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Abstract

Abstract

Although metaphor processing has fascinated linguists and psychologists
alike, the conceptual representations involved have not been fully examined. In
the present thesis, I propose metaphor processing should be viewed as an aspect of
language processing, involving conceptual representations that are both embodied
and linguistic. The thesis includes five self-contained papers, which showed a
detailed picture of conceptual representation that was flexible and dynamic.

In the paper contained in Chapter 3, I proposed an operational definition of
the effort to generate embodied simulation (i.e., the ease-of-simulation measure, or
EoS). As a composite measure, EoS accounted for the speed of successful metaphor
processing better than other rating tasks, which suggested that EoS could account
for the underlying mechanism of metaphor processing, thus assumed to be embod-
ied simulation. In papers reported in Chapters 4, 5 and 7, I studied influences of
embodied simulation and linguistic distributional patterns on metaphor process-
ing. These two components were both found to contribute to metaphor processing,
and the interplay between them were were influenced by factors such as the depth
of processing required and the time available for responses. Papers reported in
Chapter 6 and 7 examined the EEG activations of embodied and linguistic com-
ponents, in literal language processing and metaphor processing respectively. Both
studies revealed that embodied and linguistic components performed various func-
tions, each being activated at several time points. The linguistic component was
activated first between 200ms-400ms after the stimulus onset, suggesting that it
was involved in lexical and sublexical processing, which also supported the idea
that it had a speed advantage compared to the embodied component. The lat-
ter was activated around 400ms, being responsible for semantic representations.
Moreover, both components were activated again at the later stage of processing,
indicating that both components were used and integrated for decision making.

Word count: 57320 words
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CHAPTER 1

A New Look on Metaphor Processing

1.1 Introduction

Metaphor is a use of language where a term or a phrase is applied to an ob-
ject to which the term or phrase cannot be applied literally. Various parts of speech
can all be used metaphorically, including nouns (e.g., My surgeon is a butcher),
verbs (e.g., Susan flew down the street on her bike), or adjectives (e.g., bright fu-
ture). Researchers have found that metaphors are pervasive in language, appearing
more often than noticed (Coulson & Van Petten, 2002). Furthermore, compre-
hension of metaphors can be automatic and irrepressible (Glucksberg, Gildea, &
Bookin, 1982). In other words, metaphors do not seem to register as an artifice
or require extra effort to process. Instead, they are an indispensable part of our
daily language. If that is the case, how do people comprehend a metaphor? What

gives rise to the metaphoric meaning?

Research on metaphor comprehension has been carried out in various disci-

plines such as pragmatics, cognitive science and psycholinguistics. In this review,



the focus is on the theoretical and empirical work of psycholinguists and cogni-
tive scientists. Through their effort, many factors have been identified as affecting
metaphor processing (e.g., conventionality, familiarity or aptness); however, as I
will argue later, the definitions of these factors have been inconsistent and am-
biguous, which limits their utility in further understanding metaphor processing.
Therefore, the goal of my thesis is to depart from this traditional approach and
take a new perspective, which treats language processing as a process which re-
lies on grounded conceptual representations. I will further argue that metaphor
processing is an aspect of language processing, so it should rely on grounded con-
ceptual representations in the same way. While this thesis will focus on metaphor
processing, its findings should have wider implication on our understanding of

language processing in general.

In the present thesis, I will use adjectival /predicative metaphors in the em-
pirical component. Before proceeding, I will briefly clarify the issue of terminology.
Various terms have been used to refer to the different components in a predicative
or nominal metaphor, because of the wide range of research rooted in different
disciplines. In a predicative metaphor “A is B”, A is the subject and B is the ob-
ject /predicate judging from the syntactic component they play. They could also
be called the topic (or tenor) and the vehicle of a metaphor for linguists and prag-
matists. For cognitive scientists, A is referred to as the target and B the source.
Properties of the source domain (B) are attributed to the target domain (A). For
the sake of consistency, I will use target and source to refer to the components in

this chapter and throughout the thesis.



1.1.1 What makes metaphors easy to understand?

Researchers in the cognitive and psycholinguistic field set out to answer
the question, what makes some metaphors easier to understand than others. Sev-
eral factors have emerged throughout the years, such as salience, conventionality
and aptness. They were found to affect the speed of processing, and were even

suggested to change the mechanism of comprehension.

1.1.1.1 Salience

Salience has been proposed to capture the priority a meaning enjoys in lan-
guage processing. Giora, in her Graded Salience Hypothesis (GSH), suggested that
salience could be a result of “conventionality, frequency, familiarity or prototypical-
ity” (Giora, 1997, 2002). Meanings that enjoy high salience (e.g., bright student or
bright daylight) are activated prior to those with low salience (e.g., bright solution
or bright cellar) regardless of its metaphoricity. Salient meanings were shown to be
activated faster and with less difficulty in both behavioural (Giora & Fein, 1999)
and electrophysiological studies (Coulson & Van Petten, 2002; De Grauwe, Swain,
& Holcomb, 2010; Lai, Curran, & Menn, 2009; Laurent, Denhieres, Passerieux,

lakimova, & Hardy-Baylé, 2006; Pynte, Besson, Robichon, & Poli, 1996).

GSH has also been joined with the fine-coarse coding theory, suggesting that
the left hemisphere is specialised in rapid interpretation and activation of closely
linked meanings while the right hemisphere is prone to perform coarser computa-
tions and maintain broader meanings (Jung-Beeman, 2005). The joint hypothesis

suggests that salient meanings should activate the left hemisphere more whereas



non-salient meanings should activate the right hemisphere more (Mashal, Faust,
& Hendler, 2005). When applied to metaphors, it suggests that only unfamiliar
or novel metaphors will specifically involve the activation of the right hemisphere.
Evidence for the lateralisation of metaphor processing has been drawn from pa-
tients with hemispheric damage (Giora, Zaidel, & Soroker, 2000), neural imaging
(Mashal et al., 2005; Pobric, Mashal, Faust, & Lavidor, 2008) and the divided

visual field paradigm (Faust & Mashal, 2007).

Although GSH and its joint hypothesis with the fine-coarse coding theory
have been supported to some extent by empirical evidence, some studies have indi-
cated that the left and right hemispheres are different in more ways than the sen-
sitivity to salience. For example, the two hemispheres are different in their ability
to represent the context (Coulson & Severens, 2007), which is important because
salience can be altered by context (Giora & Fein, 1999). Thus, the lateralised
sensitivity to salient/non-salient meanings may well reflect reliance on context.
Furthermore, evidence has also emerged which opposes the joint hypothesis. Some
studies have shown that non-salient meanings elicited bilateral activation (Dav-
enport & Coulson, 2011) or even more left hemisphere activation (Mashal, Faust,
Hendler, & Jung-Beeman, 2009), instead of right hemisphere activation. The prob-
lem may be due to the lack of power and control in the original studies. First,
many of these studies were run on a small sample. Giora et al. (2000) study on
hemispheric-damaged patients tested 27 right-hemisphere damaged patients, and
31 left-hemisphere damaged patients with only four metaphors; whereas Mashal
et al. (2009) tested only 15 participants though with a larger stimulus set of 96

stimuli (including conventional and novel metaphors, as well as literal word pairs



and semantically unrelated word pairs). Having such a small size increased the

risk of false positive and poor precision in estimating effect sizes.

Later studies were indeed better powered (e.g., Faust & Mashal, 2007), but
a further problem was that these studies all have neglected the random variability
in the materials. Since GSH broke down the barrier between literal and metaphoric
language, many studies included distinct figures of speech and linguistic devices.
For instance, Giora and colleagues’ (2000) study on hemispheric-damaged patients
compared conventional metaphor processing with sarcasm processing, using com-
pletely different stimuli. Other studies on metaphor processing also used entirely
different sets of words for novel metaphors, conventional metaphors and literal
word pairs (Faust & Mashal, 2007; Mashal et al., 2005, 2009). Thus, the effect
of salience was confounded with the poorly controlled novelty, figurativeness and
discourse. The evidence for the joint hypothesis, or the lack thereof, may be due

to factors other than salience.

A further and more crucial problem is salience was proposed to be the un-
derlying essence (i.e., the priority of a meaning) which manifests itself in many
factors such as conventionality, prototypicality, etc. As a result, the operational
definition of high versus low salience is often ambiguous and lacks control. For
instance, according to Mashal and colleagues, metaphors from poetry (e.g., con-
science storm) can be regarded as non-salient while metaphors from daily life (e.g.,
transparent intention) as salient (Mashal & Faust, 2008; Mashal et al., 2005, 2009).
Similarly, Giora and colleagues (2000) chose sarcasm (e.g., saying a lawyer “did
a great job” after a failed court case) and conventional metaphors (e.g., broken

heart) to define the contrast between high and low salience.



These attempts to test of role of salience lacked a clear metric against which
degrees of salience can be measured. Therefore in later studies, the operational
definition of salience was narrowed down to mainly conventionality or familiarity,
which was quantified in a rating test (Arzouan, Goldstein, & Faust, 2007; Colum-
bus et al., 2015; Davenport & Coulson, 2013; L. L. Jones & Estes, 2006). This move
was detrimental to GSH because the concept of salience itself, the conglomerate
of familiarity, conventionality, prototypicality and many other potentially crucial
factors of metaphor processing, had to fade away from the focus of researchers
and be replaced by more concrete and measurable factors. However, for the same
reason, this move was beneficial to the research, because participants could devise
a larger amount of materials that were better controlled in terms of metaphoricity,

ambiguity and other confounding factors.

1.1.1.2 Conventionality

Conventionality does not only play an important role in GSH, but is also
seen as a critical factor to determine the mechanism of processing, according to
the career of metaphor theory (Bowdle & Gentner, 2005). This theory has two
crucial components, one accounting for the mechanism of processing (i.e., struc-
ture mapping; (Gentner, 1983; Gentner & Wolff, 1997; Wolff & Gentner, 2011)),
and the other accounting for the what happens after conventionalisation (i.e., cat-
egorisation; (Glucksberg, 1991; Glucksberg & Keysar, 1990)). Structure mapping
delineates two steps of metaphor processing. First, people compare the conceptual
structures of the source and target by aligning the predicates of the two concepts

(as shown in Figure 1.1). After such structural alignment, the predicate unique to



HELP HELPF

instrument Nimn instrument \:i““

Socrates PRODUCE midwife PRODUCE
ulrjr:/ wﬂ ] nhjy \I}jtﬂ 2
student idea maother child

nhj-:N Am 1

DEVELOP WITHIN * GRADUALLY

Figure 1.1: Structure of target and source domain in Socrates is a midwife (Bowdle
& Gentner, 2005).

the source will be projected to the target, based on the specific dimension deter-
mined by the target. For instance, in the metaphor Socrates was a midwife (Figure
1.1), the source (midwife) has several properties, such as “helping MOTHER” and
“MOTHER producing CHILD”, while the target (Socrates) has properties such
as “teaching STUDENTS” and “STUDENTS producing IDEAS”. These proper-
ties are aligned based on their conceptual structures, but midwife also produces
a property that is unique, that is, “MOTHER has CHILD developed within her”,
which is not obvious to the target. By projecting this property to the target do-
main, the relationship between student and idea can be deduced, that is: IDEA has
been developing in STUDENT all along. Socrates did not simply teach an idea,

but he helped students realise the idea that has been developing in the student.

Structure mapping is pivotal to the career of metaphor theory and related
research on metaphor processing. Because of the specific roles of source and tar-
get according to the structure-mapping theory, researchers proposed new opera-
tionalised definition of conventionality (as well as aptness in the next section).
Conventionality is accordingly defined as the association between the source and

the property it produces (Bowdle & Gentner, 2005; Cardillo, Schmidt, Kranjec,



& Chatterjee, 2010; Chiappe, Kennedy, & Smykowski, 2003; L. L. Jones & Estes,
2005, 2006; Mashal, 2013; Pierce & Chiappe, 2008; Roncero & Almeida, 2014a,
2014b). When a metaphor such as “Socrates is a midwife” is novel, the association
between the source (midwife) and the property (helping Object 1 produce Object
2) is weak. People cannot activate the property automatically when they encounter
the sentence. Rather, they need to compare the conceptual structure of Socrates
with the concept of midwife as we did above in order to arrive at this property.
However, as the metaphor is encountered repeatedly, the property becomes more

readily activated.

This process of repeated activation leads to the second component of the
career of metaphor theory, that is metaphor processing based on categorisation.
When a metaphor is conventionalised, the property that is readily activated be-
comes an abstract category of which the source word is a prototypical member.
A conventional metaphor, in fact, is processed as what Glucksberg and colleagues
called a class-inclusion assertion. For example, after the metaphor Socrates is
a midwife is conventionalised, people comprehend it as a sentence which means
that “Socrates is a member of the metaphoric category in which midwife is a
prototypical exemplar (i.e., people or instruments that assist the deliverance of
something that exists in the object)”. In other words, understanding Socrates is
a midwife effectively evokes the same mechanism which is used to understand A
robin is a bird. The metaphoric category for which midwife represents becomes
more refined. Imaging studies have supported this suggestion by showing that
as a metaphor becomes conventionalised, the activation of irrelevant properties

of the literal meanings are suppressed (Cardillo, Watson, Schmidt, Kranjec, &



Chatterjee, 2012; Desai, Binder, Conant, Mano, & Seidenberg, 2011; McGlone &

Manfredi, 2001).

Another implication of the career of metaphor theory (especially metaphor
processing by categorisation) is that other properties of class-inclusion assertions
can be applied to conventional metaphors but no to novel metaphors. One of
such properties is non-interchangeability between metaphors and similes. Simile
is a figure of speech where one thing is likened to another (e.g., Figurative simile:
Socrates is like a midwife. Literal simile: Copper is like tin.). Tt is processed
solely by comparing the two concepts themselves, not the category of objects to
which these concepts belong. In a literal simile such as Copper is like tin, it is
particularly clear that both copper and tin refer to the substance of these two
metals, which is why it is not appropriate to say Copper is tin (a class-inclusion
assertion). However, it is acceptable to say Robin is a bird (a class-inclusion
assertion) but unacceptable to say Robin is like a bird (a simile), because the latter
is comparing the concept of robin with the concept of bird without assigning robin

to the category of bird.

This distinction between literal class-inclusion assertions and similes should
similarly exist for figurative language (i.e., conventional metaphors and figura-
tive similes). If conventional metaphors are processed as class-inclusion assertions
while novel metaphors are processed using comparison and structure mapping, it
should be more appropriate to use the metaphoric form to express a conventional
metaphor and the simile form to express a novel metaphor (Bowdle & Gentner,
2005; Lai & Curran, 2013). This prediction has been supported by studies which

create a process of conventionalisation. For instance, participants were asked to



read novel similes such as An acrobat is like a butterfly and A figure skater is like
a butterfly. After such a process of conventionalisation, participants found that a
similar figurative expression (e.g., A ballerina is (like) a butterfly) more acceptable
in the metaphor form than in the simile form. In other words, conventionality in-
deed appeared to be a critical factor to determine whether a metaphor is processed

using categorisation.

Problems with the career of metaphor theory are primarily rooted in its en-
dorsement of the structure-mapping mapping. Since the structure-mapping theory
suggests that it is the source term (e.g., midwife) that provides the property (e.g.,
facilitate the deliverance of a baby) which gets projected to the target term (e.g.,
Socrates), the conventionality of a metaphor is ultimately decided by the asso-
ciation between the source term and the property, regardless of the target term
(Campbell & Raney, 2015; Cardillo et al., 2010; Katz, Paivio, Marshark, & Clark,
1988; Roncero & Almeida, 2014a). In other words, Socrates is a midwife is no more
conventional than metaphors such as Noam Chomsky is a midwife or Beyoncé is
a midwife (both of which is clearly not the case). Indeed, Thibodeau & Durgin
(2011) have found that conventionality is dependent on the context, especially the

immediate context of the target term.

Secondly, structure mapping cannot account for the existence of emer-
gent properties (Gineste, Indurkhya, & Scart, 2000; Glucksberg & Haught, 2006;
Haught, 2013). During metaphor comprehension, people often attribute properties
to the target concept which do not originate from the source concept, but emerge
as a result of the integration of the source domain properties with the target con-

cept (for accounts of emergent properties see (Clement, Mawby, & Giles, 1994)

10



cited in (Bowdle & Gentner, 2005; Gineste et al., 2000; D. Wilson & Carston,
2006)). For example, when reading Some ideas are diamonds, people often comes
up with interpretations that ideas can be “creative” and “insightful”, which are not
applicable to the concept of diamonds. If metaphor comprehension is the process
whereby the properties of the source domain are projected to the target domain,
the resulting representation of the target should only include the properties that
originally belong to the source (e.g., ideas are “rare” or “precious”). Therefore,
simple structure mapping cannot account for all the mechanism of metaphor pro-
cessing without further assumptions about how emergent properties arise. Aside
from issues related to structure mapping as discussed above, the importance of
conventionality is further questioned by the results from research on dual refer-
ence by Glucksberg and colleagues, which advocates for the importance of aptness

in metaphor processing (see next section).

1.1.1.3 Aptness

In place of conventionality, many have argued that aptness (i.e., how well
a metaphor expresses the speaker’s intention) is the critical factor that decides
whether metaphors are processed by categorisation or by comparison. Numerous
studies have found that when aptness is taken into account, the effect of con-
ventionality on metaphor processing (e.g., the preference for a metaphor over a
simile) disappeared (Chiappe & Kennedy, 1999; Chiappe et al., 2003; Glucksberg
& Haught, 2006; Haught, 2013; L. L. Jones & Estes, 2005, 2006; Pierce & Chiappe,

2008; Roncero & Almeida, 2014b).

Aptness has a high-level, qualitative definition which is how well or ap-

11



propriately a metaphor can convey the speaker’s intention (Blasko & Connine,
1993; Campbell & Raney, 2015; Katz et al., 1988). However, researchers have also
operationalised it, in relation to structure mapping, as how well the properties
specified by the source can capture important aspects of the target (Chiappe &
Kennedy, 1999; Chiappe et al., 2003; L. L. Jones & Estes, 2005, 2006; Pierce &
Chiappe, 2008; Roncero & Almeida, 2014b). Instead of stressing the association
between the property and the source as conventionality (e.g., midwife as someone
who assists the deliverance of something which has been developing in the object),
aptness emphasises the how appropriately the property fits the target term (i.e.,
Socrates). Since a property needs to be projected to a specific dimension of the
target, the better the property fits the target, the more apt the metaphor is deemed
to be. An example often used to illustrate the point is the sentence A rooster is
an alarm clock is more apt than A robin is an alarm clock, because the property
of “reliably waking you up in the morning” fits rooster more appropriately than

robin.

At least two issues could be raised concerning the latter treatment towards
aptness. First of all, it is questionable whether this operational definition mea-
sures the same thing as the theoretical, high-level idea of aptness (i.e., how well
a metaphor conveys the speaker’s intention). Even when a source term can pro-
vide a property suitable for the target (e.g., Deserts are ovens. Property: hot),
the metaphor is not necessarily rated as apt (aptness rating = 2.85 on a 7-point
scale; see Roncero et al., 2014a). This could be because aptness is also correlated
with other linguistic characters such as familiarity and conventionality (see next

section). It is also not independent from cognitive factors such as working memory

12



capacity (Pierce & Chiappe, 2008). People with a higher working memory capac-
ity are better at interpreting metaphors and using the metaphoric form instead
of the simile form. Furthermore, context has been found to be an important fac-
tor which influences the aptness rating (Thibodeau & Durgin, 2011; Thibodeau,
Sikos, & Durgin, 2017). The operational definition of aptness (i.e., how well the
property fits the target of a metaphor) only takes into account still a very narrow
context. Although it is an improvement over conventionality to incorporate the
target into metaphor processing, it still treats aptness as an intrinsic feature of
a metaphor in an isolated phrase/sentence. However, simply from the example
above, we can conceive of scenarios where A robin is an alarm clock is highly
apt (e.g., in the woods. Robins are among the first birds to start the dawn cho-
rus. https://www.rspb.org.uk/birds-and-wildlife/wildlife-guides/bird-a-z/robin/
robin-redbreast-song/). In summary, although aptness was found to be a bet-
ter predictor than conventionality, it could also be confounded by many external

factors.

1.1.2 Challenges with psycholinguistic factors

In the previous section, I have introduced several factors that could facili-
tate metaphor processing (i.e., salience, conventionality and aptness). Apart from
the criticisms to each factor individually, they could be further challenged by some

mutual problems.

The primary challenge comes from the lack of a clear, unambiguous def-
inition. For instance, familiarity and conventionality, two important factors of

salience, are often used interchangeably to refer to the dichotomy, on one end of
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which is an expression or concept that is frequently encountered, and at the other
end completely novel, even though only conventionality, not familiarity, is seen as
the critical factor in the career of metaphor. Throughout the literature, famil-
iarity /conventionality can be defined in two different ways, sometimes as famil-
iarity towards the expression (Blasko & Connine, 1993; Bowdle & Gentner, 2005;
Cardillo et al., 2012; Faust & Mashal, 2007; Glucksberg, 2003; Lai et al., 2009;
Mashal, 2013; Mashal et al., 2005) and other times as familiarity to the concepts
to which it refers (Bowdle & Gentner, 2005; Campbell & Raney, 2015; Cardillo et
al., 2010; Gentner & Wolff, 1997; Giora, 1997; Jones & Estes, 2006; Peleg, Giora,
& Fein, 2001). However, it is conceivable that such operational definitions could
measure two different things. An expression could have high familiarity while the
concept has low familiarity (e.g., hard Brexit; people may often encounter the term
but hazy about what it means), and vice versa (e.g., warm reception; people may
encounter the situation often but rarely use the term; for similar arguments, see

(Andrews, Vigliocco, & Vinson, 2009; Brysbaert, Warriner, & Kuperman, 2014)).

Similarly, aptness faces the same problem of ambiguous definitions. As
we discussed before, aptness could have two definitions, a high-level definition of
metaphor suitability and a low-level definition of association between the target
term and the property. Studying these factors largely relies on the collecting of
subjective ratings in norming studies (Campbell & Raney, 2015; Cardillo et al.,
2010; Katz et al., 1988; Roncero & Almeida, 2014a) or as part of a study where
the norms are not published (Chiappe et al., 2003; L. L. Jones & Estes, 2006;
Lai et al., 2009). Participants were often required to rate metaphors based on

the operational definitions given. As such, ambiguity in the definitions of critical
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concepts could greatly limit the utility of these ratings in the research of metaphor

processing.

Another challenge arises from the interdependency between these factors.
While conventionality (as well as familiarity) measures the amount of exposure
to a metaphor, aptness could conceivably be confounded by the amount of expo-
sure as well. Only apt metaphors, those that can accurately convey the speaker’s
meaning, get used, and thus encountered, frequently. Conversely, previous usage
of a metaphor could make it seem more apt (L. L. Jones & Estes, 2006; Pierce &
Chiappe, 2008; Thibodeau & Durgin, 2011). Indeed, these subjective ratings are
often highly correlated. Ratings of aptness and familiarity are highly correlated
(r = .73-.98: Campbell & Raney, 2015; Katz et al., 1988; Roncero & Almeida,
2014a), as are ratings of aptness and corpus frequency counts of the metaphoric
expression (r = .41-.57: Roncero & Almeida, 2014b; Thibodeau & Durgin, 2011).
In a novel, large-scale study of existing ratings of nominal metaphors, Thibodeau
and colleagues looked at existing norming studies on various scales including con-
ventionality, familiarity, aptness, as well as imagibility, metaphoricity, etc. and
found that these factors could be collapsed to two distinct principal components
(PC). The first PC was processing fluency, referring to the ease of activating the
metaphoric meaning which is largely subject to context and previous exposure.
All the factors we have discussed above loaded heavily on this PC. This means
that there is a core interdependency between these factors that is not too trivial
to disentangle. Subjective ratings on these factors may simply be measuring the
same underlying concept from different perspectives. Thus, it is futile to keep all

these factors, or compare them in the same study because they are confounded
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and will cause the problems related multicolinearity, such as imprecise estimation

of regression coefficients and overfitting.

In summary, it is problematic to study metaphor processing using these
single factors. The ambiguity in their definitions and their core interdependency
are detrimental to our understanding of metaphor processing. Therefore, in my
thesis, I decide to leave these factors behind to seek a better theoretical construct

to account for the online processing of metaphors.

1.2 Metaphor Processing from the Grounded

Perspective

As the psycholinguistic research is troubled by many issues, in this the-
sis I propose a new perspective which examines metaphor processing from the

perspective of grounded conceptual representation.

1.2.1 Grounded Views of Conceptual Representations

According to the grounded views, a mental representation draws on two
types of information, that is information about linguistic distributional patterns,
and information about embodied simulation (Barsalou, Santos, Simmons, & Wil-
son, 2008; Connell & Lynott, 2014b; Louwerse & Jeuniaux, 2008; Vigliocco, Mete-
yard, Andrews, & Kousta, 2009). Both types of information activate specific neural
circuits in the brain during the acquisition of a new concept and leave traces for

conceptual representations. For instance, to acquire the concept of bright, peo-
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ple encounter the linguistic label “bright” with its context as well as the sensory
(mainly visual) properties of bright objects. The neural activity evoked by the
linguistic label happens synchronously with the neural activity evoked by the sen-
sory properties. Thus, the neurons responsive to each type of information are
“wired together”, which makes it faster to activate the circuits for representation
next time when the concept is encountered (Hebb, 1949). During conceptual pro-
cessing, these traces of neural activation get partially re-enacted, resulting in the

simulation of sensory, motor, affective and other bodily experiences.

Linguistic distributional patterns and embodied simulation came from dis-
tinct origins and philosophical backgrounds, until recently when they were found
to be two interacting and complementing components (see Andrews, Vigliocco, &
Vinson, 2009 for a review). In this section, I will review evidence for these two
components and their interaction in detail, and in the next section I will explore

its application to metaphor processing and some challenges along the way.

Linguistic distributional patterns have been argued to be critical for mental
representation of meaning (Landauer & Dumais, 1997). As Firth (1957) famously
put it, which is often quoted by researchers, “You shall know a word by the com-
pany it keeps” We can acquire the meaning of a word, at least partially, by
the context in which it appears. This approach of defining word meaning by the
linguistic context is formalised in many ways, such as latent semantic analysis
(LSA; Landauer & Dumais, 1997), hyperspace analogue of language (HAL; Lund
& Burgess, 1996), and latent Dirichlet allocation (LDA; Blei, Ng, & Jordan, 2003).
These methods create a high-dimensional space for each word based on large body

of texts in which the word appears (e.g., encyclopaedia, fictions, etc.). Such a
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space, thus, can represent the meaning of a word using linguistic distributional
patterns. These methods are powerful enough to capture many aspects of language
processing, such as priming and reading times (Vigliocco et al., 2009), and the geo-
graphical positions of cities in China and the Middle East (Louwerse, Hutchinson,
& Cai, 2012), or even Tolkien’s Middle Earth (Louwerse & Benesh, 2012). Mean-
while, co-occurrence frequency within a small five-word window can also predict
important features in the real world. Co-occurrence frequency between sensory
adjectives could to some extent distinguish their perceptual modalities (Louwerse
& Connell, 2011). This is because objects, places, events or concepts that usually

appear in the same situation should often appear close proximity in context.

Although the linguistic distributional pattern is powerful, it cannot be all
there is to conceptual representation. If the meaning of a linguistic symbol is only
defined by other linguistic symbols around it, we would be trapped in an endless
loop. This is the famous grounding problem: at some point, linguistic symbols
need to refer to objects and concepts in the real world (Harnad, 1990; Searle,
1980). Embodied simulation is proposed to solve this problem. It suggests that
conceptual representation requires the partial activation of motor, sensory, affective
and other systems of bodily experiences (Barsalou, 1999; Connell & Lynott, 2016;

Glenberg & Gallese, 2012).

Compelling evidence for such an embodied simulation comes from neural
imaging studies. Words with sensory-motor properties were found to engage the
same or similar distributed networks that respond to corresponding sensory-motor
stimuli. For example, nouns with sound-related properties (e.g., thunder) selec-

tively activated the auditory association cortex (Bonner & Grossman, 2012; R.
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F. Goldberg, Perfetti, & Schneider, 2006; Kiefer, Sim, Herrnberger, Grothe, &
Hoenig, 2008); same with taste-related words (e.g., salt; Barrés-Loscertales et al.,
2012) and colour words (e.g., yellow; R. F. Goldberg et al., 2006); action words
referring to different parts of the body (e.g., face, arm or leg) would selectively
activate the motor and premotor regions that corresponds with each body part
(Boulenger et al., 2008; Desai, Conant, Binder, Park, & Seidenberg, 2013; Hauk,

Johnsrude, & Pulvermiiller, 2004; Speed, Dam, Hirath, Vigliocco, & Desai, 2017).

Embodied simulation has also been borne out by numerous behavioural
effects, which collectively suggest that language comprehension requires modality-
specific resources. Connell, Lynott and colleagues collected rating norms on the
sensory strength of words, which quantified on a 7-point Likert scale how strongly
a concept or property referred to by a word could be experienced by each of
the five major sensory modalities (i.e., vision, audition, haptics, gustation and
olfaction; Lynott & Connell, 2009, 2013). Not only could these norms account
for many semantic effects better than traditional semantic variables such as fre-
quency, concreteness and imagibility, but studies on the norms also demonstrated
that conceptual representation during language comprehension co-opted modality-
specific perceptual systems. Thus for example, when people performed a lexical
decision task (i.e., reading and pressing buttons), because the task required and
therefore pre-activated the visual system only, the visual strength of the referent
concept facilitate the judgement of the word (i.e., faster to judge bright than loud
or warm); but when they performed a word naming task (i.e., reading words out
loud), because both visual and auditory attention was engaged, both visual and

auditory strength of the referent concept facilitated the judgement of the word
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(Connell & Lynott, 2014a).

Modality switching costs also supported the proposal that conceptual repre-
sentation is embodied in modality-specific systems. In a perceptual task (Spence,
Nicholls, & Driver, 2001), there is a delay in response to a stimulus in one percep-
tual modality (e.g., a beep) when the previous stimulus was in a different modality
(e.g., a flash) because people need to redirect their attention from one perceptual
modality to another. Similarly, people also slow down in a property verification
task if they make a decision concerning a property of one modality (e.g., HEELS
— clicking) if the previous trial has been of a different modality (e.g., CANDLE —
flickering) compared to one of the same modality (e.g., BLENDER — loud; Connell
& Lynott, 2011; Pecher, Zeelenberg, & Barsalou, 2003)). This cost could not be
fully explained by the linguistic distributional pattern of the sensory properties
(Louwerse & Connell, 2011). Furthermore, such costs occur when the switch hap-
pens between a perceptual stimulus in a modality (e.g., a beep) and verifying a
perceptual word of a different modality (e.g., CANDLE — flickering; Van Dantzig,
Pecher, Zeelenberg, & Barsalou, 2008); taxing the perceptual system (e.g., memo-
rising visual shapes) impairs the property verification of the specific modality (e.g.,
visual properties; Vermeulen, Corneille, & Niedenthal, 2008). Thus, it was sug-
gested that processing sensory or motor language requires specific representation

of sensory and motor properties of a concept.
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1.2.2 Interplay between linguistic distribution and embod-

ied simulation

Although linguistic distribution and embodied simulation were studied in-
dependently, they should not be considered as mutually exclusive. Although as
mentioned previously, linguistic distribution can capture important aspects of the
real world, it is conceivable that linguistic distribution and embodied simulation
do not entirely overlap for at least two reasons. First, some aspects of features of
embodied experiences, which are often encountered by bodily perceptions, are less
communicated through language (Brysbaert, Mandera, & Keuleers, 2018). The
reason could be that these features are default and invariant to the concept. For
example, the word sun does not co-occur with the word round (436 times per
million times sun occurs according to the Web1T corpus) as often as the word
moon does (918 times per million times moon occurs), even though the sun is
always round but the moon is round visually only every 27 days. In this sense,
the linguistic distributional pattern does not accurately depict the occurrence of
sensorimotor properties in the real-world experiences, even though it can capture
it (i.e., round can co-occur with both sun and moon because both the sun and the
moon can be round). Rather, the linguistic information is capable of highlight-
ing important aspect of the real-world experiences, some of which in fact occur

relatively rarely.

The second reason why embodied and linguistic information may not com-
pletely overlap is that linguistic distributional pattern may encode unique infor-

mation that is not directly experienced with sensory and motor systems. Here the
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information mainly refers to our knowledge of abstraction and conceptual relation-
ship. Take the concept of FOOD as an example. Andrews et al. (2009) showed that
the embodied information from speaker-generated feature norms encodes mainly
sensory and motor information such as bodily sensations (e.g., hunger, thirst, taste)
and actions (e.g., swallow, ingest, enjoy); whereas the linguistic information from
large corpus mainly encodes taxonomically or functionally related, abstract con-
cepts such as drinks, lunch, diet. Because of the different types of information
encoded in these components, the combined model can explain language process-
ing better than either alone (see also Johns & Jones, 2012; Louwerse & Connell,
2011). Therefore, in order to fully represent a concept, both components need to
be utilised. In this thesis, I will study metaphor processing with both of these com-
ponents in view. Specifically, my research will have the specific question in view
regarding the function of the linguistic component. However, before proceeding
to this specific question, two more questions concerning grounded representations

need to be addressed.

1.2.3 Questions concerning grounded representations

1.2.3.1 Is embodied simulation epiphenomenal?

One challenge for embodied simulation suggests that the activation of
modality-specific neural regions is merely epiphenomenal (Leshinskaya & Cara-
mazza, 2016; Mahon, 2015; Mahon & Caramazza, 2008). In other words, concepts
and sensorimotor processing belong to separate levels. Although there might

be no denying that conceptual processing could involve neural regions specific
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to processing sensory and motor stimuli, there is another level of conceptual
representation that is “amodal” and “symbolic” (not to be confused with the lin-
guistic distributional patterns that deal with linguistic symbols). This conceptual
level interacts with the perceptual and motor level, but it could stand alone for
conceptual representation without activating the sensorimotor level. Thus, the
recruitment of modality-specific regions during conceptual representation could be
explained by the spreading of neural activation from the amodal conceptual cores
to the sensorimotor regions. In short, the argument against the embodied view
goes like this: according to the embodied view, conceptual representation equates
sensorimotor processing. Therefore, any evidence for the activation of other
neural regions during conceptual processing counts as evidence for higher-level,

stand-alone, amodal representation.

This argument, first and foremost, is a straw-man. Only the most radical re-
ductionists will propose to do away with conceptual representation altogether and
equate conceptual representations sensorimotor processing. For most proponents
of the embodied view, conceptual representation can be hierarchically organised,
with convergence zones processing information from multiple modalities (Simmons
& Barsalou, 2003) and linguistic distributional patterns as symbolic placeholders

(Zwaan, 2016).

Another argument against the amodalist “attack” is that the latter part
of the argument gives the amodal view an unfair advantage. It is a logical fal-
lacy, a “black hole in conceptual space” as coined by (Barsalou, 2016), to sug-
gest that anything that is not reducible to sensorimotor processing is by default

amodal. Much evidence was found that conceptual representation activates mul-
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timodal neural regions and adjacent regions to the sensory and motor areas (e.g.,
Bonner & Grossman, 2012; Fernandino et al., 2016; Kiefer et al., 2008). Such
findings could be evidence for the hierarchical organisation of embodied concepts.
If conceptual representation is indeed symbolic or amodal, its interface with the
sensorimotor areas should be arbitrarily organised (i.e., independent to where the
modality-specific regions are). This is analogous to defining language as an arbi-
trary symbolic system, in that the linguistic symbols (e.g., horse) do not bear an
analogous relationship with its referent (the four-legged farm animal with hooves
and mane). It might be equally a logical fallacy to argue that anything short of
such arbitrariness should be regarded embodied representation. The point is that
it is the responsibility of the amodalists to define what amodal, symbolic concepts
are, instead of the responsibility of the embodiists to rescue evidence for embodied
simulation. Furthermore, the fact that it is difficult to draw a clear line between
embodied and amodal concepts should be an argument in itself for abandoning the

distinction between the separate levels of concepts and sensorimotor processing.

1.2.3.2 To what extent are linguistic symbols grounded?

As both components exist in conceptual representation, it is of interest to
understand to what extent linguistic symbols are grounded. In simpler terms,
if there exists a continuum of “groundedness”, at one end of which conceptual
representation is entirely symbolic and disembodied, while at the other end all
linguistic symbols are fully grounded in sensorimotor processing, where does con-
ceptual representation realistically stand, given that both embodied and linguistic

components exist although some have proposed theories at the two extremes (e.g.,
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a fully symbolic and abstract view by Kintsch & Dijk (1978), or radical embodied
science by Chemero (2009))? Most researchers support a combinatorial view. For
example, Harnad (1990) proposed that there is a group of “elementary symbols”
which are grounded in sensorimotor experiences, while higher order symbols are
related to sensorimotor experiences via these elementary symbols. If this proposal
is true, people should be able to learn new symbols via the linguistic context and
retain traces of sensorimotor experiences for embodied simulation during future

conceptual representation.

To test this hypothesis, Dudschig, Kaup and colleagues asked participants
to learn novel objects or words whose meanings were associated with the vertical
space. When participants were learning the objects and the associated word labels,
the objects were consistently presented in the upper half or the lower half of the
visual space (Ottl, Dudschig, & Kaup, 2017); whereas when participants were
learning the novel words only, the words (without any objects) were presented in
pairs with either “up” or “down” or in a sentential context (Giinther, Dudschig, &
Kaup, 2017). They found that participants were able to judge explicitly whether
the words’ meanings were associated with the upper or lower spaces after the
learning phase, but only after they had learned the words through the visual
space could the participants activate the sensorimotor experiences automatically
later during an implicit judgement task (i.e., they were faster to associate up
words with upward movements or visual space, and down words with downward
movements or visual space). These findings made it explicit how important the
mode of learning is to conceptual representations. Linguistic symbols can only

be grounded in embodied simulation when they are learned through sensorimotor

25



experiences but not via the association between linguistic symbols.

The implication of these findings is great. It seems to suggest a more lim-
ited role of embodiment, than researchers formerly think. Although research on
embodied simulation has largely focused on concrete concepts, many researchers
would agree that processing both concrete and abstract concepts relies on embod-
ied simulation (Barsalou, 1999; Zwaan, 2014), not to mention that concrete con-
cepts are defined as concepts whose referents have sensorimotor features (Paivio,
1986). These novel word acquisition studies, in contrast, suggest that embod-
ied simulation is not a necessary condition of conceptual representation even for
many concrete concepts, thus pushing our position on the groundedness continuum
more towards the disembodied end. If a student in a land-locked country has only
learned about shark from a textbook, without every seeing a picture or watching
a TV show about sharks, they will not simulate the concept of a shark in the sea
(its colour, its speed, etc.) via their knowledge about the category membership of

shark and their available sensorimotor experiences with a gold fish in a tank.

Two counterarguments could be raised against such a conservative view of
embodiment. First, it is unclear whether the short-term learning of novel words
is comparable to the long-term acquisition of concepts in real life. In a learning
phase as brief as in those studies, participants were not required and may not
have enough time to engage in any deep processing of the sensorimotor features of
the words “up” and “down” or the simulated representation of the linguistic con-
text (more about the importance of deep processing in next section). This could
mean that the traces of sensorimotor experiences had never been activated in the

learning phase. However, when children build up their vocabulary, they are often
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required to engage in deep processing repeatedly in various reading and writing
tasks. Therefore, people are more likely to engage in embodied simulation in real
life than in those studies. Second, in real life, few concepts are acquired through
linguistic association alone, totally devoid of bodily experiences. Few, if any, of us
learned our first language by memorising a dictionary. Even an abstract concept
is often accompanied by a large amount of useful sensorimotor information, and
children are able to learn abstract concepts by generalisation over similar senso-
rimotor experiences (Colunga & Smith, 2003). For instance, we have learned the
concept of democracy by second- or first-hand experiences of going to the polling
booth (i.e., seeing other people vote or voting ourselves); so is the case with other
words such as mathematics, frustration, etc. In a word, conceptual representation,
from its acquisition to its processing, relies on the interaction between embodied
and linguistic components. Therefore, it is high time to study this interaction,

which will be the focus of my thesis.

There are many open questions concerning the content and structure of con-
ceptual representation. In this thesis on metaphor processing, I will focus on two
characteristics of the combined, simulation-linguistic conceptual representation.
First, linguistic distribution and embodied simulation are activated at different

speeds; and second, they play different roles based on the task demands.

1.2.3.3 Linguistic shortcut hypothesis

Linguistic distributional information gets activated faster than embodied
simulation. Barsalou and colleagues in their language and situated simulation

(LASS) theory suggested that the linguistic system becomes engaged first in a
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language processing task (Barsalou et al., 2008; Connell & Lynott, 2014b; Louw-
erse & Jeuniaux, 2008). Once a word is perceived (e.g., food), the neural activity
spreads to adjacent and connected areas in the brain which encodes similar stimuli,
that is, in the case of language processing, associated words based on linguistic
distributional patterns (e.g., drinks, lunch, etc.). As this linguistic information is
similar to the perceived word in memory, the spread of activation is rapid. Once the
word is recognised, it will also activate simulation of embodied experiences as well
(e.g., hunger, swallow, etc.). Such activation information encoded in the sensory
and motor systems, is more distant, but it encodes more information. Thus, the
linguistic component will reach the peak of its activity earlier than the simulation
component. Evidence from behavioural studies and neuroimaging studies supports
this hypothesis. For example, modality switching costs show that people respond
to a sensory property (e.g., bright) slower if the previous property they encounter
was of a different modality (e.g., loud). This effect could be accounted for by
both embodied simulation (i.e., switch between sensory modalities) and linguistic
distributional frequency (i.e., switch between different co-occurrence clusters), yet
the latter explained fast response better while the former explained slow response
better (Louwerse & Connell, 2011). In another study, when people were asked to
generate a list of properties for a concept, properties bearing a linguistic association
would be generated before properties originating from embodied simulation (San-
tos, Chaigneau, Simmons, & Barsalou, 2011). This temporal difference was also
borne out by neuroimaging evidence which shows that early conceptual processing
activates cortical regions specifically for language processing such as the left iFG,

left superior temporal gyrus and the medial inferior frontal cortex; whereas late
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conceptual processing activates multiple cortical regions associated with process-
ing perceptual stimuli such as the parietal cortex (Louwerse & Hutchinson, 2012;

Santos et al., 2011; Simmons, Hamann, Harenski, Hu, & Barsalou, 2008).

