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ABSTRACT

Synchronous, coherent interaction is key for the functioning of our brain. The co-
ordinated interplay between neurons and neural circuits allows to perceive, process
and transmit information in the brain. As such, synchronization phenomena occur
across all scales. The coordination of oscillatory activity between cortical regions
is hypothesized to underlie the concept of phase synchronization. Accordingly,
phase models have found their way into neuroscience.

The concepts of neural synchrony and oscillations are introduced in Chapter 1
and linked to phase synchronization phenomena in oscillatory neural networks.

Chapter 2 provides the necessary mathematical theory upon which a sound
phase description builds. I outline phase reduction techniques to distill the phase
dynamics from complex oscillatory networks. In Chapter 3 I apply them to net-
works of weakly coupled Brusselators and of Wilson-Cowan neural masses. Numer-
ical and analytical approaches are compared against each other and their sensitivity
to parameter regions and nonlinear coupling schemes is analyzed.

In Chapters 4 and 5 1 investigate synchronization phenomena of complex phase
oscillator networks. First, I study the effects of network-network interactions on
the macroscopic dynamics when coupling two symmetric populations of phase os-
cillators. This setup is compared against a single network of oscillators whose
frequencies are distributed according to a symmetric bimodal Lorentzian. Sub-
sequently, I extend the applicability of the Ott-Antonsen ansatz to parameter-
dependent oscillatory systems. This allows for capturing the collective dynamics
of coupled oscillators when additional parameters influence the individual dynam-
ics.

Chapter 6 draws the line to experimental data. The phase time series of rest-
ing state MEG data display large-scale brain activity at the edge of criticality.
After reducing neurophysiological phase models from the underlying dynamics of
Wilson-Cowan and Freeman neural masses, they are analyzed with respect to two
complementary notions of critical dynamics.

A general discussion and an outlook of future work are provided in the final
Chapter 7.



»Gut, dafs du fragst!« sagte er lachend. » Man

mufs immer fragen, man mufl immer zweifeln. «

Herrmann Hesse — Demian (1919)
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Introduction 2

Life builds upon interactions in every possible way, be they imaginable or not.
Interaction often bears communication, which can be regarded as a form of interac-
tion that involves information transfer between the participating entities. Analo-
gously to the saying “one cannot not communicate” by the communication theorist
Paul Watzlawick, interaction arises naturally whenever two or more people, ob-
jects, entities belong to the same, or form a, bigger entity. A clear definition of
interaction between entities implies that they act in such a manner so as to affect
one another. This interplay of an ensemble of discrete units is commonly framed
in the notion of a network, where it gives rise to emergent collective behavior.

One of the most fascinating examples of a complex network is the human brain.
Without interaction the brain is not able to function. Coordinated and synchro-
nized interaction facilitates communication. In this way information can be per-
ceived, processed, and exchanged across the brain. Despite a tremendous history
of brain research, however, the mechanisms behind the functioning of our brain re-
main a mystery. Interaction occurs on a multitude of spatial and temporal scales.
But how do different neural processes interact along anatomical structures and
generate recognizable patterns of functional brain activity? And, how do these
patterns lead to coherent behavior and cognition? Answers to these questions
have continued to elude researchers for ages.

Over the past two decades, a hypothesis has become manifest that the exchange
of information and the communication in the brain occur via phase synchroniza-
tion®. Synchronous firing activity within a neural population gives rise to oscil-
latory brain signals that are believed to encode information. Their transmission
across different brain areas relies on a careful coordination of these neural oscil-
lations. Presumably, it is the respective phase relationship between the neural
dynamics that plays a key role in neuronal communication. Oscillatory behavior
abounds on all different scales of the human brain. On mesoscopic and macroscopic
levels one often refers to these oscillations as brain rhythms?#. Different frequency
bands have been associated with distinct cortical functions. A disruption of the
regular interplay of this oscillatory activity, such as the suppression of certain
frequencies, is often deemed a signature for pathologies®®. All the more it is im-
portant to understand the underlying mechanisms how these oscillations emerge,
evolve, and dissolve under a changing environment, and how cortical oscillations
interact and influence each other in order to generate large-scale synchronization
patterns. Understanding the neuronal and cortical mechanisms that are linked
to perception, to cognitive and motor functions, but also to diseases, is among
the most important and yet unresolved problems of this century " 1%, Oscillatory
network activity is central to this dissertation.

There are numerous approaches to unravel the mysterious orchestration of in-
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tertwined neural processes, both experimental and theoretical. Bridging the gap
between experiments and theory, however, has only been achieved in very restric-
tive cases and mainly on very small scales. An overall and generic picture linking
these two sides of the same coin is still being sought for. To detect brain rhythms
experimentally, neuroimaging techniques such as electro- or magnetoencephalogra-
phy (EEG/MEG) or functional magnetic resonance imaging (fMRI) are commonly
resorted to. EEG and MEG measure voltage fluctuations resulting from ionic cur-
rents within the neurons, i.e. they record electrical activity of the brain. On the
other hand, fMRI detects changes of the cerebral blood flow via the so-called BOLD
contrast, which is an indirect marker of brain activity. Given the non-invasive na-
ture of these techniques, the recorded data display synchronous activity of several
thousands of interacting neurons rather than the dynamics of a single neuron. This
population dynamics, or mean field behavior, has often very little in common with
what happens on the microscopic scale. An urgent challenge in theoretical neu-
roscience is to deduce macroscopic dynamics from activity on these much smaller

scales1715,

1.1 Neural synchronization and oscillations

The functioning of the human brain dwells on coordinated and coherent co-activity
of a multitude of neurons. Perceptual, cognitive and motor functions are believed
to require an orchestration of distributed neuronal processes. If spike discharges
of a large number of neurons exhibit correlated behavior in different areas of the
brain, their (large-scale) integration leads to, e.g., cognition or limb movements.
Unraveling this integration process poses an intriguing question in itself, and is
often referred to as the binding problem'®. The mechanisms to bind distributed
neuronal activity can broadly be classified in two different but complementary
strategies. On the one hand, binding by convergence results in the grouping of spe-
cialized neurons that encode a particular fixed constellation of contextual features.
On the other hand, dynamic binding assembles individual neurons dynamically to
generate and represent a particular pattern at a particular point in time'”. One
neuron can participate in the representation of one pattern in one moment, but
an instant later it is involved in encoding a different pattern. This dynamic and
flexible recruiting of neurons and/or neuronal populations is called assembly cod-
ing'®20. The high temporal precision of synchronizing neuronal discharges in the
millisecond range allows for generating a sequence of subsequently active assem-
blies, which can effectively encode complex information to be exchanged among
cortical networks. Time is thus an important coding dimension to process and

exchange information.
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As hypothesized, e.g., by Buszéki and co-workers?!, the temporal organization
of neuronal activity capitalizes on self-organized information retention and local-
global integration. The ability to preserve and store information is just as im-
portant as integrating distributed local processes into globally ordered states and
controlling local computations through global brain activity. Moreover, these two
features can be maintained by a hierarchical system of brain rhythms3*. Hence,
synchronization of cortical activity and neural oscillations can be considered hall-
marks of the temporal coordination of distributed brain activity.

Brain oscillations as characterized by rhythmic changes in, e.g., local field po-
tentials, set a recurrent temporal reference frame and thereby allow for temporal
coding within oscillatory cycles. The ups and downs in fluctuating local field
potentials reflect high and low degrees, respectively, of the synchronization of neu-
ronal currents within a certain brain area. That is why synchronization and neural
oscillations are often used interchangeably to express coherent activity of a popu-
lation of neurons. However, there is a subtle difference between the two phenom-
ena'®. Oscillatory activity, on the one hand, can be induced on a population level
through single oscillatory neurons, so-called pacemaker cells. It may also manifest
as an emergent property of the underlying network architecture when a particular
dynamic circuit motif is activated. Such a motif comprises the physical circuit
structure, its electrophysiological signature, and the corresponding computational
function??. Upon activation it leads to characteristic rhythmic neuronal activity.
Synchronization, on the other hand, can occur in the absence of oscillations. Two
cells may always discharge simultaneously but at irregular intervals when driven
by common noise. Or, a presented stimulus induces simultaneous bursting of neu-
ral populations. This is a typical signature of response synchronization, which
can be non-repetitive, but also recurrent. In this way, synchronization can lead
to oscillations. Similarly, oscillations may facilitate synchronization. For instance,
shared oscillatory input can drive a neural population close to the firing threshold
where it becomes prone to particular stimuli that induce response synchronization.
Oscillatory activity can thus be seen as an indicator for synchrony.

While oscillatory population activity can be related to synchronous interaction
of single cells, one should be careful when relating single cell responses to syn-
chronous network activity. There is a certain microscopic-macroscopic dichotomy
with respect to the transition from individual neuronal dynamics to the collective
behavior of a neural population. It may happen that individual discharges of a
neuron are precisely time-locked with the oscillating field potential, but the auto-
correlation function does not show any sign of oscillatory activity on the neuron
level. The seminal work by Brunel and Hakim offered a theoretical account of

a collection of experimental studies hinting at so-called sparse synchronization of
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neuronal networks??. By contrast, regular spiking activity of single neurons does
not necessarily result in (regular) oscillations on the population level, but can also
lead to collective chaos, see, e.g., the recent modeling study?*. Likewise, asyn-
chronous network states can emerge in spite of a considerable amount of shared
input?. Discernible neural network activity depends on correlated activity of
a large number of neurons. Such neural correlation, or synchronization, occurs
on some (smaller or larger) time scale, and with or without oscillations. More-
over, synchronous oscillations produce and enhance temporal correlations between
neurons, thus providing a temporal reference frame for encoding and decoding in-
formation. A temporal structure of neural responses is crucial for distinguishing
synchronous from asynchronous states, and for establishing synchronization over

large distances!®.

For this reason, it is widely accepted that brain rhythms and
cortical oscillations play an important part in neural communication, which is un-
derlined by the abundant literature on rhythmic, synchronous brain activity. In
the remainder of this dissertation the cellular and circuit basis of emergent col-
lective dynamics will not be addressed further; the interested reader is referred to
the extensive review by Wang?% for more details.

Different brain rhythms may indicate different states and functions, which re-
quire integration of neural processes at different temporal and different spatial
scales. Brain rhythms cover a broad range of different frequency bands spanning
more than four orders of magnitude®. The higher the frequency, the higher the
temporal precision. By contrast, the amplitude of oscillations increases for lower
frequencies, which hints at a bigger size of a synchronously active cell assembly.
By this, binding by synchrony can be achieved over large distances. The focus
of this dissertation lies on synchronization effects of large-scale brain networks,
hence on rather slow-frequency but robust oscillations of cortical activity. Here, a
particular kind of synchronization becomes attractive for identifying the network

dynamics, which builds on the concept of phase synchronization.

1.1.1 From correlated behavior to phase synchrony

In general, synchronization indicates (time-)coordinated interaction. When con-
sidering time series of experimental or synthetic data, synchrony manifests in
some correlation structure of the respective time series. There exists a variety
of synchrony measures that help to classify the kind and quantify the degree of
synchronized activity. Synchrony measures range from correlation coefficients to
magnitude-squared coherence, from phase coherence to Granger causality, from
phase synchrony indices to information-theoretic divergence measures, and from

7

state space based measures to stochastic event synchrony measures?’. Some of

these measures show a strong correlation among one another, whereas others are
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independent from the rest. When studying a population of neurons, neuronal

synchrony measures?

can be used to quantify the degree to which firing rates
of individual neurons are related. Typically, a synchrony measure is normalized
between 0 and 1, with 0 denoting an asynchronous, or incoherent, state, whereas
1 refers to full synchronization when the individual firing times are all identical.
In the following, I will usually assume that the mean firing rate of a neuronal pop-
ulation fluctuates rhythmically around some mean value. If two or more of such
populations interact, it is convenient to describe the degree of synchronization
between them in terms of the characteristics of their oscillatory dynamics.

Oscillations, generally speaking, are characterized through their frequency and
amplitude. For a given frequency, one can define the period as the duration of
time of one cycle of oscillation. The period is the time needed between successive
occurrences of, e.g.. the same level of activity. In between those periods, one can
further determine the phase of oscillation, which continuously increases between
0 and 27 during one period and thereby indicates the fraction of period already
covered. Phase and amplitude thus become the main (time-resolved) determinants
of the state of oscillation. Consequently, oscillatory neural activity is commonly
analyzed with respect to their phase and amplitude dynamics.

For interacting neuronal populations it appears natural to use synchrony mea-
sures that refer to the corresponding phases and amplitudes. Instantaneous phases
and amplitudes can be extracted from the signals by the Hilbert transform or by
time-frequency transforms. Phase synchrony measures?” aim at quantifying the
closeness of the phases when mapped on the unit circle. Alternative measures
often dwell on mutual information such as the frequency coherence in the time-
frequency domain. They are strongly correlated with phase synchrony measures,
but, strictly speaking, not directly linked?”. And, there are also measures that
analyze the amplitude synchronization of oscillatory dynamics. When considering
only weak coupling regimes, however, amplitude modulations can be widely dis-
carded. In consequence, the relevant information about the network state can be

inferred exclusively from phase synchrony measures.

1.1.2 Phase synchronization of large-scale brain networks

Brain rhythms and neuronal oscillations become predominant for describing brain
dynamics when considering meso- or macroscopic spatial scales. This is underlined
by a plethora of experimental studies relying on both invasive and non-invasive
neuroimaging techniques. There is reason to believe that information processing
in the brain is intrinsically linked to synchronization phenomena of oscillatory

dynamics®?3t. Non-invasive EEG and MEG studies typically depict distributed
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cortical activity as of large-scale brain networks. Although M/EEG recordings
have high temporal resolution, they reflect activity on rather coarse spatial scales
given that signals to be perceivable require synchronous neuronal currents of a
large number of neurons, commonly of the order of 10* to 10° cells. The resulting
time series of the recordings are duly and extensively analyzed for their extracted
phase and amplitude dynamics. Emerging synchronization patterns in the data
are then assigned to particular brain functions corresponding to the underlying
hypothesis or the behavioral observations. The research on the phase dynamics of
cortical oscillatory activity is rather recent compared to amplitude modulations in
the M/EEG. However, there are several reports indicating that the phase dynam-
ics play a crucial role for information processing and inter-cortical communica-
tion 132735 Phase synchronization plays also an integral part in defining functional
connectivity structures of the brain. The technological advance of modern brain
imaging methods has led to elucidate the interplay of structural and functional
brain connectivity. The structure of anatomical connections between brain areas
is widely believed to facilitate temporal synchronization of neural activity, and
thus leads to spatial patterns of functional connectivity, even in spatially remote
areas. Yet, the extent to which structure shapes function is still unclear3%3”. In
order to unveil functional brain connectivity, it is crucial to identify functional
modules consisting of remote but synchronized neuronal populations. This can be

achieved by analyzing the phase dynamics of the different brain areas.

1.2 Towards modeling

Mathematical theory and computational modeling have gone along with exper-
imental neuroscientific research ever since. The theoretical underpinning of ex-
perimentally observed behavior does not only support research paradigms, but,
importantly, adds to the general scientific knowledge. Modeling helps to under-
stand the mechanisms behind complex behavior. At the same time, it can provide
crucial information about future study design and save time and money other-
wise spent for long and expensive, yet foredoomed experiments. That does not
mean that models downgrade or diminish the importance of experiments. On the
contrary, experiments are invaluable for scientific progress. Modeling can aid to
explain and even predict particular phenomena, and thereby shape experimental
observations. In this regard, a careful conception of underlying assumptions is vital
to build relevant and verifiable models, which are fundamental for a comprehensive

theory where models and experiments go hand in hand.



Introduction 8

1.2.1 Modeling large-scale oscillatory brain networks

Much progress has been made in the direction of theoretical, mathematical and
computational neuroscience. There exists a plethora of physiologically motivated
and highly accurate neuronal models to investigate synchronization properties.
Given their inherent complexity, a thorough analysis can be challenging even de-
spite ever increasing computational capacities. In some cases, models of cortical
oscillations can be simplified to coupled phase oscillators, which often take a mod-
ified form of the seminal Kuramoto model®* %, In recent years, the use of phase
oscillator models has been popularized in order to describe synchronization phe-
nomena of oscillatory neural networks*®® ¢&-449  Phase models have been widely
used to explain anatomical effects on synchronization in terms of functional con-

50-55 56,57 " The emergence of

nectivity as well as on the route of synchronization
functional modules can exemplarily be explained through remote synchronization
of phase oscillators®®®°. And also spatial patterns in the visual cortex have been
modeled in a similar way®. Moreover, local population dynamics may play a
significant role in shaping functional connectivity patterns, and neural phase os-
cillator models have been succesfully used to explain how changes in the local
dynamics affect functional connectivity®!. Phase models have also been applied to
investigate the effect of cortical lesions on overall dynamics by introducing random

3

perturbations to a synchronized state® or by removing network nodes®. Simi-

larly, the concept of the brain as a dynamical system close to a critical regime has
been manifested through the analysis of phase models ¢ ¢ 64768

The wide use of phase oscillator models in neuroscience, however, comes at a
price. Despite the simplicity of phase oscillator dynamics, the reduction to phase
models requires great care. Any (heuristic) approximation of an oscillatory neural
network with a phase model has to withstand the confrontation with the extracted
or, alternatively, rigorously reduced phase dynamics of the original dynamics of
interacting neural oscillators. By avoiding this intermediate step of phase reduc-
tion the phase description of the oscillatory model is bereft of its fundamental
justification. The link from the actual dynamics to the phase model may become
spurious and its validity questionable. Certainly, a rigorous derivation from the
underlying dynamics to the phase dynamics can be laborious. But doing so will
clearly add to the significance of the network analysis and, more importantly, to

its impact in the scientific world.

1.2.2 Modeling neural oscillators

In view of large-scale oscillatory brain networks, the elementary network compo-

nents can be assumed to be neural populations consisting of a large number of
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neurons. Modeling the collective dynamics of a population of neurons experienced
a literal boost in the 1970s, when various phenomenological neural mass models
emerged as mean field models of neural population activity% 7%, Phenomenological
models are advantageous in that they pass over the cellular and circuit properties
of the neural populations and thereby avoid to resolve an often recurring dichotomy
between seemingly stochastic dynamics of single neurons and synchronous collec-
tive dynamics?®. Rather, they aim at integrating a handful of general assumptions
on the collective of neurons, which results in coarse-grained macroscopic variables
that describe the neural mass behavior. Traditionally, the notion of a neural mass
model has been introduced as a form of an ensemble density model™. The full
ensemble density is replaced with a mass at a particular point, i.e., a delta func-
tion, and the density dynamics is summarized by the location of that mass. The
resulting neural mass model then comprises a set of differential equations that de-
scribe the evolution of the (expectation of a) probabilistic mode of the system!!.
Ignoring all higher moments, neural mass models are comparably simple mean
field models. The simplicity in terms of only a few coupled differential equations
is however undermined by their nonlinear character, typically involving a variant
of a sigmoid function.

A seminal neural mass model has been propsed by Wilson and Cowan%%7. It
describes the (mean) activity of excitatory and inhibitory neurons within a popu-
lation of synaptically coupled neurons. Among the plethora of different approaches
to model collective neural activity, it stands out for the fact that it can be readily
derived from microscopic single-neuron descriptions and it provides at the same
time a comprehensive link toward macroscopic descriptions of cell assemblies?”. It
can be viewed as an intermediate but in some sense generic description of a densely
connected neural population as in a particular cortical region*?. When assuming
strong coherence within a certain area, the ensemble activity can be approximated
by the population mean and the effect of the variance is negligible, which motivates
the mean field approach over a Fokker-Planck approach to describe the collective

dynamics®®.

Accordingly, the Wilson-Cowan neural mass model represents the
interdependent collective neuronal dynamics in terms of the mean firing rates of
the excitatory and inhibitory parts of the population. It exhibits rich dynamic
behavior as well as different transitions to oscillatory dynamics™™. This makes it
also exemplary for a neural oscillator model. For a particular choice of parameters,
the model features stable limit-cycle oscillations between the firing rates of the ex-
citatory and inhibitory neurons, respectively. These oscillations reflect a waxing
and waning of locally synchronized (firing) activity. Hence, synchronization within
a neural population is crucial for generating (local) cortical oscillations of a neural

mass.
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1.2.3 Phase and amplitude description of neural oscillators

Rhythmic behavior of neural mass models is manifested in the oscillatory dynamics
of the macroscopic variables. If these dynamics are periodic, then the phase space
spanned by the macroscopic variables exhibits a limit cycle. This limit cycle can
be conveniently parametrized by a scalar phase variable, so that the state of the
neural oscillator is identified by a unique value between 0 and 27 during one period
of oscillation. If this limit cycle is stable, then the dynamics in a close vicinity will
be attracted towards the limit cycle. In this case, the distance to the limit cycle
can be captured by so-called amplitude variables. Taken together, the dynamics of
a neural oscillator can be rewritten in terms of phase and amplitude variables. In
general, this reformulation does not lead to a reduction of dimensionality and the
dynamics of the phase-amplitude model are as complex as the original dynamics.
However, if the attraction to the limit cycle is sufficiently fast, then the dynamics
away from the limit cycle can be approximated by the dynamics on the limit
cycle. Thus, the possibly high-dimensional dynamics of the neural oscillator can
be uniquely identified by a one-dimensional phase variable.

This phase reduction becomes especially useful when studying a network of
interacting neural oscillators. The analysis of the full system is daunting and a
simplification desirable. The phase reduction approach retains its justification as
long as interactions are weak, that is, the coupling strength between oscillators is
sufficiently small. To be precise, the coupling is weak enough to invoke only small
perturbations off the respective limit cycles so that amplitude effects are negligible.
The reduced phase model can be analyzed along the well-established techniques
for networks of coupled phase oscillators. Eventually, the resulting findings on
the synchronization properties of the network are equally valid for the full system

under the assumptions inherent to the preceding phase reduction.

1.2.4 Collective dynamics of coupled phase oscillators

The analytical and computational advantage of phase dynamics is striking when
compared to high-dimensional and typically nonlinear dynamics of oscillatory neu-
ral networks. As mentioned earlier, phase synchrony measures provide a conve-
nient means to quantify the correlation between phase time series. In fact, such a
measure introduces a powerful macroscopic observable that allows to describe the
qualitative collective dynamics of an oscillatory network. When considering a net-
work of globally coupled phase oscillators, as is, e.g., the Kuramoto model, there
exists a rigorous theory to describe the state of the network with a few macro-
scopic variables. Following either the Watanabe-Strogatz® or the Ott-Antonsen

theory® 3 the time evolution of these macroscopic variables can be exactly de-
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rived if the network satisfies some generic conditions, which will be addressed in
more detail later. It thus becomes possible to characterize low-dimensional behav-
ior of the collective dynamics in a straightforward way.

