He took a sip from the

fountain (Kutas & Hillyard, 1980). Later it was found that in sentence process-

ing, the best predictor of the N400 e�ect was the cloze probability, that is the

probability of using a certain word in a cloze test (Kutas & Hillyard, 1984). For

example, in a sentence He takes sugar and lemon with his . . . , it is more probable

to finish the sentence with tea than co�ee. Even though both cases are semanti-

cally correct, the amplitude of N400 to tea was found more negative than co�ee.

Later N400 was also found to be sensitive to other lexical factors such as abstract-

ness (Huang, Lee, & Federmeier, 2010) and even non-linguistic stimuli such as

unexpected shapes (Ganis, Kutas, & Sereno, 1996), faces (Olivares, Iglesias, &

Antonieta Bobes, 1999) and odours (Olofsson et al., 2014). Because of the wide
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range of stimuli that can elicit an N400 e�ect, Kutas & Federmeier (2011) argued

that N400 reflects the e�ort to integrate new stimuli into a multimodal, dynamic

representation of concepts, which is shaped by both recent events and long-term

memory (see also Baggio & Hagoort, 2011; Rabovsky & McRae, 2014).

N400 component has also been used to study metaphor processing.

Metaphors (e.g., Every second of our time was attacked) were found to elicit

an N400 e�ect compared to literal sentences (e.g., Every soldier in the frontline

was attacked), which nevertheless was not as large as the e�ect of an anomalous

sentence (e.g., Every drop of rain was attacked; Arzouan et al., 2007; Forgacs,

Bardolph, Amsel, DeLong, & Kutas, 2015; Lai et al., 2009). The more familiar or

easily interpretable was a metaphor, the smaller was the e�ect (i.e., Every point of

my argument was attacked elicited a smaller N400 e�ect than Every second of our

time was attacked). Furthermore, the N400 e�ect of metaphors can be attenuated

by the context (Coulson & Van Petten, 2002; Lai & Curran, 2013). For example,

people read prime-target pairs of sentences with the same final word (e.g., bumpy)

in a literal condition versus a metaphor condition. In the metaphor condition,

people read the prime sentence (e.g., I can see the path of his life) followed by the

target Life can sometimes be bumpy. In contrast in the literal condition, people

read the prime I can see the path of this road followed by Roads can sometimes

be bumpy. The N400 e�ect between metaphors and literal sentences to the final

word (bumpy) would diminish. Both the e�ect of conventionality and the e�ect

of context show that the harder it is to integrate new stimuli into the conceptual

representation, the larger the N400 e�ect is, consistent with Kutas & Federmeier

(2011).
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The N400 e�ect is, moreover, used to study embodied simulation. As Kutas

& Federmeier (2011) suggested, the conceptual representation draws from percep-

tion, memory and language and is instantly shaped by incoming events. Therefore,

modality switching costs, which show that verification of sensory properties recruit

modality-specific resources, should also elicit the N400 e�ect. Modality switching

costs refer to the delay in response time to verify a property of one perceptual

modality (bright) if the previous trial is of a di�erent modality (loud; Pecher et

al., 2003). Several studies have looked for the ERP manifestations of modality

switching costs (Bernabeu, Willems, & Louwerse, 2017; Collins, Pecher, Zeelen-

berg, & Coulson, 2011; Hald, Hocking, Vernon, Marshall, & Garnham, 2013; Hald,

Marshall, Janssen, & Garnham, 2011). However, what they found was not a clear

picture. Not only was a significant e�ect found in the time window for the N400

component, but also a so-called early N400-like e�ect around 300ms (Bernabeu et

al., 2017; Hald et al., 2011), the N1-P2 complex around 200ms (Bernabeu et al.,

2017; Hald et al., 2013, 2011), as well as the late positivity component (LPC) after

600ms (Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011).

Finding a significant e�ect at a time window outside the original hypothesis

is of course not inherently bad or wrong. In fact, it is reasonable since EEG is

a much finer measure than response time. What is manifested as a delay in re-

sponse could be a result of many di�erences in semantic processing (Hauk, 2016).

However, the finding of these components reveals a fundamental problem with

the conventional method of analysis which su�ers from high researcher degrees of

freedom, plus an overlook of the nature of an ERP waveform. In the next section,

I will discuss these problem in detail using the research on modality switching
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costs as an example. However, it should not be taken as a problem that exists

only in these few studies, but reflecting the general practice across the EEG litera-

ture. To understand the problem, it is necessary to critically evaluate our current

understanding of ERP components.

2.3 Critical evaluation of ERP components

The problem with characterizing EEG with ERP components are two-fold.

First, there is a discrepancy between what we generally call ERP components and

what is supposed to represent: latent components. Second, ERP records contin-

uous and clustered data (e.g., many data points from one participant), whereas

ERP components are discrete and aggregated (i.e., averaging over many trials

for one participant). These problems keep us from appropriately analysing and

interpreting ERP results.

The first problem with ERP components concerns a matter of proper un-

derstanding. There is a gap between what we regard as ERP components and

what we expect it to do. What we call an ERP components generally refers to

is a segment of the observed ERP waveform. The reason to define ERP compo-

nents is because we expect an ERP component to reflect the activity of a specific

process in the brain. In the brain at a certain window of time, a cluster of the

neurons (either in a specific area of the brain or in a network of di�erent areas)

is engaged in a specific process, while others are engaged in other functions either

related to or unrelated to the processing of the incoming stimuli. For example,

during a property verification task, a certain neural cluster is engaged in semantic
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processing, specifically with the recruitment of modality-specific resources. The

activity of this neural cluster will generate some electrical activities, which is called

a latent ERP component. The latent component is directly associated with the

neural cluster, and thus functionally significant.

However, the latent component is not the ERP component we know, be-

cause the ERP component obtained from the observed waveform measures the

electrical activities generated by neurons in the whole brain. In other words, the

observed component is a sum of all the latent components generated by di�er-

ent functionally significant neural clusters in the brain. In the ideal world, there

would have been methods to reliably decompose the observed ERP waveform into

latent components, but the reality is each observed waveform can be decomposed

to several, if not infinite, latent components, each generated by one functionally

devoted neural cluster (Figure 2.2; Luck, 2005).

As shown in Figure 2.2 (Panels A-C), an observed waveform (Panel A)

can be decomposed to three latent components in two ways (Panels B and C).

Both Panels D and Panel F display an increase in the amplitude of Peak 3 (from

solid to dotted line), but the increase actually results from di�erent changes of

the latent component. Panel D displays the e�ect of decreasing the amplitude

of latent component C2’ (in Panel C), whereas Panel F displays the e�ect of

increasing the amplitude of latent component C3 (in Panel B). Therefore, the

peaks/troughs on an observed waveform cannot inform us which neural cluster is

engaged in di�erent activities. From the cognitive perspective, what is observed

from the ERP waveform as semantic processing could be a conglomerate of many

sub-processes. To add to the complexity, Hauk (2016) suggested that these sub-
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Figure 2.2: ERP waveform in Panel A can be decomposed to di�erent latent
components Panels B and C. Changes in the observed waveform (Panels D-F)
could result from changes in di�erent latent components. Figure from Luck (2005)
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Figure 2.3: Schematic illustration of components in semantic processing in
Hauk(2016)

processes, though carried out by di�erent neural clusters, overlap and communicate

with each other (Figure 2.3). The N400 and LPC e�ects of modality switching costs

are subject to distortion from changes in all the sub-processes active during the

N400 time window. Therefore, Luck (2005) has reasonably warned us that using

raw waveform to study the e�ect of functional processes is “extremely dangerous”.

However, in spite of such a danger, there are strategies to design better studies

overcome the issue of latent components, which will be discussed later when I

outline the solutions available to my research.
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2.3.1 Data structure of ERP.

The second problem of ERP components is that the structure of EEG data

is largely overlooked. This problem in practice results in high researcher degrees

of freedom, thereby adding the risk of an inflated probability of Type I error.

2.3.1.1 Continuity

The first characteristic of EEG data is that it is continuous. The data is

recorded over the epoch at a high frequency (e.g., 1000Hz) and at di�erent sites

across the scalp (e.g., 128 channels). Therefore, the data is correlated across time

and space. A data point at a certain time should be similar to the data point

before and after it; a waveform of a certain channel should be similar to those of

the adjacent channels. Such an intercorrelation poses a problem when researchers

try to cut the continuous waveform into discrete components that is averaged

across a time window and several channels during analysis.

Because of the continuous data structure, researchers face many choices

during the analysis such as which time window and scalp sites to choose. When

making these choices, researchers run the risk of p-hacking behaviour because there

is the freedom to explore alternative methods of analysis and end up reporting

only the analysis that “works” (J. P. Simmons, Nelson, & Simonsohn, 2011). This

is the reason why we should try our best to remove flexibility for researchers

from the analysis (Nelson, Simmons, & Simonsohn, 2018; Wagenmakers, Wetzels,

Borsboom, & Maas, 2011). If response time is analysed, it is unacceptable to

selectively analyse only those trials whose response times between two conditions
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are consistently larger than 100ms; or if a questionnaire contains 100 questions, it

is unacceptable to only report 10 that has given a result in the direction expected.

We should similarly be aware of such risks when we conduct ERP studies,

if not more so because of the great flexibility a�orded by the sheer amount of

data. For example, simply in order to choose a time/time window, there are three

strategies available. Researchers could perform a peak-based analysis by selecting

one time point when the waveform is at its peak/trough, a mean-based analysis

which takes the mean amplitude within a time window, prescribed before analysis,

upon visual inspection of the data, or inherited from previous studies. Otherwise,

if there are no clear hypotheses for components, researchers could also analyse the

whole waveform by slicing it into equal time intervals such as 50ms or 100ms slices.

Similarly, to choose a scalp region, one can pick a cluster of electrodes upon visual

inspection, or segregating the scalp into two halves (left/right, anterior or poste-

rior), four quarters (left/right x anterior/posterior) or nine areas (left/mid/right

x front/centre/back). The sheer number of choices available should be a cause of

alert because of the flexibility it a�ords. Moreover, one of these choices, that is

visual inspection, is particularly risky, because researchers are allowed to manually

pick the time window and electrodes that are more likely to yield a big di�erence

between conditions, whereas the data that do not seem to yield an e�ect will sim-

ply be discarded. As these options are all equally allowed, although it is not the

researchers’ intention to engage in dishonest behaviour, the risk of a Type I error

ends up being higher than the critical value of 5%.

The inflation of the probability of Type I error leads to an over-confidence

in the interpretation of the results. For example, in the studies on modality switch-
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ing costs, di�erent time windows were chosen to test the early e�ect of modality

switching costs. While Bernabeu et al. (2017), Hald et al. (2011) and Hald et

al. (2013) examined the segment of ERP waveform between 190ms and 300ms or

160ms and 215ms based on visual inspection and found significant e�ects, Collins

et al. (2011) chose a prescribed time window between 100ms and 200ms before

the analysis and did not find the e�ect. Both choices are accepted by the research

community based on the fact that these studies are all published in high-impact,

peer-reviewed journals. All of these segments are labelled as the N1-P2 e�ect.

However, these windows in fact barely overlapped. It is hard to accept that they

reflect the same underlying processing.

2.3.1.2 Clustered data

The second characteristic of EEG data, especially in psycholinguistic re-

search, is that it is clustered. In other words, the data points are nested under

participants and stimuli. The responses, or ERP in this case, of each participant

should be more similar within this participant than across di�erent participants.

Similarly, the ERP of each stimuli should be more similar than the ERP across

di�erent stimuli. This hierarchical data structure is often neglected by conven-

tional research which uses ANOVA that averages across participants or stimuli.

Thus, the language-as-fixed-e�ect fallacy is committed (H. H. Clark, 1973). In

other words, when you find an e�ect between two conditions by comparing the

averaged waveform of each participant, you cannot rule out that the e�ect is a

result of several peculiar stimuli. Ignoring random variability like this can lead to

inflated Type I error rate (Amsel, 2011; H. H. Clark, 1973).
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Traditionally, the language-as-fixed-e�ect fallacy has been treated by

matching the stimuli on a series of psycholinguistic factors that could potentially

a�ect language processing such as frequency, length for items. Similarly, it is also

possible to control the random variability of participants by matching them by

age, gender, working memory capacity, etc. However, this option is increasingly

impractical given the vast number of factors, known and unknown, that need to

be matched which grows as our understanding of language processing accumulates

(Cutler, 1981).

In summary, characterising ERP using components is dangerous because

the components obtained from observed waveform does not necessarily correspond

to the latent components. Thus, the observed ERP components do not accurately

reflect the critical process we hope to study and are easily distorted by changes

of those surrounding processes. Furthermore, severing continuous waveform into

discrete components and analysing them in ANOVA run a high risk of inflating

Type I error. However, these problems do not mean that studying ERP is futile

by any means. Instead, we need to be very cautious when designing an ERP study

and it is imperative for this thesis to seek for a more rigorous way to characterise

ERP data.

2.4 A better way for ERP

A more rigorous way to treat ERP data needs to solve three problems

existing in the conventional method, which are,

1. how to examine the underlying processes in the brain when latent compo-
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nents are not accessible;

2. how to limit researcher degrees of freedom;

3. how to account for multilevel, clustered data. In this section, I would argue

that the way to take care of all three problems is to conduct component-

free analysis, and to adopt more advanced statistical methods such as linear

mixed-e�ect models and Bayes factors.

2.4.1 Problem with latent component

As discussed previously, observed ERP waveforms do not directly reflect

underlying processes. However, it is still possible to interpret ERP data in terms

of cognitive processes as long we design better study. Luck (2005) o�ered six

strategies to avoid ambiguity in interpreting ERP components, which are (1) fo-

cusing on a specific component, (2) using well-studied experimental manipulations,

(3) focusing on large components, (4) isolate components with di�erence waves,

(5) focusing on components that are easily isolated, and (6) using component-

independent designs. Among these strategies, (3), (4) and (6) are most relevant to

my thesis. Strategy (3) does not merit much discussion because in this thesis we

will pay attention mostly to N400 and LPC, both of which are large components.

Here in this section, I would like to show how isolating components with di�erence

waves (Strategy (4)) and using component-independent designs (Strategy (5)) are

able to improve the analysis, with modality switching costs as an example.

Di�erence waves can isolate components of interests and remove the con-

found of other latent components (Vogel, Luck, & Shapiro, 1998). For example, to
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study modality switching costs, we are interested in the e�ect of a switch of per-

ceptual modality (e.g., loud bright) compared with a non-switch (e.g., red bright),

and we expect that a recruiting modality-specific resources for semantic represen-

tation should a�ect the amplitude of the N400 component. However, it is di�cult

to know whether the change in the amplitude of the observed waveform is a re-

sult of a change in the N400 component or some other components (e.g., P3). To

isolate the N400 component, we could construct di�erence waves by subtracting

the waveform of the prime item (e.g., loud) from the target trial (e.g., bright) for

both the switching and non-switching conditions. The resulting waveform from the

switching condition will reflect simply the e�ort to disengage from one perceptual

modality (e.g., audition) and re-engage another perceptual modality (e.g., vision),

while other processes of property verification are cancelled out; whereas the result-

ing waveform from the non-switch condition will not reflect such an e�ort. There-

fore, the di�erence between the di�erence waves of switching and non-switching

conditions will simply reflect the e�ort to engage in modality-specific resources.

Using component-independent designs is a better method to avoid the prob-

lem with latent component (Hillyard, Hink, Schwent, & Picton, 1973; J. Miller &

Hackley, 1992; Thorpe, Fize, & Marlot, 1996). It is applicable to the study of

modality switching costs because it does not matter which latent component is re-

sponsible for the observed change in the waveform. What is of concern is the time

course of embodied simulation throughout the whole process of property verifica-

tion. As one of the aims of the thesis is to test the linguistic shortcut hypothesis

(i.e., the linguistic component reaches its peak before the embodied component,

and is used to guide the activation of the embodied component), we are able to

57



draw a theoretically significant conclusion if we find that the linguistic component

can better predict the observed ERP waveform at an earlier time window than the

embodied component.

In this thesis, I will adopt the latter strategy as the more economical choice,

because it removes the unnecessary time and e�ort to create di�erence waves,

especially as salvaging ERP components is not the aim of my research. It is also

the more rigorous choice because it limits the researcher degrees of freedom, as

will be discussed in the next section.

2.4.2 Problems with researcher degrees of freedom

The large flexibility in the analysis of ERP leads to problems with repli-

cability. Conducting a component-independent analysis can e�ectively limit such

flexibility. By putting away the need to identify discrete components, there is no

room to alter the length of a time window or to choose various sites on the scalp.

In my ERP studies, I will simply analyse the data one electrode at a time in uni-

formed time windows of 50ms. The length of the time window is decided simply

to reduce data to a manageable amount. It is theoretically possible to take finer

slices (e.g., 10ms) or perform point-by-point analysis at each millisecond. However,

I believe the 50ms slices will be able to serve the purpose of this thesis.

An additional way to avoid some of the problems of p-hacking is to use

Bayesian analysis rather than null-hypothesis significant testing (NHST), where

statistical significance (p < .05 results) is no longer a concern and inferential

statistics instead quantify the evidence in the data for or against a particular

hypothesis (Wagenmakers, 2007). In NHST, statistical significance is measured by
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p-value, which is the probability of obtaining the data if no actual e�ect exists in

the population (i.e., if H0 is true). Problems of p-value have been demonstrated

extensively (Jarosz & Wiley, 2014; Wagenmakers, 2007), the most fundamental

being that NHST is comparing the data to a distribution that is never observed

(where H0 is known to be true), due to which p-values cannot inform us about the

size of e�ect or the confidence we can hold for the alternative hypothesis, even if

it was shown to be significant. On the flip side, if NHST yielded non-significant

result, the p-value does not allow us to conclude that the alternative hypothesis is

false.

A practical encumbrance of p-values is the need for post hoc correction after

multiple comparisons. It is typical for ERP studies to conduct multiple compar-

isons (e.g., running the same ANOVA repeatedly on di�erent subsets of data like

di�erent time windows and di�erent groups of electrodes. This would massively

increase Type I error if no post hoc correction is conducted. However, if Bonferroni

or other correction is conducted, it will render the study over-conservative, thus

increasing the chance of Type II error. In the present thesis, 90 electrodes will be

analysed individually, with 20 time slices in each trial. That results in 1800 NHSTs

for each critical variable. A correction of multiple comparison will require a criti-

cal level of 2.78 x 10ˆ-5 for each test for a family-wise critical level of .05 (and an

uncorrected test will almost definitely lead to false positive results). This stringent

criterion could conceivably render it meaningless any p-values we can obtain from

a statistical package. Bayes Factors avoid this problem completely because their

quantification of evidence is una�ected by multiple comparisons, and so you can

run as many Bayesian model comparisons as you like without increasing type 1
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Table 2.1: Interpretation of BF as
evidence for H 1

BF01 BF10 Support for H1

1-.33 1-3 Anecdotal
.33-.10 3-10 Substantial
.10-.03 10-30 Strong
.03-.01 30-100 Very strong
<.01 >100 Decisive

error.

Bayes Factors denotes the ratio of probability of the data under both null

and alternative hypothesis. The inverse of BF01 which quantifies how much more

likely the data is under H1 than H0. That is, if the inverse of BF01 (i.e., BF10) is 5,

it means the current data is five times more likely under the alternative hypothesis

than the null hypothesis. This can already inform us about how confident we can

be with the alternative hypothesis. We can be more confident with the alternative

hypothesis if BF10 = 100 than if BF10 = 10, while if BF10 = 1, the data was equally

likely under either hypothesis. Inversely, if BF10 is less than 1, we would be more

confident about the null hypothesis than the alternative hypothesis. Therefore, BF

o�ers the possibility to conclude that the alternative hypothesis is a bad model for

the data. While the continuous scale of BF is useful enough, we could conveniently

describe the results, using (Je�reys, 1998) guideline to label BF (Table 2.1)

There is one more possible measure to limit researcher degrees of freedom,

thanks to recent endeavours of pre-registration and open science (Nelson et al.,

2018; van ’t Veer & Giner-Sorolla, 2016; Wagenmakers et al., 2011). It is rec-

ommended that all decisions concerning the design and analysis (e.g., number of

participants, hypotheses, primary and secondary analyses, etc.) should be made

60



and pre-registered before conducting a study. In order to create a more rigorous

way to conduct ERP studies, pre-registration of methods to select time windows

and scalp sites, as well as the hypotheses, should be carried out. This practice will

also help di�erentiating hypothesis-driven analysis and exploratory analysis. Pre-

registration is able to accommodate the need for exploring alternative and multiple

methods of analysis, as long as they are clearly documented. Unfortunately, the

ERP studies in my thesis are not able to be pre-registered because of the timing of

which these studies were conducted during my PhD. However, the decisions during

the analysis are made with limiting flexibility as the highest priority, and I will

clearly distinguish hypothesis-driven analysis from exploratory analysis.

2.4.3 Problem with data structure

The structure of ERP data is clustered and inter-correlated. The best

way to account for such data structure is mixed-e�ect models (Bagiella & Sloan,

2000). In a mixed-e�ect model, fixed e�ects of treatment (e.g., modality switch vs

non-switch) from the random variability of participant, item, time and electrode.

Recently, studies have emerged that treat EEG data with linear mixed-e�ect mod-

els (LME; Amsel, 2011) and generalised additive models (GAM; Hendrix, Bolger,

& Baayen, 2017). These models are superior to ANOVA not only because they can

better account for the data structure, but also because they can take continuous

predictors. ANOVA requires factorial manipulation of independent variables, such

as conventional versus novel metaphors, visual versus auditory properties. Many of

these variables can be better operationalised on a continuous scale. For example,

in my study of metaphor processing, the linguistic distributional pattern is better
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measured by co-occurrence frequency than a dichotomy of high association versus

low association. Forcing continuous variables into categorical variables lowers the

statistical power, thus making it less likely to detect an e�ect (Baayen, 2010).

Therefore, mixed-e�ect models will allow us to analyse ERP data with greater

power and rigour.

Ideally, GAM is a superior way to analyse ERP data because it can also

allow for non-linear e�ect of di�erent dimensions, including time and scalp site.

However, LME has the advantage of producing results that are similar to those of

ANOVA and linear models. Therefore, the results are more comprehensible and

easily accessible for the readers. Furthermore, LME will be used to analyse the

behavioural results of this thesis, which makes the practical transition to the ERP

studies easier and less consuming (considering the time constraint of the PhD).

Therefore, I have opted to use LME as a stepping stone, with that hope that future

research can take the full data structure of ERP into account.
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CHAPTER 3

Ease-of-Simulation Norms

In order to examine the conceptual representations of metaphor process-

ing, I need well operationalised definitions of the two components of metaphor

processing, that is the distributional pattern of linguistic symbols and the simula-

tion of sensory, motor, a�ective, introspective and other bodily experiences. While

the former could be straightforwardly operationalised by distributional frequencies

(i.e., logarithmically transformed sum of n-gram frequencies throughout the the-

sis), the latter poses a challenge. This chapter presents a novel norming measure

of the e�ort of creating embodied simulations, by examining the end product of

successful metaphor processing. The resulting interval metric will be used as one

of the key predictors of metaphor comprehension in the following chapters.

Draft was submitted to the journal Behavioral Research Methods in January

2018 and was produced in collaboration with Dr Louise Connell and Dr Dermot

Lynott as co-authors.
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EASE-OF-SIMULATION NORMS 2

Abstract

Successful language comprehension results in a multimodal simulation of meaning.

Hence, the ease of simulation of a given metaphor is likely to be a critical predictor

of performance in metaphor processing. Since simulations are unconscious, and may

lose information when brought to conscious awareness, the ease of simulation cannot

be directly rated (e.g., as ease of understanding or of generating mental imagery).

Therefore, we propose an alternative method of measuring ease of simulation

indirectly by assessing the end product of successful metaphor processing using

multiple rating scales that, together, o�er a proxy for ease of simulation: sensibility,

usability, and imaginability of metaphors. We normed 452 sentences comprising

adjective metaphors (e.g., Students can be bright; Minutes can be lukewarm) by

asking participants to rate the sentences on sensibility, usability, and imaginability

scales. We then used principal components analysis to combine these three

individual rating scales into a single measure that captured their common variance:

ease-of-simulation (EoS). To validate the norms, we examined the extent to which

this new EoS measure can explain response times in a metaphor processing task,

and found that it better predicted sensibility judgement times than any of the

individual ratings, including the ostensibly more relevant sensibility ratings. These

findings support the idea that EoS provides a valuable index of processing di�culty

in metaphor comprehension. We hope these norms will benefit research on metaphor

processing and the role of simulation in language comprehension.

Keywords: norms, ease of simulation, metaphor processing, language

comprehension

Word count: 4553 words
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Ease-of-Simulation Norms for 452 Adjective Metaphors

Successful language comprehension, regardless of being literal or metaphoric,

results in multimodal simulation of the concepts described in the sentence. That is,

sensorimotor, a�ective, introspective and other experiences are reactivated in order

to achieve comprehension (Allport, 1985; Barsalou, 1999; Glenberg & Gallese, 2012;

Niedenthal, 2007). Evidence for such simulation includes shared activation between

brain areas involved in perceptual processing (e.g. sound stimuli activating auditory

cortex) and comprehension of words whose meaning relates to perception (e.g.,

sound-related words like thunder ; Bonner & Grossman, 2012; Boulenger et al., 2008;

Hauk, Johnsrude, & Pulvermüller, 2004), as well as many other behavioural e�ects

which supports the simulation-based account of language processing (Aravena et al.,

2010; Buccino et al., 2005; Connell, 2007; Glenberg et al., 2008; Speed & Majid,

2017). Moreover, even abstract concepts – which traditionally have been assumed to

lack perceptual information – have been shown to be grounded in people’s

sensorimotor and a�ective experiences (Connell, Lynott, & Dreyer, 2012; Glenberg

et al., 2008; Vigliocco et al., 2014).

However, most research on simulation has focused on literal language

processing, while metaphor processing has generally been neglected. Since

simulation happens for both literal and figurative language processing, ease of

simulation should be a critical factor in performance (e.g., speed and accuracy)

during metaphor processing. The aim of this paper is to address the lack of

attention given to embodied (i.e., grounded) views of meaning in metaphor

processing by defining and operationalising a measure of ease of simulation as an

index of comprehension di�culty, and then to validate this measure using results

from a metaphor sensibility judgement task.
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Defining Ease of Simulation

In literal language processing, the extent to which simulation happens is

straightforward to operationalise because there is an apparent match between the

meaning of the language and the sensori-motor and a�ective characteristics of the

referent. If you would like to see whether comprehension of The sun can be bright is

grounded in sensorimotor simulation, you could examine whether it activates the

neural regions related to processing visual stimuli, you could ask people to read the

phrase while performing visual distraction task, or you could ask simply how

strongly their experience of the sentence involves the visual modality. However,

simulation in metaphor processing is more complex because the grounded

characteristics of a metaphor are not directly corresponding to the characteristics of

its constituent words. In other words, the conceptual representation of Students can

be bright is not directly associated with the visual feature of emitting much light.

Instead, bright here refers to intelligent and quick-witted. The association between

the literal and metaphoric meanings is not always easily apparent and there is no

consensus regarding the mechanism through which the metaphoric meaning arises.

Bright students may be used to describe an intelligent student because intelligence is

the most salient meaning in the context of students (Giora, 1997), or because the

feature bright is projected onto students and the meaning of intelligence is inferred

(Bowdle & Gentner, 2005), or because bright is a member of the figurative category

intelligence (or intelligent things) of which students is also a member (Glucksberg &

Keysar, 1990). Conversely, bright may be used to describe intelligence because both

concepts can be compressed into one cross-modal dimension (Buckner & Krienen,

2013; Simmons & Barsalou, 2003); or because it may activate some abstract features

apart from the concrete feature of emitting light, which could be used to describe

intelligence (e.g., making things clear to see; Simmons & Barsalou, 2003);

alternatively, the word bright may often co-occur with clever or quick-witted or other
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words referring to intelligence which consolidates this meaning (for a review on

conceptual abstraction, see Barsalou, 2016; Louwerse, 2011; Zwaan, 2016).

Moreover, simulation is an unconscious mental representation which loses

information when brought to conscious awareness (Connell & Lynott, 2016), and so

it is not possible to rate the ease of such complex simulation directly, as, for example,

the ease of understanding a metaphor (i.e., comprehensibility: Campbell & Raney,

2015; Katz, Paivio, Marshark, & Clark, 1988) or of generating mental imagery for a

metaphor (Cardillo, Schmidt, Kranjec, & Chatterjee, 2010). To solve this problem,

we propose to measure ease of simulation indirectly by assessing the end product of

successful metaphor processing in terms of three criteria that, together, o�er a proxy

for the ease of simulation: sensibility, usability and imaginability of metaphors.

These three criteria tap into di�erent, but complementary, aspects of language

comprehension and conceptual representation. Sensibility, that is, how much sense a

sentence makes if encountered in reading or in conversation (e.g., Students can be

bright), is a useful measure that relates to whether the process of language

comprehension seems to have produced a functional end product. By successfully

“making sense” of a metaphor, people will manage to construct a conceptual

representation of the metaphoric meaning in question. The drawback of a sensibility

rating is that it is often conflated with frequency. Studies using a sensibility

judgement task, where participants decide whether or not a sentence makes sense,

have found that performance of the task could be well explained by the

distributional frequency of constituent words (Connell & Lynott, 2013; Gagné &

Shoben, 1997; Storms & Wisniewski, 2005). This relationship could be because a

sensibility judgement task requires relatively shallow processing as a simple yes/no

answer would su�ce (Barsalou, Santos, Simmons, & Wilson, 2008; Connell &

Lynott, 2013). When it comes to sensibility ratings, people may also base their

decisions on the statistical, distributional patterns of the constituent words, such
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that, if the constituent words often occur together (e.g., account and freezing), they

would find it easier to pass it as something they can understand (however vaguely),

compared to words that rarely co-occur (e.g., illness and bright). Thus, in order to

encourage people to engage in deeper processing of meaning, we adopted the second

criterion: usability, that is, how easy it is to use the sentence in conversation or in

text. Usability supplements sensibility because it requires people not only to

understand and make sense of a sentence, but also to imagine scenarios where they

could use the sentence in language production: a feat that would be very di�cult

without thorough and confident grasp of what the metaphor actually means. Thus,

the usability rating will require deeper processing than the sensibility rating.

In contrast to the sensibility and usability criteria which focuses on language

processing, the imaginability criterion – that is, how easy it is to imagine the

concept described in a metaphor – is introduced to give a lay definition of

simulation. Although imagining a concept requires conscious e�ort while simulation

is unconscious, both processes depend on generating, retaining and even

manipulating mental representations. Note that imaginability is not imageability,

the latter of which is a criterion biased towards concrete concepts and especially the

visual modality (Connell & Lynott, 2012; Paivio, Yuille, & Madigan, 1968). In

contrast, imaginability (i.e., how easy it is to imagine the concept described in a

metaphor) can be easily applied to abstract concepts. People could find it as easy to

imagine an abstract concept such as a bright future as a concrete concept such as a

bright student.

These three measurements can o�er a proxy of how easy it is to simulate a

concept in a successful representation of metaphoric meaning. If a metaphor is

considered as sensible, easy to use, and easy to imagine, such a metaphor should

normally be regarded as easy to simulate. We can therefore combine these three

ratings into a single component measure that captures overall ease-of-simulation
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(EoS); in other words, we propose that ease of simulation provides an overall index

of the comprehension di�culty or processing demands of a given metaphor. If the

ease-of-simulation measure is a critical predictor of metaphor processing, it should

outperform the individual component scales in predicting how fast and accurately

metaphors are processed. Therefore, following details of the norming study, we

subsequently validate the norms by analysing response times from a metaphor

sensibility judgement task using the ease-of-simulation measure and the three

individual scales separately as predictors.

Norming Procedure

This norming study aimed to operationalise ease of simulation in metaphor

processing. For this purpose, we generated metaphoric sentences in the form of “A

can be B” in which A was a noun as the target word and B was a sensory adjective

as the source word (e.g., Student can be bright). We asked participants to rate these

sentences on their sensibility, usability and imaginability, and we combined these

three sets of ratings using principal components analysis to obtain a single score for

each item (i.e., ease-of-simulation measure). The full set of metaphors, along with

ratings, the ease-of-simulation measure, and distributional frequencies, will be made

public online (https://osf.io/xgysz).

Method

Participants. We recruited 171 students from Lancaster University to

complete the survey. All were native speakers of English. They took part in the

study either online for a chance to win a £10 Amazon voucher (N = 112) or in a lab

for a reward of £3 (N = 59).

Materials. A basic set of 113 object properties (i.e. adjectives), that were

unimodal in nature (i.e., had a single dominant perceptual modality: see also Liu,
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Connell, & Lynott, 2018b), were selected from the modality exclusivity norms of

Lynott and Connell (2009). Each adjective was paired with four nouns (chosen from

various sources such as the Kenkyusha Dictionary of English Collocations

(Katsumata, 1980), Macmillan English Dictionary (Rundell, 2007), Oxford

Dictionary of English (Stevenson, 2010)) in order to generate sentences with

di�erent metaphoric interpretations, giving a total of 452 metaphors. When

generating the metaphors, we made sure that it was the adjectives, rather than the

nouns, that were interpreted metaphorically, and that the metaphors did not have a

literal meaning readily accessible (e.g., Feet can be itchy, meaning wanting to travel,

was rejected as a possible item because both feet and itchy were interpreted

metaphorically and the literal meaning of an itching sensation was readily accessible

too).

The combination of each adjective with four nouns enabled the metaphors to

vary on two dimensions: that is, the authors’ initial intuitions of the ease of

simulation and a measure of linguistic distributional frequency (i.e., how often the

adjective and noun co-occurred). Linguistic distributional frequency has been shown

to a�ect conceptual representations and the speed of language processing (Andrews,

Vigliocco, & Vinson, 2009; Connell & Lynott, 2013; Landauer & Dumais, 1997;

Louwerse & Jeuniaux, 2010), because things that often appear together in the world

also tend to be mentioned together in language (Kintsch & Dijk, 1978; Louwerse &

Jeuniaux, 2010). Therefore, when norming the ease of simulation for the adjective

metaphors in this study, we also need to take the distributional frequency into

account to make sure that any measure of ease of simulation is not entirely

confounded by linguistic distributional frequency. In order to do so, linguistic

distributional frequency and ease of simulation were varied independently when

creating metaphors for each adjective, so that items could be roughly categorised

into 4 groups (easy-high, hard-high, easy-low, hard-low: see Table 1).
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Table 1
Sample metaphors, and their scores for EoS
and LDF

Metaphor EoS LDF
Illness can be bright. -1.32 2.95
Supply can be bright. -1.02 3.72
Solutions can be bright. 1.41 3.11
Students can be bright. 1.84 4.08
Minutes can be lukewarm. -1.49 3.31
Scheme can be lukewarm. -0.78 1.61
Supporters can be lukewarm. 0.69 2.69
Reaction can be lukewarm. 1.03 3.45

Ease of simulation ranged from intuitions of easy (e.g., the meaning of the

metaphor Students can be bright is likely to be represented relatively easily as a

quick-witted, intelligent students) to di�cult (e.g., the meaning of the metaphor

Supply can be bright is likely to be represented only with great di�culty, if at all).

The metaphors also varied on the dimension of linguistic distributional frequency,

which was determined by the bi- to 5- gram co-occurrence frequencies between the

adjective and the noun with zero to three intervening words in the Google Web1T

Corpus [Brants and Franz (2006); e.g., “bright students” or “students bright”,

“bright . . . students” or “students . . . bright”, etc.]. Frequencies were log

transformed as log10(frequency + 41) because} 41 is the lowest non-zero frequency

in the corpus (i.e., the raw frequency of 0 in fact means that the constituent words

co-occurred 41 times;} e.g., Connell & Lynott, 2013). Thus, we obtained a linear

scale of linguistic distributional frequency for all metaphors normed (M = 2.95, SD

= 0.97). Linguistic distributional frequency ranged from high (e.g., Student can be

bright) to low (e.g., Solution can be bright).

Procedure. In order to operationalise ease of simulation, we asked participants

to rate the sentences on three scales – sensibility (i.e., how much sense the
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expression makes as if read in a story or heard in conversation), usability (i.e., how

easy it would be to use the expression in writing or conversation), and imaginability

(i.e., how easy it is to imagine the concept described in the expression). In the

survey, each metaphoric expression was rated on these three criteria on a 1-7 Likert

scale, with 1 being “making no sense at all”, “very hard to use/imagine” and 7 being

“making perfect sense”, “very easy to use/imagine” (full instructions are given in

Appendix A).

With the four groups of adjective-noun pairs (easy/hard to simulate x

high/low linguistic distributional frequency) and three scales of rating, we generated

twelve list conditions of items to which each participant was assigned based on their

month of birth. Each participant saw 113 items that ranged across a full spectrum

from easy to hard to simulate, and from high to low distributional frequency, and

were distributed in approximately equal proportions across the three ratings scales.

Thus, all items were rated on all three scales, but each participant rated a particular

adjective only once. The order of item presentation under each scale was

randomised prior to the study and the order of scale presentation was randomised

for each participant. Participants were not compelled to rate all items but could

complete as many as they wanted to.

The survey was administered both online and in a lab setting with the

permission of the Lancaster University’s Department of Psychology Ethics

Committee and Lancaster University’s Research Ethics Committee. In both

instances, participants completed the entire study via the Qualtrics online survey

platform.1 Here, we report how we determined our sample size, all data exclusions,

1 We compared ratings in the lab versus online using mixed-e�ect linear models with the test
setting as the fixed e�ect, and participants and metaphor item as random-intercept e�ects; overall,
online ratings were higher than the ratings in the lab for both imaginability (b = -0.46, 95% CI =
-0.79 - -0.12, df = 164.09, t = -2.65, p = .009) and sensibility (b = -0.51, 95% CI = -0.82 - -0.20, df
= 160.40, t = -3.20, p = .002), but not for usability (b = -0.25, 95% CI = -0.58 - 0.09, df = 166.09,
t = -1.44, p = .15). This comparison should be treated with caution because online participants



EASE-OF-SIMULATION NORMS 11

all manipulations, and all measures in the study.2

Analysis and Discussion

Data exclusion and treatment. A total of 17,329 data points was

collected. Participants who completed less than one-third of the items each scale

(i.e., 13 items or fewer) were removed (three participants for imaginability, nine for

sensibility, eight for usability). Those who provided the same rating value for 13 or

more items in a row were removed too (one for imaginability, one for sensibility, four

for usability). Two participants’ ratings on imaginability were removed because their

small number of data points, combined with low variability, meant that calculation

of Cronbach’s alpha could not proceed (error message: “missing value in the

correlation R-package {psych}: Revelle, 2017). Thus, 16,888 data points remained

after exclusion, with a minimum of 10 points per item per scale. The inter-rater

greatly outnumbered the participants in the lab, with some items rated more than ten times online
but only once or twice in the lab.
2 We used R (Version 3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate &
Heiberger, 2016), arm (Version 1.10.1; Gelman & Su, 2016), BayesFactor (Version 0.9.12.4.2;
Morey & Rouder, 2015), bindrcpp (Version 0.2.2; Müller, 2017), bookdown (Version 0.7; Xie, 2016),
broom (Version 0.4.4; Robinson, 2017), citr (Version 0.2.0; Aust, 2016), coda (Version 0.19.1;
Plummer, Best, Cowles, & Vines, 2006), contrast (Version 0.21; Kuhn, Steve Weston, Wing,
Forester, & Thaler, 2016), cowplot (Version 0.9.2; Wilke, 2017), data.table (Version 1.11.4; Dowle &
Srinivasan, 2017), doBy (Version 4.6.1; Højsgaard & Halekoh, 2016), dplyr (Version 0.7.5;
Wickham, Francois, Henry, & Müller, 2017), Formula (Version 1.2.3; Zeileis & Croissant, 2010),
ggplot2 (Version 2.2.1; Wickham, 2009), gridExtra (Version 2.3; Auguie, 2017), Hmisc (Version
4.1.1; Harrell Jr, Charles Dupont, & others., 2018), interplot (Version 0.1.5; Solt & Hu, 2015), knitr
(Version 1.20; Xie, 2015), lattice (Version 0.20.35; Sarkar, 2008), lme4 (Version 1.1.17; Bates,
Mächler, Bolker, & Walker, 2015), lmerTest (Version 3.0.1; Kuznetsova, Brockho�, & Christensen,
2017), magrittr (Version 1.5; Bache & Wickham, 2014), MASS (Version 7.3.50; Venables & Ripley,
2002), Matrix (Version 1.2.14; Bates & Maechler, 2017), mgcv (S. N. Wood, 2003, 2004, Version
1.8.23; 2011; S. Wood, N., Pya, & S"afken, 2016), multcomp (Version 1.4.8; Hothorn, Bretz, &
Westfall, 2008), MuMIn (Version 1.40.4; BartoÒ, 2017), mvtnorm (Version 1.0.8; Genz & Bretz,
2009), nlme (Version 3.1.137; Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017), papaja
(Version 0.1.0.9735; Aust & Barth, 2017), plyr (Wickham, 2011; Version 1.8.4; Wickham et al.,
2017), psych (Version 1.8.4; Revelle, 2017), purrr (Version 0.2.5; Henry & Wickham, 2017),
rcartocolor (Version 0.0.22; Nowosad, 2017), rms (Version 5.1.2; Harrell Jr, 2018), SparseM
(Version 1.77; Koenker & Ng, 2017), survival (Version 2.42.3; Terry M. Therneau & Patricia M.
Grambsch, 2000), TH.data (Version 1.0.8; Hothorn, 2017), and tidyr (Version 0.8.1; Wickham &
Henry, 2017) for all our analyses and the writing up of this manuscript.
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Table 2
Correlations among variables with their means
and standard deviations (SD)

1. 2. 3. 4. 5.
1. EoS – – – – –
2. Imaginability .95 – – – –
3. Sensibility .96 .86 – – –
4. Usability .96 .86 .87 – –
5. LDF .27 .23 .26 .28 –
Mean 0.00 3.98 3.83 3.63 2.96
SD 1.00 1.44 1.55 1.48 0.97

consistency of each scale was calculated per group (months of birth from January to

December) per scale, and showed that response was highly consistent among

participants (imaginability average – = 0.888, sensibility average – = 0.907,

usability average – = 0.896). Detailed results of Cronbach’s alpha are reported in

Supplementary Materials (https://goo.gl/UT76mL).