Although it has been argued that the linguistic component reaches the
peak of its activation rapidly, it does not imply that embodied simulation is slow
or regarded ineffectual during early stage of conceptual processing. In fact, the
motor cortex, for example, can be activated very quickly (within 200ms from word
onset) when a word like kick is encountered (Hauk & Pulvermiiller, 2004; Pulver-
miiller, Shtyrov, & Ilmoniemi, 2005). However, the important point here is that
the role and importance of embodied and linguistic components could vary dur-
ing the process of conceptual representation. Because the linguistic component
is activated faster and is less precise, it has the potential to form good-enough
representations (Ferreira, Bailey, & Ferraro, 2002), which can be taken advantage
of when the context and task requirements allow (Connell & Lynott, 2014b; Louw-
erse & Hutchinson, 2012). In line with this argument, Connell & Lynott (2013)
proposed the cognitive triage mechanism to account for the interaction of the two
components in language processing. They suggested that linguistic distributional
information could be a pointer for further processing before embodied simulation is
fully engaged. If the linguistic component indicates that future processing is likely
to fail (i.e., the words rarely co-occur in the same context and so their combined
meaning might not be simulated successfully, e.g., cactus beetle), then it could
abandon the processing before any more cognitive effort is expended by the em-
bodied component. On the other hand, if the linguistic component indicates that

future processing is likely to succeed (i.e., the words often co-occur in the same
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context and so their combined meaning can probably be simulated successfully,
e.g., military plan), then it could either inform to accept the word combination
immediately (i.e., based on the linguistic shortcut alone) or allow the embodied

component to continue developing a detailed simulation of meaning.

Since whether or not people take the linguistic shortcut depends on the
requirements of conceptual representation tasks, it is worthwhile to study which
condition exactly encourages the use of the linguistic shortcut. One possible can-
didate is relatively shallow processing — people should be more likely to rely on
the linguistic distributional information when it does not require a detailed ac-
count of the representation to complete the task. Indeed, many studies which
show effects of simulation often required deep and deliberate processing such as
producing interpretation for a sentence or judging specific aspect (e.g., location in
space, relationship between the semantic representation of two concepts (Borghi,
Caramelli, & Setti, 2005; Lebois, Wilson-Mendenhall, & Barsalou, 2015; see review
Louwerse & Jeuniaux, 2010). Meanwhile, the linguistic component is more promi-
nent when participants are engaged in relatively shallow processing. For example,
Connell & Lynott (2013) applied the same set of noun-noun compounds to two
tasks: a sensibility judgement task which required only a simple yes/no response,
or an interpretation generation task which required participants to type down the
interpretation to the compounds. Although the sensibility judgement task is often
considered as a “deep” semantic task, it does not explicitly require an elaborate,
verbal account of the conceptual representation, thus relatively shallower than the
interpretation generation task. By introducing such a contrast, it was found that

the linguistic component only had an effect on the performance of the shallow
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sensibility judgement task. In summary, shallow processing could be a condition
that encourages the use of the linguistic shortcut, which will be a hypothesis tested

throughout this thesis.

1.3 Grounded metaphor processing

1.3.1 Grounded language processing

Grounded conceptual representation has been studied for more than two
decades, with a special focus on literal, concrete language. This aspect of lan-
guage processing is easy to study because we can safely assume that processing
a sensory word (e.g., bright) mainly requires the reactivation and “re-living” of
sensory experiences denoted by the word (i.e., emitting much light; Zwaan, 2004).
Researchers have found both behavioural and imaging evidence in favour of this
view. Meanwhile, some researchers have tried to bridge the gap between general
language processing and metaphor processing. Most of them have tried to use a
specific theory, the conceptual metaphor theory, as a way to explore simulation
during metaphor processing. However, such an exploration has not been successful
empirically. In the next section, I will discuss the conceptual metaphor theory and
related empirical research in detail, and I will argue why this path will eventually

lead to a dead end.

Embodied simulation during literal language processing has been tested
both behaviourally and with imaging techniques. People can represent the per-

ceptual features of a concept described in a sentence/word (e.g., an eagle with
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spread wings after reading The ranger saw the eagle in the sky) and preferring
a matching image faster to a mismatch image (Engelen, Bouwmeester, Bruin, &
Zwaan, 2011; Lynott & Connell, 2009; Spivey, Tanenhaus, Eberhard, & Sedivy,
2002; Zwaan & Pecher, 2012; Zwaan & Yaxley, 2003). Other behavioural stud-
ies have also found that people can represent the spatial feature of concepts in
an iconic manner (e.g., preferring the word attic above the word basement to
the reversed arrangement; Zwaan & Yaxley, 2003) and the direction of an action
described in a verb (e.g., being faster at moving the arm towards the body after
reading open the drawer; Glenberg & Kaschak, 2002). However, the iconicity effect
could also be attributed to the linguistic distributional pattern (i.e., attic appears
more often in context before basement than the reversed; Louwerse & Jeuniaux,
2008); and the action-sentence compatibility effect was found to be generally weak
(Papesh, 2015), and related to the planning of motor response, instead of semantic
processing or conceptual representation (Borreggine & Kaschak, 2006; T. Brouil-
let, Heurley, Martin, & Brouillet, 2010; T. M. C. Miller, Schmidt, Blankenburg, &

Pulvermiiller, 2018).

Greater support for grounded language comprehension is found through
imaging studies. It was consistently supported that processing words or sentences
whose meanings are related to specific sensory modality (e.g., thunder), action
(e.g., kick) or affection (e.g., story about getting compliment) activated specific
neural regions associated with processing such stimuli (R. F. Goldberg et al., 2006;
Hauk & Pulvermiiller, 2004; Raposo, Moss, Stamatakis, & Tyler, 2009). More-
over, the activations of modality specific regions were found beyond the processing

of single words and sentences, and existed during comprehension of stories and
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discourse (Chow et al., 2014; Kurby & Zacks, 2013). Such activations were cru-
cially influenced by the context, such that a coherent representation of the context
produced the strongest activations in the modality specific regions; and modality
specific activations of a single word can be overridden by the context. For example,
the word kick activates the motor and premotor cortex to different degrees when
it was embedded in different context. It elicited greater activation when read in

isolation than in a literal phrase such as kick the ball (Raposo et al., 2009).

1.3.2 Conceptual metaphor theory

Studies on grounded metaphor processing have spawned from the studies
above on grounded language comprehension. However, a particular interest has
been paid on the modality-specific activations of the source domain properties, and
here I will argue that this approach in fact limits our understanding of metaphor
processing. The rationale behind this research is based on the theory of concep-
tual metaphor (Lakoff & Johnson, 1999). A conceptual metaphor establishes an
analogous relationship between an abstract concept with the sensory-motor expe-
riences. For example, KNOWING IS SEEING is a conceptual metaphor which
draws an analogy between the conceptual behaviour of KNOWING with the phys-
ical behaviour of SEEING. These analogous relationships are argued to derive
from a strong correlation between the abstract concept and sensory-motor expe-
riences. SEEING a physical object entails that the object (at least its existence)
is KNOWN. The conceptual metaphor theory as such has been used to account
for the grounding of abstract concepts into sensori-motor experiences (Boroditsky,

2000; Hurtienne & Meschke, 2016; Lakoff & Johnsen, 2003). Because KNOWING
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IS SEEING, when we say “I see your point”, motor experiences of seeing a physical
object is activated, but the object to be seen and thus known is the intentioned

meaning of “you”.

The conceptual metaphor theory was used to account for the simulation
process activated during metaphor comprehension. As a conceptual metaphor es-
tablishes an analogous relationship between two concepts, people could use the
conceptual structure, the sensory and motor properties, of one concept (i.e., the
source domain) to understand the conceptual structure of another concept (i.e.,
the target domain), which is often more abstract (Gibbs, 2006; Gibbs, Costa Lima,
& Francozo, 2004). For example, a linguistic metaphor such as “a bright student”
is to draw an analogy between the sensorimotor experience of bright with the ab-
stract concept of intellect. Thus, to understand “a bright student” is to ground
the intellect of a student to the sensorimotor experience with something bright.
According to our past experiences, if something is bright (e.g., the sun), we will
be able to see things clearly because of it. As KNOWING IS SEEING according
to the conceptual metaphor, a “bright” student who is able to see things clearly is
a student whose intellect enables them to learn and know things quickly. In other
words, people use linguistic metaphors in language in accordance with the concep-
tual metaphor in our mind, such that the related sensorimotor experiences can be

simulated for us to comprehend the abstract concept in the linguistic metaphor.

Evidence for this kind of embodiment needs to show that metaphor compre-
hension activates the sensorimotor experiences of the source domain. To achieve
this aim, the action compatibility effect (ACE) is studied (Glenberg & Kaschak,

2002). It was found that reading sentences with metaphorical actions (e.g., rise to
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power) facilitates the physical action in the same direction (e.g., vertical upward
movement) but impedes actions in the opposite direction (Santana & Vega, 2011).
This suggests that the motor properties of rising are activated when people process
metaphoric actions even though the meaning of the metaphor does not include a

physical vertical motion.

Although research on conceptual metaphor has offered many ingenious at-
tempts to study the embodied simulation in metaphor processing, this approach
is limited because it has constricted the definition of embodied simulation to the
re-enactment of properties from the source domain. Although the behavioural ef-
fect supports the activation of such source domain properties, there is no direct
evidence showing the activation of neural regions specific to the processing of per-
ceptual and motor stimuli during metaphor processing. The behavioural effects
described above, which has been interpreted as a result of embodied simulation,
can be accounted for by established principles of perception, language and memory
(Casasanto & Gijssels, 2015). When people read about a metaphoric action (e.g.,
rise to power), their response could be facilitated because the word rise can prime
the upward response space. Therefore, even if there is the simulation of sensori-
motor experiences of some sort, the evidence does not show that such a process is

essential to metaphor comprehension.

Indeed, there has been little neuro-imaging evidence showing activations
in exclusively sensorimotor regions when people engage in metaphor processing.
Many fMRI studies have examined action verbs hoping to find activation in specific
motor/pre-motor regions associated with the body parts that perform the action.

However, metaphors with action verbs (e.g., grasping the idea; My mind is run-
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ning) do not activate the motor and premotor cortices to the same extent as literal
use of the same verbs (Aziz-Zadeh, Wilson, Rizzolatti, & Iacoboni, 2006; Raposo
et al., 2009; Romero Lauro, Mattavelli, Papagno, & Tettamanti, 2013). Not only
so, metaphors do not activate the primary cortices any more than their literal
counterpart. For example, if a rough day had recruited the somatosensory cortex
more than a bad day, or a bright student had recruited the primary visual cor-
tex more than a clever student, we might have been able to argue that metaphor
processing involves the embodied simulation of sensorimotor experiences. How-
ever, such evidence was not found. Comparison using fMRI between perceptual
metaphors and their literal counterparts (e.g., She had a rough day vs She had
a bad day) did not find greater activation in the primary sensorimotor cortices
(Citron & Goldberg, 2014; Desai et al., 2013; Romero Lauro et al., 2013; Yang &
Shu, 2016). Although they have found activations in other regions associated with
processing sensorimotor stimuli, these regions are also activated in other cognitive
and perceptual processes not related to the specific sensory and motor modalities

(Casasanto & Gijssels, 2015).

These null effects from neuro-imaging studies actually should not be sur-
prising to researchers on metaphor processing, because metaphors by definition
should be detached from its source domain properties. After all, the definition
of metaphor is the use of language where the metaphoric term does not refer to
its literal meaning, whether this literal meaning pertains to the sensory, motor or
other bodily experiences or abstract senses. Many studies have found that the lit-
eral meaning of the source domain is quickly suppressed by the context, even when

it is activated at the initial stage of processing (Glucksberg & Haught, 2006; Mac-
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Gregor, Bouwsema, & Klepousniotou, 2015; Mashal, 2013; Raposo et al., 2009).
The word bright may activate the primary visual cortex at the beginning of the
processing, pertaining to its literal meaning (i.e., emitting much light), but people
should be able to suppress this activation in the context of bright student, favour-
ing the metaphoric meaning (i.e., quick-witted and intelligent). In a metaphor
that is conventional and apt, source domain properties should not have sustained

activity which competes with the metaphoric meaning (Desai et al., 2013).

One possibility is that the activation of source-domain properties is brief.
However, fMRI is not able to pick up such fast activations and suppression due to
its low temporal resolution. Only one study, to my knowledge, has used MEG to
study the timecourse of neural activation during metaphor processing (Boulenger,
Shtyrov, & Pulvermiiller, 2012). It indeed found that source domain activation
only happened at the early time window (150-250ms). Although it lends support
to the idea that metaphor processing activates some sensorimotor features of the
source domain, it also suggests that such source domain activation is suppressed in
metaphor comprehension, instead of activated to facilitate comprehension as the

conceptual metaphor theory suggests.
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1.4 The present thesis: metaphor processing in-
volving simulation-linguistic conceptual rep-

resentations

While pointing out the lack of evidence for embodied conceptual metaphors,
it is not my intention to suggest that metaphor comprehension is not grounded in
any past bodily experiences. It is unprofitable for researchers to be limited by the
current definition of simulation based on the conceptual metaphor theory. Instead,
we should align our view of metaphor processing with the current understanding of
grounded language processing, that is to define the simulation involved in metaphor
processing simply as the partial re-enactment of sensory, motor, introspective,
affective and other experiences related to the concept. In other words, when we
use the phrase “a bright student”, we do not need to picture a student with a
light-bulb flashing above their head; but we should still reactivate our physical,
emotional and psychological experiences with a quick-witted student in order to

achieve comprehension.

To propose a new definition of simulation in metaphor processing is in-
deed the first challenge I will face in my thesis. Since simulation is complex and
subconscious (Connell & Lynott, 2016), this definition needs to capture the ef-
fort for simulation as a whole, allowing us to remain agnostic about the specific
experiences reactivated. Throughout my thesis, this definition will be scrutinised
and validated in both behavioural studies and EEG studies. Furthermore, I will

study how embodied simulation can be coupled with linguistic distributional pat-
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terns. Specifically, I will investigate the conditions under which each component

is involved, and their interplay to create conceptual representations.

1.4.1 Thesis Outline

Thus, in my thesis, I will first propose an index of ease of simulation and
generate a body of metaphoric sentences that vary independently on the measure
of ease of simulation and the linguistic distributional frequency (Chapter 3). On
the one hand, the ease of simulation measure will capture metaphor comprehension
as a whole, measuring the effort required to arrive at a successful representation.
On the other hand, linguistic distributional frequency will be defined in a minimal
fashion, capturing the distributional patterns of metaphors’ constituent words in
close proximity, within a narrow five-word window (e.g., Louwerse & Connell,
2011). This treatment of linguistic distributional frequency will advocate strongly

for the efficacy of the linguistic information in following chapters.

Then I will investigate whether metaphor processing relies on both embod-
ied simulation and linguistic distributional information, as the grounded approach
suggests in the following chapters (Chapters 4-7). If both components play a role
in metaphor processing, then the ease of simulation and linguistic distributional
frequency should each contribute to the performance of metaphor processing with
a unique portion. Furthermore in Chapter 4, I will test the hypothesis that the
linguistic component can act as a shortcut when the task requires only shallow
processing. Thus, I will contrast shallow and deep processing with two sentence
processing tasks as Connell & Lynott (2013): that is, a shallower sensibility judge-

ment task and a deeper interpretation generation task.
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Studies in the following chapters (Chapter 5 and 7) will develop upon the
same paradigm as the study in Chapter 4, in order to further examine the inter-
play between ease of simulation and linguistic distributional frequency. Chapter
5 will continue to test the linguistic shortcut hypothesis and investigate the role
linguistic distributional frequency plays under time constraint. If people use the
distributional pattern of words as a shortcut to make judgments, the effect should
be larger when the time resource is limited. Accordingly, the effect of embodied
simulation will be smaller when the time resource is limited because to engage in

embodied simulation is time-consuming.

Then in Chapters 6 and 7, I will search for the neurophysiological manifes-
tations of the embodied and linguistic components using electroencephalography
(EEG). Chapter 6 will identify these two components in literal language process-
ing, and Chapter 7 will match them with metaphor processing. Using EEG will
offer us greater insights into the online processing during metaphor comprehen-
sion with high temporal resolution. However, the conventional practice among the
EEG literature is problematic and prone to Type I error, for reasons discussed in
the next chapter (Chapter 2). Therefore, apart from studying metaphor process-
ing, another mission of my research in these chapters will be to develop a more

rigorous way to analyse EEG data for psycholinguistic research.

Finally in the conclusions chapter (Chapter 8), I will summarise the theoret-
ical and empirical advances in this thesis, specifically in relations to the linguistic
shortcut hypothesis. 1 will discuss, first, how well current theories of grounded
conceptual representations can be applied to the research on metaphor processing.

Second, I will also discuss the implications of my thesis on grounded language pro-
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cessing. Since starting point of my thesis is to cast metaphor processing under the
big framework of language processing. My findings will increase our understand-
ing of conceptual representations in general and point out a direction for future

studies on grounded language processing.
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CHAPTER 2

Using EEG to Study Metaphor Processing

2.1 Introduction

In my thesis, as discussed in the previous chapter, I will study the con-
ceptual representation during metaphor with the specific question regarding the
role of linguistic distributional patterns in mind. To test the linguistic shortcut
hypothesis, it is important to validate a crucial condition for the linguistic compo-
nent to become a shortcut: that is the linguistic component reaches the peak of its
activation before the embodied component. In other words, it is necessary for the
linguistic component to have a temporal advantage over the embodied component
(though both components are activated simultaneously) for the linguistic compo-
nent to become a valid guide for the processing of embodied simulation. Therefore,

a crucial component of my research is the use of electroencephalography (EEG).

In order to study the grounded representation with EEG, it is important to
identify and differentiate the effect of the embodied and linguistic components on

the EEG waveforms. In previous research, the study of EEG waveforms primarily
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relies on the identification of event-related potential (ERP) components, which are
segments of EEG waveforms circumscribed to a period of time and an area on the
scalp. Several ERP components have been found to be associated with semantic
processing and even embodied conceptual representations (e.g., N400 and late
positivity complex). However, as well be discussed in this review, the study of
ERP components suffers from great problems, such as high researcher degrees of
freedom and the use of ANOVA. Therefore, it is a mission of my research to seek
a more rigorous way to study EEG, by limiting researcher degrees of freedom and
using better statistical tools (i.e., linear mixed-effect model plus Bayes factor). In
this chapter, I will first review available findings of the ERP markers of conceptual
representation and argue why the current way to study EEG lacks the needed
rigour. Finally, I will propose a better way to analyse EEG data, which will be

used in studies of Chapters 6 and 7 in my thesis.

2.2 EEG in psycholinguistics

EEG is the electrical neural activity measured at the scalp over time. It is
recorded at various sites on the scalp, as the summation of all the electrical fields
generated by the neural activities in the brain (Coulson, 2007). What is of interest
to psycholinguistic research is the event-related potential (ERP), an average of
several EEG waveforms during or after similar events, such as the presentation
of a word. ERP provides different parameters that could be informative to the
researchers, such as the amplitude, the latency and the scalp topography (Figure

2.1). These parameters are used to make functional inferences about the processing
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in the brain (Otten & Rugg, 2005). For example, if participants are presented with
concrete words (e.g., weapon) and abstract words (e.g., fashion) matched on other
variables while their ERP is recorded, the differences in ERPs can be interpreted
as the difference in concreteness (Barber, Otten, Kousta, & Vigliocco, 2013). If
the amplitude to concrete words is larger than abstract words, we may infer that
this change in amplitude reflects retrieval of sensorimotor features. If concrete
and abstract words produces different topographies, we can also infer that the
conceptual representation of these words relies on different neural population. It
is now even possible to infer with some accuracy the neural activities from the
scalp topography whereby knowing which area(s) in the brain is responsible for
the processing (Koles, 1998; Slotnick, 2005), though it is not common practice
among psycholinguists. Rather, the greatest advantage of EEG is its high temporal
resolution. It could capture the online, immediate electrical activity on the scalp

to the precision of several milliseconds.

2.2.1 The N400 component

The most common way to characterise ERP waveforms is to capture them
in ERP “components”, which are segments of a waveform within a period of time
“with a circumscribed scalp distribution and a circumscribed relationship to ex-
perimental variables” (Otten & Rugg, 2005). Many ERP components have been
identified since EEG was first applied to psychology research, among which most
relevant to my thesis is the N400 component. N400 is a segment of relative nega-
tive going waveform around 400ms after the onset of a stimulus, commonly found

in the centro-parietal sites (Kutas & Federmeier, 2011).
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Figure 2.1: A schematic drawing of ERP from the right frontal electrode (F4).
The crucial parameters of ERP are amplitude: the magnitude of the waveform in
microVolts from 0 (i.e., the vertical axis of the waveform on the right); latency:
the time between the stimulus onset (0 milliseconds) and the peak or start of a
component, e.g. N1 (i.e., the horizontal axis); and scalp topography: amplitude of
the whole scalp at a certain point of time. Pictures from Wikipedia.com.

N400 component was initially found to be a marker of semantic anomaly,
such as He took a sip from the transmitter comparing to He took a sip from the
fountain (Kutas & Hillyard, 1980). Later it was found that in sentence process-
ing, the best predictor of the N400 effect was the cloze probability, that is the
probability of using a certain word in a cloze test (Kutas & Hillyard, 1984). For
example, in a sentence He takes sugar and lemon with his ..., it is more probable
to finish the sentence with tea than coffee. Even though both cases are semanti-
cally correct, the amplitude of N400 to tea was found more negative than coffee.
Later N400 was also found to be sensitive to other lexical factors such as abstract-
ness (Huang, Lee, & Federmeier, 2010) and even non-linguistic stimuli such as
unexpected shapes (Ganis, Kutas, & Sereno, 1996), faces (Olivares, Iglesias, &

Antonieta Bobes, 1999) and odours (Olofsson et al., 2014). Because of the wide
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range of stimuli that can elicit an N400 effect, Kutas & Federmeier (2011) argued
that N400 reflects the effort to integrate new stimuli into a multimodal, dynamic
representation of concepts, which is shaped by both recent events and long-term

memory (see also Baggio & Hagoort, 2011; Rabovsky & McRae, 2014).

N400 component has also been used to study metaphor processing.
Metaphors (e.g., FEvery second of our time was attacked) were found to elicit
an N400 effect compared to literal sentences (e.g., Every soldier in the frontline
was attacked), which nevertheless was not as large as the effect of an anomalous
sentence (e.g., Every drop of rain was attacked; Arzouan et al., 2007; Forgacs,
Bardolph, Amsel, DeLong, & Kutas, 2015; Lai et al., 2009). The more familiar or
easily interpretable was a metaphor, the smaller was the effect (i.e., Fvery point of
my argument was attacked elicited a smaller N400 effect than Every second of our
time was attacked). Furthermore, the N400 effect of metaphors can be attenuated
by the context (Coulson & Van Petten, 2002; Lai & Curran, 2013). For example,
people read prime-target pairs of sentences with the same final word (e.g., bumpy)
in a literal condition versus a metaphor condition. In the metaphor condition,
people read the prime sentence (e.g., I can see the path of his life) followed by the
target Life can sometimes be bumpy. In contrast in the literal condition, people
read the prime [ can see the path of this road followed by Roads can sometimes
be bumpy. The N400 effect between metaphors and literal sentences to the final
word (bumpy) would diminish. Both the effect of conventionality and the effect
of context show that the harder it is to integrate new stimuli into the conceptual
representation, the larger the N400 effect is, consistent with Kutas & Federmeier

(2011).
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The N400 effect is, moreover, used to study embodied simulation. As Kutas
& Federmeier (2011) suggested, the conceptual representation draws from percep-
tion, memory and language and is instantly shaped by incoming events. Therefore,
modality switching costs, which show that verification of sensory properties recruit
modality-specific resources, should also elicit the N400 effect. Modality switching
costs refer to the delay in response time to verify a property of one perceptual
modality (bright) if the previous trial is of a different modality (loud; Pecher et
al., 2003). Several studies have looked for the ERP manifestations of modality
switching costs (Bernabeu, Willems, & Louwerse, 2017; Collins, Pecher, Zeelen-
berg, & Coulson, 2011; Hald, Hocking, Vernon, Marshall, & Garnham, 2013; Hald,
Marshall, Janssen, & Garnham, 2011). However, what they found was not a clear
picture. Not only was a significant effect found in the time window for the N400
component, but also a so-called early N400-like effect around 300ms (Bernabeu et
al., 2017; Hald et al., 2011), the N1-P2 complex around 200ms (Bernabeu et al.,
2017; Hald et al., 2013, 2011), as well as the late positivity component (LPC) after

600ms (Bernabeu et al., 2017; Collins et al., 2011; Hald et al., 2011).

Finding a significant effect at a time window outside the original hypothesis
is of course not inherently bad or wrong. In fact, it is reasonable since EEG is
a much finer measure than response time. What is manifested as a delay in re-
sponse could be a result of many differences in semantic processing (Hauk, 2016).
However, the finding of these components reveals a fundamental problem with
the conventional method of analysis which suffers from high researcher degrees of
freedom, plus an overlook of the nature of an ERP waveform. In the next section,

I will discuss these problem in detail using the research on modality switching
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costs as an example. However, it should not be taken as a problem that exists
only in these few studies, but reflecting the general practice across the EEG litera-
ture. To understand the problem, it is necessary to critically evaluate our current

understanding of ERP components.

2.3 Ciritical evaluation of ERP components

The problem with characterizing EEG with ERP components are two-fold.
First, there is a discrepancy between what we generally call ERP components and
what is supposed to represent: latent components. Second, ERP records contin-
uous and clustered data (e.g., many data points from one participant), whereas
ERP components are discrete and aggregated (i.e., averaging over many trials
for one participant). These problems keep us from appropriately analysing and

interpreting ERP results.

The first problem with ERP components concerns a matter of proper un-
derstanding. There is a gap between what we regard as ERP components and
what we expect it to do. What we call an ERP components generally refers to
is a segment of the observed ERP waveform. The reason to define ERP compo-
nents is because we expect an ERP component to reflect the activity of a specific
process in the brain. In the brain at a certain window of time, a cluster of the
neurons (either in a specific area of the brain or in a network of different areas)
is engaged in a specific process, while others are engaged in other functions either
related to or unrelated to the processing of the incoming stimuli. For example,

during a property verification task, a certain neural cluster is engaged in semantic
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processing, specifically with the recruitment of modality-specific resources. The
activity of this neural cluster will generate some electrical activities, which is called
a latent ERP component. The latent component is directly associated with the

neural cluster, and thus functionally significant.

However, the latent component is not the ERP component we know, be-
cause the ERP component obtained from the observed waveform measures the
electrical activities generated by neurons in the whole brain. In other words, the
observed component is a sum of all the latent components generated by differ-
ent functionally significant neural clusters in the brain. In the ideal world, there
would have been methods to reliably decompose the observed ERP waveform into
latent components, but the reality is each observed waveform can be decomposed
to several, if not infinite, latent components, each generated by one functionally

devoted neural cluster (Figure 2.2; Luck, 2005).

As shown in Figure 2.2 (Panels A-C), an observed waveform (Panel A)
can be decomposed to three latent components in two ways (Panels B and C).
Both Panels D and Panel F display an increase in the amplitude of Peak 3 (from
solid to dotted line), but the increase actually results from different changes of
the latent component. Panel D displays the effect of decreasing the amplitude
of latent component C2’ (in Panel C), whereas Panel F displays the effect of
increasing the amplitude of latent component C3 (in Panel B). Therefore, the
peaks/troughs on an observed waveform cannot inform us which neural cluster is
engaged in different activities. From the cognitive perspective, what is observed
from the ERP waveform as semantic processing could be a conglomerate of many

sub-processes. To add to the complexity, Hauk (2016) suggested that these sub-
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Figure 2.2: ERP waveform in Panel A can be decomposed to different latent
components Panels B and C. Changes in the observed waveform (Panels D-F)
could result from changes in different latent components. Figure from Luck (2005)
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Figure 2.3: Schematic illustration of components in semantic processing in
Hauk(2016)

processes, though carried out by different neural clusters, overlap and communicate
with each other (Figure 2.3). The N400 and LPC effects of modality switching costs
are subject to distortion from changes in all the sub-processes active during the
N400 time window. Therefore, Luck (2005) has reasonably warned us that using
raw waveform to study the effect of functional processes is “extremely dangerous”.
However, in spite of such a danger, there are strategies to design better studies
overcome the issue of latent components, which will be discussed later when I

outline the solutions available to my research.
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2.3.1 Data structure of ERP.

The second problem of ERP components is that the structure of EEG data
is largely overlooked. This problem in practice results in high researcher degrees

of freedom, thereby adding the risk of an inflated probability of Type I error.

2.3.1.1 Continuity

The first characteristic of EEG data is that it is continuous. The data is
recorded over the epoch at a high frequency (e.g., 1000Hz) and at different sites
across the scalp (e.g., 128 channels). Therefore, the data is correlated across time
and space. A data point at a certain time should be similar to the data point
before and after it; a waveform of a certain channel should be similar to those of
the adjacent channels. Such an intercorrelation poses a problem when researchers
try to cut the continuous waveform into discrete components that is averaged

across a time window and several channels during analysis.

Because of the continuous data structure, researchers face many choices
during the analysis such as which time window and scalp sites to choose. When
making these choices, researchers run the risk of p-hacking behaviour because there
is the freedom to explore alternative methods of analysis and end up reporting
only the analysis that “works” (J. P. Simmons, Nelson, & Simonsohn, 2011). This
is the reason why we should try our best to remove flexibility for researchers
from the analysis (Nelson, Simmons, & Simonsohn, 2018; Wagenmakers, Wetzels,
Borsboom, & Maas, 2011). If response time is analysed, it is unacceptable to

selectively analyse only those trials whose response times between two conditions
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are consistently larger than 100ms; or if a questionnaire contains 100 questions, it

is unacceptable to only report 10 that has given a result in the direction expected.

We should similarly be aware of such risks when we conduct ERP studies,
if not more so because of the great flexibility afforded by the sheer amount of
data. For example, simply in order to choose a time/time window, there are three
strategies available. Researchers could perform a peak-based analysis by selecting
one time point when the waveform is at its peak/trough, a mean-based analysis
which takes the mean amplitude within a time window, prescribed before analysis,
upon visual inspection of the data, or inherited from previous studies. Otherwise,
if there are no clear hypotheses for components, researchers could also analyse the
whole waveform by slicing it into equal time intervals such as 50ms or 100ms slices.
Similarly, to choose a scalp region, one can pick a cluster of electrodes upon visual
inspection, or segregating the scalp into two halves (left/right, anterior or poste-
rior), four quarters (left/right x anterior/posterior) or nine areas (left/mid/right
x front/centre/back). The sheer number of choices available should be a cause of
alert because of the flexibility it affords. Moreover, one of these choices, that is
visual inspection, is particularly risky, because researchers are allowed to manually
pick the time window and electrodes that are more likely to yield a big difference
between conditions, whereas the data that do not seem to yield an effect will sim-
ply be discarded. As these options are all equally allowed, although it is not the
researchers’ intention to engage in dishonest behaviour, the risk of a Type I error

ends up being higher than the critical value of 5%.

The inflation of the probability of Type I error leads to an over-confidence

in the interpretation of the results. For example, in the studies on modality switch-
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ing costs, different time windows were chosen to test the early effect of modality
switching costs. While Bernabeu et al. (2017), Hald et al. (2011) and Hald et
al. (2013) examined the segment of ERP waveform between 190ms and 300ms or
160ms and 215ms based on visual inspection and found significant effects, Collins
et al. (2011) chose a prescribed time window between 100ms and 200ms before
the analysis and did not find the effect. Both choices are accepted by the research
community based on the fact that these studies are all published in high-impact,
peer-reviewed journals. All of these segments are labelled as the N1-P2 effect.
However, these windows in fact barely overlapped. It is hard to accept that they

reflect the same underlying processing.

2.3.1.2 Clustered data

The second characteristic of EEG data, especially in psycholinguistic re-
search, is that it is clustered. In other words, the data points are nested under
participants and stimuli. The responses, or ERP in this case, of each participant
should be more similar within this participant than across different participants.
Similarly, the ERP of each stimuli should be more similar than the ERP across
different stimuli. This hierarchical data structure is often neglected by conven-
tional research which uses ANOVA that averages across participants or stimuli.
Thus, the language-as-fixed-effect fallacy is committed (H. H. Clark, 1973). In
other words, when you find an effect between two conditions by comparing the
averaged waveform of each participant, you cannot rule out that the effect is a
result of several peculiar stimuli. Ignoring random variability like this can lead to

inflated Type I error rate (Amsel, 2011; H. H. Clark, 1973).
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Traditionally, the language-as-fixed-effect fallacy has been treated by
matching the stimuli on a series of psycholinguistic factors that could potentially
affect language processing such as frequency, length for items. Similarly, it is also
possible to control the random variability of participants by matching them by
age, gender, working memory capacity, etc. However, this option is increasingly
impractical given the vast number of factors, known and unknown, that need to

be matched which grows as our understanding of language processing accumulates

(Cutler, 1981).

In summary, characterising ERP using components is dangerous because
the components obtained from observed waveform does not necessarily correspond
to the latent components. Thus, the observed ERP components do not accurately
reflect the critical process we hope to study and are easily distorted by changes
of those surrounding processes. Furthermore, severing continuous waveform into
discrete components and analysing them in ANOVA run a high risk of inflating
Type I error. However, these problems do not mean that studying ERP is futile
by any means. Instead, we need to be very cautious when designing an ERP study

and it is imperative for this thesis to seek for a more rigorous way to characterise

ERP data.

2.4 A better way for ERP

A more rigorous way to treat ERP data needs to solve three problems

existing in the conventional method, which are,

1. how to examine the underlying processes in the brain when latent compo-
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nents are not accessible;

2. how to limit researcher degrees of freedom;

3. how to account for multilevel, clustered data. In this section, I would argue
that the way to take care of all three problems is to conduct component-
free analysis, and to adopt more advanced statistical methods such as linear

mixed-effect models and Bayes factors.

2.4.1 Problem with latent component

As discussed previously, observed ERP waveforms do not directly reflect
underlying processes. However, it is still possible to interpret ERP data in terms
of cognitive processes as long we design better study. Luck (2005) offered six
strategies to avoid ambiguity in interpreting ERP components, which are (1) fo-
cusing on a specific component, (2) using well-studied experimental manipulations,
(3) focusing on large components, (4) isolate components with difference waves,
(5) focusing on components that are easily isolated, and (6) using component-
independent designs. Among these strategies, (3), (4) and (6) are most relevant to
my thesis. Strategy (3) does not merit much discussion because in this thesis we
will pay attention mostly to N400 and LPC, both of which are large components.
Here in this section, I would like to show how isolating components with difference
waves (Strategy (4)) and using component-independent designs (Strategy (5)) are

able to improve the analysis, with modality switching costs as an example.

Difference waves can isolate components of interests and remove the con-

found of other latent components (Vogel, Luck, & Shapiro, 1998). For example, to
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study modality switching costs, we are interested in the effect of a switch of per-
ceptual modality (e.g., loud bright) compared with a non-switch (e.g., red bright),
and we expect that a recruiting modality-specific resources for semantic represen-
tation should affect the amplitude of the N400 component. However, it is difficult
to know whether the change in the amplitude of the observed waveform is a re-
sult of a change in the N400 component or some other components (e.g., P3). To
isolate the N400 component, we could construct difference waves by subtracting
the waveform of the prime item (e.g., loud) from the target trial (e.g., bright) for
both the switching and non-switching conditions. The resulting waveform from the
switching condition will reflect simply the effort to disengage from one perceptual
modality (e.g., audition) and re-engage another perceptual modality (e.g., vision),
while other processes of property verification are cancelled out; whereas the result-
ing waveform from the non-switch condition will not reflect such an effort. There-
fore, the difference between the difference waves of switching and non-switching

conditions will simply reflect the effort to engage in modality-specific resources.

Using component-independent designs is a better method to avoid the prob-
lem with latent component (Hillyard, Hink, Schwent, & Picton, 1973; J. Miller &
Hackley, 1992; Thorpe, Fize, & Marlot, 1996). It is applicable to the study of
modality switching costs because it does not matter which latent component is re-
sponsible for the observed change in the waveform. What is of concern is the time
course of embodied simulation throughout the whole process of property verifica-
tion. As one of the aims of the thesis is to test the linguistic shortcut hypothesis
(i.e., the linguistic component reaches its peak before the embodied component,

and is used to guide the activation of the embodied component), we are able to
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draw a theoretically significant conclusion if we find that the linguistic component
can better predict the observed ERP waveform at an earlier time window than the

embodied component.

In this thesis, I will adopt the latter strategy as the more economical choice,
because it removes the unnecessary time and effort to create difference waves,
especially as salvaging ERP components is not the aim of my research. It is also
the more rigorous choice because it limits the researcher degrees of freedom, as

will be discussed in the next section.

2.4.2 Problems with researcher degrees of freedom

The large flexibility in the analysis of ERP leads to problems with repli-
cability. Conducting a component-independent analysis can effectively limit such
flexibility. By putting away the need to identify discrete components, there is no
room to alter the length of a time window or to choose various sites on the scalp.
In my ERP studies, I will simply analyse the data one electrode at a time in uni-
formed time windows of 50ms. The length of the time window is decided simply
to reduce data to a manageable amount. It is theoretically possible to take finer
slices (e.g., 10ms) or perform point-by-point analysis at each millisecond. However,

I believe the 50ms slices will be able to serve the purpose of this thesis.

An additional way to avoid some of the problems of p-hacking is to use
Bayesian analysis rather than null-hypothesis significant testing (NHST), where
statistical significance (p < .05 results) is no longer a concern and inferential
statistics instead quantify the evidence in the data for or against a particular
hypothesis (Wagenmakers, 2007). In NHST, statistical significance is measured by
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p-value, which is the probability of obtaining the data if no actual effect exists in
the population (i.e., if Hy is true). Problems of p-value have been demonstrated
extensively (Jarosz & Wiley, 2014; Wagenmakers, 2007), the most fundamental
being that NHST is comparing the data to a distribution that is never observed
(where Hy is known to be true), due to which p-values cannot inform us about the
size of effect or the confidence we can hold for the alternative hypothesis, even if
it was shown to be significant. On the flip side, if NHST yielded non-significant
result, the p-value does not allow us to conclude that the alternative hypothesis is

false.

A practical encumbrance of p-values is the need for post hoc correction after
multiple comparisons. It is typical for ERP studies to conduct multiple compar-
isons (e.g., running the same ANOVA repeatedly on different subsets of data like
different time windows and different groups of electrodes. This would massively
increase Type I error if no post hoc correction is conducted. However, if Bonferroni
or other correction is conducted, it will render the study over-conservative, thus
increasing the chance of Type II error. In the present thesis, 90 electrodes will be
analysed individually, with 20 time slices in each trial. That results in 1800 NHSTs
for each critical variable. A correction of multiple comparison will require a criti-
cal level of 2.78 x 10”-5 for each test for a family-wise critical level of .05 (and an
uncorrected test will almost definitely lead to false positive results). This stringent
criterion could conceivably render it meaningless any p-values we can obtain from
a statistical package. Bayes Factors avoid this problem completely because their
quantification of evidence is unaffected by multiple comparisons, and so you can

run as many Bayesian model comparisons as you like without increasing type 1
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Table 2.1: Interpretation of BF as
evidence for H 1

BFy, BF)y Support for H;

1-.33 1-3 Anecdotal
33-.10  3-10 Substantial
.10-.03  10-30 Strong
.03-.01 30-100 Very strong

<.01 >100 Decisive

error.

Bayes Factors denotes the ratio of probability of the data under both null
and alternative hypothesis. The inverse of BF); which quantifies how much more
likely the data is under H; than Hy. That is, if the inverse of BFy; (i.e., BFy) is 5,
it means the current data is five times more likely under the alternative hypothesis
than the null hypothesis. This can already inform us about how confident we can
be with the alternative hypothesis. We can be more confident with the alternative
hypothesis if BF;y = 100 than if BF;y = 10, while if BF ;) = 1, the data was equally
likely under either hypothesis. Inversely, if BF;, is less than 1, we would be more
confident about the null hypothesis than the alternative hypothesis. Therefore, BF
offers the possibility to conclude that the alternative hypothesis is a bad model for
the data. While the continuous scale of BF is useful enough, we could conveniently

describe the results, using (Jeffreys, 1998) guideline to label BF (Table 2.1)

There is one more possible measure to limit researcher degrees of freedom,
thanks to recent endeavours of pre-registration and open science (Nelson et al.,
2018; van 't Veer & Giner-Sorolla, 2016; Wagenmakers et al., 2011). It is rec-
ommended that all decisions concerning the design and analysis (e.g., number of

participants, hypotheses, primary and secondary analyses, etc.) should be made
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and pre-registered before conducting a study. In order to create a more rigorous
way to conduct ERP studies, pre-registration of methods to select time windows
and scalp sites, as well as the hypotheses, should be carried out. This practice will
also help differentiating hypothesis-driven analysis and exploratory analysis. Pre-
registration is able to accommodate the need for exploring alternative and multiple
methods of analysis, as long as they are clearly documented. Unfortunately, the
ERP studies in my thesis are not able to be pre-registered because of the timing of
which these studies were conducted during my PhD. However, the decisions during
the analysis are made with limiting flexibility as the highest priority, and I will

clearly distinguish hypothesis-driven analysis from exploratory analysis.

2.4.3 Problem with data structure

The structure of ERP data is clustered and inter-correlated. The best
way to account for such data structure is mixed-effect models (Bagiella & Sloan,
2000). In a mixed-effect model, fixed effects of treatment (e.g., modality switch vs
non-switch) from the random variability of participant, item, time and electrode.
Recently, studies have emerged that treat EEG data with linear mixed-effect mod-
els (LME; Amsel, 2011) and generalised additive models (GAM; Hendrix, Bolger,
& Baayen, 2017). These models are superior to ANOVA not only because they can
better account for the data structure, but also because they can take continuous
predictors. ANOVA requires factorial manipulation of independent variables, such
as conventional versus novel metaphors, visual versus auditory properties. Many of
these variables can be better operationalised on a continuous scale. For example,

in my study of metaphor processing, the linguistic distributional pattern is better
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measured by co-occurrence frequency than a dichotomy of high association versus
low association. Forcing continuous variables into categorical variables lowers the
statistical power, thus making it less likely to detect an effect (Baayen, 2010).
Therefore, mixed-effect models will allow us to analyse ERP data with greater

power and rigour.

Ideally, GAM is a superior way to analyse ERP data because it can also
allow for non-linear effect of different dimensions, including time and scalp site.
However, LME has the advantage of producing results that are similar to those of
ANOVA and linear models. Therefore, the results are more comprehensible and
easily accessible for the readers. Furthermore, LME will be used to analyse the
behavioural results of this thesis, which makes the practical transition to the ERP
studies easier and less consuming (considering the time constraint of the PhD).
Therefore, I have opted to use LME as a stepping stone, with that hope that future

research can take the full data structure of ERP into account.
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CHAPTER 3

Ease-of-Simulation Norms

In order to examine the conceptual representations of metaphor process-
ing, I need well operationalised definitions of the two components of metaphor
processing, that is the distributional pattern of linguistic symbols and the simula-
tion of sensory, motor, affective, introspective and other bodily experiences. While
the former could be straightforwardly operationalised by distributional frequencies
(i.e., logarithmically transformed sum of n-gram frequencies throughout the the-
sis), the latter poses a challenge. This chapter presents a novel norming measure
of the effort of creating embodied simulations, by examining the end product of
successful metaphor processing. The resulting interval metric will be used as one

of the key predictors of metaphor comprehension in the following chapters.