Given that we deal with phase time series, we have to assess their correlation
in terms of circular, or directional, statistics®. Identifying each phase ¢ € [0, 27)
as a point z € C on the complex unit circle {z € C: |z| = 1} through z = ¢'®, the

nth moment m,, of the (circular) distribution of phases is given by

- / 7 o) do

where P(¢) is the probability density function of the circular distribution. For a

finite set of phases, ¢, k =1,..., N < oo, these moments are analogously defined
as
1 & |
my, = szjn , with z; = el
j=1

In the physics literature, the first moment m; is usually referred to as the complex-

valued Kuramoto order parameter® Z € C,
my; = Z = Re" where R=|m;| and W =arg(m,).

The Kuramoto order parameter is the main observable within the Watanabe-
Strogatz and Ott-Antonsen theories, and its time evolution is found to follow
a low-dimensional system of ordinary differential equations. The absolute value
R = |Z| is sometimes called the real-valued Kuramoto order parameter!. Tt takes
values between 0 and 1. If R = 0, then all phases are equally distributed along
the complex unit circle and the corresponding macroscopic state is said to be
asynchronous. By contrast, if the network is fully synchronized and all phases
are identical, then R = 1. When analyzing experimentally recorded data and the
extracted phase time series, one also resorts to the circular variance CV =1 — R,
which is 0 for full synchrony, and increases up to CV = 1 the more asynchronous
the network dynamics become.

Throughout the dissertation, the Kuramoto order parameter will serve as the
main macroscopic observable to quantify the collective dynamics of oscillatory
networks. It can also be applied to only a subset of oscillators. In this way, it is
possible to quantify the coherence within substructures of the network, which have
previously been identified, e.g., by means of phase clustering. Likewise, one can

determine population-specific degrees of synchronization when a network consists

(1] Alternatively, we can compute R = |Z| = /C2? + 52 with C = %ZJ cos¢; and S =
%Zj sin ¢;.
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of multiple populations of phase oscillators. The interplay between these local
Kuramoto order parameters then allows to draw conclusions about such network-

network interactions in terms of their respective collective dynamics.

1.3 Contributions of the dissertation & research

qguestions

The modeling of phase synchronization phenomena in oscillatory neural networks
is the recurrent theme of this dissertation. In the preceding sections, the funda-
mental ideas of synchronizing neural oscillations and their putative key role for
cortical communication have been addressed. As mentioned above, a compre-
hensive theory of the functioning of the brain builds upon both experiments and
theoretical models. I focus on the modeling of neural dynamics and the interaction
of oscillatory activity across different brain regions. Aiming for a mathematically
rigorous model description, the immediate link to experimental data may appear
spurious in some of the following chapters. Nevertheless, this rigor is important
to rule out model-inherent inconsistencies when explaining experimental observa-
tions. In the end, a unifying theory of the brain will not be complete unless exact
models can explain the mechanisms leading to experimentally observed behavior
and withstand scrutiny from both a theoretical and experimental perspective. In
this regard my dissertation scrutinizes existing approaches to explain phase syn-
chronization phenomena in oscillatory neural networks.

The main contributions are twofold. The first part provides an extensive in-
troduction to phase reductions of general oscillatory networks. As an inventory
of different phase reduction techniques, its contribution is mainly methodologi-
cal. In due course, the examination of existing techniques, their comparison and
juxtaposition, as well as extensions of the techniques have been guided along the

question

o What is the best way to distill the phase dynamics of a complex oscillatory

network?

The second part addresses more specific applications of phase models in the
realm of computational neuroscience. The aim is to explore the scope of phase
oscillator networks for describing neuronal synchronization phenomena. Accord-
ingly, a rigorous reduction of oscillatory neural networks into appropriate phase
models is here of less concern than identifying which synchronization patterns can
be realized when focusing on phase dynamics alone. The key advantage of phase

models is that a particular class of them can be rigorously analyzed within the
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Ott-Antonsen theory. Describing the network synchronization in terms of the Ku-
ramoto order parameter introduced above, the theory allows to derive an exact
low-dimensional system of differential equations that governs the time evolution
of the Kuramoto order parameter. An immediate question is whether the restric-
tions on the class of phase models applicable for the Ott-Antonsen theory can be

loosened. The corresponding research question thus reads:

e Under which circumstances can a low-dimensional description capture the

collective dynamics of complex phase oscillator networks?

Even if phase models do not fall in the applicable class, the concept of phase
synchronization remains very appealing for its direct expression in the easy-to-
interpret Kuramoto order parameter. This suggests to reduce biophysiologically
realistic neural oscillator models into phase models. While the former establish
an immediate link to neural recordings, the latter conveniently capture the phase

dynamics of interest. But, and this becomes the third research question:

e Do phase oscillator networks cover seminal characteristics of experimental

data from the cortex?

This dissertation strives for shedding light on these three research questions.
They are, understandably, intricately linked with one another. Yet, answers to
them have to be found in different fields such as nonlinear dynamics, complex
systems, and bifurcation theory. Combining insights from mathematical analyses,
numerical simulations and experimental data analysis will aid to explore and to

model phase synchronization phenoma of oscillatory neural networks.

1.4 Qutline of the dissertation

In Chapter 2 1 provide the mathematical backbone of phase reduction techniques.
After a more general introduction to the phase description of oscillator networks,
I explicate different analytic and numeric phase reduction techniques including an
outline of the mathematical theory that is necessary to distill the phase dynamics
from network models of coupled oscillators.

The different reduction techniques will be applied subsequently to two classic
examples in Chapter 3. Performing the phase reductions point-by-point allows
for a thorough comparison between analytic and numeric techniques as well as
between model predictions and the actual collective network behavior.

Chapter 4 is devoted to network-network interactions between populations of

heterogeneous phase oscillators. Dwelling on the Ott-Antonsen ansatz, I derive the
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governing equations of the collective dynamics of two coupled networks and investi-
gate their possible synchronization patterns. Moreover, I compare the macroscopic
dynamics to those of a single network with a bimodal frequency distribution.

In Chapter 5 1 extend the applicability of the Ott-Antonsen ansatz to parameter-
dependent oscillatory systems. This is illustrated for a network of quadratic
integrate-and-fire neurons, for which I derive the exact dynamics of the macro-
scopic observables. Moreover, I briefly revise a variety of further complex network
examples that fall within the class of parameter-dependent systems that is appli-
cable for the Ott-Antonsen ansatz and thus entails a low-dimensional description
of the network dynamics.

The model performance of neurophysiological phase oscillator networks is tested
against experimental data from the human cortex in Chapter 6. The resting state
MEG data feature two distinct notions of criticality, namely partial phase syn-
chronization and scale-free temporal dynamics. Given two seminal neural mass
models, their respective phase dynamics is derived and analyzed with respect to
these two dynamical features of criticality.

Finally, Chapter 7 provides a general discussion of the results of this dissertation
and their implications. The use of phase models in computational neuroscience
thrives on the straightforward link to identify (phase) synchronization phenomena
in networks of coupled neural oscillators. In view of the main research questions
I will reflect on the reduction of phase models from complex oscillator networks,
on the power of such phase models and on the involved macroscopic observables.
I also address the modeling of complex dynamic spectra of experimental data,
the representativeness of neural mass models as neural oscillators and possible

extensions of the presented work.
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CHAPTER

Phase reduction techniques

for oscillator networks

Investigating the dynamics of a network of oscillatory units is a timely and urgent
topic at the frontiers of science. Often, the focus is on phase synchronization prop-
erties that are believed to play an important role in information transfer within a
network. Defining the phase dynamics, however, is not a trivial task per se. The
literature provides an arsenal of solutions, in particular for the case of so-called
weakly coupled oscillators. Here, we provide a catalogue of popular techniques for
deriving such phase dynamics. They fall into three classes. (i) Many phase reduc-
tion techniques starting off with a Hopf normal form description provide mathe-
matical rigor. Unfortunately, they come with a caveat in that the proper normal
form has to be derived first. We explicate several ways to do that, both analytically
and numerically. (ii) Other analytic techniques capitalize on time scale separation
and/or averaging over cyclic variables. While appealing for their more intuitive
implementation, they often lack accuracy. (iii) Direct numerical approaches help
to identify non-trivial network behavior but come at the cost of exhaustive and la-
borious parameter scans. We here review the necessary mathematical details that
underlie the different phase reduction techniques and prepare them for further ap-

plication.

Adapted from: Pietras B., Daffertshofer A. (2018). Network dynamics of coupled

oscillators and phase reduction techniques, (Sections 2 — /). Under review.
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2.1 Phase dynamics of oscillator networks

Recorded signals from oscillator networks often stand out for their dynamical rich-
ness, which is typically manifested in non-trivial or complex macroscopic dynamics.
In a network, macroscopic complexity emerges through an interplay of the activity
of individual nodes. The interaction between the nodes can hence be considered
crucial for the complexity of the network as a whole. To provide a dynamical
account of this macroscopic behavior, one typically introduces phases and ampli-
tudes at every node, even if the precise oscillator dynamics are unknown. In fact,
this dynamics might already be very complicated. However, if phase-amplitude in-
teractions can be neglected at the nodal level, the respective phase and amplitude
dynamics decouple from one another. In this case it suffices to focus on the first.
Eventually, the macroscopic network dynamics can be expressed in terms of nodal
phases only. The separation of phase and amplitude dynamics at the nodal level
is a typical characteristic of weakly connected networks, or, more specific, weakly
coupled oscillators. The attribute ‘weak’ implies that at every node, perturbations
through external forcing or internal coupling are sufficiently small when compared
to the size of the state variable of the unperturbed, single-node dynamics. Large
perturbations may induce a qualitative change in the network dynamics rather
than mere quantitative adjustments that, in the case of isolated perturbations,
will lead to an asymptotic return to the state prior to the perturbation. Put dif-
ferently, there is a critical strength of perturbation at which the network undergoes
a transition from one macroscopic behavior to a qualitatively distinct macroscopic
behavior. This critical value is arguably reached whenever a bifurcation in the
dynamics occurs in at least one of the nodes. Then, dynamical systems theory no
longer allows for describing the node evolution by its linear approximation. We
will hence assume that this critical perturbation strength will not be exceeded,
implying that the nodes of the network are weakly coupled.

To illustrate a weakly coupled network, we sketch five nonlinear oscillators in
Fig. 2.1. Every node shows oscillatory behavior in the two-dimensional state vari-
ables @y = (vg,yx) € R* k = 1,...,5. In the absence of coupling, the nodal
dynamics will converge towards stable limit cycles in the x — y planes shown in
Fig. 2.2. There is a closed orbit in the coordinate plane!!l spanned by the two state

variables xj and y;,. Each of the state variables is periodic in time, x4 (t) = 2, (t+71)

(I Usually, this coordinate space is called the phase space. In two dimensions, it is also referred
to as the phase plane of xj and y;. However, to avoid confusion between the ‘phase as a
state’ and the ‘phase as function of time’, we stick to the notion of ‘coordinate plane’. For the
same reason we do not adopt the notion of ‘phase transitions’ but rather refer to ‘qualitative
changes in macroscopic behavior’ to describe the transition from one dynamical regime of the
collective dynamics to another.
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<~ R Ay xxX<— 7

Figure 2.1: A network of weakly coupled planar limit cycle oscillators. Each oscillator
k=1,...,N =5, is described in the two-dimensional state variabels x = (xx, yx).
The coupling between oscillators is depicted as red arrows. Without coupling, each
oscillator follows the blue limit-cycle trajectory. Upon perturbution, the oscillator will
be kicked away from the limit cycle and follows a trajectory that leads exponentially fast
towards the globally attracting limit cycle. Globally attracting implies that the basin
of attraction spans the whole x — y plane except for the unstable origin (red). Two
trajectories from within the basin of attraction are shown in black.

and yx(t) = yx(t+71") for some period 7" > 0. On the limit cycle, one can introduce
a phase 0 = 0°(t) that increases monotonically from 0 to 27 during one period T
after which it is reset to zero — throughout this Chapter, the superscript C indicates
that the variables are evaluated exactly on the limit cycle. A perturbation, e.g.,
via the coupling to another oscillator x;.;, can kick the oscillator away from its
limit cycle. If the perturbation is weak enough and the oscillator remains in the
so-called basin of attraction of the limit cycle, the oscillator’s trajectory will spiral
back into the limit cycle; see Fig. 2.3 (panel a). As will be shown below, also in
this case a monotonically increasing 2m-periodic phase can be defined that we will
denote as 6 = 0(t).

Next to the phase, one can define an amplitude variable r; that describes the
distance to the limit cycle. This amplitude variable is different from the actual
amplitude Ry of oscillator k, which is given as the (Euclidean) distance to the
center of oscillation, which we set to the origin, such that R} = 27 + y; Fig. 2.3
(panel b). While the amplitude of the limit cycle oscillation R§ wobbles steadily
around a constant, non-zero value, the amplitude R;, approaches Rj, after a short
transient. By contrast, the amplitude variable r; is the distance to the limit cycle:
rr = R — Ry. It converges to zero as the oscillator reaches the stable limit cycle.
In general, one can convert the amplitude variable r, to the actual amplitude of
oscillation R, and vice versa. In the following, we will refer to the distance to the
limit cycle r; as the amplitude dynamics unless stated otherwise.

Phase and amplitude descriptions can readily be extended to oscillatory dy-
namics in more than two dimensions. And, if oscillators approach their respective
limit cycles exponentially fast, one can focus solely on the phase dynamics. The
different time scales at which fast amplitudes and rather slow phases evolve allows
for time scale separation. If additionally the perturbations are sufficiently weak so

that the oscillators are not kicked too far off the limit cycle trajectory, the ampli-



Phase reduction techniques 18

tude values will converge to their asymptotic value in a fraction of a period; see
Figure 2.3. Hence, it appears reasonable to consider the amplitudes constant and
approximate them with their asymptotic values. In consequence, one can represent
a high-dimensional dynamics at every node by its one-dimensional phase dynam-
ics only. This greatly facilitates the study of synchronization and other complex
collective phenomena in oscillator networks.

In the following, we will provide a rigorous account of how the network dynamics
of weakly coupled oscillators can be reduced to a phase model. To do so, we
presume that the network consists of N > 1 nodes, whose dynamical state is given
by the vector @), = xx(t) € X, k =1,..., N, where X C R" is an n-dimensional
state space. The evolution of the state vector is governed by the dynamical system

&, = Fp(x1,...,xN; i), which shall be of the form!?

i, = fr(xe; ) + kg (1,22, ..., TN) - (2.1)

The function f,: R® — R" determines the node-specific dynamics without cou-
pling, while g, : R¥*" — R™ comprises all coupling effects on oscillator ) through
other nodes ;.. The overall coupling strength is denoted by x € R and py, are

bifurcation parameters. We will further impose three main assumptions:

(1) The network is weakly coupled. In particular, we assume that the coupling

strength k < 1 is sufficiently small that it cannot induce bifurcations, that

2] In general, the vector field F, = Fi(xy,...,xN,t), and hence also f, = f.(xx,t) and

gr = gi(x1,...,xN,t), can explicitly depend on time ¢. The theory developed below also
holds in this non-autonomous case. For the sake of conciseness, however, we consider here
only autonomous individual dynamics f; and state-dependent coupling g; without further
time variations and refer to Section 3.3 for a corresponding discussion.

b) c)
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Figure 2.2: An uncoupled planar limit cycle oscillator. (a) The two-dimensional state
variable @y = (x, yx) follows a closed periodic orbit in the z — y plane, the oscillator’s
limit cycle. (b) The state variables x(t) = (¢t +T) and yg(t) = yx(t + T') are periodic
in time. (c) The corresponding phase 6 of the oscillator increases monotically between
0 and 27 during one period T'. We choose a reference point on the limit cycle where the
value of yj, is maximal, see the dashed lines in (a) and (b). Whenever the oscillatory
crosses this point, the phase is reset to 6§ = 0.
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Figure 2.3: Amplitude and phase description. (a) Two trajectories (black, red) converge
to the oscillator’s limit cycle (blue). (b) The amplitudes in oscillation R? = 22 + y2 as
the distance from the origin. (c) The amplitudes ry = R} — R}, denote the distance from
the limit cycle C. (d) The respective phases 6 coincide for all times ¢ > 0.

is,
0 < |k| < k| < 1.

(2) The oscillators are nearly identical, i.e. the node-specific dynamics can be
written as f, = f + ef,, for some small fluctuations f, with |e| < 1; these

fluctuations will be subsumed into the term xg;.

(3) The coupling structure is pairwise, i.e. the coupling function can be decom-

posed into the sum of pairwise interactions, unless stated otherwise.

By virtue of these assumptions, one can rewrite the dynamical system as

&y = f (zp; 1) + Hzgkj (zk, ;) (2.2)

j=1

with pu being a general bifurcation parameter. In the remainder of this section we
will introduce the mathematical ingredients that enable us to transform (2.2) into

the phase model

N
9k:w+KZij (Hk—ej) . (23)

j=1

In particular, we will characterize the state @, of every oscillatory node by a phase
variable 6, k = 1,..., N. The corresponding phase dynamics comprises a natural
frequency term w and contributions from the other oscillators. These contributions
sum up by means of the so-called phase interaction functions Hy; that depend on

the pairwise phase differences 6, — 6; between oscillators k£ and j.
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2.1.1 Phase definition

The detailed form of oscillators may vary substantially within and between net-
works under study. To define phase variables, the oscillatory dynamics are required
to exhibit self-sustaining limit cycle oscillations. We illustrate this for the case of

a single oscillator that we write as

T = er Z, P, )
. (z,p; 1) (2.4)
p = Fp(x,pip) -

The vector & = x(t) € X C R" represents the state variables x1,zo,..., 2, € R

that evolve according to a vector field F,. This dynamics is subject to perturba-
tions p = p(t) € R", whose evolution is governed by a vector field F,. As said,
i is a general bifurcation parameter that we will drop in this section whenever
possible to ease legibility. If we consider merely additive perturbations, the first

equation in (2.4) becomes

& = f(@)+ wplt) (2.5)

where the perturbations are scaled by the parameter x, which is typically con-
sidered small. In light of the network cases (2.1) and (2.2), the intrinsic network

coupling is simply replaced by the external perturbations p.

Oscillators If a solution x(t) of (2.4) is periodic in time, x(t) = x(t + 1) for
some constant 7" > 0, then (2.4) describes oscillatory dynamics. For a given
vector field F = (F,,F,) one can associate the flow ¢(t) with F starting at
some initial state @y € X as ®(t) = &(t;xo, p). If (2.4) exhibits a stable time-
periodic dynamics without external perturbations, p = 0, then the dynamical

system & = F,(x,0) = f(x) describes an oscillator and the corresponding flow
will be denoted by x(t) = ¢(t; xo).

Limit cycles & basin of attraction The stable, non-constant, time-periodic so-
lution x¢(t) = x°(t + T') of an oscillator & = f(x) follows a trajectory along a
closed periodic orbit C C X. This stable periodic orbit is referred to as the oscil-
lator’s limit cycle. If we choose an initial condition x(¢y) = x§ € ¢ on the limit
cycle, then the unperturbed flow ¢(t; x§) will stay on C for all times ¢t > t;. One

can parametrize the limit cycle as the set

C={xfeX|x=0o(x;), t[0,T)} . (2.6)
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The smallest positive constant 7' > 0 such that C in (2.6) is a closed orbit is called
the period. The corresponding angular frequency w of the oscillator ¢ will be
w = 27/T. We always consider the limit cycle C to be hyperbolically stable and
without self-crossings.

A hyperbolically stable limit cycle C attracts all solutions with initial condi-
tions &y € B in a close vicinity B = B(C) of C. The maximal open set of these
initial points is the basin of attraction. Formally, it can be given by B(C) :=
{xp € X | limy_,oo dist(o(t; p),C) = 0}, where dist(z,C) = infgecc [ — €2 is
the distance from & € X to the set C C X in the Euclidean norm ||-||2 on R™.

Phase The limit cycle C is a one-dimen-sional manifold in R”. Every one-
dimensional manifold can be parametrized by a scalar variable. In the case of
limit cycle oscillations, the most appropriate variable is the phase ¢ that results
from a smooth bijective phase map ©: C — S', where O(z¢) = ¢°. Naturally, a
phase-reparametrization of the limit cycle (2.6) can be achieved by introducing
0 = wt.

The notion of phase can be extended to the limit cycle’s basin of attraction
B(C). This is an important statement because it underlies all of the to-be-discussed
mathematical descriptions of phase dynamicsi®. We briefly show that this is true:
Without loss of generality, we consider a reference point xf of zero phase by putting
O(x§) = 0. In the absence of external perturbation, the phase #° increases con-
stantly on the limit cycle C. In particular, we have 8¢ = O((t; xf)) = wt+O(xf) =
wt and 6° = w. Within the basin of attraction, one can define the unique asymp-
totic phase 6 of the oscillator € B(C) as

0 .= O(xz) € [0,2n) (2.7)

such that limy_, ||¢(t; ) — &(t; ¢(0/w; x§))||2 = 0 holds. The asymptotic phase
0 increases along all unperturbed trajectories by means of § = wt + ©(x) at the
same constant rate w. This enables us to use ¢(t) and x¢(6) interchangeably when

parametrizing the time ¢t = §/w along the limit cycle. We can therefore rephrase

3 While arguably abstract, our notion of phase enables us to define a phase even for non-smooth

oscillators. An example for this is a so-called integrate-and-fire dynamics, in which a scalar
state variable x monotonically increases according to & = f(x) between two thresholds v, < vy
with f(z) > 0 for « € [v,,v¢]. When reaching the upper (firing) threshold vy, the state will
be instantaneously reset to the lower (reset) threshold v, and start integrating again. In that
case one can define the asymptotic phase map © as the bijective change of variables

S |
L T™

with the threshold values v, and vy mapped to # = 0 and 6 = 27, respectively.

O):z—w
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the condition above that defines the asymptotic phase more intuitively as

lim |z(t) — ¢ (6(t))| = 0. (2.8)
Isochrons Sets of points & € B(C) with the same asymptotic phase O(x) = 0
are called isochrons. Accordingly, (2.8) can be regarded as the isochron condition.
As to a rigorous definition, the isochron Z(6) associated with the phase 6 is the
set Z(0) := {x € B(C) | ©(x) = 0}, which is a co-dimension one sub-manifold in
B(C) that transversally crosses the periodic orbit C.
We illustrate the concept of isochrons and the asymptotic phase map in Fig. 2.4.
The isochrons are perpendicular to the limit cycle. In general, isochrons cover the
whole basin of attraction B(C). In mathematical terms, they define a so-called

fibration of B(C).

Z(0o)
mg 0
Z(01) 61 St
0: B(C) = §'
—_—
C 0$6
Z(06) O

Figure 2.4: Phase map O: B(C) — S! associates to each point x; in the neighborhood
B(C) of the limit cycle C an asymptotic phase 6; € S!. The set of all points in B(C)
that are mapped onto the same phase 6 forms the isochron Z(#) associated with phase
0. Shown are ten isochrons associated to the phases 0, = nT/10, n = 0,...,9. An
arbitrarily chosen reference point xf € C serves as the initial phase 6 = 0.