Extracting the ease-of-simulation (EoS) measure. We first calculated means

and standard deviations of each item per scale, and then we performed principal

components analysis via covariance matrix on the three sets of ratings in order to

extract one factor that can quantify the ease of simulation. This single factor had an

eigenvalue of 2.73, was the only principal component with eigenvalue > 1, and

explained 91% of the total variance of the ratings. The fact that sensibility,

usability, and imaginability ratings could be collapsed so successfully into a single

component suggests that these three rating scales essentially captured the same

underlying information: that is, successful simulation of meaning.

We then used the factor score of this single principal component (estimated via

regression as a standardised variable) as the EoS score for each metaphor item.

That is, the higher the EoS score, the easier it was to simulate the metaphoric

meaning. Table 2 shows the descriptive statistics of and inter-correlations between



EASE-OF-SIMULATION NORMS 13

the EoS measure and the three rating scales. It is notable that the three individual

ratings scales correlate equally well with each other but less well than they do with

the extracted ease of simulation measure, suggesting that each rating scale captures

unique variance as well as that related to ease of simulation. We test the utility of

this unique variance in the norms validation.

Comparison with linguistic distributional frequency. In creating our

metaphors, we attempted to ensure that EoS was not confounded by linguistic

distributional frequency; that is, the ease of simulating a particular metaphoric

meaning should not be a function of how frequently the words in that metaphor

co-occur in language. In order to examine if we were successful in our e�orts, we

calculated the relationship between the log linguistic distributional frequency for

each item and the corresponding measures from our norming procedure. As shown

in Table 2, linguistic distributional frequency had a relatively consistent, positive

relationship with EoS scores and their constituent imaginability, sensibility, and

usability ratings. However, the relationship was weak, with linguistic distributional

frequency explaining only 7.3% of the variance in EoS scores. As such, ease of

simulation is not strongly influenced by linguistic distributional frequency: the words

that comprise an easy-to-simulate metaphor may co-occur seldom or often, as may

those that comprise a hard-to-simulate metaphor. Examples of metaphors varying

on the EoS measure and linguistic distributional frequency are shown in Table 1.

Norms Validation

If ease of simulation is a critical factor in metaphor processing, as assumed by

grounded theories for all language processing, then our newly created EoS measure

should outperform the three individual scales (imaginability, sensibility, usability) in

predicting the time-course of metaphor processing. That is, since each of the three

individual rating scales captures only some of the information that exemplifies a
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successful perceptual-motor-a�ective simulation of metaphoric meaning, their

individual ability to predict metaphor processing performance will be less than that

of the composite EoS score. We therefore validated our norms by analysing response

time (RT) data from a typical metaphor comprehension study: a sensibility

judgement task, taken from a previous study by Liu, Connell, and Lynott (2018a).

In that experiment, 28 participants read the 452 metaphors normed here and judged

whether or not the sentences made sense. The sentences were presented one word at

a time, and RT was measured from the onset of the adjectives to the onset of

response.

Liu et al. (2018a) found that the EoS scores obtained from the present

norming study were a significant predictor of the RT to judge the metaphors as

sensible. Here, we directly compare ease of simulation with imaginability, sensibility,

and usability ratings in terms of their abilities to predict these sensibility judgement

times. We analysed each predictor separately in a mixed-e�ect linear regression,

where the key predictor (EoS, imaginability, sensibility, or usability) was a fixed

e�ect, and participant and item were crossed random factors modelling random

intercept. The imaginability, sensibility and usability ratings were all centred before

analysis.

Furthermore, we also investigated whether a visual dominance exists in the

EoS norms. There is an overall visual dominance in language (San Roque et al.,

2015), which means that visual metaphors may be more commonly encountered, and

thus may be easier to make sense of, imagine or use. Therefore, it is possible that

the EoS measure may be a good predictor for visual metaphors only. To examine

the possibility, we coded the data by the perceptual modality of the adjective source

domain (audition, haptics and vision), and analysed whether the EoS e�ect on

auditory and haptic metaphors di�ered from that on visual metaphors.
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Table 3
Results from the mixed-e�ects linear regressions of
RT (ms) in a sensibility judgement task

b 95% CI p
EoS -149.85 -177.95 – -121.74 < .001
Imaginability -98.12 -117.70 – -78.53 < .001
Sensibility -88.29 -107.02 – -69.55 < .001
Usability -96.09 -115.18 – -76.99 < .001

Note. b is non-standardised regression coe�cient
Variables were fixed predictors in separate models.

EoS Measure versus Individual Rating Scales

All four variables (EoS, imaginability, sensibility, usability) had a significant

negative relationship with RT in their respective analyses. That is, the easier it is to

simulate the meaning of a metaphor (or the more sensible, easy to use, or easy to

imagine the metaphor seemed to be), the faster it was accepted as sensible. Table 3

shows the e�ects of the variables separately in each model.

From the table, it can be seen that the EoS measure had a numerically larger

e�ect size (b = -149.846) than the other variables, suggesting it as a better predictor

of the response times compared to the other measures. To evaluate evidence for the

advantage of the EoS measure over others, we calculated the relevant Bayes Factors

for the purpose of model comparison. Bayes factor (BF) is a powerful tool to

compare models and shows the ratio of the likelihood of data given di�erent

hypotheses. It could be used to make a statement about the amount of evidence for

the alternative hypothesis compared against the null hypothesis, in contrast to a

simple null-hypothesis significance testing using p-values (Jarosz & Wiley, 2014;

Wagenmakers, 2007). In the current study, we contrasted the model with the EoS

measure (alternative hypothesis H1) with each of those models with individual

ratings (imaginability, sensibility or usability: null hypotheses H0) and calculated
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the amount the evidence that favoured the EoS model (BF10).

We used the Bayesian Information Criterion (BIC) to estimate the likelihood

of data under each hypothesis (Wagenmakers, 2007). We extracted BIC for each

model, and then calculated BF10 as follows.

BF01 = e
(BIC(H1) ≠ BIC(H0))

2

In all three comparisons, the Bayes Factors showed very strong evidence in

favour of the EoS variable, in comparison with imaginability rating (BF10 = 101.36),

sensibility rating (BF10 = 5174.10), and usability rating (BF10 = 95.15). Figure 1

visually illustrates the advantage of ease of simulation over the other measures (for

details of model comparison, see Supplementary Materials). In other words, ease of

simulation was the best predictor of the speed of accepting metaphors as sensible.

This finding suggests that the unique variance in each individual rating scale is noise

rather than useful information regarding processing di�culty, and that the shared

variance between the scales – as captured by the composite EoS measure – succeeds

in capturing useful information about meaning representation that indexes the

latency of comprehension.

Examining the Dominance of Visual Metaphors

Although the EoS measure was shown to be the best predictor of RT, it could

be argued that its e�ect is mainly driven by visual metaphors (i.e., metaphors where

the literal meaning of the adjective relates to vision, such as bright), which make up

20% of our item set, and could be easier to process simply due to the fact that most

sensory language concerns vision as opposed to other modalities (San Roque et al.,

2015). We analysed the sensibility judgment times in a mixed-e�ect hierarchical

linear regression with EoS as well as the perceptual modality of the source adjectives.
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Figure 1 . E�ects of EoS measure, imaginability, sensibility and usability on RT (in
order of the predicting power). The asterisks show the amount of evidence in favour
of the EoS model. *: BF10 > 10; **: BF10 > 100; ***: BF10 > 1000.

Model 1 included the EoS measure and perceptual modality as fixed variables

and participants and items as crossed random-intercept variables, and Model 2

included the critical EoS x perceptual modality interaction as additional fixed

variables. The perceptual modality was dummy coded with the visual modality as

the reference level. The EoS measure remained a significant predictor of RT (see

Table 4). Furthermore, response to auditory metaphors were significantly slower

than visual metaphors, while RT to haptic metaphors was not significantly di�erent

from that to visual metaphors. However, the interactions between source perceptual

modality and EoS measure were not significant and the marginal R2 (BartoÒ, 2016)

showed that the interaction term could not account for the data better. In other

words, EoS did not have di�erent e�ects on metaphors of di�erent source modalities.
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Table 4
Summary of Hierarchical Model Comparison for Variables to Predict Sensibility
Judgement RT

b 95% CI R2 �R2

Model 1 0.06
EoS -147.77 -176.34 – -119.20
Perceptual modality

Auditory - visual 37.90 -20.23 – 96.04
Haptic - visual 52.16 -17.47 – 121.79

Model 2 0.06 -5.33 x 10≠05

EoS -145.4640 -188.03 – -102.89
Perceptual modality

Auditory - visual 41.00 -25.69 – 107.70
Haptic - visual 51.77 -35.08 – 138.62

EoS x perceptual modality
EoS x Auditory - visual -6.34 -67.76 – 55.09
EoS x Haptic - visual 0.70 -75.49 – 76.90

Note. b is non-standardised regression coe�cient
R2 stands for marginal R2, which represents the variance explained by the fixed
factors only.

General Discussion

We presented ease of simulation norms for 452 metaphors with 113 unimodal

sensory adjectives as the source terms (e.g., Student can be bright). In literal use,

such adjectives relate to strong perceptual experiences in one of the visual, auditory

or haptic modalities (Lynott & Connell, 2009). However, when these unimodal

adjectives become part of a metaphor, the resulting mental representation is no

longer unimodal, but becomes multimodal and complex. Moreover, multimodal

simulations are prone to information loss when consciously inspected (Connell &

Lynott, 2016), which creates di�culty in directly measuring how easy it is to

simulate such metaphoric constructions. Thus, the norms presented here adopt a

novel approach of taking indirect measures of how successfully the metaphoric

meaning had been represented (i.e., the end product of the simulation process) in
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order to o�er a proxy for ease of simulation. If the meaning of a phrase has been

successfully simulated, it should be easy to imagine the concept it conveys, it should

make sense, and it should be easy to re-use the phrase in language production. From

these three di�erent rating scales (i.e. imaginability, sensibility and usability), we

used principal components analysis to create a composite measure that explained

most of the underlying variance in a single variable, and termed this component ease

of simulation. We validated this measure by using it to predict metaphor processing

times in a sensibility judgement task. Critically, the predictive power of the EoS

measure was higher than that of any individual scales. It suggests that the EoS

measure can capture more comprehensively the information that exemplifies the

simulation of meaning in metaphor processing. Thus, EoS scores provide a useful

index of metaphor comprehension di�culty. Lastly, the EoS measure was found to

be equally predictive for metaphors with visual target words as for those with

auditory or haptic target words, thus rejecting the hypothesis that the EoS measure

was a better measurement for visual metaphors because of the visual dominance.

Considering that the data for the norms validation was from a sensibility

judgement task, it was striking to find that the EoS measure was a better predictor

than the separate measure of sensibility ratings. If the sensibility judgement task

and the sensibility ratings rely on the same mechanism (i.e., deciding whether/how

much a metaphor makes sense to the reader), it should be natural and even trivial

to find that sensibility ratings were an ideal predictor of the response time in the

sensibility judgement task. That is, metaphors that are normally considered to make

a lot of sense should be quickly judged as sensible, while metaphors that are

considered to make little sense should take longer to be judged as sensible, if not

rejected altogether. If that had been the case, our norming study would have had

little theoretical value. However, since sensibility ratings involve consciously

inspecting the contents of a mental representation, and since it is not possible to
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inspect the full contents of a simulation without losing information (Connell &

Lynott, 2016), we suspected that sensibility ratings – like usability and imaginability

ratings – would capture only some of the necessary criteria that determine how

quickly metaphors are processed and judged. Indeed, we found that EoS scores,

which were derived from usability and imaginability as well as from sensibility, was

the best predictor of sensibility judgement times. This finding suggests that

sensibility ratings include a good deal of noise that is unrelated to the ease of

metaphor comprehension, as well as useful information (shared with the other

ratings of usability and imaginability) that is ultimately passed onto the EoS

measure. By contrast, the EoS norms capture a useful measure of the end-product

of successful metaphor comprehension (i.e., a grounded simulation), and hence

provide a useful index of metaphor comprehension di�culty.

With the EoS norms, we manage to measure the e�ort to arrive at a mental

representation of a metaphor (i.e., a simulation of sensorimotor, a�ective and

introspective experience), while remaining agnostic to the precise content or

mechanism of such a representation. The sensory adjectives in this norming study

are known to relate to strong sensory experiences in one of the visual, auditory and

haptic modalities, at least for their literal meanings. However, when put in a

metaphor, they generate mental representations that are multimodal and complex,

which raises many further questions. What is simulated exactly? In which aspects of

experience are these representations of metaphoric meaning grounded? How might

one investigate these representations directly? By operationalizing and quantifying

ease of simulation in metaphor comprehension, we believe we have taken the first

step to answer these questions. Moreover, by making the norms public, it is our

sincere hope that they can be a stepping stone for the research community to study

simulated representations in metaphor processing.
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CHAPTER 4

Embodied and Linguistic Components in

Metaphor Processing

If metaphor comprehension relies on conceptual representations that com-

bine both embodied simulation and linguistic distributional patterns, the two com-

ponents of conceptual representations (i.e., embodied and linguistic components)

should both be critical predictors of performance in metaphor processing. The

work in this chapter aims to test just this hypothesis, that is to demonstrate

that the embodied component (operationalised as ease of simulation in the pre-

vious chapter) and the linguistic component (operationalised as the n-gram co-

occurrence frequencies of component words) can each account for a unique portion

of variance in metaphor processing.

Furthermore, the work in this chapter presents the first stab at the lin-

guistic shortcut hypothesis in this thesis. If the linguistic component is fast and

superficial, it should be an ideal shortcut to be utilised during shallow processing.

Thus, the empirical component of this chapter is composed of two contrasting

experiments, one of a sensibility judgement task (relatively shallower processing)
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and another an interpretation generation task (relatively deeper processing). The

di�erence in the depth of processing demanded by the task should lead to heavier

reliance on the linguistic component in the shallow task, and heavier reliance on

the embodied component in the deep task. The paradigm set by the empirical

study of this chapter will be reproduced in the studies of Chapters 5 and 7.

An abridged version of this work has been published as conference proceeding

in: Liu, P. Q., Connell, L., & Lynott, D. (2017). Can illness be bright? Metaphor

comprehension depends on linguistic and embodied factors. In G. Gunzelmann, A.

Hows, T. Tenbrink, & E. J. Davelaar (Eds.), 39th Annual Conference of Cognitive

Science Society (pp. 2604–2609). Austin, TX: Cognitive Science Society.

Draft was submitted to Cognitive Science in October 2017 and was produced

in collaboration with Dr Louise Connell and Dr Dermot Lynott as co-authors.
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Abstract

Conceptual representation is both linguistic and embodied, at least when processing

literal language. Here, we aim to demonstrate that metaphor processing is no

exception. We investigated how the linguistic component (i.e., linguistic

distributional frequency: the co-occurrence frequency of the constituent words in a

metaphor) and the embodied component (i.e., how easy it is to simulate the

concept: operationalized in a previous norming study) a�ect metaphor

comprehension. Results show that ease of simulation contributes to metaphor

processing in both shallow sensibility judgement and deep interpretation generation

tasks, but has a larger e�ect on response times in deeper processing. Linguistic

distributional frequency also contributes to metaphor processing in both tasks, but

a�ects the speed of response only in shallow sensibility judgement. Specifically,

distributional frequency acts as a linguistic shortcut, both to speed up responses to

accept metaphors as sensible when the frequency is high, and to flag up potentially

unsuccessful processing when it is low. Overall, these results support embodied

views that emphasize the importance of both linguistic and embodied components

according to task goals.

Keywords: metaphor processing, embodied simulation, linguistic distributional

pattern, linguistic shortcut hypothesis

Word count: 9616 words
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Can illness be bright? Metaphor comprehension depends on linguistic and embodied

factors

Metaphors add warmth and color to language, and can be understood so

e�ortlessly by language users that their use does not register as an artifice. In

linguistic terms, a metaphor is a figure of speech where a word or a phrase (the

source) is applied to an object or an action (the target) to which it cannot be

literally applied. For example, we can easily comprehend and frequently use the

expression bright students even though a student is not an object to which the visual

property of bright can be applied. Such metaphors are an essential part of language,

not least in assisting us to express abstract concepts such as time, emotions and

relationships (e.g., Boroditsky, 2001; Chan, Tong, Tan, & Koh, 2013; Lako� &

Johnson, 1999).

Traditionally, much research on metaphor comprehension has focused on

identifying particular factors that could make a metaphor easier – and thus faster –

to understand, such as familiarity, conventionality and aptness (Blasko & Connine,

1993; Bowdle & Gentner, 2005; Cardillo, Schmidt, Kranjec, & Chatterjee, 2010;

Giora, 1997; L. L. Jones & Estes, 2006; Pierce & Chiappe, 2008; Roncero &

Almeida, 2014b). However, as we shall discuss below, these factors su�er from

problems of theoretical specificity and empirical operationalization that make it

di�cult to draw clear conclusions about their roles in metaphor comprehension.

Thus, it is necessary to study metaphor processing under a theoretical construct

with better operationalized factors. In this paper, we look at the

embodied/grounded perspective of conceptual representation, which suggests that

language comprehension is an interactive conglomerate of activating linguistic

symbols and simulating physical experiences. We suggest that metaphor processing

should be viewed as an aspect of language processing and propose how these two
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components a�ect metaphor processing and investigate their roles with reference to

how they relate to depth of processing during comprehension.

Traditional Views of Metaphor Processing

Several factors are often studied in research on metaphor processing, namely

familiarity, conventionality and aptness, all of which have been demonstrated to

a�ect the speed of metaphor comprehension. The graded salience hypothesis

suggests that familiar or conventional metaphors are processed automatically

because they enjoy high salience, compared with unfamiliar or novel metaphors

(Blasko & Connine, 1993; Giora, 1997, 2007; Glucksberg, Gildea, & Bookin, 1982;

Laurent, Denhières, Passerieux, Iakimova, & Hardy-Baylé, 2006; Peleg, Giora, &

Fein, 2001). Moreover, conventionality could be a crucial factor in determining the

mechanism with which metaphor is processed, according to an influential theory

called the career of metaphor (Bowdle & Gentner, 2005). In this theory, metaphors

(e.g., My lawyer is a shark) first start out as novel or unconventional constructions

and are processed by comparing the source concept (e.g., shark) with the target

(e.g., lawyer) and identifying potential similarities to form the basis of the

metaphoric meaning (e.g., aggressive). As a metaphor is used more often, it becomes

conventionalized (e.g., aggressive becomes a conventional attribute for “shark”) and

the metaphor is processed by categorizing the target as a member of this

conventional category (e.g., shark æ aggressive beings). In contrast, proponents of

the theory of class inclusion suggest that it is aptness, rather than conventionality,

that decides whether a metaphor is processed by categorization (Glucksberg &

Haught, 2006b; Haught, 2014; L. L. Jones & Estes, 2005). That is, shark can be

categorized as a member of “aggressive beings” because the metaphor is apt (i.e., it

works well), but a less apt metaphor would require comparing the target and source

to find similarities.
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Although these factors have been shown to a�ect metaphor processing to a

certain degree, when it comes to understanding exactly how these three factors

a�ect the process of metaphor comprehension, the problems are two-fold: first in

their theoretical specificity, and second in their operationalization. In terms of

theoretical specificity, these three factors are frequently confounded with one

another and are internally inconsistent. Although some have suggested that

familiarity and conventionality are two di�erent theoretical constructs (Blasko &

Connine, 1993; Bowdle & Gentner, 2005; Glucksberg et al., 1982; L. L. Jones &

Estes, 2005, 2006; Roncero & Almeida, 2014a), they are often used interchangeably

in the literature (Cardillo, Watson, Schmidt, Kranjec, & Chatterjee, 2012; Giora,

1997; Giora & Fein, 1999; Glucksberg & Haught, 2006b; Lai & Curran, 2013). Both

terms are used to describe metaphors that at one extreme are entirely novel and

have never been encountered before by participants, while at the other extreme are

very common, conventional, and familiar to participants. Furthermore, aptness can

also be confounded with familiarity and conventionality. Not only are familiarity

and conventionality both dependent on usage patterns of a metaphor across a

language, but aptness itself can also be associated with usage patterns. Only apt

metaphors are likely to become conventionalized or familiar, as a metaphor that

does not work well is unlikely to become widely used by speakers of a language.

Hence, familiar/conventional metaphors are typically apt, whereas novel metaphors

might be either apt or not. There is a core dependency between the factors that is

not trivial to disentangle. Indeed, ratings of aptness and familiarity are highly

correlated (r = .73-.82: Katz, Paivio, Marshark, & Clark, 1988; Roncero & Almeida,

2014a), as are ratings of aptness and corpus frequency counts of the metaphoric

expression (r = .41-.57: Roncero & Almeida, 2014b; Thibodeau & Durgin, 2011).

This core dependency means that we cannot investigate how these factors jointly or

independently a�ect metaphor processing.
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Moreover, the definitions of these critical factors are internally inconsistent. It

is ambiguous whether familiarity/conventionality describe a metaphoric expression,

or its metaphoric meaning. For example, familiarity is sometimes assumed to refer

to how often people have encountered the metaphoric expression itself (e.g., how

often is bright used to describe students? Blasko & Connine, 1993; Bowdle &

Gentner, 2005; Cardillo et al., 2012; Glucksberg, 2003; Mashal, 2013), and

sometimes to how accustomed people are to relating the expression to its

metaphoric meaning (e.g., how often is bright understood to mean intelligent and

quick-witted: Campbell & Raney, 2015; Cardillo et al., 2010; Giora, 1997; Giora &

Fein, 1999; Katz et al., 1988; Peleg et al., 2001; Roncero & Almeida, 2014a), but

these are two very di�erent and dissociable theoretical constructs. A particular

linguistic expression might be encountered reasonably often but remain poorly

understood (e.g., hard Brexit may have high expression familiarity but low meaning

familiarity), or a metaphoric meaning might be encountered reasonably often via a

di�erent expression to the one supplied (e.g., bright solutions may have high

meaning familiarity but low expression familiarity).

Because of the inconsistency in definition, these factors are not always

consistently or rigorously operationalized in empirical studies that seek to examine

their influence on metaphor comprehension. Typically, researchers measure each

factor by asking participants to rate metaphors on a particular scale. Participants

providing familiarity ratings are sometimes asked to rate the extent to which they

have read or heard the expression in the past (Mashal, Faust, & Hendler, 2005;

Roncero & Almeida, 2014a), sometimes to rate the familiarity of the ideas expressed

in the metaphors (Blasko & Connine, 1993; Campbell & Raney, 2015; Katz et al.,

1988), and at other times to rate the frequency of experience with both the

expression and the meaning together (Cardillo et al., 2010). It is therefore unclear

whether the reported e�ects of familiarity on metaphor processing times reflect
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experience at the word level (i.e., similar to word or phrase frequency) or experience

with understanding the metaphoric meaning in question (i.e., experience in

representing the metaphoric concept).

The same problem exists with the definition and operationalization of

conventionality. In studies that test its empirical e�ects on metaphor processing,

conventionality is sometimes operationalized as a function of the entire metaphoric

expression by actually asking participants to rate familiarity rather than

conventionality (e.g.: how familiar is the metaphor? Cardillo et al., 2010, 2012;

Faust & Mashal, 2007; Lai, Curran, & Menn, 2009; Mashal et al., 2005), but

sometimes as how often the metaphoric meaning is associated with the source (e.g.,

how conventional is it to use bright to mean intelligent?: Bowdle & Gentner, 2005;

Gentner & Wol�, 1997; L. L. Jones & Estes, 2006; Roncero & Almeida, 2014a).

While the former is confounded with familiarity, the latter operationalization has

been challenged by findings that conventionality is context-dependent and cannot be

defined for the source term independent of the target (Thibodeau & Durgin, 2011).

That is, just because Students can be bright is a conventional metaphor does not

mean all metaphors that use bright as a source domain for intelligent and

quick-witted (e.g., Solutions can be bright) are equally conventional. In short, it is

unclear whether conventionality is a theoretically valid construct, and whether the

reported e�ects of conventionality on metaphor processing are truly distinct from

familiarity (which has its own problems, as discussed above).

Investigation of the importance of aptness faces a similar challenge. It has

been ambiguously defined as either a very general, high-level quality or goodness of

a metaphor and is often operationalized as such (Blasko & Connine, 1993; Bowdle &

Gentner, 2005; Campbell & Raney, 2015; Glucksberg & Haught, 2006b; Katz et al.,

1988), or as a much more low-level specification of how well the metaphoric meaning

(e.g., intelligent and quick-witted) fits or overlaps with the target (e.g., students:
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Chiappe & Kennedy, 1999; L. L. Jones & Estes, 2005, 2006; Pierce & Chiappe, 2008;

Roncero & Almeida, 2014b). Thibodeau and Durgin (2011), in a detailed

examination of aptness ratings, argue that people are influenced by extraneous

factors such as processing fluency when rating aptness and hence these ratings do

not capture the theoretical construct they are meant to operationalize.

In summary, familiarity, conventionality and aptness have all been shown to

a�ect metaphor processing. However, they have several theoretical and operational

problems that mean they have limited utility in enhancing our understanding of

what makes a metaphor easier to process. Rather than continue to vary and refine

how these factors are conceptualized, we propose that a di�erent approach is needed

to seek clearer predictors of metaphor processing that (a) are theoretically and

operationally distinct, and (b) are able to independently account for speed and

accuracy performance in metaphor processing.

Grounded Views of Language Processing

Research in conceptual representation and language processing has tended to

operate in parallel to that of traditional metaphor processing, and therefore takes

quite a di�erent perspective on how access to meaning takes place. Essentially, two

components are employed in the mental representation of meaning when people

process language (Barsalou, Santos, Simmons, & Wilson, 2008; Borghi & Binkofski,

2014; Connell & Lynott, 2014b; Louwerse & Jeuniaux, 2008; Lynott & Connell,

2010; Vigliocco, Meteyard, Andrews, & Kousta, 2009). The first component is

linguistic and relies on the statistical, distributional pattern of how words co-occur

across contexts. For example, the words bright and students occur together more

often in language than do bright and illness, and such distributional frequency

patterns have been shown to be powerful enough to capture many aspects of

language processing, such as priming and reading times (Vigliocco et al., 2009),
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language acquisition from early infancy (Aslin, Sa�ran, & Newport, 1998; Kirkham,

Slemmer, & Johnson, 2002), and even to some extent distinguishing words that

relate to di�erent perceptual modalities (Louwerse & Connell, 2011). The second

component of conceptual representation is embodied (also known as the grounded,

sensorimotor or situated), which relies on the process of simulation; that is the

partial reactivation of past perceptual, motor, a�ective, introspective and other

experiences (Allport, 1985; Barsalou, 1999; Glenberg & Gallese, 2012; Niedenthal,

2007). Evidence for embodied simulation includes shared activation between brain

areas involved in perceptual or action experience and their equivalents in language

comprehension. For example, reading sound-related words like “thunder” activates

the auditory association cortex, and their processing is selectively impaired in

patients with atrophy of the auditory association cortex (Bonner & Grossman, 2012;

Boulenger et al., 2008; Goldberg, Perfetti, & Schneider, 2006; Hauk, Johnsrude, &

Pulvermüller, 2004).

Together, the linguistic and embodied components can explain language

processing better than either alone (Andrews, Vigliocco, & Vinson, 2009; Johns &

Jones, 2012; Louwerse & Connell, 2011). In particular, linguistic distributional

information provides a powerful tool for superficial language processing because the

linguistic component is faster than the embodied simulation component (Barsalou et

al., 2008; Louwerse & Jeuniaux, 2008). In any language processing task, both

linguistic and embodied components are activated but the activation of the linguistic

component will peak before that of the embodied component (Barsalou et al., 2008).

Therefore, Louwerse and Jeuniaux (2008) argued that people are more likely to rely

on the embodied component when deeper processing is specifically cued in the task

(Connell & Lynott, 2014b); but people will be reliant upon the linguistic component

to generate a good-enough approximation (Ferreira, Bailey, & Ferraro, 2002) when

shallow processing can su�ce. Evidence for a speed advantage of the linguistic over



LINGUISTIC AND EMBODIED METAPHOR PROCESSING 10

the embodied component has been found in behavioral (Louwerse & Connell, 2011;

Santos, Chaigneau, Simmons, & Barsalou, 2011), electrophysiological (Louwerse &

Hutchinson, 2012), and neuroimaging (Simmons et al., 2007) studies.

In line with these arguments, Connell and Lynott (2013) proposed that

information from the linguistic component could act as a cognitive triage mechanism

during language processing by providing a guide to whether it is worth expending

e�ort on relatively costly embodied simulation (Connell, 2018). Since the

co-occurrence of words in language tends to reflect the associations of objects,

events, and ideas in the real world, the linguistic component can provide a rough

and ready approximation of whether the embodied component will actually succeed

in simulating a sensible meaning. Moreover, since activation in the linguistic

component is faster than in the embodied component, the linguistic component has

the potential to provide a shortcut by guiding task processing before the embodied

component is fully engaged. If the linguistic component indicates that future

processing is likely to fail or entail unnecessary costs (e.g., the words rarely co-occur

in the same context and so their combined meaning might not be simulated

successfully), then it could abandon the processing before any more cognitive e�ort

is expended by the embodied component. On the other hand, if the linguistic

component indicates that future processing is likely to succeed relatively easily (e.g.,

the words often co-occur in the same context and so their combined meaning can

probably be simulated successfully), then it could either inform a response

immediately (i.e., based on the linguistic shortcut alone) or allow the embodied

component to continue developing a detailed simulation of meaning. Although the

linguistic shortcut can provide a cognitive triage mechanism in any sort of cognitive

task, it is more likely to form the basis of responses in circumstances where a

detailed response is not required and a good-enough heuristic will therefore su�ce,

such as tasks that allow relatively shallow or superficial processing, or individual
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trials where deep and detailed processing has been abandoned.

To test this proposal, Connell and Lynott (2013) asked participants to perform

two tasks with novel noun-noun compounds (e.g., cactus beetle): a shallow

processing task where participants judged if the compounds made sense, or a deep

processing task where they decided if they could generate specific interpretations for

them. The results showed that, consistent with linguistic shortcut predictions, the

linguistic distributional frequency of the constituent words (i.e., how often cactus

and beetle co-occurred) predicted both the likelihood of accepting versus rejecting a

compound as sensible and the time course of both successful and unsuccessful

processing in the shallow sensibility judgement task. However, in the deeper

interpretation generation task, distributional frequency only predicted the likelihood

of accepting versus rejecting a compound as interpretable and the timecourse of

unsuccessful (i.e., abandoned) processing, but not the timecourse of successful

processing that resulted in a detailed interpretation. In other words, while rejecting

a noun-noun compound as nonsensical or uninterpretable needed only the linguistic

shortcut to quickly flag up unsuccessful processing, the time needed to accept a

compound as interpretable may require more detailed simulation which cannot be

captured by the linguistic distributional frequency.

Present Study

Connell and Lynott’s proposal can be applied directly to the study of

metaphor processing, because the interplay of the linguistic and embodied

components, and the role of the linguistic shortcut as a cognitive triage mechanism,

operates in theory across all types of language comprehension. However, Connell

and Lynott’s study was unable to directly investigate the interplay between

linguistic distribution and embodied simulation during language processing because

it lacked at the time a direct measure of successful simulation (i.e. the ability to
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mentally represent the meaning of the phrase or sentence). The current study also

faces the same obstacle in operationalizing how easy it is to generate successful

simulation, because the meaning of a metaphor, by definition, cannot be accessed

directly by looking at the literal meaning of its constituent words (Liu, Connell, &

Lynott, 2018). Furthermore, because simulations are unconscious mental

representations that lose information when brought to conscious awareness (Connell

& Lynott, 2016), the ease of simulation cannot be directly rated as, for example, the

ease of understanding a metaphor or of generating mental imagery. Therefore, in the

present study, we used a new norming metric by Liu et al. (2018) that was explicitly

designed to quantify how easy people find it to arrive at a mental representation of

metaphoric meaning. It proposed three indirect measures of successful metaphor

processing that, together, o�er a proxy for ease of simulation: sensibility (How much

sense does the sentence make if you read it in a story or heard it in conversation?),

usability (How easy it would be for you to use the sentence in writing or in

conversation?), and imaginability (How easy it is for you to imagine the concept

described in the sentence?). Using principle components analysis, these three ratings

scales were combined into a single ease of simulation measure that captured their

common variance.

The ease-of-simulation measure (EoS) is agnostic towards the content of the

simulated representation. Instead, it measures the end-product of simulation – a

complete and coherent representation of meaning – and uses it to quantify the e�ort

of comprehension. If people find it easy to make sense of, use and imagine a

metaphor, they would necessarily find the concept easy to simulate as well. Indeed,

this ease-of-simulation measure can not only capture the majority of the variance

(91%) of the original subscales but also predict metaphor processing time better

than any of the individual subscales (Liu et al., 2018), supporting the idea that it

captures the underlying mechanism of conceptual representation. Thus, we expect it
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to be a powerful predictor of both speed and accuracy of metaphor processing in the

current study as well.

Moreover, the grounded views of conceptual representation also predict that

the linguistic component (i.e., linguistic distributional frequency (LDF) calculated

from a large corpus) would be able to account for metaphor processing

independently of the embodied component (i.e., ease of simulation). Although it

remains a contentious issue how much the linguistic component contributes to the

representation of meaning, it could be suggested that these two components are of

distinct natures and perform di�erent functions (Barsalou et al., 2008; Connell,

2018; Louwerse, Hutchinson, Tillman, & Recchia, 2015; Riordan & Jones, 2011). If

our study can show that ease of simulation and LDF can each explain a unique,

distinct portion of variance in performance of metaphor processing, this should

provide strong support for the grounded approach of conceptual representation.

Hence, we operationalised LDF in the current paper as the co-occurrence frequency

of constituent words within a small 5-word window (i.e., the LDF of Students can be

bright is the co-occurence frequency of students and bright with zero to three words

in between). By keeping the operational definition simplistic, any e�ect of LDF

could be counted as strong evidence for the existence of the linguistic component

beyond embodied simulation.

Furthermore, as the cognitive triage mechanism suggests, the e�ects of these

two factors should vary according to required depth of processing predicated by the

tasks. Thus, in two experiments, we asked participants to process metaphors that

systematically varied in LDF and EoS in a shallow task (Experiment 1: sensibility

judgement task) or in a deep task (Experiment 2: interpretation generation task).

Since the role of the linguistic and embodied components in language comprehension

varies according to available resources, task demands, and processing goals (Connell

& Lynott, 2014b), their roles in metaphor processing will vary across experiments.
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Based on the operation of each component (Barsalou et al., 2008; Louwerse &

Connell, 2011; Louwerse & Jeuniaux, 2008), and the operation of the linguistic

shortcut mechanism (Connell, 2018; Connell & Lynott, 2013), we propose the

following hypotheses:

1. Simulation hypothesis: People will rely on the embodied component in both

tasks. A metaphor that is easy to simulate will be accepted as sensible or

interpretable more often. The e�ect of EoS on response time will be in

opposite directions for “yes” and “no” responses. That is, it will take people

less time to accept a metaphor that is easy to simulate, and less time to reject

a metaphor (as nonsensical or uninterpretable) that is di�cult to simulate

(i.e., the harder a metaphor is to simulate, the quicker people will give up

trying to process it). However, EoS should have a larger e�ect on accept

(“yes”) than reject (“no”) response times because the latter reflects abandoned

processing in the embodied component.

2. Linguistic distribution and linguistic shortcut hypothesis: People will also rely

on the linguistic component in both tasks, where the linguistic shortcut will be

used as a cognitive triage mechanism to identify processing that is unlikely to

succeed and should be abandoned to avoid unnecessary costs. A metaphor

with high LDF will be more likely to be accepted as sensible or interpretable

than a metaphor with lower LDF (i.e., the less often words co-occur in

language, the more likely people will be to abandon processing rather than

engage in further, costly attempts at simulation). Furthermore, similar to the

simulation hypothesis, the e�ects will be in opposite directions for “yes” and

“no” responses: it will take people less time to accept a metaphor that has

high LDF, and less time to reject a metaphor that has low LDF.

3. Depth of processing hypothesis: People will rely on EoS more for
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interpretation generation than for sensibility judgement because the former

requires deeper processing and more detailed simulation. In contrast, people

will rely on LDF more in shallow sensibility judgement, where “good enough”

processing will su�ce, than in deep interpretation generation.

In both experiments, we report how we determined our sample size, all data

exclusions, all manipulations, and all measures in the study.

Experiment 1: Sensibility Judgement Task

In this study, participants were encouraged to process metaphors in a shallow

way by judging whether or not the sentences made sense, where they made a forced

choice between “yes” and “no”. Sensibility judgement can be considered a relatively

shallow form of language processing because it involves only a single yes/no response

and participants are not required to specify any further details of how or why the

sentence makes sense (Connell & Lynott, 2013; Lynott & Connell, 2010).

Method

Participants. Twenty-eight participants (five male and 23 female) took part

in the study, same as Connell and Lynott (2013), all of whom were students at

Lancaster University and native speakers of English with mean age of 19.1 years (SD

= 1.1). Participation took approximately 20 minutes in exchange for £3.00 or

course credits.

Materials. We used a total of 452 metaphoric sentences taken from Liu et

al., (2016; see Table 1 for examples1). All sentences took the form “Noun can be

1 All data and analysis scripts can be viewed through https://goo.gl/k1Q4jq. We used R (Version

3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate & Heiberger, 2016), arm

(Version 1.10.1; Gelman & Su, 2016), BayesFactor (Version 0.9.12.4.2; Morey & Rouder, 2018),
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adjective” (e.g., Student can be bright), and were composed of 113 perceptual

adjectives (e.g., bright: Lynott & Connell, 2009), each paired with four nouns (e.g.,

students/solutions/supply/illness) that were capable of eliciting metaphoric (i.e.,

non-literal) meanings, which varied systematically along the two critical dimensions

of EoS and LDF.

Ease of simulation (EoS) scores for each sentence ranged from easy to

di�cult (M = 0.00, SD = 1.00) and were taken from the norming study by Liu et

al. (2017), where higher scores represent greater EoS. For example, both Students

can be bright and Solutions can be bright were considered relatively easy to simulate,

whereas both Illness can be bright and Supply can be bright were considered

relatively di�cult to simulate.

Linguistic distributional frequency (LDF) for each sentence ranged from

low to high (M = 2.95, SD = 0.97), and was calculated as the log of the summed bi-

to five-gram frequencies of the sentence’s noun and adjective in the Google Web1T

Corpus (Brants & Franz, 2006). To take the metaphor Students can be bright as an

example, the LDF was the sum of the frequencies of “student . . . bright” and “bright

. . . student” with zero, one, two, and three intervening words. Frequencies were log

bookdown (Version 0.7; Xie, 2016), broom (Version 0.4.4; Robinson, 2017), citr (Version 0.2.0; Aust,

2016), coda (Version 0.19.1; Plummer, Best, Cowles, & Vines, 2006), data.table (Version 1.11.4;

Dowle & Srinivasan, 2017), ggplot2 (Version 2.2.1; Wickham, 2009), interplot (Version 0.1.5; Solt &

Hu, 2015), knitr (Version 1.20; Xie, 2015), lme4 (Version 1.1.17; Bates, Mächler, Bolker, & Walker,

2015), lmerTest (Version 3.0.1; Kuznetsova, Brockho�, & Christensen, 2017), magrittr (Version 1.5;

Bache & Wickham, 2014), MASS (Version 7.3.50; Venables & Ripley, 2002), Matrix (Version

1.2.14; Bates & Maechler, 2017), MuMIn (Version 1.40.4; BartoÒ, 2017), nlme (Version 3.1.137;

Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017), papaja (Version 0.1.0.9735; Aust &

Barth, 2017), psych (Version 1.8.4; Revelle, 2017), purrr (Version 0.2.5; Henry & Wickham, 2017),

and rcartocolor (Version 0.0.22; Nowosad, 2017) for all our analyses and the writing up of this

manuscript.



LINGUISTIC AND EMBODIED METAPHOR PROCESSING 17

Table 1

Sample metaphors, and their scores for EoS

and LDF

Metaphor EoS LDF

Illness can be bright. -1.32 2.95

Supply can be bright. -1.02 3.72

Solutions can be bright. 1.41 3.11

Students can be bright. 1.84 4.08

Minutes can be lukewarm. -1.49 3.31

Scheme can be lukewarm. -0.78 1.61

Supporters can be lukewarm. 0.69 2.69

Reaction can be lukewarm. 1.03 3.45

transformed as log10(frequency + 41) because 41 is the lowest non-zero frequency in

the item set (i.e., the raw frequency of 0 in fact means that the constituent words

co-occurred 41 times; Connell & Lynott, 2013). Within the four metaphors created

for each adjective, LDF varied independently of EoS (see Table 1). For example,

both Students can be bright and Supply can be bright had relatively high LDF,

whereas both Illness can be bright and Solutions can be bright had lower LDF.

The sentences were split into four lists of 113 items each, where each adjective

appeared only once per list, and the distribution of easy/di�cult to simulate and

high/low LDF was approximately equal across lists (EoS: F(3,440) = 1.70, p = .166;

LDF : F(3,440) = 0.43, p = .734). Each participant saw only one list.