Draft was submitted to the journal Behavioral Research Methods in January
2018 and was produced in collaboration with Dr Louise Connell and Dr Dermot

Lynott as co-authors.
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Abstract

Successful language comprehension results in a multimodal simulation of meaning,.
Hence, the ease of simulation of a given metaphor is likely to be a critical predictor
of performance in metaphor processing. Since simulations are unconscious, and may
lose information when brought to conscious awareness, the ease of simulation cannot
be directly rated (e.g., as ease of understanding or of generating mental imagery).
Therefore, we propose an alternative method of measuring ease of simulation
indirectly by assessing the end product of successful metaphor processing using
multiple rating scales that, together, offer a proxy for ease of simulation: sensibility,
usability, and imaginability of metaphors. We normed 452 sentences comprising
adjective metaphors (e.g., Students can be bright; Minutes can be lukewarm) by
asking participants to rate the sentences on sensibility, usability, and imaginability
scales. We then used principal components analysis to combine these three
individual rating scales into a single measure that captured their common variance:
ease-of-simulation (EoS). To validate the norms, we examined the extent to which
this new EoS measure can explain response times in a metaphor processing task,
and found that it better predicted sensibility judgement times than any of the
individual ratings, including the ostensibly more relevant sensibility ratings. These
findings support the idea that EoS provides a valuable index of processing difficulty
in metaphor comprehension. We hope these norms will benefit research on metaphor

processing and the role of simulation in language comprehension.

Keywords: norms, ease of simulation, metaphor processing, language
comprehension

Word count: 4553 words
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Ease-of-Simulation Norms for 452 Adjective Metaphors

Successful language comprehension, regardless of being literal or metaphoric,
results in multimodal simulation of the concepts described in the sentence. That is,
sensorimotor, affective, introspective and other experiences are reactivated in order
to achieve comprehension (Allport, 1985; Barsalou, 1999; Glenberg & Gallese, 2012;
Niedenthal, 2007). Evidence for such simulation includes shared activation between
brain areas involved in perceptual processing (e.g. sound stimuli activating auditory
cortex) and comprehension of words whose meaning relates to perception (e.g.,
sound-related words like thunder; Bonner & Grossman, 2012; Boulenger et al., 2008;
Hauk, Johnsrude, & Pulvermiiller, 2004), as well as many other behavioural effects
which supports the simulation-based account of language processing (Aravena et al.,
2010; Buccino et al., 2005; Connell, 2007; Glenberg et al., 2008; Speed & Majid,
2017). Moreover, even abstract concepts — which traditionally have been assumed to
lack perceptual information — have been shown to be grounded in people’s
sensorimotor and affective experiences (Connell, Lynott, & Dreyer, 2012; Glenberg

et al., 2008; Vigliocco et al., 2014).

However, most research on simulation has focused on literal language
processing, while metaphor processing has generally been neglected. Since
simulation happens for both literal and figurative language processing, ease of
simulation should be a critical factor in performance (e.g., speed and accuracy)
during metaphor processing. The aim of this paper is to address the lack of
attention given to embodied (i.e., grounded) views of meaning in metaphor
processing by defining and operationalising a measure of ease of simulation as an
index of comprehension difficulty, and then to validate this measure using results

from a metaphor sensibility judgement task.
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Defining Ease of Simulation

In literal language processing, the extent to which simulation happens is
straightforward to operationalise because there is an apparent match between the
meaning of the language and the sensori-motor and affective characteristics of the
referent. If you would like to see whether comprehension of The sun can be bright is
grounded in sensorimotor simulation, you could examine whether it activates the
neural regions related to processing visual stimuli, you could ask people to read the
phrase while performing visual distraction task, or you could ask simply how
strongly their experience of the sentence involves the visual modality. However,
simulation in metaphor processing is more complex because the grounded
characteristics of a metaphor are not directly corresponding to the characteristics of
its constituent words. In other words, the conceptual representation of Students can
be bright is not directly associated with the visual feature of emitting much light.
Instead, bright here refers to intelligent and quick-witted. The association between
the literal and metaphoric meanings is not always easily apparent and there is no
consensus regarding the mechanism through which the metaphoric meaning arises.
Bright students may be used to describe an intelligent student because intelligence is
the most salient meaning in the context of students (Giora, 1997), or because the
feature bright is projected onto students and the meaning of intelligence is inferred
(Bowdle & Gentner, 2005), or because bright is a member of the figurative category
intelligence (or intelligent things) of which students is also a member (Glucksberg &
Keysar, 1990). Conversely, bright may be used to describe intelligence because both
concepts can be compressed into one cross-modal dimension (Buckner & Krienen,
2013; Simmons & Barsalou, 2003); or because it may activate some abstract features
apart from the concrete feature of emitting light, which could be used to describe
intelligence (e.g., making things clear to see; Simmons & Barsalou, 2003);

alternatively, the word bright may often co-occur with clever or quick-witted or other
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words referring to intelligence which consolidates this meaning (for a review on
conceptual abstraction, see Barsalou, 2016; Louwerse, 2011; Zwaan, 2016).
Moreover, simulation is an unconscious mental representation which loses
information when brought to conscious awareness (Connell & Lynott, 2016), and so
it is not possible to rate the ease of such complex simulation directly, as, for example,
the ease of understanding a metaphor (i.e., comprehensibility: Campbell & Raney,
2015; Katz, Paivio, Marshark, & Clark, 1988) or of generating mental imagery for a
metaphor (Cardillo, Schmidt, Kranjec, & Chatterjee, 2010). To solve this problem,
we propose to measure ease of simulation indirectly by assessing the end product of
successful metaphor processing in terms of three criteria that, together, offer a proxy

for the ease of simulation: sensibility, usability and imaginability of metaphors.

These three criteria tap into different, but complementary, aspects of language
comprehension and conceptual representation. Sensibility, that is, how much sense a
sentence makes if encountered in reading or in conversation (e.g., Students can be
bright), is a useful measure that relates to whether the process of language
comprehension seems to have produced a functional end product. By successfully
“making sense” of a metaphor, people will manage to construct a conceptual
representation of the metaphoric meaning in question. The drawback of a sensibility
rating is that it is often conflated with frequency. Studies using a sensibility
judgement task, where participants decide whether or not a sentence makes sense,
have found that performance of the task could be well explained by the
distributional frequency of constituent words (Connell & Lynott, 2013; Gagné &
Shoben, 1997; Storms & Wisniewski, 2005). This relationship could be because a
sensibility judgement task requires relatively shallow processing as a simple yes/no
answer would suffice (Barsalou, Santos, Simmons, & Wilson, 2008; Connell &
Lynott, 2013). When it comes to sensibility ratings, people may also base their

decisions on the statistical, distributional patterns of the constituent words, such
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that, if the constituent words often occur together (e.g., account and freezing), they
would find it easier to pass it as something they can understand (however vaguely),
compared to words that rarely co-occur (e.g., illness and bright). Thus, in order to
encourage people to engage in deeper processing of meaning, we adopted the second
criterion: usability, that is, how easy it is to use the sentence in conversation or in
text. Usability supplements sensibility because it requires people not only to
understand and make sense of a sentence, but also to imagine scenarios where they
could use the sentence in language production: a feat that would be very difficult
without thorough and confident grasp of what the metaphor actually means. Thus,

the usability rating will require deeper processing than the sensibility rating.

In contrast to the sensibility and usability criteria which focuses on language
processing, the imaginability criterion — that is, how easy it is to imagine the
concept described in a metaphor — is introduced to give a lay definition of
simulation. Although imagining a concept requires conscious effort while simulation
is unconscious, both processes depend on generating, retaining and even
manipulating mental representations. Note that imaginability is not imageability,
the latter of which is a criterion biased towards concrete concepts and especially the
visual modality (Connell & Lynott, 2012; Paivio, Yuille, & Madigan, 1968). In
contrast, imaginability (i.e., how easy it is to imagine the concept described in a
metaphor) can be easily applied to abstract concepts. People could find it as easy to
imagine an abstract concept such as a bright future as a concrete concept such as a

bright student.

These three measurements can offer a proxy of how easy it is to simulate a
concept in a successful representation of metaphoric meaning. If a metaphor is
considered as sensible, easy to use, and easy to imagine, such a metaphor should
normally be regarded as easy to simulate. We can therefore combine these three

ratings into a single component measure that captures overall ease-of-simulation
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(EoS); in other words, we propose that ease of simulation provides an overall index
of the comprehension difficulty or processing demands of a given metaphor. If the
ease-of-simulation measure is a critical predictor of metaphor processing, it should
outperform the individual component scales in predicting how fast and accurately
metaphors are processed. Therefore, following details of the norming study, we
subsequently validate the norms by analysing response times from a metaphor
sensibility judgement task using the ease-of-simulation measure and the three

individual scales separately as predictors.

Norming Procedure

This norming study aimed to operationalise ease of simulation in metaphor
processing. For this purpose, we generated metaphoric sentences in the form of “A
can be B” in which A was a noun as the target word and B was a sensory adjective
as the source word (e.g., Student can be bright). We asked participants to rate these
sentences on their sensibility, usability and imaginability, and we combined these
three sets of ratings using principal components analysis to obtain a single score for
each item (i.e., ease-of-simulation measure). The full set of metaphors, along with
ratings, the ease-of-simulation measure, and distributional frequencies, will be made

public online (https://osf.io/xgysz).

Method

Participants. We recruited 171 students from Lancaster University to
complete the survey. All were native speakers of English. They took part in the
study either online for a chance to win a £10 Amazon voucher (N = 112) or in a lab

for a reward of £3 (N = 59).

Materials. A basic set of 113 object properties (i.e. adjectives), that were

unimodal in nature (i.e., had a single dominant perceptual modality: see also Liu,
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Connell, & Lynott, 2018b), were selected from the modality exclusivity norms of
Lynott and Connell (2009). Each adjective was paired with four nouns (chosen from
various sources such as the Kenkyusha Dictionary of English Collocations
(Katsumata, 1980), Macmillan English Dictionary (Rundell, 2007), Oxford
Dictionary of English (Stevenson, 2010)) in order to generate sentences with
different metaphoric interpretations, giving a total of 452 metaphors. When
generating the metaphors, we made sure that it was the adjectives, rather than the
nouns, that were interpreted metaphorically, and that the metaphors did not have a
literal meaning readily accessible (e.g., Feet can be itchy, meaning wanting to travel,
was rejected as a possible item because both feet and itchy were interpreted
metaphorically and the literal meaning of an itching sensation was readily accessible

t00).

The combination of each adjective with four nouns enabled the metaphors to
vary on two dimensions: that is, the authors’ initial intuitions of the ease of
simulation and a measure of linguistic distributional frequency (i.e., how often the
adjective and noun co-occurred). Linguistic distributional frequency has been shown
to affect conceptual representations and the speed of language processing (Andrews,
Vigliocco, & Vinson, 2009; Connell & Lynott, 2013; Landauer & Dumais, 1997;
Louwerse & Jeuniaux, 2010), because things that often appear together in the world
also tend to be mentioned together in language (Kintsch & Dijk, 1978; Louwerse &
Jeuniaux, 2010). Therefore, when norming the ease of simulation for the adjective
metaphors in this study, we also need to take the distributional frequency into
account to make sure that any measure of ease of simulation is not entirely
confounded by linguistic distributional frequency. In order to do so, linguistic
distributional frequency and ease of simulation were varied independently when
creating metaphors for each adjective, so that items could be roughly categorised

into 4 groups (easy-high, hard-high, easy-low, hard-low: see Table 1).
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Table 1

Sample metaphors, and their scores for FoS

and LDF
Metaphor EoS LDF
[llness can be bright. -1.32 2.95
Supply can be bright. -1.02  3.72
Solutions can be bright. 141  3.11
Students can be bright. 1.84  4.08
Minutes can be lukewarm. -1.49 3.31
Scheme can be lukewarm. -0.78 1.61
Supporters can be lukewarm. 0.69 2.69
Reaction can be lukewarm. 1.03 3.45

Ease of simulation ranged from intuitions of easy (e.g., the meaning of the
metaphor Students can be bright is likely to be represented relatively easily as a
quick-witted, intelligent students) to difficult (e.g., the meaning of the metaphor
Supply can be bright is likely to be represented only with great difficulty, if at all).
The metaphors also varied on the dimension of linguistic distributional frequency;,
which was determined by the bi- to 5- gram co-occurrence frequencies between the
adjective and the noun with zero to three intervening words in the Google Web1T
Corpus [Brants and Franz (2006); e.g., “bright students” or “students bright”,
“bright ... students” or “students ... bright”, etc.]. Frequencies were log
transformed as log;o(frequency + 41) because} 41 is the lowest non-zero frequency
in the corpus (i.e., the raw frequency of 0 in fact means that the constituent words
co-occurred 41 times;} e.g., Connell & Lynott, 2013). Thus, we obtained a linear
scale of linguistic distributional frequency for all metaphors normed (M = 2.95, SD
= 0.97). Linguistic distributional frequency ranged from high (e.g., Student can be

bright) to low (e.g., Solution can be bright).

Procedure. In order to operationalise ease of simulation, we asked participants

to rate the sentences on three scales — sensibility (i.e., how much sense the
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expression makes as if read in a story or heard in conversation), usability (i.e., how
easy it would be to use the expression in writing or conversation), and imaginability
(i.e., how easy it is to imagine the concept described in the expression). In the
survey, each metaphoric expression was rated on these three criteria on a 1-7 Likert
scale, with 1 being “making no sense at all”, “very hard to use/imagine” and 7 being

“making perfect sense”, “very easy to use/imagine” (full instructions are given in

Appendix A).

With the four groups of adjective-noun pairs (easy/hard to simulate x
high/low linguistic distributional frequency) and three scales of rating, we generated
twelve list conditions of items to which each participant was assigned based on their
month of birth. Each participant saw 113 items that ranged across a full spectrum
from easy to hard to simulate, and from high to low distributional frequency, and
were distributed in approximately equal proportions across the three ratings scales.
Thus, all items were rated on all three scales, but each participant rated a particular
adjective only once. The order of item presentation under each scale was
randomised prior to the study and the order of scale presentation was randomised
for each participant. Participants were not compelled to rate all items but could

complete as many as they wanted to.

The survey was administered both online and in a lab setting with the
permission of the Lancaster University’s Department of Psychology Ethics
Committee and Lancaster University’s Research Ethics Committee. In both
instances, participants completed the entire study via the Qualtrics online survey

platform.! Here, we report how we determined our sample size, all data exclusions,

1 'We compared ratings in the lab versus online using mixed-effect linear models with the test
setting as the fixed effect, and participants and metaphor item as random-intercept effects; overall,
online ratings were higher than the ratings in the lab for both imaginability (b = -0.46, 95% CI =
-0.79 - -0.12, df = 164.09, ¢ = -2.65, p = .009) and sensibility (b = -0.51, 95% CI = -0.82 - -0.20, df
= 160.40, ¢t = -3.20, p = .002), but not for usability (b = -0.25, 95% CI = -0.58 - 0.09, df = 166.09,
t = -1.44, p = .15). This comparison should be treated with caution because online participants
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all manipulations, and all measures in the study.?

Analysis and Discussion

Data exclusion and treatment. A total of 17,329 data points was
collected. Participants who completed less than one-third of the items each scale
(i.e., 13 items or fewer) were removed (three participants for imaginability, nine for
sensibility, eight for usability). Those who provided the same rating value for 13 or
more items in a row were removed too (one for imaginability, one for sensibility, four
for usability). Two participants’ ratings on imaginability were removed because their
small number of data points, combined with low variability, meant that calculation
of Cronbach’s alpha could not proceed (error message: “missing value in the
correlation R-package {psych}: Revelle, 2017). Thus, 16,888 data points remained

after exclusion, with a minimum of 10 points per item per scale. The inter-rater

greatly outnumbered the participants in the lab, with some items rated more than ten times online
but only once or twice in the lab.

2 We used R (Version 3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate &
Heiberger, 2016), arm (Version 1.10.1; Gelman & Su, 2016), BayesFactor (Version 0.9.12.4.2;
Morey & Rouder, 2015), bindrcpp (Version 0.2.2; Miiller, 2017), bookdown (Version 0.7; Xie, 2016),
broom (Version 0.4.4; Robinson, 2017), citr (Version 0.2.0; Aust, 2016), coda (Version 0.19.1;
Plummer, Best, Cowles, & Vines, 2006), contrast (Version 0.21; Kuhn, Steve Weston, Wing,
Forester, & Thaler, 2016), cowplot (Version 0.9.2; Wilke, 2017), data.table (Version 1.11.4; Dowle &
Srinivasan, 2017), doBy (Version 4.6.1; Hgjsgaard & Halekoh, 2016), dplyr (Version 0.7.5;
Wickham, Francois, Henry, & Miiller, 2017), Formula (Version 1.2.3; Zeileis & Croissant, 2010),
ggplot2 (Version 2.2.1; Wickham, 2009), gridExtra (Version 2.3; Auguie, 2017), Hmisc (Version
4.1.1; Harrell Jr, Charles Dupont, & others., 2018), interplot (Version 0.1.5; Solt & Hu, 2015), knitr
(Version 1.20; Xie, 2015), lattice (Version 0.20.35; Sarkar, 2008), lme4 (Version 1.1.17; Bates,
Méchler, Bolker, & Walker, 2015), imerTest (Version 3.0.1; Kuznetsova, Brockhoff, & Christensen,
2017), magrittr (Version 1.5; Bache & Wickham, 2014), MASS (Version 7.3.50; Venables & Ripley,
2002), Matriz (Version 1.2.14; Bates & Maechler, 2017), mgcv (S. N. Wood, 2003, 2004, Version
1.8.23; 2011; S. Wood, N., Pya, & S"afken, 2016), multcomp (Version 1.4.8; Hothorn, Bretz, &
Westfall, 2008), MuMIn (Version 1.40.4; Barton, 2017), mutnorm (Version 1.0.8; Genz & Bretz,
2009), nime (Version 3.1.137; Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017), papaja
(Version 0.1.0.9735; Aust & Barth, 2017), plyr (Wickham, 2011; Version 1.8.4; Wickham et al.,
2017), psych (Version 1.8.4; Revelle, 2017), purrr (Version 0.2.5; Henry & Wickham, 2017),
reartocolor (Version 0.0.22; Nowosad, 2017), rms (Version 5.1.2; Harrell Jr, 2018), SparseM
(Version 1.77; Koenker & Ng, 2017), survival (Version 2.42.3; Terry M. Therneau & Patricia M.
Grambsch, 2000), TH.data (Version 1.0.8; Hothorn, 2017), and tidyr (Version 0.8.1; Wickham &
Henry, 2017) for all our analyses and the writing up of this manuscript.
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Table 2
Correlations among variables with their means
and standard deviations (SD)

1. 2. 3. 4. d.

1. EoS - - -
2. Imaginability .95 - - = -
3. Sensibility 96 .86 - - -
4. Usability 96 .86 .87 - -
5. LDF 27 23 260 .28 -
Mean 0.00 3.98 3.83 3.63 2.96
SD 1.00 1.44 155 148 0097

consistency of each scale was calculated per group (months of birth from January to
December) per scale, and showed that response was highly consistent among
participants (imaginability average o = 0.888, sensibility average o = 0.907,
usability average o = 0.896). Detailed results of Cronbach’s alpha are reported in

Supplementary Materials (https://goo.gl/UT76mL).

Extracting the ease-of-simulation (EoS) measure. We first calculated means
and standard deviations of each item per scale, and then we performed principal
components analysis via covariance matrix on the three sets of ratings in order to
extract one factor that can quantify the ease of simulation. This single factor had an
eigenvalue of 2.73, was the only principal component with eigenvalue > 1, and
explained 91% of the total variance of the ratings. The fact that sensibility,
usability, and imaginability ratings could be collapsed so successfully into a single
component suggests that these three rating scales essentially captured the same

underlying information: that is, successful simulation of meaning.

We then used the factor score of this single principal component (estimated via
regression as a standardised variable) as the EoS score for each metaphor item.
That is, the higher the EoS score, the easier it was to simulate the metaphoric

meaning. Table 2 shows the descriptive statistics of and inter-correlations between
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the EoS measure and the three rating scales. It is notable that the three individual
ratings scales correlate equally well with each other but less well than they do with
the extracted ease of simulation measure, suggesting that each rating scale captures
unique variance as well as that related to ease of simulation. We test the utility of

this unique variance in the norms validation.

Comparison with linguistic distributional frequency. In creating our
metaphors, we attempted to ensure that EoS was not confounded by linguistic
distributional frequency; that is, the ease of simulating a particular metaphoric
meaning should not be a function of how frequently the words in that metaphor
co-occur in language. In order to examine if we were successful in our efforts, we
calculated the relationship between the log linguistic distributional frequency for
each item and the corresponding measures from our norming procedure. As shown
in Table 2, linguistic distributional frequency had a relatively consistent, positive
relationship with EoS scores and their constituent imaginability, sensibility, and
usability ratings. However, the relationship was weak, with linguistic distributional
frequency explaining only 7.3% of the variance in EoS scores. As such, ease of
simulation is not strongly influenced by linguistic distributional frequency: the words
that comprise an easy-to-simulate metaphor may co-occur seldom or often, as may
those that comprise a hard-to-simulate metaphor. Examples of metaphors varying

on the EoS measure and linguistic distributional frequency are shown in Table 1.

Norms Validation

If ease of simulation is a critical factor in metaphor processing, as assumed by
grounded theories for all language processing, then our newly created EoS measure
should outperform the three individual scales (imaginability, sensibility, usability) in
predicting the time-course of metaphor processing. That is, since each of the three

individual rating scales captures only some of the information that exemplifies a

13
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successful perceptual-motor-affective simulation of metaphoric meaning, their
individual ability to predict metaphor processing performance will be less than that
of the composite EoS score. We therefore validated our norms by analysing response
time (RT) data from a typical metaphor comprehension study: a sensibility
judgement task, taken from a previous study by Liu, Connell, and Lynott (2018a).
In that experiment, 28 participants read the 452 metaphors normed here and judged
whether or not the sentences made sense. The sentences were presented one word at
a time, and RT was measured from the onset of the adjectives to the onset of

response.

Liu et al. (2018a) found that the EoS scores obtained from the present
norming study were a significant predictor of the RT to judge the metaphors as
sensible. Here, we directly compare ease of simulation with imaginability, sensibility,
and usability ratings in terms of their abilities to predict these sensibility judgement
times. We analysed each predictor separately in a mixed-effect linear regression,
where the key predictor (EoS, imaginability, sensibility, or usability) was a fixed
effect, and participant and item were crossed random factors modelling random
intercept. The imaginability, sensibility and usability ratings were all centred before

analysis.

Furthermore, we also investigated whether a visual dominance exists in the
EoS norms. There is an overall visual dominance in language (San Roque et al.,
2015), which means that visual metaphors may be more commonly encountered, and
thus may be easier to make sense of, imagine or use. Therefore, it is possible that
the EoS measure may be a good predictor for visual metaphors only. To examine
the possibility, we coded the data by the perceptual modality of the adjective source
domain (audition, haptics and vision), and analysed whether the EoS effect on

auditory and haptic metaphors differed from that on visual metaphors.
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Table 3
Results from the mized-effects linear regressions of
RT (ms) in a sensibility judgement task

b 95% CI P
EoS -149.85 -177.95 - -121.74 < .001
Imaginability — -98.12  -117.70 — -78.53 < .001
Sensibility -88.29  -107.02 - -69.55 < .001
Usability -96.09  -115.18 - -76.99 < .001

Note. b is non-standardised regression coefficient
Variables were fixed predictors in separate models.

EoS Measure versus Individual Rating Scales

All four variables (EoS, imaginability, sensibility, usability) had a significant
negative relationship with RT in their respective analyses. That is, the easier it is to
simulate the meaning of a metaphor (or the more sensible, easy to use, or easy to
imagine the metaphor seemed to be), the faster it was accepted as sensible. Table 3

shows the effects of the variables separately in each model.

From the table, it can be seen that the EoS measure had a numerically larger
effect size (b = -149.846) than the other variables, suggesting it as a better predictor
of the response times compared to the other measures. To evaluate evidence for the
advantage of the EoS measure over others, we calculated the relevant Bayes Factors
for the purpose of model comparison. Bayes factor (BF) is a powerful tool to
compare models and shows the ratio of the likelihood of data given different
hypotheses. It could be used to make a statement about the amount of evidence for
the alternative hypothesis compared against the null hypothesis, in contrast to a
simple null-hypothesis significance testing using p-values (Jarosz & Wiley, 2014;
Wagenmakers, 2007). In the current study, we contrasted the model with the EoS
measure (alternative hypothesis Hy) with each of those models with individual

ratings (imaginability, sensibility or usability: null hypotheses Hy) and calculated
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the amount the evidence that favoured the EoS model (BFy).

We used the Bayesian Information Criterion (BIC) to estimate the likelihood
of data under each hypothesis (Wagenmakers, 2007). We extracted BIC for each

model, and then calculated BF10 as follows.

(BIC(H,) — BIC(Hp))
2

BF[H = €

In all three comparisons, the Bayes Factors showed very strong evidence in
favour of the EoS variable, in comparison with imaginability rating (BF;y = 101.36),
sensibility rating (BF;y = 5174.10), and usability rating (BF;y = 95.15). Figure 1
visually illustrates the advantage of ease of simulation over the other measures (for
details of model comparison, see Supplementary Materials). In other words, ease of
simulation was the best predictor of the speed of accepting metaphors as sensible.
This finding suggests that the unique variance in each individual rating scale is noise
rather than useful information regarding processing difficulty, and that the shared
variance between the scales — as captured by the composite EoS measure — succeeds
in capturing useful information about meaning representation that indexes the

latency of comprehension.

Examining the Dominance of Visual Metaphors

Although the EoS measure was shown to be the best predictor of RT, it could
be argued that its effect is mainly driven by visual metaphors (i.e., metaphors where
the literal meaning of the adjective relates to vision, such as bright), which make up
20% of our item set, and could be easier to process simply due to the fact that most
sensory language concerns vision as opposed to other modalities (San Roque et al.,
2015). We analysed the sensibility judgment times in a mixed-effect hierarchical

linear regression with EoS as well as the perceptual modality of the source adjectives.
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Figure 1. Effects of EoS measure, imaginability, sensibility and usability on RT (in
order of the predicting power). The asterisks show the amount of evidence in favour
of the EoS model. *: BF;, > 10; **: BF;, > 100; ***: BF;, > 1000.

Model 1 included the EoS measure and perceptual modality as fixed variables
and participants and items as crossed random-intercept variables, and Model 2
included the critical EoS x perceptual modality interaction as additional fixed
variables. The perceptual modality was dummy coded with the visual modality as
the reference level. The EoS measure remained a significant predictor of RT (see
Table 4). Furthermore, response to auditory metaphors were significantly slower
than visual metaphors, while RT to haptic metaphors was not significantly different
from that to visual metaphors. However, the interactions between source perceptual
modality and EoS measure were not significant and the marginal R? (Barton, 2016)
showed that the interaction term could not account for the data better. In other

words, EoS did not have different effects on metaphors of different source modalities.
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Table 4
Summary of Hierarchical Model Comparison for Variables to Predict Sensibility
Judgement RT
b 95% CI  R? AR?
Model 1 0.06
EoS -147.777 -176.34 — -119.20
Perceptual modality
Auditory - visual 37.90 -20.23 — 96.04
Haptic - visual 52.16 -17.47 - 121.79
Model 2 0.06 -5.33 x 1079
EoS -145.4640 -188.03 — -102.89
Perceptual modality
Auditory - visual 41.00  -25.69 — 107.70
Haptic - visual 51.77 -35.08 — 138.62
EoS x perceptual modality
EoS x Auditory - visual -6.34 -67.76 — 55.09
EoS x Haptic - visual 0.70 -75.49 — 76.90

Note. b is non-standardised regression coefficient
R? stands for marginal R?, which represents the variance explained by the fixed

factors only.

General Discussion

We presented ease of simulation norms for 452 metaphors with 113 unimodal

sensory adjectives as the source terms (e.g., Student can be bright). In literal use,

such adjectives relate to strong perceptual experiences in one of the visual, auditory

or haptic modalities (Lynott & Connell, 2009). However, when these unimodal

adjectives become part of a metaphor, the resulting mental representation is no

longer unimodal, but becomes multimodal and complex. Moreover, multimodal

simulations are prone to information loss when consciously inspected (Connell &

Lynott, 2016), which creates difficulty in directly measuring how easy it is to

simulate such metaphoric constructions. Thus, the norms presented here adopt a

novel approach of taking indirect measures of how successfully the metaphoric

meaning had been represented (i.e., the end product of the simulation process) in
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order to offer a proxy for ease of simulation. If the meaning of a phrase has been
successfully simulated, it should be easy to imagine the concept it conveys, it should
make sense, and it should be easy to re-use the phrase in language production. From
these three different rating scales (i.e. imaginability, sensibility and usability), we
used principal components analysis to create a composite measure that explained
most of the underlying variance in a single variable, and termed this component ease
of simulation. We validated this measure by using it to predict metaphor processing
times in a sensibility judgement task. Critically, the predictive power of the EoS
measure was higher than that of any individual scales. It suggests that the EoS
measure can capture more comprehensively the information that exemplifies the
simulation of meaning in metaphor processing. Thus, EoS scores provide a useful
index of metaphor comprehension difficulty. Lastly, the EoS measure was found to
be equally predictive for metaphors with visual target words as for those with
auditory or haptic target words, thus rejecting the hypothesis that the EoS measure

was a better measurement for visual metaphors because of the visual dominance.

Considering that the data for the norms validation was from a sensibility
judgement task, it was striking to find that the EoS measure was a better predictor
than the separate measure of sensibility ratings. If the sensibility judgement task
and the sensibility ratings rely on the same mechanism (i.e., deciding whether/how
much a metaphor makes sense to the reader), it should be natural and even trivial
to find that sensibility ratings were an ideal predictor of the response time in the
sensibility judgement task. That is, metaphors that are normally considered to make
a lot of sense should be quickly judged as sensible, while metaphors that are
considered to make little sense should take longer to be judged as sensible, if not
rejected altogether. If that had been the case, our norming study would have had
little theoretical value. However, since sensibility ratings involve consciously

inspecting the contents of a mental representation, and since it is not possible to
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inspect the full contents of a simulation without losing information (Connell &
Lynott, 2016), we suspected that sensibility ratings — like usability and imaginability
ratings — would capture only some of the necessary criteria that determine how
quickly metaphors are processed and judged. Indeed, we found that EoS scores,
which were derived from usability and imaginability as well as from sensibility, was
the best predictor of sensibility judgement times. This finding suggests that
sensibility ratings include a good deal of noise that is unrelated to the ease of
metaphor comprehension, as well as useful information (shared with the other
ratings of usability and imaginability) that is ultimately passed onto the EoS
measure. By contrast, the EoS norms capture a useful measure of the end-product
of successful metaphor comprehension (i.e., a grounded simulation), and hence

provide a useful index of metaphor comprehension difficulty.

With the EoS norms, we manage to measure the effort to arrive at a mental
representation of a metaphor (i.e., a simulation of sensorimotor, affective and
introspective experience), while remaining agnostic to the precise content or
mechanism of such a representation. The sensory adjectives in this norming study
are known to relate to strong sensory experiences in one of the visual, auditory and
haptic modalities, at least for their literal meanings. However, when put in a
metaphor, they generate mental representations that are multimodal and complex,
which raises many further questions. What is simulated exactly? In which aspects of
experience are these representations of metaphoric meaning grounded? How might
one investigate these representations directly? By operationalizing and quantifying
ease of simulation in metaphor comprehension, we believe we have taken the first
step to answer these questions. Moreover, by making the norms public, it is our
sincere hope that they can be a stepping stone for the research community to study

simulated representations in metaphor processing.
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CHAPTER 4

Embodied and Linguistic Components in

Metaphor Processing

If metaphor comprehension relies on conceptual representations that com-
bine both embodied simulation and linguistic distributional patterns, the two com-
ponents of conceptual representations (i.e., embodied and linguistic components)
should both be critical predictors of performance in metaphor processing. The
work in this chapter aims to test just this hypothesis, that is to demonstrate
that the embodied component (operationalised as ease of simulation in the pre-
vious chapter) and the linguistic component (operationalised as the n-gram co-
occurrence frequencies of component words) can each account for a unique portion

of variance in metaphor processing.

Furthermore, the work in this chapter presents the first stab at the lin-
guistic shortcut hypothesis in this thesis. If the linguistic component is fast and
superficial, it should be an ideal shortcut to be utilised during shallow processing.
Thus, the empirical component of this chapter is composed of two contrasting

experiments, one of a sensibility judgement task (relatively shallower processing)

97



and another an interpretation generation task (relatively deeper processing). The
difference in the depth of processing demanded by the task should lead to heavier
reliance on the linguistic component in the shallow task, and heavier reliance on
the embodied component in the deep task. The paradigm set by the empirical

study of this chapter will be reproduced in the studies of Chapters 5 and 7.

An abridged version of this work has been published as conference proceeding
in: Liu, P. Q., Connell, L., & Lynott, D. (2017). Can illness be bright? Metaphor
comprehension depends on linguistic and embodied factors. In G. Gunzelmann, A.
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Abstract

Conceptual representation is both linguistic and embodied, at least when processing
literal language. Here, we aim to demonstrate that metaphor processing is no
exception. We investigated how the linguistic component (i.e., linguistic
distributional frequency: the co-occurrence frequency of the constituent words in a
metaphor) and the embodied component (i.e., how easy it is to simulate the
concept: operationalized in a previous norming study) affect metaphor
comprehension. Results show that ease of simulation contributes to metaphor
processing in both shallow sensibility judgement and deep interpretation generation
tasks, but has a larger effect on response times in deeper processing. Linguistic
distributional frequency also contributes to metaphor processing in both tasks, but
affects the speed of response only in shallow sensibility judgement. Specifically,
distributional frequency acts as a linguistic shortcut, both to speed up responses to
accept metaphors as sensible when the frequency is high, and to flag up potentially
unsuccessful processing when it is low. Overall, these results support embodied
views that emphasize the importance of both linguistic and embodied components

according to task goals.

Keywords: metaphor processing, embodied simulation, linguistic distributional
pattern, linguistic shortcut hypothesis
Word count: 9616 words
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Can illness be bright? Metaphor comprehension depends on linguistic and embodied

factors

Metaphors add warmth and color to language, and can be understood so
effortlessly by language users that their use does not register as an artifice. In
linguistic terms, a metaphor is a figure of speech where a word or a phrase (the
source) is applied to an object or an action (the target) to which it cannot be
literally applied. For example, we can easily comprehend and frequently use the
expression bright students even though a student is not an object to which the visual
property of bright can be applied. Such metaphors are an essential part of language,
not least in assisting us to express abstract concepts such as time, emotions and
relationships (e.g., Boroditsky, 2001; Chan, Tong, Tan, & Koh, 2013; Lakoff &
Johnson, 1999).

Traditionally, much research on metaphor comprehension has focused on
identifying particular factors that could make a metaphor easier — and thus faster —
to understand, such as familiarity, conventionality and aptness (Blasko & Connine,
1993; Bowdle & Gentner, 2005; Cardillo, Schmidt, Kranjec, & Chatterjee, 2010;
Giora, 1997; L. L. Jones & Estes, 2006; Pierce & Chiappe, 2008; Roncero &
Almeida, 2014b). However, as we shall discuss below, these factors suffer from
problems of theoretical specificity and empirical operationalization that make it
difficult to draw clear conclusions about their roles in metaphor comprehension.
Thus, it is necessary to study metaphor processing under a theoretical construct
with better operationalized factors. In this paper, we look at the
embodied /grounded perspective of conceptual representation, which suggests that
language comprehension is an interactive conglomerate of activating linguistic
symbols and simulating physical experiences. We suggest that metaphor processing

should be viewed as an aspect of language processing and propose how these two
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components affect metaphor processing and investigate their roles with reference to

how they relate to depth of processing during comprehension.

Traditional Views of Metaphor Processing

Several factors are often studied in research on metaphor processing, namely
familiarity, conventionality and aptness, all of which have been demonstrated to
affect the speed of metaphor comprehension. The graded salience hypothesis
suggests that familiar or conventional metaphors are processed automatically
because they enjoy high salience, compared with unfamiliar or novel metaphors
(Blasko & Connine, 1993; Giora, 1997, 2007; Glucksberg, Gildea, & Bookin, 1982;
Laurent, Denhieres, Passerieux, lakimova, & Hardy-Baylé, 2006; Peleg, Giora, &
Fein, 2001). Moreover, conventionality could be a crucial factor in determining the
mechanism with which metaphor is processed, according to an influential theory
called the career of metaphor (Bowdle & Gentner, 2005). In this theory, metaphors
(e.g., My lawyer is a shark) first start out as novel or unconventional constructions
and are processed by comparing the source concept (e.g., shark) with the target
(e.g., lawyer) and identifying potential similarities to form the basis of the
metaphoric meaning (e.g., aggressive). As a metaphor is used more often, it becomes
conventionalized (e.g., aggressive becomes a conventional attribute for “shark”) and
the metaphor is processed by categorizing the target as a member of this
conventional category (e.g., shark — aggressive beings). In contrast, proponents of
the theory of class inclusion suggest that it is aptness, rather than conventionality,
that decides whether a metaphor is processed by categorization (Glucksberg &
Haught, 2006b; Haught, 2014; L. L. Jones & Estes, 2005). That is, shark can be
categorized as a member of “aggressive beings” because the metaphor is apt (i.e., it
works well), but a less apt metaphor would require comparing the target and source

to find similarities.
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Although these factors have been shown to affect metaphor processing to a
certain degree, when it comes to understanding exactly how these three factors
affect the process of metaphor comprehension, the problems are two-fold: first in
their theoretical specificity, and second in their operationalization. In terms of
theoretical specificity, these three factors are frequently confounded with one
another and are internally inconsistent. Although some have suggested that
familiarity and conventionality are two different theoretical constructs (Blasko &
Connine, 1993; Bowdle & Gentner, 2005; Glucksberg et al., 1982; L. L. Jones &
Estes, 2005, 2006; Roncero & Almeida, 2014a), they are often used interchangeably
in the literature (Cardillo, Watson, Schmidt, Kranjec, & Chatterjee, 2012; Giora,
1997; Giora & Fein, 1999; Glucksberg & Haught, 2006b; Lai & Curran, 2013). Both
terms are used to describe metaphors that at one extreme are entirely novel and
have never been encountered before by participants, while at the other extreme are
very common, conventional, and familiar to participants. Furthermore, aptness can
also be confounded with familiarity and conventionality. Not only are familiarity
and conventionality both dependent on usage patterns of a metaphor across a
language, but aptness itself can also be associated with usage patterns. Only apt
metaphors are likely to become conventionalized or familiar, as a metaphor that
does not work well is unlikely to become widely used by speakers of a language.
Hence, familiar/conventional metaphors are typically apt, whereas novel metaphors
might be either apt or not. There is a core dependency between the factors that is
not trivial to disentangle. Indeed, ratings of aptness and familiarity are highly
correlated (r = .73-.82: Katz, Paivio, Marshark, & Clark, 1988; Roncero & Almeida,
2014a), as are ratings of aptness and corpus frequency counts of the metaphoric
expression (r = .41-.57: Roncero & Almeida, 2014b; Thibodeau & Durgin, 2011).
This core dependency means that we cannot investigate how these factors jointly or

independently affect metaphor processing.
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Moreover, the definitions of these critical factors are internally inconsistent. It
is ambiguous whether familiarity /conventionality describe a metaphoric expression,
or its metaphoric meaning. For example, familiarity is sometimes assumed to refer
to how often people have encountered the metaphoric expression itself (e.g., how
often is bright used to describe students? Blasko & Connine, 1993; Bowdle &
Gentner, 2005; Cardillo et al., 2012; Glucksberg, 2003; Mashal, 2013), and
sometimes to how accustomed people are to relating the expression to its
metaphoric meaning (e.g., how often is bright understood to mean intelligent and
quick-witted: Campbell & Raney, 2015; Cardillo et al., 2010; Giora, 1997; Giora &
Fein, 1999; Katz et al., 1988; Peleg et al., 2001; Roncero & Almeida, 2014a), but
these are two very different and dissociable theoretical constructs. A particular
linguistic expression might be encountered reasonably often but remain poorly
understood (e.g., hard Brexit may have high expression familiarity but low meaning
familiarity), or a metaphoric meaning might be encountered reasonably often via a
different expression to the one supplied (e.g., bright solutions may have high

meaning familiarity but low expression familiarity).

Because of the inconsistency in definition, these factors are not always
consistently or rigorously operationalized in empirical studies that seek to examine
their influence on metaphor comprehension. Typically, researchers measure each
factor by asking participants to rate metaphors on a particular scale. Participants
providing familiarity ratings are sometimes asked to rate the extent to which they
have read or heard the expression in the past (Mashal, Faust, & Hendler, 2005;
Roncero & Almeida, 2014a), sometimes to rate the familiarity of the ideas expressed
in the metaphors (Blasko & Connine, 1993; Campbell & Raney, 2015; Katz et al.,
1988), and at other times to rate the frequency of experience with both the
expression and the meaning together (Cardillo et al., 2010). It is therefore unclear

whether the reported effects of familiarity on metaphor processing times reflect
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experience at the word level (i.e., similar to word or phrase frequency) or experience
with understanding the metaphoric meaning in question (i.e., experience in

representing the metaphoric concept).

The same problem exists with the definition and operationalization of
conventionality. In studies that test its empirical effects on metaphor processing,
conventionality is sometimes operationalized as a function of the entire metaphoric
expression by actually asking participants to rate familiarity rather than
conventionality (e.g.: how familiar is the metaphor? Cardillo et al., 2010, 2012;
Faust & Mashal, 2007; Lai, Curran, & Menn, 2009; Mashal et al., 2005), but
sometimes as how often the metaphoric meaning is associated with the source (e.g.,
how conventional is it to use bright to mean intelligent?: Bowdle & Gentner, 2005;
Gentner & Wolff, 1997; L. L. Jones & Estes, 2006; Roncero & Almeida, 2014a).
While the former is confounded with familiarity, the latter operationalization has
been challenged by findings that conventionality is context-dependent and cannot be
defined for the source term independent of the target (Thibodeau & Durgin, 2011).
That is, just because Students can be bright is a conventional metaphor does not
mean all metaphors that use bright as a source domain for intelligent and
quick-witted (e.g., Solutions can be bright) are equally conventional. In short, it is
unclear whether conventionality is a theoretically valid construct, and whether the
reported effects of conventionality on metaphor processing are truly distinct from

familiarity (which has its own problems, as discussed above).