2.1.2 Phase response

Phase response curve The phase response curve or phase resetting curve is a
crucial determinant for the interaction between oscillators. It measures to what
extent an external perturbation p(¢) advances or pushes back the asymptotic phase
of an oscillator. A perturbation thus leads to a phase advance or phase delay,
respectively. More formally, given a trajectory () along the limit cycle subject to
a pulse-like perturbation p(t) during an infinitesimal time interval T = limg_,o(to—
d,to+0), i.e. p(t € T) # 0, an immediate strategy to identify the corresponding
phase response G (6, p) at phase 6y = ©(x(ty)) reads:

(i) determine the perturbed point lims_,o &(to+0) € B(C) and its corresponding
asymptotic phase O(&);
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(ii) take the difference between the perturbed asymptotic phase and the unper-
turbed phase ©(x¢) = 6y;

(iii) repeat (i) and (ii) for all phases 6y = 6 € S* in order to determine the phase

response curve
Gt;p)=0(x) -0 (z) =0 (x"+p) -0 . (2.9)

One can determine the phase response curve also for arbitrary perturbations during
finite time intervals T = (to,t1) with ¢; > ¢o. For this, the first step above has to
be modified slightly:

(in) determine the perturbed point &(t1) = ¢(t1; &(ty), p) = ¢(t1; x(to), p) and
the unperturbed one x°(t;) = ¢(t;x(ty)), as well as the corresponding
(asymptotic) phases ©(x(t1)) and O(x°(ty)).

The dynamics has to be integrated to determine both the perturbed and unper-
turbed state at time ¢ = ¢;. One can continue integrating for longer times, ideally
for t — oo and, subsequently, estimate the asymptotic phase difference according

to
G(0:p) = © (lim o(t:2°(1o), p)) — © (lim o(t:2 (1)) -
Note that this definition coincides with

G(0;p) = © (o(t1; (o), p)) — O (B(t1;x(t0))) -

In the following we will only consider pulse-like perturbations p(¢) that are
non-zero at the time instant ¢y of the pulse, and therefore omit the explicit time-

dependence of p.

Infinitesimal phase response curve If the perturbation is pulse-like, i.e. T —
d(to), and sufficiently weak, |p| < 1, then it is convenient to express the phase

4. Using the direc-

response in terms of the infinitesimal phase response curvel
tional derivative DO(x) [y] := limy,—0[O(x + hy) — O(x)|/h, we can define the

infinitesimal phase response curve as a map @ : S! — R with
Q) := DO (x°) [0pF (z°,0)] = V,0 (x°)-0pF (2,0) .

Here, we expressed the directional derivative as the inner product in R". V,0(x)

denotes the gradient of the asymptotic phase map © evaluated on the limit cycle C,

[4] Several papers refer to this as infinitesimal phase resetting curve or phase response function.
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and 0, F (x¢,0) corresponds to an infinitesimal perturbation from the limit cycle

trajectory ¢ at phase 6.

Phase sensitivity function The afore-introduced gradient now written as
Z(0) = V.0 (x°(0)) = VO(X)|p—geg) » (2.10)

can serve to determine the phase response. Z: S' — R" is commonly referred to
as phase sensitivity function or linear response function®®. It is closely related to
the infinitesimal phase response curve Q: If 0,F (¢, 0) is a unit vector e; along
the j-th direction, then we have Q(6) = Z;(6). In fact, this follows immediately
from the dynamics (2.5) with uni-directional additive perturbation xp = xe;. The
phase response curve (2.9) can always be computed using ()() since the definitions
(2.10) and (2.9) imply

2,(6) = tim S:2%1)

lim == (2.11)

In Fig. 2.5, we depict the phase sensitivity functions of two classic examples,
the Stuart-Landau and the Rayleigh oscillator. The components of Z = (Z,, Z,)
describe the effect of infinitesimal perturbations in the z- and y-direction, re-
spectively. While the phase sensitivity function of the Stuart-Landau oscillator
is sinusoidal in both components, the slightly angular limit cycle dynamics of the
Rayleigh oscillator results in more complicated phase responses as indicated by

the phase sensitivity function.

a) b) c) d)
1.5 15 15 1.5
1 1 1 1
0.5 < 05 0.5 < 05
N N
= 0 = 0 = 0 = 0
5 S
05 <05 -0.5 <05
-1 -1 -1 -1
-1.5 1.5 -1.5 1.5
-1 0 1 0 w2 =« B3m2 2r -1 0 1 0 w2 7 3m2 2n
X Phase 0 X Phase 0

Figure 2.5: Phase response of limit-cycle oscillators. (a) Circular limit cycle of the
Stuart-Landau oscillator 2 = z — (1 +1)|z|?z with z = z + iy and (b) the two sinusoidal
components of the phase sensitivity function Z = (Z,, Z,), characterizing the response
to infinitesimal perturbations in the x- and y-direction, respectively. (¢) The Rayleigh
oscillator # =y, = —w + (1 — 2%)y and (c) its phase sensitivity function.

2.1.3 Phase dynamics of a single oscillator

For infinitesimal perturbations |p| < 1, the phase response curve (2.9) can be

linearly approximated by the aforementioned phase sensitivity function (2.10) in
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terms of
G(0;p)= Z(0)p. (2.12)

Whenever the dynamics stays close to the limit cycle C, one may further approx-
imate each x by its corresponding value ¢ on C such that the reduced phase

dynamics can be given by
0=w+GO:p)=w+ecZ(0)p. (2.13)

In (2.13) we used the parameter Kk = ¢ < 1 to indicate that the perturbation is
very small. In other words, the phase response to a weak, pulse-like perturbation
p at phase 0° can be approximated by the product Z(6°)-p.

More rigorously, small perturbations |p| < 1 do not kick the oscillator too far
away from the limit cycle C and the dynamics @ can be approximated sufficiently
well by the value on the periodic orbit, x(t) ~ x(t), see Fig. 2.3. Moreover, one
can formally expand the dynamics & = F(«, p) for small p around the unperturbed
dynamics f(x), i.e., F(x,p) = f(x) + 0pF(x,0)p + O? (p). Taken together, we
obtain the asymptotic phase dynamics

0= %@(w) = V,0(z) & ~ V,0 ()& = V,0 (x°)-[f(z°) + 0,F (z°,0) p|
and because 0° = V,0(z°)- f(x) = w holds, this form reduces at first order to
(2.13).

2.1.4 Phase dynamics of oscillator networks

The phase model (2.13) can be extended to a network of oscillators xi,...,xy
with dynamics (2.2). In the uncoupled case, i.e. for k = 0, the systems &) =
f(xx) have the same hyperbolically stable limit cycle C with period 7" > 0 and
frequency w = 27 /T. Starting again with defining phase variables 6, according
to the isochron condition (2.8) and following the same reasoning as in the single

oscillator case, we end up with
‘ N
O =w+KZ (00> gu Ok, 05) ;
j=1

here, we abbreviated g,;(0r,0;) = g4;(z°(0r), 2°(0;)). If the coupling is again

sufficiently weak, one can make use of averaging. For this, we introduce relative
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phase variables 6, = ¢y + wt and find

N
O =k Z (p +wt) Y gy, (6 + wi, 65 + wi)

j=1

with 0 < k < 1. In order to apply averaging appropriately, the (relative) phases
o1 have to be slow variables. To be precise, they have to be so slow that they
do not vary within a period. Then, one can average the right-hand side over one

period, which yields the sought-for phase dynamics (2.3),

N
ék:ermZij(@k—@j) :

J=1

with the phase interaction function

) =5 [ Z(e+0)gito+¢) de. (2.14)

More detailed derivations can be found in, e.g., Kuramoto’s seminal book*® (Chap-
ter 5) or Ermentrout and Terman’s textbook®®(Chapter 8.3); see also the recent
review®” by Nakao.

In what follows, the network (2.2) and its phase dynamics (2.3) will be our
central equations. We will present different ways how to determine the phase
interaction function (2.14). Obtaining analytical expressions of Hj; can be an
arduous endeavor. The exact determination of the natural frequency w as well as
of Hy; depends on an accurate description of the limit cycle and related quantities,
e.g., the phase map © of every oscillator x;. Accordingly, one would determine
the phase sensitivity function Z first and subsequently Hj;. How this can be
done numerically will be sketched in Section 2.3. Numerics, however, may fail to
unravel the details about the link between the original oscillator dynamics and the
reduced phase model. Therefore, we start with an overview of analytic approaches

in Section 2.2.

2.1.5 Collective behavior

Before going into the details of phase reductions of complex oscillator networks, we
briefly recapitulate how macroscopic behavior may look like and how it is typically
evaluated and categorized. The by now conventional outcome measures will be
included in our quality assessment of the to-be-explained techniques. For the sake
of simplicity and in line with our main assumptions above, we consider a pairwise

coupling structure where the existence of a link between two oscillators k # j is
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prescribed by adjacency values Cj;. Moreover, we consider the pairwise coupling
functions gy ;(xk, ;) = Cijg(xr, x;) to differ only by this factor. This leads to
a slight simplification of the oscillator network dynamics and the corresponding
phase dynamics, but suffices to prepare various examples to come.

Considering pairwise coupling, the general dynamical form of (2.2) reduces to
o
e = flawn) + > Crig(ay, z;) (2.15)
j=1

When the coupling matrix C' = {Cj;}, ; has only binary entries, it is also referred
to as adjacency matrix. The pairwise coupling structure in (2.15) leads to the

phase dynamics

N
. K
0 :w+N;ijH (Qk—gj) , (2.16)

where H is the sole phase interaction function. Comparing this with (2.3) and
(2.14), we have replaced Hy; with Cj;H so that we have to determine the phase
interaction function only once instead for each pair of oscillators individually.
Moreover, the function H is periodic with period T" = 27/w. It can hence be

expressed as a Fourier series

H®) = Z an, cos(ny) + by, sin(ny) . (2.17)

n>0

The (number of ) Fourier components a,, and b,, insinuate the ‘degree of complexity’
in the phase dynamics. In fact, including higher harmonics (n > 1) may give rise
to modularity and clustering of phases, or even to switching behavior between

clusters.

2.1.5.1 Synchronization

Synchronization and de-sychronization are arguably the most discussed phenom-
ena in oscillator networks. In case of two coupled oscillators 1 and 2 with (s =
C51 = 1, conditions for their synchronization can be summarized as follows. If
the oscillators have identical natural frequencies, w; = ws, and the frequency mis-
match A = w; — wy vanishes, then the oscillators will synchronize in-phase with
01(t) = O5(t) for large enough ¢ or out-of-phase with |01(t) — 65(t)| = m. In fact,
when defining T'(¢)) = H(¢)) — H(—1)) one can write 6, — 6, := 1) = A+rxT'()). The
resulting in-phase synchronized solution ¢ = 0 is stable for kI'(0) = 2H'(0) > 0.
In this case, the phase model exhibits attractive coupling. On the other hand,
the anti-phase solution, ¢ = =+, is stable if kH'(+m) > 0. Then one speaks of

repulsive coupling. For non-identical oscillators, wy # wj, phase locking or mutual
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synchronization, can be observed as long as kminI'(¢)) < A < kmaxI'(¢)) holds.

All these properties can be extended to networks of more than two coupled
oscillators. To illustrate this, we consider positive coupling strengths £ > 0 from
now on, unless stated otherwise. If H () consists only of first harmonics, i.e.
ay,by # 0 but a, = b, = 0 for all n > 1, we retrieve the seminal Kuramoto-

Sakaguchi model

N
ék:wk—nZsin(Gk—Gj—i—a)

Jj=1

with phase lag parameter a. In our previous notation, we have Cy; = —1 for all
k,j. The special case o = 0 yields the classic Kuramoto model, for which a; = 0
and b; > 0. By construction, the Kuramoto model ‘only’ features attractive cou-
pling. The more general Kuramoto-Sakaguchi model, whose phase interaction
function is commonly written as H(¢)) = Asin(¢ + «), exhibits also attractive
coupling®® for |o| < 7/2. In networks of identical and globally coupled oscilla-
tors, the strength of (attractive) coupling can be arbitrarily small such that the
network synchronizes. For non-identical oscillators, by contrast, the heterogeneity
in the natural frequency terms tends to suppress synchronization. Yet, when the
coupling exceeds a critical value, a transition to collective synchronization can be
observed 3885,

Commonly, the degree of network synchronization is measured in terms of the

complex Kuramoto order parameter defined as

N

. 1 )
Re'’ = v > el (2.18)
k=1

The modulus R and the complex argument W represent the amplitude and phase,
respectively, of collective oscillations, that is, of the mean field behavior. R takes
values between R = 0, corresponding to a fully incoherent state, and R = 1,
corresponding to complete synchronization of all oscillators. The Kuramoto model
provides a seminal example of a synchronizable phase oscillator network. In the
continuum limit, N — oo, and for an appropriately chosen distribution g(w) of
natural frequencies, it can be solved analytically. When increasing the coupling

strength, the real-valued Kuramoto order parameter R undergoes a pitchfork-

5] We can use trigonometric identities to write a; cos(¢)) + by sin(y)) = Asin(¢y + a) with A% =
a? + b? and o = arctan(a; /by ); the latter is the quadrant corrected inverse tangent. If we fix
the sign of A by imposing A = sgn(b1)[a? + b3]'/2, we find a = arctan(a; /by) € (—7/2,7/2)
for by > 0, and |a| > 7/2 for by < 0. Hence, the coupling is attractive whenever by > 0. When
b1 < 0, the repulsive character of the coupling can be revoked through negative coupling
strengths £ < 0, in which case kA > 0. On the other hand, using the convention sgn(A4) =
sgn(ay), synchronization may not occur when kA > 0 is fulfilled.



Phase reduction techniques 29

bifurcation at a critical value (which depends on the properties of g) and the state

of the network switches from incoherence to (partial) synchronization se¢388L87,

Stability of the synchronized solution

A different approach to assess the network behavior of identical, coupled systems,
not necessarily phase oscillators, is based on the master stability function (MSF)
formalism®. The MSF approach is used to determine the stability of the fully
synchronized state, corresponding to a vanishing order parameter R = 0, in terms

of the eigenstructure of the connectivity matrix S 15089,

For our phase model
O =w+rY i CriH (0 — 0;), we are interested in the stability of the synchronous
state 0, = 0 for all k, that is, 6, — 0, = 0 for all j # k. Given that close to full
synchrony the phase differences tend to be small, we can expand H around the
origin and find at first order H (6, —6,;) ~ H'(0)[0,—0;]. Writing the phase model in
vector form, one can find the Jacobian H at the synchronous state ©g = (6,...,0)
with entries f[kj having graph-Laplacian structure ﬁkj = rkH'(0) (C’kj —0kj D> C’kl).
The (linear) stability of the synchronous state here depends on the eigenvalues of
H. We note that one eigenvalue is always zero. If the network is globally coupled,
i.e., C; = 1 for all j, k, the synchronized state is stable if kH'(0) > 0 and unstable
if kH'(0) < 0 61 Nicosia and co-workers recently used a similar approach to
investigate the mechanisms behind remote synchronization behavior®. When full
synchronization cannot be achieved, network symmetries play a crucial role in

establishing functional modules, which do not even require structural connectivity

as represented in the adjacency matrix Cy;.

2.1.5.2 Between incoherence and full synchrony

Observed macroscopic behavior emerges from the dynamics of the network’s nodes.
However, collective dynamics also influence the individual oscillators in turn. It is
therefore often convenient to rewrite the phase model (2.16) & (2.17) in the form

of a single oscillator that is driven by the mean field variables R(t) and W(¢):

O = wi + K Z an(R) cos(¥ — 0y) + b, (R) sin(¥ — 0) . (2.19)

n>0

The Fourier amplitudes a,,b, now depend on R, possibly in a nonlinear way.
Rosenblum and Pikovsky investigated a form of the Kuramoto-Sakaguchi model %092
where a; and b; depended on both R and R3. Due to this nonlinear coupling, a
self-consistent partial synchrony solution can arise with 0 < R < 1 at the bor-
der between stability and instability domains for the synchronous state. More-

over, Rosenblum and Pikovsky found a mismatch between the time-averaged fre-
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quencies of the oscillators and the frequency of the mean field, which they called
self-organized quasiperiodic solutions. Detecting these non-trivial states requires
a more careful inspection of the network behavior than merely considering the
(averaged) evolution of the order parameter. Poincaré sections can hint at the
quasiperiodic character of the mean-field solution. Furthermore, the evolution
of the (instantaneous) phases, or of their distribution, sheds light on the actual
collective dynamics.

Higher harmonics in the phase model increase the variety of non-trivial net-
work behavior. For instance, for a biharmonic phase interaction function H, i.e.
where in addition as, by # 0, the occurrence of balanced two-phase-cluster states
is expected, and has frequently been reported®°. In particular, one can indicate
stability boundaries for cluster states according to the eigenvalues associated with
intracluster and intercluster perturbations, respectively. The eigenvalues for intr-
acluster perturbations can be computed as A\ = 3~* by, with b, m = kn,
the (odd) Fourier amplitudes of H. Combining them with those for interclus-
ter perturbations, we can determine the stability of synchronized (one-cluster,
Alntra) and anti-phase cluster solutions (balanced two-cluster, A2 \inter) ysing
Aptra = H'(0), Abtra = L (H'(0) + H'(r)), and A = H'(w). The biharmonic
phase model will feature global synchrony for kb; > 0, and a balanced two-cluster
state will be realized if kb; < 0 and by > 0. Moreover, heteroclinic cycles may
occur when kb; < 0,kby < 0 and by is comparable to by. Heteroclinic cycles de-
fine a slow switching behavior of individual oscillators between two clusters. As
illustrated in Fig. 2.6 (panel a), slow switching is characterized by spontaneous

decreases of the real-valued Kuramoto order parameter (top panel). During these

0 500 1000 1500 2000 2500

i L L
2350 2400 2450

2400 0 50 100 150 200 250
Time (in s) Time (in s)

(a) Slow switching (b) Oscillating three-cluster state

Figure 2.6: (a) Slow switching between two clusters in a network of N = 1000 bi-
harmonically coupled phase oscillators. (b) Oscillating three-cluster state for N = 30
identical phase oscillators with phase interaction function H(v)) = v2sin(y + 7/4) —
0.09sin(2¢)) 4+ 0.16 sin(3¢)) — 0.09 sin(4¢) — 0.03 sin(5¢)) — 0.06 sin(6¢)). Top panels: time
evolution of the real-valued Kuramoto order parameter. Bottom: time evolution of the
individual phases.
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rapid drops of synchrony some oscillators switch from one cluster to the other
as can be seen in the corresponding phase evolution (lower panel). Kori and

Kuramoto 2697

argued that slow-switching may be explained as an effective con-
vergence to an unstable unbalanced two-cluster solution, and explored the effect
of delay on the robustness of the mechanism.

Clusella and co-workers summarize the possible macroscopic dynamics for identi-
cal biharmonically coupled phase oscillators in®®. They also reported self-consistent
partial synchrony solutions; see also the work by Komarov and Pikovsky for an
analytic account of the network behavior for a biharmonic coupling function %1%,

When further increasing the number of harmonics in the phase interaction func-
tion, even small networks of identical phase oscillators can display very rich col-
lective behavior up to macroscopic chaos, as has been shown for fourth harmonics
in'%'. Numerical simulations can give insight into the variety of clustering behav-
ior when more than two harmonics are present; e.g., Okuda reported an oscillating

three-cluster state in”3

. While the order parameter dynamics may hint at such
non-trivial network behavior, it typically fails to provide a clear picture of the
actual phase dynamics. The oscillating order parameter in Fig. 2.6 (panel b, top)
does not provide any sign that there are actually three oscillating cluster states
as revealed by the phase time series (bottom). For that reason, it is important to
identify the characteristics of the collective behavior first and subsequently choose
an appropriate macroscopic observable that is able to capture the actual dynam-

ics.

2.2 Analytic phase reduction techniques

The literature comes with a variety of analytic phase reduction techniques. Pri-
mary disciplines providing these techniques are the physics of complex systems and
applied mathematics while engineering adds more to the numerical approaches. As
such the techniques are often tailored to more or less specific settings. While this,
in principle, should not be a problem, there are important differences in the re-
sulting phase models. These differences are not ‘only’ quantitative ones but can
be qualitative in nature, as will be illustrated in Chapter 3.

The goal of analytic phase reduction is not only to reduce an oscillator network
into a phase model of the form (2.3) but to derive explicit expressions of the
natural frequency w and of the phase interaction function Hj; in terms of the
parameters of the underlying oscillator model. As outlined in Section 2.1, the
phase interaction function Hj; can be determined through the phase sensitivity
function Z(¢) and through the coupling function gy;, cf. (2.14). Both of them

depend on the limit cycle properties of the underlying dynamics. To extract these
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properties we make use of an important observation: Oscillator dynamics on the
limit cycle are similar across models if these oscillations emerge through the same
particular type of bifurcation. This similarity gives rise to canonical models for
every type of bifurcation, which capture the essence of the dynamics near the
bifurcation point. All dynamical systems with similar dynamical behavior can be
transformed into a canonical model.

The insights from a canonical model can be very fruitful for identifying the
phase dynamics of the oscillator network. To derive the phase dynamics for sys-
tems close to the same bifurcation, it suffices to consider canonical models of the

78

corresponding dynamical systems Even without knowing the exact equations

of the canonical model, the phase sensitivity function can often be anticipated to
have a particular form that is characteristic for the type of bifurcation 5¢¢ ¢-&- 102103,
However, in order to determine the exact form of the other indispensable ingredi-
ent necessary for deriving the phase dynamics, that is, the coupling function g,
evaluated at the limit cycle, we crucially depend on the equations of the canon-
ical model. Unfortunately, there is a caveat. As Hoppensteadt and Izhikevich
properly remarked in their textbook™, there does not exist a general algorithm
for deriving canonical models. Normal form and center manifold theories have
proven successful candidates to obtain simplified equations and to reduce their
dimension, respectively. We will clarify the intricate link between these theories
in Section 2.2.1, and illustrate how to apply them in the subsequent sections. In
some cases, however, the derivation of canonical models cannot avoid heuristic ar-
guments and restrictive approximations. This is in particular true if bifurcations
are globall®. When an oscillatory dynamics is close to a Hopf bifurcation, which
is a local bifurcation, one can utilize sound mathematical approaches to explicitly
derive a canonical model. As we base the derivations on normal form theory, we
will refer to it as a normal form. In fact, we will specify it as a Hopf normal
form due to the particular type of bifurcation that will be considered here. Once
a Hopf normal form is obtained, it can be further reduced to the phase dynamics.
A rigorous analytic phase reduction is thus a two-step approach: it consists of
a normal form reduction and a subsequent phase reduction of the normal form.
Note that the resulting phase dynamics is described in terms of the original pa-
rameters. Indeed, the normal form/canonical model is achieved through an exact

transformation of the underlying system. Likewise, the phase reduction of the

' A local bifurcation is characterized through the loss of stability or the disappearance of an
equilibrium. Qualitative changes of the system’s dynamical behavior are localized in a small
neighborhood. Outside this neighborhood the dynamics remains qualitatively identical unless
other bifurcations occur there simultaneously. If one cannot confine the qualitative changes
through a bifurcation to a (small) neighborhood, one speaks of a global bifurcation. Exam-
ples for local bifurcations are saddle-node, pitchfork, transcritical or Hopf bifurcations, while
homoclinic and saddle-node on a limit cycle (SNIC) bifurcation are of global character.
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Hopf normal form is an exact transformation into the phase model.