Procedure. There were five practice trials (whose results were not recorded

or analyzed) before the 113 test trials. Participants read one sentence in each trial

and decide whether or not the sentence made sense, based on oral and verbal
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instructions. All trials had the same structure (see Figure 1). Participants first saw

a fixation cross for 1000 milliseconds (ms), followed by the noun for 500 ms, followed

by the phrase “can be” for 500 ms, and then followed by the adjective. The

adjective remained on the screen until participants made a response. Participants

pressed either the comma key (“,”) if they judged that the sentence made sense; or

the full stop key (“.”) if they judged that it did not make sense. They were allowed

to make their response naturally, using the finger(s) most comfortable for them. The

response could be made without a time limit; and participants were told explicitly

that there were no right or wrong answers to the question. Both the response

decision (“yes” to accept the metaphor as sensible; or “no” to reject the metaphor as

nonsensical), and response time in milliseconds (RT) from onset of the adjective,

were recorded as dependent variables.

Figure 1 . Trial structure in the sensibility judgement task.

Design and analysis. Response decisions were analyzed in a mixed e�ects

logistic regression (binomial distribution with logit link), with the dependent

variable of response (coded as 1 for “yes”, accepting the metaphor as sensible; and 0
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for “no”, rejecting the metaphor as nonsensical), crossed random-intercept e�ects of

participants and items,2 and fixed variables of LDF, EoS, and their interaction.

Both LDF and EoS scores were centred before analysis.

Response times (RTs) were analyzed using mixed e�ects linear regressions,

firstly in an omnibus analysis with crossed random-intercept e�ects of participants

and items,3 and fixed variables of response, LDF, EoS, and their interactions.

Secondly, we ran separate analyses on acceptance (“yes”) and rejection (“no”)

responses because we expected the e�ects of the fixed variables to be in opposite

directions for di�erent response decisions. We initially considered the inclusion of

word length and lexical frequency (i.e., sum of the log frequencies of nouns and

adjectives, retrieved from Elexicon separately: Balota et al., 2007,

http://elexicon.wustl.edu), but they were excluded from final analyses because their

zero-order correlations with RT were near zero (see Supplementary Materials:

https://goo.gl/trTu18).

Results and Discussion

All participants had mean response times within 3SD of the overall mean and

so all were included in analysis. Two trials were removed because of motor error (RT

2 The inclusion of participants as a random factor improved model fit above the empty model, �2
(1)

= 427.39, p < .001, as did the inclusion of items as a crossed random factor above the

participants-only model, �2
(1) = 456.76, p < .001.

3 The inclusion of participants as a random factor improved model fit above the empty model, �2
(1)

= 853.15, p < .001. The inclusion of items as a crossed random factor did not improve model fit

above the participants-only model �2
(1) = 0.00, p = .998. However, in order to keep the models

consistent, both participants and items were included as crossed random factors in the linear

models of RT as well as in the logistic models of response decision. It should be noted that

analyses of RT with participant-only models did not substantially change results; these analyses are

reported in supplementary materials.
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< 200ms). Furthermore, individual trials with RT more than three standard

deviations from each participant’s mean per response decision were removed as

outliers: 1.33% of “yes” responses and 2.20% of “no” responses.

Response decision. Among 3105 valid trials, 1413 (45.51%) were accepted

as sensible (“yes” responses) and 1692 (54.59%) were rejected as nonsensical (“no”

responses). As predicted, logistic regression showed that EoS had a positive e�ect on

the response decision, z(1,3101) = 24.60, p < .001, b = 1.253, 95% CI = [1.153, 1.353].

As EoS increased by one unit, the odds of accepting a metaphor as sensible (as

opposed to rejecting it as nonsensical) increased 3.501 times. In contrast, LDF had a

negative e�ect on the response decision, z(1,3101) = -2.02, p = .043, b = -0.093, 95%

CI = [-0.183, 0.003], meaning that each increased unit of LDF made the decision to

accept a metaphor as sensible less likely (odds ratio = 0.911). Since this partialled

relationship between response decision and LDF in the regression model was the

inverse of their unpartialled relationship outside the regression model (i.e., mean

LDF was higher for “yes” than “no” responses: Supplementary Materials), it

suggests that net suppression was present in the model.4 That is, the shared error

variance between LDF and EoS was e�ectively hiding the real relationship between

LDF and response decision, such that the net e�ect of LDF in logistic regression was

to enhance the e�ect of EoS by suppressing its unhelpful error variance (J. Cohen,

Cohen, West, & Aiken, 2003).

In order to establish the true relationships between response decision and our

independent variables, we therefore removed the shared variance between LDF and

EoS (currently correlated at r = .27) by orthogonalizing the variables. We used

principal components analysis (PCA) to rotate the two original variables into two

4 A logistic regression model with linguistic associative frequency as the only fixed factor confirmed

this possibility as it returns a positive coe�cient, t(1,3103) = 4.03, p < .001, b = 0.36, 95% CI =

0.19 - 0.54.
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Table 2

Logistic mixed-e�ect regression of response

decision in Experiment 1

b 95% CI p

Intercept -0.25 -0.62 - 0.13 .198

EoS 1.47 1.34 - 1.60 < .001

LDF 0.11 0.01 - 0.21 .027

EoS x LDF -0.00 -0.11 - 0.10 .946

Note. b is non-standardised regression

coe�cient.

Both predictors orthogonalized.

orthogonal components, which (rather than the traditional PCA use of dimension

reduction) allowed us to disentangle two correlated variables without losing any

information (Connell & Lynott, 2014a; Glantz & Slinker, 1990). Using varimax

rotation with Kaisar normalization on a covariance matrix, Component 1

corresponded to EoS (r = .99) and Component 2 corresponded to LDF (r = .99).

These two orthogonalized variables accounted for 100% of the original variance while

themselves were uncorrelated (i.e., r = .00). We re-ran the logistic regression with

these orthogonalized variables and obtained results as follows (Table 2).

Logistic regression with these orthogonalized variables showed that EoS had a

positive e�ect on response decision (Table 2). As the orthogonalized EoS increased

by one unit, the odds of accepting a metaphor as sensible increased 3.421 times.

Moreover, the e�ect of the orthogonalized LDF was also positive, but only as a weak

trend. This time, as the orthogonalized LDF increased, the odds of accepting a

metaphor as sensible increased slightly (1.084 times) as well.
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Table 3

Omnibus linear mixed-e�ect model of RT in Experiment 1

b 95% CI p

Intercept 1129.66 1011.04 - 1248.29 < .001

EoS 67.06 41.76 - 92.36 < .001

LDF 14.76 -9.81 - 39.32 .239

Response 0.76 -36.86 - 38.38 .969

EoS x LDF 24.39 1.18 - 47.61 .040

EoS x response -181.55 -218.91 - -144.17 < .001

LDF x response -38.54 -74.48 - -2.61 0.036

EoS x LDF x response -32.50 -67.07 - 2.08 0.066

Note. b is non-standardised regression coe�cient.

Both predictors orthogonalized.

In other words, when people were asked to make a relatively shallow

judgement about whether or not a metaphor made sense, their yes/no decision was

influenced predominantly by EoS (easy-to-simulate metaphors were more likely to

be judged as sensible) but also by the LDF of the words used in the metaphor

(frequently co-occurring words were slightly more likely to be judged as sensible;

infrequently co-occurring words were slightly more likely to be rejected as nonsense).

Both the linguistic and embodied components played a role in metaphor processing.

Response time. As in the logistic regression of response decision, linear

analysis of response times (M = 1139 ms, SD = 587 ms) also produced evidence of

net suppression (see supplementary materials for details). For that reason, and to

maintain the independence between the predictors in all our models, we

orthogonalized the variables per response type. Table 3 shows full results of the
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Table 4

Regression model on RT in Experiment 1 per response decision

Yes No

b 95% CI p b 95%CI p

Intercept 1172.16 1051.79 - 1292.52 < .001 1155.41 1010.94 - 1299.88 < .001

EoS -134.88 -161.98 - -107.79 < .001 72.28 47.27 - 97.29 < .001

LDF -27.52 -53.10 - -1.93 0.036 17.72 -6.40 - 41.83 0.152

EoS x LDF -13.00 -37.90 - 11.91 0.307 23.33 0.51 - 46.14 0.046

Note. b is non-standardised regression coe�cient.

Both predictors orthogonalized per response decision.

omnibus analysis across all responses. Overall, EoS had a positive e�ect on RT,

meaning that response times were generally slower for easy-to-simulate metaphors.

However, EoS also interacted negatively with response decision, suggesting that the

direction of the EoS e�ect di�ered by response type. LDF had no overall main

e�ect, but interacted with response decision to indicate that the direction of LDF

di�ered for “yes” and “no” RTs.

Since we had separate hypotheses for “yes” and “no” RTs, we divided the

dataset by response decision and analyzed their RT separately. Results are given in

Table 4. For “yes” responses (i.e. metaphors that were accepted as sensible; RT: M

= 1150 ms, SD = 589 ms), EoS had the predicted negative e�ect, such that the

easier a metaphor was to simulate, the less time people took to accept it as sensible

Table 4. LDF also had a negative e�ect on acceptance times as predicted. That is,

the more often the words in a metaphor co-occurred in language, the faster people

were to accept it as sensible. Figure 2 shows the standardized coe�cients of each



LINGUISTIC AND EMBODIED METAPHOR PROCESSING 24

variable on RT per response decision.
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Figure 2 . E�ects of EoS and LDF, expressed as standardized regression coe�cients,

on acceptance and rejection times for sensibility judgement. Error bars represent 95%

confidence intervals, and asterisks represent the significance of directional predictions

where specified (*** p < .001, ** p < .01, * p < .05).

For “no” responses (metaphors rejected as nonsensical; RT: M = 1114 ms, SD

= 603 ms), the e�ects ran in the opposite direction (Table 4). As predicted, EoS

had a positive e�ect on RT, meaning that people were faster to reject metaphors

that were normally regarded as di�cult to simulate. LDF had no significant main

e�ect but did positively interact with EoS, such that the e�ect of EoS was enhanced

when LDF was high, but was reduced when LDF was low. Figure 3 shows the e�ects

of EoS on the RT of reject (“no”) responses as LDF increased. Overall, people were

faster to reject a metaphor as nonsensical when its words rarely co-occurred and its
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meaning was di�cult to simulate, and slower to reject metaphors whose words often

co-occurred but whose meaning was generally considered easy to simulate.
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Figure 3 . Change in the coe�cients of LDF as EoS increased when people rejected

metaphors as nonsensical. The shaded area indicates the 95% confidence interval.

Summary. Overall, results showed that people relied on both the embodied

and linguistic components when judging metaphor sensibility. Following our

simulation hypothesis, metaphors whose meanings were easy to simulate (e.g.,

Students can be bright; Solutions can be bright) were more likely to be accepted as

sensible and were accepted more quickly, whereas metaphors whose meanings were

typically regarded as di�cult to simulate (e.g., Supply can be bright; Illness can be

bright) were rejected more quickly. Moreover, EoS had a greater e�ect on metaphor

acceptance times (“yes” b = –134.88) than on rejection times (“no” b = 72.28), as

predicted, due to the fact that acceptance times reflect simulation that has
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successfully completed in the embodied component whereas rejection times reflect

simulation attempts that have been abandoned. In addition, as predicted by the

linguistic distributional hypothesis, metaphors whose words often co-occurred in

context (e.g., Students can be bright; Supply can be bright) were more likely to be

accepted as sensible (although only marginally) and were accepted more quickly,

while metaphors whose words rarely co-occurred (e.g., Illness can be bright) were

not rejected directly. Instead, LDF moderated the e�ect of EoS (i.e. the e�ect of

EoS was reduced when the LDF was low), which suggested that people rejected the

metaphors as nonsensical based on their low LDF, without further processing in the

embodied component. This pattern of findings supports the idea that the linguistic

shortcut was used as a cognitive triage mechanism during metaphor comprehension

to identify processing that was unlikely to succeed (i.e., produce a coherent

simulation of meaning) and should therefore be abandoned rather than wasting

resources on further processing.

Experiment 2: Interpretation Generation Task

In this study, participants were encouraged to process metaphors in a

relatively deep way by completing an interpretation generation task. As they read

each metaphor sentence, participants tried to think of a possible meaning for the

sentence. If they could think of a meaning, participants were required to specify

their interpretation. Interpretation generation can therefore be considered as a

deeper form of metaphor processing than sensibility judgement because it requires

participants to represent a particular meaning in detail (Connell & Lynott, 2013;

Lynott & Connell, 2010). All metaphors were the same as in Experiment 1, but

since participants would be engaging in deeper processing when generating

interpretations than when simply judging sensibility, we expected they would be

more likely to successfully simulate a meaning. Thus, we predicted a higher
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acceptance rate (i.e., more “yes” responses) in this study than in Experiment 1 (as

per Connell & Lynott, 2013), as well as our hypotheses earlier outlined.

Method

Participants. Forty native speakers of English (11 males and 29 females;

age M = 19.65, SD = 2.08) were recruited from the same population as Experiment

1 to match the coe�cient of variation in Experiment 1. Participation took

approximately 20 minutes in exchange for £3.00 or course credits.

Materials. Same as in Experiment 1.

Procedure. The procedure was identical to Experiment 1, except that

instructions asked participants to come up with a meaning for each sentence, and to

be clear and specific in their meanings. The trial structure was the same as

Experiment 1 (see Figure 1) up to the point where participants were required to

make a decision. In this study, if they pressed the comma (“,”) key to indicate that

they could think of a meaning for the metaphor, they would be presented with a

blank screen where they could type in the meaning just generated; if they pressed

the full stop (“.”) key to indicate that they could not think of a meaning, they would

proceed to the next trial.

The item lists from Experiment 1 were split in half pseudo-randomly while

preserving the equal distribution of items along the dimensions of EoS and LDF, in

order to reduce the possibility of fatigue, resulting in 8 lists of 56-57 items each. As

before, each participant saw only one list. The whole task took approximately 20

minutes to complete and participants were given one break halfway through.

Design and analysis. Data were analyzed in the same way as in

Experiment 1. Mixed e�ects logistic regression of response decisions contained

crossed random-intercept factors of participants and items, as did mixed e�ects
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linear regressions of response times.5 As in Experiment 1, there was evidence of net

suppression in the regression models due to the shared error variance between

predictors (see supplementary materials for details). For that reason, and to

maintain consistency in predictors between models and experiments, we therefore

report the analysis using orthogonalized variables of EoS and LDF.

Results and Discussion

All participants had mean response times within 3SD of the overall mean so

none were excluded on that criterion. We also identified accept (“yes”) trials with

invalid interpretations, namely those that were: blank or single characters,

participant-flagged errors (e.g., “mistake” or “don’t know”), simple repetition of the

original metaphor (e.g., Students can be bright æ “students are bright”),

replacement of the adjective with a synonym or an adjective that the researchers

judged to be nonsensical in context (e.g., Borders can be deafening æ “borders can

be loud”; Economy can be freezing æ “The economy can be dry”), and clear

misreading of words (e.g. Charge can be rustling æ “coins can be heard to make a

[rustling] sound in pockets”, consistent with misreading charge as change). Two

participants were excluded from analysis for providing more than 50% invalid

interpretations. Amongst the remaining participants, 2.33% of interpretations (31

5 In logistic regression, the inclusion of participants as a random factor improved model fit above

the empty model, �2
(1) = 368.76, p < .001), as did the inclusion of items as a crossed random

factor, �2
(1) = 156.50, p < .001. In linear regressions, the inclusion of participants as a random

factor improved model fit above the empty model �2
(1) = 638.85, p < .001, although the inclusion

of items as a crossed random factor did not improve model fit above the participants-only model,

�2
(1) = 0.00, p = 1.00. However, as in Experiment 1, both participants and items were included as

crossed random factors in the linear models of RT as well as in the logistic models of response

decision in order to keep the analyses consistent. Analyses of RT with participant-only models did

not substantially alter results, and are reported in supplementary materials.
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trials) were identified as invalid and removed from analysis. No trials were removed

due to motor error, but RTs more than 3 standard deviations from each

participants’ mean per response decision were removed as outliers: 2.10% of “yes”

responses and 2.00% of “no” responses.

Response decision. Among 2103 valid trials, 1302 (61.91%) were accepted

as interpretable (“yes” responses) whereas 801 (38.09%) were rejected as

uninterpretable (“no” responses). Logistic regression showed that both EoS and

LDF had a positive e�ect on response decision (see Table 5). For every unit of

increase in EoS, the odds of accepting a metaphor as interpretable increased 2.826

times; and for every unit of increase in LDF, it increased 1.286 times.

In short, when people were asked to make a relatively deep judgement about

whether they could think of a meaning for a metaphor, their yes/no decision was

influenced by both EoS (easy-to-simulate metaphors were more likely to be

interpretable) and by the LDF of the words used in the metaphor (frequently

co-occurring words were more likely to give rise to an interpretable metaphor).

Hence, both the linguistic and embodied components played a role in metaphor

processing, as predicted.

Response time. Linear regression of RT across all responses (M = 2837 ms,

SD = 2469 ms) found no overall e�ect of EoS (see Table 6). However, EoS interacted

negatively with response decision, indicating the e�ect of EoS for “yes” was opposite

to that for “no” responses. LDF did not have any significant e�ects or interactions.

As in Experiment 1, we had separate hypotheses for “yes” and “no” RTs and

so analysed them separately; results are shown in Table 7. For “yes” responses

(i.e. accepting metaphors as interpretable; RT: M = 3083 ms, SD = 2638 ms), EoS

had a negative e�ect, as predicted, meaning that people were faster to accept a

metaphor as interpretable when it was typically considered easy to simulate
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Table 5

Logistic mixed-e�ect regression of response

decision in Experiment 2

b 95% CI p

Intercept 0.96 0.42 - 1.50 < .001

EoS 1.53 1.35 - 1.71 < .001

LDF 0.34 0.20 - 0.48 < .001

EoS x LDF -0.01 -0.15 - 0.13 0.887

Note. b is non-standardised regression

coe�cient.

Both predictors orthogonalized.

Table 6

Omnibus linear mixed-e�ect model of RT in Experiment 2

b 95% CI p

Intercept 2796.78 2341.82 - 3251.76 < .001

EoS 125.28 -20.79 - 271.35 .093

LDF 44.47 -97.02 - 185.95 .538

Response 58.38 -143.64 - 260.40 .571

EoS x LDF -34.60 -167.90 - 98.71 .6111

EoS x response -589.63 -774.55 - -404.70 < .001

LDF x response -13.52 -193.60 - 166.55 .883

EoS x LDF x response 4.82 -166.13 - 175.76 .956

Note. b is non-standardised regression coe�cient.

Both predictors orthogonalized.
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compared to di�cult to simulate. LDF did not a�ect the speed of interpretation,

nor was there an interaction (Figure 4).
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Figure 4 . E�ects of EoS and LDF, expressed as standardised regression coe�cients, on

acceptance and rejection times for interpretation generation. Error bars represent 95%

confidence intervals, and asterisks represent the significance of directional predictions

where specified (*** p < .001, ** p < .01, * p < .05).

For “no” responses that rejected the metaphor as uninterpretable (RT: M =

2436 ms, SD = 2105 ms), EoS had a positive e�ect on RT: as predicted, people were

faster to reject a metaphor as uninterpretable when it was normally considered

di�cult to simulate. LDF did not a�ect rejection speed, nor did it interact with EoS

(Figure 4).

Summary. Results of Experiment 2’s interpretation generation task were

similar to those of Experiment 1’s sensibility judgement, in showing that people
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Table 7

Regression model on RT in Experiment 2 per response decision

Yes No

b 95% CI p b 95%CI p

Intercept 2961.19 2507.85 - 3414.54 < .001 3245.15 2507.68 - 3982.63 < .001

EoS -538.01 -665.18 - -410.83 < .001 213.38 100.81 - 325.94 < .001

LDF 17.48 -103.06 - 138.02 0.776 44.11 -62.70 - 150.91 0.419

EoS x LDF -34.12 -149.71 - 81.46 0.563 -56.58 -158.13 - 44.98 0.276

Note. b is non-standardised regression coe�cient.

Both predictors orthogonalized per response decision.

relied on both the embodied and linguistic components when processing metaphors.

EoS a�ected both the likelihood and processing speed of generating an

interpretation for a metaphor, supporting the simulation hypothesis: the easier it

was to simulate the meaning of a particular metaphor, the more likely it was to be

interpreted and the faster people accepted it as interpretable. Conversely, metaphors

whose meanings were di�cult to simulate were rejected as uninterpretable relatively

quickly. As predicted, EoS had a greater e�ect on metaphor acceptance times (“yes”

b = –538.00) where simulation was ultimately successful, than on rejection times

(“no” b = 213.38) where processing in the embodied component was abandoned.

Following the linguistic distributional hypothesis, metaphors whose words often

co-occurred in context (e.g., Students can be bright) were more likely to be accepted

as interpretable than metaphors whose words rarely co-occurred (e.g., Solution can

be bright). The e�ects of LDF did not carry over into interpretation times, however,

unlike in Experiment 1’s sensibility judgement times. Hence, support for the use of
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the linguistic shortcut as a cognitive triage mechanism in deep metaphor processing

is limited to its e�ect on the likelihood of interpretation. We examine such task

di�erences further in cross-experiment analyses.

Cross-Experiment Analyses

Since some of our hypotheses concern di�erences between shallow and deep

processing tasks, we conducted a meta-analysis of the data from Experiments 1 and

2 in order to compare e�ect sizes between sensibility judgement and interpretation

generation tasks.

Method

The data from Experiments 1 and 2 were combined for analysis: response

decision in logistic mixed e�ects regression, and response time in linear mixed e�ects

regression. All analyses used the same models with orthogonalized variables that

were previously employed in separate experiments, this time including an additional

fixed predictor variable of task (coded 0 for sensibility judgement, 1 for

interpretation generation) that interacted with all other predictors.

Results and Discussion

Response decision. Results are shown in Table 8. The likelihood of

accepting versus rejecting a metaphor varied by task: the odds of accepting a

metaphor in the interpretation generation task were 3.24 times more than in the

sensibility judgement task, as predicted. EoS had a positive e�ect on response

decisions (i.e., easy simulation lead to more successful processing), which stayed

constant between shallow and deep tasks. LDF also had a positive e�ect, and its

positive interaction with task indicated that LDF had a larger e�ect on response

decision in deep than shallow metaphor processing.
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Response time. Results are shown in Table 9. Deep interpretation

generation took significantly longer time than shallow sensibility judgement. EoS

had opposite e�ects on acceptance versus rejection times, which was negative for

“yes” responses but positive for “no” responses. Furthermore, EoS interacted with

task, showing that its e�ect is larger for deep interpretation generation than for

shallow sensibility judgement across both types of responses, as predicted by the

depth of processing hypothesis. The e�ects of LDF were of the same pattern

(despite producing e�ects in Experiment 1 but not in Experiment 2), though were

not significant either as a main e�ect or in interaction with task. LDF interacted

with EoS and task in a three-way interaction when response was “no”, which

resulted from the presence of an interaction between LDF and EoS in shallow

processing but not in deep processing.

Summary. In summary, depth of processing a�ected the roles of both EoS

and LDF. As predicted by the depth of processing hypothesis, EoS had a larger

e�ect during deep processing than during shallow processing: specifying the

meaning of a metaphor led people to rely more on embodied simulation than simply

judging whether or not a metaphor makes sense. However, this greater reliance on

the embodied component influenced only response times, and not the likelihood of

accepting the metaphor as sensible or interpretable. Also as predicted, LDF had a

larger e�ect on shallow processing than one deep processing, but only in terms of

how it moderated the e�ect of EoS in “yes” response times: in successful metaphor

processing, people relied on the linguistic shortcut to avoid unnecessarily e�ortful

simulation more during sensibility judgement than during interpretation generation.

While LDF also a�ected response decisions, the e�ect ran contrary to expectations

by being larger for deep processing than for shallow processing: people relied on the

linguistic shortcut more when attempting to generate a meaning for a metaphor

than when deciding whether or not it made sense. Therefore, while our results



LINGUISTIC AND EMBODIED METAPHOR PROCESSING 35

Table 8

Logistic mixed-e�ect regression of response

decision for cross-experiment comparison

b 95% CI p

Intercept -0.25 -0.76 - 0.26 .337

EoS 1.48 1.36 - 1.60 < .001

LDF 0.11 0.02 - 0.21 .023

Task 1.18 0.50 - 1.86 < .001

EoS x LDF -0.00 -0.11 - 0.10 .926

EoS x task 0.01 -0.18 - 0.20 .919

LDF x task 0.22 0.06 - 0.38 .006

EoS x LDF x task 0.00 -0.16 - 0.16 .979

Note. b is non-standardised regression coe�cient.

Both predictors orthogonalized.

supported the depth of processing hypothesis regarding EoS, the picture of more

complex for LDF.
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General Discussion

The current study investigates what makes metaphors easier to process from

the perspective of grounded language comprehension (Barsalou et al., 2008; Connell

& Lynott, 2014b; Louwerse & Jeuniaux, 2008; Vigliocco et al., 2009), with a view to

establishing how the roles of the embodied component (i.e., simulation of

sensorimotor, a�ective, and other experience) and linguistic component (i.e.,

distributional patterns of how words co-occur in language) varied with depth of

processing. Our goal in taking this approach was to move the investigation of

metaphor processing beyond the traditional factors, such as familiarity,

conventionality, and aptness, which – while having a long history of use – have been

increasingly criticized for theoretical and operational problems that limit their

utility in explaining what makes one metaphor easier to understand than another.

Following previous research (Connell & Lynott, 2013; Louwerse & Connell, 2011),

we used LDF to operationalise processing in the linguistic component, which was

calculated based on bi- to 5-gram co-occurrence frequencies from a large corpus. In

addition, we proposed a new variable construct called EoS to operationalize

processing in the embodied component (Liu et al., 2018), which reflected how easily

people find it to arrive at a mental representation of metaphoric meaning.

Following our predictions, we found that EoS and LDF played unique and

distinct roles in metaphor processing. They independently predicted the likelihood

of accepting a metaphor in both shallow (Experiment 1) and deep (Experiment 2)

processing tasks. People were more likely to decide a metaphor was sensible or

interpretable if it was normally considered easy to simulate and if its words often

appeared together in context. EoS could successfully predict the speed of processing

in both tasks (i.e., people were faster to accept a metaphor as sensible or

interpretable when it was easy to simulate, and faster to reject it as nonsensical or
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uninterpretable when it was di�cult, regardless of LDF), and the e�ect was larger

for deep interpretation generation than shallow sensibility judgement. In contrast,

LDF only predicted the speed of processing in shallow sensibility judgement but not

in deep interpretation generation. The more often a metaphor’s words co-occurred

in language, the faster people were to accept the metaphor when the depth of

processing was shallow and good-enough processing (Ferreira et al., 2002) could

su�ce. Moreover, although LDF did not directly influence the speed of rejecting a

metaphor as nonsensical, it moderated the e�ect of EoS by reducing its influence at

low distributional frequencies. This pattern of e�ects supported the linguistic

shortcut hypothesis that LDF can be used as a cognitive triage mechanism to

identify metaphors that are unlikely to result in successful simulation, and so costly

processing in the embodied component can be abandoned to avoid wasting

resources, where task demands and processing goals allow (Connell, 2018; Connell &

Lynott, 2013, 2014b).

Our results are consistent with the conceptual combination study of Connell

and Lynott (2013), which supported the cognitive triage mechanism of LDF. The

critical di�erences between the conceptual combination study and the current one

lies in that LDF had a smaller e�ect in our study than in the conceptual

combination study. Specifically, in our study, LDF did not a�ect response times at

all in the interpretation generation task, whereas in the conceptual combination

study it had a significant positive e�ect on rejection time and overall response time

in both tasks. One reason for these di�erences could be our addition of EoS as a

predictor, independent from LDF. Specifically, we found in Experiment 1 that LDF

was not entirely orthogonal to EoS, which means that both variables could account

for a mutual portion of variance. Therefore, the LDF variable in the previous

conceptual combination study did not only account for the linguistic component of

conceptual representation, but may also have accounted partially for the embodied
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component. In contrast, the present study made sure that EoS and LDF were not

only theoretically but also statistically distinct.

More broadly, results from the current study supports grounded views of

language processing, according to which the linguistic and the embodied

components combine to form conceptual representations of meaning (Barsalou et al.,

2008; Connell & Lynott, 2014b; Louwerse & Jeuniaux, 2008). Previous research has

demonstrated the roles of the linguistic and embodied components in processing

literal sentences about sensory features (Louwerse & Connell, 2011), noun-noun

conceptual combination (Connell & Lynott, 2013), and property generation (Santos

et al., 2011). The present paper showed for the first time that both components are

also critical to processing metaphoric language.

Moreover, the present paper showed that the e�ects of the two components

were independent and distinct. In spite of the fact that LDF was kept minimal, we

found evidence that it a�ected the speed and outcome of metaphor processing above

and beyond the e�ect of EoS. People were able to decide whether a metaphor was

sensible/meaningful based on the linguistic distributional patterns alone. Thus, we

can argue people use lingusitic information heuristically (Barsalou et al., 2008;

Connell, 2018; Louwerse & Connell, 2011). Of course, just because two words

frequently co-occur does not necessarily mean that they were intended to form a

metaphor. However, words tend to appear close together in language because their

concepts form part of the same simulation of an idea or situation, which at least

some of the times will be metaphorical. Conversely, words that seldom appear in the

same context are unlikely to form a metaphor. As such, LDF represents a relatively

coarse-grained, but nonetheless highly useful, approximation of whether a particular

source and target can potentially form a metaphor.

However, contrary to the linguistic shortcut hypothesis, our study did not

support the di�erence between shallow and deep processing in the cross-experiment
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analysis of the linguistic component. LDF had similar e�ects on RT during both

deep and shallow processing tasks, and it even had greater e�ects on response

decision during deep processing than shallow processing tasks. In other words,

shallow processing did not encourage the use of the linguistic shortcut. One possible

reason could be because people had as much time as needed to make a response;

they had unlimited time resource to form a mental representation using the

embodied component and were not under pressure to conserve processing resources.

In future research, we plan to impose a time constraint on metaphor processing in

order to further examine the linguistic shortcut hypothesis and the circumstances

that incentivize its use.

A key motivation for adopting a grounded approach to metaphor processing is

the problems and criticisms of traditional research the factors that have traditionally

been the focus of metaphor processing (i.e. familiarity, conventionality, and aptness).

However, it is undeniable, as some may argue, that the linguistic component and the

embodied component have several parallels with those factors. Specifically, LDF

captures the extent to which familiarity, conventionality, and aptness are based on

frequency of exposure, and EoS captures the extent to which aptness is based on

successful representation of metaphoric meaning. Nevertheless, the grounded

approach we propose o�ers several advantages that make it stand out from

traditional approaches.

First, EoS and LDF are better operationalized. Both factors have clear

definitions, unlike familiarity, conventionality, or aptness, which have di�erent

definitions to di�erent research communities. EoS only refer to how easy it is to

simulate the meaning of the sentence. It takes the sentence as a whole, without

selectively emphasizing the source or the target terms. In contrast, the definition of

conventionality tends to focus on the source term (see Introduction), even though

ratings of conventionality are context dependent (i.e. influenced by the target term).
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Also, LDF only refers to the co-occurrence of the constituent words, unlike

traditional familiarity or conventionality, which could concern either the metaphor

sentence itself or the concept it refers to. Thus, the operational definition of the two

factors are unambiguous, improving the validity of the construct.

Second, we have demonstrated that these two predictors can exert statistically

independent e�ects. Although the raw variables correlate to some degree, and there

is evidence for net suppression in the models, it can be corrected by orthogonalizing

the variables to remove the correlation between them. The grounded views of

language processing state that the embodied and linguistic components are

theoretically distinct, and our statistical treatment reflects just that. In other words,

if our two predictors had the same core dependency as familiarity, conventionality

and aptness, their e�ects would not have been unique and separable.

Finally, under the theoretical construct of the grounded views, the present

studies produced findings that cannot be explained by the traditional factors, namely

the interplay between EoS and LDF according to the required depth of processing.

Previous studies have not considered metaphor processing as an interactive process

that adapts to the situation. Based on the grounded view, we predicted that people

would process metaphors using di�erent strategies according to the requirement of

the tasks. Our study found results that support this hypothesis. Indeed, previous

studies which have shown an e�ect of aptness over conventionality often adopt a

deep processing task, such as generating interpretations (Glucksberg & Haught,

2006a; L. L. Jones & Estes, 2006), listing attributes (Glucksberg & Haught, 2006b),

and creating new metaphors based on examples (Pierce & Chiappe, 2008). Given

the parallels we draw between aptness and EoS, this previous work is consistent

with our finding that deeper processing relies more on EoS.

In conclusion, metaphor processing relies on conceptual representation that

encompasses the two components proposed by the grounded account, that is the
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linguistic component and the embodied component. These two components interplay

flexibly in order to produce representations that satisfy the requirement of the tasks.
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CHAPTER 5

Linguistic Shortcut under Time Constraints

From the previous chapter, we found evidence for independent influences

of both linguistic and embodied components during metaphor processing. These

two theoretically distinct and statistically separable components can each uniquely

account for the performance of metaphor comprehension tasks. It also indeed sug-

gested that people used di�erent strategies to process metaphors when di�erent

depths of processing was required. Specifically, they will draw on the embod-

ied component more heavily for relatively deep processing. However, the role of

the linguistic component seemed to have been largely una�ected by the depth of

processing. If anything, the e�ect of LDF was enhanced in the deep interpreta-

tion generation task, contrary to our prediction based on the linguistic shortcut

hypothesis.

Therefore, this chapter sets out to examine whether people could be induced

to take the linguistic shortcut. One possible condition for people to take the

linguistic component as a shortcut is when processing resources are limited, such

as when people are under time pressure. In the work presented in this chapter, I
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will introduce constraints on the response interval when participants perform the

same two tasks as Chapter 4. The limited time resources, combined with the need

for only superficial processing in the sensibility judgement task, should prompt

people to take the shortcut of linguistic distributional patterns.

154



Paper 3: E�ect of time constraints on the grounded representation of

metaphor processing

Page numbers: 156 - 211

155



Running head: METAPHOR PROCESSING UNDER TIME CONSTRAINTS 1

E�ect of time constraints on the conceptual representation of metaphor processing

Pei Q. Liu1 & Louise Connell1 & Dermot Lynott1

1 Department of Psychology, Lancaster University

Author Note

Department of Psychology, Lancaster University, UK.

Correspondence concerning this article should be addressed to Pei Q. Liu,

Department of Psychology, Fylde College, Lancaster University, Bailrigg, LA1 4HX,

UK. E-mail: p.liu1@lancaster.ac.uk



METAPHOR PROCESSING UNDER TIME CONSTRAINTS 2

Abstract

What shapes the conceptual representations during metaphor processing? In this

paper, we investigate this question by studying the roles of both embodied

simulation and linguistic distributional patterns. Researchers have proposed that

the linguistic component is shallow and speedy, ideal as a shortcut to construct

crude representations and conserve valuable cognitive resources. Thus, during

metaphor processing, people should rely on the linguistic component more if the

goal of processing is shallow and the time available is limited. Here, we present two

pre-registered experiments which aim to evaluate this hypothesis. The results

supported the role of simulation in metaphor processing, but not the linguistic

shortcut hypothesis: the e�ect of linguistic distributional frequency increased as

people had more time to process the metaphors, and as they engaged in deep

processing. Furthermore during shallow processing, the processing was easier when

the embodied and linguistic components support each other. These findings indicate

a complex interaction between the embodied and linguistic components during

metaphor processing.
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E�ect of time constraints on the conceptual representation of metaphor processing

Metaphor is a crucial aspect of human language and cognition. A metaphoric

expression applies to words and phrases where its meaning departs from the literal

meaning of the expression. For instance, Students can be bright uses the word bright

in a non-literal sense (i.e., “clever or intelligent”), while its literal meaning of

“emitting much light” does not apply to the concept of students. Hence, it is not

immediately apparent how people achieve comprehension in such a case. In this

paper, we will view metaphor processing as a process that relies on both

coarse-grained linguistic distributional information as well as fine-grained embodied

simulation (e.g., Barsalou, Santos, Simmons, & Wilson, 2008; Connell & Lynott,

2014; Louwerse & Jeuniaux, 2008). Linguistic distributional information describes

patterns of how linguistic symbols (words or phrases) co-occur across language. As

they are to do with linguistic symbols, distributional patterns do not have a direct

and causal link with meaning. We will argue that distributional patterns are utilised

in metaphor processing as well as the embodied component, and test whether the

linguistic distributional information can be used heuristically for metaphor

processing, particularly under time pressure.

Grounded Views of Language Processing

Research on conceptual representations suggests that at least two components

are employed for semantic representation when people process language (Barsalou et

al., 2008; Connell & Lynott, 2014; Louwerse & Jeuniaux, 2008; Lynott & Connell,

2010; Vigliocco, Meteyard, Andrews, & Kousta, 2009). On one hand,

representations are formed concerning the statistical, distributional pattern of how

words co-occur across contexts. For example, the words bright and student occur

together more often in language than do shining and student. Such distributional
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patterns are able to explain to a great extent many aspects of language processing,

such as priming and reading times (Vigliocco et al., 2009), language acquisition from

early infancy (Aslin, Sa�ran, & Newport, 1998; Monaghan, Chang, Welbourne, &

Brysbaert, 2017; Sa�ran, Johnson, Aslin, & Newport, 1999). Even a simple measure

of co-occurrence frequencies within a small five-word window could explain

phenomena of language processing, such as the e�ect of perceptual modalities of the

referent (Louwerse & Connell, 2011), and comprehending novel noun-noun

combinations (Connell & Lynott, 2013).

On the other hand, past experiences of perceptual, motor, a�ective,

introspective and other features are also partially reactivated during language

processing (Allport, 1985; Barsalou, 1999; Glenberg & Gallese, 2012; Niedenthal,

2007). Such reactivation of experiences, which is called simulation, forms the

embodied component of a conceptual representation. Evidence for embodied

simulation includes shared activation between brain areas involved in perceptual or

motor experience and their equivalents in language comprehension. For example,

reading sound-related words like thunder activates the auditory association cortex,

and their processing is selectively impaired in patients with atrophy of the auditory

association cortex (Bonner & Grossman, 2012; Boulenger et al., 2008; R. F.

Goldberg, Perfetti, & Schneider, 2006). Together, the linguistic and embodied

components can explain language processing better than either alone (Andrews,

Vigliocco, & Vinson, 2009; Johns & Jones, 2012; Louwerse, 2011).

In particular, researchers have suggested that the linguistic component can

provide a shortcut for superficial language processing (Barsalou et al., 2008; Connell

& Lynott, 2014; Louwerse & Jeuniaux, 2008). During language processing, the

activation of linguistic distributional patterns is easy and requires little e�ort, so it

reaches the peak of its activation before embodied simulation. Furthermore, the

co-occurrence of words in language often reflects the associations of objects, events,
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and ideas in the real world. The fact that bright appears with sun frequently in close

proximity reflects the reality that the sun is usually bright. Therefore, the linguistic

component is su�cient to generate a good-enough approximation (Ferreira, Bailey,

& Ferraro, 2002), especially when detailed semantic representation is not required

(Connell & Lynott, 2013, 2014; Louwerse, 2011; Louwerse & Connell, 2011). In

contrast, embodied simulation, though also activated immediately in language

processing, is slower and more costly. Therefore, it is reasonable that people would

rely on information from the linguistic component for a guide to whether it is worth

expending e�ort on costly embodied simulation (Connell & Lynott, 2013).

To test this proposal, Connell and Lynott (2013) asked participants to perform

two tasks with novel noun-noun compounds (e.g., cactus beetle): a relatively shallow

processing task where participants makes a yes/no judgement concerning whether

the compounds made sense, or a deeper processing task where they decided if they

could generate specific interpretations for them (and then provided the

interpretation). They measured the linguistic distributional information with a

simple co-occurrence frequency (i.e., times when cactus and beetle co-occur with zero

to three words in between). The results showed that, when the compound rarely

co-occurred, which suggested that the processing was likely to fail, people were more

likely to reject the compound and rejected it more quickly, abandoning it before any

more cognitive e�ort was expended. On the other hand, when the compound

frequently co-occurred (e.g., army and decision), which suggested that future

processing was likely to succeed, people’s response strategy would be based on the

requirement of the task. In the shallow sensibility judgment task, linguistic

distributional frequency heavily a�ected the response decision and speed to accept a

compound; whereas in the deep interpretation generation task, linguistic

distributional frequency did not a�ect the speed to accept a compound. In other

words, while rejecting a noun-noun compound can simply rely on a linguistic
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shortcut to quickly flag up unsuccessful processing, accepting a compound as

interpretable may require more detailed simulation which cannot be captured by the

linguistic distributional frequency.

The cognitive triage mechanism, though proposed for literal language

processing, can equally be applied metaphor processing. Liu, Connell, and Lynott

(2017) tested whether the mechanism worked in metaphor processing with a similar

design. Follwing Connell and Lynott (2013), they kept the operational definition of

the lingusitic component minimal; and going further, they also introduced a measure

of the e�ort to simulate a concept (Liu, Connell, & Lynott, 2018). In this metaphor

processing study, participants read metaphoric sentences such as Students can be

bright or Supporters can be lukewarm, and performed either a yes/no sensibility

judgement task or an interpretation generation task. The results of the metaphor

processing study supported the role of the linguistic component again. While ease of

simulation a�ected processing profusedly in both tasks, linguistic distributional

frequency still contributed independently to the speed of processing in the relatively

shallow, sensibility judgment task (as well as the outcome of processing in the

relatively deep, interpretation generation task). That is, the co-occurrence of the

words students and bright predicted how quickly people judged the metaphor

Students can be bright to be sensible, but did not predict how quickly they could

generate a specific interpretation for the metaphor (e.g., “clever students”).