Investigation of the importance of aptness faces a similar challenge. It has
been ambiguously defined as either a very general, high-level quality or goodness of
a metaphor and is often operationalized as such (Blasko & Connine, 1993; Bowdle &
Gentner, 2005; Campbell & Raney, 2015; Glucksberg & Haught, 2006b; Katz et al.,
1988), or as a much more low-level specification of how well the metaphoric meaning

(e.g., intelligent and quick-witted) fits or overlaps with the target (e.g., students:
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Chiappe & Kennedy, 1999; L. L. Jones & Estes, 2005, 2006; Pierce & Chiappe, 2008;
Roncero & Almeida, 2014b). Thibodeau and Durgin (2011), in a detailed
examination of aptness ratings, argue that people are influenced by extraneous
factors such as processing fluency when rating aptness and hence these ratings do

not capture the theoretical construct they are meant to operationalize.

In summary, familiarity, conventionality and aptness have all been shown to
affect metaphor processing. However, they have several theoretical and operational
problems that mean they have limited utility in enhancing our understanding of
what makes a metaphor easier to process. Rather than continue to vary and refine
how these factors are conceptualized, we propose that a different approach is needed
to seek clearer predictors of metaphor processing that (a) are theoretically and
operationally distinct, and (b) are able to independently account for speed and

accuracy performance in metaphor processing.

Grounded Views of Language Processing

Research in conceptual representation and language processing has tended to
operate in parallel to that of traditional metaphor processing, and therefore takes
quite a different perspective on how access to meaning takes place. Essentially, two
components are employed in the mental representation of meaning when people
process language (Barsalou, Santos, Simmons, & Wilson, 2008; Borghi & Binkofski,
2014; Connell & Lynott, 2014b; Louwerse & Jeuniaux, 2008; Lynott & Connell,
2010; Vigliocco, Meteyard, Andrews, & Kousta, 2009). The first component is
linguistic and relies on the statistical, distributional pattern of how words co-occur
across contexts. For example, the words bright and students occur together more
often in language than do bright and illness, and such distributional frequency
patterns have been shown to be powerful enough to capture many aspects of

language processing, such as priming and reading times (Vigliocco et al., 2009),
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language acquisition from early infancy (Aslin, Saffran, & Newport, 1998; Kirkham,
Slemmer, & Johnson, 2002), and even to some extent distinguishing words that
relate to different perceptual modalities (Louwerse & Connell, 2011). The second
component of conceptual representation is embodied (also known as the grounded,
sensorimotor or situated), which relies on the process of simulation; that is the
partial reactivation of past perceptual, motor, affective, introspective and other
experiences (Allport, 1985; Barsalou, 1999; Glenberg & Gallese, 2012; Niedenthal,
2007). Evidence for embodied simulation includes shared activation between brain
areas involved in perceptual or action experience and their equivalents in language
comprehension. For example, reading sound-related words like “thunder” activates
the auditory association cortex, and their processing is selectively impaired in
patients with atrophy of the auditory association cortex (Bonner & Grossman, 2012;
Boulenger et al., 2008; Goldberg, Perfetti, & Schneider, 2006; Hauk, Johnsrude, &

Pulvermiiller, 2004).

Together, the linguistic and embodied components can explain language
processing better than either alone (Andrews, Vigliocco, & Vinson, 2009; Johns &
Jones, 2012; Louwerse & Connell, 2011). In particular, linguistic distributional
information provides a powerful tool for superficial language processing because the
linguistic component is faster than the embodied simulation component (Barsalou et
al., 2008; Louwerse & Jeuniaux, 2008). In any language processing task, both
linguistic and embodied components are activated but the activation of the linguistic
component will peak before that of the embodied component (Barsalou et al., 2008).
Therefore, Louwerse and Jeuniaux (2008) argued that people are more likely to rely
on the embodied component when deeper processing is specifically cued in the task
(Connell & Lynott, 2014b); but people will be reliant upon the linguistic component
to generate a good-enough approximation (Ferreira, Bailey, & Ferraro, 2002) when

shallow processing can suffice. Evidence for a speed advantage of the linguistic over
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the embodied component has been found in behavioral (Louwerse & Connell, 2011;
Santos, Chaigneau, Simmons, & Barsalou, 2011), electrophysiological (Louwerse &

Hutchinson, 2012), and neuroimaging (Simmons et al., 2007) studies.

In line with these arguments, Connell and Lynott (2013) proposed that
information from the linguistic component could act as a cognitive triage mechanism
during language processing by providing a guide to whether it is worth expending
effort on relatively costly embodied simulation (Connell, 2018). Since the
co-occurrence of words in language tends to reflect the associations of objects,
events, and ideas in the real world, the linguistic component can provide a rough
and ready approximation of whether the embodied component will actually succeed
in simulating a sensible meaning. Moreover, since activation in the linguistic
component is faster than in the embodied component, the linguistic component has
the potential to provide a shortcut by guiding task processing before the embodied
component is fully engaged. If the linguistic component indicates that future
processing is likely to fail or entail unnecessary costs (e.g., the words rarely co-occur
in the same context and so their combined meaning might not be simulated
successfully), then it could abandon the processing before any more cognitive effort
is expended by the embodied component. On the other hand, if the linguistic
component indicates that future processing is likely to succeed relatively easily (e.g.,
the words often co-occur in the same context and so their combined meaning can
probably be simulated successfully), then it could either inform a response
immediately (i.e., based on the linguistic shortcut alone) or allow the embodied
component to continue developing a detailed simulation of meaning. Although the
linguistic shortcut can provide a cognitive triage mechanism in any sort of cognitive
task, it is more likely to form the basis of responses in circumstances where a
detailed response is not required and a good-enough heuristic will therefore suffice,

such as tasks that allow relatively shallow or superficial processing, or individual
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trials where deep and detailed processing has been abandoned.

To test this proposal, Connell and Lynott (2013) asked participants to perform
two tasks with novel noun-noun compounds (e.g., cactus beetle): a shallow
processing task where participants judged if the compounds made sense, or a deep
processing task where they decided if they could generate specific interpretations for
them. The results showed that, consistent with linguistic shortcut predictions, the
linguistic distributional frequency of the constituent words (i.e., how often cactus
and beetle co-occurred) predicted both the likelihood of accepting versus rejecting a
compound as sensible and the time course of both successful and unsuccessful
processing in the shallow sensibility judgement task. However, in the deeper
interpretation generation task, distributional frequency only predicted the likelihood
of accepting versus rejecting a compound as interpretable and the timecourse of
unsuccessful (i.e., abandoned) processing, but not the timecourse of successful
processing that resulted in a detailed interpretation. In other words, while rejecting
a noun-noun compound as nonsensical or uninterpretable needed only the linguistic
shortcut to quickly flag up unsuccessful processing, the time needed to accept a
compound as interpretable may require more detailed simulation which cannot be

captured by the linguistic distributional frequency.

Present Study

Connell and Lynott’s proposal can be applied directly to the study of
metaphor processing, because the interplay of the linguistic and embodied
components, and the role of the linguistic shortcut as a cognitive triage mechanism,
operates in theory across all types of language comprehension. However, Connell
and Lynott’s study was unable to directly investigate the interplay between
linguistic distribution and embodied simulation during language processing because

it lacked at the time a direct measure of successful simulation (i.e. the ability to
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mentally represent the meaning of the phrase or sentence). The current study also
faces the same obstacle in operationalizing how easy it is to generate successful
simulation, because the meaning of a metaphor, by definition, cannot be accessed
directly by looking at the literal meaning of its constituent words (Liu, Connell, &
Lynott, 2018). Furthermore, because simulations are unconscious mental
representations that lose information when brought to conscious awareness (Connell
& Lynott, 2016), the ease of simulation cannot be directly rated as, for example, the
ease of understanding a metaphor or of generating mental imagery. Therefore, in the
present study, we used a new norming metric by Liu et al. (2018) that was explicitly
designed to quantify how easy people find it to arrive at a mental representation of
metaphoric meaning. It proposed three indirect measures of successful metaphor
processing that, together, offer a proxy for ease of simulation: sensibility (How much
sense does the sentence make if you read it in a story or heard it in conversation?),
usability (How easy it would be for you to use the sentence in writing or in
conversation?), and imaginability (How easy it is for you to imagine the concept
described in the sentence?). Using principle components analysis, these three ratings
scales were combined into a single ease of simulation measure that captured their

common variance.

The ease-of-simulation measure (EoS) is agnostic towards the content of the
simulated representation. Instead, it measures the end-product of simulation — a
complete and coherent representation of meaning — and uses it to quantify the effort
of comprehension. If people find it easy to make sense of, use and imagine a
metaphor, they would necessarily find the concept easy to simulate as well. Indeed,
this ease-of-simulation measure can not only capture the majority of the variance
(91%) of the original subscales but also predict metaphor processing time better
than any of the individual subscales (Liu et al., 2018), supporting the idea that it

captures the underlying mechanism of conceptual representation. Thus, we expect it
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to be a powerful predictor of both speed and accuracy of metaphor processing in the

current study as well.

Moreover, the grounded views of conceptual representation also predict that
the linguistic component (i.e., linguistic distributional frequency (LDF) calculated
from a large corpus) would be able to account for metaphor processing
independently of the embodied component (i.e., ease of simulation). Although it
remains a contentious issue how much the linguistic component contributes to the
representation of meaning, it could be suggested that these two components are of
distinct natures and perform different functions (Barsalou et al., 2008; Connell,
2018; Louwerse, Hutchinson, Tillman, & Recchia, 2015; Riordan & Jones, 2011). If
our study can show that ease of simulation and LDF can each explain a unique,
distinct portion of variance in performance of metaphor processing, this should
provide strong support for the grounded approach of conceptual representation.
Hence, we operationalised LDF in the current paper as the co-occurrence frequency
of constituent words within a small 5-word window (i.e., the LDF of Students can be
bright is the co-occurence frequency of students and bright with zero to three words
in between). By keeping the operational definition simplistic, any effect of LDF
could be counted as strong evidence for the existence of the linguistic component

beyond embodied simulation.

Furthermore, as the cognitive triage mechanism suggests, the effects of these
two factors should vary according to required depth of processing predicated by the
tasks. Thus, in two experiments, we asked participants to process metaphors that
systematically varied in LDF and EoS in a shallow task (Experiment 1: sensibility
judgement task) or in a deep task (Experiment 2: interpretation generation task).
Since the role of the linguistic and embodied components in language comprehension
varies according to available resources, task demands, and processing goals (Connell

& Lynott, 2014b), their roles in metaphor processing will vary across experiments.



LINGUISTIC AND EMBODIED METAPHOR PROCESSING 14

Based on the operation of each component (Barsalou et al., 2008; Louwerse &
Connell, 2011; Louwerse & Jeuniaux, 2008), and the operation of the linguistic
shortcut mechanism (Connell, 2018; Connell & Lynott, 2013), we propose the

following hypotheses:

1. Simulation hypothesis: People will rely on the embodied component in both
tasks. A metaphor that is easy to simulate will be accepted as sensible or
interpretable more often. The effect of EoS on response time will be in
opposite directions for “yes” and “no” responses. That is, it will take people
less time to accept a metaphor that is easy to simulate, and less time to reject
a metaphor (as nonsensical or uninterpretable) that is difficult to simulate
(i.e., the harder a metaphor is to simulate, the quicker people will give up
trying to process it). However, EoS should have a larger effect on accept
(“yes”) than reject (“no”) response times because the latter reflects abandoned

processing in the embodied component.

2. Linguistic distribution and linguistic shortcut hypothesis: People will also rely
on the linguistic component in both tasks, where the linguistic shortcut will be
used as a cognitive triage mechanism to identify processing that is unlikely to
succeed and should be abandoned to avoid unnecessary costs. A metaphor
with high LDF will be more likely to be accepted as sensible or interpretable
than a metaphor with lower LDF (i.e., the less often words co-occur in
language, the more likely people will be to abandon processing rather than
engage in further, costly attempts at simulation). Furthermore, similar to the
simulation hypothesis, the effects will be in opposite directions for “yes” and
“no” responses: it will take people less time to accept a metaphor that has

high LDF, and less time to reject a metaphor that has low LDF.

3. Depth of processing hypothesis: People will rely on EoS more for
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interpretation generation than for sensibility judgement because the former
requires deeper processing and more detailed simulation. In contrast, people
will rely on LDF more in shallow sensibility judgement, where “good enough”

processing will suffice, than in deep interpretation generation.

In both experiments, we report how we determined our sample size, all data

exclusions, all manipulations, and all measures in the study.

Experiment 1: Sensibility Judgement Task

In this study, participants were encouraged to process metaphors in a shallow
way by judging whether or not the sentences made sense, where they made a forced
choice between “yes” and “no”. Sensibility judgement can be considered a relatively
shallow form of language processing because it involves only a single yes/no response
and participants are not required to specify any further details of how or why the

sentence makes sense (Connell & Lynott, 2013; Lynott & Connell, 2010).

Method

Participants. Twenty-eight participants (five male and 23 female) took part
in the study, same as Connell and Lynott (2013), all of whom were students at
Lancaster University and native speakers of English with mean age of 19.1 years (SD
= 1.1). Participation took approximately 20 minutes in exchange for £3.00 or

course credits.

Materials. We used a total of 452 metaphoric sentences taken from Liu et

al., (2016; see Table 1 for examples'). All sentences took the form “Noun can be

L All data and analysis scripts can be viewed through https://goo.gl/k1Q4jq. We used R (Version
3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate & Heiberger, 2016), arm
(Version 1.10.1; Gelman & Su, 2016), BayesFactor (Version 0.9.12.4.2; Morey & Rouder, 2018),
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adjective” (e.g., Student can be bright), and were composed of 113 perceptual
adjectives (e.g., bright: Lynott & Connell, 2009), each paired with four nouns (e.g.,
students/ solutions/supply/illness) that were capable of eliciting metaphoric (i.e.,
non-literal) meanings, which varied systematically along the two critical dimensions

of EoS and LDF.

Ease of simulation (EoS) scores for each sentence ranged from easy to
difficult (M = 0.00, SD = 1.00) and were taken from the norming study by Liu et
al. (2017), where higher scores represent greater EoS. For example, both Students
can be bright and Solutions can be bright were considered relatively easy to simulate,
whereas both Illness can be bright and Supply can be bright were considered

relatively difficult to simulate.

Linguistic distributional frequency (LDF) for each sentence ranged from
low to high (M = 2.95, SD = 0.97), and was calculated as the log of the summed bi-
to five-gram frequencies of the sentence’s noun and adjective in the Google Web1T
Corpus (Brants & Franz, 2006). To take the metaphor Students can be bright as an
example, the LDF was the sum of the frequencies of “student ... bright” and “bright

. student” with zero, one, two, and three intervening words. Frequencies were log

bookdown (Version 0.7; Xie, 2016), broom (Version 0.4.4; Robinson, 2017), citr (Version 0.2.0; Aust,
2016), coda (Version 0.19.1; Plummer, Best, Cowles, & Vines, 2006), data.table (Version 1.11.4;
Dowle & Srinivasan, 2017), ggplot2 (Version 2.2.1; Wickham, 2009), interplot (Version 0.1.5; Solt &
Hu, 2015), knitr (Version 1.20; Xie, 2015), lme4 (Version 1.1.17; Bates, Méchler, Bolker, & Walker,
2015), ImerTest (Version 3.0.1; Kuznetsova, Brockhoff, & Christensen, 2017), magrittr (Version 1.5;
Bache & Wickham, 2014), MASS (Version 7.3.50; Venables & Ripley, 2002), Matriz (Version
1.2.14; Bates & Maechler, 2017), MuMIn (Version 1.40.4; Bartoni, 2017), nime (Version 3.1.137;
Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017), papaja (Version 0.1.0.9735; Aust &
Barth, 2017), psych (Version 1.8.4; Revelle, 2017), purrr (Version 0.2.5; Henry & Wickham, 2017),
and rcartocolor (Version 0.0.22; Nowosad, 2017) for all our analyses and the writing up of this

manuscript.
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Table 1

Sample metaphors, and their scores for EoS

and LDF
Metaphor EoS LDF
[llness can be bright. -1.32° 2.95
Supply can be bright. -1.02  3.72
Solutions can be bright. 141 3.11
Students can be bright. 1.84 4.08
Minutes can be lukewarm. -1.49 331
Scheme can be lukewarm. -0.78  1.61

Supporters can be lukewarm. 0.69  2.69

Reaction can be lukewarm. 1.03 3.45

transformed as logyo(frequency + 41) because 41 is the lowest non-zero frequency in
the item set (i.e., the raw frequency of 0 in fact means that the constituent words
co-occurred 41 times; Connell & Lynott, 2013). Within the four metaphors created
for each adjective, LDF varied independently of EoS (see Table 1). For example,
both Students can be bright and Supply can be bright had relatively high LDF,

whereas both Iliness can be bright and Solutions can be bright had lower LDF.

The sentences were split into four lists of 113 items each, where each adjective
appeared only once per list, and the distribution of easy/difficult to simulate and
high/low LDF was approximately equal across lists (EoS: F(3440) = 1.70, p = .166;

LDF : F(3440) = 0.43, p = .734). Each participant saw only one list.

Procedure. There were five practice trials (whose results were not recorded
or analyzed) before the 113 test trials. Participants read one sentence in each trial

and decide whether or not the sentence made sense, based on oral and verbal

17
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instructions. All trials had the same structure (see Figure 1). Participants first saw
a fixation cross for 1000 milliseconds (ms), followed by the noun for 500 ms, followed
by the phrase “can be” for 500 ms, and then followed by the adjective. The
adjective remained on the screen until participants made a response. Participants
pressed either the comma key (“,”) if they judged that the sentence made sense; or
the full stop key (“”) if they judged that it did not make sense. They were allowed
to make their response naturally, using the finger(s) most comfortable for them. The
response could be made without a time limit; and participants were told explicitly
that there were no right or wrong answers to the question. Both the response
decision (“yes” to accept the metaphor as sensible; or “no” to reject the metaphor as

nonsensical), and response time in milliseconds (RT) from onset of the adjective,

were recorded as dependent variables.

1000ms

Student
1000ms

can be
500ms

bright.

500ms

Until response

Figure 1. Trial structure in the sensibility judgement task.

Design and analysis. Response decisions were analyzed in a mixed effects
logistic regression (binomial distribution with logit link), with the dependent

variable of response (coded as 1 for “yes”, accepting the metaphor as sensible; and 0
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for “no”, rejecting the metaphor as nonsensical), crossed random-intercept effects of
participants and items,? and fixed variables of LDF, EoS, and their interaction.

Both LDF and EoS scores were centred before analysis.

Response times (RTs) were analyzed using mixed effects linear regressions,
firstly in an omnibus analysis with crossed random-intercept effects of participants
and items,® and fixed variables of response, LDF, EoS, and their interactions.
Secondly, we ran separate analyses on acceptance (“yes”) and rejection (“no”)
responses because we expected the effects of the fixed variables to be in opposite
directions for different response decisions. We initially considered the inclusion of
word length and lexical frequency (i.e., sum of the log frequencies of nouns and
adjectives, retrieved from Elexicon separately: Balota et al., 2007,
http://elexicon.wustl.edu), but they were excluded from final analyses because their
zero-order correlations with RT were near zero (see Supplementary Materials:

https://goo.gl/tr'Tul8).

Results and Discussion

All participants had mean response times within 3SD of the overall mean and

so all were included in analysis. Two trials were removed because of motor error (RT

2 The inclusion of participants as a random factor improved model fit above the empty model, X%U
= 427.39, p < .001, as did the inclusion of items as a crossed random factor above the
participants-only model, X%m = 456.76, p < .001.

3 The inclusion of participants as a random factor improved model fit above the empty model, X%l)
= 853.15, p < .001. The inclusion of items as a crossed random factor did not improve model fit
above the participants-only model Xgl) = 0.00, p = .998. However, in order to keep the models
consistent, both participants and items were included as crossed random factors in the linear
models of RT as well as in the logistic models of response decision. It should be noted that
analyses of RT with participant-only models did not substantially change results; these analyses are

reported in supplementary materials.



LINGUISTIC AND EMBODIED METAPHOR PROCESSING 20

< 200ms). Furthermore, individual trials with RT more than three standard
deviations from each participant’s mean per response decision were removed as

outliers: 1.33% of “yes” responses and 2.20% of “no” responses.

Response decision. Among 3105 valid trials, 1413 (45.51%) were accepted
as sensible (“yes” responses) and 1692 (54.59%) were rejected as nonsensical (“no”
responses). As predicted, logistic regression showed that EoS had a positive effect on
the response decision, z(1 3101y = 24.60, p < .001, b = 1.253, 95% CI = [1.153, 1.353].
As EoS increased by one unit, the odds of accepting a metaphor as sensible (as
opposed to rejecting it as nonsensical) increased 3.501 times. In contrast, LDF had a
negative effect on the response decision, z(; 3101) = -2.02, p = .043, b = -0.093, 95%
CI = [-0.183, 0.003], meaning that each increased unit of LDF made the decision to
accept a metaphor as sensible less likely (odds ratio = 0.911). Since this partialled
relationship between response decision and LDF in the regression model was the
inverse of their unpartialled relationship outside the regression model (i.e., mean
LDF was higher for “yes” than “no” responses: Supplementary Materials), it
suggests that net suppression was present in the model.* That is, the shared error
variance between LDF and EoS was effectively hiding the real relationship between
LDF and response decision, such that the net effect of LDF in logistic regression was
to enhance the effect of EoS by suppressing its unhelpful error variance (J. Cohen,

Cohen, West, & Aiken, 2003).

In order to establish the true relationships between response decision and our
independent variables, we therefore removed the shared variance between LDF and
EoS (currently correlated at r = .27) by orthogonalizing the variables. We used

principal components analysis (PCA) to rotate the two original variables into two

4 A logistic regression model with linguistic associative frequency as the only fixed factor confirmed
this possibility as it returns a positive coefficient, £(; 3103y = 4.03, p < .001, b = 0.36, 95% CI =
0.19 - 0.54.
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Table 2
Logistic mized-effect regression of response

decision in Ezperiment 1

b 95% CI D

Intercept -0.25 -0.62-0.13 198
EoS 147 1.34-1.60 < .001
LDF 0.11 0.01-0.21 027
EoS x LDF -0.00 -0.11-0.10 .946

Note. b is non-standardised regression
coefficient.

Both predictors orthogonalized.

orthogonal components, which (rather than the traditional PCA use of dimension
reduction) allowed us to disentangle two correlated variables without losing any
information (Connell & Lynott, 2014a; Glantz & Slinker, 1990). Using varimax
rotation with Kaisar normalization on a covariance matrix, Component 1
corresponded to EoS (r = .99) and Component 2 corresponded to LDF (r = .99).
These two orthogonalized variables accounted for 100% of the original variance while
themselves were uncorrelated (i.e., = .00). We re-ran the logistic regression with

these orthogonalized variables and obtained results as follows (Table 2).

Logistic regression with these orthogonalized variables showed that EoS had a
positive effect on response decision (Table 2). As the orthogonalized EoS increased
by one unit, the odds of accepting a metaphor as sensible increased 3.421 times.
Moreover, the effect of the orthogonalized LDF was also positive, but only as a weak
trend. This time, as the orthogonalized LDF increased, the odds of accepting a

metaphor as sensible increased slightly (1.084 times) as well.
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Table 3

Omnibus linear mized-effect model of RT in Fxperiment 1

b 95% CI D
Intercept 1129.66 1011.04 - 1248.29 < .001
EoS 67.06 41.76 - 92.36 < .001
LDF 14.76 -9.81 - 39.32 239
Response 0.76 -36.86 - 38.38 .969
EoS x LDF 24.39 1.18 - 47.61 .040
EoS x response -181.55  -218.91 - -144.17 < .001
LDF x response -38.54 -74.48 - -2.61  0.036
EoS x LDF x response  -32.50 -67.07 - 2.08  0.066

Note. b is non-standardised regression coefficient.

Both predictors orthogonalized.

In other words, when people were asked to make a relatively shallow
judgement about whether or not a metaphor made sense, their yes/no decision was
influenced predominantly by EoS (easy-to-simulate metaphors were more likely to
be judged as sensible) but also by the LDF of the words used in the metaphor
(frequently co-occurring words were slightly more likely to be judged as sensible;
infrequently co-occurring words were slightly more likely to be rejected as nonsense).

Both the linguistic and embodied components played a role in metaphor processing.

Response time. As in the logistic regression of response decision, linear
analysis of response times (M = 1139 ms, SD = 587 ms) also produced evidence of
net suppression (see supplementary materials for details). For that reason, and to
maintain the independence between the predictors in all our models, we

orthogonalized the variables per response type. Table 3 shows full results of the
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Table 4
Regression model on RT in Ezxperiment 1 per response decision
Yes No
b 95% CI D b 95%CI D

Intercept 1172.16  1051.79 - 1292.52 < .001 1155.41 1010.94 - 1299.88 < .001

EoS -134.88  -161.98 - -107.79 < .001 72.28 47.27-97.29 < .001
LDF -27.52 -53.10 - -1.93  0.036 17.72 -6.40 - 41.83  0.152
EoS x LDF  -13.00 -37.90 - 11.91  0.307 23.33 0.51 -46.14  0.046

Note. b is non-standardised regression coeflicient.

Both predictors orthogonalized per response decision.

omnibus analysis across all responses. Overall, EoS had a positive effect on RT,
meaning that response times were generally slower for easy-to-simulate metaphors.
However, EoS also interacted negatively with response decision, suggesting that the
direction of the EoS effect differed by response type. LDF had no overall main
effect, but interacted with response decision to indicate that the direction of LDF

differed for “yes” and “no” RTs.

Since we had separate hypotheses for “yes” and “no” RTs, we divided the
dataset by response decision and analyzed their RT separately. Results are given in
Table 4. For “yes” responses (i.e. metaphors that were accepted as sensible; RT: M
= 1150 ms, SD = 589 ms), EoS had the predicted negative effect, such that the
easier a metaphor was to simulate, the less time people took to accept it as sensible
Table 4. LDF also had a negative effect on acceptance times as predicted. That is,
the more often the words in a metaphor co-occurred in language, the faster people

were to accept it as sensible. Figure 2 shows the standardized coefficients of each
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variable on RT per response decision.

. Ease of simulation . Linguistic distributional frequency

* k%

100 |

-100 4

Coefficients (standardised) of RT (ms)

—-200 | * k%

Acéept Reject

Figure 2. Effects of EoS and LDF, expressed as standardized regression coefficients,
on acceptance and rejection times for sensibility judgement. Error bars represent 95%
confidence intervals, and asterisks represent the significance of directional predictions

where specified (*** p < .001, ** p < .01, * p < .05).

For “no” responses (metaphors rejected as nonsensical; RT: M = 1114 ms, SD
= 603 ms), the effects ran in the opposite direction (Table 4). As predicted, EoS
had a positive effect on RT, meaning that people were faster to reject metaphors
that were normally regarded as difficult to simulate. LDF had no significant main
effect but did positively interact with EoS, such that the effect of EoS was enhanced
when LDF was high, but was reduced when LDF was low. Figure 3 shows the effects
of EoS on the RT of reject (“no”) responses as LDF increased. Overall, people were

faster to reject a metaphor as nonsensical when its words rarely co-occurred and its
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meaning was difficult to simulate, and slower to reject metaphors whose words often

co-occurred but whose meaning was generally considered easy to simulate.

—_
o
o
1

Coefficient (unstandardised) of
distributional frequency
o

-1 0 1 2 3
Ease of simulation

Figure 3. Change in the coefficients of LDF as EoS increased when people rejected

metaphors as nonsensical. The shaded area indicates the 95% confidence interval.

Summary. Overall, results showed that people relied on both the embodied
and linguistic components when judging metaphor sensibility. Following our
simulation hypothesis, metaphors whose meanings were easy to simulate (e.g.,
Students can be bright; Solutions can be bright) were more likely to be accepted as
sensible and were accepted more quickly, whereas metaphors whose meanings were
typically regarded as difficult to simulate (e.g., Supply can be bright; Illness can be
bright) were rejected more quickly. Moreover, EoS had a greater effect on metaphor
acceptance times (“yes” b = —134.88) than on rejection times (“no” b = 72.28), as

predicted, due to the fact that acceptance times reflect simulation that has
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successfully completed in the embodied component whereas rejection times reflect
simulation attempts that have been abandoned. In addition, as predicted by the
linguistic distributional hypothesis, metaphors whose words often co-occurred in
context (e.g., Students can be bright; Supply can be bright) were more likely to be
accepted as sensible (although only marginally) and were accepted more quickly,
while metaphors whose words rarely co-occurred (e.g., Illness can be bright) were
not rejected directly. Instead, LDF moderated the effect of EoS (i.e. the effect of
EoS was reduced when the LDF was low), which suggested that people rejected the
metaphors as nonsensical based on their low LDF, without further processing in the
embodied component. This pattern of findings supports the idea that the linguistic
shortcut was used as a cognitive triage mechanism during metaphor comprehension
to identify processing that was unlikely to succeed (i.e., produce a coherent
simulation of meaning) and should therefore be abandoned rather than wasting

resources on further processing.

Experiment 2: Interpretation (Generation Task

In this study, participants were encouraged to process metaphors in a
relatively deep way by completing an interpretation generation task. As they read
each metaphor sentence, participants tried to think of a possible meaning for the
sentence. If they could think of a meaning, participants were required to specify
their interpretation. Interpretation generation can therefore be considered as a
deeper form of metaphor processing than sensibility judgement because it requires
participants to represent a particular meaning in detail (Connell & Lynott, 2013;
Lynott & Connell, 2010). All metaphors were the same as in Experiment 1, but
since participants would be engaging in deeper processing when generating
interpretations than when simply judging sensibility, we expected they would be

more likely to successfully simulate a meaning. Thus, we predicted a higher
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acceptance rate (i.e., more “yes” responses) in this study than in Experiment 1 (as

per Connell & Lynott, 2013), as well as our hypotheses earlier outlined.

Method

Participants. Forty native speakers of English (11 males and 29 females;
age M = 19.65, SD = 2.08) were recruited from the same population as Experiment
1 to match the coefficient of variation in Experiment 1. Participation took

approximately 20 minutes in exchange for £3.00 or course credits.
Materials. Same as in Experiment 1.

Procedure. The procedure was identical to Experiment 1, except that
instructions asked participants to come up with a meaning for each sentence, and to
be clear and specific in their meanings. The trial structure was the same as
Experiment 1 (see Figure 1) up to the point where participants were required to
make a decision. In this study, if they pressed the comma (“,”) key to indicate that
they could think of a meaning for the metaphor, they would be presented with a
blank screen where they could type in the meaning just generated; if they pressed

the full stop (“”) key to indicate that they could not think of a meaning, they would

proceed to the next trial.

The item lists from Experiment 1 were split in half pseudo-randomly while
preserving the equal distribution of items along the dimensions of EoS and LDF, in
order to reduce the possibility of fatigue, resulting in 8 lists of 56-57 items each. As
before, each participant saw only one list. The whole task took approximately 20

minutes to complete and participants were given one break halfway through.

Design and analysis. Data were analyzed in the same way as in
Experiment 1. Mixed effects logistic regression of response decisions contained

crossed random-intercept factors of participants and items, as did mixed effects
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linear regressions of response times.® As in Experiment 1, there was evidence of net
suppression in the regression models due to the shared error variance between
predictors (see supplementary materials for details). For that reason, and to
maintain consistency in predictors between models and experiments, we therefore

report the analysis using orthogonalized variables of EoS and LDF.

Results and Discussion

All participants had mean response times within 3SD of the overall mean so
none were excluded on that criterion. We also identified accept (“yes”) trials with
invalid interpretations, namely those that were: blank or single characters,
participant-flagged errors (e.g., “mistake” or “don’t know”), simple repetition of the
original metaphor (e.g., Students can be bright — “students are bright”),
replacement of the adjective with a synonym or an adjective that the researchers
judged to be nonsensical in context (e.g., Borders can be deafening — “borders can
be loud”; Economy can be freezing — “The economy can be dry”), and clear
misreading of words (e.g. Charge can be rustling — “coins can be heard to make a
[rustling] sound in pockets”, consistent with misreading charge as change). Two
participants were excluded from analysis for providing more than 50% invalid

interpretations. Amongst the remaining participants, 2.33% of interpretations (31

5 In logistic regression, the inclusion of participants as a random factor improved model fit above
the empty model, Xﬁl) = 368.76, p < .001), as did the inclusion of items as a crossed random
factor, X%U = 156.50, p < .001. In linear regressions, the inclusion of participants as a random
factor improved model fit above the empty model X%) = 638.85, p < .001, although the inclusion
of items as a crossed random factor did not improve model fit above the participants-only model,
X?D = 0.00, p = 1.00. However, as in Experiment 1, both participants and items were included as
crossed random factors in the linear models of RT as well as in the logistic models of response
decision in order to keep the analyses consistent. Analyses of RT with participant-only models did

not substantially alter results, and are reported in supplementary materials.
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trials) were identified as invalid and removed from analysis. No trials were removed
due to motor error, but RTs more than 3 standard deviations from each
participants’ mean per response decision were removed as outliers: 2.10% of “yes”

responses and 2.00% of “no” responses.

Response decision. Among 2103 valid trials, 1302 (61.91%) were accepted
as interpretable (“yes” responses) whereas 801 (38.09%) were rejected as
uninterpretable (“no” responses). Logistic regression showed that both EoS and
LDF had a positive effect on response decision (see Table 5). For every unit of
increase in EoS, the odds of accepting a metaphor as interpretable increased 2.826

times; and for every unit of increase in LDF, it increased 1.286 times.

In short, when people were asked to make a relatively deep judgement about
whether they could think of a meaning for a metaphor, their yes/no decision was
influenced by both EoS (easy-to-simulate metaphors were more likely to be
interpretable) and by the LDF of the words used in the metaphor (frequently
co-occurring words were more likely to give rise to an interpretable metaphor).
Hence, both the linguistic and embodied components played a role in metaphor

processing, as predicted.

Response time. Linear regression of RT across all responses (M = 2837 ms,
SD = 2469 ms) found no overall effect of EoS (see Table 6). However, EoS interacted
negatively with response decision, indicating the effect of EoS for “yes” was opposite

to that for “no” responses. LDF did not have any significant effects or interactions.

As in Experiment 1, we had separate hypotheses for “yes” and “no” RTs and
so analysed them separately; results are shown in Table 7. For “yes” responses
(i.e. accepting metaphors as interpretable; RT: M = 3083 ms, SD = 2638 ms), EoS
had a negative effect, as predicted, meaning that people were faster to accept a

metaphor as interpretable when it was typically considered easy to simulate



Table 5

Logistic mized-effect reg

LINGUISTIC AND EMBODIED METAPHOR PROCESSING

ression of response

decision in Erperiment 2

b 95% CI D
Intercept 0.96 0.42-1.50 < .001
EoS 1.53 1.35-1.71 < .001
LDF 0.34 0.20-0.48 < .001
EoS x LDF -0.01 -0.15-0.13  0.887

Note. b is non-standard

coefficient.

ised regression

Both predictors orthogonalized.

Table 6

Omnibus linear mized-effect model of RT in Fzxperiment 2

b 95% CI P
Intercept 2796.78 2341.82 - 3251.76 < .001
EoS 125.28 -20.79 - 271.35 .093
LDF 44.47 -97.02 - 185.95 538
Response 58.38  -143.64 - 260.40 D71
EoS x LDF -34.60 -167.90 - 98.71  .6111
EoS x response -589.63  -774.55 - -404.70 < .001
LDF x response -13.52  -193.60 - 166.55 .883
EoS x LDF x response 482  -166.13 - 175.76 .956

Note. b is non-standardised regression coefficient.

Both predictors orthogonalized.
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compared to difficult to simulate. LDF did not affect the speed of interpretation,

nor was there an interaction (Figure 4).

. Ease of simulation . Linguistic distributional frequency

400 4 * %%
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Coefficients (standardised) of RT (ms)
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Figure 4. Effects of EoS and LDF, expressed as standardised regression coefficients, on
acceptance and rejection times for interpretation generation. Error bars represent 95%
confidence intervals, and asterisks represent the significance of directional predictions

where specified (*** p < .001, ** p < .01, * p < .05).

For “no” responses that rejected the metaphor as uninterpretable (RT: M =
2436 ms, SD = 2105 ms), EoS had a positive effect on RT: as predicted, people were
faster to reject a metaphor as uninterpretable when it was normally considered
difficult to simulate. LDF did not affect rejection speed, nor did it interact with EoS

(Figure 4).

Summary. Results of Experiment 2’s interpretation generation task were

similar to those of Experiment 1’s sensibility judgement, in showing that people

31
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Table 7

Regression model on RT in Ezxperiment 2 per response decision

Yes No

b 95% CI D b 95%CI D

Intercept 2961.19 2507.85 - 3414.54 < .001 3245.15 2507.68 - 3982.63 < .001
EoS -038.01  -665.18 - -410.83 < .001  213.38 100.81 - 325.94 < .001
LDF 17.48  -103.06 - 138.02  0.776 44.11 -62.70 - 150.91  0.419
EoS x LDF  -34.12 -149.71 - 81.46  0.563  -56.58 -158.13 - 44.98  0.276

Note. b is non-standardised regression coeflicient.

Both predictors orthogonalized per response decision.

relied on both the embodied and linguistic components when processing metaphors.
EoS affected both the likelihood and processing speed of generating an
interpretation for a metaphor, supporting the simulation hypothesis: the easier it
was to simulate the meaning of a particular metaphor, the more likely it was to be
interpreted and the faster people accepted it as interpretable. Conversely, metaphors
whose meanings were difficult to simulate were rejected as uninterpretable relatively
quickly. As predicted, EoS had a greater effect on metaphor acceptance times (“yes”
b = —538.00) where simulation was ultimately successful, than on rejection times
(“no” b = 213.38) where processing in the embodied component was abandoned.
Following the linguistic distributional hypothesis, metaphors whose words often
co-occurred in context (e.g., Students can be bright) were more likely to be accepted
as interpretable than metaphors whose words rarely co-occurred (e.g., Solution can
be bright). The effects of LDF did not carry over into interpretation times, however,

unlike in Experiment 1’s sensibility judgement times. Hence, support for the use of
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the linguistic shortcut as a cognitive triage mechanism in deep metaphor processing
is limited to its effect on the likelihood of interpretation. We examine such task

differences further in cross-experiment analyses.

Cross-Experiment Analyses

Since some of our hypotheses concern differences between shallow and deep
processing tasks, we conducted a meta-analysis of the data from Experiments 1 and
2 in order to compare effect sizes between sensibility judgement and interpretation

generation tasks.

Method

The data from Experiments 1 and 2 were combined for analysis: response
decision in logistic mixed effects regression, and response time in linear mixed effects
regression. All analyses used the same models with orthogonalized variables that
were previously employed in separate experiments, this time including an additional
fixed predictor variable of task (coded 0 for sensibility judgement, 1 for

interpretation generation) that interacted with all other predictors.

Results and Discussion

Response decision. Results are shown in Table 8. The likelihood of
accepting versus rejecting a metaphor varied by task: the odds of accepting a
metaphor in the interpretation generation task were 3.24 times more than in the
sensibility judgement task, as predicted. EoS had a positive effect on response
decisions (i.e., easy simulation lead to more successful processing), which stayed
constant between shallow and deep tasks. LDF also had a positive effect, and its
positive interaction with task indicated that LDF had a larger effect on response

decision in deep than shallow metaphor processing.
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Response time. Results are shown in Table 9. Deep interpretation
generation took significantly longer time than shallow sensibility judgement. EoS
had opposite effects on acceptance versus rejection times, which was negative for
“yes” responses but positive for “no” responses. Furthermore, EoS interacted with
task, showing that its effect is larger for deep interpretation generation than for
shallow sensibility judgement across both types of responses, as predicted by the
depth of processing hypothesis. The effects of LDF were of the same pattern
(despite producing effects in Experiment 1 but not in Experiment 2), though were
not significant either as a main effect or in interaction with task. LDF interacted
with EoS and task in a three-way interaction when response was “no”, which
resulted from the presence of an interaction between LDF and EoS in shallow

processing but not in deep processing.

Summary. In summary, depth of processing affected the roles of both EoS
and LDF. As predicted by the depth of processing hypothesis, EoS had a larger
effect during deep processing than during shallow processing: specifying the
meaning of a metaphor led people to rely more on embodied simulation than simply
judging whether or not a metaphor makes sense. However, this greater reliance on
the embodied component influenced only response times, and not the likelihood of
accepting the metaphor as sensible or interpretable. Also as predicted, LDF had a
larger effect on shallow processing than one deep processing, but only in terms of
how it moderated the effect of EoS in “yes” response times: in successful metaphor
processing, people relied on the linguistic shortcut to avoid unnecessarily effortful
simulation more during sensibility judgement than during interpretation generation.
While LDF also affected response decisions, the effect ran contrary to expectations
by being larger for deep processing than for shallow processing: people relied on the
linguistic shortcut more when attempting to generate a meaning for a metaphor

than when deciding whether or not it made sense. Therefore, while our results
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Table 8
Logistic mized-effect regression of response

decision for cross-experiment comparison

b 95% CI D
Intercept -0.25 -0.76 - 0.26 337
EoS 148 1.36 - 1.60 < .001
LDF 0.11 0.02-0.21 .023
Task 1.18 0.50-1.86 < .001
EoS x LDF -0.00 -0.11-0.10 926
EoS x task 0.01 -0.18 - 0.20 919
LDF x task 0.22 0.06 - 0.38 .006

EoS x LDF x task  0.00 -0.16 - 0.16 979

Note. b is non-standardised regression coefficient.

Both predictors orthogonalized.

supported the depth of processing hypothesis regarding EoS, the picture of more

complex for LDF.
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General Discussion

The current study investigates what makes metaphors easier to process from
the perspective of grounded language comprehension (Barsalou et al., 2008; Connell
& Lynott, 2014b; Louwerse & Jeuniaux, 2008; Vigliocco et al., 2009), with a view to
establishing how the roles of the embodied component (i.e., simulation of
sensorimotor, affective, and other experience) and linguistic component (i.e.,
distributional patterns of how words co-occur in language) varied with depth of
processing. Our goal in taking this approach was to move the investigation of
metaphor processing beyond the traditional factors, such as familiarity,
conventionality, and aptness, which — while having a long history of use — have been
increasingly criticized for theoretical and operational problems that limit their
utility in explaining what makes one metaphor easier to understand than another.
Following previous research (Connell & Lynott, 2013; Louwerse & Connell, 2011),
we used LDF to operationalise processing in the linguistic component, which was
calculated based on bi- to 5-gram co-occurrence frequencies from a large corpus. In
addition, we proposed a new variable construct called EoS to operationalize
processing in the embodied component (Liu et al., 2018), which reflected how easily

people find it to arrive at a mental representation of metaphoric meaning.