Reduced phase models are not unique. This is also true for coupled dynam-
ical systems near Hopf bifurcations. Both for normal form reductions as well
as for subsequent phase reductions one can pick and choose one out of various
alternatives. We will present three of the Hopf normal form reductions in Sec-
tions 2.2.2.1-2.2.2.3. They are representative for the most commonly used normal
form reduction techniques, and dwell on time-scale separation and perturbation
arguments (dating back to Kuramoto), subsequent near-identity coordinate trans-
formations (Poincaré), and a Lie bracket formalism (Takens), respectively. In
Sections 2.2.4-2.2.7 four different phase reduction techniques will be outlined. In
principle, they are applicable to any network of coupled dynamical systems that
exhibit stable oscillations. However, three of them, namely Winfree’s reduction
via isochrons, Kuramoto’s reduction via Floquet eigenvectors, and Ashwin & Ro-
drigues’ reduction via symmetries, capitalize to some degree on the aforementioned
Hopf normal form and there they can be solved to all extent. The fourth one that
falls into the category of averaging and/or time-scale separation approaches has
been extensively used in the context of nonlinear optics dating back to Haken.
Strictly speaking it does not require a normal form description. Our juxtaposition
of these techniques will point at how they differ in their conceptual background
and methodological implementation, the general applicability, as well as their ac-
curacy. For the latter we will particularly focus on the correct determination of
the coupling function, where we even extend the existing theory by incorporating
nonlinear coupling terms. After all, the coupling defines the interaction between
oscillators and is thus crucial for the collective dynamics.

Before going into medias res along exemplary applications in Chapter 3, we will
first provide a very concise inventory of generic analytic techniques to treat oscil-
lator networks and their phase dynamics. All of them apply to general dynamics
with the only assumption that they exhibit stable oscillatory behavior. However,
we will concentrate on oscillators that are close to a so-called Hopf bifurcation,
i.e. around the transition at which oscillations with a finite frequency emerge or

vanish. The Hopf bifurcation allows to rigorously derive a canonical model”. We

(7 The Hopf bifurcation is the only type of bifurcation that allows a step-for-step reduction of

the phase dynamics without rough heuristics. In fact, the seminal work by Eric Shea-Brown
and co-workers 192 provides a welcoming account of phase reductions of the four co-dimension
one bifurcations that lead to oscillatory dynamics: Hopf, Bautin, SNIC' and homoclinic. The
global character of the SNIC and homoclinic bifurcations, however, requires an educated
guess about the limit cycle trajectories away from the respective fixed points undergoing
the particular bifurcation, so that the corresponding phase sensitivity function cannot be
parametrized in terms of the original oscillator dynamics. Moreover, the Bautin bifurcation (or
generalized Hopf bifurcation) has the normal form that agrees with that of the Hopf bifurcation
except for the sign of the parameter of the cubic term is different. This leads to a subcritical
Hopf bifurcation, whose branch of unstable periodic orbits becomes stable at a saddle-node
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will present three different reduction techniques in Section 2.2.2. Central to these
reductions are center manifolds and normal forms. Due to their importance, we

will revisit the corresponding theories briefly.

2.2.1 Center manifold and normal form

The concepts of center manifolds and of normal forms are so closely related that
many textbooks do not bother to distinguish between them. Often, the center
manifold reduction of a dynamical system is computed first in order to reduce the
dimension of the system. Afterwards, this simplified, lower-dimensional system
is brought into normal form. However, there is a subtle conceptual difference
to the actual normal form reduction. A normal form reduction is characterized
through smooth, consecutive transformations or changes of coordinates, which
preserve the essential characteristics of the underlying dynamical system and which
do not reduce its dimension. Via the coordinate transformations a normal form
reduction leads to a thorough picture of the dynamics in terms of the system’s
stable, unstable and center manifolds. Normal form reductions even provide the

d1%4, In this sense, normal

stable and unstable fibrations over the center manifol
forms can be considered more general because the reduced analytic expressions
accurately describe the dynamics also away from bifurcation points. We will briefly

summarize center manifolds and normal forms in the following.

Center manifold Whenever a dynamical system passes through a bifurcation,
there is a sudden qualitative change in the system’s behavior. For instance, a
fixed point solution of the dynamical system switches its stability. This change
in stability is represented in the spectrum of the linearized dynamics about the
fixed point: the real part of at least one eigenvalue changes signs and becomes
zero at the critical bifurcation point. The center manifold is an invariant manifold
corresponding to the eigenvectors associated with the eigenvalues with zero real
partl®l. The dynamics on the center manifold is slower than that on the stable and
unstable manifolds, corresponding to the eigenvalues with negative and positive
non-vanishing real parts, respectively. The attraction towards the stable manifold
as well as the repulsion from the unstable manifold are exponentially fast. Hence,
it is possible to determine the entire dynamics via the center, or critical, modes,

i.e. through the variables xg, corresponding to the slow flow along the center

bifurcation of periodic orbits. Given the similarity of their normal forms, it appears reasonable
to restrict our considerations on the phase reduction of oscillatory dynamics that emerge
through a Hopf bifurcation.

The eigenvectors associated with the eigenvalues with vanishing real part span the center
eigenspace of the respective fixed point. The center manifold has the same dimension as the
center eigenspace and is tangential to it at the fixed point.

(8]
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manifold. More formally, the local behavior of the fast variables xg, around the

fixed point can be expressed as
Lfast — C (wslow) . (220)

Importantly, the function C, albeit arbitrary, only contains terms of second and
higher order. In fact, the expression (2.20) characterizes the center manifold locally

with the corresponding dynamics given by
djslow = Lmslow + N (wslow’ C (wslow)> . (221)

The real parts of all the eigenvalues of the matrix L vanish and IN contains all
the nonlinear terms. This center manifold reduction effectively reduces the di-
mensionality of the system to the number of eigenvalues with vanishing real part.
One may interpret this dimensionality reduction in that the fast variables g, are
prescribed by the slow ones g, which in the physics literature is often referred
to as Haken’s slaving principle 105106

In the case of a supercritical Hopf bifurcation, a stable fixed point loses stability
as a pair of complex conjugate eigenvalues crosses the imaginary axes and stable
limit-cycle oscillations emerge. Hence, we have two eigenvalues with zero real part,

and the corresponding center manifold is two-dimensional.

Normal form The normal form of a bifurcation is the ‘simplest’, reduced equation
(2.21) that exhibits the qualitative features of the bifurcation type. The dimension
of the normal form coincides with the number of critical modes, and hence with
the dimension of the center manifold. The normal form can be achieved, e.g., by
removing all non-resonant terms in the nonlinear function C.!

Although the nomenclature appears somewhat misleading, normal form reduc-
tions do not necessarily result in the normal form of a bifurcation as defined above.
This is only true close to bifurcations of dynamical systems where all eigenvalues
have zero real part, e.g., as in the case of a Hopf bifurcation in a two-dimensional
dynamical system. The reason for this is that normal form reductions yield a sim-

plified equation — a ‘normal form’ in the strict sense — of the same dimension as

O In consequence, the normal form will contain only resonant monomials wi™ - w with

m; € N,j=1,...,n, satisfying
mi+---+my=%k and miA+---+muA, — Ay =0, foreach k> 2. (2.22)

For pure imaginary eigenvalues A; of the dynamic’s Jacobian, the second equation of (2.22)
becomes indeed a resonance among frequencies in the usual sense. This resonance property can
be proven in a straightforward way for the semi-simple normal form style cf: Theorem §2.1.5,107,
see also below.
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that of the underlying dynamical system. As such, a normal form reduction is a
rigorous transformation of a dynamical system into a simplified equation without
reducing its dimension, whereas a center manifold reduction reduces the dimension
without simplifying the equation!'?). Interestingly, given the normal form through
a normal form reduction, the critical center modes will ‘miraculously’ decouple
from the fast variables and the normal form of the bifurcation on the center man-

104,108

ifold is retaine In the following we will refer to the ‘normal form of a

bifurcation’ simply as normal form unless stated otherwise.

k1% and has

A bit of history Normal form theory goes back to Poinaré’s wor
ever since attracted attention as a technique of transforming nonlinear differential
equations to generic and simpler standard forms near a (local) bifurcation point.
The precise normal form can be determined in different ways. While coordinate
transformations have been frequently used, addressing normal form calculations
more categorically involves a matrix representation method, an adjoint method
and a method based on the representation theory of the Lie algebra sl(2,R). All
these methods are strongly connected and, as mentioned earlier, based on the ideas
of Takens %11 The resulting normal form can be expressed as lying in the kernel
of an adjoint linear operator on the space of homogeneous polynomials!94107:112,
Alternatively, a perturbation technique has been proposed by Nayfeh!!? and Yu!!4,
which dwells on the methods of multiple time scales''® and of intrinsic harmonic
balancing 6. The reductive perturbation approach of Kuramoto in Section 2.2.2.1

below also uses a two time-scale separation.

More recent developments Other approaches to derive normal forms can be

H2U7 " 5 Lyapunov-Schmidt reduction method!!8,

subsumed into time averaging
and a singular point value method 19120, The latter were originally meant to de-
termine focus, or focal, values of a (degenerated Hopf) critical point to prove the
existence (and the maximal amount of multiple) limit cycle(s), but this requires to

121 The idea behind the singular point

computation of higher-order normal forms
value method is to introduce formal power series and recursive forms to calcu-
late singular point quantities. The Lyapunov-Schmidt reduction approach, on the
other hand, elegantly reformulates the problem of proving the existence of periodic
solutions emerging from Hopf bifurcations as that of finding a family of solutions
of an abstract equation in a functional space of periodic functions. Its reformu-
lation in terms of functional analysis allows for a generalization of the problem

in infinite-dimensional space 22, Essentially, one projects the entire system un-

[10]' A center manifold reduction may even lead to the loss of some important nonlinear properties
of the system under study that are linked to the dynamics on the stable and unstable manifolds.
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der study into the subspace that is spanned by the eigenvectors associated with
the pair of purely imaginary eigenvalues at the Hopf point. In contrast to the
other approaches, this results into a set of algebraic equations while the others

yield differential equations!?!.

From the point of view of projecting the system
into a specific subspace, also the methods of time averaging and of multiple time
scales fall in the same category. For time averaging one transforms the original
autonomous system & = f(x; ) into a non-autonomous one via y = exp(tJ)x.
Here, J is the Jacobian of the vector field f(x; u) at @ = 0. Moreover, the domain
Q2 C R” of x € Q is invariant under the Lie group I' = {exp(tJ) | t € R}. The
time-dependent system is subsequently solved using the conventional averaging
method 17123124 Tt is important to realize that most of these methods rely on a
‘preprocessing’ and a dimensionality reduction following center manifold theory,
which assures the existence of an amplitude equation and also indicates its order.
For instance, the singular point value method first applies a center manifold re-
duction to the original dynamics, which yields a two-dimensional center manifold
associated with the Hopf bifurcation. The perturbation method, by contrast, does

not necessarily require such a center manifold reduction '2!+125:126,

Uniqueness of normal forms Given the plethora of derivation schemes, it ap-
pears obvious to ask whether they all result into the same, unique normal form.
Needless to say, uniqueness of normal forms can, in general, not be guaranteed, at
least not for ‘classic’ normal forms. Yet, classic normal forms are usually simple
enough to become solvable and can be truncated at a given degree. This leaves
the question of asymptotic validity. That is, is a normal form in terms of a (for-
mal) series, or a truncated normal form, a reasonably good approximation of the
original dynamics? In fact, quite detailed error analyses can be found in the liter-
ature 04127128 - Murdock presents several error estimates in Chapter 5%, among
which there is a basic theorem that allows to estimate an asymptotic error (de-
pending on the order of truncation and on the initial distance) if (a) the matrix
of the linear term is semi-simple and has all its eigenvalues on the imaginary axis,
and (b) if the semi-simple normal form style is used, see Lemma 5.3.6'%4M), Fix-

ing a normal form style, however, does not necessarily determine a unique normal

1] An M x M matrix A is called semi-simple if it is diagonizable with diagonal entries
A1, -, Ay € C, otherwise A is non-semi-simple. A normal form style is connected with
the choice of a complementary subspace Hj of the image of a homological operator applied
to a particular vector space Pj, as will be shown below. The operator is associated with
the Jacobian, that is, with the linear term of the dynamics. In the case that the Jacobian
is semi-simple, e.g., in the case of a Hopf bifurcation, there is only one useful choice of Hj
as the kernel of the operator applied to Py, which is the semi-simple normal form style. For
non-semi-simple Jacobians, the mainly used styles are the adjoint operator or inner product
normal form popularized by Elphick and co-workers!?”, and the s1(2,R) normal form due to
Cushman and Sanders'3°.
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form 194

. The main reason being is that all higher order terms in the normal form
are normalized with respect to the linear term only, i.e. the normal form satisfies
a condition which is defined through the Jacobian. A more complete normaliza-
tion, by contrast, builds on a series of normalizations: first the quadratic term is
normalized with respect to the linear one, then the cubic term is normalized with

respect to the sum of the linear and quadratic terms, etc.'?.

2.2.1.1 Hopf normal form

In view of illustrating the pure theory above, we consider different reduction tech-
niques that lead to networks of oscillators in Hopf normal form. We will duly
introduce Hopf normal forms in this section both for an uncoupled oscillator, as
well as for coupled oscillators in a network. In Section 2.2.2.1 we will present a
physically motivated, reductive perturbation approach promoted by Kuramoto®®.
Its inherent separation of time-scales lets this approach resemble a center manifold
reduction. A mathematical approach of a Hopf normal form reduction using non-
linear, so-called Poincaré transformations will be subject in Section 2.2.2.2. For
simplicity, we will consider a two-dimensional system so that the dimension of the
phase space already coincides with the one of the expected center manifold. While
this approach is hence kept as mathematically exact as possible, the concept ex-
tends naturally to general n-dimensional systems, where the governing equations
restricted to the center manifold can be computed with a projection method as
outlined in Chapter 5.4'%2. Ultimately, we will provide a rather general normal
form reduction approach in Section 2.2.2.3 that goes back to early ideas of Tak-
ens'!! and utilizes an adjoint linear operator expressed in a Lie bracket formalism.
To compare it against the two other methods, we have applied it exemplarily to a
two-dimensional system in Section S.4 of the Supplementary Material, where we

also showed the computations of Hopf normal forms of higher order.

Hopf normal form of a single oscillator The Hopf normal form of a single

oscillator in the vicinity of a (supercritical) Hopf bifurcation generally reads

M—
w = fw;p) = (=)0 p|w*™w + O*M(w) , weC, (2.23)

m=0

—_

(12] The resulting higher-level normal forms require more advanced calculations ¢ &> 117131,

The actual ideas of these fully normalized normal forms go back to Belitskii 2 and the work by
Baider and co-workers 33134 One can find alternative notions for higher-level normal forms
in the literature like hypernormal forms, simplest normal forms, or unique normal forms.
Higher-level normal forms can differ for distinct normal form styles applied, but uniqueness
may be established within a fixed normal form style.
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with complex-valued coefficients o, = 0,,(11) € C. The parameter ;1 € R denotes
the bifurcation parameter and can be viewed as the distance to the Hopf bifurcation
at p = 0. The integer M € N defines the order of the Hopf normal form. For
second order, i.e. for M = 2, equation (2.23) takes on the form of a complex
Stuart-Landau oscillator.

The complex-valued w € C can be written in polar coordinates (R,#) as w =
Re® or in planar coordinates € = (x,y) € R? as w = x + iy. Then the radius
R > 0 and angle § € S! satisfy R = \/m and 0 = atan2(y,x). The Hopf

normal form (2.23) reads in polar coordinates

M- M
R — (_1>mumR2m+1 = R-R , 0 — Z(_l)nvaQm =G 7 (224)

m=0 m

fay

[e=]

with o, = u,, + 1v,, and real-valued u,,, v,, € R, we abbreviated

—_

R

M— M
=) (=DM R, S =) (1) vn R

=0 m=0

The corresponding planar dynamics of (2.23) is

@ = (; gﬁ) T . (2.25)

Note that in (2.24) the radial dynamics R decouples from the angular dynamics 6.
If the parameters o, = u,, + iv,, are such that R has a stable non-trivial solution

R, then there exists a T-periodic circular limit-cycle solution of (2.23),

, ¢ z¢(t) cos 0°
<(t) = (¢ ct:Rcze <(t) = — R°
w0 =) i = e o wt) = () = ()
with constant radius R¢ and constantly increasing phase 6¢(t) = wt+6,. The period
T = 27 /w is defined through the frequency w. Note that both R and w depend on
the normal form coefficients o, or (u,, vy, ), respectively, withm =0, ..., M — 1.0l
Without loss of generality we set 6y = 0 so that ¢ is uniquely defined through the

frequency w.

[13] For second order Hopf normal forms, i.e. M = 2, R® = \/ug/u; and w = vy — ugvy /uy if
ug, w1 > 0. For third order, M = 3, R® > 0 solves ug — u1 R? + uaR* = 0 if ug, ui,us > 0 and
u? — 4ugug > 0. The frequency w then depends on wug, uy, uz, vo, v1, Va.



Phase reduction techniques 40

Hopf normal form with coupling If we consider an oscillator in Hopf normal

form as one node in a network of oscillators, the governing dynamics read

M-1
Wy, = f(wi; p) + £ ge(wi, ..., wy) "= Z(_l)mUm’kamwk+f€gk(w1>---7wN)7

m=0

(2.26)
with coupling function g, : CV¥ — C that depends on all other oscillators w;, € C.
The coupling strength x is usually assumed to be small, |x| < 1.4
Capitalizing on the assumption of exclusively pairwise interactions as in (2.2),
then normal form reductions preserve this pairwise coupling structure; the proper
derivation can be found in Section S.3 of the Supplementary Material. For simplic-
ity, we further assume that the pairwise coupling functions g; between oscillators
coincide up to an adjacency value Cy; € {0, 1} that denotes structural connectivity

between nodes. Hence, the coupling simplifies to

N
1
gk(wl,..., wk,wj = NZC@Q wk,wj . (227)

||Mz

In summary, we consider the network dynamics

M-1 N

. m m K

Wy = Z (—1) Umlka wy, + N Z ijg(wk, wj) . (228)
m=0 j=1

Two remarks are due at this point: First, thanks to the pairwise coupling struc-

ture it suffices to consider only two coupled oscillators w, w’ with dynamics
w = f(w;p) + £ g(w,w') (2.29)

and a similar equation holds for w’. The analytic results of (2.29) can be readily
extended to the whole network in an analogous way. Second, the coupling function
g(w,w") in (2.29) depends in general also on the complex conjugates of w and w'.

We can formally expand g(w,w’) as a power series

— ol o k=1, /m, —m
g(w, w,w' w'") = 5 GretmnW" W' W™ W (2.30)
k+l4+m+n>0

with complex-valued coefficients gimn, € C. Importantly, not all of these coeffi-
cients contribute to the reduced phase dynamics. Indeed, only linear and cubic
terms provide substantial contributions to the first and second harmonics of the

resulting phase model; see the subsequent sub-section 2.2.1.2* that builds on%.

(141 Tn line with the foregoing sections we refrain from an explicit time-dependence of the coupling
function gg, but note that the theory also holds for time-varying functions.
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Hopf normal form of an oscillator network Considering a network of coupled
oscillators close to a supercritical Hopf bifurcation, the Hopf normal form of the

full network reads*?!

N

. K _

W = QW — ﬁ\wk\ka + N E ij ["}/wj + §wkwﬂ . (2.31)
J=1

For the sake of legibility we renamed o7 = a and o, = 3, and introduced the
complex-valued coupling parameters v = yg + iy; and § = dg + ;. With the
definitions in Section 2.2.1, (2.31) defines the Hopf normal form of the entire

network wy, ..., wy as the monomials
N
- 2
g w; and Wy g w;
=1 j=1

are the only resonant monomials of the pairwise coupling function (2.27).

2.2.1.2 Nonlinear coupling terms in Hopf normal forms*

Allowing for nonlinear coupling terms (2.30) in the network dynamics (2.28),
the corresponding phase interaction function H of the reduced phase model in-
cludes also higher harmonics, which may hint at richer collective behavior, see
Section 2.1.5. However, only a few nonlinear terms gy, contribute to the (av-
eraged) phase interaction function H. To be more precise, only two terms, gooio
and gp120, are the dominant contributors to the first and second harmonics of H
at leading order.

To demonstrate this result, we consider the dynamics (2.29) of two coupled
oscillators in Hopf normal form of arbitrary order M > 1. As mentioned in the
previous sub-section, without coupling, x = 0, we find a stable limit-cycle solution
w(t) = R%?® for the two oscillators; for the sake of legibility we will drop
the ¢ and refer to them as w,w’. The resulting phase model takes then the form
0 =w+rH (0 — @), where the phase interaction function H can be expanded in

Fourier space as in (2.17). In the complex plane, we can compute H as
HO-0)=(Z(0) - g(w,w,w, o)) , (2.32)

where a - b = (ab+ ab)/2 with a,b € C is the complex dot product, the averaging
can be expressed in compressed form as (f(0,0')) = % 027r f(@+ 9,0 +9) dJ and

151 To be precise, (2.31) is the Hopf normal form of the full network (2.28) with Sy x S'-
equivariance and for exclusively pairwise interactions and large network size N > 1, see
Section S.5.
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W see

the (complex-valued) phase sensitivity function is given by Z(0) = %”e
also Section 2.2.4.

The assumption of the Hopf normal form implies that f(w,w) consists only of
the resonant terms |w|"w with n = 0,1, 2, ..., and that the dynamics w = f(w, w)
is rotation invariant. Consequently, both w(6) and the phase sensitivity function
Z(0) are of the form w = w(0)e? and Z(#) = Z(0)e®. For direct linear coupling
g(w,w,w';w'") = goorow’ the interaction function H(0 — 0') = (Z(0) - goorow'(¢'))
thus contains only first harmonics.