These results, on the face value, seemed to support the triage mechanism and

the linguistic shortcut hypothesis. However, contrary to the idea that people would

rely on linguistic distributional frequency more in shallow processing, linguistic

distributional frequency did not have a reliably larger e�ect on response time in the

shallow sensibility judgment task than the deep interpretation generation task.

Furthermore, linguistic distributional frequency had a greater e�ect on the outcome

of processing in the deep interpretation generation task than the in shallow
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sensibility judgment task. This pattern of results seems to suggest the opposite of

the linguistic heuristic hypothesis: that is, people relied on the linguistic component

more heavily when they were required to process a metaphor deeply and generate a

detailed mental representation.

One possible explanation for the mixed results could be that the use of the

linguistic shortcut needs to be incentivised. That is to say, in order for people to

rely on linguistic distributional patterns rather than detailed simulated information,

they need to be given conditions that induces a speed-accuracy tradeo�. The

advantage of the linguistic shortcut is that it conserves limited cognitive capacity

and time compared to the more costly and time-consuming, full-fledged simulation.

Therefore, people should be more reliant on the linguistic shortcut if the resources

(of time or processing capacity) are limited.

Present Study

In the present study, we will continue to view metaphor processing as an

aspect of language processing and examine its conceptual representation. We will

test the role of lingusitic distributional patterns in particular, by putting people

under di�erent levels of time constraints while they perform the same metaphor

processing tasks as the previous study (Liu et al., 2017). For a sentence such as

Supply can be bright, the linguistic distributional patterns should first suggest that

the constituent words supply and bright often co-occur, so the processing is likely to

succeed. In such a case, people could be encouraged to take the linguistic shortcut if

they have limited time to make a response. Therefore, they may either accept the

metaphor straight away based on the high distributional frequency even though the

embodied component has not produced a coherent simulation yet, or they could

allow the embodied component to engage in deeper and more costly simulation. In

contrast, for a sentence such as Illness can be bright, the linguistic component should
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immediately suggest that the two constituent words rarely co-occur. Based on this

information, people may quickly reject the metaphor to avoid time running out or

they may only allow the embodied component to process the metaphor in a very

small degree. In both cases, the shorter the time is available, the more people should

rely on the linguistic component, whereas if people have more time, they can be free

to engage in time-consuming simulations.

Additionally, we expect to replicate the e�ects of linguistic distributional

frequency and ease of simulation from the previous processing study. That is, we

expect them to a�ect the judgement and speed of processing independently. People

should be more likely and faster to accept a metaphor as sensible or interpretable

when ease of simulation is high, and less likely and slower to reject it when ease of

simulation is low. Linguistic distributional frequency should further predict a unique

portion of response decision and speed, which should be in the same direction as

ease of simulation. Task will further moderate the e�ect of both components, such

that ease of simulation will have a larger e�ect during deeper processing than

shallow processing, while vice versa for linguistic distributional frequency.

The main studies with the hypotheses and the method were preregistered on

AsPredicted.org (http://aspredicted.org/zv3y2.pdf) and conducted as the

pre-registration unless otherwise specified and justified. The pilot study, whose aim

was to determine elements of design of the main studies, was not pre-registered due

to its exploratory nature, but is reported fully in this manuscript. We report here in

all three experiments how we determined our sample size, all data exclusions, all

manipulations, and all measures in the study.

Pilot Study

A pilot study was conducted to determine the time constraints suitable for the

experiments. The constraints were selected based on the results from the previous
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metaphor processing study (Liu et al., 2017). The short constraints were set so that

about 50% of the trials per task were responded to within the constraint. The

threshold was set to give participants the pressure to respond quickly but not so

much that the task became impossible. Thus, the short constraints turned out to be

1s for the sensibility judgment task and 2s for the interpretation generation task.

The long constraints were set at the point where the distribution of RT would

naturally end if assumed symmetric. This criterion was to ensure that participants

could naturally respond to most of the trials without pressure. Thus, the long

constraints turned out to be 3s for the sensibility judgement task and 8s for the

interpretation generation task. Consequently, the medium constraints were set to be

the middle point of the two, that was 2s for the sensibility judgement task and 5s for

the interpretation generation task. In the pilot study, we tested if the short

constraint was too di�cult for participants. The task would be judged as too

di�cult if people responded “yes” for less than 30% of the trials for the sensibility

judgement task and less than 40% for the interpretation generation task. This

di�culty threshold was also determined based on the previous study in which the

acceptance rate was 45.51% for the sensibility judgement task and 61.91% for the

interpretation generation task. That is to say, we expected the task to be more

di�cult in the current study because of the time constraint. Therefore, the

threshold of acceptance rate was lowered in the present study so that people were

allowed to fail to process the majority of the metaphors, but not so low as to suggest

that participants would fail completely.

Participants

Sixteen native speakers of English from the Department of Psychology,

Lancaster University were tested for the pilot study (age: M = 26.26 years, SD =

4.10 years; male: six; left-handed: one), eight for the sensibility judgement task and
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eight for the interpretation generation task.

Material

The material contained 452 metaphoric sentences from the ease-of-simulation

norms (see also Liu et al., 2017, 2018). Table 1 contains examples of the materials,

while the full list is in the Supplementary Material (https://goo.gl/sRkXun). All

sentences took the form “Noun can be adjective” (e.g., Students can be bright),

composed of 113 uni-modal perceptual adjectives selected from the modality

exclusivity norms of Lynott and Connell (2009) and Dantzig, Cowell, Zeelenberg,

and Pecher (2011) (e.g., bright), each paired with four nouns so that the adjectives

could elicit metaphoric meanings. By pairing each adjective with four nouns, the

metaphors varied on the following two variables:

Ease of simulation (EoS). EoS measured indirectly the e�ort to

successfully simulate the concept in a metaphoric sentence. For each sentence, EoS

ranged from easy to di�cult (M = 0.00, SD = 1.00; values automatically

standardised through PCA), which was obtained through a novel norming study by

Liu et al. (2018) where people rated on the metaphors based on three criteria:

sensibility (How much sense does the sentence make if you read it in text or heard it

in conversation?), usability (How easy it would be for you to use the sentence in

writing or in conversation?), and imaginability (How easy it is for you to imagine

the concept described in the sentence?). One principle component was extracted

from the ratings, the factor scores of which was used as a continuous measure of how

easy it is to simulate the concept. This EoS measure managed to explain 91% of the

original variance of the ratings and outperformed all the separate ratings in

predicting the response time of a sensibility judgement task (Liu et al., 2018).

Therefore, EoS could be argued to measure the underlying mechanism of

comprehension, instead of the noise related to specific linguistic tasks, which was
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Table 1

Sample metaphors, and their scores for EoS

and LDF

Metaphor EoS LDF

Illness can be bright. -1.32 2.95

Supply can be bright. -1.02 3.72

Solutions can be bright. 1.41 3.11

Students can be bright. 1.84 4.08

Minutes can be lukewarm. -1.49 3.31

Scheme can be lukewarm. -0.78 1.61

Supporters can be lukewarm. 0.69 2.69

Reaction can be lukewarm. 1.03 3.45

assumed to be simulation (Zwaan, 2004).

Linguistic distributional frequency (LDF). LDF measured the

co-occurrence frequency of the constituent words in a sentence. For each sentence,

LDF ranged from low to high (M = 2.95, SD = 0.97), and was calculated as the

log-transformed sum of the bi- to five-gram frequencies of the metaphor’s

constituent words in the Google Web1T Corpus (Brants & Franz, 2006). To take the

metaphor Students can be bright as an example, the LDF was the sum of the

frequencies of “student . . . bright” and “bright . . . student” with zero, one, two,

and three intervening words. It was then log transformed as log10(LDF + 41) where

41 is the lowest non-zero frequency in the corpus (Connell & Lynott, 2013). Among

the four metaphors created for each adjective, LDF varied independently from of

EoS (see Table 1). The two variables had a mild correlation (r = .26, sharing only

7% of common variance), which was handled later during the analysis.
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These variables did not contribute to the analysis of the pilot study data, but

were used to construct balanced stimulus lists. The sentences were split into four

lists of 113 items each, where each adjective appeared only once per list, and the

distribution of easy/di�cult to simulate and high/low distributional frequency was

approximately equal across lists (EoS: F(3,448) = 0.03, p = .99; LDF: F(3,448) = 0.09,

p = .96). Each participant saw only one list.

Procedure

Participants read the metaphoric sentences and performed either of the two

tasks. They were randomly assigned to one of the tasks and judged whether or not

the sentence made sense, or whether they could think of a meaning for the sentence.

Each trial was conducted as in Figure 1 in the two tasks except at the final screen

when people needed to make a judgement. The adjectives remained on the screen

until participants responded or the time ran out. For the sensibility judgement task,

participants were given 1s to respond; for the interpretation generation task, they

were given 2s to respond. If their response was “yes” (i.e. they judged the sentences

as sensible or meaningful), they would press the comma key (,); if “no”, they would

press the full stop key (.). In the interpretation generation task, they were then

asked to type down the meaning if they had responded “yes”. If they did not

manage to give a response within the time limit, a feedback saying “***TOO

SLOW***” was given for 350ms.

Design and Analysis

Response decisions and RT were recorded, but only response decisions were

analysed. The “yes” response was categorised as accepted trials, the “no” response

as rejected trials, and if the time elapsed without any responses, a missed trial.
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Figure 1 . Trial structure of both sensibility judgement and interpretation generation.

Results

The sensibility judgement task had an average missing rate of 7.41% and an

acceptance rate of 35.73%. The interpretation generation task had an average

missing rate of 3.32% and an acceptance rate of 49.45%. Hence, we decided that the

short time constraints for both tasks were acceptable and applied the time

constraints to Experiments 1 and 2.

Experiment 1: Sensibility Judgement Task

In this experiment, people performed sensibility judgements under three levels

of time constraints (i.e., a short constraint of 1s, a medium constraint of 2s and a

long constraint of 3s). Since it only required a simple “yes” or “no” answer, the

experiment encouraged people to engage in relatively shallow processing (Connell &

Lynott, 2013; Lynott & Connell, 2010). We expected that while EoS would have an

e�ect on the response decision and RT (i.e., high EoS, more and faster acceptance,
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less and slower rejection), LDF would also have an e�ect (i.e., high LDF, more and

faster acceptance, less and slower rejection), especially under short time constraint.

Furthermore, if people could simulate a metaphor extensively and in detail, the

processing should end up being successful. Therefore, EoS should have a larger

e�ect on the RT when the response was “yes” than “no”. In contrast, because the

linguistic shortcut could flag up potentially unsuccessful processing (i.e., those with

low LDF), EoS should have a smaller e�ect and LDF should have a larger e�ect

when the response was “no” than “yes”.

Participants

Forty-eight students from Lancaster University participated in the study, all of

whom were native speakers of English (age: 19.49 (SD = 2.91) years; male: seven;

right-handed: 43). Participation took approximately 20 minutes in exchange for

course credits. The sample size was determined based on a minimum acceptance

rate of 35%, which would provide a minimum number of data points per participant

that was comparable to Liu et al. (2017); because this acceptance rate was achieved,

it was not necessary to test any extra participants.

Materials

The 452 metaphoric sentence and item lists were the same as in the pilot study.

Procedure

The study was composed of three test blocks, one for each level of time

constraint: short (1s), medium (2s), and long (3s), to which the materials were

randomly assigned. Participants were made aware that the time constraints might

vary between blocks, although they did not know whether a given block would use a
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short, medium or long constraint. All items appeared under all time constraints

across participants, and the order of blocks were counterbalanced. Before each

block, participants were given ten practice trials in order to accustom them to the

time-constrained response interval, during which their response was not recorded.

The trial structure in the practice and test trials was identical to the pilot study.

Participants were asked to respond “yes” if the sentence made sense and “no” if it

did not make sense. Response decisions (“yes” or “no”) were recorded for each trial,

and response times were measured from the onset of the adjective until the keypress

of the response decision.

Design and Analysis

This experiment had EoS and LDF as two continuous predictors, and three

levels of time constraints (i.e., short, medium and long) were applied as

within-subject categorical predictors. The time constraints were backward di�erence

coded so that Contrast 1 was the di�erence of long minus medium constraints(with

medium constraint as the reference level), and Contrast 2 is the di�erence of

medium minus short constraints (with short constraint as the reference level). The

coding was not specified in the pre-registration, but it allowed us to spot the change

of the e�ects of the two continuous predictors as time constraint tightened.

Response decisions (“yes” or “no” responses) and response time (RT in millisecond)

were the dependent variables. The response decisions were coded as 1 for “yes”

response and 0 for “no” response.

The analyses were conducted according to the pre-registration.1 Response

1 We used R (Version 3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate &

Heiberger, 2016), arm (Version 1.10.1; Gelman & Su, 2016), BayesFactor (Version 0.9.12.4.2;

Morey & Rouder, 2015), bookdown (Version 0.7; Xie, 2016), broom (Version 0.4.4; Robinson, 2017),

citr (Version 0.2.0; Aust, 2016), coda (Version 0.19.1; Plummer, Best, Cowles, & Vines, 2006),
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decisions2 were analysed using logistic mixed-e�ect regressions with centred EoS,

centred LDF, levels of time constraints and their interactions as fixed predictors,

and participant and item as crossed random-intercept factors.3 Furthermore (not

pre-registered but consistent with our hypotheses), we also analysed the response

decision per time constraint in order to model the e�ects of the predictors within

each time constraint individually. RT4 were analysed using linear mixed-e�ect

regressions with the same fixed predictor plus response decision, and the

data.table (Version 1.11.4; Dowle & Srinivasan, 2017), ggplot2 (Version 2.2.1; Wickham, 2009),

gridExtra (Version 2.3; Auguie, 2017), interplot (Version 0.1.5; Solt & Hu, 2015), knitr (Version

1.20; Xie, 2015), lme4 (Version 1.1.17; Bates, Mächler, Bolker, & Walker, 2015), lmerTest (Version

3.0.1; Kuznetsova, Brockho�, & Christensen, 2017), magrittr (Version 1.5; Bache & Wickham,

2014), MASS (Version 7.3.50; Venables & Ripley, 2002), Matrix (Version 1.2.14; Bates & Maechler,

2017), MuMIn (Version 1.40.4; BartoÒ, 2017), nlme (Version 3.1.137; Pinheiro, Bates, DebRoy,

Sarkar, & R Core Team, 2017), papaja (Version 0.1.0.9735; Aust & Barth, 2017), psych (Version

1.8.4; Revelle, 2017), purrr (Version 0.2.5; Henry & Wickham, 2017), and rcartocolor (Version

0.0.22; Nowosad, 2017) for all our analyses and the writing up of this manuscript.

2 The inclusion of participants as a random factor improved model fit above the empty model,

�2(1) = 394.00, p < .001, as did the inclusion of items as a crossed random factor above the

participants-only model, �2(1) = 753.31, p < .001.

3 Although it has been suggested that that mixed-e�ect models with random intercept and slope

generalises better than a random-intercept-only model (Barr, Levy, Scheepers, & Tily, 2013), we

were not able to fit maximal models to our data because of several reasons. First, such a model

(with two random predictors and three or four fixed predictors and their interactions) would

require a huge amount of data for the parameter estimation which our study could not a�ord.

Second, fitting such models is time consuming, often taking hours or days if performed in R, which

makes tweaks and model comparisons impractical.

4 The inclusion of participants as a random factor improved model fit above the empty model,

�2(1) = 785.53, p < .001. The inclusion of items as a crossed random factor did not improve model

fit above the participants-only model �2(1) = 0.00, p = 1. However, in order to keep the models

consistent, both participants and items were included as crossed random factors in the linear

models of RT as well as in the logistic models of response decision.
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random-intercept factors as the mixed-e�ect logistic regressions. We also analysed

the RT per response decision because we had di�erent hypothesis for “yes” and “no”

responses.

In these analyses, we also considered variables such as lexical frequency (sum of

the log transformed frequencies of the component words) and sentence length (sum

of the length of the component words) as additional predictors as pre-registered.

However, the correlation between these variables and RT were near zero (r < .10),

so they were not included in the regression models (see Supplementary Material).

Moreover in the analyses of RT, we found evidence of net suppression and problems

with multicolinearity [J. Cohen, Cohen, West, and Aiken (2003); see Supplementary

Materials]. This means that the shared error variance between LDF and EoS is

e�ectively hiding the real relationship between the key variables and RT, such that

the net e�ect of LDF was to enhance the e�ect of EoS by suppressing the latter’s

unhelpful error variance. Therefore, consistent with our pre-registration, EoS and

LDF were centred and orthogonalised using principle components analysis with

varimax rotation and Kaissar normalisation on a model by model basis. For clarity

and space, we reported only results with orthogonalised variables for RT (for results

with original variables, see Supplementary Material), and referred to these

orthogonalised variables with their original labels (i.e., EoS instead of orthogonalised

EoS, LDF instead of orthogonalised LDF). In the analysis of response decision, we

did not find evidence of net suppression, so we did not orthogonalise the variables.

Results and Discussion

All participants had their mean response time within 3SD of the overall mean,

so all were included in analysis. Three trials were excluded for motor error (RT <

200ms). Individual trials were excluded as outliers if the RT was more than 3SD

from each participant’s mean per response decision per level of time constraint. This
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exclusion was done di�erently from the pre-registration, in which we proposed to

exclude outliers per response decision only, because we realised that this approach

would have a�ected responses under short constraint and long constraint

disproportionately. The percentage of outlying trials were: for “yes” responses,

0.15% under short constraint, 0.28% for medium constraint, and none for long

constraint; for “no” responses, none for short constraint, 0.64% for medium

constraint, 0.36% for long constraint. Consequently, 5261 trials were counted as

valid trials and were used in analysis.

Response decisions. Overall, 2059 trials were accepted as sensible

(acceptance rate: 39.14%); 3202 trials were rejected as nonsensical (rejection rate:

60.86%). For each level of time constraint, the acceptance rate was 39.23% for short

constraint (656 among 1672 trials), 39.18% for medium constraint (701 among 1789

trials), and 39.00% for long constraint (702 among 1800 trials).

Results of the logistic mixed-e�ect regression are in Table 2. Only EoS had a

significant and positive e�ect. It means that the easier the metaphor was normally

regarded to simulate, the more likely it is to be judged as sensible (odds ratio =

3.26). Furthermore, the e�ect of EoS changed between short time constraint and

medium time constraint, being larger for medium than short. Besides, there was

also a trend that the e�ect of EoS became slightly larger as LDF increased. When

separated by the levels of time constraint (Table 3), EoS had an e�ect for all three

levels of time constraint. Additionally, the slight trend of interaction between EoS

and LDF appeared only for short time constraint but not for medium or long

constraints.

Response time. The overall mean RT was 856ms for “yes” responses (SD =

312ms) and 838ms for “no” responses (SD = 305ms). Separated by time constraint,

the mean RT for “yes” responses was 687ms (SD = 156ms) for short constraint,

863ms (SD = 272ms) for medium constraint, and 1008ms (SD = 373ms) for long
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Table 2

Logistic mixed-e�ect regression of response decision in

Experiment 1

b 95% CI p

Intercept -0.64 -0.93 - -0.36 < .001

Long - medium -0.01 -0.18 - 0.16 .932

Medium - short -0.01 -0.18 - 0.16 .896

LDF 0.06 -0.03 - 0.16 .177

EoS 1.18 1.08 - 1.28 < .001

Long - medium x LDF -0.08 -0.27 - 0.1 .383

Medium - short x LDF -0.01 -0.19 - 0.18 .948

Long - medium x EoS -0.12 -0.31 - 0.07 .225

Medium - short x EoS 0.38 0.19 - 0.57 < .001

LDF x EoS 0.08 -0.01 - 0.17 .084

Long - medium x LDF x EoS -0.03 -0.21 - 0.16 .776

Medium - short x LDF x EoS -0.04 -0.22 - 0.15 .714

Note. b is non-standardised regression coe�cient.

constraint; the mean RT for “no” response was 688ms (SD = 140ms) for short

constraint, 839ms (SD = 251ms) for medium constraint, and 974ms (SD = 390ms)

for long constraint.

In the omnibus model of RT (Table 4), we found that the time constraints did

have a significant e�ect on RT. Participants responded more slowly as the time

constraints got longer. EoS had a positive e�ect on “no” response when LDF was at

its mean, meaning that the RT became longer as EoS increased. This e�ect was

reversed for “yes” response (i.e., RT became shorter as EoS increased) and the e�ect
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Table 3

Logistic regression model of response decision per time

constraint in Experiment 1

b 95% CI p

Short

Intercept -0.62 -0.92 - -0.32 < .001

LDF 0.09 -0.05 - 0.23 .197

EoS 0.96 0.81 - 1.11 < .001

LDF x EoS 0.11 -0.02 - 0.24 .097

Medium

Intercept -0.64 -0.93 - -0.36 < .001

LDF 0.08 -0.06 - 0.22 .266

EoS 1.31 1.15 - 1.48 < .001

LDF x EoS 0.07 -0.07 - 0.22 .319

Long

Intercept -0.70 -1.06 - -0.35 < .001

LDF 0.01 -0.14 - 0.16 .859

EoS 1.30 1.13 - 1.48 < .001

LDF x EoS 0.06 -0.09 - 0.2 .457

Note. b is non-standardised regression coe�cient.

on “yes” response was larger than that on “no” response. Furthermore, LDF

moderated the e�ect of EoS on “no” response such that the e�ect of EoS became

smaller (less positive) as LDF increased, which existed only for the long and

medium constraints (reference levels of the contrast coding) and was smaller at

medium than long constraints.
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Table 4

Omnibus linear mixed-e�ect model of RT in Experiment 1

b 95% CI p

Intercept 845.92 808.68 - 883.17 < .001

Long - medium 129.20 106.25 - 152.16 < .001

Medium - short 158.75 135.54 - 181.96 < .001

Response 18.48 1.72 - 35.24 .031

LDF -0.93 -11.76 - 9.9 .867

EoS 14.80 3.49 - 26.11 .010

Long - medium x Response 55.87 17.35 - 94.39 .004

Medium - short x Response 36.72 -1.8 - 75.23 .062

Long - medium x LDF -0.55 -24.45 - 23.36 .964

Medium - short x LDF 3.13 -21.12 - 27.38 .800

Response x LDF -1.99 -18 - 14.03 .808

Long - medium x EoS -7.11 -31.89 - 17.67 .574

Medium - short x EoS 19.71 -5.3 - 44.71 .122

Response x EoS -56.54 -72.8 - -40.29 < .001

LDF x EoS -13.28 -23.68 - -2.88 .012

Long - medium x Response x LDF -18.30 -57.56 - 20.95 .361

Medium - short x Response x LDF 7.21 -31.58 - 46.01 .715

Long - medium x Response x EoS -71.38 -109.79 - -32.98 < .001

Medium - short x Response x EoS -54.82 -93.23 - -16.41 .005

Long - medium x LDF x EoS -21.05 -43.61 - 1.52 .068

Medium - short x LDF x EoS 3.26 -19.91 - 26.43 .783

Response x LDF x EoS 12.16 -3.2 - 27.53 .121

Long - medium x Response x LDF x EoS 25.89 -10.54 - 62.33 .164

Medium - short x Response x LDF x EoS -15.00 -50.93 - 20.92 .413

Note. b is non-standardised regression coe�cient.
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When separated by response decision (Table 5), EoS had a negative e�ect on

RT for “yes” response during long and medium constraints. That is, the easier a

metaphor was typically considered to simulate, the faster people accepted a

metaphor as sensible. This e�ect was larger at the longer constraints than the short

constraint (Table 6 and Figure 2). Analyses per time constraint also confirmed that

EoS did not have a significant e�ect on “yes” RT at short time constraint, but only

did during medium and long constraint (Table 11 and Figure 2). In contrast, LDF

did not have a significant e�ect on “yes” RT.
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Figure 2 . Regression coe�cients of RT per response decision in Experiment 1. Error

bars stand for 95%CI. Asterisks stand for p-values of interaction between variables

and time constraint. *: p < .05, **: p < .01: ***: p < .001.

For “no” response, EoS had a positive e�ect (when LDF was at its mean)

which meant that as EoS increased, RT increased as well (Table 5). In other words,

metaphors which were typically considered hard to simulate were rejected more

quickly than those considered easy to simulate. the harder it was typically

considered to simulate a metaphor, the faster people rejected the metaphor as

nonsensical (Table 5). This e�ect did not change significantly with time constraint,

which meant that although the e�ect of EoS seemed to have increased from short to

long constraint (Table 6 and Figure 2), the di�erence was not detected by the way

the contrast was coded. Besides, EoS was moderated by LDF, which further

interacted with the time constraints. Separate analyses per time constraint showed

that the interaction between EoS and LDF was borne out by the long constraint.
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Figure 3 shows the changes of the e�ect of EoS at four quartiles of LDF (within each

quartile, the number of trials were the same). It could be seen that when the LDF

was at the lower end, EoS had a positive e�ect. In other words, when the

constituent words rarely appeared in the same context, people were still faster to

reject a metaphor that was typically considered to be hard to simulate, and slower

to reject one that was typically considered easy to simulate. As LDF increased, the

e�ect of of EoS diminished and then turned to the opposite direction, so much so

that when the constituent words frequently co-occurred, people were faster to reject

the metaphors which were typically considered easy to simulate (though only a small

number of trials were rejected in this case), but slower to reject those metaphors

which were typically considered hard to simulate.

Summary. In this experiment, we found that EoS a�ected metaphor

processing as predicted. When a metaphor was typically regarded to be easy to

simulate, it was easier (more likely and faster) for people to accept the metaphor as

sensible, and harder (less likely and slower) to reject it as nonsensical. The e�ect of

EoS on acceptance speed was moderated by the time constraint, that is: people

relied on simulation more when there was longer time available. Thus, it supported

the simulation-linguistic based conceptual representation which claimed that the

embodied component was more costly and time-consuming, and required longer time

to be fully engaged.

The e�ect of EoS on rejection speed was more complex. It had a positive e�ect

as expected when LDF was at its mean or particularly low. In other words, people

found it easier to reject a metaphor which were typically regarded as di�cult to

simulate. However, the e�ect of EoS diminished and even was reversed if the

constituent words frequently co-occurred, in which case people spent longer time to

process a metaphor that was typically harder to simulate (Supply can be bright)

than one that was typically easy to simulate (Students can be bright - rarely
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Figure 3 . E�ects of EoS at long constraint at four quartiles of LDF. As LDF increased

from the 1st quartile (yellow) to the 4th quartile (violet), the e�ect of EoS changed

from positive to negative. The density plot on the top shows the rejection rate along

EoS per quartile of LDF. The rejection rate at the high end of EoS was less than 10%.

rejected). In other words, people were willing to expend more e�ort on a metaphor

before rejecting it, if the constituent words frequently co-occurred. Such an

interaction between EoS and LDF supported the linguistic shortcut hypothesis. The

distributional patterns acted as a shortcut for identifying metaphors that could

potentially be processed successfully. Metaphors, which were considered hard to

simulate, were rejected quickly if their constituent words rarely co-occurred, but

slowly if the constituent words often co-occurred.

However, we did not find strong support for the linguistic shortcut hypothesis

in terms of how the linguistic component behaved under time constraint. LDF,
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contrary to our predictions, actually had a larger e�ect at the long constraint. It

was possible that imposing time constraints did not incentivise the linguistic

shortcut, but rather caused people to change their processing strategies altogether.

As a result, the RT of the short constraint could not be predicted by either of the

key predictors, which suggested that people may have based their judgements on

variables at the lexical level such as word length and lexical frequencies (even

though these variables did not have a strong correlation with the RT overall).

Experiment 2: Interpretation Generation Task

In this study, people performed an interpretation generation task under three

di�erent time constraints, a short time constraint of 2 seconds, a medium time

constraint of 5 seconds, and a long time constraint of 8 seconds. If they decided they

could interpret the sentences, they would be required to type down the meaning of

the sentence. We predicted that EoS should have an e�ect on the response decision

and RT (higher EoS, more and faster acceptance; lower EoS, more and faster

rejection), as well as LDF (higher LDF, more and faster acceptance; lower LDF,

more and faster rejection). Furthermore, EoS would have larger e�ect under longer

time constraints, while LDF would have smaller e�ect under longer time constraints.

Participants

Fifty-four participants were recruited for this experiment (age: 20.43 (4.38)

years; male: 15; left-handed: seven). They participated in the study for 30 minutes

for £3.50 or the equivalent of course credits. The sample size was pre-determined

based on a minimum acceptance rate of 45%, which would provide at least the same

number of data points as Liu et al. (2017); because this acceptance rate was

achieved, it was not necessary to test any extra participants.
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Materials

The same materials were used in this experiment as in Experiment 1.

However, because participants were now required to type interpretations, we

reduced the length of the item lists from 113 items to 75-76 items in order to reduce

chances of fatigue. Thus, six item lists were generated in the same way as the pilot

study and Experiment 1. Each participants saw each adjective only once and the

distribution of EoS and LDF were equal among the six lists (EoS: F(5,446) = 0.21, p

= .96; LDF: F(5,446) = 0.49, p = .78).

Procedure

The procedure was the same as Experiment 1 with the following exceptions.

The short, medium and long time constraints lasted 2 seconds, 5 seconds, and 8

seconds, respectively. Participants were asked to respond “yes” if they could think of

a meaning for the sentence, and “no” if they could not think of a meaning for the

sentence. If participants responded “yes”, they were required to type the meaning of

the sentence at the next screen, with no time limit for typing.

Design and Analysis

Same as Experiment 1 for response decisions5 and RT.6

5 The inclusion of participants in logistic mixed-e�ect model model as a random factor improved

model fit above the empty model, �2(1) = 562.71, p < .001, as did the inclusion of items as a

crossed random factor above the participants-only model, �2(1) = 738.94, p < .001.

6 The inclusion of participants in linear mixed-e�ect model as a random factor improved model fit

above the empty model, �2(1) = 764.04, p < .001. The inclusion of items as a crossed random

factor did not improve model fit above the participants-only model �2(1) = 0.00, p = 1. However,

in order to keep the models consistent, both participants and items were included as crossed

random factors in the linear models of RT as well as in the logistic models of response decision.
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Results and Discussion

The data exclusions were the same as in Experiment 1 with an additional

validity check on participants’ interpretations to make sure they were performing

the task properly. An interpretation was marked as invalid if it was left blank,

marked out as a mistake (“I don’t know”), if it was clearly misread (interpretation

specifies meaning of similar word, e.g. “charge” for “change”) or simply replaced the

adjectives with a synonym (not pre-registered but same with Liu et al. (2017),

“Students can be bright” as “Students can be shiny”). All participants had a mean

RT within three standard deviations of the overall mean, and had at least 50% of

their interpretation marked as valid, and so all were included in the analysis.

Ninety-nine trials were missed (no response), five trials were excluded as motor

errors, 94 trials were marked as invalid meanings. In addition, 20 trials were outliers

whose RT was 3SD from participants means per response decision and time

constraint: that is for “yes” response, none for short constraint, 0.57% for medium

constraint, and 0.36% for long constraint; for “no” response, 0.65% for short

constraint, 0.76% for medium constraint, and 0.53% for long constraint.

Consequently, 3853 trials were used in analysis: 1553 valid trials for “yes” response,

and 2300 for “no” response (acceptance rate 39.30%). For short constraint, the

acceptance rate was 36.37%; for mid constraint, 39.46%; and for long constraint,

41.77%.

Response decision. Logistic mixed-e�ect regression showed only an e�ect

of EoS both in the overall analysis (Table 7) and analyses separated by time

constraints (Table 8). As EoS increased, the decision to accept a metaphor as

interpretable increased. The odds ratios were 3.97 for the overall analysis, 4.04

under the short constraint, 4.11 under the medium constraint, and 4.02 under the

long constraint. Time constraints did not interact with either EoS or LDF.
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Table 7

Logistic mixed-e�ect regression of response decision in

Experiment 2

b 95% CI p

Intercept -0.56 -0.97 - -0.14 .009

Long - medium 0.14 -0.07 - 0.35 .203

Medium - short 0.08 -0.14 - 0.3 .464

LDF 0.04 -0.07 - 0.16 .484

EoS 1.38 1.25 - 1.51 < .001

Long - medium x LDF 0.02 -0.21 - 0.25 .889

Medium - short x LDF -0.04 -0.27 - 0.2 .758

Long - medium x EoS 0.01 -0.23 - 0.25 .916

Medium - short x EoS -0.05 -0.29 - 0.2 .704

LDF x EoS -0.01 -0.13 - 0.1 .821

Long - medium x LDF x EoS 0.09 -0.14 - 0.32 .44

Medium - short x LDF x EoS -0.01 -0.24 - 0.22 .919

Note. b is non-standardised regression coe�cient.

Response times. The overall mean RT were 1334ms (SD = 790ms) for

“yes” responses, and 1120ms (SD = 653ms) for “no” responses. Separated by time

constraint, the mean RT for “yes” responses was 1026ms (SD = 322ms) for short

constraint, 1239ms (SD = 631ms) for medium constraint, and 1698ms (SD =

1037ms) for long constraint; the mean RT for “no” response was 965ms (SD =

344ms) for short constraint, 1082ms (SD = 567ms) for medium constraint, and

1318ms (SD = 886ms) for long constraint.

Omnibus linear mixed-e�ect regression showed (Table 9) EoS had a significant
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Table 8

Logistic regression model of response decision per time

constraint in Experiment 2

b 95% CI p

Short

Intercept 0.65 -1.1 - -0.21 .004

LDF 0.06 -0.11 - 0.24 .455

EoS 1.40 1.17 - 1.62 < .001

LDF x EoS -0.06 -0.23 - 0.1 .458

Medium

Intercept -0.60 -1.03 - -0.18 .005

LDF 0.02 -0.17 - 0.2 .860

EoS 1.42 1.18 - 1.65 < .001

LDF x EoS -0.05 -0.23 - 0.13 .568

Long

-0.43 -0.89 - 0.04 .072

LDF 0.10 -0.07 - 0.27 .267

EoS 1.39 1.17 - 1.61 < .001

LDF x EoS 0.01 -0.16 - 0.18 .908

Note. b is non-standardised regression coe�cient.

positive e�ect for “no” response on the RT regardless of LDF or time constraints,

which was reversed for “yes” response. The e�ect was larger for “yes” than “no”

response. The e�ect of LDF was contained in its interaction with response with a

negative term, showing that although the e�ect of LDF was not significant for “no”

response, it was indeed opposite for “yes” and “no” responses and was larger for

“yes” response than “no” response.

After the omnibus analysis, the RT data was split first by response decisions

and then by time constraint, same as Experiment 1. When separated by response
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Table 9

Omnibus linear mixed-e�ect model on RT in Experiment 2

b 95% CI p

Intercept 1,174.99 1083.89 - 1266.08 < .001

Long - medium 278.95 214.25 - 343.65 < .001

Medium - short 94.56 30.66 - 158.46 .004

Response 179.22 130.63 - 227.82 < .001

LDF 12.79 -15.5 - 41.08 .376

EoS 45.63 15.54 - 75.72 .003

Long - medium x Response 153.87 49.07 - 258.66 .004

Medium - short x Response 158.39 51.06 - 265.71 .004

Long - medium x LDF -26.79 -92.81 - 39.24 .427

Medium - short x LDF 29.89 -36 - 95.79 .374

Response x LDF -51.63 -95.35 - -7.91 .021

Long - medium x EoS 41.46 -28.48 - 111.41 .245

Medium - short x EoS -25.86 -94.27 - 42.55 .459

Response x EoS -194.84 -239.83 - -149.85 < .001

LDF x EoS -18.41 -45.81 - 9 .188

Long - medium x Response x LDF -13.21 -120.08 - 93.67 .809

Medium - short x Response x LDF 8.69 -98.76 - 116.13 .874

Long - medium x Response x EoS -86.62 -192.41 - 19.17 .109

Medium - short x Response x EoS -50.12 -157.34 - 57.1 .360

Long - medium x LDF x EoS -0.78 -64.34 - 62.78 .981

Medium - short x LDF x EoS -23.22 -85.74 - 39.31 .467

Response x LDF x EoS 37.61 -4.03 - 79.25 .077 †

Long - medium x Response x LDF x EoS -56.53 -155.62 - 42.56 .264

Medium - short x Response x LDF x EoS 25.92 -73.3 - 125.14 .609

Note. b is non-standardised regression coe�cient.
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decisions (Table 10), EoS had a negative e�ect on “yes” RT. That is, the easier it

was considered to simulate a metaphor, the faster people accepted it as

interpretable. Also, the e�ect of LDF was negative too at medium and long

constraints (i.e., the higher the LDF was, the faster people accepted the metaphor

as interpretable). Both e�ects were as predicted. EoS’s e�ect did not increase

significantly as the time constraints became longer, but only showed a slight trend

between short and medium constraints (Table 11 and Figure 4). LDF interacted

with time constraints between medium and long constraints, that is: the e�ect of

LDF was larger at the long constraint than the medium and the short constraints,

which was the opposite of what was predicted by the linguistic shortcut hypothesis.
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For “no” RT, only EoS had a strong and consistent e�ect (Table 10). The

harder it was considered to simulate a metaphor, the faster people rejected it as

uninterpretable. The e�ect held true for all levels of time constraints. In contrast,

LDF did not have an e�ect at all on “no” RT (Table 11 and Figure 4).
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Figure 4 . Regression coe�cients of RT per response decision in Experiment 2 (i.e. in-

terpretation generation). Error bars stand for 95% CI. Asterisks stand for p-values of

interaction between variables and time constraint. *: p < .05.

Summary. EoS had a significant e�ect on response decision and both “yes”

and “no” RT as predicted and demonstrating a similar pattern to the sensibility

judgement task in Experiment 1. The easier it was to simulate a metaphor, the

more likely people accepted it as interpretable, the faster they could think of a

meaning, and the longer it took to reject as uninterpretable. Although EoS trended

toward the prediction of having a greater e�ect at longer time constraint, the e�ect

was not reliable. The lack of the time-constraint e�ect may simply be a result of the

coding scheme adopted by my present study. As we always contrasted the two

closest time constraints in both experiments (i.e., di�erence between long and

medium constraints, di�erence between medium and short constraints), the coding

could be overly conservative. If the long constraint could be contrasted with the
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short constraint, we might have found a significant increase of the e�ect of EoS in

this experiment. Further examination of the data could address this problem (which

could not be done for the lack of time).

On the other hand, the e�ects of LDF were mixed. As predicted, LDF had a

negative e�ect on “yes” RT: that is, when words in a metaphor often co-occurred,

people were faster to accept it as interpretable. However, there was no evidence that

shorter time constraints boosted the e�ect of LDF, contrary to our prediction, and

the e�ect of LDF was instead reduced at shorter time constraints. Finally, LDF had

no e�ect on response decisions nor on “no” RTs.

Cross-Experiment Comparison

To test our cross-experiment hypotheses, we conducted a meta-analysis of the

data from Experiments 1 and 2. We expected EoS to have a larger e�ect for deep

interpretation generation than for shallow sensibility judgement, while the e�ect of

LDF would be the other way round.

Method

The data from Experiments 1 and 2 were combined for analysis: response

decision in logistic mixed-e�ects regression, and response time in linear mixed-e�ects

regression. Task was employed as a categorical variable (coded 0 for sensibility

judgement and 1 for interpretation generation). In analysis of response decision, EoS

and LDF from two datasets were first combined and then centred, while in analysis

of response time, they were first combined and then orthogonalised. Levels of time

constraint were also included in the models with backward contrast coding, similar

to Experiments 1 and 2: that is, Contrast 1 referred to long constraint minus

medium constraint (regardless of tasks), and Contrast 2 referred to medium minus

short constraint (regardless of tasks).
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Results and Discussion

Response decision. Results of the logistic mix-e�ect model was shown in

Table 12. Task enhanced the e�ect of EoS when LDF was at its mean, such that

EoS had a larger, more positive e�ect in the deep task than the shallow task. That

is, people were more likely to accept a metaphor that was typically considered easy

to simulate, and even more likely to accept such a metaphor in the deep

interpretation generation task than in the shallow sensibility judgement task. EoS

was also moderated by time constraint during the shallow task, such that it had a

larger, more positive e�ect at medium time constraint than short time constraint (as

predicted); but this moderation e�ect of time constraint did not appear during the

deep task, such that, in the deep task, the e�ect of EoS did not increase because of

time constraint. Finally, LDF had little e�ect on response decision with a

non-significant trend for LDF positively a�ect chance of acceptance at higher levels

of EoS.