Following our predictions, we found that EoS and LDF played unique and
distinct roles in metaphor processing. They independently predicted the likelihood
of accepting a metaphor in both shallow (Experiment 1) and deep (Experiment 2)
processing tasks. People were more likely to decide a metaphor was sensible or
interpretable if it was normally considered easy to simulate and if its words often
appeared together in context. EoS could successfully predict the speed of processing
in both tasks (i.e., people were faster to accept a metaphor as sensible or

interpretable when it was easy to simulate, and faster to reject it as nonsensical or
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uninterpretable when it was difficult, regardless of LDF), and the effect was larger
for deep interpretation generation than shallow sensibility judgement. In contrast,
LDF only predicted the speed of processing in shallow sensibility judgement but not
in deep interpretation generation. The more often a metaphor’s words co-occurred
in language, the faster people were to accept the metaphor when the depth of
processing was shallow and good-enough processing (Ferreira et al., 2002) could
suffice. Moreover, although LDF did not directly influence the speed of rejecting a
metaphor as nonsensical, it moderated the effect of EoS by reducing its influence at
low distributional frequencies. This pattern of effects supported the linguistic
shortcut hypothesis that LDF can be used as a cognitive triage mechanism to
identify metaphors that are unlikely to result in successful simulation, and so costly
processing in the embodied component can be abandoned to avoid wasting
resources, where task demands and processing goals allow (Connell, 2018; Connell &

Lynott, 2013, 2014b).

Our results are consistent with the conceptual combination study of Connell
and Lynott (2013), which supported the cognitive triage mechanism of LDF. The
critical differences between the conceptual combination study and the current one
lies in that LDF had a smaller effect in our study than in the conceptual
combination study. Specifically, in our study, LDF did not affect response times at
all in the interpretation generation task, whereas in the conceptual combination
study it had a significant positive effect on rejection time and overall response time
in both tasks. One reason for these differences could be our addition of EoS as a
predictor, independent from LDF. Specifically, we found in Experiment 1 that LDF
was not entirely orthogonal to EoS, which means that both variables could account
for a mutual portion of variance. Therefore, the LDF variable in the previous
conceptual combination study did not only account for the linguistic component of

conceptual representation, but may also have accounted partially for the embodied
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component. In contrast, the present study made sure that EoS and LDF were not

only theoretically but also statistically distinct.

More broadly, results from the current study supports grounded views of
language processing, according to which the linguistic and the embodied
components combine to form conceptual representations of meaning (Barsalou et al.,
2008; Connell & Lynott, 2014b; Louwerse & Jeuniaux, 2008). Previous research has
demonstrated the roles of the linguistic and embodied components in processing
literal sentences about sensory features (Louwerse & Connell, 2011), noun-noun
conceptual combination (Connell & Lynott, 2013), and property generation (Santos
et al., 2011). The present paper showed for the first time that both components are

also critical to processing metaphoric language.

Moreover, the present paper showed that the effects of the two components
were independent and distinct. In spite of the fact that LDF was kept minimal, we
found evidence that it affected the speed and outcome of metaphor processing above
and beyond the effect of EoS. People were able to decide whether a metaphor was
sensible/meaningful based on the linguistic distributional patterns alone. Thus, we
can argue people use lingusitic information heuristically (Barsalou et al., 2008;
Connell, 2018; Louwerse & Connell, 2011). Of course, just because two words
frequently co-occur does not necessarily mean that they were intended to form a
metaphor. However, words tend to appear close together in language because their
concepts form part of the same simulation of an idea or situation, which at least
some of the times will be metaphorical. Conversely, words that seldom appear in the
same context are unlikely to form a metaphor. As such, LDF represents a relatively
coarse-grained, but nonetheless highly useful, approximation of whether a particular

source and target can potentially form a metaphor.

However, contrary to the linguistic shortcut hypothesis, our study did not

support the difference between shallow and deep processing in the cross-experiment

39
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analysis of the linguistic component. LDF had similar effects on RT during both
deep and shallow processing tasks, and it even had greater effects on response
decision during deep processing than shallow processing tasks. In other words,
shallow processing did not encourage the use of the linguistic shortcut. One possible
reason could be because people had as much time as needed to make a response;
they had unlimited time resource to form a mental representation using the
embodied component and were not under pressure to conserve processing resources.
In future research, we plan to impose a time constraint on metaphor processing in
order to further examine the linguistic shortcut hypothesis and the circumstances

that incentivize its use.

A key motivation for adopting a grounded approach to metaphor processing is
the problems and criticisms of traditional research the factors that have traditionally
been the focus of metaphor processing (i.e. familiarity, conventionality, and aptness).
However, it is undeniable, as some may argue, that the linguistic component and the
embodied component have several parallels with those factors. Specifically, LDF
captures the extent to which familiarity, conventionality, and aptness are based on
frequency of exposure, and EoS captures the extent to which aptness is based on
successful representation of metaphoric meaning. Nevertheless, the grounded
approach we propose offers several advantages that make it stand out from

traditional approaches.

First, EoS and LDF are better operationalized. Both factors have clear
definitions, unlike familiarity, conventionality, or aptness, which have different
definitions to different research communities. EoS only refer to how easy it is to
simulate the meaning of the sentence. It takes the sentence as a whole, without
selectively emphasizing the source or the target terms. In contrast, the definition of
conventionality tends to focus on the source term (see Introduction), even though

ratings of conventionality are context dependent (i.e. influenced by the target term).
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Also, LDF only refers to the co-occurrence of the constituent words, unlike
traditional familiarity or conventionality, which could concern either the metaphor
sentence itself or the concept it refers to. Thus, the operational definition of the two

factors are unambiguous, improving the validity of the construct.

Second, we have demonstrated that these two predictors can exert statistically
independent effects. Although the raw variables correlate to some degree, and there
is evidence for net suppression in the models, it can be corrected by orthogonalizing
the variables to remove the correlation between them. The grounded views of
language processing state that the embodied and linguistic components are
theoretically distinct, and our statistical treatment reflects just that. In other words,
if our two predictors had the same core dependency as familiarity, conventionality

and aptness, their effects would not have been unique and separable.

Finally, under the theoretical construct of the grounded views, the present
studies produced findings that cannot be explained by the traditional factors, namely
the interplay between EoS and LDF according to the required depth of processing.
Previous studies have not considered metaphor processing as an interactive process
that adapts to the situation. Based on the grounded view, we predicted that people
would process metaphors using different strategies according to the requirement of
the tasks. Our study found results that support this hypothesis. Indeed, previous
studies which have shown an effect of aptness over conventionality often adopt a
deep processing task, such as generating interpretations (Glucksberg & Haught,
2006a; L. L. Jones & Estes, 2006), listing attributes (Glucksberg & Haught, 2006b),
and creating new metaphors based on examples (Pierce & Chiappe, 2008). Given
the parallels we draw between aptness and EoS, this previous work is consistent

with our finding that deeper processing relies more on EoS.

In conclusion, metaphor processing relies on conceptual representation that

encompasses the two components proposed by the grounded account, that is the



LINGUISTIC AND EMBODIED METAPHOR PROCESSING 42

linguistic component and the embodied component. These two components interplay

flexibly in order to produce representations that satisfy the requirement of the tasks.
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CHAPTER D

Linguistic Shortcut under Time Constraints

From the previous chapter, we found evidence for independent influences
of both linguistic and embodied components during metaphor processing. These
two theoretically distinct and statistically separable components can each uniquely
account for the performance of metaphor comprehension tasks. It also indeed sug-
gested that people used different strategies to process metaphors when different
depths of processing was required. Specifically, they will draw on the embod-
ied component more heavily for relatively deep processing. However, the role of
the linguistic component seemed to have been largely unaffected by the depth of
processing. If anything, the effect of LDF was enhanced in the deep interpreta-
tion generation task, contrary to our prediction based on the linguistic shortcut

hypothesis.

Therefore, this chapter sets out to examine whether people could be induced
to take the linguistic shortcut. One possible condition for people to take the
linguistic component as a shortcut is when processing resources are limited, such

as when people are under time pressure. In the work presented in this chapter, I
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will introduce constraints on the response interval when participants perform the
same two tasks as Chapter 4. The limited time resources, combined with the need
for only superficial processing in the sensibility judgement task, should prompt

people to take the shortcut of linguistic distributional patterns.
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Abstract

What shapes the conceptual representations during metaphor processing? In this
paper, we investigate this question by studying the roles of both embodied
simulation and linguistic distributional patterns. Researchers have proposed that
the linguistic component is shallow and speedy, ideal as a shortcut to construct
crude representations and conserve valuable cognitive resources. Thus, during
metaphor processing, people should rely on the linguistic component more if the
goal of processing is shallow and the time available is limited. Here, we present two
pre-registered experiments which aim to evaluate this hypothesis. The results
supported the role of simulation in metaphor processing, but not the linguistic
shortcut hypothesis: the effect of linguistic distributional frequency increased as
people had more time to process the metaphors, and as they engaged in deep
processing. Furthermore during shallow processing, the processing was easier when
the embodied and linguistic components support each other. These findings indicate
a complex interaction between the embodied and linguistic components during

metaphor processing.

Keywords: metaphor processing, embodied simulation, linguistic distributional
pattern, linguistic shortcut hypothesis
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Effect of time constraints on the conceptual representation of metaphor processing

Metaphor is a crucial aspect of human language and cognition. A metaphoric
expression applies to words and phrases where its meaning departs from the literal
meaning of the expression. For instance, Students can be bright uses the word bright
in a non-literal sense (i.e., “clever or intelligent”), while its literal meaning of
“emitting much light” does not apply to the concept of students. Hence, it is not
immediately apparent how people achieve comprehension in such a case. In this
paper, we will view metaphor processing as a process that relies on both
coarse-grained linguistic distributional information as well as fine-grained embodied
simulation (e.g., Barsalou, Santos, Simmons, & Wilson, 2008; Connell & Lynott,
2014; Louwerse & Jeuniaux, 2008). Linguistic distributional information describes
patterns of how linguistic symbols (words or phrases) co-occur across language. As
they are to do with linguistic symbols, distributional patterns do not have a direct
and causal link with meaning. We will argue that distributional patterns are utilised
in metaphor processing as well as the embodied component, and test whether the
linguistic distributional information can be used heuristically for metaphor

processing, particularly under time pressure.

Grounded Views of Language Processing

Research on conceptual representations suggests that at least two components
are employed for semantic representation when people process language (Barsalou et
al., 2008; Connell & Lynott, 2014; Louwerse & Jeuniaux, 2008; Lynott & Connell,
2010; Vigliocco, Meteyard, Andrews, & Kousta, 2009). On one hand,
representations are formed concerning the statistical, distributional pattern of how
words co-occur across contexts. For example, the words bright and student occur

together more often in language than do shining and student. Such distributional
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patterns are able to explain to a great extent many aspects of language processing,
such as priming and reading times (Vigliocco et al., 2009), language acquisition from
early infancy (Aslin, Saffran, & Newport, 1998; Monaghan, Chang, Welbourne, &
Brysbaert, 2017; Saffran, Johnson, Aslin, & Newport, 1999). Even a simple measure
of co-occurrence frequencies within a small five-word window could explain
phenomena of language processing, such as the effect of perceptual modalities of the
referent (Louwerse & Connell, 2011), and comprehending novel noun-noun

combinations (Connell & Lynott, 2013).

On the other hand, past experiences of perceptual, motor, affective,
introspective and other features are also partially reactivated during language
processing (Allport, 1985; Barsalou, 1999; Glenberg & Gallese, 2012; Niedenthal,
2007). Such reactivation of experiences, which is called simulation, forms the
embodied component of a conceptual representation. Evidence for embodied
simulation includes shared activation between brain areas involved in perceptual or
motor experience and their equivalents in language comprehension. For example,
reading sound-related words like thunder activates the auditory association cortex,
and their processing is selectively impaired in patients with atrophy of the auditory
association cortex (Bonner & Grossman, 2012; Boulenger et al., 2008; R. F.
Goldberg, Perfetti, & Schneider, 2006). Together, the linguistic and embodied
components can explain language processing better than either alone (Andrews,

Vigliocco, & Vinson, 2009; Johns & Jones, 2012; Louwerse, 2011).

In particular, researchers have suggested that the linguistic component can
provide a shortcut for superficial language processing (Barsalou et al., 2008; Connell
& Lynott, 2014; Louwerse & Jeuniaux, 2008). During language processing, the
activation of linguistic distributional patterns is easy and requires little effort, so it
reaches the peak of its activation before embodied simulation. Furthermore, the

co-occurrence of words in language often reflects the associations of objects, events,
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and ideas in the real world. The fact that bright appears with sun frequently in close
proximity reflects the reality that the sun is usually bright. Therefore, the linguistic
component is sufficient to generate a good-enough approximation (Ferreira, Bailey,
& Ferraro, 2002), especially when detailed semantic representation is not required
(Connell & Lynott, 2013, 2014; Louwerse, 2011; Louwerse & Connell, 2011). In
contrast, embodied simulation, though also activated immediately in language
processing, is slower and more costly. Therefore, it is reasonable that people would
rely on information from the linguistic component for a guide to whether it is worth

expending effort on costly embodied simulation (Connell & Lynott, 2013).

To test this proposal, Connell and Lynott (2013) asked participants to perform
two tasks with novel noun-noun compounds (e.g., cactus beetle): a relatively shallow
processing task where participants makes a yes/no judgement concerning whether
the compounds made sense, or a deeper processing task where they decided if they
could generate specific interpretations for them (and then provided the
interpretation). They measured the linguistic distributional information with a
simple co-occurrence frequency (i.e., times when cactus and beetle co-occur with zero
to three words in between). The results showed that, when the compound rarely
co-occurred, which suggested that the processing was likely to fail, people were more
likely to reject the compound and rejected it more quickly, abandoning it before any
more cognitive effort was expended. On the other hand, when the compound
frequently co-occurred (e.g., army and decision), which suggested that future
processing was likely to succeed, people’s response strategy would be based on the
requirement of the task. In the shallow sensibility judgment task, linguistic
distributional frequency heavily affected the response decision and speed to accept a
compound; whereas in the deep interpretation generation task, linguistic
distributional frequency did not affect the speed to accept a compound. In other

words, while rejecting a noun-noun compound can simply rely on a linguistic
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shortcut to quickly flag up unsuccessful processing, accepting a compound as
interpretable may require more detailed simulation which cannot be captured by the

linguistic distributional frequency.

The cognitive triage mechanism, though proposed for literal language
processing, can equally be applied metaphor processing. Liu, Connell, and Lynott
(2017) tested whether the mechanism worked in metaphor processing with a similar
design. Follwing Connell and Lynott (2013), they kept the operational definition of
the lingusitic component minimal; and going further, they also introduced a measure
of the effort to simulate a concept (Liu, Connell, & Lynott, 2018). In this metaphor
processing study, participants read metaphoric sentences such as Students can be
bright or Supporters can be lukewarm, and performed either a yes/no sensibility
judgement task or an interpretation generation task. The results of the metaphor
processing study supported the role of the linguistic component again. While ease of
simulation affected processing profusedly in both tasks, linguistic distributional
frequency still contributed independently to the speed of processing in the relatively
shallow, sensibility judgment task (as well as the outcome of processing in the
relatively deep, interpretation generation task). That is, the co-occurrence of the
words students and bright predicted how quickly people judged the metaphor
Students can be bright to be sensible, but did not predict how quickly they could

generate a specific interpretation for the metaphor (e.g., “clever students”).

These results, on the face value, seemed to support the triage mechanism and
the linguistic shortcut hypothesis. However, contrary to the idea that people would
rely on linguistic distributional frequency more in shallow processing, linguistic
distributional frequency did not have a reliably larger effect on response time in the
shallow sensibility judgment task than the deep interpretation generation task.
Furthermore, linguistic distributional frequency had a greater effect on the outcome

of processing in the deep interpretation generation task than the in shallow
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sensibility judgment task. This pattern of results seems to suggest the opposite of
the linguistic heuristic hypothesis: that is, people relied on the linguistic component
more heavily when they were required to process a metaphor deeply and generate a

detailed mental representation.

One possible explanation for the mixed results could be that the use of the
linguistic shortcut needs to be incentivised. That is to say, in order for people to
rely on linguistic distributional patterns rather than detailed simulated information,
they need to be given conditions that induces a speed-accuracy tradeoff. The
advantage of the linguistic shortcut is that it conserves limited cognitive capacity
and time compared to the more costly and time-consuming, full-fledged simulation.
Therefore, people should be more reliant on the linguistic shortcut if the resources

(of time or processing capacity) are limited.

Present Study

In the present study, we will continue to view metaphor processing as an
aspect of language processing and examine its conceptual representation. We will
test the role of lingusitic distributional patterns in particular, by putting people
under different levels of time constraints while they perform the same metaphor
processing tasks as the previous study (Liu et al., 2017). For a sentence such as
Supply can be bright, the linguistic distributional patterns should first suggest that
the constituent words supply and bright often co-occur, so the processing is likely to
succeed. In such a case, people could be encouraged to take the linguistic shortcut if
they have limited time to make a response. Therefore, they may either accept the
metaphor straight away based on the high distributional frequency even though the
embodied component has not produced a coherent simulation yet, or they could
allow the embodied component to engage in deeper and more costly simulation. In

contrast, for a sentence such as Illness can be bright, the linguistic component should
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immediately suggest that the two constituent words rarely co-occur. Based on this
information, people may quickly reject the metaphor to avoid time running out or
they may only allow the embodied component to process the metaphor in a very
small degree. In both cases, the shorter the time is available, the more people should
rely on the linguistic component, whereas if people have more time, they can be free

to engage in time-consuming simulations.

Additionally, we expect to replicate the effects of linguistic distributional
frequency and ease of simulation from the previous processing study. That is, we
expect them to affect the judgement and speed of processing independently. People
should be more likely and faster to accept a metaphor as sensible or interpretable
when ease of simulation is high, and less likely and slower to reject it when ease of
simulation is low. Linguistic distributional frequency should further predict a unique
portion of response decision and speed, which should be in the same direction as
ease of simulation. Task will further moderate the effect of both components, such
that ease of simulation will have a larger effect during deeper processing than

shallow processing, while vice versa for linguistic distributional frequency.

The main studies with the hypotheses and the method were preregistered on
AsPredicted.org (http://aspredicted.org/zv3y2.pdf) and conducted as the
pre-registration unless otherwise specified and justified. The pilot study, whose aim
was to determine elements of design of the main studies, was not pre-registered due
to its exploratory nature, but is reported fully in this manuscript. We report here in
all three experiments how we determined our sample size, all data exclusions, all

manipulations, and all measures in the study.

Pilot Study

A pilot study was conducted to determine the time constraints suitable for the

experiments. The constraints were selected based on the results from the previous
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metaphor processing study (Liu et al., 2017). The short constraints were set so that
about 50% of the trials per task were responded to within the constraint. The
threshold was set to give participants the pressure to respond quickly but not so
much that the task became impossible. Thus, the short constraints turned out to be
1s for the sensibility judgment task and 2s for the interpretation generation task.
The long constraints were set at the point where the distribution of RT would
naturally end if assumed symmetric. This criterion was to ensure that participants
could naturally respond to most of the trials without pressure. Thus, the long
constraints turned out to be 3s for the sensibility judgement task and 8s for the
interpretation generation task. Consequently, the medium constraints were set to be
the middle point of the two, that was 2s for the sensibility judgement task and 5s for
the interpretation generation task. In the pilot study, we tested if the short
constraint was too difficult for participants. The task would be judged as too
difficult if people responded “yes” for less than 30% of the trials for the sensibility
judgement task and less than 40% for the interpretation generation task. This
difficulty threshold was also determined based on the previous study in which the
acceptance rate was 45.51% for the sensibility judgement task and 61.91% for the
interpretation generation task. That is to say, we expected the task to be more
difficult in the current study because of the time constraint. Therefore, the
threshold of acceptance rate was lowered in the present study so that people were
allowed to fail to process the majority of the metaphors, but not so low as to suggest

that participants would fail completely.

Participants

Sixteen native speakers of English from the Department of Psychology,
Lancaster University were tested for the pilot study (age: M = 26.26 years, SD =

4.10 years; male: six; left-handed: one), eight for the sensibility judgement task and
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eight for the interpretation generation task.

Material

The material contained 452 metaphoric sentences from the ease-of-simulation
norms (see also Liu et al., 2017, 2018). Table 1 contains examples of the materials,
while the full list is in the Supplementary Material (https://goo.gl/sRkXun). All
sentences took the form “Noun can be adjective” (e.g., Students can be bright),
composed of 113 uni-modal perceptual adjectives selected from the modality
exclusivity norms of Lynott and Connell (2009) and Dantzig, Cowell, Zeelenberg,
and Pecher (2011) (e.g., bright), each paired with four nouns so that the adjectives
could elicit metaphoric meanings. By pairing each adjective with four nouns, the

metaphors varied on the following two variables:

Ease of simulation (EoS). EoS measured indirectly the effort to
successfully simulate the concept in a metaphoric sentence. For each sentence, EoS
ranged from easy to difficult (M = 0.00, SD = 1.00; values automatically
standardised through PCA), which was obtained through a novel norming study by
Liu et al. (2018) where people rated on the metaphors based on three criteria:
sensibility (How much sense does the sentence make if you read it in text or heard it
in conversation?), usability (How easy it would be for you to use the sentence in
writing or in conversation?), and imaginability (How easy it is for you to imagine
the concept described in the sentence?). One principle component was extracted
from the ratings, the factor scores of which was used as a continuous measure of how
easy it is to simulate the concept. This EoS measure managed to explain 91% of the
original variance of the ratings and outperformed all the separate ratings in
predicting the response time of a sensibility judgement task (Liu et al., 2018).
Therefore, EoS could be argued to measure the underlying mechanism of

comprehension, instead of the noise related to specific linguistic tasks, which was
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Table 1

Sample metaphors, and their scores for EoS

and LDF
Metaphor EoS LDF
[llness can be bright. -1.32° 2.95
Supply can be bright. -1.02  3.72
Solutions can be bright. 141 3.11
Students can be bright. 1.84 4.08
Minutes can be lukewarm. -1.49 331
Scheme can be lukewarm. -0.78  1.61

Supporters can be lukewarm. 0.69  2.69

Reaction can be lukewarm. 1.03 3.45

assumed to be simulation (Zwaan, 2004).

Linguistic distributional frequency (LDF). LDF measured the
co-occurrence frequency of the constituent words in a sentence. For each sentence,
LDF ranged from low to high (M = 2.95, SD = 0.97), and was calculated as the
log-transformed sum of the bi- to five-gram frequencies of the metaphor’s
constituent words in the Google Web1T Corpus (Brants & Franz, 2006). To take the
metaphor Students can be bright as an example, the LDF was the sum of the
frequencies of “student ... bright” and “bright ... student” with zero, one, two,
and three intervening words. It was then log transformed as log;o(LDF + 41) where
41 is the lowest non-zero frequency in the corpus (Connell & Lynott, 2013). Among
the four metaphors created for each adjective, LDF varied independently from of
EoS (see Table 1). The two variables had a mild correlation (r = .26, sharing only

7% of common variance), which was handled later during the analysis.
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These variables did not contribute to the analysis of the pilot study data, but
were used to construct balanced stimulus lists. The sentences were split into four
lists of 113 items each, where each adjective appeared only once per list, and the
distribution of easy/difficult to simulate and high/low distributional frequency was
approximately equal across lists (EoS: Fi3 445) = 0.03, p = .99; LDF: Fi3 445y = 0.09,

p = .96). Each participant saw only one list.

Procedure

Participants read the metaphoric sentences and performed either of the two
tasks. They were randomly assigned to one of the tasks and judged whether or not
the sentence made sense, or whether they could think of a meaning for the sentence.
Each trial was conducted as in Figure 1 in the two tasks except at the final screen
when people needed to make a judgement. The adjectives remained on the screen
until participants responded or the time ran out. For the sensibility judgement task,
participants were given 1s to respond; for the interpretation generation task, they
were given 2s to respond. If their response was “yes” (i.e. they judged the sentences
as sensible or meaningful), they would press the comma key (,); if “no”, they would
press the full stop key (.). In the interpretation generation task, they were then
asked to type down the meaning if they had responded “yes”. If they did not
manage to give a response within the time limit, a feedback saying “***T0OO

SLOW***” was given for 350ms.

Design and Analysis

Response decisions and RT were recorded, but only response decisions were
analysed. The “yes” response was categorised as accepted trials, the “no” response

as rejected trials, and if the time elapsed without any responses, a missed trial.
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1000ms

Student
1000ms

can be
500ms

bright.

500ms

Time constraint per task

Figure 1. Trial structure of both sensibility judgement and interpretation generation.

Results

The sensibility judgement task had an average missing rate of 7.41% and an
acceptance rate of 35.73%. The interpretation generation task had an average
missing rate of 3.32% and an acceptance rate of 49.45%. Hence, we decided that the
short time constraints for both tasks were acceptable and applied the time

constraints to Experiments 1 and 2.

Experiment 1: Sensibility Judgement Task

In this experiment, people performed sensibility judgements under three levels
of time constraints (i.e., a short constraint of 1s, a medium constraint of 2s and a
long constraint of 3s). Since it only required a simple “yes” or “no” answer, the
experiment encouraged people to engage in relatively shallow processing (Connell &
Lynott, 2013; Lynott & Connell, 2010). We expected that while EoS would have an

effect on the response decision and RT (i.e., high EoS, more and faster acceptance,

13
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less and slower rejection), LDF would also have an effect (i.e., high LDF, more and
faster acceptance, less and slower rejection), especially under short time constraint.
Furthermore, if people could simulate a metaphor extensively and in detail, the
processing should end up being successful. Therefore, EoS should have a larger
effect on the RT when the response was “yes” than “no”. In contrast, because the
linguistic shortcut could flag up potentially unsuccessful processing (i.e., those with
low LDF), EoS should have a smaller effect and LDF should have a larger effect

when the response was “no” than “yes”.

Participants

Forty-eight students from Lancaster University participated in the study, all of
whom were native speakers of English (age: 19.49 (SD = 2.91) years; male: seven;
right-handed: 43). Participation took approximately 20 minutes in exchange for
course credits. The sample size was determined based on a minimum acceptance
rate of 35%, which would provide a minimum number of data points per participant
that was comparable to Liu et al. (2017); because this acceptance rate was achieved,

it was not necessary to test any extra participants.

Materials

The 452 metaphoric sentence and item lists were the same as in the pilot study.

Procedure

The study was composed of three test blocks, one for each level of time
constraint: short (1s), medium (2s), and long (3s), to which the materials were
randomly assigned. Participants were made aware that the time constraints might

vary between blocks, although they did not know whether a given block would use a
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short, medium or long constraint. All items appeared under all time constraints
across participants, and the order of blocks were counterbalanced. Before each
block, participants were given ten practice trials in order to accustom them to the
time-constrained response interval, during which their response was not recorded.
The trial structure in the practice and test trials was identical to the pilot study.
Participants were asked to respond “yes” if the sentence made sense and “no” if it
did not make sense. Response decisions (“yes” or “no”) were recorded for each trial,
and response times were measured from the onset of the adjective until the keypress

of the response decision.

Design and Analysis

This experiment had EoS and LDF as two continuous predictors, and three
levels of time constraints (i.e., short, medium and long) were applied as
within-subject categorical predictors. The time constraints were backward difference
coded so that Contrast 1 was the difference of long minus medium constraints(with
medium constraint as the reference level), and Contrast 2 is the difference of
medium minus short constraints (with short constraint as the reference level). The
coding was not specified in the pre-registration, but it allowed us to spot the change
of the effects of the two continuous predictors as time constraint tightened.
Response decisions (“yes” or “no” responses) and response time (RT in millisecond)
were the dependent variables. The response decisions were coded as 1 for “yes”

response and 0 for “no” response.

The analyses were conducted according to the pre-registration.! Response

1 'We used R (Version 3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate &
Heiberger, 2016), arm (Version 1.10.1; Gelman & Su, 2016), BayesFactor (Version 0.9.12.4.2;
Morey & Rouder, 2015), bookdown (Version 0.7; Xie, 2016), broom (Version 0.4.4; Robinson, 2017),
citr (Version 0.2.0; Aust, 2016), coda (Version 0.19.1; Plummer, Best, Cowles, & Vines, 2006),

15
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decisions? were analysed using logistic mixed-effect regressions with centred EoS,
centred LDF, levels of time constraints and their interactions as fixed predictors,
and participant and item as crossed random-intercept factors.® Furthermore (not
pre-registered but consistent with our hypotheses), we also analysed the response
decision per time constraint in order to model the effects of the predictors within
each time constraint individually. RT* were analysed using linear mixed-effect

regressions with the same fixed predictor plus response decision, and the

data.table (Version 1.11.4; Dowle & Srinivasan, 2017), ggplot2 (Version 2.2.1; Wickham, 2009),
gridExtra (Version 2.3; Auguie, 2017), interplot (Version 0.1.5; Solt & Hu, 2015), knitr (Version
1.20; Xie, 2015), ime4 (Version 1.1.17; Bates, Méchler, Bolker, & Walker, 2015), imerTest (Version
3.0.1; Kuznetsova, Brockhoff, & Christensen, 2017), magrittr (Version 1.5; Bache & Wickham,
2014), MASS (Version 7.3.50; Venables & Ripley, 2002), Matriz (Version 1.2.14; Bates & Maechler,
2017), MuMIn (Version 1.40.4; Barton, 2017), nime (Version 3.1.137; Pinheiro, Bates, DebRoy,
Sarkar, & R Core Team, 2017), papaja (Version 0.1.0.9735; Aust & Barth, 2017), psych (Version
1.8.4; Revelle, 2017), purrr (Version 0.2.5; Henry & Wickham, 2017), and rcartocolor (Version

0.0.22; Nowosad, 2017) for all our analyses and the writing up of this manuscript.

2 The inclusion of participants as a random factor improved model fit above the empty model,
x2(1) = 394.00, p < .001, as did the inclusion of items as a crossed random factor above the
participants-only model, x?(1) = 753.31, p < .001.

3 Although it has been suggested that that mixed-effect models with random intercept and slope
generalises better than a random-intercept-only model (Barr, Levy, Scheepers, & Tily, 2013), we
were not able to fit maximal models to our data because of several reasons. First, such a model
(with two random predictors and three or four fixed predictors and their interactions) would
require a huge amount of data for the parameter estimation which our study could not afford.
Second, fitting such models is time consuming, often taking hours or days if performed in R, which

makes tweaks and model comparisons impractical.

4 The inclusion of participants as a random factor improved model fit above the empty model,
x2(1) = 785.53, p < .001. The inclusion of items as a crossed random factor did not improve model
fit above the participants-only model x2(1) = 0.00, p = 1. However, in order to keep the models
consistent, both participants and items were included as crossed random factors in the linear

models of RT as well as in the logistic models of response decision.
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random-intercept factors as the mixed-effect logistic regressions. We also analysed
the RT per response decision because we had different hypothesis for “yes” and “no”

responses.

In these analyses, we also considered variables such as lexical frequency (sum of
the log transformed frequencies of the component words) and sentence length (sum
of the length of the component words) as additional predictors as pre-registered.
However, the correlation between these variables and RT were near zero (r < .10),
so they were not included in the regression models (see Supplementary Material).
Moreover in the analyses of RT, we found evidence of net suppression and problems
with multicolinearity [J. Cohen, Cohen, West, and Aiken (2003); see Supplementary
Materials]. This means that the shared error variance between LDF and EoS is
effectively hiding the real relationship between the key variables and RT, such that
the net effect of LDF was to enhance the effect of EoS by suppressing the latter’s
unhelpful error variance. Therefore, consistent with our pre-registration, EoS and
LDF were centred and orthogonalised using principle components analysis with
varimax rotation and Kaissar normalisation on a model by model basis. For clarity
and space, we reported only results with orthogonalised variables for RT (for results
with original variables, see Supplementary Material), and referred to these
orthogonalised variables with their original labels (i.e., EoS instead of orthogonalised
EoS, LDF instead of orthogonalised LDF). In the analysis of response decision, we

did not find evidence of net suppression, so we did not orthogonalise the variables.

Results and Discussion

All participants had their mean response time within 3SD of the overall mean,
so all were included in analysis. Three trials were excluded for motor error (RT <
200ms). Individual trials were excluded as outliers if the RT was more than 3SD

from each participant’s mean per response decision per level of time constraint. This
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exclusion was done differently from the pre-registration, in which we proposed to
exclude outliers per response decision only, because we realised that this approach
would have affected responses under short constraint and long constraint
disproportionately. The percentage of outlying trials were: for “yes” responses,
0.15% under short constraint, 0.28% for medium constraint, and none for long
constraint; for “no” responses, none for short constraint, 0.64% for medium
constraint, 0.36% for long constraint. Consequently, 5261 trials were counted as

valid trials and were used in analysis.

Response decisions. Overall, 2059 trials were accepted as sensible
(acceptance rate: 39.14%); 3202 trials were rejected as nonsensical (rejection rate:
60.86%). For each level of time constraint, the acceptance rate was 39.23% for short
constraint (656 among 1672 trials), 39.18% for medium constraint (701 among 1789

trials), and 39.00% for long constraint (702 among 1800 trials).

Results of the logistic mixed-effect regression are in Table 2. Only EoS had a
significant and positive effect. It means that the easier the metaphor was normally
regarded to simulate, the more likely it is to be judged as sensible (odds ratio =
3.26). Furthermore, the effect of EoS changed between short time constraint and
medium time constraint, being larger for medium than short. Besides, there was
also a trend that the effect of EoS became slightly larger as LDF increased. When
separated by the levels of time constraint (Table 3), EoS had an effect for all three
levels of time constraint. Additionally, the slight trend of interaction between EoS
and LDF appeared only for short time constraint but not for medium or long

constraints.

Response time. The overall mean RT was 856ms for “yes” responses (SD =
312ms) and 838ms for “no” responses (SD = 305ms). Separated by time constraint,
the mean RT for “yes” responses was 687ms (SD = 156ms) for short constraint,

863ms (SD = 272ms) for medium constraint, and 1008ms (SD = 373ms) for long
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Table 2
Logistic mized-effect regression of response decision in

Ezxperiment 1

b 95% CI P
Intercept -0.64 -0.93--0.36 < .001
Long - medium -0.01  -0.18 - 0.16 932
Medium - short -0.01  -0.18-0.16 .896
LDF 0.06 -0.03-0.16 A77
EoS 1.18  1.08-1.28 < .001
Long - medium x LDF -0.08 -0.27-0.1 383
Medium - short x LDF -0.01  -0.19-0.18 948
Long - medium x EoS -0.12  -0.31 - 0.07 225
Medium - short x EoS 0.38 0.19-0.57 < .001
LDF x EoS 0.08 -0.01-0.17 .084

Long - medium x LDF x EoS -0.03 -0.21 - 0.16 776
Medium - short x LDF x EoS -0.04 -0.22 - 0.15 714

Note. b is non-standardised regression coefficient.

constraint; the mean RT for “no” response was 688ms (SD = 140ms) for short
constraint, 839ms (SD = 251ms) for medium constraint, and 974ms (SD = 390ms)

for long constraint.

In the omnibus model of RT (Table 4), we found that the time constraints did
have a significant effect on RT. Participants responded more slowly as the time
constraints got longer. EoS had a positive effect on “no” response when LDF was at
its mean, meaning that the RT became longer as EoS increased. This effect was

reversed for “yes” response (i.e., RT became shorter as EoS increased) and the effect
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Table 3
Logistic regression model of response decision per time

constraint in Experiment 1

b 95% CI D

Intercept -0.62 -0.92--0.32 < .001

LDF 0.09 -0.05-0.23 197
Short

EoS 0.96 0.81-1.11 < .001

LDF x EoS 0.11 -0.02-0.24 .097

Intercept -0.64 -0.93--0.36 < .001

LDF 0.08 -0.06 - 0.22 .266
Medium

EoS 1.31  1.15-1.48 < .001

LDF x EoS 0.07 -0.07-0.22 319

Intercept -0.70  -1.06 - -0.35 < .001

LDF 0.01 -0.14-0.16 .859
Long

EoS 1.30  1.13-1.48 < .001

LDF x EoS  0.06 -0.09 - 0.2 457

Note. b is non-standardised regression coefficient.

on “yes” response was larger than that on “no” response. Furthermore, LDF
moderated the effect of EoS on “no” response such that the effect of EoS became
smaller (less positive) as LDF increased, which existed only for the long and
medium constraints (reference levels of the contrast coding) and was smaller at

medium than long constraints.
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Table 4

Omnibus linear mized-effect model of RT in FExperiment 1

b 95% CI P
Intercept 845.92 808.68 - 883.17 < .001
Long - medium 129.20 106.25 - 152.16 < .001
Medium - short 158.75 135.54 - 181.96 < .001
Response 18.48 1.72 - 35.24 .031
LDF -0.93 -11.76 - 9.9 867
EoS 14.80 3.49 - 26.11 .010
Long - medium x Response 55.87 17.35 - 94.39 .004
Medium - short x Response 36.72 -1.8 - 75.23 .062
Long - medium x LDF -0.55 -24.45 - 23.36 964
Medium - short x LDF 3.13 -21.12 - 27.38 .800
Response x LDF -1.99 -18 - 14.03 .808
Long - medium x EoS -7.11 -31.89 - 17.67 574
Medium - short x EoS 19.71 -5.3 - 44.71 122
Response x EoS -56.54 -72.8 - -40.29 < .001
LDF x EoS -13.28 -23.68 - -2.88 012
Long - medium x Response x LDF -18.30 -57.56 - 20.95 361
Medium - short x Response x LDF 7.21 -31.58 - 46.01 715
Long - medium x Response x EoS -71.38 -109.79 - -32.98 < .001
Medium - short x Response x EoS -54.82  -93.23 - -16.41 .005
Long - medium x LDF x EoS -21.05 -43.61 - 1.52 .068
Medium - short x LDF x EoS 3.26  -19.91 - 26.43 783
Response x LDF x EoS 12.16 -3.2 - 27.53 121

Long - medium x Response x LDF x EoS ~ 25.89 -10.54 - 62.33 164
Medium - short x Response x LDF x EoS  -15.00 -50.93 - 20.92 413

Note. b is non-standardised regression coefficient.
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When separated by response decision (Table 5), EoS had a negative effect on
RT for “yes” response during long and medium constraints. That is, the easier a
metaphor was typically considered to simulate, the faster people accepted a
metaphor as sensible. This effect was larger at the longer constraints than the short
constraint (Table 6 and Figure 2). Analyses per time constraint also confirmed that
EoS did not have a significant effect on “yes” RT at short time constraint, but only
did during medium and long constraint (Table 11 and Figure 2). In contrast, LDF

did not have a significant effect on “yes” RT.
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Figure 2. Regression coefficients of RT per response decision in Experiment 1. Error
bars stand for 95%CI. Asterisks stand for p-values of interaction between variables

and time constraint. *: p < .05, **: p < .01: ***: p < .001.

For “no” response, EoS had a positive effect (when LDF was at its mean)
which meant that as EoS increased, RT increased as well (Table 5). In other words,
metaphors which were typically considered hard to simulate were rejected more
quickly than those considered easy to simulate. the harder it was typically
considered to simulate a metaphor, the faster people rejected the metaphor as
nonsensical (Table 5). This effect did not change significantly with time constraint,
which meant that although the effect of EoS seemed to have increased from short to
long constraint (Table 6 and Figure 2), the difference was not detected by the way
the contrast was coded. Besides, EoS was moderated by LDF, which further
interacted with the time constraints. Separate analyses per time constraint showed

that the interaction between EoS and LDF was borne out by the long constraint.

25
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Figure 3 shows the changes of the effect of EoS at four quartiles of LDF (within each
quartile, the number of trials were the same). It could be seen that when the LDF
was at the lower end, EoS had a positive effect. In other words, when the
constituent words rarely appeared in the same context, people were still faster to
reject a metaphor that was typically considered to be hard to simulate, and slower
to reject one that was typically considered easy to simulate. As LDF increased, the
effect of of EoS diminished and then turned to the opposite direction, so much so
that when the constituent words frequently co-occurred, people were faster to reject
the metaphors which were typically considered easy to simulate (though only a small
number of trials were rejected in this case), but slower to reject those metaphors

which were typically considered hard to simulate.

Summary. In this experiment, we found that EoS affected metaphor
processing as predicted. When a metaphor was typically regarded to be easy to
simulate, it was easier (more likely and faster) for people to accept the metaphor as
sensible, and harder (less likely and slower) to reject it as nonsensical. The effect of
EoS on acceptance speed was moderated by the time constraint, that is: people
relied on simulation more when there was longer time available. Thus, it supported
the simulation-linguistic based conceptual representation which claimed that the
embodied component was more costly and time-consuming, and required longer time

to be fully engaged.

The effect of EoS on rejection speed was more complex. It had a positive effect
as expected when LDF was at its mean or particularly low. In other words, people
found it easier to reject a metaphor which were typically regarded as difficult to
simulate. However, the effect of EoS diminished and even was reversed if the
constituent words frequently co-occurred, in which case people spent longer time to
process a metaphor that was typically harder to simulate (Supply can be bright)

than one that was typically easy to simulate (Students can be bright - rarely
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Figure 3. Effects of EoS at long constraint at four quartiles of LDF. As LDF increased
from the 1st quartile (yellow) to the 4th quartile (violet), the effect of EoS changed
from positive to negative. The density plot on the top shows the rejection rate along

EoS per quartile of LDF. The rejection rate at the high end of EoS was less than 10%.

rejected). In other words, people were willing to expend more effort on a metaphor
before rejecting it, if the constituent words frequently co-occurred. Such an
interaction between EoS and LDF supported the linguistic shortcut hypothesis. The
distributional patterns acted as a shortcut for identifying metaphors that could
potentially be processed successfully. Metaphors, which were considered hard to
simulate, were rejected quickly if their constituent words rarely co-occurred, but

slowly if the constituent words often co-occurred.

However, we did not find strong support for the linguistic shortcut hypothesis

in terms of how the linguistic component behaved under time constraint. LDF,
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contrary to our predictions, actually had a larger effect at the long constraint. It
was possible that imposing time constraints did not incentivise the linguistic
shortcut, but rather caused people to change their processing strategies altogether.
As a result, the RT of the short constraint could not be predicted by either of the
key predictors, which suggested that people may have based their judgements on
variables at the lexical level such as word length and lexical frequencies (even

though these variables did not have a strong correlation with the RT overall).

Experiment 2: Interpretation (Generation Task

In this study, people performed an interpretation generation task under three
different time constraints, a short time constraint of 2 seconds, a medium time
constraint of 5 seconds, and a long time constraint of 8 seconds. If they decided they
could interpret the sentences, they would be required to type down the meaning of
the sentence. We predicted that EoS should have an effect on the response decision
and RT (higher EoS, more and faster acceptance; lower EoS, more and faster
rejection), as well as LDF (higher LDF, more and faster acceptance; lower LDF,
more and faster rejection). Furthermore, EoS would have larger effect under longer

time constraints, while LDF would have smaller effect under longer time constraints.

Participants

Fifty-four participants were recruited for this experiment (age: 20.43 (4.38)
years; male: 15; left-handed: seven). They participated in the study for 30 minutes
for £3.50 or the equivalent of course credits. The sample size was pre-determined
based on a minimum acceptance rate of 45%, which would provide at least the same
number of data points as Liu et al. (2017); because this acceptance rate was

achieved, it was not necessary to test any extra participants.
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Materials

The same materials were used in this experiment as in Experiment 1.
However, because participants were now required to type interpretations, we
reduced the length of the item lists from 113 items to 75-76 items in order to reduce
chances of fatigue. Thus, six item lists were generated in the same way as the pilot
study and Experiment 1. Each participants saw each adjective only once and the
distribution of EoS and LDF were equal among the six lists (EoS: Fis 446) = 0.21, p
= .96; LDF: F(5446) = 0.49, p = .78).