Being near a supercritical Hopf bifurcation, the amplitude of the oscillations
is R = |w| = O(y/it), where p denotes the distance to the Hopf bifurcation in
parameter space. Introducing e = 1, we have R = O(¢) and Z(6) = O~ '(¢). Any
higher order term |w|"w in f(w,w) presents then corrections of order O3(¢) and
O(e) to w(f) and Z(), respectively. In view of the expansion in Fourier space
(2.17), these terms lead to corrections of order O?(¢) in a; and by, but they do not
contribute to higher harmonics a,, b, # 0 for n > 2.

If we want the phase interaction function H to contain higher harmonics, we thus
have to take higher-order terms gxm, in the coupling function g(w,w,w’, w') into

account. For simplicity, we consider g(w,w,w’, w') = w*w'w ™™ a single mono-
mial with &,1,m,n > 0 and grimn = Opimn. Then we have Z - g = QFFmintl=l(g),

On the other hand, it is
Z - glw,w) o e - ()" (e70) (o)™ ()" = eilht-D0Gimm0

The latter term contributes to the amplitudes a; and b; of the j-th harmonic
(7 > 0) when it is a function of only +7(6 —6'). This means that the set (k, [, m,n)
has to fulfill k — 1 — 1 = £ and m — n = Fj. In particular, the term w’~'w"” =
O%~!(e) contributes significantly to a; and b;. Therefore, the amplitudes of the
j-th harmonic are of order O(Z - g(w,w')) = O@~D=1(¢), that is,

aj,b; = 07V (e) . (2.33)

Note that the reasoning above is in line with the coefficient ay of the zeroth har-
monic, j = 0, whose major contributions come from the monomial g(w, w, w’, w') =
w and result into a constant increase or decrease of the natural frequency depend-
ing on the sign of ay. For j > 0, the term w/™w” = O%T1(¢g) gives contributions
of order O%(e) to the j-th harmonic. However, these contributions present only
minor corrections as they are smaller than a;, b; of two orders of magnitude, and
can therefore be neglected. Following this argumentation, we consider coupling
terms of order 3, which yield contributions of order O%(e) to the phase dynam-
/2

ics. The terms w?w’, |w|?w’, and |w'|*w’ contribute to the first harmonics ay, by .
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However, their values differ at one order of magnitude from ay, by, so that their
contributions can be neglected. Likewise, |w|?*w and w|w’|? contribute negligibly
to the zeroth harmonic, namely by less than two orders of magnitude. The only
cubic resonant term that affects the phase dynamics is ww'?, which contributes to
the second harmonics ag, by at the same order of magnitude O?(e).

Moreover, we can show that no monomial in g(w,w,w’, @) of even order will
contribute to H. Indeed, employing the inner product in complex form (2.32) for

g(w,w') < exp (i(k — 1)0 + i(m — n)@'), we have

2T
H(0 B 0/) x _/ aklmnefi(QJrﬁ)ei((k:fl)GJr(mfn)G’Jr(kfl+mfn)19)
0

F B O o= il(E=00+(m=n)0"+ (h=Ltm=n)d) 19
1 2

x — (k=tbm=n=0)0) 1 By e (ttm=n=L1) gy = (2.34)
2 0

aklmnei
where akimn, Beimn € C are constants. Due to the inherent averaging in (2.34) and
as exp(ind) is 2m-periodic, H (0 — 0') will vanish if (kK — [ +m — n) is even. This
means that only monomials of odd order will contribute to the phase interaction

function H.

2.2.2 Identifying the Hopf normal form

The starting point for all the Hopf normal form reductions is the oscillator network
(2.1), where each node x; € R" is close to a supercritical Hopf bifurcation. More
specifically and given the main assumptions on weak coupling, (nearly) identical

oscillators and the pairwise coupling structure, we reconsider (2.15),

N
: K
zy, = [z p) + N > Crig(ay, z;)

J=1

with vector functions f = (fi,..., fu): R® = R" and g = (g1,...,9n): RV*" —
R™ and small coupling strength || < 1. Without coupling, x = 0, each node has
a stable fixed point solution ;. Then f(x = &;;pu) =0forall k=1,..., N and
small values of the bifurcation parameter u € R.

The essential assumption for the supercritical Hopf bifurcation is that there is
a parameter value p = puy, such that each fixed point &) undergoes a supercritical
Hopf bifurcation in the absence of coupling: For p < pug, the dynamics (2.15)
has a stable fixed point, which loses stability at u = u, and stable oscillations
emerge for p > . Without loss of generality we translate the fixed point to the
origin, i.e. x; = 0 for all k, and assume that pu; = 0. Then for u > 0, each

node exhibits stable limit cycle oscillations with natural frequency wy # 0 and
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amplitude Rj, = O(e) where € = /[
In the following sub-sections we will illustrate three different ways how to reduce
(2.15) to the Hopf normal form network (2.31),

N
wy, = awy, — Blwg[Pwy, + % Z Ch;j [ywj + &Dkwﬂ
j=1
Note that all four parameters «, 3,7, € C will depend on the functions f and g as
well as on the bifurcation parameter y. The different Hopf normal form reductions
to be presented below vary not only in their methodical approach, but also in their
accuracy. To be precise, while, e.g., the reductive perturbation approach in Sec-
tion 2.2.2.1 discards any higher order dependence on pu, the nonlinear transforms
approach, Section 2.2.2.2, respects this p-dependence at all times. The differences
between the reduction techniques!'®
lations, that is, close to the Hopf bifurcation point with 0 < p < pug < 1. But

may be negligible for small-amplitude oscil-

the resulting normal form techniques will diverge drastically when the amplitudes
of oscillation become larger. These differences eventually become evident in the
reduced phase dynamics and may cause qualitatively different collective dynamics.

In anticipation of Section 2.2.3, the subsequent phase reductions of the reduced
Hopf normal form dynamics (2.31) are all identical within the theory of weakly
coupled oscillators. Hence, possible inconsistencies between the resulting phase
models are solely due to the different levels of accuracy of the normal form reduc-
tions. For this reason, we will refer to the analytic phase reduction techniques as
their underlying normal form reductions, reductive perturbation reduction and the

nonlinear transform reduction, respectively.

2.2.2.1 Kuramoto’s reductive perturbation

To outline Kuramoto’s early approach to derive the Hopf normal form we adopt
the reasoning of Chapter 2 in his seminal book “Chemical Oscillations, Turbu-

738 The approach belongs to the general group of reductive

lence, and Waves
perturbation methods, which include all related techniques using stretched space-
time coordinates. It builds on the method of multiple scales by dwelling on a

small parameter expansion, much related to bifurcation theory!3®. Although the

[16] The accuracy of the reductive perturbation method is at first order in p. The accuracy of
the nonlinear transform approach is at the same order in p as the order M of the normal
form. As to the third approach based on Takens, it is possible to achieve the same accuracy
as with the nonlinear transform approach. To do so, one assumes the parameter u to be
an additional variable and consider the n + 1-dimensional, so-called extended system. The
subsequent transformations then become parameter-dependent and can be implemented in
the corresponding algorithm, see Section 2.2.2.3 and 8. For the sake of simplicity, however,
we present only the non-extended system, thereby providing another normal form with the
same accuracy as the reductive perturbation approach.
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mathematical theory in the presented reductive perturbation approach lacks some
preciseness, as has already been noted by Haken and Kuramoto %137 the method
has proven to be of indisputable utility in practice.

The ultimate goal of the reductive perturbation approach is to derive a so-called
amplitude equation, which coincides with the canonical model of the the network
of oscillators close to a supercritical Hopf bifurcation. Given the system (2.15),
we recall that we can actually focus on two coupled oscillators @, x’ € R" with
dynamics

&= f(z;p) +r g(z,z) (2.35)

and an analogous expression for ', ' = f(x'; u)+x g(x’, ). Due to the symmetry
it suffices to consider only the dynamics of « in the following. The stable fixed
point solution & = 0 undergoes a Hopf bifurcation at p = 0, giving rise to stable
limit-cycle oscillations with amplitude R = O(e) where ¢ = ,/zi. In the following
we will only consider g > 0 and small coupling strengths 0 < |k| < p < 1. We
further substitute x — %k, which indicates the smallness of x compared to p. The

dynamics (2.35) thus becomes
& = f(x;&%) + e’k g(z, 2') .
Next, we expand f(x;e?) around & = 0 in terms of
f(x;e?) = ni(x; ) + ny(x, x; €2) + ns(x, x, z; %) + O (=) | (2.36)

where the functions n; are given by

"1 Ok f(x; &%)
1 2 k). 2\ _ ' 1), (2) (k)
ng(uD u® . u)e?) = | Z o <3$i13$¢2---3$ik _Oui1 Uy, Uy,
01 yeenyip=1 L=
(2.37)
, ; NT
with u) = (ugj), . ,uﬁﬁ) € R". We further expand m;, with respect to 2 and

immediately obtain
fx;e?) = Lox + 2Lhx + ny(x, ) + ns(x, z, ) + O(x) | (2.38)

where ny(x, ) = nay(x, z;e? = 0) and a similar expression for ns; see also Sec-
tion S.1 in the Supplementary Material. In (2.38) we omitted all O(g?) terms in
ny and m3. Since we assumed @ to undergo a Hopf bifurcation, the operator L,
has a pair of purely imaginary eigenvalues +iwy, while the other n — 2 eigenvalues
have non-vanishing real part. Let w and v denote the right and left eigenvec-
tors of io, respectively, corresponding to the eigenvalue +iwy. That is, Lou =

wow and wvLg = iwyv. They are normalized as vu = viu; + - -+ + vu, = 1
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and fulfill va = vu = 0. Furthermore, let @y denote the solution to the linearized

unperturbed system, & = i)ow, which can be given as
xo(t) = we Dy 4 we Vg . (2.39)

w is an arbitrary complex number (the “complex amplitude”), and ¢(t) = wyt.
In general, however, a solution x(t) that satisfies the full dynamics (2.35) will
deviate from xo(t). When introducing a rescaled time, 7 = ¢, and considering
w = w(7) to be time-dependent (on the slower time scale), we can describe the

time-asymptotic behavior of x(t) in the form

T = $0(’LU,’LT), ¢) + p(wawa w,>w/7 ¢) )

W= f(w,w) + kg(w,w,w w) . (2.40)

The functions p, f, g are to be determined through perturbations, i.e., by consid-
ering a ‘small’ deviation from the exact solution = xy and expanding p, f, g
around it. Equation (2.40) is referred to as amplitude equation. The explicit form

of f(w,w') in lowest order is

fw, w) = aw — Blw]*w . (2.41)
Here, o and S satisfy
o = ’Ui/l’U, s
L1
B = — 3vns(u,u,a) + 4vny <U, L, ny(u, ﬂ)) (2.42)

+ 2vny ('&, (Lo — 2iwed) ™ 'ny(u, u)) :

where I denotes an n-dimensional identity matrix; cf. Eqs. (2.2.17-20) in3%. The
exact derivation with all mathematical details as well as a general form of the
coupling function g(w, w,w’, @’) can be found in Section S.1 in the Supplementary
Material.

Linear coupling can be either diffusive or direct (non-diffusive), i.e g = gq;s OF

g = 9g4;,, respectively, yielding

gun(e.#) = D(a' —2) }: { gan(w.w) = ' —w)

Ya(®, @) = Da’ Gair (W, w') =y’ ’

with v = vDu and D € R, see also%.
According to (2.31), a second-order amplitude equation for weakly coupled oscil-

lators near a supercritical Hopf bifurcation point with linear coupling kyw’ obeys
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the form
W = aw — Blw|*w + k(yw' + sww?) (2.44)

where the complex constants a, 3, and ~y are given in (2.42) and (2.43), and § € C

reads
5 = 2vn, (a (Lo — 2icwod) " D(L¢ — 2iwol) ns(u, u)> . (2.45)

For more general, nonlinear couplings g(x,x’) = Zj w0 Gik(, z’), only the pa-

rameter J in (2.44) changes to

0= 2’0’)’1,2 (’1_1,7 (_to — 2@1(4}01)71 |:G01 (.tg — inOI)il : ’I’LQ(’U,, ’U,) - GOQ(U, ’U,):|>

— ’UGH (ﬁ, (io — 2iw0I)_1n2(u, U)) + leg(ﬂ, u, ’LL) s (246)

where G is the matrix corresponding to direct linear coupling, that is, Go; = f),
see (2.43), and Gj; are nonlinear coupling terms of order j + k as defined in
Section S.2 in the Supplementary Material. For linear coupling all G vanish

except for Gy, in which case we retrieve (2.45).

2.2.2.2 Poincaré’s reduction via nonlinear transforms

Instead of employing perturbation theory one can alternatively derive the Hopf
normal form via nonlinear transforms, as already used by Poincaré. To introduce
this, we follow closely the line of argument in Kuznetsov’s textbook!?? (Chapter
3). We consider again the dynamics (2.35) for two weakly coupled oscillators as
in the previous sub-section. To simplify notation, we restrict our case to only two
dimensions = (z,y), 2’ = (2/,9') € R?. The straightforward extension to n-
dimensional dynamical systems can be found in Chapter 5'22. As usual, for u = 0
both uncoupled units undergo a supercritical Hopf bifurcation. We can decompose

f into a linear and nonlinear part,

f(x) = L(p)z + F(x; 1) ,

where L(u) has eigenvalues A(u) = o(p) £ iw(p) that satisfy o(0) = 0 and
w(0) = wg > 0. The goal of the nonlinear transform approach is to rewrite the
dynamics in a generic form (2.26) and to provide an instruction how to determine
the corresponding complex parameters with a sequence of near-identity transfor-
mations. For this, the two main steps are as follows: (i) transform the uncoupled
part f(zx; p) into the desired Hopf normal form a(u)w — B(p)|w|?*w, and (ii) apply
the transformation to the coupling term g(x, ') and derive the respective param-

eters of the coupling function g(w,w’). The nonlinear coupling terms in g(x, ')
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can pose a challenge, indeed. That is why often all nonlinear coupling terms are

disregarded in order to derive the reduced coupling function g(w,w’). We here

show, however, how nonlinear coupling terms can be treated within the nonlinear

transforms approach. In the following, we briefly sketch the strategy and refer to

Section S.3 in the Supplementary Material for all mathematical details.

(i)

We write the dynamics (2.35) in complex form
f= A+ fzzm) + k0222, 25 (2.47)

where the transformation £ € R? + 2z € C in the complex plane is deter-
mined by the eigenvectors of the Jacobian L. Provided that the uncoupled
part of (2.47) can be approximated in polynomial from up to third order,
that is,

f=Xdrt Y fudd+0Y2), (2.48)

2<k+I<3

we can achieve the Hopf normal form for an uncoupled oscillator w = Aw —
Blw|?w+ O*(w) via a Poincaré transformation, i.e. a nonlinear near-identity

coordinate transform

r=vw)=w+ Y  hywta'. (2.49)

2<k+I<3
The coefficients hj; depend on A and the fi; and can be identified through
introducing a local inverse transform and a subsequent comparison of coeffi-

cients, see Section S.3.

The more cumbersome part is to reduce the coupling function g(w,w’) =

g(w,w,w' w") explicitly. This yields a formal power series

— ro k=l  tm —In
g(w,w,w',w'") = E Jrtmnw" W w0 (2.50)
k+l4+m+n>0

from §(z,2") = g(z, 2,2/, Z’) using the transform (2.49). Note that the near-
identity character of the transforms leaves the linear terms of g(z,z’) un-
changed. This means, in case of direct linear coupling g(z, 2’) = vz’ we can
directly infer the coefficients ggg10. However, due to the higher order terms in
(2.49), we readily find coefficients gxym, with k4+14+m-+n > 1. As mentioned
above, we do not need to calculate all of them. The coefficients of third or-

der are g2100, 92001, 90120, Goo21, 91110, g1011 and those contributing dominantly
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to the first and second harmonics of the phase model can be given by

goo10 = Goo10

go120 = 3 (o120 — h11Goo20 — ho1Goooz2 + Raodorio + Roadoron

—hathaogooro — Ra1ho2gooor — [ho2]*Gooto — haohoagooor)

where Grimn are the coefficients of the respective power series of §(z, z, 2/, Z')
in (2.47). These coefficients again depend on the foregoing transformation
into complex coordinates and can be expressed in terms of the eigenvectors
of L and of the original coupling term g(x,x’). The resulting expression
become rather lengthy and we refrain from computing them explicitly but

note that the method can be implemented in algorithmic form!7.

2.2.2.3 Takens’ reduction via Lie brackets

This admittedly more abstract, yet frequently used technique to compute the Hopf
normal form has been introduced by Leung and co-workers?®139 but is coined
according to Takens’ corresponding work!!'. The approach belongs to the class of
the so-called matrix representation methods. It allows for determining arbitrary
higher-order Hopf normal forms, though the resulting normal form is of the same
order of accuracy as the reductive perturbation technique in Section 2.2.2.118
We again start off with dynamics (2.35) in the vicinity of the fixed point & = 0
with |u| < 1 sufficiently small. After diagonalizing the Jacobian L(u) = D f(x; )

evaluated at (z; ) = (0,0), we find the dynamics in Jordan normal form
z=Jz+ F(z)+kG(z,2) , (2.51)

with J = diag(\1,..., \,), where A\; € C, j = 1,...,n, are the complex eigenvalues
of L(0), and F' comprises all nonlinear terms in z. As usual, we first consider (2.51)

with x = 0 and neglect the coupling function G(z, z’) for the time being. Once

[17] There is a prevailing and inherent dependence of all coefficients on the bifurcation parameter
w. Evaluating the resulting formulas at the bifurcation point, ;1 = 0, reveals the similarity to
the reductive perturbation approach, cf. Section 2.2.2.1. For instance, we can determine the
parameter 5(0) = B(u = 0) that relates to the cubic term in the normal form as

B(0) = —ﬁ (f20f11 = 21 fu1]> = 3| fo2l?) — %f21 .

This closely resembles equation (2.42) in the previous sub-section.

(18] The technique presented here applies only to vector fields that have a single zero eigenvalue
or a single pair of purely imaginary eigenvalues!'?. Moreover, we restrict the theory to the
semi-simple case only, that is, the dynamics have a diagonizable linear part.
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we have established a transformation
z=P(w)=w+pw), (2.52)
which removes all irrelevant terms (up to a given order) from the Taylor series of
w = (DP(w))"' [JP(w) + F(P(w))] , (2.53)

we can apply the same change of coordinates also to the coupling terms. The
transformation (2.52) is nearly-identical due to its linear part, such that G(z, z’)
and the transformed coupling function G(w,w’) coincide up to first order. We

expand the nonlinear function F(z) as a series of homogeneous polynomials
F(z) = Fy(2z) + F3(2) +- -+ F.(2) + O (2) , FrePy, (2.54)

where Py is the set of homogeneous polynomials of order k, and r € N. Next, we

introduce an adjoint operator Lj;: P, — Pi via
L;(Y)(z)=1Y,Jz|(2) =JY(z) — (DY (2))J =z, (2.55)

where [-, -] denotes the Lie bracket. With this definition we can immediately use
the Takens’ normal form theorem 11112138
differential equations, with F' = Fy + F3+ ... as in (2.54) truncated at order r,
F(0) = 0, choose a complement Hy, of L;(Py), such that Py, = L;(Px)®Hy. Then,
there is an analytic change of coordinates in a neighborhood of the origin which

transforms the system above to w = h(w) = hy(w) + hy(w) + - -+ + h,.(w) + R,

Given a system 2 = Jz + F(z) of

with hi(w) being the linear term and hy, € Hjy for k = 2,...,r, and residual
R, = O™ (w). The proof of this theorem is constructive and by induction, using
a series of coordinate transforms z = w+p,(w) with p, homogeneous polynomials
of degree k with £ =1,...,r. The coefficients of p, are to be determined in each
step such that

Fi(w)+ L;(p)(w) € Hy . (2.56)

104,111-113,138,139[19]  GQipce

Details of the proof and further examples can be found in
we address classical, first-level normal forms only, the entire transformation pro-
cedure is based on the Jacobian, that is, on the linearized dynamics near the
bifurcation point. If the bifurcation possesses a certain symmetry, these symmetry

properties become apparent in the Jacobian and are thus induced on the nonlinear

(191 J is semi-simple, so the complement H;, will be chosen as Hj, = ker (L J(Pk)) as mentioned
above. In this case, a direct calculation shows that Hj, is spanned by all resonant monomials
of order k for each k > 2, from which (2.22) follows.
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part of the computed normal form. In particular, systems near a Hopf bifurcation
are mapped by a polynomial transformation to a normal form that has circular
symmetry.

A practical application of this computational approach to a two-dimensional
system z = (21, 22) near the Hopf bifurcation can be found in Section S.5 of the
Supplementary Material including further mathematical details. Unfortunately,
the complexity of computing the coefficients for higher order normal forms in-
creases rapidly as the determination of parameters builds recursively upon each
other and on the lower order near-identity transformations p,,k < 4. It hence be-
comes necessary to implement efficient algorithms in symbolic computation soft-
ware without running in danger of overflow errors due to memory storage. An
arithmetic algorithm including the computation of normal forms up to order 11
has been presented in'3°. In fact, once higher-order normal forms and their cor-
responding series of transformations p, have been established, the latter can be
applied to the coupling term kG(z, z’) of (2.51). For our purposes, however, it is
sufficient to consider the transformed coupling up to third order. Since we already
illustrated the derivation of the coupling term using nonlinear transforms in great

detail in sub-section 2.2.2.2, we here refrain from further heavy mathematics.

2.2.3 Interlude

Against the background of normal form reductions from the previous Section 2.2.2,
we will now introduce four commonly used techniques to reduce oscillator networks
to phase models. Section 2.2.4 will be devoted to the explicit computation of the
asymptotic phase map ©(w), whose gradient evaluated at the limit cycle readily
provides the phase sensitivity function Z. This method has already been promoted
by Winfree® but reaches its limits when considering Hopf normal forms of order
higher than M = 2. In this case, Kuramoto’s method using Floquet eigenvectors
can be applied, which will be presented in Section 2.2.5. In Section 2.2.6 we
revise an elegant phase reduction approach dwelling on equivariant theory and
symmetry properties of the network. This approach requires the network to be in
Hopf normal form. While the previous two methods can, in principle, be applied to
any dynamical systems that exhibit stable limit cycle oscillations, the Hopf normal
form presents one of the few examples where they can be explicitly exerted to all
extent. In Section 2.2.7 we will reconsider averaging theory. The rotating wave
approximation and slowly varying amplitude approrimation introduced there are
widely applicable and also hold for oscillatory networks beyond the weak coupling
assumption. However, for oscillator networks in Hopf normal form within the

theory of weakly coupled oscillators, all four presented phase reduction techniques
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(Winfree, Kuramoto, Ashwin & Rodrigues, and Haken) will result in the same
reduced phase model despite the different methodical approaches. To demonstrate
this, we use, as usual, a network of weakly coupled oscillators. They are close
to a supercritical Hopf bifurcation such that we can use the Hopf normal form
description (2.31) of the network,

N

. R _

W = QWp — ﬁ\wk\zwk + N E ij [’}/’LU]' + (kawﬂ , (257)
j=1

with sufficiently small coupling || < 1. Then, all the analytic phase reduction
techniques will result in the phase model (2.16),

N
ék =w+ Iiz ijH (Qk - 6)]) s (258)
j=1

where the phase interaction function H can be expanded as a Fourier series (2.17),

H(y) = Z an cos(ni) + by, sin(ny) . (2.59)

n>0

The analytic phase reduction techniques present mathematical recipes along which
we can determine the frequency w and the amplitudes a,, b,, of the Fourier modes
in terms of the normal form coefficients a = ug + ivg, 5 = u; + iv; as well as
v =g+ iy and § = dr + id;. The frequency and the Fourier coefficients of first
and second harmonics of the reduced phase models will coincide across all analytic
phase reduction techniques. The frequency reads w = wug(co — ¢2) and the Fourier

coeflicients are

a; = vrlcr —c2) by = —yr(l+ce),

: : (2.60)
Ay = R 5R(63 - CQ) s bQ = —R 5R(1 +6203) s

where we abbreviated ¢y = vg/ug, ca = v1/u1,c1 = v1/Vr, and c3 = §;/dg, and R

denotes the amplitude of oscillation.