Response time. Since the predictors had e�ects in opposite directions for

“yes” and “no” responses, we analysed RT separated by the response (Table 13). For

both “yes” and “no” responses, EoS had a larger e�ect for the deep task than the

shallow task. In other words, people relied on embodied simulation more during

deeper processing than shallower processing as predicted, which held true across the

time constraints. The e�ect of LDF appeared for “yes” response regardless of EoS,

but this e�ect was conditional to task. That is, LDF only had a significant e�ect in

the deep interpretation generation task but not in the shallow sensibility judgement

task, which was opposite to the hypothesis that shallow processing should encourage

the using of the linguistic shortcut. Apart from this e�ect, LDF did not have any

other e�ects. It did not a�ect “no” RT. Nor was it a�ected by time constraints. All

these null e�ects did not support the hypotheses concerning the linguistic

component.
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Table 12

Logistic mixed-e�ect regression of response decision for

cross-experiment comparison

b 95% CI p

Intercept -0.65 -1 - -0.3 < .001

Task 0.12 -0.37 - 0.6 .64

Long - medium -0.01 -0.18 - 0.16 .908

Medium - short -0.01 -0.18 - 0.16 .922

LDF 0.06 -0.03 - 0.15 .177

EoS 1.18 1.09 - 1.28 < .001

Task x long - medium 0.14 -0.13 - 0.41 .310

Task x medium - short 0.09 -0.18 - 0.36 .519

Task x LDF -0.01 -0.13 - 0.1 .817

Long - medium x LDF -0.08 -0.26 - 0.1 .389

Medium - short x LDF -0.01 -0.19 - 0.18 .926

Task x EoS 0.13 0 - 0.26 .043

Long - medium x EoS -0.12 -0.31 - 0.07 .231

Medium - short x EoS 0.38 0.19 - 0.57 < .001

LDF x EoS 0.08 -0.01 - 0.17 .081 †

Task x long - medium x LDF 0.08 -0.21 - 0.37 .567

Task x medium - short x LDF -0.02 -0.31 - 0.27 .885

Task x long - medium x EoS 0.12 -0.18 - 0.42 .418

Task x medium - short x EoS -0.42 -0.73 - -0.12 .006

Task x LDF x EoS -0.09 -0.21 - 0.03 .143

Long - medium x LDF x EoS -0.02 -0.21 - 0.16 .816

Medium - short x LDF x EoS -0.04 -0.22 - 0.15 .687

Task x Long - medium x LDF x EoS 0.12 -0.17 - 0.41 .419

Task x Medium - short x LDF x EoS 0.02 -0.27 - 0.31 .877

Note. b is non-standardised regression coe�cient.
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General Discussion

The current study was conducted to replicate the previous study on the

conceptual representation during metaphor processing and answer the specific

question, whether limited time resources would a�ect the conceptual representation.

Our findings confirmed the hypothesis that both embodied and linguistic

components existed as parts of a conceptual representation. The embodied

component played a prominent and consistent role in the representation of meaning.

The easier a metaphor was considered to simulate, the easier it was to accept it as

either sensible or interpretable; the harder it was considered to simulate, the easier

it was to reject it. We also found, as predicted, that the embodied component was

more engaged during the deep processing of interpretation generation than during

the relatively shallower processing of sensibility judgement, and it was also generally

more engaged when there was more processing time available. Thus, it confirmed

the suggestion of grounded representation that the embodied component was more

costly and time-consuming (Barsalou et al., 2008; Connell & Lynott, 2014).

In contrast, evidence for the linguistic component and the linguistic shortcut

hypothesis was limited. We found evidence that the linguistic component a�ected

metaphor processing independently of ease of simulation in some cases. The more

often two constituent words of a metaphor co-occurred, the easier (at least faster) it

was to accept it as interpretable (which was not found for shallow sensibility

judgement). However, the linguistic component did not have a greater e�ect when

the time resources were restricted as we hypothesised. In fact, we found that people

were more reliant on the linguistic component when they had a longer interval for

response.
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Complex Processing Strategy during Metaphor Processing

The surprising results cast doubts on the linguistic shortcut hypothesis we

originally proposed. Neither time constraints nor shallow processing promoted the

use of the linguistic shortcut. In fact, the reverse seemed to be true. People were

more likely to incorporate linguistic information into processing when they had

plenty of time, or when they needed to engage in deep processing. Therefore, we

argue that linguistic information was involved in metaphor processing with a

complex strategy, depending on the requirement of the task.

We found that linguistic information a�ected processing directly under a

specific condition. That is, people relied on lingusitic information when they were

required to engage in deep processing. Specifically, linguistic information could

influence the speed of acceptance by itself, which in a way supports the idea that the

linguistic information could be used heuristically (Connell, 2018; Louwerse &

Jeuniaux, 2008). However, people were also allowed for longer time to perform the

deep processing task than the shallow processing task, and people relied on

linguistic information more when the time constraint was most relaxed. These two

e�ects both indicated that linguistic information contributed to the performance of

metaphor processing at a later stage, rather than immediately after the processing

began as the LASS theory proposed (Barsalou et al., 2008).

We also found that linguistic information a�ected processing indirectly when

the required depth of processing was shallow. It could signal whether the processing

was likely to succeed. When the distributional frequency was high, the processing

should succeed. Therefore, if people could not come up with a coherent

representation for the meaning (e.g., Supply can be bright), it would take them even

longer to reject the metaphor than when the distributional frequency was low, which

suggested that the processing was unlikely to succeed (e.g., Illness can be bright). In
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other words, high distributional frequency was used to safeguard against premature

rejection of a metaphor. When the distributional frequency was low, in constrast,

people simply judged the metaphors based on its ease of simulation (i.e., Illness can

be bright was rejected faster than Solutions can be bright).

In general, we did not find evidence to support our original hypothesis

concerning the linguistic component as a shortcut for metaphor processing. How

much could this lack of evidence be generalised beyond this particular study and

beyond metaphor processing? There are three reasons why the methods of the

current study may not be sensitive enough to detect the e�ect of linguistic

distributional patterns. First, LDF was a minimal redition of the linguistic

component. LDF uses the n-gram distributional frequency, which measured how

often two words co-occurred in the same context (e.g., solution and bright). It was

di�erent from other vector-based distributional models (e.g., latent semantic

analysis) which measured how often words occurred in similar context. For example,

although solution and bright do not co-occur frequently in the same context, thus

having a low n-gram frequency, solution frequently co-occurred in similar contexts as

words like question, answer and students. Therefore, the vector-based distributional

models might better at capturing the distributional pattern for metaphor

processing, which should be explored further in future studies. Second, the null

e�ects raise the question whether the evidence suggests against the linguistic

shortcut hypothesis. It is impossible to clarify this point with

null-hypothesis significance testing (NHST). To examine whether the

evidence were equivocal or against the e�ect of linguistic component

during shallow processing and shorter time constraints, the data needs to

be reanalysed with Bayesian models.

Third, in order to show whether the linguistic component plays a

heuristic role, it is not enough to study the end-products of metaphor
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processing (i.e., RT and response decisions) alone. LDF could have been

activated and influential to processing from the beginning of a trial, but

by the time that a response was made (at least 200ms after the adjective

onset), the initial shortcut e�ect might have faded. To fully examine the

role of the linguistic component during online processing, measurements

with high temporal resolution such as EEG and MEG should be taken.

In this paper, we viewed metaphor processing from the perspective

of conceptual representations during language processing in general. We

argued that metaphor processing is an aspect of language processing and

should involve similar conceptual representations. However, our findings

concerning metaphor processing may not be able to generalise to

language processing in general because metaphors are di�erent from

literal language in at least the following two ways. Firstly, distributional

patterns of constituent words are not often reliable during metaphor

processing, because it is common to read metaphors that are perfectly

sensible and meaningful whose constituent words rarely co-occur (e.g.,

abrasive personality, lukewarm supporters). Therefore, people might

deem the sacrifice of accuracy to be too great if they were to take the

linguistic shortcut. Secondly, metaphors may encourage people to engage

in the simulation of a�ective experiences more than their literal

counterparts (Citron & Goldberg, 2014). As a result, people put a much

heavier reliance on the embodied component than during literal language

processing. Having the time constraints meant that full engagement of

embodied simulation was not always possible. Therefore, people might

have switched their processing strategies altogether to focus on the

lower-level lexical variables such as lexical frequencies or word lengths.

Therefore, it is necessary for future studies to compare literal language
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and metaphor processing in these aspects if a general theory of

conceptual representation is to be achieved.

Conclusions

In conclusion, we found that metaphor processing relies on the

unique contributions of embodied simulation and linguistic distributional

patterns. These two components both inform conceptual representation

and could cause conflict when there is no agreement between them.

Combined with previous research on metaphor processing, literal

language processing and conceptual combination, these findings indicate

that conceptual representation involves a complex interaction between

the two components, and flexibly constructed based on the demand of

the task.
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CHAPTER 6

ERP Markers of Embodied and Linguistic

Components in a Property Verification Task

To examine the interplay of embodied and linguistic components in

metaphor processing, the timecourse of these two components will be studied

in the next two chapters. Chapter 6 is a sidebar, which fills in the gap in the

literature concerning the ERP markers of the two components during literal

language processing. I will replicate a well-established e�ect of embodied sim-

ulation, which is the modality switching costs in the property verification task;

and building on existing findings, I will explore how embodied simulation and

linguistic distributional patterns independently a�ect the ERP of the modality

switching costs.

The modality switching costs refer to a delay in response to a property

of a certain modality (e.g., vision: The SUN is bright) in a property verification

task if the previous property verified is of a di�erent modality (e.g., audition: A

BLENDER is loud) than if it is of the same modality (e.g., vision: A LEMON

is yellow). The costs were thus interpreted as evidence for the recruitment of
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modality-specific resources during language processing (Pecher et al., 2003). How-

ever, Louwerse & Connell (2011) found that the costs could at least partially be

attributed to the distributional patterns of the property words. The fact that loud

æ bright takes longer to process than yellow æ bright is also due to the fact that

yellow and bright co-occurred more frequently than loud and bright. The linguistic

distributional pattern was found to account for faster responses better than slower

responses, supporting the linguistic shortcut hypothesis. As a result, in this chap-

ter, we also expect the linguistic component to act as a shortcut. In terms of

timecourse, the linguistic component should reach the peak of its activation before

the embodied component.

In spite of our prediction concerning the di�erence in the timecourse of

the two components, as well as previous ERP studies that found various ERP

components associated with the modality switching costs (Bernabeu et al., 2017;

Collins et al., 2011; Hald et al., 2013, 2011), the study in this chapter will be

of an exploratory nature, in which the ERP of property verification will be anal-

ysed in uniformed 50ms slices, electrode by electrode. The reason to conduct a

component-free analysis like this is, first of all, to limit researcher’s degrees of free-

dom as discussed in Chapter 2. Moreover, an exploratory analysis will give us a

fuller picture concerning how embodied and linguistic components were activated,

which could be compared with the activations during metaphor processing found

in Chapter 7.

An abstract of this work has been submitted to and accepted as a talk in the

Embodied and Situated Language Processing (ESLP) conference, August 2018.
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Paper 4: Tracing real-time perceptual and linguistic modality

switching costs in property verification task
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Abstract

Modality switching costs (MSCs) are one of the classic e�ects that support the

embodied views of conceptual representations. They refer to a delay in response

time to verify a sensory property of a certain perceptual modality (e.g., visual: SUN

– bright), when the previous sensory property has been of a di�erent modality (e.g.,

auditory: BLENDER – loud) compared to a property of the same modality (e.g.,

visual: ROSE – red). Such costs indicate that conceptual representations require the

recruitment of modality-specific resources. However, MSCs could also result from

the distributional pattern of property words: the reason why loud æ bright takes

longer than red æ bright could be because bright and loud do not co-occur in the

same linguistic context as frequently as bright and red. In the present study, we

examined how well MSCs were predicted by an embodied model (switch / no-switch

between perceptual modalities) versus a linguistic model (switch / no-switch

between linguistic distributional clusters), in behavioural (RT) and continuous

event-related EEG potentials (ERP) paradigms. The behavioural data supported

the linguistic model in explaining MSCs and found MSCs to be moderated by the

target modality, the ERPs showed that linguistic distributional pattern played a

crucial role in the neural activations of MSCs. What used to be found as a result of

perceptual switching (e.g., "early N400" e�ect) could be better explained by the

linguistic model. The embodied component was activated later than the linguistic

component, accounting for activations associated with semantic representation

(typically in N400 area). Later during processing, both components were active for

decision making (often manifested as LPC).

Keywords: modality switching costs, embodied simulation, linguistic

distributional pattern, EEG

Word count: 7705 words
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Continuous neural activations of simulation-linguistic representations in modality

switching costs

Embodied cognition (also called grounded or situated cognition) in its most

consensual form suggests that conceptual processing involves the simulation (i.e.,

partial reactivation) of sensory, motor, a�ective, introspective and other bodily

experiences of concepts (Barsalou, 1999). When we process a sentence such as The

sun is bright, we “relive” the bodily experiences with the sun and specifically the

visual experience of its brightness. The modality switching costs (MSCs; Pecher,

Zeelenberg, & Barsalou, 2003) showed that people’s response to a word pair such as

SUN - bright would be delayed if the previous word pair they verified had pertained

to a di�erent sensory modality (e.g., BLENDER - loud) compared to the same

modality (e.g., ROSES - red). Such costs were interpreted as a result of engaging

modality-specific resources. People were slower to respond to bright because their

attention had been previously engaged in the auditory modality when processing

loud. Further studies also found MSCs across linguistic and perceptual stimuli (Van

Dantzig, Pecher, Zeelenberg, & Barsalou, 2008) and during novel concept creation

(Connell & Lynott, 2011), again confirming that people “relive” the sensory

experiences (e.g., “seeing” the sun’s light, “hearing” a blender’s noises) when they

verify these concepts.

Meanwhile, the linguistic account of conceptual representation proposes that

the meaning of a word is encoded (at least partially) in the distributional pattern of

the linguistic symbols (Landauer & Dumais, 1997). As Firth (1957) famously put it,

“you shall know a word by the company it keeps” (p.11). Linguistic distributional

patterns can encode relationship of objects, events and matters to a certain degree

(Louwerse, 2011). The meaning of sun could be understood by its semantic

neighbours such as sky, hot, bright, etc. This linguistic account provides another
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interpretation for MSCs. The reason why people were faster to respond to bright

after red than after loud was that bright and red co-occurred in the same context

more frequently than bright and loud. Indeed the co-occurrence frequencies could

di�erentiate the sensory modality of perceptual words to some extent (Louwerse &

Connell, 2011). A corpus study illustrated that the co-occurrence frequencies of

sensory property words (e.g., bright, loud, etc.) varied along three dimensions, which

broadly corresponded to the perceptual property of vision-haptics,

olfaction-gustation, and audition. Switch between the linguistic dimensions were

capable of accounting for the faster responses of MSCs, while switch between the

embodied dimensions were capable of accounting for the slower responses.

Embodied-Linguistic Conceptual Representations

Many researchers have explicitly stated that conceptual representations are

both embodied and linguistic (Andrews, Vigliocco, & Vinson, 2009; Barsalou,

Santos, Simmons, & Wilson, 2008; Connell & Lynott, 2014; Louwerse & Jeuniaux,

2008). Such a combinatorial account can bridge the gap between the two accounts,

and thus help avoid the problems faced individually by either. At the linguistic end,

the extreme form of this linguistic account needs to face the challenge of the

grounding problem (Harnad, 1990), which questions how the linguistic symbols link

to its real-world referents. If the meaning of a word is simply defined by other words,

it is hard to say that any words have meanings at all. This problem is perfectly

illustrated by Searle (1980)’s rendition Chinese room argument. Suppose a person

who does not know Chinese sits in a closed room, and receives input in Chinese from

a slot. He follows an instruction book that produces Chinese characters as response

to the input. Suppose the instructions are su�ciently well written, and the responses

so convincing that the person who gives the Chinese input thought the person in the

room was really Chinese. However, the case remains that the person in the room
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does not know the meaning of any of the Chinese words he produces. In other

words, simply knowing the distributional patterns between words is not the same as

knowing a language. The combinatorial account allows words to be grounded in the

brain systems of perception, action and emotion (Zwaan, 2014), though the degree

to which each linguistic symbol is grounded is still a contended issue (Chemero,

2009; Harnad, 1990; Kintsch & Dijk, 1978; Öttl, Dudschig, & Kaup, 2017).

On the embodied side, the combinatorial account, among many of its benefits,

a�ords a degree of flexibility to embodied simulation (Zwaan, 2014). As language

comprehension does not only occur on the level of individual words and sentences,

di�erent representations are created based on the environment, context and goal of

processing (Connell & Lynott, 2014; Lebois, Wilson-Mendenhall, & Barsalou, 2015;

Louwerse & Jeuniaux, 2010). One way that the linguistic component a�ords more

flexible conceptual representation is by providing a shortcut for embodied simulation

(Connell, 2018). Theories of embodied language processing, such as the Language

and Situated Simulation (LASS; Barsalou et al., 2008) theory and the Symbol

Interdependency theory (SIH; Louwerse, 2011), suggest that the linguistic

component is more speedy and less costly, and thus peaks prior to the embodied

component (although embodied simulation could be activated very quickly as shown

by Hauk, Johnsrude, and Pulvermüller (2004) for example). Since the linguistic

component can partially encode bodily experiences in the real world, it is useful as

an indicator for whether future processing will be successful, in other words whether

it is worth expending energy on the more costly embodied simulation (Connell &

Lynott, 2013).

Louwerse and Connell (2011) examined whether the MSCs could be accounted

for by both simulation and linguistic information, and found that the linguistic

component had indeed a temporal advantage. While a switch between the

perceptual modalities (e.g., haptics æ vision: warm æ bright) better accounted for
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the switching costs when people responded slowly, a switch between the linguistic

dimensions (e.g., audition æ haptic-vision: loud æ bright) better accounted for the

costs when people responded quickly. In other words, people relied on the

coarse-grained di�erence between the linguistic distributional patterns as a shortcut

to enable more speedy response. A necessary condition for the linguistic component

to be a shortcut is for the linguistic component to reach the peak of its activation

before the embodied component. Support for this condition requires the

examination of the continuous activations of both components during online

processing, which is the aim of the present study.

Present Study

The present study sets out to test whether embodied and linguistic

components both contribute to MSCs, and explore their activations during online

processing using event-related EEG potentials (ERP). ERP is a segment of EEG

waveforms time-locked to an event, which in the case of MSCs is the presentation of

the property word (e.g., bright; Otten & Rugg, 2005). ERP is often characterised as

discrete components, which is a segment of waveform that is functionally significant,

circumscribed to a certain time window. Previous studies have found many ERP

components associated with MSCs, most prominent of which were N400 and P600 or

late positivity complex (LPC; Bernabeu, Willems, & Louwerse, 2017; Collins,

Pecher, Zeelenberg, & Coulson, 2011; Hald, Hocking, Vernon, Marshall, & Garnham,

2013; Hald, Marshall, Janssen, & Garnham, 2011). A perceptual modality switch

often elicited a greater negativity around 400ms from the property onset and greater

positivity after 600ms from the property onset, which was interpreted as a di�erence

in semantic representation and decision making respectively.

However, the findings of these components have been highly inconsistent. The

N400 e�ect alone was found in the posterior region in some cases (Bernabeu et al.,
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2017; Hald et al., 2013), while in anterior region in others (Collins et al., 2011, Hald

et al. (2011)). In some cases, it was found in the typical window around 400ms

(Collins et al., 2011), while in others an earlier window from 270ms to 370ms

(Bernabeu et al., 2017; Hald et al., 2011). Furthermore, di�erent ERP components

were also found to be associated with di�erent perceptual modalities. According to

Collins et al. (2011), the N400 e�ect was manifested only for visual properties, but

in other studies it was found for properties of all sensory modalities. These

inconsistencies are most likely due to the complex nature of semantic processing,

which involves not only conceptual representation but from sublexical processing to

integration of semantic representations (Hauk, 2016). These previous studies did not

only examine the e�ect of modality switching but also other linguistic factors such

as negated sentences, which could easily distort observed waveforms (Luck, 2005).

Furthermore, these ERP studies so far have not considered the linguistic

distributional patterns as a cause for MSCs. Therefore, the present study will focus

on the switching costs alone, accounting for it by either a switch between perceptual

modalities or between linguistic dimension.

To achieve a better control and maximise the e�ect, we conducted a

behavioural study first with only visual, auditory and haptic words (Experiment 1).

According to Louwerse and Connell (2011), linguistic dimensions are more

coarser-grained than the perceptual modalities. While there are five major sensory

modalities (i.e., vision, audition, haptics, gustation, olfaction), words describing

sensory experiences often fall into three linguistic clusters. For example, visual

words (e.g., bright) and haptic words (e.g., warm) often co-occur in close proximity,

thus belonging to the same linguistic cluster/dimension. As a result, verifying warm

after bright constitutes a switch between perceptual modalities, but not a switch

between lingusitic dimensions. Thus, we are able to di�erentiate the e�ect of a

perceptual switch from a linguistic switch. We hypothesised that both a perceptual



ERP OF MODALITY SWITCHING COSTS 8

switch and a linguistic switch could account for the switching costs in this

experiment. From Experiment 1, we selected the stimuli that reliably produced

either perceptual or linguistic MSCs (or both) to be used in Experiment 2, the ERP

study. Our study will be largely exploratory because of the inconsistency in previous

findings, and the inability to pinpoint the time windows and the scalp regions of the

linguistic dimension switch. Thus, only tentative hypotheses could be proposed,

which are 1. the linguistic switch should a�ect the waveform prior to the embodied

switch; 2. the embodied switch should mainly a�ect the waveform around 400ms.

Experiment 1: Behavioural Modality Switching Costs

By studying the modality switching costs, it is possible to identify the separate

contributions of embodied and linguistic components to conceptual representation.

Therefore, in this experiment, our aim is to examine the costs of perceptual

modality switch and the costs of linguistic dimension switch separately. Participants

will read pairs of concepts (nouns) and properties (adjectives), such as SUN - bright,

and decide whether the property is usually true for the concept. The properties

shown will be of three perceptual modalities, vision, audition and haptics, but only

two linguistic dimensions based on how the properties group together according to

their distributional patterns. Therefore, we expect there to be a cost (i.e., delay in

reaction time) when there is a switch between perceptual modalities, as well as

between linguistic dimensions. In this section, we report how we determined our

sample size, all data exclusions, all manipulations, and all measures in the study.

Method

Participants. Based on the e�ect size from Louwerse and Connell (2011)

and requiring statistical power of .95 with an alpha level of .05, we estimated the

required sample size to be 45 participants using G*Power (Faul, Erdfelder, Buchner,
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& Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). Forty-eight native speakers

of English were thus recruited for a payment of £3.50 or course credit (age: 19.82

(1.51); female: 30; right-handed: 39).

Materials. One hundred and fifty concept-property items, such as SUN -

bright, were used in the present study. The property words were selected from the

modality exclusivity norms of Lynott and Connell (2009) and Dantzig, Cowell,

Zeelenberg, and Pecher (2011), in which the property words were rated according to

how strongly they could be experienced by the five major sensory modalities, which

are vision, audition, gustation, olfaction and haptics. The property words in the

present study were all uni-modal, such that the di�erence between the ratings of the

dominant modality (i.e., the modality with the highest rating) and the modality

with the second highest rating was greater than 0.75. These words pertained to

three dominant modalities, which are vision (N = 60), audition (N = 60) and

haptics (N = 30). They were paired with concept words, for which the properties

were not only true but also salient (e.g., CARNATION - red instead of

CARNATION - black, the latter of which could be true but was not salient), so that

the concepts could activate the properties automatically. The raw co-occurrence

frequencies between concepts and properties were below 1 million (Netspeak.com) to

avoid automatic association between words, and the words were known by more

than 75% of the population.

The perceptual modality of the property words was simply the dominant

modality. The linguistic dimension of the property words, on the other hand, was

determined by the co-occurrence frequencies between every two property words in

the same way as Louwerse and Connell (2011). Initially, we collated a set of 244

property words and extracted their bi- to 5-gram frequencies from the Google

Web-1T corpus (i.e., two property words e.g, bright and mumbling with zero, one,

two and three intervening words; Brants & Franz, 2006). These frequencies of each
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pair of properties were summed and transformed logarithmically, resulting in a 244 x

244 matrix. Then we submitted this matrix to PCA with Varimax rotation and

Kaissar normalisation and extracted 2 principle components (PCs) that could

explain 61.25% of the total variance (PC1: 50.76%; PC2: 10.49%). The property

words were thus allocated to either one of these linguistic dimensions based on the

larger factor loadings. Furthermore, we correlated the factor loadings with each

word’s modality strenght and found that PC1 had a significant, positive correlation

with the visual strengths of the properties (Table 1), and PC2 had a significant,

positive correlation with the auditory strengths; while both components had a weak

positive correlation with the haptic strengths.

Each target properties were paired with three di�erent prime properties, so

that every property appeared in all three switching conditions, which are a switch

between both perceptual modalities and linguistic dimensions, a switch between

perceptual modalities only but no switch between linguistic dimensions, or no switch

between either perceptual modalities or linguistic dimensions. For instance, for the

same target property bright, mumbling æ bright caused a switch between both

perceptual modalities, that is from audition to vision, and linguistic dimensions, that

is from PC2 to PC1; rough æ bright caused a switch only in perceptual modalities,

that is from haptics to vision, but not between linguistic dimensions, both of which

were of PC1; and colourful æ bright represented neither switch. A further list of 270

fillers was added, among which 45 were true and 225 were false. The true fillers were

concept-property items that did not pertain to the three sensory modalities of

interest; whereas false fillers were concept-property pairs in which the properties

were not usually true for the concept (e.g., WHISKY – flu�y). Some of the false

fillers were highly associated words (e.g., TEMPLE – praying), so that people could

not decide the truthfulness of the concept-property items from the linguistic

association of the words alone (Solomon & Barsalou, 2004). The participants also
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Table 1

Correlation between the PCs and modality strengths

PC1 PC2 Visual Haptic Auditory

PC1 1.00 .00 .64 ** .12 -.61 **

PC2 – 1.00 -.21 ** .12 .31 **

Visual – – 1.00 .18 ** -.72 **

Haptic – – – 1.00 -.42 **

Auditory – – – – 1.00

Note. ** means p < .01

saw 25 practice trials, using true items not featured in the main experiment.

In the experiment, each participant saw the items and fillers in a random order.

The visual and auditory items were presented only once either as prime or as target,

and the haptic items were presented twice as both prime and target, resulting in 90

prime æ target pairs for each participant. Across the experiment, all items were

used as both prime and target, leading to 6 lists of stimuli in total (prime/target (2)

x switching conditions (3)) to which participants were randomly assigned.

Procedure. The experiment was reviewed by Lancaster University’s

Department of Psychology Ethics Committee and approved by Lancaster

University’s Research Ethics Committee. After brief information about the study,

the participants were sat normally from a PC screen. Participants received both

verbal and written instructions (in the exact wording as reported) that they would

see concept-property pairs on the screen, and the task was to decide whether the

properties were usually true for the concepts. For example, if they saw

CARNATION - red, the answer would be “yes”; whereas if they saw CARNATION

– black, even though it was possible, it was not usually true, so the answer would
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be “no”. All concepts were in the uppercase (“CARNATION”) and properties in the

lowercase (“red”). The concepts and the properties appeared one after another in

black letters on a grey background (Figure 1).

Figure 1 . Sequence of presenting the CONCEPT-property pairs. Response timed out

after 3000ms after the property onset.

Figure 1 shows the structure of a concept-property item. The trial started

with a fixation cross for 1000ms followed by a blank screen of variable length (200ms

to 450ms). Then the concept and the property appeared consecutively each for

200ms with a blank of 300ms in between. Once the property word appeared,

participants could start to respond by pressing the comma key (“,”) for “yes” or the

full stop key (“.”) for “no”. If the response were incorrect, the participants would

receive feedback (“Error”). If they failed to respond within a 3-second interval after

the onset of the property words, they would receive a feedback (“***TOO

SLOW***”). The accuracy and reaction time were recorded. Afterwards, the next

trial automatically started.
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Analysis and design. Data were analysed and reported using R1. Two

linear mixed-e�ect (LME) models were separately built for each type of switch, one

for the perceptual modality switch and one for the linguistic dimension switch. The

dependent variable was the reaction time (RT) to the target concept-property items

from the target property onset. Participants and items were crossed random

variables to predict random intercepts,2 and the target modality (visual, auditory

1 We used R (Version 3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate &

Heiberger, 2016), arm (Version 1.10.1; Gelman & Su, 2018), BayesFactor (Version 0.9.12.4.2;

Morey & Rouder, 2015), bookdown (Version 0.7; Xie, 2016), broom (Version 0.4.4; Robinson, 2017),

coda (Version 0.19.1; Plummer, Best, Cowles, & Vines, 2006), contrast (Version 0.21; Kuhn, Steve

Weston, Wing, Forester, & Thaler, 2016), data.table (Version 1.11.4; Dowle & Srinivasan, 2017),

doBy (Version 4.6.1; Højsgaard & Halekoh, 2016), dplyr (Version 0.7.5; Wickham, Francois, Henry,

& Müller, 2017), Formula (Version 1.2.3; Zeileis & Croissant, 2010), ggplot2 (Version 2.2.1;

Wickham, 2009), gridExtra (Version 2.3; Auguie, 2017), Hmisc (Version 4.1.1; Harrell Jr, Charles

Dupont, & others., 2018), interplot (Version 0.1.5; Solt & Hu, 2015), knitr (Version 1.20; Xie,

2015), lattice (Version 0.20.35; Sarkar, 2008), lme4 (Version 1.1.17; Bates, Mächler, Bolker, &

Walker, 2015), lmerTest (Version 3.0.1; Kuznetsova, Brockho�, & Christensen, 2017), magrittr

(Version 1.5; Bache & Wickham, 2014), MASS (Version 7.3.50; Venables & Ripley, 2002), Matrix

(Version 1.2.14; Bates & Maechler, 2017), mgcv (S. N. Wood, 2003, 2004, Version 1.8.23; 2011; S.

Wood, N., Pya, & S"afken, 2016), multcomp (Version 1.4.8; Hothorn, Bretz, & Westfall, 2008),

mvtnorm (Version 1.0.8; Genz & Bretz, 2009), nlme (Version 3.1.137; Pinheiro, Bates, DebRoy,

Sarkar, & R Core Team, 2017), papaja (Version 0.1.0.9735; Aust & Barth, 2017), plyr (Wickham,

2011; Version 1.8.4; Wickham et al., 2017), psych (Version 1.8.4; Revelle, 2018), purrr (Version

0.2.5; Henry & Wickham, 2018), rcartocolor (Version 0.0.22; Nowosad, 2017), rms (Version 5.1.2;

Harrell Jr, 2018), SparseM (Version 1.77; Koenker & Ng, 2017), survival (Version 2.42.3; Terry M.

Therneau & Patricia M. Grambsch, 2000), TH.data (Version 1.0.8; Hothorn, 2017), and tidyr

(Version 0.8.1; Wickham & Henry, 2017) for all our analyses and the writing up of this manuscript.

2 Although model including participants as the only random intercept explained the data worse

than the empty model by 843.08 times (BF10 = 0.001), model with participants and item as

crossed random intercepts better explained the data than the model with only participants as

random intercept 35.47 times (BF10 = 35.47).
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and haptic, with auditory target as the reference level) and the switching condition

(switch coded as 1, non-switch coded as 0), plus their interactions were the fixed

predictors. Planned comparisons for each target modality were also run, that is

perceptual/linguistic switch versus non-switch for the three target perceptual

modalities separately. p-values for the planned comparisons were corrected using

Tukey’s HSD (reported in Supplementary Materials: https://goo.gl/sRkXun).

To examine the e�ect of switching costs and its interaction with target

modality, we conducted model comparisons in a hierarchical fashion. For perceptual

modality switch:

Step 1: Models with random predictors and target modality only;

Step 2: Models with random predictors and target modality + perceptual

modality switch;

Step 3; Models with random predictors and target modality + perceptual

modality switch and their interaction.

For linguistic dimension switch, the same three steps were carried out with

linguistic dimension switch instead of perceptual modality switch.

In our study, all model comparisons were conducted using Bayes factors (BF),

which denotes the ratio of likelihood of the data under both null and alternative

hypothesis (Jarosz & Wiley, 2014). If the BF of H1 against H0 (i.e., BF10) is 5, it

means that the data is 5 times more likely to occur under H1 than H0. BF is

superior to the p-value in two ways. First, BF could inform us how confident we can

be with the hypothesis. We can be more confident with the alternative hypothesis if

BF10 = 100 than if BF10 = 10. In contrast, p-values do not bear any significance to

the power of the study, the size of the e�ect or the quality of the hypothesis (see

Wagenmakers, 2007 for detailed discussion concerning p-values). Second, we do not

need to conduct post hoc corrections of multiple comparisons with BF. In the
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Table 2

Interpretation of BF as evidence

for H 1

BF01 BF10 Support for H1

1-.33 1-3 Anecdotal

.33-.10 3-10 Substantial

.10-.03 10-30 Strong

.03-.01 30-100 Very strong

<.01 >100 Decisive

present paper (especially in Experiment 2), a large number of comparisons need to

be conducted for the same set of data, which causes the inflation of Type I error.

BF eliminates this concern by presenting the relative likelihood of null and

alternative hypothesis in each test. As a result, we will focus on BFs in this paper,

only reporting the regression coe�cients and BFs in the manuscript, while the

p-values and all other results from null-hypothesis significance testing will be

included in the Supplementary Materials.

The BF of LME can be easily obtained in R by extracting the Bayesian

information criteria (BIC). BF01 (comparing H0 against H1) is calculated as:

BF01 = e
(BIC(H1) ≠ BIC(H0))

2

BF10, which denotes the likelihood of H1 against H0 is simply the inverse of

BF01. While the continuous scale of BF is useful enough, we could conveniently

describe the results, using Je�reys (1998)’s guideline to characterise BF as Table 2.
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Results and Discussion

Seven participants’ data were excluded from analysis because their accuracy to

the fillers was too low (< 65%). No further participants were excluded because no

one’s RT was exceptionally long (i.e., > 2.5SD from the group mean). 849

prime-target pairs (23.01%) were excluded because the response to either or both

items were incorrect (519 targets (14.07%) and 412 (11.17%) primes). Finally, we

removed individual target items whose RT were more than 2.5SD from the condition

means, which led to further exclusion of 70 trials (2.46%). Thus, 2771 trials were

left and entered into the analysis.

The grand mean of RT was 805ms (SD = 255ms) across all three target

modalities. Condition means of each modality were 805ms (256ms) for auditory

targets, 781ms (247ms) for haptic targets, and 820ms (259ms) for visual targets.

Perceptual switching costs. As seen in Figure 2, people reacted slower to

the perceptual switch condition than the perceptual non-switch condition. However,

the mixed-linear model did not support the modality switching costs. The regression

coe�cients of models at each step is shown in Table 3. A calculation of BFs showed

that the data was no better explained by the Step 2 model (with target modality +

perceptual switch) than by the Step 1 model (with target modality only; BF21 =

1.35), nor was it better explained by the Step 3 model (with interaction) than the

Step 2 model (BF32 = 2.20). In all, having the perceptual switch with its interaction

with target modality explained the data 2.96 times better than the model with only

random variables, providing only anecdotal evidence for the perceptual switching

costs. Planned comparisons per target modality did not show a significant e�ect of

perceptual switch in any perceptual modalities (Auditory b = 26.86, Haptic b =

3.70, Visual b = 15.00).
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Table 3

Regression coe�cients of perceptual switching models in

hierarchical model comparison

b BF10

Step 1

Target modality

Haptic - auditory -22.99

Visual - auditory 27.56

Step 2 1.35

Target modality

Haptic - auditory -23.02

Visual - auditory 27.57

Perceptual switch 15.47

Step 3 2.20

Target modality

Haptic - auditory -7.76

Visual - auditory 35.37

Perceptual switch 26.84

Target modality : perceptual switch

Haptic - auditory : perceptual switch -23.14

Visual - auditory : perceptual switch -11.84
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Figure 2 . Mean RT of target trials per perceptual switching condition. Error bars

denote +/- 1 standard error.

Linguistic switching costs. Similar to the perceptual switching condition,

the linguistic switching condition also produced a general trend as predicted, apart

from visual items which was faster for a linguistic switch (825ms, SD = 264ms) than

a non-switch (831ms, SD = 257ms; Figure 3). The regression coe�cients are shown

in Table 4. Nevertheless, the BF comparing showed that although the data was no

more likely under the Step 2 model than Step 1 model (BF21 = 0.90), it was 5.88

times more likely under the Step 3 model than Step 2 model, constituting substantial

evidence for the interaction between linguistic dimension switch and target modality.

Planned comparisons did not show a significant linguistic switching costs in any
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Figure 3 . Mean RT of target trials per linguistic switching condition. Error bars

denote +/- 1 standard error.

perceptual modality (Auditory b = 23.06, Haptic b = 28.75, Visual b = -6.33).

Further comparisons between the perceptual switching models and linguistic

switching models showed that these models were on the par in explaining the

modality switching costs. The Step 2 model of perceptual switch (without the

interaction term) was equal to that of linguistic switch (BFPL2 = 1.50), while the

Step 3 model of perceptual switch (with the interaction term) was not worse than

that of the linguistic switch either (BFPL3 = 0.56).

Summary. The BFs showed some anecdotal evidence in favour of perceptual

modality switching costs which interacted with the target modality, as well as



ERP OF MODALITY SWITCHING COSTS 20

Table 4

Regression coe�cients of linguistic switching models in

hierarchical model comparison

b BF10

Step 1

Target modality

Haptic - auditory -22.99

Visual - auditory 27.56

Step 2 0.90

Target modality

Haptic - auditory -16.37

Visual - auditory 31.23

Linguistic switch 11.17

Step 3 5.88

Target modality

Haptic - auditory -6.65

Visual - auditory 47.87

Linguistic switch 26.87

Target modality : linguistic switch

Haptic - auditory : linguistic switch -5.58

Visual - auditory : linguistic switch -34.81
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substantial evidence in favour of the interaction between linguistic dimension

switching costs and the target modality. Specifically, target modality moderated the

e�ect of the modality switching costs for both types of switch, such that the

perceptual switching costs diminished for haptic items, whereas the linguistic

switching costs were reversed for visual items.

Experiment 2: ERP E�ects of Modality Switching Costs

In Experiment 1, we found some evidence for both perceptual and linguistic

switching costs, though neither were very strong. What was of more importance was

that the two types of switch led to switching costs in di�erent ways (i.e., in di�erent

modalities). Therefore, it was ever more crucial to study how the switch would

a�ect the neural activities during online processing. In this experiment, we studied

the ERP of modality switching costs in a 1000ms epoch across the whole scalp. We

proposed some tentative hypotheses which suggested that the perceptual modality

switch should a�ect the ERP around 400ms after the property onset, and the

linguistic dimension switch should a�ect the ERP prior to that time window. Here

we report how we determined our sample size, all data exclusions, all manipulations,

and all measures in the study.

Method

Participants. Twenty-five native speakers of English were recruited from

Lancaster University for the payment of £7/hour (or the equivalent of credits). The

sample size was determined based on Hald et al. (2011)’s study. Two participants

were later excluded because of their high error rate to the filler trials (accuracy <

65%). Among the rest of the participants, mean age was 21.00 (SD = 1.38), three

were male and two were left handed.
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Materials. The prime æ target pairs from Experiment 1 remained for this

study if they resulted in a modality switching costs (i.e., the RT to a target property

in a switch trial was longer than its RT in a non-switch trial), which were 114

di�erent prime æ target pairs. As in experiment 1, all the items belonged to three

perceptual modalities (i.e., visual, auditory and haptic) and two linguistic

dimensions (i.e., PC1 and PC2). All auditory targets were either both linguistic and

perceptual switch (di�erent prime æ target pairs N = 36), or both linguistic and

perceptual non-switch (N = 22); whereas visual targets could represent three

di�erent conditions: both switch (N = 17), both non-switch (N = 19), and

perceptual switch but linguistic non-switch (N = 20). Haptic targets with their

primes were all removed because the remaining sample size was too small.

All prime-target pairs were presented in a random order to each participant, as

well as fillers which appeared in Experiment 1. Both prime æ target pairs and fillers

were presented either once or twice in the whole experiment to boost the number of

trials in each condition, resulting in 137 prime-target pairs and 237 filler pairs for

each participant. The experiment also included a practice session of 10 trials which

did not feature in the test phase.

Procedure. Participants were tested individually in a quiet room. They

were seated at a distance away from the computer screen where they could read the

words on the screen and rest their both hands on the desk to press the buttons. The

trial began with a fixation cross (1 second) followed by a variable blank screen

between 400ms and 1600ms. Afterwards, participants saw the concept-property

pairs on the screen consecutively (i.e., 200ms word followed by 300ms blank). Unlike

Experiment 1, after a property disappeared, participants were required to refrain

from response for 1 second until a prompt (“?”) appeared, to make sure that the

ERP would not be contaminated by the response readiness potential (Dehaene et

al., 1998). If they had responded before the prompt appeared, a warning would
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appear (“Too fast. Please wait for the prompt ‘?’.”), and the trial was dismissed.

Once the prompt appeared, participants again needed to judge whether the property

was usually true for the concept by pressing the “n” key (masked by a red sticker)

with their left hand for “yes”, or the “m” key (masked by a white sticker) with their

right hand for “no”. The same feedback for slow (> 3s) or incorrect response was

given as in Experiment 1.

Participants were asked not to blink or move freely, but were given specific

time for such muscle movements. Between trials, participants were free to blink for 1

second, and they were told not to blink within each trial when the words were

showing. They were also given self-administered break nine times during the

experiments after each five-minute block. Furthermore, each block began with 4

seconds of blank screen for the EEG recording to be recalibrate, during which

participants were free to blink.

Apparatus. Words were presented on a 19-inch CRT monitor operating at

100Hz refresh rate using EPrime 1.0, and behavioural responses were recorded using

a QWERTY keyboard. High-density EEG was recorded continuously using Hydrocel

Geodesic Sensor Nets (Electrical Geodesics Inc., Eugene, OR, USA) at 128 locations

referenced to the vertex (Cz) online. The ground electrode was at the rear of the

head (between Cz and Pz). Electrophysiological signals were acquired at the

sampling rate of 1000Hz by an Electrical Geodesics Inc. amplifier with a band-pass

filter of 0.1-100Hz. The impedances were checked prior to the beginning of the

recording and they were considered acceptable if lower than 50k�.

EEG analysis. The digitized EEG was further processed o�ine using

NetStation v 4.5.4. It was band-pass filtered between 0.4-100Hz and was segmented

into epochs including 200ms before adjective onset and 1000ms after adjective onset

for the target trials. EEG epochs were automatically rejected for body and eye

movements, as well as signals exceeding ± 200 µV at any electrode. Data were
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further checked through visual inspection for eye-movements, eye-blinks and other

artifacts not detected by the automated algorithm. The artifact free segments were

baseline-corrected with respect to the average amplitude in the 200 ms window

preceding the stimulus onset, and were re-referenced to the average reference. Then,

they were exported to comma-separated value (csv) files per participant per trial

and analysed in R.