Procedure

The procedure was the same as Experiment 1 with the following exceptions.
The short, medium and long time constraints lasted 2 seconds, 5 seconds, and 8
seconds, respectively. Participants were asked to respond “yes” if they could think of
a meaning for the sentence, and “no” if they could not think of a meaning for the
sentence. If participants responded “yes”, they were required to type the meaning of

the sentence at the next screen, with no time limit for typing.

Design and Analysis

Same as Experiment 1 for response decisions® and RT.%

5 The inclusion of participants in logistic mixed-effect model model as a random factor improved
model fit above the empty model, x%(1) = 562.71, p < .001, as did the inclusion of items as a
crossed random factor above the participants-only model, x?(1) = 738.94, p < .001.

6 The inclusion of participants in linear mixed-effect model as a random factor improved model fit
above the empty model, x2(1) = 764.04, p < .001. The inclusion of items as a crossed random
factor did not improve model fit above the participants-only model x2(1) = 0.00, p = 1. However,
in order to keep the models consistent, both participants and items were included as crossed

random factors in the linear models of RT as well as in the logistic models of response decision.
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Results and Discussion

The data exclusions were the same as in Experiment 1 with an additional
validity check on participants’ interpretations to make sure they were performing
the task properly. An interpretation was marked as invalid if it was left blank,
marked out as a mistake (“I don’t know”), if it was clearly misread (interpretation
specifies meaning of similar word, e.g. “charge” for “change”) or simply replaced the
adjectives with a synonym (not pre-registered but same with Liu et al. (2017),
“Students can be bright” as “Students can be shiny”). All participants had a mean
RT within three standard deviations of the overall mean, and had at least 50% of
their interpretation marked as valid, and so all were included in the analysis.
Ninety-nine trials were missed (no response), five trials were excluded as motor
errors, 94 trials were marked as invalid meanings. In addition, 20 trials were outliers
whose RT was 3SD from participants means per response decision and time
constraint: that is for “yes” response, none for short constraint, 0.57% for medium
constraint, and 0.36% for long constraint; for “no” response, 0.65% for short
constraint, 0.76% for medium constraint, and 0.53% for long constraint.
Consequently, 3853 trials were used in analysis: 1553 valid trials for “yes” response,
and 2300 for “no” response (acceptance rate 39.30%). For short constraint, the

acceptance rate was 36.37%; for mid constraint, 39.46%; and for long constraint,

41.77%.

Response decision. Logistic mixed-effect regression showed only an effect
of EoS both in the overall analysis (Table 7) and analyses separated by time
constraints (Table 8). As EoS increased, the decision to accept a metaphor as
interpretable increased. The odds ratios were 3.97 for the overall analysis, 4.04
under the short constraint, 4.11 under the medium constraint, and 4.02 under the

long constraint. Time constraints did not interact with either EoS or LDF.
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Table 7
Logistic mized-effect regression of response decision in

Ezxperiment 2

b 95% CI P
Intercept -0.56 -0.97 - -0.14 .009
Long - medium 0.14 -0.07-0.35 203
Medium - short 0.08 -0.14- 0.3 464
LDF 0.04 -0.07-0.16 484
EoS 1.38  1.25-1.51 < .001
Long - medium x LDF 0.02 -0.21-0.25 .889
Medium - short x LDF -0.04 -0.27-0.2 758
Long - medium x EoS 0.01 -0.23-0.25 916
Medium - short x EoS -0.05 -0.29 - 0.2 704
LDF x EoS -0.01 -0.13 - 0.1 821
Long - medium x LDF x EoS  0.09 -0.14 - 0.32 44

Medium - short x LDF x EoS -0.01 -0.24 - 0.22 919

Note. b is non-standardised regression coefficient.

Response times. The overall mean RT were 1334ms (SD = 790ms) for
“yes” responses, and 1120ms (SD = 653ms) for “no” responses. Separated by time
constraint, the mean RT for “yes” responses was 1026ms (SD = 322ms) for short
constraint, 1239ms (SD = 631ms) for medium constraint, and 1698ms (SD =
1037ms) for long constraint; the mean RT for “no” response was 965ms (SD =
344ms) for short constraint, 1082ms (SD = 567ms) for medium constraint, and

1318ms (SD = 886ms) for long constraint.

Omnibus linear mixed-effect regression showed (Table 9) EoS had a significant
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Table &8

Logistic regression model of response decision per time

constraint in Fxperiment 2

b 95% CI P

Intercept 0.65 -1.1--0.21 .004

LDF 0.06 -0.11-0.24 455
Short

EoS 1.40  1.17-1.62 .001

LDF x EoS -0.06 -0.23-0.1 458

Intercept -0.60 -1.03 - -0.18 .005

LDF 0.02 -0.17-0.2 .860
Medium

EoS 1.42  1.18 - 1.65 .001

LDF x EoS -0.05  -0.23-0.13 .H68

-0.43 -0.89 - 0.04 072

LDF 0.10 -0.07-0.27 267
Long

EoS 1.39  1.17-1.61 .001

LDF x EoS 0.01 -0.16-0.18 908

Note. b is non-standardised regression coefficient.

positive effect for “no” response on the RT regardless of LDF or time constraints,
which was reversed for “yes” response. The effect was larger for “yes” than “no”

response. The effect of LDF was contained in its interaction with response with a

32

negative term, showing that although the effect of LDF was not significant for “no”

response, it was indeed opposite for “yes” and “no” responses and was larger for

“yes” response than “no” response.

After the omnibus analysis, the RT data was split first by response decisions

and then by time constraint, same as Experiment 1. When separated by response
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Table 9

Omnibus linear mized-effect model on RT in Experiment 2

b 95% CI P
Intercept 1,174.99 1083.89 - 1266.08 < .001
Long - medium 278.95 214.25 - 343.65 < .001
Medium - short 94.56 30.66 - 158.46 .004
Response 179.22 130.63 - 227.82 < .001
LDF 12.79 -15.5 - 41.08 376
EoS 45.63 15.54 - 75.72 .003
Long - medium x Response 153.87 49.07 - 258.66 .004
Medium - short x Response 158.39 51.06 - 265.71 .004
Long - medium x LDF -26.79 -92.81 - 39.24 A27
Medium - short x LDF 29.89 -36 - 95.79 374
Response x LDF -51.63 -95.35 - -7.91 .021
Long - medium x EoS 41.46 -28.48 - 111.41 .245
Medium - short x EoS -25.86 -94.27 - 42.55 459

Response x EoS 194.84 -239.83 - -149.85 < .001

LDF x EoS -18.41 -45.81 -9 188
Long - medium x Response x LDF -13.21 -120.08 - 93.67 .809
Medium - short x Response x LDF 8.69 -98.76 - 116.13 .874
Long - medium x Response x EoS -86.62 -192.41 - 19.17 .109
Medium - short x Response x EoS -50.12 -157.34 - 57.1 .360
Long - medium x LDF x EoS -0.78 -64.34 - 62.78 981
Medium - short x LDF x EoS -23.22 -85.74 - 39.31 467
Response x LDF x EoS 37.61 -4.03 - 79.25 .077 T

Long - medium x Response x LDF x EoS -56.53 -155.62 - 42.56 .264
Medium - short x Response x LDF x EoS 25.92 -73.3 - 125.14 .609

Note. b is non-standardised regression coefficient.
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decisions (Table 10), EoS had a negative effect on “yes” RT. That is, the easier it
was considered to simulate a metaphor, the faster people accepted it as
interpretable. Also, the effect of LDF was negative too at medium and long
constraints (i.e., the higher the LDF was, the faster people accepted the metaphor
as interpretable). Both effects were as predicted. EoS’s effect did not increase
significantly as the time constraints became longer, but only showed a slight trend
between short and medium constraints (Table 11 and Figure 4). LDF interacted
with time constraints between medium and long constraints, that is: the effect of
LDF was larger at the long constraint than the medium and the short constraints,

which was the opposite of what was predicted by the linguistic shortcut hypothesis.
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For “no” RT, only EoS had a strong and consistent effect (Table 10). The
harder it was considered to simulate a metaphor, the faster people rejected it as

uninterpretable. The effect held true for all levels of time constraints. In contrast,

LDF did not have an effect at all on “no” RT (Table 11 and Figure 4).
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Figure j. Regression coefficients of RT per response decision in Experiment 2 (i.e. in-
terpretation generation). Error bars stand for 95% CI. Asterisks stand for p-values of

interaction between variables and time constraint. *: p < .05.

Summary. EoS had a significant effect on response decision and both “yes”
and “no” RT as predicted and demonstrating a similar pattern to the sensibility
judgement task in Experiment 1. The easier it was to simulate a metaphor, the
more likely people accepted it as interpretable, the faster they could think of a
meaning, and the longer it took to reject as uninterpretable. Although EoS trended
toward the prediction of having a greater effect at longer time constraint, the effect
was not reliable. The lack of the time-constraint effect may simply be a result of the
coding scheme adopted by my present study. As we always contrasted the two
closest time constraints in both experiments (i.e., difference between long and
medium constraints, difference between medium and short constraints), the coding

could be overly conservative. If the long constraint could be contrasted with the
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short constraint, we might have found a significant increase of the effect of EoS in
this experiment. Further examination of the data could address this problem (which

could not be done for the lack of time).

On the other hand, the effects of LDF were mixed. As predicted, LDF had a
negative effect on “yes” RT: that is, when words in a metaphor often co-occurred,
people were faster to accept it as interpretable. However, there was no evidence that
shorter time constraints boosted the effect of LDF, contrary to our prediction, and
the effect of LDF was instead reduced at shorter time constraints. Finally, LDF had

no effect on response decisions nor on “no” RTs.

Cross-Experiment Comparison

To test our cross-experiment hypotheses, we conducted a meta-analysis of the
data from Experiments 1 and 2. We expected EoS to have a larger effect for deep
interpretation generation than for shallow sensibility judgement, while the effect of

LDF would be the other way round.

Method

The data from Experiments 1 and 2 were combined for analysis: response
decision in logistic mixed-effects regression, and response time in linear mixed-effects
regression. Task was employed as a categorical variable (coded 0 for sensibility
judgement and 1 for interpretation generation). In analysis of response decision, EoS
and LDF from two datasets were first combined and then centred, while in analysis
of response time, they were first combined and then orthogonalised. Levels of time
constraint were also included in the models with backward contrast coding, similar
to Experiments 1 and 2: that is, Contrast 1 referred to long constraint minus
medium constraint (regardless of tasks), and Contrast 2 referred to medium minus

short constraint (regardless of tasks).
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Results and Discussion

Response decision. Results of the logistic mix-effect model was shown in
Table 12. Task enhanced the effect of EoS when LDF was at its mean, such that
EoS had a larger, more positive effect in the deep task than the shallow task. That
is, people were more likely to accept a metaphor that was typically considered easy
to simulate, and even more likely to accept such a metaphor in the deep
interpretation generation task than in the shallow sensibility judgement task. EoS
was also moderated by time constraint during the shallow task, such that it had a
larger, more positive effect at medium time constraint than short time constraint (as
predicted); but this moderation effect of time constraint did not appear during the
deep task, such that, in the deep task, the effect of EoS did not increase because of
time constraint. Finally, LDF had little effect on response decision with a
non-significant trend for LDF positively affect chance of acceptance at higher levels

of EoS.

Response time. Since the predictors had effects in opposite directions for
“yes” and “no” responses, we analysed RT separated by the response (Table 13). For
both “yes” and “no” responses, EoS had a larger effect for the deep task than the
shallow task. In other words, people relied on embodied simulation more during
deeper processing than shallower processing as predicted, which held true across the
time constraints. The effect of LDF appeared for “yes” response regardless of EoS,
but this effect was conditional to task. That is, LDF only had a significant effect in
the deep interpretation generation task but not in the shallow sensibility judgement
task, which was opposite to the hypothesis that shallow processing should encourage
the using of the linguistic shortcut. Apart from this effect, LDF did not have any
other effects. It did not affect “no” RT. Nor was it affected by time constraints. All
these null effects did not support the hypotheses concerning the linguistic

component.
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Table 12
Logistic mized-effect regression of response decision for

cross-experiment comparison

b 95% CI D
Intercept -0.65 -1--0.3 < .001
Task 0.12 -0.37-0.6 .64
Long - medium -0.01  -0.18-0.16 908
Medium - short -0.01  -0.18-0.16 922
LDF 0.06 -0.03-0.15 A7
EoS 1.18  1.09-1.28 < .001
Task x long - medium 0.14 -0.13-041 310
Task x medium - short 0.09 -0.18-0.36 519
Task x LDF -0.01 -0.13- 0.1 817
Long - medium x LDF -0.08 -0.26 - 0.1 .389
Medium - short x LDF -0.01  -0.19-0.18 .926
Task x EoS 0.13 0-0.26 .043
Long - medium x EoS -0.12  -0.31 - 0.07 231
Medium - short x EoS 0.38 0.19-0.57 < .001
LDF x EoS 0.08 -0.01-0.17 .081 {
Task x long - medium x LDF 0.08 -0.21-0.37 .H67
Task x medium - short x LDF -0.02  -0.31-0.27 .885
Task x long - medium x EoS 0.12 -0.18 - 0.42 418
Task x medium - short x EoS -0.42 -0.73 - -0.12 .006
Task x LDF x EoS -0.09  -0.21 - 0.03 143
Long - medium x LDF x EoS -0.02  -0.21-0.16 .816
Medium - short x LDF x EoS -0.04  -0.22-0.15 .687

Task x Long - medium x LDF x EoS  0.12 -0.17-0.41 419
Task x Medium - short x LDF x EoS 0.02 -0.27 - 0.31 877

Note. b is non-standardised regression coefficient.
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General Discussion

The current study was conducted to replicate the previous study on the
conceptual representation during metaphor processing and answer the specific
question, whether limited time resources would affect the conceptual representation.
Our findings confirmed the hypothesis that both embodied and linguistic
components existed as parts of a conceptual representation. The embodied
component played a prominent and consistent role in the representation of meaning.
The easier a metaphor was considered to simulate, the easier it was to accept it as
either sensible or interpretable; the harder it was considered to simulate, the easier
it was to reject it. We also found, as predicted, that the embodied component was
more engaged during the deep processing of interpretation generation than during
the relatively shallower processing of sensibility judgement, and it was also generally
more engaged when there was more processing time available. Thus, it confirmed
the suggestion of grounded representation that the embodied component was more

costly and time-consuming (Barsalou et al., 2008; Connell & Lynott, 2014).

In contrast, evidence for the linguistic component and the linguistic shortcut
hypothesis was limited. We found evidence that the linguistic component affected
metaphor processing independently of ease of simulation in some cases. The more
often two constituent words of a metaphor co-occurred, the easier (at least faster) it
was to accept it as interpretable (which was not found for shallow sensibility
judgement). However, the linguistic component did not have a greater effect when
the time resources were restricted as we hypothesised. In fact, we found that people
were more reliant on the linguistic component when they had a longer interval for

response.
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Complex Processing Strategy during Metaphor Processing

The surprising results cast doubts on the linguistic shortcut hypothesis we
originally proposed. Neither time constraints nor shallow processing promoted the
use of the linguistic shortcut. In fact, the reverse seemed to be true. People were
more likely to incorporate linguistic information into processing when they had
plenty of time, or when they needed to engage in deep processing. Therefore, we
argue that linguistic information was involved in metaphor processing with a

complex strategy, depending on the requirement of the task.

We found that linguistic information affected processing directly under a
specific condition. That is, people relied on lingusitic information when they were
required to engage in deep processing. Specifically, linguistic information could
influence the speed of acceptance by itself, which in a way supports the idea that the
linguistic information could be used heuristically (Connell, 2018; Louwerse &
Jeuniaux, 2008). However, people were also allowed for longer time to perform the
deep processing task than the shallow processing task, and people relied on
linguistic information more when the time constraint was most relaxed. These two
effects both indicated that linguistic information contributed to the performance of
metaphor processing at a later stage, rather than immediately after the processing

began as the LASS theory proposed (Barsalou et al., 2008).

We also found that linguistic information affected processing indirectly when
the required depth of processing was shallow. It could signal whether the processing
was likely to succeed. When the distributional frequency was high, the processing
should succeed. Therefore, if people could not come up with a coherent
representation for the meaning (e.g., Supply can be bright), it would take them even
longer to reject the metaphor than when the distributional frequency was low, which

suggested that the processing was unlikely to succeed (e.g., Iliness can be bright). In
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other words, high distributional frequency was used to safeguard against premature
rejection of a metaphor. When the distributional frequency was low, in constrast,
people simply judged the metaphors based on its ease of simulation (i.e., Illness can

be bright was rejected faster than Solutions can be bright).

In general, we did not find evidence to support our original hypothesis
concerning the linguistic component as a shortcut for metaphor processing. How
much could this lack of evidence be generalised beyond this particular study and
beyond metaphor processing? There are three reasons why the methods of the
current study may not be sensitive enough to detect the effect of linguistic
distributional patterns. First, LDF was a minimal redition of the linguistic
component. LDF uses the n-gram distributional frequency, which measured how
often two words co-occurred in the same context (e.g., solution and bright). It was
different from other vector-based distributional models (e.g., latent semantic
analysis) which measured how often words occurred in similar context. For example,
although solution and bright do not co-occur frequently in the same context, thus
having a low n-gram frequency, solution frequently co-occurred in similar contexts as
words like question, answer and students. Therefore, the vector-based distributional
models might better at capturing the distributional pattern for metaphor
processing, which should be explored further in future studies. Second, the null
effects raise the question whether the evidence suggests against the linguistic
shortcut hypothesis. It is impossible to clarify this point with
null-hypothesis significance testing (NHST). To examine whether the
evidence were equivocal or against the effect of linguistic component
during shallow processing and shorter time constraints, the data needs to

be reanalysed with Bayesian models.

Third, in order to show whether the linguistic component plays a

heuristic role, it is not enough to study the end-products of metaphor
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processing (i.e., RT and response decisions) alone. LDF could have been
activated and influential to processing from the beginning of a trial, but
by the time that a response was made (at least 200ms after the adjective
onset), the initial shortcut effect might have faded. To fully examine the
role of the linguistic component during online processing, measurements

with high temporal resolution such as EEG and MEG should be taken.

In this paper, we viewed metaphor processing from the perspective
of conceptual representations during language processing in general. We
argued that metaphor processing is an aspect of language processing and
should involve similar conceptual representations. However, our findings
concerning metaphor processing may not be able to generalise to
language processing in general because metaphors are different from
literal language in at least the following two ways. Firstly, distributional
patterns of constituent words are not often reliable during metaphor
processing, because it is common to read metaphors that are perfectly
sensible and meaningful whose constituent words rarely co-occur (e.g.,
abrasive personality, lukewarm supporters). Therefore, people might
deem the sacrifice of accuracy to be too great if they were to take the
linguistic shortcut. Secondly, metaphors may encourage people to engage
in the simulation of affective experiences more than their literal
counterparts (Citron & Goldberg, 2014). As a result, people put a much
heavier reliance on the embodied component than during literal language
processing. Having the time constraints meant that full engagement of
embodied simulation was not always possible. Therefore, people might
have switched their processing strategies altogether to focus on the
lower-level lexical variables such as lexical frequencies or word lengths.

Therefore, it is necessary for future studies to compare literal language

47



METAPHOR PROCESSING UNDER TIME CONSTRAINTS 48

and metaphor processing in these aspects if a general theory of

conceptual representation is to be achieved.

Conclusions

In conclusion, we found that metaphor processing relies on the
unique contributions of embodied simulation and linguistic distributional
patterns. These two components both inform conceptual representation
and could cause conflict when there is no agreement between them.
Combined with previous research on metaphor processing, literal
language processing and conceptual combination, these findings indicate
that conceptual representation involves a complex interaction between
the two components, and flexibly constructed based on the demand of

the task.
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CHAPTER 6

ERP Markers of Embodied and Linguistic

Components in a Property Verification Task

To examine the interplay of embodied and linguistic components in
metaphor processing, the timecourse of these two components will be studied
in the next two chapters. Chapter 6 is a sidebar, which fills in the gap in the
literature concerning the ERP markers of the two components during literal
language processing. [ will replicate a well-established effect of embodied sim-
ulation, which is the modality switching costs in the property verification task;
and building on existing findings, I will explore how embodied simulation and
linguistic distributional patterns independently affect the ERP of the modality

switching costs.

The modality switching costs refer to a delay in response to a property
of a certain modality (e.g., vision: The SUN is bright) in a property verification
task if the previous property verified is of a different modality (e.g., audition: A
BLENDER is loud) than if it is of the same modality (e.g., vision: A LEMON

is yellow). The costs were thus interpreted as evidence for the recruitment of
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modality-specific resources during language processing (Pecher et al., 2003). How-
ever, Louwerse & Connell (2011) found that the costs could at least partially be
attributed to the distributional patterns of the property words. The fact that loud
— bright takes longer to process than yellow — bright is also due to the fact that
yellow and bright co-occurred more frequently than loud and bright. The linguistic
distributional pattern was found to account for faster responses better than slower
responses, supporting the linguistic shortcut hypothesis. As a result, in this chap-
ter, we also expect the linguistic component to act as a shortcut. In terms of
timecourse, the linguistic component should reach the peak of its activation before

the embodied component.

In spite of our prediction concerning the difference in the timecourse of
the two components, as well as previous ERP studies that found various ERP
components associated with the modality switching costs (Bernabeu et al., 2017;
Collins et al., 2011; Hald et al., 2013, 2011), the study in this chapter will be
of an exploratory nature, in which the ERP of property verification will be anal-
ysed in uniformed 50ms slices, electrode by electrode. The reason to conduct a
component-free analysis like this is, first of all, to limit researcher’s degrees of free-
dom as discussed in Chapter 2. Moreover, an exploratory analysis will give us a
fuller picture concerning how embodied and linguistic components were activated,
which could be compared with the activations during metaphor processing found

in Chapter 7.

An abstract of this work has been submitted to and accepted as a talk in the

Embodied and Situated Language Processing (ESLP) conference, August 2018.
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Abstract

Modality switching costs (MSCs) are one of the classic effects that support the
embodied views of conceptual representations. They refer to a delay in response
time to verify a sensory property of a certain perceptual modality (e.g., visual: SUN
— bright), when the previous sensory property has been of a different modality (e.g.,
auditory: BLENDER — loud) compared to a property of the same modality (e.g.,
visual: ROSE — red). Such costs indicate that conceptual representations require the
recruitment of modality-specific resources. However, MSCs could also result from
the distributional pattern of property words: the reason why loud — bright takes
longer than red — bright could be because bright and loud do not co-occur in the
same linguistic context as frequently as bright and red. In the present study, we
examined how well MSCs were predicted by an embodied model (switch / no-switch
between perceptual modalities) versus a linguistic model (switch / no-switch
between linguistic distributional clusters), in behavioural (RT) and continuous
event-related EEG potentials (ERP) paradigms. The behavioural data supported
the linguistic model in explaining MSCs and found MSCs to be moderated by the
target modality, the ERPs showed that linguistic distributional pattern played a
crucial role in the neural activations of MSCs. What used to be found as a result of
perceptual switching (e.g., "early N400" effect) could be better explained by the
linguistic model. The embodied component was activated later than the linguistic
component, accounting for activations associated with semantic representation
(typically in N400 area). Later during processing, both components were active for

decision making (often manifested as LPC).

Keywords: modality switching costs, embodied simulation, linguistic
distributional pattern, EEG

Word count: 7705 words
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Continuous neural activations of simulation-linguistic representations in modality

switching costs

Embodied cognition (also called grounded or situated cognition) in its most
consensual form suggests that conceptual processing involves the simulation (i.e.,
partial reactivation) of sensory, motor, affective, introspective and other bodily
experiences of concepts (Barsalou, 1999). When we process a sentence such as The
sun is bright, we “relive” the bodily experiences with the sun and specifically the
visual experience of its brightness. The modality switching costs (MSCs; Pecher,
Zeelenberg, & Barsalou, 2003) showed that people’s response to a word pair such as
SUN - bright would be delayed if the previous word pair they verified had pertained
to a different sensory modality (e.g., BLENDER - loud) compared to the same
modality (e.g., ROSES - red). Such costs were interpreted as a result of engaging
modality-specific resources. People were slower to respond to bright because their
attention had been previously engaged in the auditory modality when processing
loud. Further studies also found MSCs across linguistic and perceptual stimuli (Van
Dantzig, Pecher, Zeelenberg, & Barsalou, 2008) and during novel concept creation
(Connell & Lynott, 2011), again confirming that people “relive” the sensory
experiences (e.g., “seeing” the sun’s light, “hearing” a blender’s noises) when they

verify these concepts.

Meanwhile, the linguistic account of conceptual representation proposes that
the meaning of a word is encoded (at least partially) in the distributional pattern of
the linguistic symbols (Landauer & Dumais, 1997). As Firth (1957) famously put it,
“you shall know a word by the company it keeps” (p.11). Linguistic distributional
patterns can encode relationship of objects, events and matters to a certain degree
(Louwerse, 2011). The meaning of sun could be understood by its semantic

neighbours such as sky, hot, bright, etc. This linguistic account provides another
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interpretation for MSCs. The reason why people were faster to respond to bright
after red than after loud was that bright and red co-occurred in the same context
more frequently than bright and loud. Indeed the co-occurrence frequencies could
differentiate the sensory modality of perceptual words to some extent (Louwerse &
Connell, 2011). A corpus study illustrated that the co-occurrence frequencies of
sensory property words (e.g., bright, loud, etc.) varied along three dimensions, which
broadly corresponded to the perceptual property of vision-haptics,
olfaction-gustation, and audition. Switch between the linguistic dimensions were
capable of accounting for the faster responses of MSCs, while switch between the

embodied dimensions were capable of accounting for the slower responses.

Embodied-Linguistic Conceptual Representations

Many researchers have explicitly stated that conceptual representations are
both embodied and linguistic (Andrews, Vigliocco, & Vinson, 2009; Barsalou,
Santos, Simmons, & Wilson, 2008; Connell & Lynott, 2014; Louwerse & Jeuniaux,
2008). Such a combinatorial account can bridge the gap between the two accounts,
and thus help avoid the problems faced individually by either. At the linguistic end,
the extreme form of this linguistic account needs to face the challenge of the
grounding problem (Harnad, 1990), which questions how the linguistic symbols link
to its real-world referents. If the meaning of a word is simply defined by other words,
it is hard to say that any words have meanings at all. This problem is perfectly
illustrated by Searle (1980)’s rendition Chinese room argument. Suppose a person
who does not know Chinese sits in a closed room, and receives input in Chinese from
a slot. He follows an instruction book that produces Chinese characters as response
to the input. Suppose the instructions are sufficiently well written, and the responses
so convincing that the person who gives the Chinese input thought the person in the

room was really Chinese. However, the case remains that the person in the room
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does not know the meaning of any of the Chinese words he produces. In other
words, simply knowing the distributional patterns between words is not the same as
knowing a language. The combinatorial account allows words to be grounded in the
brain systems of perception, action and emotion (Zwaan, 2014), though the degree
to which each linguistic symbol is grounded is still a contended issue (Chemero,

2009; Harnad, 1990; Kintsch & Dijk, 1978; Ottl, Dudschig, & Kaup, 2017).

On the embodied side, the combinatorial account, among many of its benefits,
affords a degree of flexibility to embodied simulation (Zwaan, 2014). As language
comprehension does not only occur on the level of individual words and sentences,
different representations are created based on the environment, context and goal of
processing (Connell & Lynott, 2014; Lebois, Wilson-Mendenhall, & Barsalou, 2015;
Louwerse & Jeuniaux, 2010). One way that the linguistic component affords more
flexible conceptual representation is by providing a shortcut for embodied simulation
(Connell, 2018). Theories of embodied language processing, such as the Language
and Situated Simulation (LASS; Barsalou et al., 2008) theory and the Symbol
Interdependency theory (SIH; Louwerse, 2011), suggest that the linguistic
component is more speedy and less costly, and thus peaks prior to the embodied
component (although embodied simulation could be activated very quickly as shown
by Hauk, Johnsrude, and Pulvermiiller (2004) for example). Since the linguistic
component can partially encode bodily experiences in the real world, it is useful as
an indicator for whether future processing will be successful, in other words whether
it is worth expending energy on the more costly embodied simulation (Connell &

Lynott, 2013).

Louwerse and Connell (2011) examined whether the MSCs could be accounted
for by both simulation and linguistic information, and found that the linguistic
component had indeed a temporal advantage. While a switch between the

perceptual modalities (e.g., haptics — vision: warm — bright) better accounted for
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the switching costs when people responded slowly, a switch between the linguistic
dimensions (e.g., audition — haptic-vision: loud — bright) better accounted for the
costs when people responded quickly. In other words, people relied on the
coarse-grained difference between the linguistic distributional patterns as a shortcut
to enable more speedy response. A necessary condition for the linguistic component
to be a shortcut is for the linguistic component to reach the peak of its activation
before the embodied component. Support for this condition requires the
examination of the continuous activations of both components during online

processing, which is the aim of the present study.

Present Study

The present study sets out to test whether embodied and linguistic
components both contribute to MSCs, and explore their activations during online
processing using event-related EEG potentials (ERP). ERP is a segment of EEG
waveforms time-locked to an event, which in the case of MSCs is the presentation of
the property word (e.g., bright; Otten & Rugg, 2005). ERP is often characterised as
discrete components, which is a segment of waveform that is functionally significant,
circumscribed to a certain time window. Previous studies have found many ERP
components associated with MSCs, most prominent of which were N400 and P600 or
late positivity complex (LPC; Bernabeu, Willems, & Louwerse, 2017; Collins,
Pecher, Zeelenberg, & Coulson, 2011; Hald, Hocking, Vernon, Marshall, & Garnham,
2013; Hald, Marshall, Janssen, & Garnham, 2011). A perceptual modality switch
often elicited a greater negativity around 400ms from the property onset and greater
positivity after 600ms from the property onset, which was interpreted as a difference

in semantic representation and decision making respectively.

However, the findings of these components have been highly inconsistent. The

N400 effect alone was found in the posterior region in some cases (Bernabeu et al.,
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2017; Hald et al., 2013), while in anterior region in others (Collins et al., 2011, Hald
et al. (2011)). In some cases, it was found in the typical window around 400ms
(Collins et al., 2011), while in others an earlier window from 270ms to 370ms
(Bernabeu et al., 2017; Hald et al., 2011). Furthermore, different ERP components
were also found to be associated with different perceptual modalities. According to
Collins et al. (2011), the N400 effect was manifested only for visual properties, but
in other studies it was found for properties of all sensory modalities. These
inconsistencies are most likely due to the complex nature of semantic processing,
which involves not only conceptual representation but from sublexical processing to
integration of semantic representations (Hauk, 2016). These previous studies did not
only examine the effect of modality switching but also other linguistic factors such
as negated sentences, which could easily distort observed waveforms (Luck, 2005).
Furthermore, these ERP studies so far have not considered the linguistic
distributional patterns as a cause for MSCs. Therefore, the present study will focus
on the switching costs alone, accounting for it by either a switch between perceptual

modalities or between linguistic dimension.

To achieve a better control and maximise the effect, we conducted a
behavioural study first with only visual, auditory and haptic words (Experiment 1).
According to Louwerse and Connell (2011), linguistic dimensions are more
coarser-grained than the perceptual modalities. While there are five major sensory
modalities (i.e., vision, audition, haptics, gustation, olfaction), words describing
sensory experiences often fall into three linguistic clusters. For example, visual
words (e.g., bright) and haptic words (e.g., warm) often co-occur in close proximity,
thus belonging to the same linguistic cluster/dimension. As a result, verifying warm
after bright constitutes a switch between perceptual modalities, but not a switch
between lingusitic dimensions. Thus, we are able to differentiate the effect of a

perceptual switch from a linguistic switch. We hypothesised that both a perceptual
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switch and a linguistic switch could account for the switching costs in this
experiment. From Experiment 1, we selected the stimuli that reliably produced
either perceptual or linguistic MSCs (or both) to be used in Experiment 2, the ERP
study. Our study will be largely exploratory because of the inconsistency in previous
findings, and the inability to pinpoint the time windows and the scalp regions of the
linguistic dimension switch. Thus, only tentative hypotheses could be proposed,
which are 1. the linguistic switch should affect the waveform prior to the embodied

switch; 2. the embodied switch should mainly affect the waveform around 400ms.

Experiment 1: Behavioural Modality Switching Costs

By studying the modality switching costs, it is possible to identify the separate
contributions of embodied and linguistic components to conceptual representation.
Therefore, in this experiment, our aim is to examine the costs of perceptual
modality switch and the costs of linguistic dimension switch separately. Participants
will read pairs of concepts (nouns) and properties (adjectives), such as SUN - bright,
and decide whether the property is usually true for the concept. The properties
shown will be of three perceptual modalities, vision, audition and haptics, but only
two linguistic dimensions based on how the properties group together according to
their distributional patterns. Therefore, we expect there to be a cost (i.e., delay in
reaction time) when there is a switch between perceptual modalities, as well as
between linguistic dimensions. In this section, we report how we determined our

sample size, all data exclusions, all manipulations, and all measures in the study.

Method

Participants. Based on the effect size from Louwerse and Connell (2011)
and requiring statistical power of .95 with an alpha level of .05, we estimated the

required sample size to be 45 participants using G*Power (Faul, Erdfelder, Buchner,
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& Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). Forty-eight native speakers
of English were thus recruited for a payment of £3.50 or course credit (age: 19.82

(1.51); female: 30; right-handed: 39).

Materials. One hundred and fifty concept-property items, such as SUN -
bright, were used in the present study. The property words were selected from the
modality exclusivity norms of Lynott and Connell (2009) and Dantzig, Cowell,
Zeelenberg, and Pecher (2011), in which the property words were rated according to
how strongly they could be experienced by the five major sensory modalities, which
are vision, audition, gustation, olfaction and haptics. The property words in the
present study were all uni-modal, such that the difference between the ratings of the
dominant modality (i.e., the modality with the highest rating) and the modality
with the second highest rating was greater than 0.75. These words pertained to
three dominant modalities, which are vision (N = 60), audition (N = 60) and
haptics (N = 30). They were paired with concept words, for which the properties
were not only true but also salient (e.g., CARNATION - red instead of
CARNATION - black, the latter of which could be true but was not salient), so that
the concepts could activate the properties automatically. The raw co-occurrence
frequencies between concepts and properties were below 1 million (Netspeak.com) to
avoid automatic association between words, and the words were known by more

than 75% of the population.

The perceptual modality of the property words was simply the dominant
modality. The linguistic dimension of the property words, on the other hand, was
determined by the co-occurrence frequencies between every two property words in
the same way as Louwerse and Connell (2011). Initially, we collated a set of 244
property words and extracted their bi- to 5-gram frequencies from the Google
Web-1T corpus (i.e., two property words e.g, bright and mumbling with zero, one,

two and three intervening words; Brants & Franz, 2006). These frequencies of each
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pair of properties were summed and transformed logarithmically, resulting in a 244 x
244 matrix. Then we submitted this matrix to PCA with Varimax rotation and
Kaissar normalisation and extracted 2 principle components (PCs) that could
explain 61.25% of the total variance (PC1: 50.76%; PC2: 10.49%). The property
words were thus allocated to either one of these linguistic dimensions based on the
larger factor loadings. Furthermore, we correlated the factor loadings with each
word’s modality strenght and found that PC1 had a significant, positive correlation
with the visual strengths of the properties (Table 1), and PC2 had a significant,
positive correlation with the auditory strengths; while both components had a weak

positive correlation with the haptic strengths.

Each target properties were paired with three different prime properties, so
that every property appeared in all three switching conditions, which are a switch
between both perceptual modalities and linguistic dimensions, a switch between
perceptual modalities only but no switch between linguistic dimensions, or no switch
between either perceptual modalities or linguistic dimensions. For instance, for the
same target property bright, mumbling — bright caused a switch between both
perceptual modalities, that is from audition to vision, and linguistic dimensions, that
is from PC2 to PC1; rough — bright caused a switch only in perceptual modalities,
that is from haptics to vision, but not between linguistic dimensions, both of which
were of PC1; and colourful — bright represented neither switch. A further list of 270
fillers was added, among which 45 were true and 225 were false. The true fillers were
concept-property items that did not pertain to the three sensory modalities of
interest; whereas false fillers were concept-property pairs in which the properties
were not usually true for the concept (e.g., WHISKY — fluffy). Some of the false
fillers were highly associated words (e.g., TEMPLE — praying), so that people could
not decide the truthfulness of the concept-property items from the linguistic

association of the words alone (Solomon & Barsalou, 2004). The participants also
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Table 1

Correlation between the PCs and modality strengths

PC1 PC2 Visual Haptic Auditory

PC1 1.00 .00 64 *¥F 12 -.61 **
PC2 - 1.00 -.21 ** 12 31 **
Visual - — 1.00 A8 KK T2 X
Haptic - — - 1.00 -.42 K
Auditory - = - = 1.00

Note. ** means p < .01

saw 25 practice trials, using true items not featured in the main experiment.

In the experiment, each participant saw the items and fillers in a random order.
The visual and auditory items were presented only once either as prime or as target,
and the haptic items were presented twice as both prime and target, resulting in 90
prime — target pairs for each participant. Across the experiment, all items were
used as both prime and target, leading to 6 lists of stimuli in total (prime/target (2)

x switching conditions (3)) to which participants were randomly assigned.

Procedure. The experiment was reviewed by Lancaster University’s
Department of Psychology Ethics Committee and approved by Lancaster
University’s Research Ethics Committee. After brief information about the study,
the participants were sat normally from a PC screen. Participants received both
verbal and written instructions (in the exact wording as reported) that they would
see concept-property pairs on the screen, and the task was to decide whether the
properties were usually true for the concepts. For example, if they saw
CARNATION - red, the answer would be “yes”; whereas if they saw CARNATION

— black, even though it was possible, it was not usually true, so the answer would

11
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be “no”. All concepts were in the uppercase (“CARNATION”) and properties in the
lowercase (“red”). The concepts and the properties appeared one after another in

black letters on a grey background (Figure 1).

1000

Incorrect /
late response

200, 250,
300, 350,

400, or 450 300

Correct
response

200, 250,
300, 350,
400, or 450

200
Time (ms)

Figure 1. Sequence of presenting the CONCEPT-property pairs. Response timed out

after 3000ms after the property onset.

Figure 1 shows the structure of a concept-property item. The trial started
with a fixation cross for 1000ms followed by a blank screen of variable length (200ms
to 450ms). Then the concept and the property appeared consecutively each for
200ms with a blank of 300ms in between. Once the property word appeared,
participants could start to respond by pressing the comma key (“,”) for “yes” or the
full stop key (“”) for “no”. If the response were incorrect, the participants would
receive feedback (“Error”). If they failed to respond within a 3-second interval after
the onset of the property words, they would receive a feedback (“***TOO

SLOW***”) " The accuracy and reaction time were recorded. Afterwards, the next

trial automatically started.
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Analysis and design. Data were analysed and reported using R'. Two
linear mixed-effect (LME) models were separately built for each type of switch, one
for the perceptual modality switch and one for the linguistic dimension switch. The
dependent variable was the reaction time (RT) to the target concept-property items
from the target property onset. Participants and items were crossed random

variables to predict random intercepts,? and the target modality (visual, auditory

L We used R (Version 3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate &
Heiberger, 2016), arm (Version 1.10.1; Gelman & Su, 2018), BayesFactor (Version 0.9.12.4.2;
Morey & Rouder, 2015), bookdown (Version 0.7; Xie, 2016), broom (Version 0.4.4; Robinson, 2017),
coda (Version 0.19.1; Plummer, Best, Cowles, & Vines, 2006), contrast (Version 0.21; Kuhn, Steve
Weston, Wing, Forester, & Thaler, 2016), data.table (Version 1.11.4; Dowle & Srinivasan, 2017),
doBy (Version 4.6.1; Hgjsgaard & Halekoh, 2016), dplyr (Version 0.7.5; Wickham, Francois, Henry,
& Miiller, 2017), Formula (Version 1.2.3; Zeileis & Croissant, 2010), ggplot2 (Version 2.2.1;
Wickham, 2009), gridEztra (Version 2.3; Auguie, 2017), Hmisc (Version 4.1.1; Harrell Jr, Charles
Dupont, & others., 2018), interplot (Version 0.1.5; Solt & Hu, 2015), knitr (Version 1.20; Xie,
2015), lattice (Version 0.20.35; Sarkar, 2008), Ime/ (Version 1.1.17; Bates, Méachler, Bolker, &
Walker, 2015), ImerTest (Version 3.0.1; Kuznetsova, Brockhoff, & Christensen, 2017), magrittr
(Version 1.5; Bache & Wickham, 2014), MASS (Version 7.3.50; Venables & Ripley, 2002), Matriz
(Version 1.2.14; Bates & Maechler, 2017), mgcv (S. N. Wood, 2003, 2004, Version 1.8.23; 2011; S.
Wood, N., Pya, & S'"afken, 2016), multcomp (Version 1.4.8; Hothorn, Bretz, & Westfall, 2008),
mutnorm (Version 1.0.8; Genz & Bretz, 2009), nime (Version 3.1.137; Pinheiro, Bates, DebRoy,
Sarkar, & R Core Team, 2017), papaja (Version 0.1.0.9735; Aust & Barth, 2017), plyr (Wickham,
2011; Version 1.8.4; Wickham et al., 2017), psych (Version 1.8.4; Revelle, 2018), purrr (Version
0.2.5; Henry & Wickham, 2018), rcartocolor (Version 0.0.22; Nowosad, 2017), rms (Version 5.1.2;
Harrell Jr, 2018), SparseM (Version 1.77; Koenker & Ng, 2017), survival (Version 2.42.3; Terry M.
Therneau & Patricia M. Grambsch, 2000), TH.data (Version 1.0.8; Hothorn, 2017), and tidyr

(Version 0.8.1; Wickham & Henry, 2017) for all our analyses and the writing up of this manuscript.

2 Although model including participants as the only random intercept explained the data worse
than the empty model by 843.08 times (BF;p = 0.001), model with participants and item as
crossed random intercepts better explained the data than the model with only participants as

random intercept 35.47 times (BF;y = 35.47).
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and haptic, with auditory target as the reference level) and the switching condition
(switch coded as 1, non-switch coded as 0), plus their interactions were the fixed
predictors. Planned comparisons for each target modality were also run, that is
perceptual /linguistic switch versus non-switch for the three target perceptual
modalities separately. p-values for the planned comparisons were corrected using

Tukey’s HSD (reported in Supplementary Materials: https://goo.gl/sRkXun).