2.2.4 Winfree’s reduction via isochrons

The idea behind the reduction via isochrons dwells on explicit expressions of the
asymptotic phase map ©(x) along the isochrons Z(f) and of the limit cycle C.
Once these expressions have been obtained, the phase sensitivity function can
be determined as the gradient of the asymptotic phase map and the coupling
function can be evaluated at the limit cycle as has been outlined in Section 2.1.4.

Their product eventually determines the phase sensitivity function H, which is the
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backbone of the phase model (2.16). In principle, this approach can be applied to
every dynamical system that exhibits stable limit cycle oscillations. However, it is
essential to include explicit expressions of © and C, which, unfortunately, cannot
be obtained analytically in the majority of cases.

Here, we illustrate the procedure along a network of oscillators in Hopf normal
form (2.31) of second order, M = 2. The uncoupled oscillator in polar coordinate

form (2.24) has a globally attracting limit cycle
wc(t) — Rceiwt

with radius B¢ = ,/c; and frequency w = vp—vicp with ¢ = g Juy. The asymptotic
phase map 6 = O(w) defined in Section 2.1.1 for & = (Re(w), Im(w)) in R?\ {0}

fulfills 6 = w. Tts explicit form reads

@(w = Rew) =argw — D |

U w*

Br

br In ‘E
Rc

The phase sensitivity function Z(0) = (Z,(0), Z,(0)) = V@(w)|w:wc is the gradi-
ent of the phase map © evaluated at the limit cycle w®. For infinitesimally small
and pulse-like perturbations p = z, + ty,, we can compute Z also via the phase

response function G(0, p = z, + 1y,) = O(w(0) + p) — 0 according to (2.11) as

Z.(0) 0.G(0,p)
20~z = (e
Zy (0) 0,G(8,p) R
The explicit forms of Z(f) € R? as well as of the corresponding complex-valued

form Z(0) = Z,(6) + iZ,(0) are

1 —sinf — cycosf —Cco+1 4

= = . .61
2 () RC<—02 sin 0 + cos&) and () R (261)

When considering the network dynamics (2.31), we strive for the phase model

(2.16) with interaction function H, which was defined as the scalar product of the
(real-valued vector function) Z and the corresponding (real-valued) coupling func-
tion g in vector form!?”) averaged over one period T' = 27 /w. In the complex plane,

the scalar product becomes the complex dot product?"! and the phase interaction

(20] The coupling function g = (92, gy) as required for the computation of H has components
9o = 92(0k,0;),9y = gy(0k,0;), which are the real and imaginary parts, respectively, of
g(wi (Or), w5(6;)). )

1 The complex dot product for a,b € C is defined as a - b = (ab + ab)/2.
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function can be computed as

1

27
= 2_/ (—co + i)ei(¢+w) . (yei(zﬁﬂo) + 5(RC)2e—i(w—<p)) do .
T Jo

H(y)

Evaluating the integral results exactly in (2.17) & (2.60).

2.2.5 Kuramoto’s reduction via Floquet eigenvectors

When allowing for general oscillatory dynamics, deriving explicit formulas for the
asymptotic phase map O(x) and for the isochrons of an oscillator & = f(x) € R”
becomes too complicated to follow the theory of the previous Section 2.2.4. This
is already true when considering the Hopf normal form of order M = 3. Yet, we
can overcome this problem by exploiting the relationship between the asymptotic
phase and the eigenvectors associated with the linearized part of f(x) about its
periodic limit cycle solution x¢. The underlying theory of first-order linear systems
with periodic coefficients is called Floquet theory!* and has been promoted by

38 Also this technique can be

Kuramoto to being applied for phase reductions
applied, in principle, to any dynamical system with stable limit cycle oscillations.
While it does no longer rely on the explicit form of the phase map ©, it still
requires an explicit expression of the limit cycle C.

Before we illustrate Kuramoto’s reduction for a network of oscillators in Hopf
normal form of order M = 2 and 3, we will briefly revise the idea of Floquet
eigenvectors. These will be used to derive the phase sensitivity function Z. Note
that once Z is obtained, the computation of the phase interaction function H will
follow the same procedure as in the previous section. To start with we consider
an oscillator & = f(x) with a stable T-periodic limit cycle solution x¢. For small
deviations u(t) off x¢(t), we find for x(t) = x°(t) + u(t) the linear system

w=L(t)u, with L(t)=Vf(z)| (2.62)

r=x°(t)

and L(t) is a T-periodic n x n-matrix. A general solution of (2.62) takes the
form u(t) = S(t)eru(0), where S(t) is a T-periodic matrix with initial condition
S(0) = I and A is a time-independent matrix. The matrix exponential exp(At) is

22 The normalized left and right eigenvectors of A asso-

defined in the usual way.
ciated with eigenvalue A; will be denoted by v; and w;. The limit cycle solution
x¢ being stable implies Re(A;) < 0. While one eigenvalue \g = 0 vanishes, which
corresponds to (phase) disturbances along the periodic orbit C = {x°(¢) | t € R},

the other eigenvalues Ay, ..., \,_1 are assumed to have negative real parts. Fur-

22 At = 500 L ARF = I, + At + A 4




Phase reduction techniques 55

thermore, we set ug = °(0). ug is thus a tangent vector of C at point °(0) and
has the same direction as that of the infinitesimal phase disturbances. Moreover,
uy satisfies S(t)uy = 2°(¢).?3) Next we use the facts that the phase sensitivity
function Z(#) is normal to the tangent space T'(0) of the isochron Z(#) at point
0(t) = x°(A(t)), and that T'(0) is free from the zero-eigenvector component, cf. Sec-
tion 2.2.4 and Chapter 3.4%. This means that Z(0)u; = 0 for all j > 0, hence Z(0)
must be proportional to the left zero-eigenvector vy. As Z(6) has been introduced
as the gradient of the asymptotic phase map O(x) evaluated on the limit cycle,
we can differentiate ©(x¢) = 0°(t) on the limit cycle and find Z(0) - °(t) = w,
where we used that ¢ = w = 27/T. Identifying Z(t) with Z(6) via 6 — t/w, we

can combine our findings above and arrive at
Z(t) = wveS(t) . (2.63)

Now, we can apply the result to Mth order Hopf normal forms (2.23). In fact,
we have to determine vy and S(t) to derive the phase sensitivity function Z. To do
so, we consider a stable limit cycle solution w®(t) = R%™" in the polar coordinate
dynamics (2.24). A small deviation z(¢) off the limit-cycle trajectory we(t) as
w(t) = w(t) [1 + z(t)] has the linearized dynamics

°= (Z(_l)m(“m +i“m)(RC)2mm> (2+2)+0%(2) =: (sr+isr)(2+2)+O%(2) .

(2.64)
Separating real and imaginary parts in terms of z = £ + in, we can simplify (2.64)

in matrix form as

d 1 0
pr <§) = A<§) where A = —2¢p <c2 O> (2.65)

with ¢ = ¢;/sg. Usually, co = ¢! depends on the order of the Hopf normal

24]

form!**. The eigenvalues of A are \y = 0 and \; = —2¢g with corresponding left

23] Indeed, differentiating @o(t) = f(2o(t)) on both sides results in

Lot (1) = (@ (1) = VI@)] ey 3°(0) = LOF(D)

So £°(t) is a particular solution of & = L(t)u. Thus we can write °(t) = S(t)e’z(0).
Using the definition of the matrix exponential together with Aug = A\gug = 0, the right-hand
side reduces to S(t)ug as wanted.

24] For second (M = 2) and third order (M = 3) Hopf normal forms

M-1
w= Z (=)o |w*™w , with om, = Uy + iUy, ,

m=0
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and right eigenvectors

uy = R°w <(1)> = ((}2) (2.66)

1
- Rcw(_627 1)7 Vy = (170)7

Vo

the factor R°w is for consistency with uy = °(0). Moreover, we find the matrix
S(t) by linking the deviations &, n from w® in the complex plane with deviations

u € R? of the corresponding planar limit cycle solution x¢ via

u(t) = R°S(t) (5(”) where S(t) = (COS(‘“) _Si“(“t)> . (2.67)

n(t) sin(wt)  cos(wt)

According to (2.63), the phase sensitivity function is given by

R v viiote ) BT

By the change of variables t — 6/w, we arrive at the same form (2.61) as in the
previous section.

The shape of the phase sensitivity function Z(6) does not change when incorpo-
rating higher order terms in the Hopf normal form (2.23). In fact, the preceding
normal form reduction imposes circular symmetry on the dynamics, so that the
oscillations with constant radius of the Hopf normal form are to be expected. In-
corporating higher order terms in the Hopf normal form increases the accuracy
further away from the bifurcation point. These terms will lead at most to a hori-
zontal translation of the phase sensitivity function. Still, this can have important
consequences for the synchronization properties of the network. Z is an integral
part of the phase interaction function H and shifting Z might change the slope
of H at the origin, H'(0), which determines the stability of the fully synchronized

network state, see also Section 2.1.5.

2.2.6 Ashwin & Rodrigues’ reduction via Sn X S'-symmetry

In their recent work, Ashwin and Rodrigues proposed an elegant phase reduction

technique by exploiting the symmetry properties of a network of weakly coupled

141 142

oscillators***, see also***. In this way it is possible to derive a phase model that

respects interaction terms beyond mere pairwise coupling. In fact, Ashwin and

we have

v —1/2
c% = u—i , and cg = u—2 (1 — Uy [u% — 4v0u2} / ) + v [u% — 4u0u2]

—1/2
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Rodrigues derived terms that represent pairwise, triplet and quadruplet phase
interactions. As such, this symmetry approach presents an important extension
to previous reported reduction techniques, especially when dealing with networks
featuring complex coupling functions of multiple interacting oscillators. Note,
however, that in its rigorous mathematical form, this symmetry approach requires
each oscillator to undergo a generic supercritical Hopf bifurcation and, in addition,
to meet strong symmetry assumptions, which will be specified below. Although
this setting appears restrictive at first, we sketch an idea how to loosen some of the
assumptions. As any dynamical system close to a Hopf bifurcation can be reduced
in Hopf normal form, this will again be our starting point for the following brief
revision of the reduction technique. Moreover, we demonstrate that for pairwise
coupling, it will lead to the same phase model as the other previously presented
methods.

Given a network of N > 4 all-to-all coupled oscillators, where each can be
described in Hopf normal form given by wy = f(wg; 1) as in (2.23), the symmetry

assumptions by Ashwin and Rodrigues manifest in the network dynamics

W = fwg; 1) + K g(we, w1y« oo, W1, Wit 1, - - -, WN) (2.69)

through a full permutation symmetry Sy and through the rotational invariance S*.
Intuitively, full permutation is given if the dynamics (2.69) can be interchangeably
used for any two oscillators k # j. That is, the network dynamics remains the

same for any permutation o € Sy with

a(wl, R ,’LUN) = (wU—l(l),...,wU—l(N)) .

As f is the same for all oscillators, this means that

g(wg, wy, ..., wx) = glwy, ws, ..., wy)

is symmetric under all permutations of the last N — 1 arguments that fix the first.
In particular, we need the network to be globally (all-to-all) coupled with Cj; =1
for all k£ # j with the same coupling function for all nodes.

Rotational invariance is fulfilled if both the uncoupled term f and the coupling
g are in Hopf normal form. To be more precise, (2.69) is rotational invariant if the
rotation of all variables wy, ..., wx by the same phase 6 € S' does not change the

network dynamics. Formally, the action of the group S* on C¥ is defined by

O(wy, ..., wy) = e (wy, ..., wy)
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for any (phase) § € S!. Indeed, the non-vanishing, resonant polynomial com-
ponents (monomials) appearing in the Hopf normal form are exactly those that
satisfy the circular S* symmetry. While we previously assumed ¢ to be an arbi-
trary power series in its variables, this power series is restricted to consist of only
resonant monomials. For g with monomials of degree lower or equal to three, we
have at most 11 non-vanishing terms that fulfill the symmetry assumptions!4!.
For weak coupling |k| < 1 and using equivariant theory, Ashwin and Rodrigues

derived a phase model
b = (0, ) + K (H,§2><e) +HY9) + H,g“)(e)) , (2.70)

which allows interactions of up to four phases: The functions H ,gj ) denote the sums
over pairwise, triplet and quadruplet interactions of the phases for j = 2, 3,4, re-
spectively, and @ = (0y,...,60y) is the phase vector. In Section S.5 of the Supple-
mentary Material, we provide the explicit expressions of the particular terms in
(2.70).

If we consider only pairwise interactions in the coupling function ¢ as in (2.15)
and (2.16), then the dynamics (2.70) reduces to

V4 .l
0, = w — /<¢,u—1 cos(1)y) + N Z [51 cos(6; — O + x7)

(2.71)
+ (& cos(0 = O+ 1) + € cos (2(6; — 6) +x3) )|

with parameters defined in Section S.5. Note that (2.71) consists of the first two
harmonics only. Indeed, the terms & cos(p + x9) + €& cos(¢ + xi) can be com-
prised by trigonometric identities. Furthermore, the constant term —v4/uy cos(14)
presents only minor corrections to the natural frequency w = vy — ugvy /vy. Like-
wise, the term &] cos(0; — 6+ x7) can be discarded as it contributes only negligibly
to the first harmonics. By neglecting all non-dominant terms, we retrieve a phase

model of the form
. K N
0 = w+ ¥ Z €0 cos(8; — 6 + XT) + p& cos (2(6; — 6k) + x3)] - (2.72)

The parameters &), x{ and &1, x4 for first and second harmonic correspond exactly
to the coupling coefficients v and § of the coupling function as considered in (2.16).

2 close to

Moreover, the amplitude of the second harmonics scale with pu = (R°)
the Hopf bifurcation.
In view of a practical application of the theory oulined above, we are confronted

with two major concerns. First, the normal form transformation, as introduced
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in Section 2.2.1, recasts only the uncoupled part in Hopf normal form, which
satisfies the required symmetry conditions. The transformed coupling function,
however, exhibits in general terms of all powers and is a priori not shaped to comply
with the S' x Sy-symmetry as assumed in (2.69). Nonetheless, the averaging
inherent to determine the phase interaction function H has shown that only a
specific selection of coupling terms contributes to the phase dynamics (at leading
order), see Section 2.2.1.2*. Hence, averaging — which is intrinsically tied to the

assumption of weak coupling and slowly varying phase deviations3%7

— imposes
the symmetry constraints on the coupling function g(wg,ws,...,wy) after the
normal form reduction.

The second concern refers to the the underlying connectivity structure of the
network. Indeed, for any particular choice of coupling topology other than global,
all-to-all coupling, the permutation symmetry Sy cannot be upheld. However, for
a coupling function h = (hq,...,hy) we can heuristically define a substitution

operator K via the formal convolution
(’C* h)j(wl, . 7U)N) = hj (lewl, ey CijN) .

Then, we can first follow the theory presented in this section to derive (2.72), and

subsequently apply the convolution I x g, which reveals the phase model

N
0p = w+ % Z Ch;j [5? cos(0; — Ok + x1) + RCQQ cos (Q(Hj —0k) + X2)j| )

j=1

Using trigonometric identities, we eventually arrive at the Fourier coefficients of

the desired form as in (2.17) & (2.60).

2.2.7 Haken'’s reduction via averaging

Although the previous phase reduction techniques are formulated for rather gen-
eral oscillatory dynamical systems, their practical application is limited to a few
exceptional cases in which either explicit formulas for the limit cycle and the
asymptotic phase maps are available, or the dynamics has already been reduced
to normal form. An alternative and more direct approach to reduce an oscillatory
network to its phase dynamics, has been promoted by Haken and applies averaging.

The idea is to average each oscillator over one cycle when assuming that its
amplitude and phase change slowly as compared to the oscillator’s frequency. Fol-
lowing a three-step approach, first the time-dependent amplitude and phase are
fixed. The system is then integrated over one period to remove all harmonic oscil-

lations; see also #3144 for a more rigorous reasoning. Last, amplitude and phase are
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considered again to be time-dependent 5¢42112 Haken popularized this procedure
as a combination of rotating wave and slowly varying amplitude approximations .
While this technique is usually applied to weakly nonlinear oscillations described

e-g, 115,145 "it can also be

by second-order differential equations, see for an overview
applied to systems of first-order differential equations, as will be illustrated be-
low. Moreover, this phase reduction technique can also be applied for oscillatory
networks beyond the limit of weak coupling.?”! In fact, it allows to (analytically)
reduce oscillatory network dynamics that are induced through (strong) coupling
between the (excitable) elements, see 4% and Section 3.3.5.1. As averaging is
applied to the linearized dynamics around an unstable fixed point within a stable
limit cycle solution x¢ (in contrast to the linearized dynamics around ¢ as in
Section 2.2.5), this technique loses accuracy for large-amplitude oscillations, see
also Section 3.1. Still, it provides a straightforward phase model whose parame-
ters are directly linked to those of the underlying oscillatory model, and presents
a valuable addition to the variety of phase reduction techniques. Above all, when
applied in the framework of weakly coupled oscillators, the reduction results in the
same phase model as obtained with the other reduction techniques, which will be
illustrated below for coupled oscillators in second order Hopf normal form.
Applying Haken’s reduction technique to an oscillatory network requires that
every node in the network exhibits stable limit cycle oscillations that can be trans-
formed by an appropriate change of variables into (nearly) circular shape.?! Note
that these oscillations may also be coupling induced. In the following we will as-
sume that each node describes stable circular oscillations. In case of planar oscilla-
tory systems @, = f(x; p) + kgi (@1, . . ., xN) With state vector &y, = (x1, yp) € R?,
we can perform a polar coordinate transformation zy, = Ry cos(0y), yx, = Ry sin(0y)
with 0 = wt + ¢5,. Note that while R? = 2?7 + y? and 6, = atan(y, x,), the (cen-
tral) frequency w has to be determined, e.g., as the mean of individual frequencies
w = (1/N)}_;wj, or alternatively, as the (absolute value of the) imaginary part of
the complex conjugate pair of eigenvalues of the Jacobian of f, that is, w = Im(\,)
with Ay € C the pair of complex eigenvalues. ¢, denotes a slowly varying phase
deviation of unit k from the mean. Assuming that Ry, ¢y hardly change over one

period of oscillation, T' = 27 /w, i.e.

)Rk/Rk‘ < w and ’qﬁk/m) <L w, (2.73)

[25] Note the change from “oscillator network” to “oscillatory network” as we have introduced
“oscillators” in Section 2.1.1 such that they exhibit stable limit cycle oscillations without
external coupling.

[26] Such a coordinate change is always possible for, e.g., oscillations that emerge through a
Hopf bifurcation. Away from that point, higher order corrections might be in place; for a
corresponding approximation scheme ¢ 143,
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one can average the dynamics over the interval [0,7) by means of (f(s)) :=

% fOT f(s)ds. Exploiting trigonometric identities, the (averaged) dynamics gbk and

Ry, can be expressed in the state variables zy, y;, as!?

~ 1 . .
k
B = <Wk_+ykyk> . (2.74b)
Ry,

We retrieve the full phase dynamics by inserting (2.74a) into O = w+ gzﬁk Note
that the system (2.74) describes both phase and amplitude dynamics, which can be
reduced further if we assume that the (non-trivial) fixed point solution of (2.74b)
approximates the (time-varying) amplitude Ry sufficiently well. Upon inserting
the (stationary) solution Ry into (2.74a), we eventually find the reduced phase
dynamics ¢y, which will split into a natural frequency part of order O(1) and a
coupling part of order O(k).

A mathematical rigorous application of the Haken approach, as noted above,
respects the basic assumption of weakly coupled oscillators in that we find stable
limit cycle oscillations already in the uncoupled case. For two coupled oscillators

w,w" € C in second order Hopf normal form with nonlinear coupling as in (2.31),
W = aw — Blwlw + K (yw' + dwow?) |

where v = g + iy and § = 0r + 07, we consider the dynamics (2.25) in two-
dimensional real-valued coordinates w = 7 + iy; and w' = xo + iys. We first
transform the nonlinear coupling terms in real coordinates and use polar coor-
dinates w = Re'@t9) o/ = R'e¢i@t9) as above. In particular, we can use the

following identities
(rryr) =0 and <xi> = <y,§> = %R,% . (2.75)

Inserting them and the corresponding (zy, yx)-dynamics in (2.74), we define ¢ =

27] The averaging in (2.74) is sound also from a time-scale separation argument. The assumption
(2.73) implies that ¢ = ¢r(7) and Ry, = Ri(7) depend on a slower time 7 = et. As a result,
we obtain the dynamics of the phase deviation ¢ and of the slowly varying amplitude Ry by
averaging over the period Ty, = 27 /wy. Indeed, using polar coordinates in the angular brackets
of (2.74) one can see that all terms at least of order O(Ry). Close to the supercritical Hopf
bifurcation, 0 < Ry < 1 is small so that this averaging is appropriate.
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¢ — ¢ and arrive at

¢ = —w+ vy — v R
bl (7 cos v = msin) + B2 (8 cos(24) — o sin<2¢))] (2.76a)

R= uoR — uy R®
+ kR <’yR cos ) + vy sin w) + RR" <6R cos(2¢) + 07 sin(Qw)ﬂ . (2.76b)

In the case of weak coupling x < 1 and close to the Hopf bifurcation R < 1, the
R-dynamics (2.76b) evolves very slowly compared to ¢. Therefore, one can assume
that R and R’ are constant and do not vanish. We can solve (2.76b) for R? by
setting R=0as

/
R? = Z—? + uil {% (%z cos 1 + vy sin @/)> + R? (5R cos(2¢) + 0r Sin(%)ﬂ ,
which is close to the uncoupled limit cycle radius R = y/ug/u;. Substituting R®
into (2.76a) and using 6 = w + ¢, we find that

1

) — o — g L A _ ) — YN Gng — o
0 = vy Uo +/<{[<71 'yRu1>cos(9 0" <WR+WU1)sm(9 9)]—1—

+ R [((51 — 51«2%) coS (2(9 — 9')) — ((5R + 51%) sin (2(0 — 9’))} } )
1 1
(2.77)
This result can immediately be extended to a network of coupled oscillators yield-
ing the phase model (2.17) with Fourier coefficients (2.60).