In order to explore the continuous activations of embodied and linguistic

components, we analysed the EEG output throughout the whole 1-second epoch

after the adjective onset, and across the whole scalp (Amsel, 2011; Hauk,

Pulvermüller, Ford, Marslen-Wilson, & Davis, 2009; Hendrix, Bolger, & Baayen,

2017). Ninety electrodes were selected to be analysed, covering the region of a 20-20

EEG net (Appendix A). The output from each electrode were sliced into 20

uniformed segments and averaged within each segment to get the mean amplitude

per participant per stimulus. The resulting mean amplitude was analysed in linear

mixed-e�ect models (LME) in a hierarchical fashion as Experiment 1. The analyses

were exceptionally computationally heavy and thus were carried out distantly using

the High End Computing Cluster (HEC;

http://www.lancaster.ac.uk/iss/services/hec/) of Lancaster University.

Separate LME models were built to study perceptual modality switch and

linguistic dimension switch. The models were built in a hierarchical fashion as

Experiment 1.

1. To examine the e�ect of perceptual modality switch, models were built in the

following steps:

Step 1P: Models with random predictors, participant and target property

crossed, modelling random intercept, and target modality (auditory coded as

the reference level);



ERP OF MODALITY SWITCHING COSTS 25

Step 2P: Models with random predictors and target modality + perceptual

switch (non-switch coded as 0, switch coded as 1);

Step 3P: Models with random predictors and target modality + perceptual

switch and their interaction.

2. To examine the e�ect of linguistic dimension switch, same three steps were

carried out:

Step 1L: Models with random predictors and target modality (auditory coded

as the reference level);

Step 2L: Models with random predictors and target modality + linguistic

switch (non-switch coded as 0, switch coded as 1);

Step 3L: Models with random predictors and target modality + linguistic

switch and their interaction.

The models in each step were compared with the model in previous step using

BF. Thus, the comparison between, for example, Steps 2P with Steps 1P showed how

much more likely the data was when the perceptual switch was included than when

it was excluded. In addition, we examined whether the data was more likely under

the linguistic switch or perceptual switch models by comparing the two Step 2

models above, as well as the two Step 3 models above.

Results

Data exclusion. Two participants were deleted because their accuracy to

filler trials were lower than 65%. Individual trials were removed if the response to

either the prime or the target or both was incorrect (42 trials, 1.52%). This left us

2713 trials, among which 1248 were auditory targets and 1465 were visual targets.

For all auditory targets, 725 were both perceptual and linguistic switch (58.09%),
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and 523 were both perceptual and linguistic non-switch (41.91%); and for visual

targets, 499 were both perceptual and linguistic switch (34.06%), 477 were

perceptual switch but linguistic non-switch (32.56%), and 489 were both non-switch

(33.38%).

Behavioural analysis. We analysed the RT (descriptive statistics in Table

5) in LME models using hierarchical model comparison in the same way as

Experiment 1. We found that the data could be best explained by the model with

target modality only. In terms of perceptual switch, the target-modality model was

1.43 times better than the model with target modality and perceptual switch

without the interaction term (BF21 = 0.70) and 1.17 times better than the model

with the interaction term (BF31 = 0.86). In terms of linguistic switch, the

target-modality model was 2.17 times better than the model without the interaction

term (BF21 = 0.46) and 1.16 times better than the model with the interaction term

(BF31 = 0.86). According to the target-only model from Step 1, response to visual

targets were faster than auditory targets (b = -0.60)

Table 5

Mean (SD) of RT per condition in Experiment 2

Perceptual Linguistic

Switch Non-switch Switch Non-switch

Auditory 347 (195) 348 (204) 347 (195) 348 (204)

Visual 354 (216) 334 (198) 355 (220) 343 (206)

ERP analysis.

Overview.

The mean BF across the scalp for the model with linguistic switch in Step 2

(i.e., without interaction) was 0.004 (SD = 0.003), and the mean BF for the model

with perceptual switch in Step 2 was 0.005 (SD = 0.004), both suggesting very
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strong evidence for the null hypothesis (i.e., model with target modality only).

Figure 4 shows the mean BF21 across the scalp over time. The BFs were less than

0.33 for the whole epoch, and below 0.1 from 100ms after the target adjective onset.

By comparing between perceptual and linguistic switch, it seemed that the

perceptual switch had an advantage over the linguistic switch at the first 50ms of

the epoch and around 300ms, whereas the linguistic switch had an advantage around

650ms. The same pattern was found for the models of interaction (i.e., data strongly

favoured models with only linguistic or perceptual switch (Step 2) against models

with interaction terms (Step 3; see Supplementary Materials)). Viewing across the

scalp, we found overall evidence against both perceptual and linguistic switch.

However, it was still possible that these switches a�ected ERP in a localised

manner, which will be examined next.
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Figure 4 . Line plot of mean BF21 with 95% credibility interval of perceptual and

linguistic switch as a result of Step 2 across scalp at each 50ms slice.
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Perceptual switch.

Figure ??a showed the topoplot of the evidence in favour of (or against)

models with target modality and perceptual switch (Step 2P) compared with

target-modality models (Step 1P); Figure ??b showed the comparison between

models with the interaction term between target modality and perceptual switch

(Step 3P) and models without the interaction term (Step 2P). There was no

widespread e�ect of perceptual modality switching costs or its interaction with

target modality, apart from the beginning of the epoch (i.e., 0ms to 50ms) in the

occipital electrodes (e.g., E70, BF21 = 7.14), that is the data was 7.14 times more

likely under the model with perceptual modality switch than without. During this

time, there was evidence that perceptual switching costs made the amplitude more

negative (b = -0.98). This e�ect was not moderated by the target modality, meaning

that this early e�ect of perceptual switching costs had an e�ect on both visual and

auditory targets equally.
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Furthermore, the data suggested that in the following areas the interaction

models were more likely than models excluding the interaction term (comparison

between Step 3P and Step 2P models, not shown in topography). Perceptual switch

interacted with the target modality between 300ms and 350ms in the frontal region

(e.g., E19, BF32 = 19.70, perceptual switch b = 1.81, target modality b = 1.31,

interaction b = -2.57). That is to say, in the frontal region, the perceptual switch

was associated with more positivity than non-switch for auditory targets; but

perceptual switch was associated with more negativity for visual targets. The

opposite pattern was found in the right parietal region (e.g., E92, BF32 = 11.86,

perceptual switch b = -1.26, target modality b = -1.13, interaction b = 1.88), which

suggested that perceptual switch led to more negativity for auditory targets but

more positivity for visual targets. Both of these e�ects coincided with previous

findings of the early N400 e�ect (parietal e�ect with Bernabeu et al., 2017; frontal

e�ect with Collins et al., 2011; Hald et al., 2011), which could be interpreted as a

precursor of semantic processing.

Linguistic switch.

Evidence for linguistic dimension switching costs was found in similar regions

as the perceptual modality switching costs (Figure 5). The data substantially

favoured the linguistic modality switching costs (Step 2L compared with Step 1L) at

the onset of the epoch in the left occipital region as well (e.g., E70, BF21 = 3.17),

such that the linguistic switch trial was associated with more negative amplitude (b

= -0.92).

The data also strongly favoured the interaction between linguistic dimension

switching costs and target modality between 300ms and 350ms at the left frontal

(Step 3L compared with Step 2L; e.g., E19, BF32 = 238.31, linguistic switch b =

1.81, target modality b = 1.23, interaction b = -3.07) and right parietal regions (e.g.,

E92, BF32 = 167.36, linguistic switch b = -1.26, target modality b = -1.06,
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interaction b = 2.27). In other words, similar to the perceptual switching costs, the

linguistic switch was associated with more positivity for auditory targets but more

negativity with visual targets in the frontal region; and the reversed pattern for the

parietal region. For both regions, the data was more than 150 times more likely

under models with the interaction than the models without interaction.

However, it is important to note that Step 3 models with the interaction term

was not better than the Step 1 models which included only target modality. Take

the linguistic models for example, when models in Step 2L was compared with Step

1L, the data of E19 was 0.004 times more likely (i.e., 250 times less likely) under the

Step 2L models which considered the linguistic switching costs alone without the

interaction. In other words, the Step 3L model was 0.95 times more likely than the

Step1 model (BF32 x BF21 = 238.31 x 0.004 = 0.94). In the same way, the data of

E92 was 0.002 times more likely (i.e., 500 times less likely) under the Step 2L model

than the Step 1L model, so the Step 3L model was 3 times worse than the Step 1L

model (BF31 = 0.33).
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Comparison between perceptual and linguistic switch.

From the hierarchical model comparison, we discovered that perceptual switch

and linguistic switch shared similar patterns of activities, supporting their e�ects at

the occipital region at the onset of the epoch, and their interaction with target

modality at both the left frontal region and the right parietal region between 300ms

and 350ms. Therefore, it is worthwhile to examine which type of switch was

supported more strongly by the data. Figure 6 showed the evidence in favour of one

type of switch against the other (i.e., comparison of Step 2 models and comparison

of Step 3 models). We found that perceptual switch and linguistic switch performed

equally well between 0ms and 50ms in the left occipital region (e.g., E70: BFPL2 =

2.91). The data supported neither model more. However, the data supported the

interaction between linguistic switch and target modality more than the interaction

between perceptual switch and target modality at the left frontal region (Figure 6b;

e.g., E19: BFPL3 = 0.17) and the right parietal region (E92: BFPL3 = 0.11) between

300ms and 350ms. That is to say, by comparing the interaction models alone,

linguistic switching costs were more than 5.88 times more likely than perceptual

switching costs. It suggested that the “early N400 e�ect” found in previous studies

was better explained by a switch between the linguistic dimensions than the

perceptual modalities. Nevertheless, the fact that the linguistic switching costs were

moderated by the target modalities suggested that modality-specific resources were

also recruited to construct the conceptual representations.
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Further exploration showed great distinction between the Step 2 models and

Step 3 models. For example, the ERP in the frontal region around 350ms better

supported the perceptual model in Step 2, but supported the interaction between

linguistic switch and target modality in Step 3. This pattern suggested that it is the

target modality that drove the di�erence between perceptual and linguistic

switching costs. Therefore, we further analysed the data per target modality in the

next section.

Moderation of target modality.

We performed hierarchical model comparisons again per target modality. That

is,

1. For the perceptual switching costs, models were built in two steps.

Step 1P: Models with only random variables;

Step 2P: Models with random variables and perceptual switch.

2. linguistic switch, models were built in two steps.

Step 1L: Models with only random variables;

Step 2L: Models with random variables and linguistic switch.

Since for auditory targets perceptual and linguistic switching conditions were

exactly the same, two sets of hierarchical steps above produced the same results.
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Auditory targets.

Evidence supported a switching e�ect at the onset of the epoch (within 50ms)

and between 300ms and 350ms (Figure 7a), although the pattern of regression

coe�cients was consistent throughout the whole epoch (Figure 7b). Switch trials

evoked larger positivity in the left frontal region and larger negativity in the right

parietal and occipital regions. Since linguistic switch completely overlapped with

perceptual switch, it could be argued that when the linguistic and perceptual switch

happened simultaneously, it could be detected between 300ms and 350ms, coinciding

with the early N400 e�ect from previous studies.

Visual targets.

For visual targets, it was possible to distinguish between perceptual switch and

linguistic switch because half of the perceptual switch trials were linguistic

non-switch, while the other half were linguistic switch. From Figure 8a, we found

evidence against both linguistic and perceptual switching costs between

300ms-350ms, suggesting that the interaction e�ect in this time window was driven

by the e�ect for auditory targets (and the lack thereof for visual targets).

Furthermore, there was strong evidence against any perceptual switching costs for

visual targets over the e�ect of random variables. Linguistic switch (Figure 8b) had

an e�ect at the 800ms slice in the right posterior regions (e.g., E84; b = 2.08, BF21Lv

= 4.32), which meant that the linguistic switch evoked a greater positivity at this

later stage of processing, corresponding to LPC which was often associated with

decision making and conflict resolution.
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Again to show the relative power of perceptual and linguistic switch, Figure 9

is a topoplot of BFs by comparing the Step 2 models of visual targets, which was

similar to Figure 6b. Strong evidence supported the linguistic switching costs in the

frontal and occipital areas from 200ms to 400ms. The linguistic switch evoked a

stronger negativity in the frontal region (e.g., at 250ms-300ms, E 18: b = -1.17,

BFPLv = 0.08), while it evoked a stronger positivity in the parietal region (e.g., at

300ms-350ms, E77: b = 1.20, BFPLv = 0.10). This e�ect was consistent with the

early N400 e�ect found for auditory targets, and the linguistic switch could be

detected as early as 200ms. Again around 600ms, linguistic switch evoked a stronger

positivity in the parietal region (e.g., at 600ms-650ms, E77: b = 1.51, BFPLv =

0.04), corresponding with P600 or LPC.

In contrast, perceptual switch started to have a stronger e�ect between 300ms

and 400ms in the left parietal region (e.g., E52: b = -1.10, BFPLv = 14.77). The

results showed that perceptual switch evoked a stronger negativity than non-switch

in this left-parietal region, corresponding with the classic N400 e�ect. Later around

600ms, perceptual switch had greater power than linguistic switch in the right

temporal region (e.g., E108: b = -1.24, BFPLv = 10.95), meaning that perceptual

switch elicited a stronger negativity than non-switch, which was the reverse of LPC.
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Summary of ERP results.

In summary, evidence supported both types of switch between 0ms and 50ms

in the left occipital region, but the e�ects diverged later in the epoch. We found

evidence for perceptual switching costs around 400ms in the left parietal region, and

later around 600ms in the right temporal region, albeit this e�ect only existed for

visual targets and was relative to the power of linguistic switch. We also found

evidence for linguistic switching costs around 300ms in the frontal region and

parietal region, prior to the e�ect of the perceptual switch as predicted.

Furthermore, we found evidence for both linguistic and perceptual switch at the

later stage of processing (after 600ms).

General Discussion

In this paper, our aim was to di�erentiate the contribution of linguistic

dimension switch from perceptual modality switch in the modality switching costs,

and thus to identify the neuroelectrical activations of simulation and linguistic

information during conceptual representation. We found that what was considered

to be the modality switching costs in ERP components, could be better explained

by the switch between di�erent linguistic distributional clusters, rather than the

switch between perceptual modalities. Such a finding supported the idea that the

linguistic component plays a crucial role, even bearing the burden of semantic

representation (Connell, 2018). Because the activation of the linguistic component is

more speedy than the embodied component as shown in the ERP, it was possible for

the linguistic component to be a shortcut for the more computationally heavy and

slower embodied simulation (Barsalou et al., 2008; Connell & Lynott, 2014;

Louwerse & Jeuniaux, 2010)

An important finding in the present study was that words pertaining to

di�erent sensory modalities elicited di�erent behavioural and neural responses. The
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behavioural study did not replicate previous findings, but showed that response time

in the property verification task was not best explained by perceptual modality

switching costs (i.e., loud æ bright takes longer than red æ bright because of switch

from audition to vision); nor was it best explained by linguistic switch alone (i.e.,

switch from one linguistic dimension to another). Rather, it was best explained by

the interaction between a switch between linguistic dimensions and the perceptual

modality of the target word (which was slightly better than the model including the

interaction between perceptual switch and the perceptual modality). In other words,

the linguistic dimension switching costs occurred for words of some modalities

(auditory and haptic words specifically) but not other words (visual words

specifically).

The ERP results also showed the same pattern, that is: auditory words turned

out to be the only category that elicited consistent perceptual/linguistic modality

switching costs, while visual words did not (see also Moscoso Del Prado Martín,

Hauk, & Pulvermüller, 2006; Schmidt-Snoek, Drew, Barile, & Agauas, 2015). As

discussed before, it is impossible to di�erentiate perceptual from linguistic switch

with auditory targets because the switching conditions completely overlapped.

However, it is possible to propose these speculations. First, it is possible that the

ERP switching costs were driven by the linguistic switch more, because it is the case

for visual targets when the strength of linguistic switch was compared with

perceptual switch. In other words, linguistic switch could explain the neuroelectrical

activations around 350ms in the frontal region better than perceptual switch for

visual target; so it is plausible to assume that the same occurred for auditory targets

too. Second, the reason why the ERP results showed strong evidence at this point

could be because of the overlap between perceptual and linguistic switches. Since

the simulation and linguistic information agreed with each other, they elicited

strong activations at this relatively early time window (i.e., before the typical N400
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window).

From the timing of ERP e�ects, it could also be seen that the linguistic

component did not play only one role, that is it did not only elicit neural activities

once at the beginning of the processing as suggested by LASS (Barsalou et al.,

2008). It also elicited activities later around 800ms, which was limited to visual

targets (i.e., when linguistic and simulation information did not completely overlap).

Therefore, it could be argued that when there was a mismatch between linguistic

and embodied components, the linguistic information was utilised later during

processing, possibly to reconcile the conflicting information before decision making

(Polich, 2007) or integrating distinct conceptual representations (Davenport &

Coulson, 2011; Kuperberg, 2007; Paczynski & Kuperberg, 2012).

In general, our findings were di�erent from previous findings of modality

switching costs (e.g., Pecher et al., 2003), which primarily stressed the contribution

of modality-specific resources during conceptual representations. We found that,

although modality-specifc simulation was useful and important, it was moderated

and guided by the linguistic information. In fact, the evidence perceptual switch was

weak, which did not have an absolute e�ect on either the behavioural outcome or

the neuroelectrical activations, and only outperformed linguistic switch in a relative

sense around 400ms after the adjective onset. This suggests that sematic

representation which relies on embodied simulation (i.e., as signaled by the N400

e�ect; Kutas & Federmeier, 2011) had only limited e�ects on the processing of

sensory properties. Instead, it is the linguistic distributional patterns that did the

most heavy-lifting.

Limitations and future directions

Our study could not implement a full-fledged independent manipulation of the

linguistic component because auditory words tend not to appear in the same
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linguistic cluster as other sensory properties (Louwerse & Connell, 2011). If future

studies could ensure independent factorial manipulation (i.e., both perceptual and

linguistic switch, perceptual switch and linguistic non-switch, perceptual non-switch

and linguistic switch, both perceptual and linguistic non-switch), we would predict

that the early N400 e�ect would appear for the two conditions where there is a

linguistic switch whereas the LPC to appear for the two conditions where there was

a mismatch between perceptual and linguistic switch.

Our study also found an immediate e�ect of both embodied and linguistic

switch at the first 50ms of the epoch. Although embodied simulation and linguistic

distributional patterns were found to have speedy activations, it was unlikely that

they could a�ect semantic processing at the immediate property onset. Instead, this

e�ect could be a result of spill-over from the concept word. Because a trial was

presented with a concept (e.g., SUN ) first for 500ms followed by a property (e.g.,

bright), it was plausible that the conceptual representation of the concept word was

still ongoing by the time the epoch started. Because the properties were usually

salient for the concepts, the switching costs might have already been incurred when

participants were processing the concept word. Bernabeu et al. (2017), in their

recent replication of previous ERP studies, reversed the order of concept and

property and did not find an immediate e�ect from the property onset. In future

studies, it is recommended to adopt the reverse order, control the concept words so

that they do not automatically activate the properties before the words are shown,

or analyse epochs after both the concept and property words.

Conclusion

The present study provided support for the crucial role of the linguistic

component in conceptual representations. Instead of finding it to perform a

peripheral role, we found that it bore the burden of conceptual representations,
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preceding and even overpowering the e�ect of the embodied component. We suggest

that representing the meaning of a word is indeed embodied, but the linguistic

information support conceptual representation in an important way (Connell, 2018).

The timecourse of the activations of the two components satisfies the requirement

for the linguistic component to be a shortcut before the slower and more detailed

simulation produces a detailed representation (Barsalou et al., 2008; Connell &

Lynott, 2014; Louwerse & Jeuniaux, 2010).
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CHAPTER 7

ERP Markers of Embodied and Linguistic

Components during Metaphor Processing

In Chapters 4 and 5, we studied conceptual representations during

metaphor processing, specifically whether the conceptual representation of

metaphor comprehension included both embodied and linguistic component, and

whether the linguistic component could become a shortcut to conserve resources.

Our results seemed to confirm the former, but remained open on the latter. On

one hand, we found that both ease of simulation (i.e., how easy it is to simulate

a concept) and linguistic distributional frequency (i.e., how often two component

words co-occur in a linguistic context) a�ected performances during metaphor

processing uniquely and independently. However, on the other hand, we did not

find evidence that showed an increase in the reliance on LDF even though we

had created conditions that encouraged the use of the linguistic shortcut, such as

shallow processing and stringent time limits. In fact, the e�ect of the linguistic

component seemed to be wiped out if people were under great time pressure.

In Chapter 6, we explored the neuroelectric markers of embodied and lin-
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guistic components in literal language processing. Although the analyses were per-

formed in an exploratory fashion and the behavioural e�ect of modality switching

costs was not replicated, the results confirmed the overarching hypothesis in this

thesis, that is: embodied and linguistic components both exist and account for the

neurophysiological activities deferentially. We found the activities in the percep-

tual modality switch to be strongly associated with the ERP activities in the left

parietal region around 400ms; while the linguistic dimension switch was associated

with the activities in the occipital and frontal regions around 350ms, which was

before the activations of the embodied component. The early e�ects of linguistic

dimension switch provided support for the linguistic shortcut hypothesis.

In this chapter, I will return to the theme of the thesis (i.e., metaphor

processing), with the findings of the previous three chapters in mind. The aims

are two-fold, as reflected in the two experiments in the paper presented in this

chapter. First, I will examine again how depth of processing a�ects conceptual

representation during metaphor processing. The prediction remains that the lin-

guistic shortcut will play a larger role in shallow processing, and the embodied

component will in turn play a smaller role in shallow processing. Although this

question has been touched upon in Chapters 4 and 5, it was not the central ques-

tion in those chapters, and the design of the experiments did not primarily test this

question. In this chapter, the experiments will adopt a within-participant design,

so that the hypothesis of concern will be that tasks can moderate the e�ects of

EoS or LDF.

The second aim of this chapter was to study the timecourse of embodied

and linguistic components during metaphor processing. Since ERP more sensitive
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than the behavioural measures in previous chapters, it is possible to detect the

di�erences in the activation of the linguistic component using ERP even though

we did not find any evidence for the linguistic shortcut on response decisions

and RT in Chapters 4 and 5 (which may well be the case in this chapter). The

ERP findings concerning literal language processing in Chapter 6 will be used as

hypotheses for the study in this chapter; but the analyses in this chapter will still

be component free and cover the whole scalp and epoch.
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Abstract

Language processing relies on conceptual representations which are composed of two

crucial components, embodied simulation and linguistic distributional pattern. The

embodied component refers to the reactivation of previous sensorimotor experiences

related to the concept (e.g., experiences with a clever student when reading "bright

student"); the linguistic component refers to the co-occurrence pattern of the

constituent words (i.e., how often "bright" and "student" appear in the same

context). In this study, we examined the existence and roles of these components in

metaphor processing. Using both a behavioural study and EEG, we studied how

these components a�ected the speed, success rate and neurophysiological activations

of metaphor comprehension. We found that, while performance of metaphor

comprehension was mainly influenced by the embodied component, the linguistic

component was activated before the embodied component reached its peak and

could act as a shortcut to construct good-enough representation, such that people

found it easier to accept and hard to reject a metaphor when the distributional

frequency of constituent words was high. In other words, the linguistic distributional

pattern could provide a guide for conceptual representations before the embodied

component was fully engaged.

Keywords: Metaphor processing, embodied simulation, linguistic distributional

pattern, EEG

Word count: 7212 words
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Continuous neural activations of simulation and linguistic information during

metaphor processing

In the past two decades, researchers have gradually come to the consensus that

conceptual representation has at least two components, an embodied component and

a linguistic component (Barsalou, Santos, Simmons, & Wilson, 2008; Connell &

Lynott, 2014; Louwerse & Jeuniaux, 2010; Vigliocco, Meteyard, Andrews, & Kousta,

2009). As new concepts are acquired, neural networks are activated in response to

the physical environment as well as language. The activation of di�erent neural

regions leaves traces of conceptual representation; and during conceptual processing

(e.g., language comprehension), these traces are reactivated to simulate the sensory,

motor, a�ective, introceptive and other bodily experiences, thus forming the

embodied component, as well as to activate the distributional pattern of linguistic

symbols, thus forming the linguistic component.

The embodied and linguistic components are highly intercorrelated, because

the distributional pattern of words in language often reflects the associations of

objects, events, and ideas in the real world (Louwerse, 2011). The fact that bright

appears with sun frequently in close proximity reflects the physical reality that the

sun is usually bright. Thus, the linguistic information could approximate the

embodied component, thereby informing a response on its own; and the linguistic

information could in turn activate related simulation information (Johns & Jones,

2012).

Andrews, Vigliocco, and Vinson (2009) modeled conceptual representation

with both simulation and linguistic information and found that word meaning is

best represented by the combination of these two types of data. In other words,

both embodied and linguistic components are central to the conceptual system. The

Language and Situated Simulation theory (LASS: Barsalou et al., 2008) as well as
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the Symbol Interdependency Hypothesis (SIH: Louwerse, 2011) propose that both

components are activated simultaneously during language comprehension. The

linguistic component reaches the peak of its activation through the distributional

patterns, which is relatively faster than the activation of the embodied component

and with less cost. The latter, on the other hand, requires deeper processing of

situated simulation. As a result, this temporal advantage of the linguistic component

could be utilised during conceptual representation depending on the current context

or task demands. In other words, conceptual representation is flexible enough to

adjust the reliance on the embodied versus the linguistic component in order to

satisfy specific task demands (Connell & Lynott, 2014; Lynott & Connell, 2010).

Taken together the fact that the linguistic component can provide a fuzzy

approximation of the embodied component, and that the former is activated faster

than the latter, it was hypothesised that the linguistic component could act as a

shortcut to guide conceptual representation before the more costly embodied

component is fully engaged, particularly when superficial processing could su�ce

(Connell, 2018; Connell & Lynott, 2013). Support for this linguistic shortcut

hypothesis should contain two parts. First, the linguistic component should enjoy

greater importance during language processing when the task allows relatively

shallow and speedy processing. Second, the linguistic component should reach the

peak of its activation prior to the embodied component.

Evidence for the former requirement was found with the property verification

task and the conceptual combination task. The linguistic distributional pattern

among sensory properties (e.g., co-occurrence frequencies between loud and bright)

was powerful enough to account for faster responses to these properties, but not for

the slower responses (Louwerse & Connell, 2011). The distributional pattern could

also account for responses to novel concepts (e.g., cactus beetle) when people

performed a simple yes/no sensibility judgement task instead of an interpretation
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generation task in which they needed to provide a verbal interpretation (Connell &

Lynott, 2013). To support the temporal advantage of the linguistic component,

Louwerse and Hutchinson (2012) found in an EEG study that neural regions

involved in linguistic processing (e.g., left inferior frontal gyrus) was activated to a

larger degree than the regions involved in perceptual processing (near the lingual

gyrus) at the early stage of conceptual processing, while the pattern was reversed at

the later stage.

In summary, conceptual representation involves both simulation and linguistic

information, with the linguistic component acting as a shortcut depending on the

demands of the task. As conceptual representation should underlie all types of

language processing, we expect the same pattern to be found during metaphor

processing as well. In this study, we investigate the interplay between embodied and

linguistic components in metaphor processing. Furthermore, we trace their roles

during real-time processing using event-related EEG potentials (ERP).

Simulation and Linguistic Representations of Metaphors

Recent studies have viewed metaphor processing as an aspect of language

processing in general, and placed it under the same lens of conceptual

representations (Liu, Connell, & Lynott, 2017, 2018c). In those studies, participants

read adjective metaphors (e.g., \emph{Student can be bright, Supporters can be

lukewarm) that are controlled on both embodied and linguistic components. That is,

these metaphors independently varied on two dimensions, which were the ease of

simulation (EoS) and the linguistic distributional frequencies (LDF). EoS was a

novel norming measure of how much e�ort it took for people to successfully arrive at

a conceptual representation (Liu, Connell, & Lynott, 2018b), which combined the

measures of three scales, that is how easy it was to imagine, to use, and to make

sense of the metaphors. The combined EoS measure could outperform any of the
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individual scale in predicting the performance to a sensibility judgement task. This

advantage suggested that EoS measured the underlying mechanism of metaphor

comprehension, which was assumed to be simulation. On the other hand, LDF was

a minimal measure of the linguistic distributional patterns, quantified the bi- to

5-gram frequencies of the constituent words (e.g., student and bright with zero, one,

two or three intervening words).

Just as what was found for language processing, both variables were found to

contribute to a unique portion of variance of performance during metaphor

processing tasks. People primarily based their performance on the embodied

component, as they attempted to form a coherent simulation. They found it easy to

accept a metaphor when it was considered easy to simulate, and easy to reject a

metaphor when it was considered hard to simulate. The e�ect of EoS varied based

on the depth of processing and the time available for responses. When participants

needed to provide an interpretation to the metaphors (i.e., during deeper processing)

or when they were allowed more time, EoS showed a larger e�ect than when they

performed a yes/no sensibility judgement (i.e., during relatively shallower

processing) or when they were under limited time constraint.

On the other hand, the linguistic component also a�ected people’s judgments.

When the constituent words often co-occurred (e.g., bright and student), people

could reach a decision to accept the metaphor straightaway, without further

expending much e�ort on simulation. Moreover, information of the linguistic

component could guide the activities of embodied simulation. LDF moderated the

e�ect of EoS when people rejected a metaphor as nonsensical (Liu et al., 2018c).

High LDF could signal that the processing was likely to succeed, thus making people

spending more e�ort on simulation, even when processing turned out to be di�cult.

However, the linguistic shortcut hypothesis was not fully supported because,

opposite to the predictions, people relied on the linguistic information even more
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during deep processing and a longer response interval. Nevertheless, these studies

showed that the embodied and linguistic components were variably engaged based

on required depth of processing and the length of response window. These results

highlighted the fact that conceptual representation could be highly task-dependent

(Connell & Lynott, 2014; Lebois, Wilson-Mendenhall, & Barsalou, 2015), and

subject to the strategies chosen by participants.

As previous studies did not support the linguistic shortcut hypothesis fully, it

is necessary to replicate the results and to investigate the actual role of the linguistic

component during metaphor processing, which is the aim of the current study. One

of the ways to paint a fuller picture of the role of the linguistic component is to

study the timecourse of its activation during online processing using EEG.

ERP Markers of Metaphor Processing

EEG could help us in the study of the timecourse of linguistic and embodied

components during online processing. To support (or reject) the linguistic shortcut

hypothesis, it is important to show that the linguistic component in fact reaches the

peak of its activations before the embodied component. EEG proves to be a useful

tool in this respect because it reveals the real-time activities of the brain during

conceptual processing (Amsel, 2011). Previous studies have examined the neural

activities during metaphor processing (e.g., Arzouan, Goldstein, & Faust, 2007; De

Grauwe, Swain, & Holcomb, 2010; Pynte, Besson, Robichon, & Poli, 1996), but have

rarely di�erentiated the e�ect of the linguistic component from the e�ect of the

embodied component.

ERP Markers of Simulation versus Linguistic Information

Liu, Connell, and Lynott (2018a) explored the ERP manifestations of

embodied and linguistic components in literal language processing. They found that
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the neuroelectrical activities associated with the embodied component were di�erent

from that of the linguistic component. The former were associated mainly with

greater activities around 400ms after the stimulus onset in the left parietal region.

These activations coincided with the classical N400 e�ect, which was a marker of

greater e�ort in semantic representation (Kutas & Federmeier, 2011). In contrast,

the linguistic component was activated at first around 300ms from the stimulus

onset at the frontal region, and again after 600ms in the posterior (i.e., parietal and

occipital) regions, which might suggest that the linguistic component was associated

with the early stage of semantic processing (Collins, Pecher, Zeelenberg, & Coulson,

2011) as well as conflict resolution (Davenport & Coulson, 2011; Paczynski &

Kuperberg, 2012) respectively.

Present Study

In this study, our aim was to replicate and extend previous findings on the

linguistic-simulation representations of metaphors. Since we are particularly

interested in testing the e�cacy of linguistic information, we kept the measure

minimal as in previous studies (Liu et al., 2017, Liu et al. (2018c)), using

co-occurrence frequencies within a 5-word window only. In the behavioural study

(Experiment 1), we will replicate the same tasks as previous studies (i.e., the shallow

sensibility judgement task, and deep interpretation generation task). Furthermore,

to address the possibility that the e�ect of the tasks in previous studies could be

confounded with the di�erences between participants, we conducted a

within-participant design. In this pre-registered experiment

(https://aspredicted.org/�8ms.pdf), we expected to fully replicate the e�ects of EoS

from previous studies. Also we hypothesised that if the linguistic shortcut

hypothesis was true, LDF would a�ect the speed of acceptance on its own. EoS and

LDF would be moderated by tasks, such that EoS would have a larger e�ect in the
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deep task than the shallow task, and vice versa for LDF. Furthermore, linguistic

information should moderate the activities of embodied simulation, especially when

a metaphor was rejected.

Then in the EEG study (Experiment 2), we will investigate the continuous

neuroelectrical activities of embodied simulation and the activation of linguistic

distributional patterns. We expect EoS to reach the greatest e�ect around 400ms in

the left parietal region, replicating the ERP marker of the embodied component in

the behavioural study. In contrast, LDF should have a greater e�ect early in the

trial (around 300ms), thus supporting the linguistic shortcut hypothesis; as well as

later after 600ms in a similar way as during literal language processing, because

metaphor processing should involve the resolution of conflicting representations

(Coulson & Van Petten, 2002). Since these hypotheses were proposed based on the

previous study on literal language processing, we expect the results the exceed the

current hypothesised regions. As a result, these hypotheses are better considered as

tentative, and we will explore the neuroelectrical activities beyond these areas of

interest.

Experiment 1: Behavioural Study

A pre-registered behavioural study here (https://aspredicted.org/�8ms.pdf)

tests the existence and the role of embodied and linguistic information during

metaphor processing. In this study, participants performed both a shallow

sensibility judgement task and a deep interpretation generation task, which was

hypothesised to alter the reliance on the two components. Specifically, the linguistic

shortcut hypothesis suggested that shallow processing would encourage the use of

the linguistic component. In this section, we report how we determined our sample

size, all data exclusions, all manipulations, and all measures in the study.
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Method

Participants. Forty-eight students from Lancaster University participated

in the experiment (age: 20.96 (SD = 3.51); female: 31; right-handed: 37). All were

native speakers of English, speaking English as their first language since infancy.

The size of sample was pre-determined to match the previous between-participant

study (Liu et al., 2018c).

Materials. 452 metaphors in the form of “NOUN can be ADJECTIVE”

(e.g., Student can be bright) were used as stimuli. All adjectives were perceptual

adjectives pertaining to vision, audition or haptics (Dantzig, Cowell, Zeelenberg, &

Pecher, 2011; Lynott & Connell, 2009). Each adjective was paired with four nouns

so that the metaphor varied on two dimensions, ease of simulation (EoS) and

linguistic distributional frequency (LDF). EoS was operationalised in a norming

study (Liu et al., 2018b) which extracted the principle component of three di�erent

ratings of the metaphors: sensibility rating (How much sense does the sentence make

when you read it in text or hear it in conversation?), usability rating (How easy is it

for you to use the sentence in text or conversation?), and imaginability rating (How

easy is it for you to imagine the concept described in the sentence?). These three

ratings measured the e�ort to arrive at a mental representation, which, in line with

the embodied account of language processing (Barsalou et al., 2008; e.g., Zwaan,

2004, 2014), is constituted of the simulation of sensorimotor, a�ective, and other

information. Hence, we assumed that the composite measure of these ratings

measured the underlying embodied simulation during language comprehension, and

thus labeled it ease of simulation (EoS). For instance, Student can be bright (EoS =

1.84) and Solution can be bright (EoS = 1.41) were considered to be easy to

simulate; while Illness can be bright (EoS = -1.32) and Supply can be bright (EoS =

-1.02) were considered to be hard to simulate.
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LDF, on the other hand, was defined by the bi- to 5-gram frequencies of each

pair of noun and adjective in the Google Web1T Corpus, which had 1 trillion words

(Brants & Franz, 2006). The raw frequency was logarithmically transformed as lg(N

+41), where 41 is the lowest non-zero frequency in the corpus. For example, Student

can be bright (LDF = 4.08) and Supply can be bright (LDF = 3.72) had higher

distributional frequencies than Solution can be bright (LDF = 3.11) and Illness can

be bright (LDF = 2.94). The two dimensions (i.e., EoS and LDF) had a correlation

of r = .27, sharing approximately 7.29% of variance, and they were separable using

statistical measure which will be discussed later in the Results section. The full set

of norms can be accessed at https://osf.io/xgysz.

The 452 sentences could be divided into four lists, in which each adjective

appeared only once. The EoS and LDF matched across the lists (EoS: F(3,448) =

0.03, p = .99; LDF: F(3,448) = 0.09, p = .96). Thus, two lists of sentences were used

for the whole experiment. As the whole experiment was composed of two tasks,

participants saw two lists of sentences, one for each task (i.e., each adjective

appeared twice throughout the experiment, paired with di�erent nouns).

Procedure. All participants performed two tasks in a counterbalanced

order, a sensibility judgement task (or shallow processing condition) and an

interpretation generation task (or deep processing condition). Sentences in each task

were presented in a random order. Ten extra items were used before each task as

practice. In both the practice and the test sessions, participants read the sentences

one word/phrase at a time (Figure 1). In the shallow sensibility judgement task,

participants were asked to decide whether the sentence was sensible or not. They

started by seeing a fixation cross at the beginning of the trial, followed by the noun,

“can be”, and then the adjective. The adjective stayed on the screen for 200ms

followed by a blank screen for 2800ms during which a response should be made. If

they judged the sentence as sensible, participants were asked to press the comma (,)



ERP OF METAPHOR CONCEPTUAL REPRESENTATIONS 12

key; and if they judged the sentence as nonsensical, the full stop key (.). Once a

response was made, the fixation cross would appear on the screen to signal the

beginning of the next trial. However, if no response was made within the length of

the response interval, a feedback warning would appear on the screen saying

***TOO SLOW***.

The procedure of the deep interpretation generation task was the same as the

shallow sensibility judgement task from the fixation cross until the adjective. After

the adjective disappeared, a blank screen remained for 7800ms as a response

interval, during which participants were asked to think of an interpretation for the

sentence and make a response once they had thought of an interpretation or decided

they could not think of an interpretation. The response key was the same as the

shallow task. If participants indicated that they had thought of an interpretation for

the sentence, after pressing the comma key, a blank screen would appear for them to

type down their interpretation of the sentence. They were required not to simply

replace the adjective with a synonym. After an interpretation was provided, they

would press Enter to proceed to the next trial; and if they indicated that the

sentence was not interpretable, they would automatically proceed to the next trial.

Like in the shallow task, if no response was made within the length of the response

interval, participants would receive a feedback warning. In both tasks, their

response decision (accept/reject the metaphor) and the response time (RT) were

recorded for analyses. There were two self-administered breaks within each task and

one break between tasks.

Design and analysis. The response decisions and RT were analysed as

pre-registered. Response decisions (coded 0 for “no” and 1 for “yes”) were analysed

in a mixed-e�ect logistic regression.1 Task (coded 0 for sensibility judgement and 1

1 We used R (Version 3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate &

Heiberger, 2016), arm (Version 1.10.1; Gelman & Su, 2018), BayesFactor (Version 0.9.12.4.2;
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Figure 1 . Presentation sequence in Experiment 1. * Response time window depended

on task. Shallow sensibility judgment task allowed 3s, and deep interpretation gener-

ation task allowed 8s. ** After response, proceed to next trial in shallow sensibility

judgment task; and in deep interpretation generation task, proceed to type down the

interpretation if answered “yes”, and to next trial if answered “no”.

for interpretation generation), EoS and LDF, with their interactions, were used as

Morey & Rouder, 2015), bookdown (Version 0.7; Xie, 2016), broom (Version 0.4.4; Robinson, 2018),

coda (Version 0.19.1; Plummer, Best, Cowles, & Vines, 2006), contrast (Version 0.21; Kuhn, Steve

Weston, Wing, Forester, & Thaler, 2016), cowplot (Version 0.9.2; Wilke, 2017), data.table (Version

1.11.4; Dowle & Srinivasan, 2017), doBy (Version 4.6.1; Højsgaard & Halekoh, 2018), dplyr

(Version 0.7.5; Wickham, François, Henry, & Müller, 2018), Formula (Version 1.2.3; Zeileis &

Croissant, 2010), ggplot2 (Version 2.2.1; Wickham, 2009), gridExtra (Version 2.3; Auguie, 2017),

Hmisc (Version 4.1.1; Harrell Jr, Charles Dupont, & others., 2018), interplot (Version 0.1.5; Solt &

Hu, 2015), knitr (Version 1.20; Xie, 2015), lattice (Version 0.20.35; Sarkar, 2008), lme4 (Version

1.1.17; D. Bates, Mächler, Bolker, & Walker, 2015), lmerTest (Version 3.0.1; Kuznetsova,

Brockho�, & Christensen, 2017), magrittr (Version 1.5; Bache & Wickham, 2014), MASS (Version

7.3.50; Venables & Ripley, 2002), Matrix (Version 1.2.14; D. Bates & Maechler, 2017), mgcv (S. N.