To examine the effect of switching costs and its interaction with target
modality, we conducted model comparisons in a hierarchical fashion. For perceptual

modality switch:
Step 1: Models with random predictors and target modality only;

Step 2: Models with random predictors and target modality + perceptual

modality switch;

Step 3; Models with random predictors and target modality + perceptual

modality switch and their interaction.

For linguistic dimension switch, the same three steps were carried out with

linguistic dimension switch instead of perceptual modality switch.

In our study, all model comparisons were conducted using Bayes factors (BF),
which denotes the ratio of likelihood of the data under both null and alternative
hypothesis (Jarosz & Wiley, 2014). If the BF of H; against Hy (i.e., BFyy) is 5, it
means that the data is 5 times more likely to occur under H; than Hy. BF is
superior to the p-value in two ways. First, BF could inform us how confident we can
be with the hypothesis. We can be more confident with the alternative hypothesis if
BF;y = 100 than if BF;y, = 10. In contrast, p-values do not bear any significance to
the power of the study, the size of the effect or the quality of the hypothesis (see
Wagenmakers, 2007 for detailed discussion concerning p-values). Second, we do not

need to conduct post hoc corrections of multiple comparisons with BF. In the
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Table 2
Interpretation of BF as evidence

for H 1

BFy BFyy, Support for H;

1-.33 1-3 Anecdotal
33-.10 0 3-10 Substantial
.10-.03  10-30 Strong
.03-.01 30-100  Very strong

<.01 >100 Decisive

present paper (especially in Experiment 2), a large number of comparisons need to
be conducted for the same set of data, which causes the inflation of Type I error.
BF eliminates this concern by presenting the relative likelihood of null and
alternative hypothesis in each test. As a result, we will focus on BFs in this paper,
only reporting the regression coefficients and BFs in the manuscript, while the
p-values and all other results from null-hypothesis significance testing will be

included in the Supplementary Materials.

The BF of LME can be easily obtained in R by extracting the Bayesian

information criteria (BIC). BFy; (comparing Hy against H;) is calculated as:

(BIC(H,) — BIC(Hp))
2

BF(H = €

BFy, which denotes the likelihood of H; against Hy is simply the inverse of
BF,;. While the continuous scale of BF is useful enough, we could conveniently

describe the results, using Jeffreys (1998)’s guideline to characterise BF as Table 2.



ERP OF MODALITY SWITCHING COSTS 16

Results and Discussion

Seven participants’ data were excluded from analysis because their accuracy to
the fillers was too low (< 65%). No further participants were excluded because no
one’s RT was exceptionally long (i.e., > 2.5SD from the group mean). 849
prime-target pairs (23.01%) were excluded because the response to either or both
items were incorrect (519 targets (14.07%) and 412 (11.17%) primes). Finally, we
removed individual target items whose RT were more than 2.5SD from the condition
means, which led to further exclusion of 70 trials (2.46%). Thus, 2771 trials were

left and entered into the analysis.

The grand mean of RT was 805ms (SD = 255ms) across all three target
modalities. Condition means of each modality were 805ms (256ms) for auditory

targets, 781ms (247ms) for haptic targets, and 820ms (259ms) for visual targets.

Perceptual switching costs. As seen in Figure 2, people reacted slower to
the perceptual switch condition than the perceptual non-switch condition. However,
the mixed-linear model did not support the modality switching costs. The regression
coefficients of models at each step is shown in Table 3. A calculation of BFs showed
that the data was no better explained by the Step 2 model (with target modality +
perceptual switch) than by the Step 1 model (with target modality only; BFy; =
1.35), nor was it better explained by the Step 3 model (with interaction) than the
Step 2 model (BF3, = 2.20). In all, having the perceptual switch with its interaction
with target modality explained the data 2.96 times better than the model with only
random variables, providing only anecdotal evidence for the perceptual switching
costs. Planned comparisons per target modality did not show a significant effect of
perceptual switch in any perceptual modalities (Auditory b = 26.86, Haptic b =
3.70, Visual b = 15.00).
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Table 3

Regression coefficients of perceptual switching models in

hierarchical model comparison

b BFy
Step 1
Target modality
Haptic - auditory -22.99
Visual - auditory 27.56
Step 2 1.35
Target modality
Haptic - auditory -23.02
Visual - auditory 27.57
Perceptual switch 15.47
Step 3 2.20
Target modality
Haptic - auditory -7.76
Visual - auditory 35.37
Perceptual switch 26.84
Target modality : perceptual switch
Haptic - auditory : perceptual switch -23.14
Visual - auditory : perceptual switch -11.84

17
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Figure 2. Mean RT of target trials per perceptual switching condition. Error bars

denote +/- 1 standard error.

Linguistic switching costs. Similar to the perceptual switching condition,
the linguistic switching condition also produced a general trend as predicted, apart
from visual items which was faster for a linguistic switch (825ms, SD = 264ms) than
a non-switch (831ms, SD = 257ms; Figure 3). The regression coefficients are shown
in Table 4. Nevertheless, the BF comparing showed that although the data was no
more likely under the Step 2 model than Step 1 model (BFg; = 0.90), it was 5.88
times more likely under the Step 3 model than Step 2 model, constituting substantial
evidence for the interaction between linguistic dimension switch and target modality.

Planned comparisons did not show a significant linguistic switching costs in any



ERP OF MODALITY SWITCHING COSTS

850

800 -

"jJS Linguistic Switching Condition
‘I‘ . Non-Switch

3 |

= Switch

'_

o

750

700

Aud Hap Vis

Target modality

Figure 3. Mean RT of target trials per linguistic switching condition. Error bars

denote +/- 1 standard error.

perceptual modality (Auditory b = 23.06, Haptic b = 28.75, Visual b = -6.33).

Further comparisons between the perceptual switching models and linguistic
switching models showed that these models were on the par in explaining the
modality switching costs. The Step 2 model of perceptual switch (without the
interaction term) was equal to that of linguistic switch (BFpre = 1.50), while the
Step 3 model of perceptual switch (with the interaction term) was not worse than

that of the linguistic switch either (BFprs = 0.56).

Summary. The BFs showed some anecdotal evidence in favour of perceptual

modality switching costs which interacted with the target modality, as well as

19



ERP OF MODALITY SWITCHING COSTS

Table 4
Regression coefficients of linguistic switching models in

hierarchical model comparison

b BFyy
Step 1
Target modality
Haptic - auditory -22.99
Visual - auditory 27.56
Step 2 0.90
Target modality
Haptic - auditory -16.37
Visual - auditory 31.23
Linguistic switch 11.17
Step 3 5.88
Target modality
Haptic - auditory -6.65
Visual - auditory 47.87
Linguistic switch 26.87

Target modality : linguistic switch
Haptic - auditory : linguistic switch  -5.58

Visual - auditory : linguistic switch -34.81




ERP OF MODALITY SWITCHING COSTS 21

substantial evidence in favour of the interaction between linguistic dimension
switching costs and the target modality. Specifically, target modality moderated the
effect of the modality switching costs for both types of switch, such that the
perceptual switching costs diminished for haptic items, whereas the linguistic

switching costs were reversed for visual items.

Experiment 2: ERP Effects of Modality Switching Costs

In Experiment 1, we found some evidence for both perceptual and linguistic
switching costs, though neither were very strong. What was of more importance was
that the two types of switch led to switching costs in different ways (i.e., in different
modalities). Therefore, it was ever more crucial to study how the switch would
affect the neural activities during online processing. In this experiment, we studied
the ERP of modality switching costs in a 1000ms epoch across the whole scalp. We
proposed some tentative hypotheses which suggested that the perceptual modality
switch should affect the ERP around 400ms after the property onset, and the
linguistic dimension switch should affect the ERP prior to that time window. Here
we report how we determined our sample size, all data exclusions, all manipulations,

and all measures in the study.

Method

Participants. Twenty-five native speakers of English were recruited from
Lancaster University for the payment of £7/hour (or the equivalent of credits). The
sample size was determined based on Hald et al. (2011)’s study. Two participants
were later excluded because of their high error rate to the filler trials (accuracy <
65%). Among the rest of the participants, mean age was 21.00 (SD = 1.38), three

were male and two were left handed.
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Materials. The prime — target pairs from Experiment 1 remained for this
study if they resulted in a modality switching costs (i.e., the RT to a target property
in a switch trial was longer than its RT in a non-switch trial), which were 114
different prime — target pairs. As in experiment 1, all the items belonged to three
perceptual modalities (i.e., visual, auditory and haptic) and two linguistic
dimensions (i.e., PC1 and PC2). All auditory targets were either both linguistic and
perceptual switch (different prime — target pairs N = 36), or both linguistic and
perceptual non-switch (N = 22); whereas visual targets could represent three
different conditions: both switch (N = 17), both non-switch (N = 19), and
perceptual switch but linguistic non-switch (N = 20). Haptic targets with their

primes were all removed because the remaining sample size was too small.

All prime-target pairs were presented in a random order to each participant, as
well as fillers which appeared in Experiment 1. Both prime — target pairs and fillers
were presented either once or twice in the whole experiment to boost the number of
trials in each condition, resulting in 137 prime-target pairs and 237 filler pairs for
each participant. The experiment also included a practice session of 10 trials which

did not feature in the test phase.

Procedure. Participants were tested individually in a quiet room. They
were seated at a distance away from the computer screen where they could read the
words on the screen and rest their both hands on the desk to press the buttons. The
trial began with a fixation cross (1 second) followed by a variable blank screen
between 400ms and 1600ms. Afterwards, participants saw the concept-property
pairs on the screen consecutively (i.e., 200ms word followed by 300ms blank). Unlike
Experiment 1, after a property disappeared, participants were required to refrain
from response for 1 second until a prompt (“?”) appeared, to make sure that the
ERP would not be contaminated by the response readiness potential (Dehaene et

al., 1998). If they had responded before the prompt appeared, a warning would
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appear (“Too fast. Please wait for the prompt ‘7°”), and the trial was dismissed.
Once the prompt appeared, participants again needed to judge whether the property
was usually true for the concept by pressing the “n” key (masked by a red sticker)
with their left hand for “yes”, or the “m” key (masked by a white sticker) with their
right hand for “no”. The same feedback for slow (> 3s) or incorrect response was

given as in Experiment 1.

Participants were asked not to blink or move freely, but were given specific
time for such muscle movements. Between trials, participants were free to blink for 1
second, and they were told not to blink within each trial when the words were
showing. They were also given self-administered break nine times during the
experiments after each five-minute block. Furthermore, each block began with 4
seconds of blank screen for the EEG recording to be recalibrate, during which

participants were free to blink.

Apparatus. Words were presented on a 19-inch CRT monitor operating at
100Hz refresh rate using EPrime 1.0, and behavioural responses were recorded using
a QWERTY keyboard. High-density EEG was recorded continuously using Hydrocel
Geodesic Sensor Nets (Electrical Geodesics Inc., Eugene, OR, USA) at 128 locations
referenced to the vertex (Cz) online. The ground electrode was at the rear of the
head (between Cz and Pz). Electrophysiological signals were acquired at the
sampling rate of 1000Hz by an Electrical Geodesics Inc. amplifier with a band-pass
filter of 0.1-100Hz. The impedances were checked prior to the beginning of the

recording and they were considered acceptable if lower than 50k2.

EEG analysis. The digitized EEG was further processed offline using
NetStation v 4.5.4. It was band-pass filtered between 0.4-100Hz and was segmented
into epochs including 200ms before adjective onset and 1000ms after adjective onset
for the target trials. EEG epochs were automatically rejected for body and eye

movements, as well as signals exceeding + 200 nV at any electrode. Data were
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further checked through visual inspection for eye-movements, eye-blinks and other
artifacts not detected by the automated algorithm. The artifact free segments were
baseline-corrected with respect to the average amplitude in the 200 ms window
preceding the stimulus onset, and were re-referenced to the average reference. Then,
they were exported to comma-separated value (csv) files per participant per trial

and analysed in R.

In order to explore the continuous activations of embodied and linguistic
components, we analysed the EEG output throughout the whole 1-second epoch
after the adjective onset, and across the whole scalp (Amsel, 2011; Hauk,
Pulvermiiller, Ford, Marslen-Wilson, & Davis, 2009; Hendrix, Bolger, & Baayen,
2017). Ninety electrodes were selected to be analysed, covering the region of a 20-20
EEG net (Appendix A). The output from each electrode were sliced into 20
uniformed segments and averaged within each segment to get the mean amplitude
per participant per stimulus. The resulting mean amplitude was analysed in linear
mixed-effect models (LME) in a hierarchical fashion as Experiment 1. The analyses
were exceptionally computationally heavy and thus were carried out distantly using
the High End Computing Cluster (HEC;

http://www.lancaster.ac.uk/iss/services/hec/) of Lancaster University.

Separate LME models were built to study perceptual modality switch and
linguistic dimension switch. The models were built in a hierarchical fashion as

Experiment 1.

1. To examine the effect of perceptual modality switch, models were built in the

following steps:

Step 1p: Models with random predictors, participant and target property
crossed, modelling random intercept, and target modality (auditory coded as

the reference level);
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Step 2p: Models with random predictors and target modality + perceptual

switch (non-switch coded as 0, switch coded as 1);

Step 3p: Models with random predictors and target modality + perceptual

switch and their interaction.

2. To examine the effect of linguistic dimension switch, same three steps were

carried out:

Step 1p: Models with random predictors and target modality (auditory coded

as the reference level);

Step 2r,: Models with random predictors and target modality + linguistic

switch (non-switch coded as 0, switch coded as 1);

Step 31: Models with random predictors and target modality + linguistic

switch and their interaction.

The models in each step were compared with the model in previous step using
BF. Thus, the comparison between, for example, Steps 2p with Steps 1p showed how
much more likely the data was when the perceptual switch was included than when
it was excluded. In addition, we examined whether the data was more likely under
the linguistic switch or perceptual switch models by comparing the two Step 2

models above, as well as the two Step 3 models above.

Results

Data exclusion. Two participants were deleted because their accuracy to
filler trials were lower than 65%. Individual trials were removed if the response to
either the prime or the target or both was incorrect (42 trials, 1.52%). This left us
2713 trials, among which 1248 were auditory targets and 1465 were visual targets.

For all auditory targets, 725 were both perceptual and linguistic switch (58.09%),

25
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and 523 were both perceptual and linguistic non-switch (41.91%); and for visual
targets, 499 were both perceptual and linguistic switch (34.06%), 477 were
perceptual switch but linguistic non-switch (32.56%), and 489 were both non-switch
(33.38%).

Behavioural analysis. We analysed the RT (descriptive statistics in Table
5) in LME models using hierarchical model comparison in the same way as
Experiment 1. We found that the data could be best explained by the model with
target modality only. In terms of perceptual switch, the target-modality model was
1.43 times better than the model with target modality and perceptual switch
without the interaction term (BFs; = 0.70) and 1.17 times better than the model
with the interaction term (BFs; = 0.86). In terms of linguistic switch, the
target-modality model was 2.17 times better than the model without the interaction
term (BFg; = 0.46) and 1.16 times better than the model with the interaction term
(BF3; = 0.86). According to the target-only model from Step 1, response to visual

targets were faster than auditory targets (b = -0.60)
Table 5

Mean (SD) of RT per condition in Experiment 2

Perceptual Linguistic

Switch Non-switch Switch Non-switch

Auditory 347 (195) 348 (204) 347 (195) 348 (204)
Visual 354 (216) 334 (198) 355 (220) 343 (206)

ERP analysis.
Overview.

The mean BF across the scalp for the model with linguistic switch in Step 2
(i.e., without interaction) was 0.004 (SD = 0.003), and the mean BF for the model

with perceptual switch in Step 2 was 0.005 (SD = 0.004), both suggesting very
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strong evidence for the null hypothesis (i.e., model with target modality only).
Figure 4 shows the mean BF,; across the scalp over time. The BFs were less than
0.33 for the whole epoch, and below 0.1 from 100ms after the target adjective onset.
By comparing between perceptual and linguistic switch, it seemed that the
perceptual switch had an advantage over the linguistic switch at the first 50ms of
the epoch and around 300ms, whereas the linguistic switch had an advantage around
650ms. The same pattern was found for the models of interaction (i.e., data strongly
favoured models with only linguistic or perceptual switch (Step 2) against models
with interaction terms (Step 3; see Supplementary Materials)). Viewing across the
scalp, we found overall evidence against both perceptual and linguistic switch.
However, it was still possible that these switches affected ERP in a localised

manner, which will be examined next.
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Figure 4. Line plot of mean BF9; with 95% credibility interval of perceptual and

linguistic switch as a result of Step 2 across scalp at each 50ms slice.



ERP OF MODALITY SWITCHING COSTS 28

Perceptual switch.

Figure ??a showed the topoplot of the evidence in favour of (or against)
models with target modality and perceptual switch (Step 2p) compared with
target-modality models (Step 1p); Figure ??b showed the comparison between
models with the interaction term between target modality and perceptual switch
(Step 3p) and models without the interaction term (Step 2p). There was no
widespread effect of perceptual modality switching costs or its interaction with
target modality, apart from the beginning of the epoch (i.e., Oms to 50ms) in the
occipital electrodes (e.g., E70, BFy; = 7.14), that is the data was 7.14 times more
likely under the model with perceptual modality switch than without. During this
time, there was evidence that perceptual switching costs made the amplitude more
negative (b = -0.98). This effect was not moderated by the target modality, meaning
that this early effect of perceptual switching costs had an effect on both visual and

auditory targets equally.



ERP OF MODALITY SWITCHING COSTS

Furthermore, the data suggested that in the following areas the interaction
models were more likely than models excluding the interaction term (comparison
between Step 3p and Step 2p models, not shown in topography). Perceptual switch
interacted with the target modality between 300ms and 350ms in the frontal region
(e.g., E19, BF3 = 19.70, perceptual switch b = 1.81, target modality b = 1.31,
interaction b = -2.57). That is to say, in the frontal region, the perceptual switch
was associated with more positivity than non-switch for auditory targets; but
perceptual switch was associated with more negativity for visual targets. The
opposite pattern was found in the right parietal region (e.g., E92, BF3, = 11.86,
perceptual switch b = -1.26, target modality b = -1.13, interaction b = 1.88), which
suggested that perceptual switch led to more negativity for auditory targets but
more positivity for visual targets. Both of these effects coincided with previous
findings of the early N400 effect (parietal effect with Bernabeu et al., 2017; frontal
effect with Collins et al., 2011; Hald et al., 2011), which could be interpreted as a

precursor of semantic processing.
Linguistic switch.

Evidence for linguistic dimension switching costs was found in similar regions
as the perceptual modality switching costs (Figure 5). The data substantially
favoured the linguistic modality switching costs (Step 2;, compared with Step 11,) at
the onset of the epoch in the left occipital region as well (e.g., E70, BF21 = 3.17),
such that the linguistic switch trial was associated with more negative amplitude (b

— -0.92).

The data also strongly favoured the interaction between linguistic dimension
switching costs and target modality between 300ms and 350ms at the left frontal
(Step 31, compared with Step 2r; e.g., E19, BF3, = 238.31, linguistic switch b =
1.81, target modality b = 1.23, interaction b = -3.07) and right parietal regions (e.g.,

E92, BF3 = 167.36, linguistic switch b = -1.26, target modality b = -1.06,

29
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interaction b = 2.27). In other words, similar to the perceptual switching costs, the
linguistic switch was associated with more positivity for auditory targets but more

negativity with visual targets in the frontal region; and the reversed pattern for the
parietal region. For both regions, the data was more than 150 times more likely

under models with the interaction than the models without interaction.

However, it is important to note that Step 3 models with the interaction term
was not better than the Step 1 models which included only target modality. Take
the linguistic models for example, when models in Step 2;, was compared with Step
11, the data of E19 was 0.004 times more likely (i.e., 250 times less likely) under the
Step 2;, models which considered the linguistic switching costs alone without the
interaction. In other words, the Step 3r, model was 0.95 times more likely than the
Step; model (BFsp x BFp; = 238.31 x 0.004 = 0.94). In the same way, the data of
E92 was 0.002 times more likely (i.e., 500 times less likely) under the Step 2;, model
than the Step 1, model, so the Step 31, model was 3 times worse than the Step 1p,
model (BFs; = 0.33).
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Comparison between perceptual and linguistic switch.

From the hierarchical model comparison, we discovered that perceptual switch
and linguistic switch shared similar patterns of activities, supporting their effects at
the occipital region at the onset of the epoch, and their interaction with target
modality at both the left frontal region and the right parietal region between 300ms
and 350ms. Therefore, it is worthwhile to examine which type of switch was
supported more strongly by the data. Figure 6 showed the evidence in favour of one
type of switch against the other (i.e., comparison of Step 2 models and comparison
of Step 3 models). We found that perceptual switch and linguistic switch performed
equally well between Oms and 50ms in the left occipital region (e.g., E70: BFprs =
2.91). The data supported neither model more. However, the data supported the
interaction between linguistic switch and target modality more than the interaction
between perceptual switch and target modality at the left frontal region (Figure 6b;
e.g., E19: BFps = 0.17) and the right parietal region (E92: BFps = 0.11) between
300ms and 350ms. That is to say, by comparing the interaction models alone,
linguistic switching costs were more than 5.88 times more likely than perceptual
switching costs. It suggested that the “early N400 effect” found in previous studies
was better explained by a switch between the linguistic dimensions than the
perceptual modalities. Nevertheless, the fact that the linguistic switching costs were
moderated by the target modalities suggested that modality-specific resources were

also recruited to construct the conceptual representations.
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Further exploration showed great distinction between the Step 2 models and
Step 3 models. For example, the ERP in the frontal region around 350ms better
supported the perceptual model in Step 2, but supported the interaction between
linguistic switch and target modality in Step 3. This pattern suggested that it is the
target modality that drove the difference between perceptual and linguistic
switching costs. Therefore, we further analysed the data per target modality in the

next section.
Moderation of target modality.

We performed hierarchical model comparisons again per target modality. That

is,

1. For the perceptual switching costs, models were built in two steps.
Step 1p: Models with only random variables;

Step 2p: Models with random variables and perceptual switch.

2. linguistic switch, models were built in two steps.
Step 11,: Models with only random variables;

Step 21: Models with random variables and linguistic switch.

Since for auditory targets perceptual and linguistic switching conditions were

exactly the same, two sets of hierarchical steps above produced the same results.
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Auditory targets.

Evidence supported a switching effect at the onset of the epoch (within 50ms)
and between 300ms and 350ms (Figure 7a), although the pattern of regression
coefficients was consistent throughout the whole epoch (Figure 7b). Switch trials
evoked larger positivity in the left frontal region and larger negativity in the right
parietal and occipital regions. Since linguistic switch completely overlapped with
perceptual switch, it could be argued that when the linguistic and perceptual switch
happened simultaneously, it could be detected between 300ms and 350ms, coinciding

with the early N400 effect from previous studies.
Visual targets.

For visual targets, it was possible to distinguish between perceptual switch and
linguistic switch because half of the perceptual switch trials were linguistic
non-switch, while the other half were linguistic switch. From Figure 8a, we found
evidence against both linguistic and perceptual switching costs between
300ms-350ms, suggesting that the interaction effect in this time window was driven
by the effect for auditory targets (and the lack thereof for visual targets).
Furthermore, there was strong evidence against any perceptual switching costs for
visual targets over the effect of random variables. Linguistic switch (Figure 8b) had
an effect at the 800ms slice in the right posterior regions (e.g., E84; b = 2.08, BFz;p,
= 4.32), which meant that the linguistic switch evoked a greater positivity at this
later stage of processing, corresponding to LPC which was often associated with

decision making and conflict resolution.
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Again to show the relative power of perceptual and linguistic switch, Figure 9
is a topoplot of BFs by comparing the Step 2 models of visual targets, which was
similar to Figure 6b. Strong evidence supported the linguistic switching costs in the
frontal and occipital areas from 200ms to 400ms. The linguistic switch evoked a
stronger negativity in the frontal region (e.g., at 250ms-300ms, E 18: b = -1.17,
BFpr,, = 0.08), while it evoked a stronger positivity in the parietal region (e.g., at
300ms-350ms, E77: b = 1.20, BFpr, = 0.10). This effect was consistent with the
early N400 effect found for auditory targets, and the linguistic switch could be
detected as early as 200ms. Again around 600ms, linguistic switch evoked a stronger
positivity in the parietal region (e.g., at 600ms-650ms, E77: b = 1.51, BFpr, =
0.04), corresponding with P600 or LPC.

In contrast, perceptual switch started to have a stronger effect between 300ms
and 400ms in the left parietal region (e.g., E52: b = -1.10, BFpr, = 14.77). The
results showed that perceptual switch evoked a stronger negativity than non-switch
in this left-parietal region, corresponding with the classic N400 effect. Later around
600ms, perceptual switch had greater power than linguistic switch in the right
temporal region (e.g., E108: b = -1.24, BFpp, = 10.95), meaning that perceptual

switch elicited a stronger negativity than non-switch, which was the reverse of LPC.
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Summary of ERP results.

In summary, evidence supported both types of switch between Oms and 50ms
in the left occipital region, but the effects diverged later in the epoch. We found
evidence for perceptual switching costs around 400ms in the left parietal region, and
later around 600ms in the right temporal region, albeit this effect only existed for
visual targets and was relative to the power of linguistic switch. We also found
evidence for linguistic switching costs around 300ms in the frontal region and
parietal region, prior to the effect of the perceptual switch as predicted.
Furthermore, we found evidence for both linguistic and perceptual switch at the

later stage of processing (after 600ms).

General Discussion

In this paper, our aim was to differentiate the contribution of linguistic
dimension switch from perceptual modality switch in the modality switching costs,
and thus to identify the neuroelectrical activations of simulation and linguistic
information during conceptual representation. We found that what was considered
to be the modality switching costs in ERP components, could be better explained
by the switch between different linguistic distributional clusters, rather than the
switch between perceptual modalities. Such a finding supported the idea that the
linguistic component plays a crucial role, even bearing the burden of semantic
representation (Connell, 2018). Because the activation of the linguistic component is
more speedy than the embodied component as shown in the ERP, it was possible for
the linguistic component to be a shortcut for the more computationally heavy and
slower embodied simulation (Barsalou et al., 2008; Connell & Lynott, 2014;

Louwerse & Jeuniaux, 2010)

An important finding in the present study was that words pertaining to

different sensory modalities elicited different behavioural and neural responses. The
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behavioural study did not replicate previous findings, but showed that response time
in the property verification task was not best explained by perceptual modality
switching costs (i.e., loud — bright takes longer than red — bright because of switch
from audition to vision); nor was it best explained by linguistic switch alone (i.e.,
switch from one linguistic dimension to another). Rather, it was best explained by
the interaction between a switch between linguistic dimensions and the perceptual
modality of the target word (which was slightly better than the model including the
interaction between perceptual switch and the perceptual modality). In other words,
the linguistic dimension switching costs occurred for words of some modalities
(auditory and haptic words specifically) but not other words (visual words

specifically).

The ERP results also showed the same pattern, that is: auditory words turned
out to be the only category that elicited consistent perceptual/linguistic modality
switching costs, while visual words did not (see also Moscoso Del Prado Martin,
Hauk, & Pulvermiiller, 2006; Schmidt-Snoek, Drew, Barile, & Agauas, 2015). As
discussed before, it is impossible to differentiate perceptual from linguistic switch
with auditory targets because the switching conditions completely overlapped.
However, it is possible to propose these speculations. First, it is possible that the
ERP switching costs were driven by the linguistic switch more, because it is the case
for visual targets when the strength of linguistic switch was compared with
perceptual switch. In other words, linguistic switch could explain the neuroelectrical
activations around 350ms in the frontal region better than perceptual switch for
visual target; so it is plausible to assume that the same occurred for auditory targets
too. Second, the reason why the ERP results showed strong evidence at this point
could be because of the overlap between perceptual and linguistic switches. Since
the simulation and linguistic information agreed with each other, they elicited

strong activations at this relatively early time window (i.e., before the typical N400

41
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window).

From the timing of ERP effects, it could also be seen that the linguistic
component did not play only one role, that is it did not only elicit neural activities
once at the beginning of the processing as suggested by LASS (Barsalou et al.,
2008). It also elicited activities later around 800ms, which was limited to visual
targets (i.e., when linguistic and simulation information did not completely overlap).
Therefore, it could be argued that when there was a mismatch between linguistic
and embodied components, the linguistic information was utilised later during
processing, possibly to reconcile the conflicting information before decision making
(Polich, 2007) or integrating distinct conceptual representations (Davenport &

Coulson, 2011; Kuperberg, 2007; Paczynski & Kuperberg, 2012).

In general, our findings were different from previous findings of modality
switching costs (e.g., Pecher et al., 2003), which primarily stressed the contribution
of modality-specific resources during conceptual representations. We found that,
although modality-specifc simulation was useful and important, it was moderated
and guided by the linguistic information. In fact, the evidence perceptual switch was
weak, which did not have an absolute effect on either the behavioural outcome or
the neuroelectrical activations, and only outperformed linguistic switch in a relative
sense around 400ms after the adjective onset. This suggests that sematic
representation which relies on embodied simulation (i.e., as signaled by the N400
effect; Kutas & Federmeier, 2011) had only limited effects on the processing of
sensory properties. Instead, it is the linguistic distributional patterns that did the

most heavy-lifting.

Limitations and future directions

Our study could not implement a full-fledged independent manipulation of the

linguistic component because auditory words tend not to appear in the same
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linguistic cluster as other sensory properties (Louwerse & Connell, 2011). If future
studies could ensure independent factorial manipulation (i.e., both perceptual and
linguistic switch, perceptual switch and linguistic non-switch, perceptual non-switch
and linguistic switch, both perceptual and linguistic non-switch), we would predict
that the early N400 effect would appear for the two conditions where there is a
linguistic switch whereas the LPC to appear for the two conditions where there was

a mismatch between perceptual and linguistic switch.

Our study also found an immediate effect of both embodied and linguistic
switch at the first 50ms of the epoch. Although embodied simulation and linguistic
distributional patterns were found to have speedy activations, it was unlikely that
they could affect semantic processing at the immediate property onset. Instead, this
effect could be a result of spill-over from the concept word. Because a trial was
presented with a concept (e.g., SUN) first for 500ms followed by a property (e.g.,
bright), it was plausible that the conceptual representation of the concept word was
still ongoing by the time the epoch started. Because the properties were usually
salient for the concepts, the switching costs might have already been incurred when
participants were processing the concept word. Bernabeu et al. (2017), in their
recent replication of previous ERP studies, reversed the order of concept and
property and did not find an immediate effect from the property onset. In future
studies, it is recommended to adopt the reverse order, control the concept words so
that they do not automatically activate the properties before the words are shown,

or analyse epochs after both the concept and property words.

Conclusion

The present study provided support for the crucial role of the linguistic
component in conceptual representations. Instead of finding it to perform a

peripheral role, we found that it bore the burden of conceptual representations,



ERP OF MODALITY SWITCHING COSTS 44

preceding and even overpowering the effect of the embodied component. We suggest
that representing the meaning of a word is indeed embodied, but the linguistic
information support conceptual representation in an important way (Connell, 2018).
The timecourse of the activations of the two components satisfies the requirement
for the linguistic component to be a shortcut before the slower and more detailed
simulation produces a detailed representation (Barsalou et al., 2008; Connell &

Lynott, 2014; Louwerse & Jeuniaux, 2010).
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CHAPTER 7

ERP Markers of Embodied and Linguistic

Components during Metaphor Processing

In Chapters 4 and 5, we studied conceptual representations during
metaphor processing, specifically whether the conceptual representation of
metaphor comprehension included both embodied and linguistic component, and
whether the linguistic component could become a shortcut to conserve resources.
Our results seemed to confirm the former, but remained open on the latter. On
one hand, we found that both ease of simulation (i.e., how easy it is to simulate
a concept) and linguistic distributional frequency (i.e., how often two component
words co-occur in a linguistic context) affected performances during metaphor
processing uniquely and independently. However, on the other hand, we did not
find evidence that showed an increase in the reliance on LDF even though we
had created conditions that encouraged the use of the linguistic shortcut, such as
shallow processing and stringent time limits. In fact, the effect of the linguistic

component seemed to be wiped out if people were under great time pressure.

In Chapter 6, we explored the neuroelectric markers of embodied and lin-
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guistic components in literal language processing. Although the analyses were per-
formed in an exploratory fashion and the behavioural effect of modality switching
costs was not replicated, the results confirmed the overarching hypothesis in this
thesis, that is: embodied and linguistic components both exist and account for the
neurophysiological activities deferentially. We found the activities in the percep-
tual modality switch to be strongly associated with the ERP activities in the left
parietal region around 400ms; while the linguistic dimension switch was associated
with the activities in the occipital and frontal regions around 350ms, which was
before the activations of the embodied component. The early effects of linguistic

dimension switch provided support for the linguistic shortcut hypothesis.

In this chapter, I will return to the theme of the thesis (i.e., metaphor
processing), with the findings of the previous three chapters in mind. The aims
are two-fold, as reflected in the two experiments in the paper presented in this
chapter. First, I will examine again how depth of processing affects conceptual
representation during metaphor processing. The prediction remains that the lin-
guistic shortcut will play a larger role in shallow processing, and the embodied
component will in turn play a smaller role in shallow processing. Although this
question has been touched upon in Chapters 4 and 5, it was not the central ques-
tion in those chapters, and the design of the experiments did not primarily test this
question. In this chapter, the experiments will adopt a within-participant design,
so that the hypothesis of concern will be that tasks can moderate the effects of

EoS or LDF.

The second aim of this chapter was to study the timecourse of embodied

and linguistic components during metaphor processing. Since ERP more sensitive
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than the behavioural measures in previous chapters, it is possible to detect the
differences in the activation of the linguistic component using ERP even though
we did not find any evidence for the linguistic shortcut on response decisions
and RT in Chapters 4 and 5 (which may well be the case in this chapter). The
ERP findings concerning literal language processing in Chapter 6 will be used as
hypotheses for the study in this chapter; but the analyses in this chapter will still

be component free and cover the whole scalp and epoch.
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Abstract

Language processing relies on conceptual representations which are composed of two
crucial components, embodied simulation and linguistic distributional pattern. The
embodied component refers to the reactivation of previous sensorimotor experiences
related to the concept (e.g., experiences with a clever student when reading "bright
student"); the linguistic component refers to the co-occurrence pattern of the
constituent words (i.e., how often "bright" and "student" appear in the same
context). In this study, we examined the existence and roles of these components in
metaphor processing. Using both a behavioural study and EEG, we studied how
these components affected the speed, success rate and neurophysiological activations
of metaphor comprehension. We found that, while performance of metaphor
comprehension was mainly influenced by the embodied component, the linguistic
component was activated before the embodied component reached its peak and
could act as a shortcut to construct good-enough representation, such that people
found it easier to accept and hard to reject a metaphor when the distributional
frequency of constituent words was high. In other words, the linguistic distributional
pattern could provide a guide for conceptual representations before the embodied

component was fully engaged.

Keywords: Metaphor processing, embodied simulation, linguistic distributional
pattern, EEG
Word count: 7212 words
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Continuous neural activations of simulation and linguistic information during

metaphor processing

In the past two decades, researchers have gradually come to the consensus that
conceptual representation has at least two components, an embodied component and
a linguistic component (Barsalou, Santos, Simmons, & Wilson, 2008; Connell &
Lynott, 2014; Louwerse & Jeuniaux, 2010; Vigliocco, Meteyard, Andrews, & Kousta,
2009). As new concepts are acquired, neural networks are activated in response to
the physical environment as well as language. The activation of different neural
regions leaves traces of conceptual representation; and during conceptual processing
(e.g., language comprehension), these traces are reactivated to simulate the sensory,
motor, affective, introceptive and other bodily experiences, thus forming the
embodied component, as well as to activate the distributional pattern of linguistic

symbols, thus forming the linguistic component.

The embodied and linguistic components are highly intercorrelated, because
the distributional pattern of words in language often reflects the associations of
objects, events, and ideas in the real world (Louwerse, 2011). The fact that bright
appears with sun frequently in close proximity reflects the physical reality that the
sun is usually bright. Thus, the linguistic information could approximate the
embodied component, thereby informing a response on its own; and the linguistic
information could in turn activate related simulation information (Johns & Jones,

2012).

Andrews, Vigliocco, and Vinson (2009) modeled conceptual representation
with both simulation and linguistic information and found that word meaning is
best represented by the combination of these two types of data. In other words,
both embodied and linguistic components are central to the conceptual system. The

Language and Situated Simulation theory (LASS: Barsalou et al., 2008) as well as
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the Symbol Interdependency Hypothesis (SIH: Louwerse, 2011) propose that both
components are activated simultaneously during language comprehension. The
linguistic component reaches the peak of its activation through the distributional
patterns, which is relatively faster than the activation of the embodied component
and with less cost. The latter, on the other hand, requires deeper processing of
situated simulation. As a result, this temporal advantage of the linguistic component
could be utilised during conceptual representation depending on the current context
or task demands. In other words, conceptual representation is flexible enough to
adjust the reliance on the embodied versus the linguistic component in order to

satisfy specific task demands (Connell & Lynott, 2014; Lynott & Connell, 2010).

Taken together the fact that the linguistic component can provide a fuzzy
approximation of the embodied component, and that the former is activated faster
than the latter, it was hypothesised that the linguistic component could act as a
shortcut to guide conceptual representation before the more costly embodied
component is fully engaged, particularly when superficial processing could suffice
(Connell, 2018; Connell & Lynott, 2013). Support for this linguistic shortcut
hypothesis should contain two parts. First, the linguistic component should enjoy
greater importance during language processing when the task allows relatively
shallow and speedy processing. Second, the linguistic component should reach the

peak of its activation prior to the embodied component.

Evidence for the former requirement was found with the property verification
task and the conceptual combination task. The linguistic distributional pattern
among sensory properties (e.g., co-occurrence frequencies between loud and bright)
was powerful enough to account for faster responses to these properties, but not for
the slower responses (Louwerse & Connell, 2011). The distributional pattern could
also account for responses to novel concepts (e.g., cactus beetle) when people

performed a simple yes/no sensibility judgement task instead of an interpretation
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generation task in which they needed to provide a verbal interpretation (Connell &
Lynott, 2013). To support the temporal advantage of the linguistic component,
Louwerse and Hutchinson (2012) found in an EEG study that neural regions
involved in linguistic processing (e.g., left inferior frontal gyrus) was activated to a
larger degree than the regions involved in perceptual processing (near the lingual
gyrus) at the early stage of conceptual processing, while the pattern was reversed at

the later stage.

In summary, conceptual representation involves both simulation and linguistic
information, with the linguistic component acting as a shortcut depending on the
demands of the task. As conceptual representation should underlie all types of
language processing, we expect the same pattern to be found during metaphor
processing as well. In this study, we investigate the interplay between embodied and
linguistic components in metaphor processing. Furthermore, we trace their roles

during real-time processing using event-related EEG potentials (ERP).

Simulation and Linguistic Representations of Metaphors

Recent studies have viewed metaphor processing as an aspect of language
processing in general, and placed it under the same lens of conceptual
representations (Liu, Connell, & Lynott, 2017, 2018c). In those studies, participants
read adjective metaphors (e.g., \emph{Student can be bright, Supporters can be
lukewarm) that are controlled on both embodied and linguistic components. That is,
these metaphors independently varied on two dimensions, which were the ease of
simulation (EoS) and the linguistic distributional frequencies (LDF). EoS was a
novel norming measure of how much effort it took for people to successfully arrive at
a conceptual representation (Liu, Connell, & Lynott, 2018b), which combined the
measures of three scales, that is how easy it was to imagine, to use, and to make

sense of the metaphors. The combined EoS measure could outperform any of the
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individual scale in predicting the performance to a sensibility judgement task. This
advantage suggested that EoS measured the underlying mechanism of metaphor
comprehension, which was assumed to be simulation. On the other hand, LDF was
a minimal measure of the linguistic distributional patterns, quantified the bi- to
5-gram frequencies of the constituent words (e.g., student and bright with zero, one,

two or three intervening words).

Just as what was found for language processing, both variables were found to
contribute to a unique portion of variance of performance during metaphor
processing tasks. People primarily based their performance on the embodied
component, as they attempted to form a coherent simulation. They found it easy to
accept a metaphor when it was considered easy to simulate, and easy to reject a
metaphor when it was considered hard to simulate. The effect of EoS varied based
on the depth of processing and the time available for responses. When participants
needed to provide an interpretation to the metaphors (i.e., during deeper processing)
or when they were allowed more time, EoS showed a larger effect than when they
performed a yes/no sensibility judgement (i.e., during relatively shallower

processing) or when they were under limited time constraint.

On the other hand, the linguistic component also affected people’s judgments.
When the constituent words often co-occurred (e.g., bright and student), people
could reach a decision to accept the metaphor straightaway, without further
expending much effort on simulation. Moreover, information of the linguistic
component could guide the activities of embodied simulation. LDF moderated the
effect of EoS when people rejected a metaphor as nonsensical (Liu et al., 2018c¢).
High LDF could signal that the processing was likely to succeed, thus making people
spending more effort on simulation, even when processing turned out to be difficult.
However, the linguistic shortcut hypothesis was not fully supported because,

opposite to the predictions, people relied on the linguistic information even more
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during deep processing and a longer response interval. Nevertheless, these studies
showed that the embodied and linguistic components were variably engaged based
on required depth of processing and the length of response window. These results
highlighted the fact that conceptual representation could be highly task-dependent
(Connell & Lynott, 2014; Lebois, Wilson-Mendenhall, & Barsalou, 2015), and

subject to the strategies chosen by participants.

As previous studies did not support the linguistic shortcut hypothesis fully, it
is necessary to replicate the results and to investigate the actual role of the linguistic
component during metaphor processing, which is the aim of the current study. One
of the ways to paint a fuller picture of the role of the linguistic component is to

study the timecourse of its activation during online processing using EEG.

ERP Markers of Metaphor Processing

EEG could help us in the study of the timecourse of linguistic and embodied
components during online processing. To support (or reject) the linguistic shortcut
hypothesis, it is important to show that the linguistic component in fact reaches the
peak of its activations before the embodied component. EEG proves to be a useful
tool in this respect because it reveals the real-time activities of the brain during
conceptual processing (Amsel, 2011). Previous studies have examined the neural
activities during metaphor processing (e.g., Arzouan, Goldstein, & Faust, 2007; De
Grauwe, Swain, & Holcomb, 2010; Pynte, Besson, Robichon, & Poli, 1996), but have
rarely differentiated the effect of the linguistic component from the effect of the

embodied component.

ERP Markers of Simulation versus Linguistic Information

Liu, Connell, and Lynott (2018a) explored the ERP manifestations of

embodied and linguistic components in literal language processing. They found that
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the neuroelectrical activities associated with the embodied component were different
from that of the linguistic component. The former were associated mainly with
greater activities around 400ms after the stimulus onset in the left parietal region.
These activations coincided with the classical N400 effect, which was a marker of
greater effort in semantic representation (Kutas & Federmeier, 2011). In contrast,
the linguistic component was activated at first around 300ms from the stimulus
onset at the frontal region, and again after 600ms in the posterior (i.e., parietal and
occipital) regions, which might suggest that the linguistic component was associated
with the early stage of semantic processing (Collins, Pecher, Zeelenberg, & Coulson,
2011) as well as conflict resolution (Davenport & Coulson, 2011; Paczynski &

Kuperberg, 2012) respectively.