2.3 Numerical phase reduction techniques

As repeatedly said, analytic techniques can provide useful information about the
properties of the limit cycle behavior of the coupled oscillators, which can be used
to determine the corresponding phase model explicitly in terms of the underlying
model equations. Analytic expressions thus explicitly link the parameters of the
original dynamics to those of the phase model. This allows to predict reliably how
specific model parameters shape the phase dynamics of the system. However, as we
have seen in the previous sections, only few examples are mathematically tractable
and often an intricate normal form reduction has to precede the actual phase
reduction. Furthermore, the accuracy of such analytic approaches scales with the
distance to the bifurcation point. And, as appealing as the analytic reduction
techniques are, as bulky can be the accompanying algebraic computations. Thus,

one may look for a compromise between the qualitative insights mentioned above
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and quantitative accuracy of the phase reduction.

More accurate reduction techniques heavily rely on a careful assessment of the
limit cycle’s properties, such as its shape and its dynamics. This assessment can
be automatized numerically, giving rise to the notion of numerical phase reduction
techniques. In contrast to analytic reduction techniques, the numerical approaches
do not necessarily aim at explicit equations that describe the limit cycle, but store
all numeric values that are needed in the subsequent reduction steps. In this way
the phase dynamics can be obtained with high accuracy, both near and far from
bifurcation points; see also Sections 3.1 and 3.2 for illustration.

Conceptually, numerical approaches can be distinguished between adjoint and
direct methods, which will be presented in the following sub-sections 2.3.1 and
2.3.2, respectively. In a nutshell, direct methods numerically evaluate the phase
response to perturbations p via the phase response function G(0, p), whereas ad-
joint methods numerically compute the phase sensitivity function Z(6), which has
been defined in Section 2.1.2. In a strict sense, both of them build on a thorough
analytic basis. Yet, determining the phase response properties of an oscillator is
not enough to constitute a phase model of the form (2.3). One also needs to in-
corporate the coupling function g, ; to estimate the phase interaction function Hy;

introduced already in (2.14) as

o
Hij(¢) = %/0 Z(p+1)grle+1v,0) dp . (2.78)
Recall that the coupling function g in (2.14) is evaluated on the limit cycle C. Even
if C cannot be determined analytically, this can be achieved numerically. Deriving
numerically the phase model thus combines the numerical computation of the
phase response, which becomes the phase sensitivity function Z(6) in the limit of
infinitesimal perturbations, and the evaluation of the coupling function g(fy, 6;) at
the numerically estimated limit cycle. We will refer to this algorithmic procedure
as a numerical phase reduction technique. The particular type of numerical phase
reduction technique eventually depends on whether Z(#) is determined with an
adjoint or a direct method. In the following sub-sections we will revise the main
ideas behind the different methods, where we focus mainly on the computation
of Z(0), and refer to several numerical toolboxes for more details about their
implementation.

To anticipate, both adjoint and direct techniques provide very similar results.
In our applications in Sections 3.1 and 3.2 we will hence use them interchangeably

as “the” numerical phase reduction technique.
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2.3.1 Adjoint method

The adjoint method presents an accurate way to derive the phase dynamics of cou-
pled oscillators ™86:146.147 " Tt ig closely related to the direct method in the limit of
infinitesimal perturbations due to the link between the phase sensitivity function
and the phase response function, see Section 2.2.4 and!’?. From a mathematical
point of view they are even equivalent, together with the method based on Floquet
eigenvectors in Section 2.2.5, since all of them evaluate the linearized dynamics
around the oscillator’s stable limit cycle. Due to the practical advantage of nu-
merical algorithms, the adjoint and direct methods present powerful alternatives

to analytic reduction techniques.

2.3.1.1 Malkin’'s theorem

The adjoint method has been summarized in Theorem 9.2"® by Hoppensteadt
and Izhikevich. It follows earlier work by Malkin'*® and is often referred to as
Malkin’s method. Malkin’s theorem states that for a network of weakly coupled
oscillators &y = fi.(xx) + K g(x1,...,xzN) € R", where each uncoupled oscillator
has an exponentially orbitally stable T-periodic solution xf, the reduced phase
dynamics is given by 6, = w + x Hy(6 — 6;) with w = 27/T, phase vector ¥ :=

(01 — Ok, ...,0§ — 0r), and the phase interaction function Hj, at first order

2

The oscillators’ phase sensitivity function Z;(6) € R™ is the unique non-trivial

T-periodic solution to the linear system[?®!

i == (VF@)pag) ) (2.79)

satisfying the normalization condition

Y(0) - fi (25(0) = w . (2.80)

This theorem is fairly general and can also be extended for weakly coupled oscil-
lators whose stable limit cycle oscillations have slightly different periods T}, see™.
Moreover, the theorem does not rely on assumptions of the kind that any oscillator
is required to be close to some bifurcation point.

In the case of a network of (nearly) identical oscillators, f, = f, equations

(2.79) & (2.80) must only be solved once to retrieve the phase sensitivity function

(28] We again identify Zj(0) and Zj(t) via the constantly increasing phase 6 = w on the limit
cycle and by fixing a reference phase 6y = 0 at ¢t = 0.
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Z. An alternative but illustrative proof that Z solves (2.79) & (2.80) has been

102 "see also Section S.6 in the Supplementary Material. In a nutshell,

provided by
when considering an infinitesimal perturbations p to the stable limit cycle solution
x¢(t) at time ¢ = 0, then u(t) defined via x(t) = ¢ + u(t) follows the linearized
dynamics

u(t) = Vf(w)|m:mc(t) u(t) =: L(t)u(t) , (2.81)

see also Section 2.2.5. By rewriting (2.81) as Lu = 0 with the linear operator
(Ly) (t) :=y(t) — L(t)y(t), it can be shown that the phase sensitivity function Z

is a solution of the adjoint problem
L°Z =0, where (L'y)(t):=-y(t)—L()y(),

with initial condition Z(0) - € = w, which is (2.80). Importantly, solving the
adjoint problem (2.79) & (2.80) for an oscillator in Hopf normal form reveals the
same phase sensitivity function that has been reported in Section 2.2.4 86

For arbitrary limit cycle oscillators, one can solve L*y = 0 numerically by
integrating the equation y = —L(t)Ty backward in time'*°. As long as the limit
cycle is asymptotically stable, backward integration exactly retrieves the periodic
solution of the adjoint equation and cancels possible higher harmonics out. In this
way the adjoint method is efficiently automated in Ermentrout’s software package
XPPAUT % As the numerical procedures do not rely on a critical distance to a
bifurcation point, the adjoint method can provide a valuable reference to monitor
accuracy, and, by this, the validity of analytic phase reduction techniques as a
system gradually moves away from a supercritical Hopf point. We will exploit this

capacity in the forthcoming Sections 3.1 and 3.2

XPPAUT and Matcont The numerical exploration of the phase sensitivity func-
tion as the solution to the adjoint problem (2.79) & (2.80) may present a problem
in itself. In fact, the solution Z(T) = Z(0) of (2.79) is periodic, so that we en-
counter a boundary value problem. While a direct integration is impossible, the
XPPAUT package uses backward integration!? after which the solution of (2.79)
approaches the periodic solution corresponding to the phase sensitivity function.
This algorithm, however, has to rely on a numerical interpolation of the Jacobian
matrix being evaluated at the limit cycle solution. Another drawback of the pro-
cedure is the slow convergence of the adjoint solution towards the phase response
curve when the limit cycle is only weakly stable. Govaerts and Sautois!®! proposed
an alternative numerical approach to solve the adjoint problem. It does not suffer
from the aforementioned shortcomings. Their algorithm solves the correspond-

ing boundary value problem using an orthogonal collocation method with Gauss


http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
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collocation points. As a by-product, they obtain the phase sensitivity function.
The method is fast, rendering it particularly useful when a large number of phase
response curves are needed, e.g., for the evolution of limit cycles if one parameter
of the system is changed. This method is implemented in the Matlab software
package MatCont 152,

2.3.1.2 Ermentrout & Kopell's reduction

An alternative method that relies on the gradient evaluated on the oscillator’s limit
cycle has been put forward by Ermentrout and Kopell'46:14%153  They propose
a coordinate transformation @y = T (0, p,) resembling, at first sight, a phase-
amplitude description; cf. Section 3.3.7 for discussion. An isolated oscillator @) =
fi(xr),zr, € R", has an asymptotically stable limit cycle solution @ (t) with
period T}, and frequency wy = 27 /Ty. Then, the transform 7; maps x; to variables
0r € S' and p, € R""!. The phase 6 parametrizes ¢ along the limit cycle C and
the amplitudes p, are normal coordinates in a neighborhood of C, with p, = 0

directly on it. One can choose the transform of the form

zi(t) = T (Ok(1), pi(t)) = 5 (Ok(t)) + M (0u(1)) pi(t) + O%(py,) . (2.82)
where M () is an n X (n — 1)-matrix and

M (0)"M(0) = Ln1)x(n-1)

/ (2.83)
2,1, (0)T My (0) = O1x(n-1) -

The prime " denotes the derivative with respect to #. Then for small p,, one can

express the dynamics &y = f.(xy) as

O =wi+0(py) by = ar(0)py + o(py) - (2.84)
Coupling the oscillators according to & = f(xr) + g(x1,. .., TN), results in the
dynamics
O = wi + hi(01, -, On) + O({py, -, P }) (2.85a)
P = ar(Ok)py, + (01, ..., 0n) + O({p1, - - Prc1, Prsrs - P D) +ollpil) -
(2.85h)

While the aj only depend on the f,’s, the hy and dj, also depend on the coupling
terms g,,k = 1,...,N. The precise form of the terms in the dynamics (2.85) as
well as the corresponding proofs can be found in Section S.7 of the Supplementary

Material. In the limit of ‘infinite attraction’ to the limit cycle, p, — 0, (2.85)


http://www.scholarpedia.org/article/MATCONT
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reduces to the 6, dynamics only. That is, the larger the strength of attraction of
the limit cycle, the more accurate the phase model.

Ermentrout and Kopell showed that if the coupling functions g, have some
specific form, the interaction terms in the reduced phase model display a pulse-

response coupling like

N
Op = wi+ a0 Y Pi(0))R(6:) , ag€R. (2.86)

J=1

The function P;(6;) represents a perturbation through oscillator j and R(6) can
be understood as a phase response curve, see also'®® for explanatory comments on
this relationship. From a historical point of view, Winfree was among the first who
proposed reduced phase dynamics of the above form®. As to their derivation, we
first assume that the coupling function g, : RV*" — R" can be expressed as the
sum of pairwise interactions g, (x1,...,xy) = Zj gi(x;, ;). Omitting the tildes,
we suppose that the terms g, = (gk.1, .-, gkn)T : R¥*" — R" are nonzero in only
one variable, say gi,. We further assume that this component can be written as
gri = ofz;)B(xy) for some functions a, 5 : R” — R. Then, the functions hy in
(2.85a) decouple and we regain the dynamics (2.86).

This pulse-response type of phase models holds for oscillator dynamics with
arbitrary large coupling strengths. However, if interactions are scattered along
the period of the oscillators, the system can behave as though the coupling was
averaged over a period 7.
0r) = (1/2m) 02# hi(¢ + 0; — Ok, ¢)dp will only depend on the phase differences

Yrj = 0 — 0;. When considering two coupled oscillators with pulse-response

In that case, the phase interaction function H(6; —

coupling in the reduced phase equations of the form hy(6y,0;) = P(6;)R(0);) with
a non-negative pulse function P(f) = 1 + cos(#) and general response function

R(0) = sin(f), the phase interaction function becomes purely sinusoidal,

27
H(y) = /0 hi(6,0+ )d0 = Lsin(v) .

Furthermore, if the rate of attraction to the limit cycle is finite, but the coupling is
sufficiently weak, one can use invariant manifold theory '** to establish an invariant
torus. Single contributions through the coupling may not appear immediately.
But cumulative coupling effects arise after one period and averaging is needed to
constitute a phase interaction function H. For oscillators with only small frequency
differences of order O(¢), one can rewrite the isolated oscillator dynamics as &) =
fi(xr) = f(xr)+O(€) and subsume the O(¢) terms of frequency differences under

the coupling terms g,. Then, formally we have identical oscillators with limit cycle
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solutions x°(t) and frequencies w = 27/T. Given small coupling strengths, one
can also replace g, by eg,. By performing the coordinate transform (2.82) one
finds that p, will be e-close to the invariant torus so that we can write p, = esy.
Following 47, one eventually arrives at the phase interaction function H(vy;) for
the differences x; = ¢ — ¢, of phase deviations ¢, from the uncoupled limit cycle
phases 6, = wyt + ¢, which reads

Hy(tsy) = / b(t)si(t) + p (1) (@(6)" gy (@(t), 2t + ) db . (287)

T
The exact form of b(t) can be found in Section S.7. Simplifying the expression

above, (2.87) can be recast as

() = 3 [ 2094 @ 0.2+ vy (2.8%)

where Z is the solution to the adjoint problem of the previous Section 2.3.1. In fact,
Ermentrout and Kopell provided two different methods in the appendix of'*” to
derive (2.88). While their second method overlaps to great extent with the adjoint
method above, we recapitulate their other “geometric” method in Section S.7.1%"!
Both methods as well as the one presented in Section 2.3.1 are equivalent and the
difficulties remain to find exact solutions when evaluating the dynamics along the
(analytically unknown) limit cycle trajectory. Nevertheless, these approaches have
proven quite successful and serve for that reason as a valuable means to test and

validate analytic results.

2.3.2 Direct method

Direct methods differ conceptually from adjoint methods in that they do not im-
mediately solve for the phase sensitivity function Z. Instead, direct methods aim
at quantifying the phase response to an (arbitrarily small or large) stimulus p of
the limit cycle trajectory x(t) at a particular phase #. We introduced this type of
response as the phase response function G(6, p) in Section 2.1 and presented an ex-
act description how to determine GG. This direct method can also be implemented
experimentally, which dates back to the work by Glass, Mackey and co-workers%°
in the 1980s. Despite its simplicity, the experimental procedure is not very ac-

curate when it comes to infinitesimal perturbations. That is why direct methods

(291 An alternative proof to establish phase equations for oscillatory neural networks is given in
Theorem 9.17® by Hoppensteadt and Izhikevich. They focus on the phase dynamics of (2.85)
and use normal form theory as presented in Section 2.2.1 to describe perturbations P off the
invariant manifold of (the product of) hyperbolic limit cycles. Ad-hoc they interpret their
choice P = 0 as an ‘infinite attraction’ to the invariant manifold and thus link their result to
Ermentrout and Kopell’s work.
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have been avoided to compute the phase sensitivity function Z via G(6,p) in the
limit of infinitesimal perturbations ||p|| < 1. Recently, however, Novi¢enko and
Pyragas proposed an algorithm based on the same idea of the oscillator’s response

to short finite pulses at different phases of the limit cycle!56.

Their algorithm
does not require any backward integration nor a numerical interpolation of the
Jacobian. Moreover, it is faster than the algorithms implemented in XPPAUT,
see Section 2.3.1 above. This is especially true when the limit cycle is only weakly
stable. The idea behind this algorithm builds on the (linearized) dynamics (2.81)
of infinitesimal deviations w from the limit cycle C = {x°(t) : 0 <t < T'} as the

adjoint method,
u(t) = VI(@)|pgeq ul) , (2.89)

where x(t) denotes the T-periodic limit cycle solution of & = f(x) with initial con-
dition x(0) = x°(#) (initial phase ). To obtain the j-th component Z; of the phase
sensitivity function Z, we choose the initial condition u(0) = (u1(0), ..., u,(0))"

with uy(0) = dx; where dy; denotes the Kronecker-d. Then, it can be found'*® that

28) — 1 F 0 D)

p—oo f (x<(0)) - f (x<(0))

To improve this algorithm, the authors replaced the vector w by the fundamen-

(2.90)

tal matrix ® and eventually extract the phase sensitivity function Z from ®.

k%6 which includes numerical

For more details, we refer to their instructive wor
demonstrations of the algorithm and a comparison with the standard algorithm as
implemented in XPPAUT.

For our purposes, we tested the standard algorithm, both using XPPAUT as well
as our own adjoint solver implemented in Matlab (The Mathworks Inc., Natwick,
MA), against the one presented here. We found a very good agreement between
all methods, such that we use either of them interchangeably as “the” numerical

method unless stated otherwise.


http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://mathworks.com

70

CHAPTER

Collective behavior of coupled
oscillators and their reduced phase

models

Having a battery of analytic and numerical phase reduction techniques introduced
and explicated in the previous Chapter, we duly apply them to two classic exam-
ples. The first is a network of Brusselators, which is one of the most discussed
chemical oscillators. The second example comprises a more elaborate interdisci-
plinary model of coupled Wilson-Cowan oscillators. Both of them illustrate the
benefits and pitfalls of the different phase reduction techniques. A point-by-point
application further allows for a thorough comparison between the techniques. The
reduction of complex oscillatory systems is crucial for numerical analyses but more
so for analytical estimates and model prediction. The most common reduction is
towards phase oscillator networks that have proven successful in describing not
only the transition between incoherence and global synchronization, but in predict-
ing the existence of non-trivial network states. Many of these predictions have been
confirmed in experiments. The phase dynamics, however, depends to large extent

on the employed phase reduction technique.

Adapted from: Pietras B., Daffertshofer A. (2018). Network dynamics of coupled

oscillators and phase reduction techniques, (Sections 5 — 7). Under review.
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3.1 Networks of identical Brusselators

The Brusselator is a theoretical model of oscillating chemical reactions. It perfectly
serves to illustrate our approaches to phase reduction introduced in Chapter 2 since
it exhibits a supercritical Hopf bifurcation. The system comprises four hypotheti-
cal chemical reactions and has been developed by the Brussels school around Ilya
Prigogine and René Lefever!®” — hence the name. For a long time, reports on
oscillating chemical reactions were facing harsh skepticism. Despite the strong
interest in biological and biochemical oscillations in the 1950s and 60s, the dis-
covery of oscillatory patterns in a closed chemical system by Belousov!®® in 1951
had to be meticulously reproduced and investigated for years by Zhabotinsky %"
until the nowadays so famous Belousov-Zhabotinsky reaction found its way into
the scientific community '%%; for an overview of oscillating chemical reactions see
also3%:161:162 Ty 5 way, the Belousov-Zhabotinsky reaction was conceived as a man-
ageable model of more complex systems, which simultaneously bore a close analogy
to biology: Strogatz describes this analogy where “propagating waves of oxidation
[...] annihilate upon collision just like waves of excitation in neural or cardiac tis-
sue. [...]| spiral waves are now an ubiquitous feature of chemical, biological, and

7162 The original Belousov-Zhabotinsky reaction, which

physical excitable media
involves more than twenty elementary reaction steps, could effectively be rewrit-
ten in three differential equations. From a similar perspective, one can regard the
Brusselator as a simplified chemical oscillator, which can be described in two dif-
ferential equations. Despite its ability to exhibit oscillatory dynamics, as found in
the Belousov-Zhabotinsky reaction, the Brusselator is a mere hypothetical model
and is not based on a particular chemical reaction. Nonetheless, it serves as an
exquisite example to apply the arsenal of phase reduction techniques presented in

the previous section.!!

(I There exists also a natural extension of the Brusselator model into a two-component reaction-
diffusion system, which allows for so-called chemical waves and other pattern formation, such
as, e.g., traveling fronts or rotating spirals in an extended medium3®. It is not only possible
to define a phase for rhythmic patterns in extended media, but also to derive the correspond-
ing phase dynamics from the underlying spatio-temporal dynamics, as has been successfully
demonstrated by Nakao, Kawamura and co-workers®7:163:164  This strategy can be used to
determine a meaningful phase dynamics of periodic fluid flows®®. It has been extended to
reduce the phase dynamics of limit cycle solutions to general partial differential equations 6.
In the same way, the phase dynamics of collective oscillations of globally coupled noisy ele-
ments can be derived, given that these oscillations are solutions to a nonlinear Fokker-Planck
equation 167,168,
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3.1.1 Single node dynamics

The chemical reactions of the Brusselator are described in terms of

Aty x (3.1a)
B+X sy +c (3.1b)
2X +V Loy 3x (3.1c)
X2 p, (3.1d)

which sum up to A+ B — C + D. Each of the reactions (3.1a-d) has a rate
constant k, to ky. Under the assumption that the chemicals A and B are in vast
excess, one can assume that their concentrations stay constant. On the other hand,
the products C and D are constantly removed. The concentrations of X and Y
will react sensitively to already weak perturbations and reach an oscillatory state
when the overall reaction is far from an equilibrium solution. (3.1) can thus be
considered a thermodynamically open system with the following rate equations for

the (dimensionless) concentrations x = [X] and y = [Y]

i = ku[A] — ky[Blw + ka*y — kg

_ ) (3.2)
Y = kp|Blx — k.xty

with free parameters k,[A], ky|B], k. and k4. The rate equations (3.2) can be un-
derstood as follows: Reaction (3.1a) always leads to an increase of concentration
x, which is proportional to the product of the rate k, and the concentration [A]
of chemical A. Likewise, reaction (3.1d) leads to a decrease of concentration x at
rate kq. Whenever the two chemicals B and X are involved in reaction (3.1b), this
leads to an increase in concentration y that is proportional to the rate k; times the
concentrations of B and X, and a simultaneous decrease of the same amount of
concentration x. Reaction (3.1c¢) can be understood in the same manner, only that

this reaction leads to an increase in x and a (balanced) decrease in concentration

Y.