Wood, 2003, 2004, Version 1.8.23; 2011; S. Wood, N., Pya, & S"afken, 2016), multcomp (Version
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fixed variables; participant and item were used as crossed random variables

modelling random intercepts.2 RT was analysed first in an omnibus mixed-e�ect

linear regression, with task, response decision, EoS, LDF and their interactions as

fixed predictors; participant and item as crossed random variables modelling random

intercepts.3

Then RT was separated by the response decision to test the specific hypotheses

for di�erent responses, and each analysed in a mixed-e�ect linear regression. Further

analyses of response decisions and RT were conducted in mixed-e�ect models which

modeled random intercepts and slopes (not pre-registered). These analyses were not

pre-registered but deemed appropriate because mixed-e�ect models with random

intercepts and slopes would generalise better than a random-intercept-only model

(Barr, Levy, Scheepers, & Tily, 2013). However, a full maximal model did not always

1.4.8; Hothorn, Bretz, & Westfall, 2008), mvtnorm (Version 1.0.8; Genz & Bretz, 2009), nlme

(Version 3.1.137; Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017), papaja (Version

0.1.0.9735; Aust & Barth, 2017), plyr (Wickham, 2011; Version 1.8.4; Wickham et al., 2018), psych

(Version 1.8.4; Revelle, 2017), purrr (Version 0.2.5; Henry & Wickham, 2018), rcartocolor (Version

0.0.22; Nowosad, 2017), rms (Version 5.1.2; Harrell Jr, 2018), SparseM (Version 1.77; Koenker &

Ng, 2017), survival (Version 2.42.3; Terry M. Therneau & Patricia M. Grambsch, 2000), TH.data

(Version 1.0.8; Hothorn, 2017), and tidyr (Version 0.8.1; Wickham & Henry, 2017) for all our

analyses and the writing up of this manuscript.

2 Model including participants as random intercepts explained the data better than the empty

model by 4.88 x 10175 times (BF10 = 4.88 x 10175); model with participants and item as crossed

random intercepts further better explained the data than the model with only participants as

random intercept (BF10 > 1.80 x 10308); inclusion of fixed predictors further better explained the

data by 1.80 x 10132 times (BF10 = 1.80 x 10132).

3 Model including participants as random intercepts explained the data better than the empty

model (BF10 > 1.80 x 10308); model with participants and item as crossed random intercepts in

fact worsen the model (BF10 = 0.01) but was still used for consistency; inclusion of fixed predictors

further better explained the data (BF10 > 1.80 x 10308).
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converge. Therefore, we looked for the maximal random e�ect structure justified by

the sample for both response decisions and RT data, and reported it here, if they

provided a better fit than the random-intercept models. The random-intercept

models can be found in Supplementary Materials (https://goo.gl/sRkXun).

In both the present experiment and Experiment 2, we used the Bayes Factor

(BF), instead of the Chi-squared test, to decide whether the addition of new random

or fixed variables improved a model. BF uses the Bayesian approach to calculate the

amount of evidence the data lends to the alternative hypothesis in relations to the

amount of evidence for the null hypothesis. BF10 denotes the ratio of the likelihood

of the data under the alternative hypothesis against the null hypothesis. If BF10 is

5, it means that the data is 5 times more likely to occur under H1 than H0.

Therefore, BF can inform us about quality of the hypotheses. We can be more

confident with the alternative hypothesis if BF10 = 100 than if BF10 = 10. Inversely,

if BF10 is less than 1, we would be more confident about the null hypothesis than

the alternative hypothesis. As a result, the BF is superior to p-values produced by

null-hypothesis significance testing (NHST), which only tells us the probability of

Type I error but not how good the alternative hypothesis is. See Jarosz and Wiley

(2014) and Wagenmakers (2007) for detailed discussions.

The BF of regression models can be easily obtained in R by extracting the

Bayesian information criteria (BIC). BF01 (comparing H0 against H1) is calculated

as:

BF01 = e
(BIC(H1) ≠ BIC(H0))

2

BF10, which denotes the likelihood of H1 against H0 is simply the inverse of

BF01. While the continuous scale of BF is useful enough, we could conveniently

describe the results, using Je�reys (1998)’s guideline to characterise BF (Table 1).
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Table 1

Interpretation of BF as evidence

for H 1

BF01 BF10 Support for H1

1-.33 1-3 Anecdotal

.33-.10 3-10 Substantial

.10-.03 10-30 Strong

.03-.01 30-100 Very strong

<.01 >100 Decisive

Results and Discussion

No participants were deleted for slow response (> 3SD from grand mean).

1.35% of trials were missed (i.e., no response within the time limit), which were

deleted. Eight trials were deleted for motor error (RT < 200ms). Beyond that, 39

trials in the deep processing task were marked out as invalid interpretations (blank,

“0”, “wrong button”, etc.). Finally, we removed individual trials with outlying RT

(> 3SD from individual means per response per task) that was 0.80% and 1.34% of

“yes” and “no” responses respectively in the shallow task; 1.05% and 1.69% of “yes”

and “no” response respectively in the deep task. Consequently, there remained 5294

data points for the shallow task and 5199 for the deep task.

Response decision. The general acceptance rate was 46.07%. That was

47.02% of the shallow task and 45.10% of the deep task. Mixed-e�ect logistic

regressions were conducted. The random-intercepts model as per pre-registration

showed di�erent results from the maximal random-slopes model justified by the

data, but the latter explained the data better than the former (BF10 = 8.57 x 1032;
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Table 2

Logistic mixed-e�ect regression of

response decision

b 95% CI

Intercept -0.28 -0.58 - 0.02

Task -0.15 -0.39 - 0.1

LDF 0.07 -0.01 - 0.15

EoS 1.32 1.16 - 1.48

Task : LDF 0.05 -0.03 - 0.13

Task : EoS 0.01 -0.08 - 0.1

LDF : EoS 0.05 -0.02 - 0.13

Task : LDF : EoS -0.01 -0.1 - 0.07

Note. b is non-standardised regression

coe�cient.

detailed explanation of BF in Experiment 2). Therefore, we reported the maximal

model here (Table 2), that is participant as a random predictor to model the

intercept and slope of task, LDF and EoS without interactions; and item as a

random predictor to model the intercept and slope of task LDF and EoS with

interactions). The results showed that only EoS, among all fixed predictors, had a

significant e�ect on response decisions. As EoS increased by one unit, the odds to

accept the metaphors increased 3.75 times. The random-intercepts model showed

that beyond the e�ect of EoS, EoS interacted with task and LDF also had a positive

e�ect on response decision (see Supplementary Materials).

Response time. The grand mean of RT was 1391ms (SD = 885ms), which

was 1114ms (SD = 455ms) for shallow task and 1674ms (SD = 1102ms) for deep
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Table 3

Mean (SD) RT in ms per task per

response decision

Task Shallow Deep

Yes 1118 (457) 1815 (1085)

No 1110 (454) 1557 (1102)

task. The average RT per response decision per task was shown in Table 3.

Analyses of RT found evidence of net suppression (J. Cohen, Cohen, West, &

Aiken, 2003), which means that the shared variance of LDF and EoS was masking

the true relationship between the variables and RT. Because LDF and EoS

correlated to some degree, LDF contributed to the fit of the model by explaining the

error variance of EoS. As a result, the e�ect of EoS was enhanced while the e�ect of

LDF was diminished. This could be seen by the fact that the e�ect of LDF in the

LME model was the opposite of its zero-order correlation with RT. As seen in

Supplementary Materials, LDF had a negative e�ect on the speed to reject a

metaphor (i.e., “no” RT) in the mixed-e�ect model, but a positive correlation with

RT according to the zero-order correlations. Therefore, as pre-registered, we

orthogonalised EoS and LDF using a principle components analysis (PCA) with

varimax rotation and Kaissar covariance normalisation. PCA managed to obtain

two perpendicular variables each corresponding to one of the original variables. This

procedure solved the problem of net suppression because the orthogonal variables

did not have any shared variance. The orthogonal variables obtained by PCA did

not lose any information from the original variables, and they correlated with each

variable (r = .99). The orthogonalisation procedure was done both for the omnibus

regression and separately with the RT to “yes” and “no” responses for the analyses
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per response. The results reported here used only orthogonal variables.

The omnibus regression was shown in Table 4. Again, the maximal model

justified by the data provided a massively better fit than the random-intercept

model4 (BF10 > 1.80 x 10308; participant as a random predictor to model the

intercept and slope of task; and item as a random predictor to model the intercept

only)), so the former was reported here and the latter in Supplementary Materials.

EoS had a positive e�ect when LDF was at its mean, which was moderated by task

and response. It showed that EoS had a positive e�ect for both tasks, which was

larger for the deep task than the shallow task. The e�ect was positive for “no”

response but negative for “yes” response. In contrast, LDF did not have an e�ect

when EoS was at its mean regardless of task and response. However, LDF did

interact with EoS when response was “no” in the sensibility judgement task, which

was attenuated by “yes” response and the deep interpretation generation task, as

will be discussed in separate models below.

Because of the interaction between response decision and other variables, and

our hypotheses that opposite e�ects would exist for “yes” and “no” responses, we

separated the data into two sets and analysed the RT per response with

re-orthogonalised variables (Table 5). For “yes” response (i.e. when participants

accepted the metaphors), both EoS and LDF had a negative e�ect on both tasks.

That is as EoS or LDF increased, people were faster at accepting a metaphor. Only

EoS interacted with task, which means that it had a larger (more negative) e�ect

when people needed to generate an interpretation for the metaphor than when they

needed to make a simple “yes/no” judgement concerning sensibility; whereas the

interaction between LDF and task was not significant meaning that the e�ect of

LDF did not change between tasks.

4 The largest number calculable on a computer is 21024, which is approximately 1.80 x 10308.
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Table 4

Omnibus linear mixed-e�ect regression of RT

b 95% CI

Intercept 1424.55 1293.91 - 1555.2

Task 411.02 283.14 - 538.89

Response 28.53 -1.2 - 58.25

LDF 2.4 -17.76 - 22.56

EoS 58.51 37.49 - 79.53

Task * Response 19.4 -22.48 - 61.28

Task * LDF 15.82 -11.64 - 43.29

Response * LDF -10 -37.86 - 17.86

Task * EoS 49.02 20.53 - 77.51

Response * EoS -189.33 -217.94 - -160.71

LDF * EoS -31.84 -50.88 - -12.81

Task * Response * LDF -16.08 -55.36 - 23.21

Task * Response * EoS -101.39 -141.15 - -61.64

Task * LDF * EoS -6.27 -32.04 - 19.51

Response * LDF * EoS 22.49 -3.91 - 48.89

Task * Response * LDF * EoS 4.6 -32.04 - 41.24

Note. b is non-standardised regression coe�cient.
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Table 5

Mixed-e�ect linear regression model of RT per response decision

Yes No

b 95% CI b 95%CI

Intercept 1465.66 1336.17 - 1595.14 1457.7 1304.26 - 1611.13

Task 476.63 345.85 - 607.42 431.55 280.32 - 582.78

LDF -25.03 -45.81 - -4.25 14.8 -5.35 - 34.95

EoS -158.14 -191.16 - -125.13 67.32 35.1 - 99.54

Task * LDF -9.64 -39.56 - 20.29 17.48 -8.74 - 43.69

Task * EoS -71.75 -102.57 - -40.93 41.21 14.55 - 67.87

LDF * EoS -8.14 -27.8 - 11.53 -27.29 -44.89 - -9.69

Task * LDF * EoS -3.78 -32.27 - 24.71 -5.48 -29.18 - 18.22

Note. b is non-standardised regression coe�cient.

’Yes’ RT maximal model over random-intercepts model: BF10 = 2.80x10194.

’No’ RT maximal model over random-intercepts model: BF10 > 1.80x10308

For “no” response (i.e. when people rejected the metaphors), EoS had a

significant, positive e�ect when LDF was at its mean, that is as ease of simulation

increased, it took people longer to reject a metaphor. This e�ect of EoS interacted

with task as well, such that EoS had a larger (more positive) e�ect for the deep task

than the shallow task. LDF further interacted with EoS with a negative term, such

that as LDF increased, the e�ect of EoS decreased. This interaction remained the

same for both shallow and deep processing (Figure 2).

Summary. EoS strongly a�ected metaphor processing as predicted. As

metaphors become easier to simulate, the likelihood and speed of accepting them

increased regardless of LDF; whereas the speed of rejecting them decreased, which



ERP OF METAPHOR CONCEPTUAL REPRESENTATIONS 22

0.0
0.2
0.4

−1 0 1 2 3

R
ej

ec
tio

n 
ra

te

Quartile of LDF 1st (−1.42,−0.292] 2nd (−0.292,0.832] 3rd (0.832,1.96] 4th(1.96,3.08]

1300

1400

1500

−1 0 1 2 3
EoS

RT
 (m

s)

Quartile of LDF
1st (−1.42,−0.292]

2nd (−0.292,0.832]

3rd (0.832,1.96]

4th(1.96,3.08]

Figure 2 . E�ects of EoS on the “no” RT at four quartiles of LDF. As LDF increased

from the 1st quartile (violet) to the highest 4th (yellow), the e�ect of EoS flatlined.

The density plot on the top shows the proportion of “no” response along EoS per

quartile of EoS.

was attenuated when LDF increased. That is to say, when the constituent words did

not often co-occur, the easier it was to simulate a metaphor, the harder it was to

reject it; but when constituent words often co-occurred, the e�ect of EoS decreased

and flatlined.

LDF, though not a�ecting response decisions, had a significant e�ect on RT as

expected, such that as constituent words co-occurred more often, the speed of

accepting metaphors became faster. LDF also had an e�ect on the rejection speed

as expected, but the e�ect was only limited to low EoS. In other words, when a

metaphor was hard to simulate, the more often the constituent words co-occurred,
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the slower it was for people to reject it; but when a metaphor was easy to simulate,

the e�ect disappeared. As a result, it was fastest to reject a metaphor when both

EoS and LDF were low, and slowest when LDF was low but EoS was high.

Task was found to moderate EoS as expected. The e�ect of EoS was larger for

the deep interpretation generation task than for the shallow sensibility judgement

task. In contrast, the e�ect of LDF was not a�ected by task, contrary to the

linguistich shortcut hypothesis. The negative e�ect of LDF on the acceptance speed

remained the same for both sensibility judgement and interpretation generation

task, and the interaction between EoS and LDF on the rejection speed did not vary

between tasks either.

Experiment 2: EEG Study

In this experiment, we will examine the neuroelectrical activations of embodied

and linguistic components during metaphor processing. As this study was the first

to the authors knowledge to study the simulation-linguistic representation of

metaphor processing, we did not have any confirmatory hypotheses concerning the

results. However, we proposed some tentative hypotheses concerning the timecourse

and scalp regions of the activations. The activations of the embodied component

will be manifested around 400ms after the adjective onset at the left parietal region.

The activations of the linguistic component will be prior to those of the embodied

component, possibly around 300ms in the frontal region; and they will re-emerge

after 600ms in the parietal region. Although the experiment was not pre-registered,

we will report here how we determined our sample size, all data exclusions, all

manipulations, and all measures in the study.

Method
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Participant. Sixteen native speakers of English were needed to match

previous studies on metaphor processing (e.g., Coulson & Van Petten, 2002) and the

property verification task of (Liu et al., 2018a). One participant was excluded

because the data was not recorded properly due to technical trouble, so one more

was recruited to make up for the loss. All resulting usable participants were students

of Lancaster University (age: 22.06 (SD = 6.13); female: 11; right-handed: 15).

Materials. The stimuli derived from the same set of metaphoric sentences as

ones in Experiment 1. The only di�erence was that the sentences in this experiment

did not end after the adjectives, but all had the word “sometimes.” as the end, in

order to prevent the end of sentence wrap-up e�ect (Brouwer, Fitz, & Hoeks, 2012;

Kutas, Federmeier, & Sereno, 1999), which could be more noisy because it took

longer time and involved the integration of phrases and clauses and the processing of

phrase boundaries. The sentences were distributed into six lists of 169 or 170 items,

each composted of one and a half lists of items from Experiment 1. In each of these

six lists in this experiment, half of the adjectives appeared twice pairing with two

di�erent nouns and half appeared only once.

Procedure. The items lists were used both in the sensibility judgement task

and in the interpretation generation task. Participants took both tasks each with a

di�erent list, such that they saw di�erent sentences (di�erent nouns, same

adjectives) between the two tasks. The order of the tasks were counterbalanced and

the order of sentences were fully randomised. Participants were given four

self-administered break in each task as well as one long break between tasks,

resulting in five blocks of approximately 34 trials in each task.

At the beginning of each block, participants were given a four-second waiting

period for the EEG recording to initiate. The trial structure was similar to

Experiment 1 with few changes (Figure 3). Before the fixation cross, we added 1

second of blinking time during which a cue to blink remained on the screen. A
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Figure 3 . Presentation sequence in Experiment 2. * Response time window depended

on task. Shallow sensibility judgment task allowed 3s, and deep interpretation gener-

ation task allowed 8s (including the word). ** After response, proceed to next trial in

shallow sensibility judgment task; and in deep interpretation generation task, proceed

to say out loud the interpretation if answered “yes”, and to next trial if answered “no”.

fixation cross followed for a variable amount of time between 800ms to 1400ms.

Then, the nouns, “can be”, and the adjectives word were presented sequentially.

After the adjectives disappeared, a blank screen remained for 700ms during which

participants did nothing but focusing on the screen, in order to eliminate the

readiness potential which would occur if participants needed to make a response

immediately after the adjectives (Dehaene et al., 1998). Following the blank screen

after the adjective, the word “sometimes” would follow for another 300ms as the end

of the sentence followed by a blank screen as the response interval (2700s for the

shallow task and 7700ms for the deep task), during which participants were required

to perform either the sensibility judgement task or the interpretation generation

task as Experiment 1.
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To make a response, participants were asked to press a red button at the

position of “F” on the keyboard for “yes”, or a white button at the position of “J”

for “no”. In the sensibility judgement task, the experiment will proceed to the next

trial after the button press, but in the interpretation generation task, if participants

pressed “yes”, they would see a sign of a microphone on the screen and they would

say their interpretation of the sentence out loud. Their interpretations were recorded

by an external Sony recorder. This was done di�erently from Experiment 1 to avoid

contamination of the data by unwanted head movements during typing. After the

interpretation was recorded, they pressed the space bar to move on to the next trial.

Like in Experiment 1, if no response was made when the response interval had

elapsed, a feedback warning was shown on the screen.

Apparatus. Words were presented on a 19-inch CRT monitor operating at

100Hz refresh rate using EPrime 1.0, and behavioural responses were recorded using

a QWERTY keyboard. High-density EEG was recorded continuously using Hydrocel

Geodesic Sensor Nets (Electrical Geodesics Inc., Eugene, OR, USA) at 128 locations

referenced to the vertex (Cz) online. The ground electrode was at the rear of the

head (between Cz and Pz). Electrophysiological signals were acquired at the

sampling rate of 1000Hz by an Electrical Geodesics Inc. amplifier with a band-pass

filter of 0.1-100Hz. The impedance was checked prior to the beginning of the

recording and they were considered acceptable if lower than 50k�.

EEG analysis. The digitized EEG was further processed o�ine using

NetStation v 4.5.4. It was band-pass filtered between 0.1- 30Hz and was segmented

into epochs including 200ms before adjective onset and 1000ms after adjective onset.

EEG epochs were automatically rejected for body and eye movements the signal

exceeded ± 200 µV at any electrode. Data were further checked through visual

inspection for eye-movements, eye-blinks and other body movement artifacts not

detected by the automated algorithm. The artifact free segments were
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baseline-corrected with respect to the average amplitude in the 200 ms window

proceeding stimulus onset, and were re-referenced to the average reference o�ine.

These segments were then exported to a comma-separated values (csv) file and

analysed in R. In order to explore the continuous activations of embodied and

linguistic components, we analysed the EEG output throughout the whole 1-second

epoch after the adjective onset, and across the whole scalp (Amsel, 2011; Hauk,

Pulvermüller, Ford, Marslen-Wilson, & Davis, 2009; Hendrix, Bolger, & Baayen,

2017; Liu et al., 2018a). The EEG output per participant per stimulus were sliced

into 20 segments of 50ms and were averaged. The electrodes analysed were the 90

electrodes in the area on the scalp covered by the 20-20 EEG net (Appendix B). The

resulting datapoints were analysed in linear mixed-e�ect models (LME) with

participants and items as crossed random variables to predict random intercepts.

The analyses were exceptionally computationally heavy and thus were carried out

distantly using the High End Computing Cluster (HEC;

http://www.lancaster.ac.uk/iss/services/hec/) of Lancaster University.

Using LME o�ers two advantages over the conventional method of analysis

using ANOVA. First, it solves the language-as-fixed-e�ect fallacy (Clark, 1973) by

accounting for the random variance from both participants and stimulus at the same

time. Second, LME o�ers the possibility to take on continuous variables. In the

present study, both critical variables (i.e., EoS and LDF) are continuous. Forcing

them into distinct categories (e.g., high frequency vs low frequency) causes the loss

of data, and may mask the true relationship between the predictor and the

dependent variable (Amsel, 2011; Baayen, Davidson, & Bates, 2008). In a word,

using LME to treat EEG data can avoid the inflation of Type I error rate and

provide greater power.

Because of the behavioural results from Experiment 1, we have reason to

believe that EoS and LDF will have di�erent e�ects on “yes” and “no” response.
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Therefore, in the analysis of ERP, we treated the key variables in separate models

per response decision. We created LME with task (deep interpretation generation

coded as 0; shallow sensibility judgement coded as 1) and the critical variables.

Following Experiment 1, we also orthogonalised EoS and LDF per response. In

order to ascertain evidence in favour of (or against) each key variable, we conducted

model comparison in a hierarchical fashion. The baseline model was composed of

participants and items as crossed random variables modelling random intercepts,

and no fixed e�ects. Then in each hierarchical step, new fixed e�ects are added in

and the new model was compared to the model in the previous step.

For the e�ects of EoS, the models were built in the following three steps.

Step 1: Baseline model + task as a fixed e�ect;

Step 2: Step 1 model + EoS as a fixed e�ect;

Step 3: Step 2 model + Interaction between task and EoS as fixed e�ect.

For the e�ects of LDF, the same three steps as above were repeated.

Two further model comparisons were conducted to extract the relative

advantages of EoS and LDF:

1. Comparison between the EoS model obtained from Step 2 (i.e., EoS + task as

fixed e�ects) with the LDF model obtained from Step 2;

2. Comparison between the EoS model obtained from Step 3 with the LDF

model obtained from Step 3.

We again used BF to conduct these model comparisons. Apart from the

superiority over p-values as discussed in Experiment 1, BF further o�ered a practical

advantage specific to this experiment, that is BF does not require post hoc

corrections of multiple comparisons. In this experiment, we need to conduct

multiple analyses to the same set of data, which dramatically inflates the Type I
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error rate. Five models need to be built per time slice per electrode, resulting in

9000 models in total. Although a post hoc correction can be conducted (e.g.,

Bonferroni correction), it will render the test unnecessarily conservative. To keep

the family-wise critical level as .05, a critical level of 5.56 x 10-6 is needed per model.

This stringent criterion would render any p-values we can obtain meaningless. As a

result, we chose to report only BF in this experiment together with the regression

coe�cients from LME models for e�ect size (results of NHST can be found in

Supplementary Materials).

Results

Data cleaning. The data was cleaned in a similar way as Experiment 1. No

participants were removed for slow responses. 0.98% of trials were missed and 3

trials in the interpretation generation task were removed due to invalid

interpretations. No trials were removed because of motor error because by the time

a response was made after the last word of the sentence, participants already had 1s

to process the sentence. 5537 trials remained for the analysis, which included 2753

trials for the deep task and 2784 for the shallow task.

Behavioural results. Analyses of the behavioural data were conducted

with participants and items as crossed random factors modelling random intercepts

and slopes in a maximal model justified by the data. The response decision was

analysed in a logistic mixed-e�ect regression5 and RT was analysed in linear

5 Model including participants as random intercepts explained the data better than the empty

model by 7.87 x 10123 times (BF10 = 7.87 x 10123); model with participants and item as crossed

random intercepts further better explained the data than the model with only participants as

random intercept by 7.68 x 10174 times (BF10 = 7.68 x 10174); inclusion of fixed predictors further

better explained the data by 3.21 x 10131 times (BF10 = 3.21 x 10131).
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mixed-e�ect regressions6 as Experiment 1. The results were largely similar to those

of Experiment 1 (see Supplementary Materials), with di�erences in the e�ect of LDF

on rejection speed. First as predicted, LDF had a positive e�ect on rejection speed

when EoS was at the mean in this experiment (b = 26.54, 95% CI = [10.96, 42.12],

df = 2817.30, t = 3.34, p < .001). Second, it also interacted with EoS, such that as

LDF increased, the e�ect of EoS also increased (b = 19.32, 95% CI = [4.63, 34.00],

df = 2817.60, t = 2.579, p = .010). Again, the e�ect of EoS increased in deep

processing task, while there was no evidence that the e�ect of LDF increased in

shallow processing task.

ERP results.

Overview.

The timecourse of the critical variables was illustrated by the mean BF by

comparing EoS models with LDF models in Step 2 and Step 3 (Figure 4; all BFs are

in the Supplementary Materials). Strong evidence supported the activations of EoS

from 400ms and persisted until the end of the epoch for “yes” response. Two peaks

of activations were first around 500ms, and then after 750ms. No strong evidence for

LDF was found overall, that is no mean BF was below 0.1. At two points LDF

seemed to have slightly outperformed EoS (i.e., BFEL < 1), which were at 200ms

when comparing the Step 2 models and at 600ms when comparing the Step 3

models. Further investigations into the topography of the key variables will show

localised activations of the key variables in more details.

Task e�ects.

6 Model including participants as random intercepts explained the data better than the empty

model by 1.40 x 10117 times (BF10 = 1.40 x 10117); model with participants and item as crossed

random intercepts in fact worsen the model (BF10 = 0.01) but was still used for consistency;

inclusion of fixed predictors further better explained the data by 1.01 x 1072 times (BF10 = 1.01 x

1072).
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Figure 4 . Logarithmically transformed mean BFEL of models of EoS compared with

models of LDF in Step 2 (which excluded the interaction terms) and Step 3 (which

included the interaction term) with 95% CI. The red dotted line is the cuto� when

BFEL = 1 (i.e., EoS outperformed LDF when above the line, and LDF outperformed

EoS below the line).

Step 1 (Figure 5) of model comparison showed strong evidence that task had

an e�ect on EEG amplitude. For “yes” response, the e�ect started from 400ms after

onset and lasted until the end of the epoch, peaking around 700ms; for “no”

response, the e�ect only appeared around 650ms. In the following steps, we

obtained evidence for EoS and LDF separately, above and beyond the e�ect of task.

EoS e�ects.

“Yes” response.

Our hypothesis for EoS stated that we should find strong e�ect of EoS in the
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left parietal area round 400ms (similar to a typical N400 e�ect). This was confirmed

by Step 2 of model comparison for “yes” response, which showed evidence for EoS

from 400ms to 600ms, when people accepted the metaphors (Figure 6 a and c). The

data were on average 6.41 times (i.e., mean BF21 = 6.41) and 148.54 times

maximally (max BF21 = 148.54) more likely to occur in models including EoS than

the task-only models excluding EoS. EoS had a positive e�ect on amplitude, that is

to say: metaphors that were harder to simulate elicited a more negative amplitude.

From Panel c, it could be seen that in the left parietal region the e�ect was most

prominent near the central line (e.g., E37: mean b between 400ms and 600ms was

0.56, mean BF21 = 66.75).

Further exploration of EoS’s e�ects found them to go beyond the regions and

time windows in the original tentative hypotheses. In fact, EoS had a strong and

prolonging main e�ect across the centre of the scalp when people accepted the

metaphors (Figure 6a). The strongest evidence for an EoS e�ect appeared at E7 in

the central area, peaking at the 500ms slice (BF21 = 1925.13; b = 0.78). Later in the

epoch, EoS again showed a positive e�ect supported by strong evidence in the

parietal area (e.g., E67 at 850ms-900ms, BF21 = 135.63; b = 0.79).

“No” response.

In contrast, the data did not support the e�ect of EoS on “no” response. The

ERP of “no” response was actually better explained by the Step 1 model with task

only than the model with task and EoS together (Mean BF21 = 0.02; SD = 0.05).

That is, on average, the EEG amplitude of rejected trials was 50 times more likely

in the task-only model than the model with both task and EoS as predictors. This

means that for those metaphors that were eventually rejected as nonsensical or

uninterpretable, EoS did not a�ect the processing within the first 1000ms.
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LDF e�ects.

For LDF, our hypotheses stated that we should find evidence for its e�ect in

two areas. In temporal order, first we should find an e�ect before 350ms in the

frontal and parietal area, prior to the window when the e�ect of EoS reached its

peak. Second, we should find an e�ect after 600ms to the end of the epoch in the

right posterior (i.e., parietal, occipital) regions. We did not find any evidence in

Step 2 for LDF’s e�ect, either in these hypothesised regions or on the whole scalp

(Figure 7). In fact, we found evidence against the e�ect of LDF above and beyond

the e�ect of task (“Yes”: Mean BF21 = 0.02 (0.08); “No”: Mean BF21 = 0.03 (0.10).

In other words, the EEG amplitude of the “yes” trials were 50 times more likely, and

that of the “no” trials were 33 times more likely, in the task-only models than in

models including both LDF and task.

Moderation e�ect of the task.

Step 3 of the hierarchical model comparison dealt specifically with the

interaction between task and the key variables. According to our hypotheses, task

should interact with both EoS and LDF, though we do not have specific hypotheses

concerning the timecourse or the scalp region. It should enhance the e�ect of EoS in

the deep processing task specifically, but enhance the e�ect of LDF in the shallow

processing task instead. To illustrate the di�erences between shallow and deep

tasks, we further analysed the e�ect of EoS and LDF in separate models per task,

which produced event-related regression coe�cients (ERRC) which provided the

direction and magnitude of e�ects (Hauk et al., 2009). For example, if the ERRC of

EoS was 2.50, it meant that as EoS increased one unit, the EEG amplitude

increased for 2.50 µV.

The interaction e�ect between EoS and Task was not found in the

hypothesised area for “yes” response (i.e., the left parietal area; Figure 8a).
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Evidence was only found for “no” response (i.e., when people rejected the

metaphors), at the end of the epoch in E108 in the right temporal area (BF32 =

14.03; Figure 8b), which means that the EEG amplitude of E108 was explained by

the model with the interaction between EoS and task 14.03 times better than the

model without the interaction. This interaction was driven by a di�erence between

tasks starting from 400ms after the adjective onset (Figure 8c). EoS had a

sustaining negative e�ect in the shallow sensibility judgement task. In other words,

at the later stage of processing for sensibility judgement, metaphors that were hard

to simulate elicited a greater positivity than those that were easy to simulate; which

e�ect was absent in the deep interpretation generation task (Step 3 model, EoS

e�ect in deep task: b = 0.37; interaction term: b = -1.75). This di�erence between

tasks culminated at the end of the epoch, thus showing the strong evidence for the

interaction model at the final time slice.
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Interaction between LDF and task was also only found for “no” response. At

an early window, evidence was found around 200ms at the right frontal (E2: BF32 =

8.49; Figure 9b) and temporal electrodes (E108: BF32 = 7.79), which means that

the data from these two electrodes were about 8 times more likely under models

with the interaction between LDF and task than models without the interaction.

From Figure 9c, it could be seen that the e�ect of LDF flipped directions for shallow

and deep processing tasks. In E2, LDF had a negative e�ect on amplitude in the

deep processing task (i.e., metaphors whose constituent words rarely co-occurred

elicited a greater positivity; LDF in deep task: b = -1.33) which was smaller and in

the opposite direction in the shallow processing task (interaction term: b = 1.44);

and in E108, LDF had a positive e�ect in deep processing (LDF e�ect in deep task:

b = 0.37; i.e., metaphors whose constituent words rarely co-occurred elicited a

greater negativity) but a larger and opposite e�ect in shallow processing (interaction

term: b = -0.77; low LDF elicited a greater positivity). This pattern sustained

throughout the whole epoch as seen in Figure 9c, but was only supported by Bayes

factors between 150ms and 250ms. This early e�ect in the right frontal region

partially supported the hypothesis concerning early e�ect LDF, although it

appeared earlier than the hypothesised time of 350ms.

Furthermore, we also found some support for the hypothesis that LDF should

have a late e�ect in the right posterior region. At the 750ms slice in the right

temporal and parietal regions, LDF interacted with task such that the e�ect of LDF

flipped its direction. During deep processing, LDF had a negative e�ect at E90 in

the right parietal region (LDF in deep task: b = 0.51), but a slightly larger, positive

e�ect during shallow processing (interaction term: b = -1.01). Similar e�ect was

found at E102 in the right temporal electrode (see Supplementary Materials). In

other words, metaphors whose constituent words rarely co-occurred elicited a

greater positivity in the shallow processing task, but a greater negativity in the deep
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processing task, with the e�ect on shallow task slightly larger.

Comparison between EoS and LDF.

Further model comparisons were carried out to extract information about the

relative advantage of EoS and LDF. As we did not find widespread e�ects of LDF

either in Step 2 or in Step 3, here we compared the LDF models obtained in Steps 2

and 3 with the EoS models obtained in Steps 2 and 3 respectively. Such information

about the relative strength of EoS and LDF, though both weak at times, was useful

for us to pinpoint the timecourse and topography of these variables to see when they

di�ered most strongly.

Figure 10 demonstrated a clear pattern of di�erences between EoS and LDF.

Consistent di�erences started to emerge after 350ms from the adjective onset. While

EoS mainly accounted for the EEG amplitude in the central region, LDF accounted

for the peripheral region. For “yes” response, the largest advantage of LDF over EoS

was in the left occipital area (e.g., E71) after 600ms, similar to our hypothesis that

LDF would have a greater e�ect at a later stage of processing in the posterior

region. At 650ms, the model with LDF and task was 143 times better than the

model with EoS and task at explaining the EEG data (BFEL = 0.007), and the

interaction model displayed the same advantage. LDF had a negative e�ect on the

amplitude, which meant that metaphors with less frequently co-occurring words

elicited greater positivity than metaphors with more frequently co-occurring words

(Step 3 model, LDF in deep task: b = -0.35), and the e�ect was larger for shallow

processing than deep processing, as predicted by the linguistic shortcut hypothesis.

(Step 3 model, interaction term: b = -0.33).
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The largest advantage of LDF over EoS for “no” response is in the right

central area at 600ms (see Panels b and d). For example, the data in E106 was 250

times more likely in the model with LDF and task (without interaction) than the

model with EoS and task (BFEL = 0.004), and the same advantage was shown when

comparing the interaction models too. LDF had, again, a negative e�ect on the

amplitude (i.e, low LDF -> greater positivity; Step 3, LDF in deep task: b = -0.25),

which was larger for shallow processing than deep processing too (Step 3 model,

interaction term: b = -0.38).

Summary. The results confirmed that EoS had an e�ect on EEG amplitude

across the centre of the scalp (especially the parietal area) around 400ms when

people eventually accepted the metaphors. Although EoS alone did not a�ect EEG

amplitude when people rejected the metaphors, it did interact with task at the end

of the 1000ms epoch, suggesting di�erential activations of the embodied component

per task. However, contrary to the hypothesis that EoS would be more involved in

the deep interpretation generation task, this specific e�ect at the end of the epoch

was in fact larger during the shallow sensibility judgement task.

The e�ect of LDF was only detected for “no” response, which was found to be

moderated by task. This e�ect occurred around 200ms, prior to the e�ect of EoS,

supporting the linguistic shortcut hypothesis. We found that the e�ect of LDF was

in opposite directions for shallow and deep processing tasks, but the magnitude of

the e�ect was not consistently larger during shallow processing. In other words, the

evidence showed di�erential activations of the linguistic component per task, but did

not consistently support the hypothesis that the linguistic component was more

heavily utiliesd during shallow processing. Linguistic component had a larger e�ect

during shallow than deep processing at a later stage of processing after 600ms from

the adjective onset, which could be argued as support for the linguistic shortcut

hypothesis.
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General Discussion

The aim of the present study was to examine the nature and timecourse of

conceptual representations during metaphor processing. From the behavioural and

EEG study, we managed to see how the embodied and linguistic components

interplayed to represent the meanings of a metaphor and inform the outcome of

processing. Both components were activated within the initial 1000ms of processing,

and lasted even until the response was made. Information from the linguistic

distributional pattern was initially activated around 200ms after the adjective of a

metaphor was presented, much earlier than when embodied simulation reached its

peak. The e�ect on EEG approximated the typical P2 e�ect, usually associated with

unexpected visual features of words in context (Federmeier, 2002). This early

activation only appeared for metaphors that were eventually rejected as

uninterpretable or nonsensical, highlighting the role of the linguistic component in

deciding the eventual success/failure of processing. A metaphor that resulted in

failed conceptual representation had already been marked out by the linguistic

component from as early as 200ms, when what was generally regarded as semantic

processing had not been initiated. It suggested that if the constituent words did not

often co-occur, it violated the predictions created by the linguistic distributional

patterns, which was informative to the eventual rejection of the metaphor.

After the initial activation of the linguistic components, embodied simulation

commenced first for those metaphors which were eventually accepted. The temporal

di�erence between embodied and linguistic components was consistent with LASS

(Barsalou et al., 2008) and SIH (Louwerse, 2011), which suggested that the

linguistic component should reach the peak of its activation before the embodied

component. It also satisfied a necessary hypothesis of the linguistic shortcut

hypothesis, that is, the linguistic component can be a quick and dirty guide for
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embodied component down the line (Connell & Lynott, 2014). The embodied

component was prominent around and after 400ms, which was consistent with the

typical N400 e�ect, commonly regarded as an indicator of the e�ort expended on

integrating new stimulus into the semantic representation (Kutas & Federmeier,

2011). This finding o�ered further support to theories of embodied language

comprehension, that is: the so-called semantic processing, a major part of language

comprehension, depends on the reactivation of sensory, motor and other bodily

experiences (Zwaan, 2004), which was also supported by the previous study on

literal language processing (Liu et al., 2018a).

Judging from the neuroelectrical activations of EoS, if the embodied

component was activated around 400ms, the metaphors would eventually be

accepted. However, for those metaphors that ended up in rejection, the embodied

component was not activated until the end of the 1000ms epoch, which suggested

that the embodied component might have an e�ect on the processing of rejected

metaphor beyond the initial 1000ms epoch, consistent with the behavioural finding

the embodied component a�ected the rejection speed and rate too. The fact that

this e�ect between 950ms and 1000ms was moderated by task was also consistent

with the behavioural finding that people relied on simulation more during deep

processing than shallow processing. It meant that simulation was not or

all-or-nothing process, but was subject to the desired depth of processing.

On the other hand, the linguistic component a�ected the rejection of

metaphors again around 750ms in the posterior region, as predicted by the tentative

hypotheses based on results from literal langauge processing (Liu et al., 2018a).

Furthermore, this e�ect was moderated by task too, lending support to the linguistic

shortcut hypothesis. These activations, coinciding with the late positivity complex,

were often associated with reconciling conflicting representations (Kuperberg, 2007;

Paczynski & Kuperberg, 2012) as well as decision making (Collins et al., 2011;
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Polich, 2007), which will be further discussed in the next section.

Linguistic Shortcut Hypothesis

The role of the linguistic component was of particular interest in this study,

which aimed to test whether the linguistic component can act as a shortcut to guide

future processing in the embodied component. This hypothesis was supported, in

part, by both the ERP results and the behavioural results. The ERP study showed

that the linguistic component was activated prior to the embodied component,

satisfying the necessary condition of the linguistic shortcut hypothesis; it also

showed that the linguistic component was activated, within the first 1000ms, for

those metaphors that were eventually rejected, which supported the suggestion that

one of the functions of the linguistic shortcut was to conserve limited energy if the

processing is unlikely to succeed (Connell & Lynott, 2013). The behavioural study

also showed that the linguistic component could a�ect the speed of accepting a

metaphor directly. In other words, people could judge whether a metaphor was

sensible/interpretable, based on the distributional patterns alone, even when the

e�ect of embodied simulation was already accounted for.

However, our studies also showed evidence contrary to the linguistic shortcut

hypothesis, specifically concerning the interaction between the linguistic component

and task. According to the linguistic shortcut hypothesis, the linguistic component

should have a greater e�ect during shallow processing; but the behavioural results

showed that the lingusitic component had similar, or even larger, e�ect during deep

processing compared to shallow processing. In other words, people did not prefer to

rely on lingusitic distributional patterns more even when the task allowed for a

superficial judgement. Similarly, the ERP results did not support the prediction

either. Although di�erent patterns were shown for shallow and deep processing (i.e.,

the regression coe�cients of LDF at 200ms-250ms was larger for deep processing
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than shallow processing, but was larger for shallow than deep processing at

700ms-750ms), it did not necessarily mean that the linguistic component was more,

or less, activated during deep processing because of the low spatial resolution of

EEG. Since the waveform displayed the sum of all neural activities in the brain,

which for certain included elements other than the activation of linguistic

information (Luck, 2005), it was better concluded that the linguistic component was

activated di�erently due to di�erent depths of processing.

In summary, our studies did not fully support the linguistic shortcut

hypothesis. Although the linguistic information was activated earlier than embodied

simulation, it did not appear to be used heuristically (i.e., quickly in place of

embodied simulation). In fact, the linguistic and embodied component appear to

engage in a complex interplay to construct conceptual representations.

Interplay between Embodied and Linguistic Components

In this study, we found that the activations of embodied and linguistic

components are flexible and dynamic, more complex than what was originally

hypothesised. The two components were utilised di�erently based on the demand of

the tasks and the outcome of processing as discussed before. Furthermore, unlike

the schematic representation of embodied and linguistic components, as illustrated

by Barsalou et al. (2008) for instance, embodied and linguistic information were

activated at di�erent stages of metaphor processing, possibly playing di�erent roles.