Present Study

In this study, our aim was to replicate and extend previous findings on the
linguistic-simulation representations of metaphors. Since we are particularly
interested in testing the efficacy of linguistic information, we kept the measure
minimal as in previous studies (Liu et al., 2017, Liu et al. (2018c)), using
co-occurrence frequencies within a 5-word window only. In the behavioural study
(Experiment 1), we will replicate the same tasks as previous studies (i.e., the shallow
sensibility judgement task, and deep interpretation generation task). Furthermore,
to address the possibility that the effect of the tasks in previous studies could be
confounded with the differences between participants, we conducted a
within-participant design. In this pre-registered experiment
(https://aspredicted.org/ff8ms.pdf), we expected to fully replicate the effects of EoS
from previous studies. Also we hypothesised that if the linguistic shortcut
hypothesis was true, LDF would affect the speed of acceptance on its own. EoS and

LDF would be moderated by tasks, such that EoS would have a larger effect in the
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deep task than the shallow task, and vice versa for LDF. Furthermore, linguistic
information should moderate the activities of embodied simulation, especially when

a metaphor was rejected.

Then in the EEG study (Experiment 2), we will investigate the continuous
neuroelectrical activities of embodied simulation and the activation of linguistic
distributional patterns. We expect EoS to reach the greatest effect around 400ms in
the left parietal region, replicating the ERP marker of the embodied component in
the behavioural study. In contrast, LDF should have a greater effect early in the
trial (around 300ms), thus supporting the linguistic shortcut hypothesis; as well as
later after 600ms in a similar way as during literal language processing, because
metaphor processing should involve the resolution of conflicting representations
(Coulson & Van Petten, 2002). Since these hypotheses were proposed based on the
previous study on literal language processing, we expect the results the exceed the
current hypothesised regions. As a result, these hypotheses are better considered as
tentative, and we will explore the neuroelectrical activities beyond these areas of

interest.

Experiment 1: Behavioural Study

A pre-registered behavioural study here (https://aspredicted.org/{ff8ms.pdf)
tests the existence and the role of embodied and linguistic information during
metaphor processing. In this study, participants performed both a shallow
sensibility judgement task and a deep interpretation generation task, which was
hypothesised to alter the reliance on the two components. Specifically, the linguistic
shortcut hypothesis suggested that shallow processing would encourage the use of
the linguistic component. In this section, we report how we determined our sample

size, all data exclusions, all manipulations, and all measures in the study.
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Method

Participants. Forty-eight students from Lancaster University participated
in the experiment (age: 20.96 (SD = 3.51); female: 31; right-handed: 37). All were
native speakers of English, speaking English as their first language since infancy.
The size of sample was pre-determined to match the previous between-participant

study (Liu et al., 2018c).

Materials. 452 metaphors in the form of “NOUN can be ADJECTIVE”
(e.g., Student can be bright) were used as stimuli. All adjectives were perceptual
adjectives pertaining to vision, audition or haptics (Dantzig, Cowell, Zeelenberg, &
Pecher, 2011; Lynott & Connell, 2009). Each adjective was paired with four nouns
so that the metaphor varied on two dimensions, ease of simulation (EoS) and
linguistic distributional frequency (LDF). EoS was operationalised in a norming
study (Liu et al., 2018b) which extracted the principle component of three different
ratings of the metaphors: sensibility rating (How much sense does the sentence make
when you read it in text or hear it in conversation?), usability rating (How easy is it
for you to use the sentence in text or conversation?), and imaginability rating (How
easy is it for you to imagine the concept described in the sentence?). These three
ratings measured the effort to arrive at a mental representation, which, in line with
the embodied account of language processing (Barsalou et al., 2008; e.g., Zwaan,
2004, 2014), is constituted of the simulation of sensorimotor, affective, and other
information. Hence, we assumed that the composite measure of these ratings
measured the underlying embodied simulation during language comprehension, and
thus labeled it ease of simulation (EoS). For instance, Student can be bright (EoS =
1.84) and Solution can be bright (EoS = 1.41) were considered to be easy to
simulate; while Iliness can be bright (EoS = -1.32) and Supply can be bright (EoS =

-1.02) were considered to be hard to simulate.
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LDF, on the other hand, was defined by the bi- to 5-gram frequencies of each
pair of noun and adjective in the Google Web1T Corpus, which had 1 trillion words
(Brants & Franz, 2006). The raw frequency was logarithmically transformed as 1g(N
+41), where 41 is the lowest non-zero frequency in the corpus. For example, Student
can be bright (LDF = 4.08) and Supply can be bright (LDF = 3.72) had higher
distributional frequencies than Solution can be bright (LDF = 3.11) and Iliness can
be bright (LDF = 2.94). The two dimensions (i.e., EoS and LDF) had a correlation
of r = .27, sharing approximately 7.29% of variance, and they were separable using
statistical measure which will be discussed later in the Results section. The full set

of norms can be accessed at https://osf.io/xgysz.

The 452 sentences could be divided into four lists, in which each adjective
appeared only once. The EoS and LDF matched across the lists (EoS: F{(3 sy =
0.03, p = .99; LDF: F(34s) = 0.09, p = .96). Thus, two lists of sentences were used
for the whole experiment. As the whole experiment was composed of two tasks,
participants saw two lists of sentences, one for each task (i.e., each adjective

appeared twice throughout the experiment, paired with different nouns).

Procedure. All participants performed two tasks in a counterbalanced
order, a sensibility judgement task (or shallow processing condition) and an
interpretation generation task (or deep processing condition). Sentences in each task
were presented in a random order. Ten extra items were used before each task as
practice. In both the practice and the test sessions, participants read the sentences
one word/phrase at a time (Figure 1). In the shallow sensibility judgement task,
participants were asked to decide whether the sentence was sensible or not. They
started by seeing a fixation cross at the beginning of the trial, followed by the noun,
“can be”, and then the adjective. The adjective stayed on the screen for 200ms
followed by a blank screen for 2800ms during which a response should be made. If

they judged the sentence as sensible, participants were asked to press the comma ()

11
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key; and if they judged the sentence as nonsensical, the full stop key (.). Once a
response was made, the fixation cross would appear on the screen to signal the
beginning of the next trial. However, if no response was made within the length of
the response interval, a feedback warning would appear on the screen saying

FETOO SLOW***,

The procedure of the deep interpretation generation task was the same as the
shallow sensibility judgement task from the fixation cross until the adjective. After
the adjective disappeared, a blank screen remained for 7800ms as a response
interval, during which participants were asked to think of an interpretation for the
sentence and make a response once they had thought of an interpretation or decided
they could not think of an interpretation. The response key was the same as the
shallow task. If participants indicated that they had thought of an interpretation for
the sentence, after pressing the comma key, a blank screen would appear for them to
type down their interpretation of the sentence. They were required not to simply
replace the adjective with a synonym. After an interpretation was provided, they
would press Enter to proceed to the next trial; and if they indicated that the
sentence was not interpretable, they would automatically proceed to the next trial.
Like in the shallow task, if no response was made within the length of the response
interval, participants would receive a feedback warning. In both tasks, their
response decision (accept/reject the metaphor) and the response time (RT) were
recorded for analyses. There were two self-administered breaks within each task and

one break between tasks.

Design and analysis. The response decisions and RT were analysed as
pre-registered. Response decisions (coded 0 for “no” and 1 for “yes”) were analysed

in a mixed-effect logistic regression.! Task (coded 0 for sensibility judgement and 1

L We used R (Version 3.5.0; R Core Team, 2017) and the R-packages abind (Version 1.4.5; Plate &
Heiberger, 2016), arm (Version 1.10.1; Gelman & Su, 2018), BayesFactor (Version 0.9.12.4.2;
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1000

300
No response

within time *

200, 250,
300, 350,
400, or 450

200

Time (ms)
Proceed®* if
response was made

Figure 1. Presentation sequence in Experiment 1. * Response time window depended
on task. Shallow sensibility judgment task allowed 3s, and deep interpretation gener-
ation task allowed 8s. ** After response, proceed to next trial in shallow sensibility
judgment task; and in deep interpretation generation task, proceed to type down the

interpretation if answered “yes”, and to next trial if answered “no”.

for interpretation generation), EoS and LDF, with their interactions, were used as

Morey & Rouder, 2015), bookdown (Version 0.7; Xie, 2016), broom (Version 0.4.4; Robinson, 2018),
coda (Version 0.19.1; Plummer, Best, Cowles, & Vines, 2006), contrast (Version 0.21; Kuhn, Steve
Weston, Wing, Forester, & Thaler, 2016), cowplot (Version 0.9.2; Wilke, 2017), data.table (Version
1.11.4; Dowle & Srinivasan, 2017), doBy (Version 4.6.1; Hojsgaard & Halekoh, 2018), dplyr
(Version 0.7.5; Wickham, Frangois, Henry, & Miiller, 2018), Formula (Version 1.2.3; Zeileis &
Croissant, 2010), ggplot2 (Version 2.2.1; Wickham, 2009), gridEztra (Version 2.3; Auguie, 2017),
Hmisc (Version 4.1.1; Harrell Jr, Charles Dupont, & others., 2018), interplot (Version 0.1.5; Solt &
Hu, 2015), knitr (Version 1.20; Xie, 2015), lattice (Version 0.20.35; Sarkar, 2008), Ime4 (Version
1.1.17; D. Bates, Méchler, Bolker, & Walker, 2015), ImerTest (Version 3.0.1; Kuznetsova,
Brockhoff, & Christensen, 2017), magrittr (Version 1.5; Bache & Wickham, 2014), MASS (Version
7.3.50; Venables & Ripley, 2002), Matriz (Version 1.2.14; D. Bates & Maechler, 2017), mgcv (S. N.
Wood, 2003, 2004, Version 1.8.23; 2011; S. Wood, N., Pya, & S"atken, 2016), multcomp (Version
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fixed variables; participant and item were used as crossed random variables
modelling random intercepts.? RT was analysed first in an omnibus mixed-effect
linear regression, with task, response decision, EoS, LDF and their interactions as
fixed predictors; participant and item as crossed random variables modelling random

intercepts.?

Then RT was separated by the response decision to test the specific hypotheses
for different responses, and each analysed in a mixed-effect linear regression. Further
analyses of response decisions and RT were conducted in mixed-effect models which
modeled random intercepts and slopes (not pre-registered). These analyses were not
pre-registered but deemed appropriate because mixed-effect models with random
intercepts and slopes would generalise better than a random-intercept-only model

(Barr, Levy, Scheepers, & Tily, 2013). However, a full maximal model did not always

1.4.8; Hothorn, Bretz, & Westfall, 2008), mvtnorm (Version 1.0.8; Genz & Bretz, 2009), nlme
(Version 3.1.137; Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017), papaja (Version
0.1.0.9735; Aust & Barth, 2017), plyr (Wickham, 2011; Version 1.8.4; Wickham et al., 2018), psych
(Version 1.8.4; Revelle, 2017), purrr (Version 0.2.5; Henry & Wickham, 2018), rcartocolor (Version
0.0.22; Nowosad, 2017), rms (Version 5.1.2; Harrell Jr, 2018), SparseM (Version 1.77; Koenker &
Ng, 2017), survival (Version 2.42.3; Terry M. Therneau & Patricia M. Grambsch, 2000), TH.data
(Version 1.0.8; Hothorn, 2017), and tidyr (Version 0.8.1; Wickham & Henry, 2017) for all our

analyses and the writing up of this manuscript.

2 Model including participants as random intercepts explained the data better than the empty
model by 4.88 x 10175 times (BF;y = 4.88 x 10'™); model with participants and item as crossed
random intercepts further better explained the data than the model with only participants as
random intercept (BF;p > 1.80 x 103%8); inclusion of fixed predictors further better explained the

data by 1.80 x 1032 times (BF;p = 1.80 x 10132).

3 Model including participants as random intercepts explained the data better than the empty
model (BF;y > 1.80 x 10%°%); model with participants and item as crossed random intercepts in
fact worsen the model (BF;y = 0.01) but was still used for consistency; inclusion of fixed predictors

further better explained the data (BF;y > 1.80 x 103%8).
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converge. Therefore, we looked for the maximal random effect structure justified by
the sample for both response decisions and RT data, and reported it here, if they
provided a better fit than the random-intercept models. The random-intercept

models can be found in Supplementary Materials (https://goo.gl/sRkXun).

In both the present experiment and Experiment 2, we used the Bayes Factor
(BF), instead of the Chi-squared test, to decide whether the addition of new random
or fixed variables improved a model. BF uses the Bayesian approach to calculate the
amount of evidence the data lends to the alternative hypothesis in relations to the
amount of evidence for the null hypothesis. BF;y denotes the ratio of the likelihood
of the data under the alternative hypothesis against the null hypothesis. If BF is
5, it means that the data is 5 times more likely to occur under H; than Hy.
Therefore, BF can inform us about quality of the hypotheses. We can be more
confident with the alternative hypothesis if BF;y = 100 than if BF;, = 10. Inversely,
if BFyq is less than 1, we would be more confident about the null hypothesis than
the alternative hypothesis. As a result, the BF is superior to p-values produced by
null-hypothesis significance testing (NHST), which only tells us the probability of
Type I error but not how good the alternative hypothesis is. See Jarosz and Wiley
(2014) and Wagenmakers (2007) for detailed discussions.

The BF of regression models can be easily obtained in R by extracting the
Bayesian information criteria (BIC). BF(; (comparing Hy against H;) is calculated

as:

(BIC(H,) — BIC(Hp))
2

BF01 = €

BF1p, which denotes the likelihood of H; against Hy is simply the inverse of
BFy:. While the continuous scale of BF is useful enough, we could conveniently

describe the results, using Jeffreys (1998)’s guideline to characterise BF (Table 1).
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Table 1
Interpretation of BF as evidence

for H 1

BFy BFyy, Support for H;

1-.33 1-3 Anecdotal
33-.10 0 3-10 Substantial
.10-.03  10-30 Strong
.03-.01 30-100  Very strong

<.01 >100 Decisive

Results and Discussion

No participants were deleted for slow response (> 3SD from grand mean).
1.35% of trials were missed (i.e., no response within the time limit), which were
deleted. Eight trials were deleted for motor error (RT < 200ms). Beyond that, 39
trials in the deep processing task were marked out as invalid interpretations (blank,
“0”, “wrong button”, etc.). Finally, we removed individual trials with outlying RT
(> 3SD from individual means per response per task) that was 0.80% and 1.34% of
“yes” and “no” responses respectively in the shallow task; 1.05% and 1.69% of “yes”
and “no” response respectively in the deep task. Consequently, there remained 5294

data points for the shallow task and 5199 for the deep task.

Response decision. The general acceptance rate was 46.07%. That was
47.02% of the shallow task and 45.10% of the deep task. Mixed-effect logistic
regressions were conducted. The random-intercepts model as per pre-registration
showed different results from the maximal random-slopes model justified by the

data, but the latter explained the data better than the former (BF;, = 8.57 x 103%;
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Table 2
Logistic mized-effect regression of

response decision

b 95% CI
Intercept -0.28 -0.58 - 0.02
Task -0.15 -0.39-0.1
LDF 0.07 -0.01-0.15
EoS 1.32 1.16 - 1.48
Task : LDF 0.05 -0.03-0.13
Task : EoS 0.01 -0.08-0.1
LDF : EoS 0.06 -0.02-0.13

Task : LDF : EoS -0.01 -0.1-0.07

Note. b is non-standardised regression

coefficient.

detailed explanation of BF in Experiment 2). Therefore, we reported the maximal
model here (Table 2), that is participant as a random predictor to model the
intercept and slope of task, LDF and EoS without interactions; and item as a
random predictor to model the intercept and slope of task LDF and EoS with
interactions). The results showed that only EoS, among all fixed predictors, had a
significant effect on response decisions. As EoS increased by one unit, the odds to
accept the metaphors increased 3.75 times. The random-intercepts model showed
that beyond the effect of EoS, EoS interacted with task and LDF also had a positive

effect on response decision (see Supplementary Materials).

Response time. The grand mean of RT was 1391ms (SD = 885ms), which
was 1114ms (SD = 455ms) for shallow task and 1674ms (SD = 1102ms) for deep
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Table 3
Mean (SD) RT in ms per task per

response decision

Task  Shallow Deep

Yes 1118 (457) 1815 (1085)
No 1110 (454) 1557 (1102)

task. The average RT per response decision per task was shown in Table 3.

Analyses of RT found evidence of net suppression (J. Cohen, Cohen, West, &
Aiken, 2003), which means that the shared variance of LDF and EoS was masking
the true relationship between the variables and RT. Because LDF and EoS
correlated to some degree, LDF contributed to the fit of the model by explaining the
error variance of EoS. As a result, the effect of EoS was enhanced while the effect of
LDF was diminished. This could be seen by the fact that the effect of LDF in the
LME model was the opposite of its zero-order correlation with RT. As seen in
Supplementary Materials, LDF had a negative effect on the speed to reject a
metaphor (i.e., “no” RT) in the mixed-effect model, but a positive correlation with
RT according to the zero-order correlations. Therefore, as pre-registered, we
orthogonalised EoS and LDF using a principle components analysis (PCA) with
varimax rotation and Kaissar covariance normalisation. PCA managed to obtain
two perpendicular variables each corresponding to one of the original variables. This
procedure solved the problem of net suppression because the orthogonal variables
did not have any shared variance. The orthogonal variables obtained by PCA did
not lose any information from the original variables, and they correlated with each
variable (r = .99). The orthogonalisation procedure was done both for the omnibus

regression and separately with the RT to “yes” and “no” responses for the analyses
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per response. The results reported here used only orthogonal variables.

The omnibus regression was shown in Table 4. Again, the maximal model
justified by the data provided a massively better fit than the random-intercept
model? (BF;y > 1.80 x 103%; participant as a random predictor to model the
intercept and slope of task; and item as a random predictor to model the intercept
only)), so the former was reported here and the latter in Supplementary Materials.
EoS had a positive effect when LDF was at its mean, which was moderated by task
and response. It showed that EoS had a positive effect for both tasks, which was
larger for the deep task than the shallow task. The effect was positive for “no”
response but negative for “yes” response. In contrast, LDF did not have an effect
when EoS was at its mean regardless of task and response. However, LDF did
interact with EoS when response was “no” in the sensibility judgement task, which
was attenuated by “yes” response and the deep interpretation generation task, as

will be discussed in separate models below.

Because of the interaction between response decision and other variables, and
our hypotheses that opposite effects would exist for “yes” and “no” responses, we
separated the data into two sets and analysed the RT per response with
re-orthogonalised variables (Table 5). For “yes” response (i.e. when participants
accepted the metaphors), both EoS and LDF had a negative effect on both tasks.
That is as EoS or LDF increased, people were faster at accepting a metaphor. Only
EoS interacted with task, which means that it had a larger (more negative) effect
when people needed to generate an interpretation for the metaphor than when they
needed to make a simple “yes/no” judgement concerning sensibility; whereas the
interaction between LDF and task was not significant meaning that the effect of

LDF did not change between tasks.

21024

4 The largest number calculable on a computer is , which is approximately 1.80 x 103%8.
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Table 4

Omnibus linear mized-effect regression of RT

b 95% CI
Intercept 1424.55  1293.91 - 1555.2
Task 411.02 283.14 - 538.89
Response 28.53 -1.2 - 58.25
LDF 2.4 -17.76 - 22.56
EoS 58.51 37.49 - 79.53
Task * Response 19.4 -22.48 - 61.28
Task * LDF 15.82 -11.64 - 43.29
Response * LDF -10 -37.86 - 17.86
Task * EoS 49.02 20.53 - 77.51
Response * EoS -189.33 -217.94 - -160.71
LDF * EoS -31.84 -50.88 - -12.81
Task * Response * LDF -16.08 -55.36 - 23.21
Task * Response * EoS -101.39  -141.15 - -61.64
Task * LDF * EoS -6.27 -32.04 - 19.51
Response * LDF * EoS 22.49 -3.91 - 48.89
Task * Response * LDF * EoS 4.6 -32.04 - 41.24

Note. b is non-standardised regression coefficient.
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Table 5

Mized-effect linear regression model of RT per response decision

Yes No

b 95% CI b 95%CI
Intercept 1465.66 1336.17 - 1595.14 1457.7 1304.26 - 1611.13
Task 476.63 345.85 - 607.42 431.55 280.32 - 582.78
LDF -25.03 -45.81 - -4.25 14.8 -5.35 - 34.95
EoS -158.14  -191.16 - -125.13  67.32 35.1 - 99.54
Task * LDF -9.64 -39.56 - 20.29  17.48 -8.74 - 43.69
Task * EoS -71.75  -102.57 - -40.93  41.21 14.55 - 67.87
LDF * EoS -8.14 -27.8 - 11.53  -27.29 -44.89 - -9.69
Task * LDF * EoS -3.78 -32.27-24.71  -5.48 -29.18 - 18.22

Note. b is non-standardised regression coefficient.
"Yes’ RT maximal model over random-intercepts model: BFjy = 2.80210'%.

'No’ RT maximal model over random-intercepts model: BFjy > 1.80x103%

For “no” response (i.e. when people rejected the metaphors), EoS had a
significant, positive effect when LDF was at its mean, that is as ease of simulation
increased, it took people longer to reject a metaphor. This effect of EoS interacted
with task as well, such that EoS had a larger (more positive) effect for the deep task
than the shallow task. LDF further interacted with EoS with a negative term, such
that as LDF increased, the effect of EoS decreased. This interaction remained the

same for both shallow and deep processing (Figure 2).

Summary. EoS strongly affected metaphor processing as predicted. As
metaphors become easier to simulate, the likelihood and speed of accepting them

increased regardless of LDF'; whereas the speed of rejecting them decreased, which
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Figure 2. Effects of EoS on the “no” RT at four quartiles of LDF. As LDF increased
from the 1st quartile (violet) to the highest 4th (yellow), the effect of EoS flatlined.
The density plot on the top shows the proportion of “no” response along EoS per

quartile of EoS.

was attenuated when LDF increased. That is to say, when the constituent words did
not often co-occur, the easier it was to simulate a metaphor, the harder it was to
reject it; but when constituent words often co-occurred, the effect of EoS decreased

and flatlined.

LDF, though not affecting response decisions, had a significant effect on RT as
expected, such that as constituent words co-occurred more often, the speed of
accepting metaphors became faster. LDF also had an effect on the rejection speed
as expected, but the effect was only limited to low EoS. In other words, when a

metaphor was hard to simulate, the more often the constituent words co-occurred,
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the slower it was for people to reject it; but when a metaphor was easy to simulate,
the effect disappeared. As a result, it was fastest to reject a metaphor when both

EoS and LDF were low, and slowest when LDF was low but EoS was high.

Task was found to moderate EoS as expected. The effect of EoS was larger for
the deep interpretation generation task than for the shallow sensibility judgement
task. In contrast, the effect of LDF was not affected by task, contrary to the
linguistich shortcut hypothesis. The negative effect of LDF on the acceptance speed
remained the same for both sensibility judgement and interpretation generation
task, and the interaction between EoS and LDF on the rejection speed did not vary

between tasks either.

Experiment 2: EEG Study

In this experiment, we will examine the neuroelectrical activations of embodied
and linguistic components during metaphor processing. As this study was the first
to the authors knowledge to study the simulation-linguistic representation of
metaphor processing, we did not have any confirmatory hypotheses concerning the
results. However, we proposed some tentative hypotheses concerning the timecourse
and scalp regions of the activations. The activations of the embodied component
will be manifested around 400ms after the adjective onset at the left parietal region.
The activations of the linguistic component will be prior to those of the embodied
component, possibly around 300ms in the frontal region; and they will re-emerge
after 600ms in the parietal region. Although the experiment was not pre-registered,
we will report here how we determined our sample size, all data exclusions, all

manipulations, and all measures in the study.

Method
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Participant. Sixteen native speakers of English were needed to match
previous studies on metaphor processing (e.g., Coulson & Van Petten, 2002) and the
property verification task of (Liu et al., 2018a). One participant was excluded
because the data was not recorded properly due to technical trouble, so one more
was recruited to make up for the loss. All resulting usable participants were students

of Lancaster University (age: 22.06 (SD = 6.13); female: 11; right-handed: 15).

Materials. The stimuli derived from the same set of metaphoric sentences as
ones in Experiment 1. The only difference was that the sentences in this experiment
did not end after the adjectives, but all had the word “sometimes.” as the end, in
order to prevent the end of sentence wrap-up effect (Brouwer, Fitz, & Hoeks, 2012;
Kutas, Federmeier, & Sereno, 1999), which could be more noisy because it took
longer time and involved the integration of phrases and clauses and the processing of
phrase boundaries. The sentences were distributed into six lists of 169 or 170 items,
each composted of one and a half lists of items from Experiment 1. In each of these
six lists in this experiment, half of the adjectives appeared twice pairing with two

different nouns and half appeared only once.

Procedure. The items lists were used both in the sensibility judgement task
and in the interpretation generation task. Participants took both tasks each with a
different list, such that they saw different sentences (different nouns, same
adjectives) between the two tasks. The order of the tasks were counterbalanced and
the order of sentences were fully randomised. Participants were given four
self-administered break in each task as well as one long break between tasks,

resulting in five blocks of approximately 34 trials in each task.

At the beginning of each block, participants were given a four-second waiting
period for the EEG recording to initiate. The trial structure was similar to
Experiment 1 with few changes (Figure 3). Before the fixation cross, we added 1

second of blinking time during which a cue to blink remained on the screen. A
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1000

300

800 — 1400
No response

within time *

300

Proceed** if
response was made

Time (ms)

Figure 3. Presentation sequence in Experiment 2. * Response time window depended
on task. Shallow sensibility judgment task allowed 3s, and deep interpretation gener-
ation task allowed 8s (including the word). ** After response, proceed to next trial in
shallow sensibility judgment task; and in deep interpretation generation task, proceed

to say out loud the interpretation if answered “yes”, and to next trial if answered “no”.

fixation cross followed for a variable amount of time between 800ms to 1400ms.
Then, the nouns, “can be”, and the adjectives word were presented sequentially.
After the adjectives disappeared, a blank screen remained for 700ms during which
participants did nothing but focusing on the screen, in order to eliminate the
readiness potential which would occur if participants needed to make a response
immediately after the adjectives (Dehaene et al., 1998). Following the blank screen
after the adjective, the word “sometimes” would follow for another 300ms as the end
of the sentence followed by a blank screen as the response interval (2700s for the
shallow task and 7700ms for the deep task), during which participants were required
to perform either the sensibility judgement task or the interpretation generation

task as Experiment 1.
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To make a response, participants were asked to press a red button at the
position of “F” on the keyboard for “yes”, or a white button at the position of “J”
for “no”. In the sensibility judgement task, the experiment will proceed to the next
trial after the button press, but in the interpretation generation task, if participants
pressed “yes”, they would see a sign of a microphone on the screen and they would
say their interpretation of the sentence out loud. Their interpretations were recorded
by an external Sony recorder. This was done differently from Experiment 1 to avoid
contamination of the data by unwanted head movements during typing. After the
interpretation was recorded, they pressed the space bar to move on to the next trial.
Like in Experiment 1, if no response was made when the response interval had

elapsed, a feedback warning was shown on the screen.

Apparatus. Words were presented on a 19-inch CRT monitor operating at
100Hz refresh rate using EPrime 1.0, and behavioural responses were recorded using
a QWERTY keyboard. High-density EEG was recorded continuously using Hydrocel
Geodesic Sensor Nets (Electrical Geodesics Inc., Eugene, OR, USA) at 128 locations
referenced to the vertex (Cz) online. The ground electrode was at the rear of the
head (between Cz and Pz). Electrophysiological signals were acquired at the
sampling rate of 1000Hz by an Electrical Geodesics Inc. amplifier with a band-pass
filter of 0.1-100Hz. The impedance was checked prior to the beginning of the

recording and they were considered acceptable if lower than 50k(2.

EEG analysis. The digitized EEG was further processed offline using
NetStation v 4.5.4. It was band-pass filtered between 0.1- 30Hz and was segmented
into epochs including 200ms before adjective onset and 1000ms after adjective onset.
EEG epochs were automatically rejected for body and eye movements the signal
exceeded + 200 'V at any electrode. Data were further checked through visual
inspection for eye-movements, eye-blinks and other body movement artifacts not

detected by the automated algorithm. The artifact free segments were
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baseline-corrected with respect to the average amplitude in the 200 ms window

proceeding stimulus onset, and were re-referenced to the average reference offline.

These segments were then exported to a comma-separated values (csv) file and
analysed in R. In order to explore the continuous activations of embodied and
linguistic components, we analysed the EEG output throughout the whole 1-second
epoch after the adjective onset, and across the whole scalp (Amsel, 2011; Hauk,
Pulvermiiller, Ford, Marslen-Wilson, & Davis, 2009; Hendrix, Bolger, & Baayen,
2017; Liu et al., 2018a). The EEG output per participant per stimulus were sliced
into 20 segments of 50ms and were averaged. The electrodes analysed were the 90
electrodes in the area on the scalp covered by the 20-20 EEG net (Appendix B). The
resulting datapoints were analysed in linear mixed-effect models (LME) with
participants and items as crossed random variables to predict random intercepts.
The analyses were exceptionally computationally heavy and thus were carried out
distantly using the High End Computing Cluster (HEC;

http://www.lancaster.ac.uk/iss/services/hec/) of Lancaster University.

Using LME offers two advantages over the conventional method of analysis
using ANOVA. First, it solves the language-as-fixed-effect fallacy (Clark, 1973) by
accounting for the random variance from both participants and stimulus at the same
time. Second, LME offers the possibility to take on continuous variables. In the
present study, both critical variables (i.e., EoS and LDF) are continuous. Forcing
them into distinct categories (e.g., high frequency vs low frequency) causes the loss
of data, and may mask the true relationship between the predictor and the
dependent variable (Amsel, 2011; Baayen, Davidson, & Bates, 2008). In a word,
using LME to treat EEG data can avoid the inflation of Type I error rate and

provide greater power.

Because of the behavioural results from Experiment 1, we have reason to

believe that EoS and LDF will have different effects on “yes” and “no” response.
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Therefore, in the analysis of ERP, we treated the key variables in separate models
per response decision. We created LME with task (deep interpretation generation
coded as 0; shallow sensibility judgement coded as 1) and the critical variables.
Following Experiment 1, we also orthogonalised EoS and LDF per response. In
order to ascertain evidence in favour of (or against) each key variable, we conducted
model comparison in a hierarchical fashion. The baseline model was composed of
participants and items as crossed random variables modelling random intercepts,
and no fixed effects. Then in each hierarchical step, new fixed effects are added in

and the new model was compared to the model in the previous step.
For the effects of EoS, the models were built in the following three steps.
Step 1: Baseline model + task as a fixed effect;
Step 2: Step 1 model + EoS as a fixed effect;
Step 3: Step 2 model + Interaction between task and EoS as fixed effect.
For the effects of LDF, the same three steps as above were repeated.

Two further model comparisons were conducted to extract the relative

advantages of EoS and LDF":

1. Comparison between the EoS model obtained from Step 2 (i.e., EoS + task as
fixed effects) with the LDF model obtained from Step 2;
2. Comparison between the EoS model obtained from Step 3 with the LDF

model obtained from Step 3.

We again used BF to conduct these model comparisons. Apart from the
superiority over p-values as discussed in Experiment 1, BF further offered a practical
advantage specific to this experiment, that is BF does not require post hoc
corrections of multiple comparisons. In this experiment, we need to conduct

multiple analyses to the same set of data, which dramatically inflates the Type I
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error rate. Five models need to be built per time slice per electrode, resulting in
9000 models in total. Although a post hoc correction can be conducted (e.g.,
Bonferroni correction), it will render the test unnecessarily conservative. To keep
the family-wise critical level as .05, a critical level of 5.56 x 107 is needed per model.
This stringent criterion would render any p-values we can obtain meaningless. As a
result, we chose to report only BF in this experiment together with the regression
coefficients from LME models for effect size (results of NHST can be found in

Supplementary Materials).

Results

Data cleaning. The data was cleaned in a similar way as Experiment 1. No
participants were removed for slow responses. 0.98% of trials were missed and 3
trials in the interpretation generation task were removed due to invalid
interpretations. No trials were removed because of motor error because by the time
a response was made after the last word of the sentence, participants already had 1s
to process the sentence. 5537 trials remained for the analysis, which included 2753

trials for the deep task and 2784 for the shallow task.

Behavioural results. Analyses of the behavioural data were conducted
with participants and items as crossed random factors modelling random intercepts
and slopes in a maximal model justified by the data. The response decision was

analysed in a logistic mixed-effect regression® and RT was analysed in linear

5 Model including participants as random intercepts explained the data better than the empty
model by 7.87 x 1023 times (BF;p = 7.87 x 10'?3); model with participants and item as crossed
random intercepts further better explained the data than the model with only participants as
random intercept by 7.68 x 1017 times (BF;y = 7.68 x 10'™); inclusion of fixed predictors further

better explained the data by 3.21 x 103! times (BF;9 = 3.21 x 10131).

29
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mixed-effect regressions® as Experiment 1. The results were largely similar to those
of Experiment 1 (see Supplementary Materials), with differences in the effect of LDF
on rejection speed. First as predicted, LDF had a positive effect on rejection speed
when EoS was at the mean in this experiment (b = 26.54, 95% CI = [10.96, 42.12],
df = 2817.30, t = 3.34, p < .001). Second, it also interacted with EoS, such that as
LDF increased, the effect of EoS also increased (b = 19.32, 95% CI = [4.63, 34.00],
df = 2817.60, t = 2.579, p = .010). Again, the effect of EoS increased in deep
processing task, while there was no evidence that the effect of LDF increased in

shallow processing task.
ERP results.
Overview.

The timecourse of the critical variables was illustrated by the mean BF by
comparing EoS models with LDF models in Step 2 and Step 3 (Figure 4; all BFs are
in the Supplementary Materials). Strong evidence supported the activations of EoS
from 400ms and persisted until the end of the epoch for “yes” response. Two peaks
of activations were first around 500ms, and then after 750ms. No strong evidence for
LDF was found overall, that is no mean BF was below 0.1. At two points LDF
seemed to have slightly outperformed EoS (i.e., BFg; < 1), which were at 200ms
when comparing the Step 2 models and at 600ms when comparing the Step 3
models. Further investigations into the topography of the key variables will show

localised activations of the key variables in more details.

Task effects.

6 Model including participants as random intercepts explained the data better than the empty
model by 1.40 x 107 times (BF;p = 1.40 x 10!7); model with participants and item as crossed
random intercepts in fact worsen the model (BF';y = 0.01) but was still used for consistency;
inclusion of fixed predictors further better explained the data by 1.01 x 107 times (BF;y = 1.01 x
107%).
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Figure 4. Logarithmically transformed mean BFpg;, of models of EoS compared with
models of LDF in Step 2 (which excluded the interaction terms) and Step 3 (which
included the interaction term) with 95% CI. The red dotted line is the cutoff when
BFg, =1 (i.e., EoS outperformed LDF when above the line, and LDF outperformed

EoS below the line).

Step 1 (Figure 5) of model comparison showed strong evidence that task had
an effect on EEG amplitude. For “yes” response, the effect started from 400ms after
onset and lasted until the end of the epoch, peaking around 700ms; for “no”
response, the effect only appeared around 650ms. In the following steps, we

obtained evidence for EoS and LDF separately, above and beyond the effect of task.
EoS effects.

“Yes” response.

Our hypothesis for EoS stated that we should find strong effect of EoS in the

31
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left parietal area round 400ms (similar to a typical N400 effect). This was confirmed
by Step 2 of model comparison for “yes” response, which showed evidence for EoS
from 400ms to 600ms, when people accepted the metaphors (Figure 6 a and c). The
data were on average 6.41 times (i.e., mean BFy; = 6.41) and 148.54 times
maximally (max BFy; = 148.54) more likely to occur in models including EoS than
the task-only models excluding EoS. EoS had a positive effect on amplitude, that is
to say: metaphors that were harder to simulate elicited a more negative amplitude.
From Panel ¢, it could be seen that in the left parietal region the effect was most
prominent near the central line (e.g., E37: mean b between 400ms and 600ms was

0.56, mean BFy; = 66.75).

Further exploration of EoS’s effects found them to go beyond the regions and
time windows in the original tentative hypotheses. In fact, EoS had a strong and
prolonging main effect across the centre of the scalp when people accepted the
metaphors (Figure 6a). The strongest evidence for an EoS effect appeared at E7 in
the central area, peaking at the 500ms slice (BFy; = 1925.13; b = 0.78). Later in the
epoch, EoS again showed a positive effect supported by strong evidence in the

parietal area (e.g., E67 at 850ms-900ms, BFy; = 135.63; b = 0.79).
“No” response.

In contrast, the data did not support the effect of EoS on “no” response. The
ERP of “no” response was actually better explained by the Step 1 model with task
only than the model with task and EoS together (Mean BFy; = 0.02; SD = 0.05).
That is, on average, the EEG amplitude of rejected trials was 50 times more likely
in the task-only model than the model with both task and EoS as predictors. This
means that for those metaphors that were eventually rejected as nonsensical or

uninterpretable, EoS did not affect the processing within the first 1000ms.
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LDF effects.

For LDF, our hypotheses stated that we should find evidence for its effect in
two areas. In temporal order, first we should find an effect before 350ms in the
frontal and parietal area, prior to the window when the effect of EoS reached its
peak. Second, we should find an effect after 600ms to the end of the epoch in the
right posterior (i.e., parietal, occipital) regions. We did not find any evidence in
Step 2 for LDF’s effect, either in these hypothesised regions or on the whole scalp
(Figure 7). In fact, we found evidence against the effect of LDF above and beyond
the effect of task (“Yes”: Mean BFy;, = 0.02 (0.08); “No”: Mean BFy; = 0.03 (0.10).
In other words, the EEG amplitude of the “yes” trials were 50 times more likely, and
that of the “no” trials were 33 times more likely, in the task-only models than in

models including both LDF and task.

Moderation effect of the task.

Step 3 of the hierarchical model comparison dealt specifically with the
interaction between task and the key variables. According to our hypotheses, task
should interact with both EoS and LDF, though we do not have specific hypotheses
concerning the timecourse or the scalp region. It should enhance the effect of EoS in
the deep processing task specifically, but enhance the effect of LDF in the shallow
processing task instead. To illustrate the differences between shallow and deep
tasks, we further analysed the effect of EoS and LDF in separate models per task,
which produced event-related regression coefficients (ERRC) which provided the
direction and magnitude of effects (Hauk et al., 2009). For example, if the ERRC of
EoS was 2.50, it meant that as EoS increased one unit, the EEG amplitude

increased for 2.50 pV.

The interaction effect between EoS and Task was not found in the

hypothesised area for “yes” response (i.e., the left parietal area; Figure 8a).
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Evidence was only found for “no” response (i.e., when people rejected the
metaphors), at the end of the epoch in E108 in the right temporal area (BFs, =
14.03; Figure 8b), which means that the EEG amplitude of E108 was explained by
the model with the interaction between EoS and task 14.03 times better than the
model without the interaction. This interaction was driven by a difference between
tasks starting from 400ms after the adjective onset (Figure 8c). EoS had a
sustaining negative effect in the shallow sensibility judgement task. In other words,
at the later stage of processing for sensibility judgement, metaphors that were hard
to simulate elicited a greater positivity than those that were easy to simulate; which
effect was absent in the deep interpretation generation task (Step 3 model, EoS
effect in deep task: b = 0.37; interaction term: b = -1.75). This difference between
tasks culminated at the end of the epoch, thus showing the strong evidence for the

interaction model at the final time slice.
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Interaction between LDF and task was also only found for “no” response. At
an early window, evidence was found around 200ms at the right frontal (E2: BFs, =
8.49; Figure 9b) and temporal electrodes (E108: BFs, = 7.79), which means that
the data from these two electrodes were about 8 times more likely under models
with the interaction between LDF and task than models without the interaction.
From Figure 9c, it could be seen that the effect of LDF flipped directions for shallow
and deep processing tasks. In E2, LDF had a negative effect on amplitude in the
deep processing task (i.e., metaphors whose constituent words rarely co-occurred
elicited a greater positivity; LDF in deep task: b = -1.33) which was smaller and in
the opposite direction in the shallow processing task (interaction term: b = 1.44);
and in E108, LDF had a positive effect in deep processing (LDF effect in deep task:
b = 0.37; i.e., metaphors whose constituent words rarely co-occurred elicited a
greater negativity) but a larger and opposite effect in shallow processing (interaction
term: b = -0.77; low LDF elicited a greater positivity). This pattern sustained
throughout the whole epoch as seen in Figure 9¢, but was only supported by Bayes
factors between 150ms and 250ms. This early effect in the right frontal region
partially supported the hypothesis concerning early effect LDF, although it

appeared earlier than the hypothesised time of 350ms.

Furthermore, we also found some support for the hypothesis that LDF should
have a late effect in the right posterior region. At the 750ms slice in the right
temporal and parietal regions, LDF interacted with task such that the effect of LDF
flipped its direction. During deep processing, LDF had a negative effect at E90 in
the right parietal region (LDF in deep task: b = 0.51), but a slightly larger, positive
effect during shallow processing (interaction term: b = -1.01). Similar effect was
found at E102 in the right temporal electrode (see Supplementary Materials). In
other words, metaphors whose constituent words rarely co-occurred elicited a

greater positivity in the shallow processing task, but a greater negativity in the deep
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processing task, with the effect on shallow task slightly larger.
Comparison between EoS and LDF.

Further model comparisons were carried out to extract information about the
relative advantage of EoS and LDF. As we did not find widespread effects of LDF
either in Step 2 or in Step 3, here we compared the LDF models obtained in Steps 2
and 3 with the EoS models obtained in Steps 2 and 3 respectively. Such information
about the relative strength of EoS and LDF, though both weak at times, was useful
for us to pinpoint the timecourse and topography of these variables to see when they

differed most strongly.

Figure 10 demonstrated a clear pattern of differences between EoS and LDF.
Consistent differences started to emerge after 350ms from the adjective onset. While
EoS mainly accounted for the EEG amplitude in the central region, LDF accounted
for the peripheral region. For “yes” response, the largest advantage of LDF over EoS
was in the left occipital area (e.g., E71) after 600ms, similar to our hypothesis that
LDF would have a greater effect at a later stage of processing in the posterior
region. At 650ms, the model with LDF and task was 143 times better than the
model with EoS and task at explaining the EEG data (BFg, = 0.007), and the
interaction model displayed the same advantage. LDF had a negative effect on the
amplitude, which meant that metaphors with less frequently co-occurring words
elicited greater positivity than metaphors with more frequently co-occurring words
(Step 3 model, LDF in deep task: b = -0.35), and the effect was larger for shallow
processing than deep processing, as predicted by the linguistic shortcut hypothesis.

(Step 3 model, interaction term: b = -0.33).
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