The embodied information, on the one hand, was used for constructing

semantic representation for successful processing, but it was also involved at a later

stage and eventually a�ected the outcome of unsuccessful processing. It could be

because embodied simulation took longer to initiate if the metaphors were di�cult

to simulate. Otherwise, it could also be because the embodied information was later

involved in the decision making processing for those metaphors that were di�cult to
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simulate. That is to say, people may not be able to construct a coherent

representation, so they need to use the representation that is available to decide

whether the sentence should be actually rejected as nonsensical/uninterpretable.

The linguistic information, on the other hand, was involved in decision making

also in at least two stages. At the early stage, it influenced sub-lexical and lexical

processing to signal which metaphors were likely to fail. At later stages, it interacted

with the embodied component to decide which metaphors were to be rejected. Our

findings in Experiment 1 replicated the findings by Liu et al. (2018a), which

suggested that high distributional frequency (e.g., Supply can be bright) encouraged

people to process the metaphor further even when the simulation was already

di�cult. Thus, it safeguarded against premature rejection of a metaphor. Although

an opposite pattern was found in Experiment 2 (replicating Liu et al., 2017), that is

low distributional frequency (e.g., Solutions can be bright) discouraged people to

process a metaphor further with embodied simulation, it could be best explained by

the fact that people had longer time to respond to the metaphors in Experiment 2,

which had a 1s delay, than in Experiment 1.

In all, we painted a dynamic picture concerning how embodied and linguistic

information is used to construct conceptual representations. Thanks to the high

temporal resolution of EEG, we can see that both components were involved at

di�erent stages of processing, and their involvements were highly task dependent,

being subject to the depth of processing required, the interaction between two

components, and the design of the study. Indeed, we have suggested a process of

conceptual representation that was more complex than theory such as LASS and

SIH based largely on evidence from literal language processing. Future studies

should consider if these complexities is could apply to the processing of other

language types (e.g., abstract language).
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CHAPTER 8

General Discussions

8.1 Aims of thesis

This thesis set out to view metaphor processing as an aspect of language

processing in general. Since language processing relies on conceptual representa-

tions that involve both embodied simulation and distributional patterns of linguis-

tic symbols, metaphor processing could be examined using the same combinatorial

approach. These two components should a�ect the process and performance of

metaphor comprehension in similar ways. Therefore, I used both behavioural and

neurophysiological measures to paint a detailed picture of how the embodied and

lingusitic components acted and interplayed during real-time metaphor process-

ing. Research presented in this thesis was to achieve three overarching aims: 1. to

find evidence for the independent contributions of embodied and linguistic com-

ponents; 2. to study how conceptual representations are constructed in response

to di�erent task demands; and 3. to examine whether the linguistic component

could act as a shortcut for conceptual representations.
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To achieve the first aim, I generated a body of metaphoric sentences

which varied on two independent dimensions (Chapter 3), which were the ease-

of-simulation measure (EoS) and the linguistic distributional frequencies (LDF).

These two measures could indeed account for a unique portion of metaphor

processing, including the speed and the outcome of the processing, independent

from one another. In Chapters 4, 5 and 7, I found that EoS prominently a�ected

metaphor processing, such that a metaphor which was typically regarded as easy

to simulate was more likely to be accepted and accepted more quickly, whereas

a metaphor which was typically regarded as di�cult to simulate was more likely

to be rejected and rejected more quickly. Meanwhile, LDF contributed to a

unique portion of metaphor processing independent from EoS, though the results

were more mixed. In Chapters 4 and 7, LDF was found to a�ect the outcome

of processing, such that the more often two constituent words co-occurred, the

more likely the metaphor was to be accepted after deep processing. LDF was

also found to a�ect the speed of accepting a metaphor (i.e., the more often two

words co-occurred, the more quickly the metaphor was accepted as sensible or

interpretable).

To study how task demands a�ect metaphor processing (i.e., the second

aim), throughout the thesis I used two tasks which required di�erent depth of

processing, that is the sensibility judgement task which required relatively shal-

lower processing, and the interpretation generation task which required relatively

deeper processing. I found that the required depth of processing a�ected the re-

liance on the embodied and linguistic components. Consistently throughout the

thesis (Chapters 4, 5 and 7), EoS was found to have a greater e�ect during the
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interpretation generation task than the sensibility judgement task. LDF was also

found to have a greater e�ect on the acceptance rate in the interpretation gener-

ation task in Chapter 4, and a greater e�ect on the speed to accept a metaphor

in Chapter 7. In other words, the required depth of processing a�ected the en-

gagement of the embodied component consistently, but it a�ected the linguistic

component only occasionally. In later sections, we will further discuss the fact that

the e�ect of task demands on the linguistic component was the opposite of what

we predicted based on the linguistic shortcut hypothesis.

To examine the linguistic shortcut hypothesis (the third aim), I studied

metaphor processing under time constraints (Chapter 5) and using EEG (Chap-

ter 7). The EEG study found that the linguistic component reached the peak

of its activation before the embodied component. Starting from the stimulus on-

set, LDF accounted for the neuroelectrical activations as early as 200ms, and EoS

accounted for the activations from around 400ms. As such, the linguistic com-

ponent was capable of providing some information about whether the processing

would be successful. However, the linguistic shortcut was not always taken during

metaphor processing. People would not hastily judge a metaphor based on the

co-occurrence frequency of the constituent words alone. Instead, people would

allow the embodied component to process the metaphor further, and the linguistic

component seemed to only a�ect the outcome of processing at a later stage. For

instance, in the study with time constraint (Chapter 5), LDF only had an e�ect

on the speed and outcome of processing when people had plenty of time to process

a metaphor. In the EEG study (Chapter 7), it was also found that embodied and

linguistic components both a�ected the neural activations after 600ms from the
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stimulus onset. In a word, while the linguistic component was activated prior to

the embodied component, it was only operative at a later stage when semantic

representations had already been constructed.

8.2 Evaluation of findings

In this thesis, I conducted three behavioural studies using similar

paradigms. In Chapters 4, 5 and the behavioral part of Chapter 7, participants all

read metaphoric sentences and performed either a sensibility judgement task or an

interpretation generation task (or both in Chapter 7), and their response decisions

and RT were recorded. Because some of the findings were mixed, especially

findings with LDF, it was necessary to consolidate them. More importantly,

each study only provided a piece of evidence while no one of them should be

considered more definitive than others, so it is also necessary to evaluate the

findings holistically. Therefore, I performed a mini meta-analysis using the z-

or t-values from the mixed-e�ect models using the meta.ttestBF function in the

{BayesFactor} package in R (Morey & Rouder, 2015). The function can combine

the z- or t-values from multiple regression models for a single meta-analytic test

and yield a Bayes factor for a selected interval (e.g., t > 0) against the null (i.e.,

true e�ect size was equal to 0). When BF10 is larger than 3, it suggests that we

have evidence to support the alternative hypothesis.
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8.2.1 E�ects of interest

The findings that need consolidating are the e�ects of EoS, LDF, and the

moderation e�ect of tasks. EoS and LDF had direct e�ects on response decisions

and RT, that is the e�ect of one variable (e.g., EoS) when other variables were

at the reference level (e.g., when LDF was at its mean, and when task was 0).

Meanwhile, they also had indirect e�ects, which were their interaction with one

another, and the interaction between task and either of these variables. Here

I examined both the direct e�ects and the indirect e�ects, and the alternative

hypotheses were as follows:

1. Concerning the direct e�ects: EoS should have a positive e�ect on response

decision (i.e., higher EoS æ more acceptance; z > 0), a negative e�ect on

“yes” RT (i.e., higher EoS æ faster acceptance t > 0), and a positive e�ect

on “no” RT (i.e., higher EoS æ slower rejection; t < 0); LDF should also

have a positive e�ect on response decision, a negative e�ect on “yes” RT,

and a positive e�ect on “no” RT.

2. Concerning the indirect e�ects: task should interact with EoS with a positive

term on response decision and “no” RT, and a negative term on “yes” RT

(deep processing æ larger EoS e�ect); and task should interact with LDF

in the opposite way according to the linguistic shortcut hypothesis (shallow

processing æ larger LDF e�ect). EoS and LDF should have an interaction.

From the pattern of results in the individual studies, I expected the interac-

tion to a�ect the speed of rejection in particular, such that as LDF increased,

the e�ect of EoS decreased (i.e., t < 0).
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8.2.2 Models evaluated

To evaluate e�ects on response decision, I extracted results from the logistic

mixed-e�ect models from Chapter 4 (i.e., between participant study with no time

constraint) and the behavioural part of Chapter 7 (i.e., within participant study

with long time constraint). The data from Chapter 5 were re-analysed in order

to collapse the data cross time constraints. In other words, the fixed predictor

time constraints was removed so that the e�ects evaluated here applied to the

whole dataset. For the direct e�ects (i.e., e�ects of EoS or LDF alone) and the

interaction between EoS and LDF, I used the following models:

Response decisions ~ EoS + LDF + EoS x LDF

To evaluate the e�ects on RT, I extracted results from the linear mixed-

e�ect models from Chapters 4 and 7 as well. The data from Chapter 5 were also

re-analysed to remove the e�ect of time constraint. The models used to extract

the e�ects of EoS and LDF and their interaction were those that took on the same

parameters as the models for response decisions above.

For the moderation e�ect of task, only the models from Chapter 4 and

5 could be consolidated using BF, because they were both between-participant

studies, while the Chapter 7 used a within-participant design. I used the following

models:

Response decisions / RT ~ Task + EoS + LDF + Task x EoS + Task x LDF

+ Task x EoS x LDF
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I extracted only the e�ect sizes of Task x EoS and Task x LDF for the

meta-analysis.

8.2.3 Direct e�ects

EoS played a prominent and consistent role as predicted, that is the easier

it was to simulate a concept, the more likely (Shallow: BF10 = 4.02 x 10ˆ52; Deep:

BF10 = 2.38 x 10ˆ59) and speedily (Shallow: BF10 = 1.40 x 10ˆ20; Deep: BF10 =

2.02 x 10ˆ26) it was to accept a metaphor; whereas the harder it was to simulate

a concept, the more likely and speedily (Shallow: BF10 = 1.31 x 10ˆ3; Deep: 2.15

x 10ˆ7) it was to reject a metaphor. In short, the embodied component a�ected

the speed and outcome of processing whether the processing was successful or not.

LDF on its own also had an e�ect on metaphor processing in some cases.

The more often two constituent words co-occur in context, the more likely it was

to accept a metaphor in both tasks (Shallow: BF10 = 3.65; Deep: BF10 = 21.01).

Furthermore, LDF a�ected the speed to accept a metaphor during shallow pro-

cessing (BF10 = 26.56), as well as during deep processing (3.33); but it did not

a�ect the speed to reject a metaphor directly (Shallow: BF10 = 0.35; Deep: BF10

= 1.54).

8.2.4 Indirect e�ects

8.2.4.1 Interaction between EoS and LDF

The meta-analysis showed evidence for the interaction between EoS and

LDF on the speed to reject a metaphor during deep interpretation generation
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(BF10 = 4.48), with a negative interaction term. That is to say, although EoS

had a positive e�ect on the speed of rejection when LDF was at its mean (i.e.,

high EoS æ slow to reject), the e�ect decreased and became less positive as

LDF increased. In other words, when the constituent words rarely co-occurred,

people were very fast at deciding that they could not interpret a metaphor that

was typically regarded as hard to simulate (e.g., Illness can be bright) and slow

at deciding that they could not interpret a metaphor that was typically regarded

as easy to simulate (e.g., Solutions can be bright). However, when the constituent

words often co-occurred, people hesitated (i.e., were slower) when they needed to

decide that they could not interpret a metaphor that was hard to simulate (e.g.,

Supply can be bright). We found a similar pattern of rejection speed in the shallow

sensibility judgement task of Chapters 5 and 7, but that e�ect was not supported

by strong evidence (BF10 = 1.65). Apart from this interaction on rejection speed,

the meta-analyses showed that there were little or no evidence in favour of the

interaction between EoS and LDF on response decisions and acceptance speed,

compared with the null hypothesis that the true e�ect sizes of the interaction

terms were 0 (Shallow response decision: BF10 = 2.44; Deep response decision:

BF10 = 0.32; Shallow “yes” RT: BF10 = 7.43 x 10ˆ-2; Deep “yes” RT: BF10 = 6.67

x 10ˆ-2).

8.2.5 Moderation e�ects of tasks

The moderation e�ects of tasks were extracted from the two between-

participant studies only (i.e., Chapter 4 and 5). There was strong evidence that

tasks moderated the e�ect of EoS on the speed of processing in the direction pre-
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dicted. That is to say, EoS had a larger, more negative e�ect on “yes” RT (BF10

= 2.85 x 10ˆ15), and a larger, more positive e�ect on “no” RT (BF10 = 2.89 x

10ˆ3). These e�ects were consistent with the results from the behavioral study of

Chapter 7, which confirmed that people relied on the embodied component more

during deeper processing than shallower processing, though the e�ect of EoS on

response decisions was not moderated by task (BF10 = 0.82).

In contrast, there was strong evidence that task did not moderate the e�ect

of LDF in the way we predicted. LDF did not have a larger e�ect during shallow

processing on either response decision (BF10 = 5.21 x 10ˆ-2), or RT (“Yes”: BF10

= 5.65 x 10ˆ-2; “No”: BF10 = 0.41). In fact, the evidence suggested that the true

e�ect of the interaction was more likely to be 0.

8.3 Contributions

This thesis took a novel approach to study metaphor processing as involving

simulation-linguistic based conceptual representation. The results showed a dy-

namic, complex processing model that previous theories have not envisioned (e.g.,

Barsalou et al., 2008). First of all, the involvement of simulation and linguistic

information was highly task-dependent. Depth of processing, length of response

interval and task demands (e.g., EEG or behavioural experiment) all seemed to

influence the conceptual representation constructed. I have mainly studied the ef-

fects of depth of processing and length of response interval and found that deeper

processing and longer response intervals encouraged embodied simulation, whereas

contrary to the lingusitic shortcut hypothesis shallower processing did not encour-
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age the use of linguistic information and shorter response intervals eliminated its

use altogether.

Furthermore, by combining EEG with behavioural methods, I achieved a

detailed picture of the timecourse of activations of embodied and linguistic com-

ponents. These two components were activated during various stages of processing

and thus appeared to perform di�erent roles. Lingusitic information was activated

prior to simulation and was involved in lexical or sublexical processing. After-

wards, embodied simulation was used for semantic representation, which was its

primary function. Later, both components seemed to be activated again before

the respose was made. Thus, it was likely that both were used for decision mak-

ing. The linguistic component in particular was suggested to be responsible for

the integration of di�erent representations.

Finally, simulation and linguistic information interacted. When people en-

gaged in deep processing, they used high distributional frequency as an indicator

that the metaphor was more likely to be interpretable. Thus, they spent longer

processing the metaphor even when the simulation was di�cult. In other words,

the linguistic information was used to safeguard against premature rejection of

metaphor when the processing time allowed. This finding was di�erent from the

hypothesis of the cognitive triage mechanism (Connell & Lynott, 2013) which sug-

gested that the linguistic information was used to quickly signal which concepts

were more likely to be non-sensical and should not be processed further. The

safeguarding mechanism suggested by this thesis is more conservative than the

triage mechanism in that people bias towards expending more e�ort to process a

metaphor using the safeguarding method, whereas they would bias towards con-

344



serving e�ort and reject a metaphor using the triage mechanism.

8.3.1 Comparison with traditional approaches of metaphor

comprehension

This combinatorial approach stood distinctly from the traditional disci-

plines of metaphor comprehension, such as the psycholinguistic tradition and the

embodied metaphor theory, because it yielded results that could not be accounted

for by any of these approaches.

1. The findings in this thesis showed that the combinatorial approach was bet-

ter than the traditional psycholinguistic approach which studies metaphor

comprehension based on individual factors such as salience, conventionality

and aptness. In Chapter 1, I have argued that those factors su�er from

problems with confounded definitions and inter-correlations. Salience and

conventionality have both been construed in two ways, either as the famil-

iarity to an expression (e.g., Blasko & Connine, 1993; Bowdle & Gentner,

2005; Glucksberg, 2003), or as the familiarity to a concept (e.g., Campbell

& Raney, 2015; Cardillo et al., 2010; Gentner & Wol�, 1997; Giora, 1997).

LDF, a minimalist measure of the linguistic distributional pattern, was bet-

ter than them because it focused on the exposure to linguistic expressions

alone. As a solely linguistic variable, LDF avoided the confound of con-

ceptual familiarity; but it was still found to exert independent e�ects on

metaphor processing, which could not be explained by the psycholinguistic

factors if they referred to conceptual familiarity.
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EoS was better than aptness as well for two reasons. Firstly, the

definition of EoS was clear and focused, that is: it only measured the e�ort

it took to construct a coherent conceptual representation (Chapter 3), unlike

aptness which could measure either the appropriateness of an expression

(i.e., how well bright student can convey the speaker’s intention; Blasko &

Connine, 1993; Campbell & Raney, 2015; Katz et al., 1988) or how well the

source-domain property (e.g., “clever”) fitted the target word (e.g., student;

Chiappe & Kennedy, 1999; L. L. Jones & Estes, 2005; Roncero & Almeida,

2014b). Secondly, EoS varied independently from LDF, unlike aptness which

strongly correlated with conventionality, familiarity and frequency (Roncero

& Almeida, 2014a; Thibodeau & Durgin, 2011).

More importantly, the combinatorial approach has yielded results that

cannot be explained by the psycholinguistic theories (e.g., graded salience hy-

pothesis, career of metaphor, etc.). The debate between career of metaphor

and the theory of class inclusion has centred on the question, that is: which

factor, either conventionality or aptness, can account for metaphor compre-

hension. Instead, my research could be seen a synthesis of these two theories,

and showed that both the lower-level linguistic variable (i.e., LDF) and the

higher-level conceptual variable (i.e., EoS) played unique and independent

roles. Furthermore, the involvement of these two variables depended on the

context and task requirements, which has never been shown by the psycholin-

guistic studies.

2. My research went beyond recent research on the embodied metaphor the-

ory. In this thesis, I proposed a way to operationalise the e�ort of embodied
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simulation which was agnostic to the content of simulation during metaphor

processing (Chapter 3). That is to say, I did not prescribe what sensory,

motor or a�ect experiences in specific were simulated when people read a

metaphor such as Students can be bright. It was very di�erent from the

embodied metaphor theory which insisted that the embodied simulation of

the source term (e.g., visual experiences of something bright) was crucial for

metaphor comprehension. In Chapters 1 and 3, I argued that such a view of

embodied simulation was not consistent with current imaging evidence. Sev-

eral fMRI studies found that, across a large temporal span (several hundred

milliseconds), the sensory and motor cortices responsible to processing the

source-domain property (e.g., visual cortex activated when processing the

word bright) were not selectively activated during metaphor processing (e.g.,

Students can be bright) compared to its literal counterpart (e.g., Students

can be clever ; Citron & Goldberg, 2014; Desai et al., 2013; Romero Lauro

et al., 2013; Yang & Shu, 2016). In fact, the activation of source-domain

properties became less and less prominent as a metaphor became conven-

tionalised (Cardillo et al., 2012). Even though Boulenger et al. (2012) found

that source-domain properties activated the sensorimotor cortices as early

as 150ms, such activations would be quickly suppressed (Desai et al., 2013;

Mashal, 2013; Raposo et al., 2009). As a result, I argued that dwelling

on the source-domain activations were not helpful for the understanding of

conceptual representations during metaphor processing.

Although I did not make a claim about what is simulated during

metaphor processing, the findings of this thesis still supported the pro-
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posal that embodied simulation was heavily used. The way EoS was opera-

tionalised was validated in my thesis in two ways. First, EoS was a combined

measure of three linguistic tasks (Chapter 2), and it was found to outper-

form any of the individual ratings in accounting for the speed of sensibility

judgement. Therefore, I have argued that EoS measured the underlying

mechanism of language comprehension, which is simulation (Zwaan, 2004).

Second, from the EEG studies in Chapters 6 and 7, it could be seen that

EoS displayed a similar neuroelectrical activations as the perceptual modality

switching costs, a staple evidence for embodied simulation. Metaphors that

were typically regarded as di�cult to simulate (i.e., low EoS; e.g., Supply can

be bright) elicited a negativity in the centro-parietal region around 400ms in

the same way a switch between perceptual modalities did (e.g., BLEMDER

- loud æ SUN - bright). It further suggested that EoS measured the dif-

ficulty for simulating bodily experiences during metaphor processing in the

same way that a perceptual switch causes di�culties in simulating sensory

experiences. Hence, the conceptual representation during metaphor process-

ing indeed depends on embodied simulation.

In a word, the content of simulation is more than the bodily experi-

ences of source-properties. For example, bright student does not necessarily

activates the sensory experiences related with something bright (e.g., the

sun, a light bulb), but the simulation of its meaning could still activate some

sensory information (e.g., visual appearance of young adult), motor informa-

tion (e.g., asking questions, debating), and even a�ective information (e.g.,

a teacher may be positively valenced towards a clever student; Citron &
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Goldberg, 2014), as well as simulation of broader context (e.g., classroom or

seminar discussion). Research on simulation like this are still elementary, so

I will discuss future directions of embodied metaphor processing in the next

section.

8.4 Limitations and future directions

From the work presented in this thesis, I have proposed a processing model

of metaphor processing based on the combinatorial simulation-linguistic perspec-

tive of conceptual representations. While my model confirmed the general princi-

ples of the approach, such as the existence of embodied and linguistic components,

and the linguistic shortcut hypothesis, it di�ered from previous suggestions regard-

ing the roles of and the interplay between the two components. In order to support

my model of conceptual representations, there remain some crucial questions to

be answered.

8.4.1 Are metaphors unique?

One question could be raised, regarding whether the current model can be

generalised to the processing of all language types. Specifically, my thesis suggests

that the linguistic component a�ected metaphor processing at a later stage (in-

stead of before the peak of the embodied component), and it functioned not only

as a shortcut, but also for decision making during shallow processing to reconcile

di�erent conceptual representations. An assumption for the present study was

that metaphor processing should involve the components as literal language pro-
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cessing. It is of critical importance to assess whether such assumption holds true

regarding the role of the linguistic component. It is conceivable that metaphors

are processed in a di�erent way from literal language. Thibodeau et al. (2017)

showed that ratings on metaphors varied along a dimension called figurativeness,

which accounted for ratings of how metaphoric, surprising and, to a small degree,

familiar a metaphor was. It is possible that people can identify a sentence as

metaphor, and then apply a di�erent processing strategy. For instance, when they

see a metaphor with low linguistic distributional frequency, they will not reject

the metaphor straight away because it is common for metaphors be composed of

words that do not often appear together (e.g., lukewarm supporters). Meanwhile,

since it is also common for metaphors to have ambiguous meanings, people may

be willing to accept a metaphor when the simulation is still at a relatively incom-

plete state, based on the joined results of linguistic and embodied components,

especially during shallow processing.

If future research would be interested this question of whether the concep-

tual representation of metaphor processing is di�erent from that of literal language

processing, the top priority should be to come up with a better definition of figura-

tiveness. At the moment, its definition is post hoc and circular. Figurativeness is

a label put on the compound measure of metaphoricity, surprisingness and famil-

iarity after the ratings have been collected. A sentence is regarded as figurative or

metaphoric if it is less literal. Thus, we do not know how people are able to identify

a sentence as a metaphor. The standard pragmatic approach used to suggest that

a sentence could be identified as a metaphor if its literal meaning does not make

sense (Grice, 1975), but later findings suggest that people responded to metaphors,
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at least familiar ones, as quickly as literal sentences (Gibbs, 1980; Glucksberg et

al., 1982); and people could interpret a sentence as a metaphor even if the literal

meaning is true (e.g., Life is not a cruise). Later with the pragmatic approach,

the relevance theory suggests that a sentence is interpreted as a metaphor when

the interpretation maximises its coherence with the linguistic and social context

(Tendahl & Gibbs, 2008; D. Wilson & Sperber, 2004). On the other hand, taking a

semantic approach, Winter (2016) recently suggested that a sentence is more figu-

rative when the embodied simulation of source and target concepts have a greater

mismatch. For example, the word tie has strong visual and haptic experiences but

weak auditory, gustatory and olfactory experiences whereas the word river has

strong visual and auditory experiences but weak experiences in the other senses,

so loud tie may be rated as more metaphorical than loud river. Future research

may follow either of these approaches for a better understanding of figurativeness.

8.4.2 What constitutes the embodied component?

As discussed before, this present thesis did not define simulation as the

activation of source-domain properties and was agnostic concerning what was

simulated during metaphor processing. As a result, EoS is an indirect measure

(i.e., the end-product of successful language comprehension). Although we have

demonstrated that EoS was a valid measurement of the e�ort to construct con-

ceptual representations, these arguments may not satisfy some hardcore (or naive)

embodiists, who would like to see metaphor processing fully grounded in bodily

experiences. Meanwhile, it allows the embodiment skepticists to argue that this

thesis does not support embodiment during metaphor processing at all, but that
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the e�ects of EoS could be fully reduced to amodal, symbolic language processing.

Indeed, EoS was operationalised using three language processing tasks; sensibility

and usability especially focuses on how the metaphors could be used in language.

Without showing the specific sensorimotor experiences that are activated, the the-

sis did not provide direct evidence of embodied simulation of metaphoric meanings

(see arguments in Casasanto & Gijssels, 2015; Leshinskaya & Caramazza, 2016;

Mahon, 2015). To these criticisms, I do not have a ready fix in this thesis. Re-

search on grounded conceptual representation needs to make substantial advance

both theoretically and practically before we understand the content of simulation

during metaphor processing.

On the theoretical side, we need to understand the status of embodied sim-

ulation in the grand scheme of what is called language processing. Although it has

been demonstrated that language processing often recruits the distributed neural

network responsible for sensory perception, motion or other bodily experiences,

we cannot equate embodied simulation to language comprehension just yet. It

is necessary to expand our scope of interest from literal, concrete words to other

types of language, such as abstract concepts. Although abstract concepts are often

defined as concepts represented by the linguistic system (Paivio, 1986), Barsalou

et al. (2008) suggested that abstract concepts also activated experiences with

mental states, events and situations under deep processing, in a similar way as

concrete concepts (see also McRae, Nedjadrasul, Pau, Lo, & King, 2018; Vigliocco

et al., 2014). Many have shown that the involvement of embodied simulation is

task- and context-dependent (Lebois et al., 2015; Zwaan, 2014). Therefore, when

studying the role of embodied simulation in language comprehension, it is cru-
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cial to study the conditions where embodied simulation is used. In addition, to

understand what experiences in specific are simulated during metaphor process-

ing, it again becomes necessary to study how metaphors are identified and how

metaphoric meanings are generated. Both the relevance theory suggested above

and the theory of structure mapping (see discussion about the career of metaphor

in Chapter 1; Wol� & Gentner, 2011) could be useful to future research.

On the practical side, based on better understanding of the mechanism of

simulation, better operationalisation of the embodied component should be de-

vised. The relevance theory and structure alignment propose specific aspects of

experiences that are simulated (i.e., contextual information and conceptual struc-

tures), which could be tested with property norms and priming studies. As for

EoS proposed in the present thesis, it is worthy of further validation to see whether

the same method could capture the ease of simulation in other types of language

processing. If embodied simulation during literal language processing can be oper-

ationalised in the same way, we will have a stronger case to argue that the ease of

simulation measure is valid for metaphors as well. Furthermore, imaging studies

with better spatial resolution (e.g., TMS and MEG) could be used to validate

the proposals above that sensorimotor and a�ective experiences related to the

metaphoric meanings are activated.

8.4.3 Is LDF powerful enough to capture the linguistic

component?

In my thesis, the role of LDF was found to be limited and to a much smaller

scale than that of EoS. Apart from the possibility that metaphors are unique or
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that EoS could be explained by symbolic language processing as well, an alternative

interpretation is that LDF is not a powerful enough definition to capture all there

is to the linguistic component. Indeed, from the onset of this research, LDF was

designed to be a minimalist rendition of the linguistic component. The rationale

behind this decision was that if we were able to find evidence for the linguistic

component with a simplistic measure (which we did), we could argue strongly that

the linguistic component plays an important role, which was in fact the case for

my thesis. The downside of this decision is that LDF may fail to detect instances

where the linguistic component informs conceptual processing, and hence we are

not able to draw a conclusion from the null e�ects.

The linguistic distributional patterns could be operationalised in many

other ways. Some take into account a much larger window than the present LDF

measure. For instance, latent semantic analysis (LSA) defines a word by distri-

butional patterns within the context of a set of documents, and as a vector-based

model it measures how often words occurred in similar context (Landauer & Du-

mais, 1997). In LSA, the meaning of bright is defined not only by the context

in which it has a literal meaning, such as sun, shining, lightbulb; but also by the

context in which it has a metaphoric meaning such as student, clever, question,

answer, etc. As such, although solution and bright do not co-occur frequently in

the same 5-word window, thus having a low n-gram frequency, they often co-occur

with a similar set of words such as students, answers, etc. Therefore, the vector-

based distributional models with a wider window might be able to capture the

distributional pattern of bright and solutions, which could not be captured by the

n-gram frequency. Apart from natural language processing techniques like LSA,
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there are also other distributional semantic models which take in small windows

similar to the co-occurrence LDF in this thesis, such as probability models and

predict models. Those models were also found to have outperformed n-gram fre-

quencies, and the best model often depends on the task (Wingfield & Connell,

2018). Therefore, future research should take on more powerful operational defini-

tion, and also to be mindful about the fact that the use of the linguistic component

is also flexible and task-dependent.

8.4.4 What is the best way to analyse ERP?

One of the missions of the thesis is to improve the method to analyse EEG

data. The outcome method adopted by the present thesis was linear mixed-e�ect

models to analyse the EEG data one electrode, one time slice at a time, and to

use Bayes factor to solve the problems with null-hypothesis significance testing.

This method is an improvement over traditional ANOVA; and treating EEG data

in uniformed time slices is an especially important move towards component-free

analysis, because the insistence on finding “components” has led to a prolifera-

tion of labels (e.g., early N400 vs N400, P600 vs LPC, etc.) and overstatements

about the theoretical significance of raw waveform. However, even with linear

mixed-e�ect models, a vast amount of data was still lost through averaging, and

the continuity of data (i.e., similar data between electrodes and time slices) was

still unaccounted for (Chapter 2) due to the lack of time and computing capacity

practically. As such, the full potential of EEG’s high temporal resolution is still

not realised. To account for this systematicity across time and space, future re-

search may use generalised additive models (GAMs) to create non-linear functions
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(Hendrix et al., 2017).

Furthermore, to understand the neural substrates of metaphor processing,

future research is in need of the combination multiple imaging approaches. While

EEG can o�er a high temporal resolution, thus fitting for the need of understanding

the timecourse of conceptual representations, it does not inform us anything about

the neural generator. To study how the conceptual representations are substrated

in the brain, we are in need of both temporal and spatial precision such as source

localisation with EEG or MEG. For the embodied component, high temporal and

spatial resolutions could elucidate the relationship between source domain prop-

erties (i.e., the sensorimotor properties of the literal meaning) and the metaphoric

properties. For the linguistic component, the combination of imaging approaches

may shed light on its multiple roles (early semantic processing, decision making,

etc.). A detailed picture of the interaction between neural clusters will improve

our understanding of metaphor processing tremendously, and can help explain how

the brain construct a concept grounded in a network of multi-modal experiences.

8.5 Concluding remarks

This thesis explored metaphor processing from the perspective of

simulation-linguistic conceptual representations. It revealed a dynamic and

flexible processing model, in which simulation and linguistic information inter-

played subject to the demands of the tasks. It enriched current understandings

of conceptual representations in general, pointing out that both embodied and

linguistic components were activated at several stages of processing. Therefore,
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the depth of processing, the length of response intervals and design of tasks

could all alter the reliance on the two components. Future studies on metaphor

processing and language processing in general will greatly benefit if they could

consider conceptual representation as such a dynamic process.

From the conception of the experiments to the producing of this thesis, I

made it the top priority to enhance objectivity and replicability of my research. It is

particularly shown by the EEG studies, for which I used a novel method of analysis

that minimised researcher degrees of freedom. Meanwhile, the behavioural studies

were pre-registered wherever possible, and I used the “21-word solution” for all the

empirical papers (J. P. Simmons, Nelson, & Simonsohn, 2012). Furthermore, the

entirety of thesis, including data analyses, manuscripts and all other sections (e.g.,

table of contents, literature reviews, etc.), was produced using R (see a list of R

packages at the end of the thesis; scripts are available at https://goo.gl/SPvQgs).
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1.1 Structure of target and source domain in Socrates is a midwife (Bow-
dle & Gentner, 2005).
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2.2 ERP waveform in Panel A can be decomposed to di�erent latent
components Panels B and C. Changes in the observed waveform
(Panels D-F) could result from changes in di�erent latent compo-
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2.3 Schematic illustration of components in semantic processing in
Hauk(2016)

3.1 E�ects of EoS measure, imaginability, sensibility and usability on
RT (in order of the predicting power). The asterisks show the
amount of evidence in favour of the EoS model. *: BF10 > 10;
**: BF10 > 100; ***: BF10 > 1000.

4.1 Trial structure in the sensibility judgement task.
4.2 E�ects of EoS and LDF, expressed as standardized regression coe�-

cients, on acceptance and rejection times for sensibility judgement.
Error bars represent 95% confidence intervals, and asterisks repre-
sent the significance of directional predictions where specified (***
p < .001, ** p < .01, * p < .05).

4.3 Change in the coe�cients of LDF as EoS increased when people
rejected metaphors as nonsensical. The shaded area indicates the
95% confidence interval.

4.4 E�ects of EoS and LDF, expressed as standardised regression coef-
ficients, on acceptance and rejection times for interpretation gener-
ation. Error bars represent 95% confidence intervals, and asterisks
represent the significance of directional predictions where specified
(*** p < .001, ** p < .01, * p < .05).

5.1 Trial structure of both sensibility judgement and interpretation gen-
eration.
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5.2 Regression coe�cients of RT per response decision in Experiment
1. Error bars stand for 95%CI. Asterisks stand for p-values of in-
teraction between variables and time constraint. *: p < .05, **: p
< .01: ***: p < .001.

5.3 E�ects of EoS at long constraint at four quartiles of LDF. As LDF
increased from the 1st quartile (yellow) to the 4th quartile (violet),
the e�ect of EoS changed from positive to negative. The density
plot on the top shows the rejection rate along EoS per quartile of
LDF. The rejection rate at the high end of EoS was less than 10%.

5.4 Regression coe�cients of RT per response decision in Experiment
2 (i.e. interpretation generation). Error bars stand for 95% CI.
Asterisks stand for p-values of interaction between variables and
time constraint. *: p < .05.

6.1 Sequence of presenting the CONCEPT-property pairs. Response
timed out after 3000ms after the property onset.

6.2 Mean RT of target trials per perceptual switching condition. Error
bars denote +/- 1 standard error.

6.3 Mean RT of target trials per linguistic switching condition. Error
bars denote +/- 1 standard error.

6.4 Line plot of mean BF21 with 95% credibility interval of perceptual
and linguistic switch as a result of Step 2 across scalp at each 50ms
slice.

6.5 E�ects of perceptual switch as a result of model comparisons be-
tween a. Step 2: models including perceptual switch vs Step 1:
models excluding perceptual switch and b. Step 3: models includ-
ing the interaction between perceptual switch and target modality
vs Step 2: models excluding the interaction. BF10 > 3 constitutes
substantial evidence in favour of the perceptual switching costs.

6.6 E�ects of linguistic switch as a result of model comparisons in a.
Step 2: models including linguistic switch vs Step 1: models exclud-
ing linguistic switch and b. Step 3: models including the interaction
between linguistic switch and target modality vs Step 2: models ex-
cluding the interaction. BF > 3 constitutes substantial evidence in
favour of linguistic switching costs; BF > 10 constitutes strong ev-
idence in favour or linguistic switching costs; BF > 100 constitutes
decisive evidence in favour of linguistic switching costs.

6.7 Evidence for perceptual switch in comparison with linguistic switch
as a result of comparing models in a. Step 2 (excluding the in-
teraction) and b. Step 3 (including the interaction). BFPL > 3
constitutes substantial evidence in favour of perceptual switching
costs; BFPL > 10 constitutes strong evidence in favour or percep-
tual switching costs; BFPL < 0.33 constitutes substantial evidence
in favour of linguistic switching costs; BFPL < 0.1 constitutes strong
evidence in favour or linguistic switching costs.
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6.8 Switching costs for auditory targets illustrated by a. BF of models
with perceptual-linguistic switch (Step 2) against models with only
random variables (Step 1), and b. raw regression coe�cients of
perceptual-linguistic switch in Step 2 models.

6.9 E�ects of a. perceptual and b. linguistic switching costs for visual
targets.

6.10 Evidence for perceptual switch in comparison with linguistic switch
as a result of comparing models for visual targets in a. Step 2 (ex-
cluding the interaction) and b. Step 3 (including the interaction).
BFPL > 3 constitutes substantial evidence in favour of perceptual
switching costs; BFPL > 10 constitutes strong evidence in favour or
perceptual switching costs; BFPL < 0.33 constitutes substantial evi-
dence in favour of linguistic switching costs; BFPL < 0.1 constitutes
strong evidence in favour or linguistic switching costs.

7.1 Presentation sequence in Experiment 1. * Response time window
depended on task. Shallow sensibility judgment task allowed 3s,
and deep interpretation generation task allowed 8s. ** After re-
sponse, proceed to next trial in shallow sensibility judgment task;
and in deep interpretation generation task, proceed to type down
the interpretation if answered ‘yes’, and to next trial if answered
‘no’.

7.2 E�ects of EoS on the ‘no’ RT at four quartiles of LDF. As LDF
increased from the 1st quartile (violet) to the highest 4th (yellow),
the e�ect of EoS flatlined. The density plot on the top shows the
proportion of ‘no’ response along EoS per quartile of EoS.

7.3 Presentation sequence in Experiment 2. * Response time window
depended on task. Shallow sensibility judgment task allowed 3s,
and deep interpretation generation task allowed 8s (including the
word). ** After response, proceed to next trial in shallow sensibility
judgment task; and in deep interpretation generation task, proceed
to say out loud the interpretation if answered ‘yes’, and to next trial
if answered ‘no’.

7.4 Logarithmically transformed mean BFEL of models of EoS compared
with models of LDF in Step 2 (which excluded the interaction terms)
and Step 3 (which included the interaction term) with 95% CI. The
red dotted line is the cuto� when BFEL = 1 (i.e., EoS outperformed
LDF when above the line, and LDF outperformed EoS below the
line).

7.5 Task e�ect for a. ‘yes’ response, and b. ‘no’ response. When BF10
> 10, the data strongly supported the e�ect of task over the baseline
model; whereas when BF10, the data strong supported the baseline
model over the e�ect of task. BF was logarithmically transformed
for plotting.
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7.6 Evidence for the e�ects of EoS in Step 2 model compared with
Step 1 model measured by BF for a. ’yes’, and b. ’no’ response.
When *BF 21 * > 10, the data strongly supported the e�ect of task
over the baseline model; whereas when *BF 21 * < 0.1, the data
strong supported the baseline model over the e�ect of task. BF was
logarithmically transformed for plotting. Panels c and d show the
waveform in the electrodes at the left-parietal region for ’yes’ (c)
and ’no’ (d) responses respectively.

7.7 Evidence for e�ects of LDF in Step 2 model compared with Step 1
model for a. ‘yes’, and b. ‘no’ responses measured by BF. When
BF21 < 0.1, the data was strongly against the e�ect of LDF. BF21
was logarithmically transformed for plotting.

7.8 Evidence for the interaction between EoS and task in Step 3 com-
pared with Step 2 model for a. ‘yes’, and b. ‘no’ responses measured
by BF. When BF32 > 10, the data strongly supported the interac-
tion between EoS and task; whereas when BF32 < 0.1, the data
strong was against the interaction between EoS task. BF was log-
arithmically transformed for plotting. Panel c shows the regression
coe�cients of EoS for ‘no’ response in shallow vs deep processing
tasks.

7.9 Evidence for the interaction between LDF and task in Step 3 com-
pared with Step 2 model for a. ‘yes’, and b. ‘no’ responses measured
by BF. When BF32 > 10, the data strongly supported the interac-
tion between LDF and task; whereas when BF32 < 0.1, the data
strong was against the interaction between LDF task. BF was log-
arithmically transformed for plotting. Panel c shows the regression
coe�cients of LDF for ‘no’ response in shallow vs deep processing
tasks.

7.10 Evidence for EoS compared with evidence for LDF as a result of
comparisons of the models obtained from Step 2 (i.e., EoS or LDF
and task as fixed predictors; Panels a and b) and Step 3 (i.e., in-
teractions between EoS or LDF and task as fixed predictors; Panels
c and d). Strong evidence means that BFEL > 10 or BFEL < 0.1;
substantial evidence means that BFEL > 3 or BFEL < 0.33.
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Appendices

Appendix A

.1 Instructions of the metaphor norming tasks

.1.1 Sensibility:

You will read a list of sentences about everyday items (e.g. Socks are elastic). Your
task is to rate how much sense the sentence makes as if you had read it in
a story or heard it in conversation, on a scale of 1 – 7 where 1 = no sense
at all and 7 = perfect sense. Take your time, and please do as many as you
can even if you cannot finish them all.

.1.2 Usability:

You will read a list of sentences about everyday items (e.g. Socks are elastic). Your
task is to rate how easy it would be for you to use the sentence in writing
or in conversation, on a scale of 1 – 7 where 1 = impossible to use and 7 =
very easy to use. Take your time, and please do as many as you can even if you
cannot finish them all.

.1.3 Imaginability:

You will read a list of sentences about everyday items (e.g. Socks are elastic). Your
task is to rate how easy it is for you to imagine the concept described in
the sentence (e.g., how easily you can imagine that socks might be elastic), on
a scale of 1 – 7 where 1 = impossible to imagine and 7 = very easy to
imagine. Take your time, and please do as many as you can even if you cannot
finish all.
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