3.1.2 Coupled Brusselators

We consider a network of Brusselators by coupling multiple nodes @y = (x, yx) €
R2, k = 1,...,N. In the following, we will fix the rate constants k, = k; = 1

and consider a = k,[A],b = ky[B] € RT as possible bifurcation parameters. Our
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Brusselator network model then reads

i =a— (b4 1)ap + 23ye + Kk (T1, - TN, YL - YN (3.3)

yk = bSEk _xzyk_'_Hgk,y(xl?"'7xN7y17“'7yN)

for some weak coupling strength 0 < |k| < 1 and with coupling functions g ,, gk, :
R2V — R. Without coupling, x = 0, every node has a stable fixed point at
(w0, 0) = (a,b/a), which undergoes a supercritical Hopf bifurcation at b = 1 + a?.
Introducing the new variables T, = x; — xo and yr = yr — Yo, we can shift the
fixed point to the origin, (Zo, 7o) = (0,0). Moreover, we restrict the form of the
coupling to be the sum of pairwise interactions between nodes &y, x;, k # j, so
that the dynamics (3.3) become

N
. b K
o = (b — Dayp + a’yy + Eﬁ + 2azkyk + TRYk + N 2 Crj 9o, ;)
. v (3.4)

. K

Y = —b:L’k — azyk — axi - QCkayk - xiyk + N ]Z:; ijgy(wk, ch) .
Note that we omitted the tildes for the sake of readability. We also assumed the
coupling terms g = (g,,g,) to be identical across nodes. The adjacency matrix
C = {C};} specifies the connectivity between nodes x; and x;. We define the

bifurcation parameter as

b

- -1 3.5
T2 (3:5)

1

and aim at transforming the dynamics (3.4) into Jordan real form, that is, the

linearized dynamics with Jacobian L(u) around the fixed point (0,0) is of the

()= (2 ) ()

To do so, we use the transformation matrix

form

1 (_ (h+a2(2+ ) /32 — 12(1 + a2)2> (3.6)

([ Jp——
(N/) 2(1+N)(1+a ) 2(1 +/L)<1 + a2> O



Collective behavior and phase models 74

where /4a? — (i2(1 + a2)?/2 = w(u) is the emergent frequency of the oscillatory
dynamics for > 0 and wy = w(0) = a.) The to-be-analyzed system then reads

N

. _ K _

& = L(p)zy + T No(Tay p) + T No(Tags p) + - Y CnT ' g(Ta, Tx)
j=1

(3.7)
with

Lw) =3 ( pta?) /A =1 >>

Vida? — (1 + a?)? pu(l+a?)
22
1+p)(1+a?) 2a 0
ry
—(1+u)(1+a*) —2a 0 )
Y
23
%y
-1 0 0 212
P

3.1.3 lIdentifying the Hopf normal form

To prepare the different reduction techniques, in particular Kuramoto’s reductive
perturbation and Poincaré’s nonlinear transform approach, we first specify the

parameters that are independent of the coupling.

Kuramoto’s reductive perturbation Following Section 2.2.2.1, the normal form

parameters «, 3 in (2.41),
f(w7 U_)> = aw — B|w|2w
can be identified as

2 4 —7a® + 4a*
'&) ' (3.8)

a:%,u(l—i—(f)—i—m and ﬁ:%(l%—ﬁ—i—z v

Note that ( is independent of the bifurcation parameter i, whereas o depends on p.
Hence, varying p may strongly affect the normal form. The coupling parameters of
order O(k) can be computed using the expressions above once the type of coupling
has been established.

Considering one Brusselator as an integral element of a network of coupled

] Note that for @ > 0 and |u| < 1, T(u) can only become singular when x4 = a = 0. In this
case, det(T'(0)) = 0, and the Jacobian L(0) = O vanishes, too.
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oscillators, each oscillator is now subject to ‘perturbations’ from the respective
other nodes. The initial and indispensable step is to investigate how an individual
Brusselator reacts to perturbations in general. For this, we determine the phase
sensitivity function!® Z either analytically from the reduced Hopf normal form, or
numerically as presented in Sections 2.3 and 2.3.2. The analytically derived phase

sensitivity function is perfectly sinusoidal. It reads

. (3.9)
—¢o8inf + cos

1 (- 0 —sind
( cz cos 0 — sin ) . where B? =

a and (B are determined by the analytic normal form reduction technique, e.g.,
by (3.8), see also Section 2.2.5. By contrast, the numerically computed phase
sensitivity function may exhibit higher harmonics for growing distance from the
Hopf bifurcation point as there is no preceding Hopf normal form reduction that

imposes circular symmetry on the limit cycle.

Poincaré’s reduction via nonlinear transforms In a similar way, one can com-
pute the (uncoupled part of the) normal form according to the reduction approach
via nonlinear transforms from Section 2.2.2.2. There, no assumptions on the small-
ness of the bifurcation parameter p are imposed. On the one hand this improves
the accuracy by making both «, 5 depend on p. But on the other hand it yields
equations that are too lengthy to report, given dynamics (3.7). As an alternative,

we will compare the different reduced phase dynamics numerically and graphically.

3.1.4 Comparing analytic and numerical phase reductions

3.1.4.1 Linear coupling

A comparison of the different phase sensitivity functions provides only limited
insight about the network’s phase dynamics. Arguably more important is the
shape of the entire phase interaction function H, which also accounts for the

type of coupling. For our network of Brusselators, we first consider global, linear

BI' All phase reduction techniques discussed in Sections 2.2 and 2.3 build on an explicit com-
putation of the phase sensitivity function Z except for the phase reduction approach based
on Sy x Sl-symmetry, Section 2.2.6. However, since this symmetry approach requires the
underlying dynamics in Hopf normal form, one can readily extract Z from the normal form
parameters.
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diffusive coupling between oscillators!!

Crig (@, ;) = ( dfy‘_y)> (3.10)

with some coupling constant d € R “%; d > 0 ‘weights’ the coupling between y;
and yy, relative to that between z; and wy.

In the following, we will investigate how collective dynamics of weakly and lin-
early coupled Brusselators can be predicted with the help of reduced phase models
when varying the parameters a, d, and . We will focus on the boundaries between
stability and instability of the fully synchronized state and of the (balanced) two
cluster state. These boundaries are described in terms of the amplitudes a,, b, of

the first and second harmonics of the phase interaction function (2.17),

H(y) = Z an cos(ni) + by, sin(ny) .

n>0

i.e. for n =1 and n = 2, respectively.

Analytic phase reductions Recall that the sought-for dynamics (2.31) reads
o N
’Li)k = QW — B|wk|2wk + N chj [’}/’LU]' + (kawﬂ .
j=1

This means that the parameters v and 0 remain to be specified. Along Kuramoto’s
reductive perturbation technique we obtain for the Brusselator network with linear

coupling (3.10)

1 d
Y=t tit(1+4d),

2 2 2
200 4/
5:_4—1—@(2 10d) + d + a*(—2 + 7d) (3.11)
9a*
_Z, 4+a*2—11d) + 2a*(=1 + d) + 5d
9a3 '

[ Approximate linear coupling schemes have also been realized in experiments with electro-
chemical oscillators, see 892169 which underlines the relevance of this comparably simple
type of coupling.
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When combined with the parameters «, § in (3.8), this leads to

m(z)  —a(l—d)
Cl = =
"7 Re(y) 1+d
I 4 — 7a% + 4a*
o= B _4-Ta+da (3.12)
Re(p) 6a + 3a3
o Im(6) a4+ a*(2—11d) + 2a*(—1 + d) + 5d]
7 Re(0)  4+a2(2—10d) +d+a*(—2+7d)
and to the radius R = pu azz(f(;f). From there we can derive the amplitudes aq,

as, by, and by of H, see Section 2.2.3.

Analogously, one can derive these amplitudes along Poincaré’s reduction via
nonlinear transforms. Although the parameters «, (3,7, are the main contrib-
utors to the reduced phase dynamics, the nonlinear transform approach allows
to include corrective coupling terms gyn, apart from v = ggo10 and & = go120,
see Section 2.2.2.2. The resulting amplitudes a;, as, by, and by of H using the
nonlinear transform approach can thus be expected more accurate. Besides that
corrective coupling terms are taken into account, the nonlinear transform approach
also employs parameter-dependent transformations at every order. The reductive
perturbation approach, in contrast, discards these parameter effects across all non-
linear terms.

As said, the explicit parameter-dependent expressions of aq, as, by, and by are
quite lengthy and, therefore, we compare the outcome of these two phase reduction
techniques graphically. For this, we determined the stability boundaries of the
synchronized state and of the balanced two cluster state in the a — d plane for a
fixed radius of the limit cycle oscillations that emerged through the supercritical
Hopf bifurcation. In particular, we investigated oscillations with radius R = 0.1
and R = 0.4. These values correspond to the distance p > 0 from the Hopf
bifurcation point via u = R[(2+ a?)/(a?(1+a?))]*/2. By increasing the parameter
a between 1 < a < 3, u decreases from 0.49 to 0.14 for large-amplitude oscillations,
R = 0.4, and from 0.12 to 0.035 for R = 0.1, respectively. Moreover, d is varied in
the interval [0, 1]. The stability of the synchronized state can be directly assessed
using the derivative H’(0) of the phase interaction function H, which we display
in Fig. 3.1.

As H'(0) changes signs, the synchronized state switches from stable to unstable
depending on the sign of the coupling x. Note that the stability boundary of
the synchronized state can be given by {b; + 2b; = 0} and the one of the two
cluster state by {bs = 0} for the Hopf normal form network dynamics (2.31). The
parameter regions where the fully synchronized and the two cluster states are

stable are depicted in Fig. 3.2 for the reductive perturbation approach (panels a
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and e) and the nonlinear transforms approach (b and f).

The differences between the two different analytic normal form reductions (to-
gether with a subsequent phase reduction) are hardly visible for small-amplitude
oscillations, both in the H'(0)- and in the cluster plots. Increasing the radius of os-
cillation leads to a minor reduction in size of the synchronization region (depicted
in red) for both reduction techniques. The boundary indicating the emergence of
a stable (anti-phase) two cluster state (blue) is slightly bent following the reduc-

tive perturbation approach, but becomes a straight line in the nonlinear transform

a) b) c)

d 0] " 1
d . . n N
L 4

Figure 3.1: Stability of the globally synchronized state of the network of linearly coupled
Brusselators is determined through the phase interaction function H. If sgn(x)H’(0) > 0,
the synchronized state is stable, otherwise unstable. In line with the subsequent analysis,
we use k < 0 and show —H’(0) color coded in the a — d plane for (a-c) small-amplitude
oscillations, R = 0.1, i.e. near the Hopf bifurcation point, and for (d-f) large-amplitude
oscillations, R = 0.4, further away from the Hopf point. A change of stability occurs
at H'(0) = 0 (green), between positive (red) and negative (blue) areas. The phase
interaction function is reduced via (a,d) Kuramoto’s reductive perturbation approach,
(b,e) Poincaré’s nonlinear transform approach, and (c,f) the direct numerical method.

approach.

Numerical phase reductions We also determined the properties of the Brusse-
lator’s limit cycle and its phase sensitivity function H numerically using either of
the reduction techniques presented in Section 2.3.°) Extracting the amplitudes
of the first and second harmonics of H, we again calculated the stability bound-
aries of the fully synchronized and two cluster states, respectively. The results are
summarized in Fig. 3.1 (panels ¢, f) and Fig. 3.2 (panels c, g).

When comparing the network predictions to those based on the analytic tech-
niques, we found that for small-amplitude oscillations the agreement appeared
almost perfect and the stability boundaries are nearly identical. However, for

large-amplitude oscillations, the different techniques diverged significantly. While

5] In particular, we employed the direct numerical method presented Section 2.3.2.
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a) b) c) d)

e) f) 9) h)

L '
Figure 3.2: Stable globally synchronized states (red) and stable balanced two-cluster
states (blue) of the network of linearly coupled Brusselators in the a — d plane for (a-d)
small-amplitude, and for (e-h) large-amplitude oscillations with R = 0.1 and R = 0.4,
respectively. The (negative) coupling strength is set at k = —0.001. Results are ob-
tained via (a,e) Kuramoto’s reductive perturbation approach, (b,f) Poincaré’s nonlinear
transform approach, and (c,g) the direct numerical method, and compared against (d,h)

simulations of the full network of N = 30 weakly coupled Brusselators. In the full
network, also stable three-cluster states occurred (green).

the synchronization region shrank according to the analytic techniques, it enlarged
following the numerical reduction. The boundary for the two cluster state slightly
rectified, but it did not match either of the other two predicted lines.

Network simulations To test whether the predictions based on the reduced phase
models actually recovered the original network dynamics, we simulated the dynam-
ics of N = 30 Brusselators coupled with some weak strength x = —0.001. The
results are shown in Fig. 3.2 (panels d, h). For both small- and large-amplitude os-
cillations, the analytic as well as the numeric phase reduction techniques performed
sufficiently well. Yet, the numeric phase reduction outperformed the analytic ones
for large-amplitude oscillations. This holds equally for the synchronization and the
two-cluster regions. While both analytic techniques underestimated synchroniza-
tion (smaller red area), the reductive perturbation approach slightly overestimated
the two-cluster region and the nonlinear transform approach underestimated it. Fi-
nally, the network simulations revealed a large area where a three-cluster state is
stable for large-amplitude oscillations, Fig. 3.2 (panel h). By construction, none
of the phase reduction techniques was able to detect this. More details about the

numeric implementations can be found in Appendix of 170,

3.1.4.2 Nonlinear coupling

The arguably more appealing problem is that of nonlinear coupling. To illustrate

this we add to the diffusive linear coupling an additional coupling term g, of the
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form
gsyn(a:k7a:j) :g(wk>‘s(m3) for allk#‘]: 17"'7N7

which may resemble a chemical synapse, see also Section 3.3.5. The function
S = (S;,5y) is usually of sigmoidal shape, which we simplify as a polynomial of
some degree n € N — this can be thought of as, e.g., a truncated Taylor expansion
of a sigmoidal function. As a particular example we choose the nonlinear coupling

of the form!©!

9@k, ;) = gaa(@r, ;) + (i) S(x;)
_ (% — w9135 + gemna; + gawiat + garia; (3.13)
d(y; — yr)

with coupling parameter d as in the linear case above, and with new nonlinear
coupling terms scaled by g; € R, j =1,...,4. Here we already realize that in the
reductive perturbation approach, the term gyz;iz; does not influence the resulting

phase model as 23z, is a resonant monomial.

Analytic phase reductions Equivalent to the case of linear coupling, we display
the predictions about synchronization in Fig. 3.3 and about two cluster states in

Fig. 3.4. The fixed coupling parameter values are
g =03, g=-02, ¢g3=035 ¢,=03

while d is varied in the interval [0, 1] as before.

Again, the analytic predictions of network states for small-amplitude oscillations
are roughly identical. However, for large-amplitude oscillations the differences be-
tween the two analytic techniques appear more drastic as compared to the lin-
ear coupling case. The synchronization region is enlarged following the nonlinear
transform approach and by the same token the two cluster state region shrinks,
consisting of an almost parallel stripe on the left and of a second, small triangular

region in the top right corner of the a —d plane. On the other hand, the boundaries

6] Expanding both § = (92,9y) and § = (S;,Sy) as power series in x, = (v&,yx) and x; =

(xj,y;), respectively, we will consider in the following only non-zero z-components of the
particular form
go(x) = 1+ arzy + asx + O%(zy)  and  Sy(x;) = byzj + ng? + b31’? + O*(z;) .

In order to obtain (3.13), we choose the non-vanishing coefficients

a1 =g2/g1, a2 =ga/g91, b1 =g1, ba=gig3/g-
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predicted by the reductive perturbation method hardly vary when increasing the

radius R of the limit cycle.

b) o)
| ‘ f) ﬂ

Figure 3.3: Stability of the globally synchronized state of the network of nonlin-
early coupled Brusselators is determined through the phase interaction function H. If
sgn(k)H'(0) > 0, the synchronized state is stable, otherwise unstable. In line with the
subsequent analysis, we use k < 0 and show —H’(0) color coded in the a — d plane for
(a-c) small-amplitude oscillations, R = 0.1, i.e. near the Hopf bifurcation point, and for
(d-f) large-amplitude oscillations, R = 0.4, further away from the Hopf point. A change
of stability occurs at H'(0) = 0 (green), between positive (red) and negative (blue) areas.
The phase interaction function is reduced via (a,d) Kuramoto’s reductive perturbation
approach, (b,e) Poincaré’s nonlinear transform approach, and (c,f) the direct numerical

method.

a) b) c) d)

e) f) 9 h)
Figure 3.4: Stable globally synchronized states (red) and stable balanced two-cluster
states (blue) of the network of nonlinearly coupled Brusselators in the a — d plane for (a-
d) small-amplitude, and for (e-h) large-amplitude oscillations with R = 0.1 and R = 0.4,
respectively. The (negative) coupling strength is set at k = —0.001. Results are ob-
tained via (a,e) Kuramoto’s reductive perturbation approach, (b,f) Poincaré’s nonlinear
transform approach, and (c,g) the direct numerical method, and compared against (d,h)

simulations of the full network of N = 30 weakly coupled Brusselators. In the full
network, also stable three-cluster states occurred (green).

a)

d)

d

a
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Numerical phase reductions As in the linear coupling case we used the nu-
merical phase reduction technique to determine the stability boundaries of the
synchronized and two cluster states. The results are depicted in Fig. 3.3 (panels
c, f) and Fig. 3.4 (panels ¢, g). Remarkably, the predictions for small-amplitude
oscillations and close to the Hopf bifurcation point agreed with those of the an-
alytic reduction techniques. For the large-amplitude oscillations, the predictions
of the numerically reduced phase model rather wend in the direction as proposed
by the nonlinear transform approach: The synchronization regions grows, the two
cluster region shrinks. Strikingly, the triangular region in the top right corner has

almost fully disappeared.

Network simulations As before, we simulated the dynamics of N = 30 weakly
coupled (K = —0.001) Brusselators but now employing the nonlinear coupling
scheme. The results are depicted in Fig. 3.4 (panels d, h). We believe that they
speak for themselves as the reading agrees with the results for the case of linear
coupling. Again, we refer to the Appendiz ™ for more details about the numerical

implementation.

3.1.5 Other analytic phase reduction techniques

3.1.5.1 Isochrons, Floquet eigenvectors, and Sx X S!-symmetry

The first alternative analytic phase reduction techniques comprise of Winfree’s
reduction via isochrons, Kuramoto’s reduction via Floquet eigenvectors and Ashwin
€4 Rodrigues’ reduction via Sy x S*-symmetry. As we explained in Section 2.2.3 all
these techniques will result in the same reduced phase model despite their different

methodical background. Hence, there is no need to discuss this further.

3.1.5.2 Haken’s reduction via averaging

When introducing polar coordinates &y, = (zx, yx) = (Rk cos(Qt + ¢y,), Ry, sin(Qt +
¢r)) with © = Im(A;(0)), one can realize that the right-hand side of (3.7) is of
order O(Ry). Assuming that 0 < p < 1, i.e. close to the Hopf bifurcation, the
amplitude R, < 1 is small and we may consider to apply Haken’s averaging to
(3.7) as outlined in Section 2.2.7. For simplicity, we approximate all nonlinear
terms in (3.7) by the corresponding expressions at the Hopf point, u = 0, that

is, one can use T'(0), N1(x;0), No(x;0). In that case, averaging over one period
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T = 27 /) will result in the approximate phase and amplitude dynamics

. a
-1+ _R?

Ry = Ry |—a + —B—QQR2 + O(k)
B T T S ) g

where O(k) denotes the coupling terms. However, the uncoupled dynamics of the
phase deviations ¢ is too large for slight deviations from the offset frequency at
the Hopf point. Moreover, the amplitude dynamics Rj does not exhibit a non-
trivial fixed point solution unless 0 < a < p < 1 is very small, which stands in
clear contrast to the well-established supercritical Hopf bifurcation character of
the Brusselator. That is, in the current setting, this kind of averaging may yield

spurious results and we will not proceed along these lines.

3.1.6 Summary & remarks

To summarize, we analyzed the collective dynamics of a network of weakly cou-
pled Brusselators with respect to (stable) synchronized, incoherent, and balanced
two-cluster states. Numerical reduction techniques are perfectly able to detect the
correct dynamical regimes as revealed by full network simulations. Analytic reduc-
tion techniques, by contrast, capture the actual collective dynamics only in a close
neighborhood to the Hopf bifurcation point. This holds across linear and nonlin-
ear coupling schemes. For illustration, we fixed the parameter value a = 2.55 and
investigated numerically the resulting phase model in terms of the frequency term
and the Fourier coefficients of first and second harmonics of the reduced phase
interaction function H.

For linear coupling and close to the Hopf bifurcation point, the analytic reduc-
tion techniques do not only capture the correct collective dynamics, but they also
provide the same order of amplitudes as obtained by numeric methods, see Table
3.1. Away from the Hopf point, the reduction techniques still perform consid-
erably well, but slightly incorrect estimations of the first and second harmonics
result in different predictions: according to the reductive perturbation approach
a too strong second harmonic forces the phase dynamics into an incoherent state,
whereas both the nonlinear transform approach and the numerical reduction cor-
rectly capture synchronization of the network, cf. Fig. 3.2 and Table 3.2.

Nonlinear coupling, by contrast, affects the performance more drastically. For
small-amplitude oscillations, the differences in sign of the b, values in Table 3.3
may be due to numerical artifacts, so that the (wrongly) predicted incoherent
state by the nonlinear transform approach has to be taken with care in contrast to

the correct prediction of a stable two-cluster state by the reductive perturbation
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Table 3.1: Phase models derived with different reduction techniques for linear coupling
and near the Hopf bifurcation, p = 0.0417. The oscillators’ natural frequency is w, and
an, b, are the amplitudes of the Fourier components of the phase interaction function H.
Symbols +/— denote the sign of each amplitude. Their quantity corresponds to their
influence on the dynamics, with +++ representing dominant contributions of order O(1),
while 07/~ corresponds to amplitudes < 1073. Parameters are (a,d) = (2.55,0.65).
Exact numerical values can be found in the Appendix!'7°.

Approach w ai b1 as bs
Reductive perturbation 2.537 - —— + 0" 0~
Nonlinear transform 2.524 - — = + + -
Direct averaging X X X X X
Numerical /adjoint 2.474 ++ + 0~ 0~

Table 3.2: Phase models derived with different reduction techniques for linear coupling
and away from the Hopf bifurcation, g = 0.1670. The notation is the same as in Table
3.1. Parameters are (a,d) = (2.55,0.65).

Approach ‘ w a by as bo
Reductive perturbation 2.348 - == + ++ -
Nonlinear transform 1.832 - ++ ++ —
Direct averaging X X X X X
Numerical /adjoint 2.671 +++ ++ — —

approach and the numerical reduction. For large-amplitude oscillation, however,
the phase reduction techniques diverge as shown in Fig. 3.4. Since the nonlinear
transform approach respects the parameter-dependence in the normal form reduc-
tion, it outperforms the reductive perturbation approach and largely retrieves the
results of the numeric reduction technique, see Table 3.4, where the amplitudes of
first and second harmonics agree.

To conclude the example of coupled Brusselators, we can add that phase re-
duction techniques are, in general, capable of predicting the collective dynamics
of weakly coupled networks by identifying the properties of the phase interaction
function. We would like to point out, however, that nonlinear coupling terms
strongly limit the applicability of analytic reduction techniques to a close vicinity
of the Hopf bifurcation point. As nonlinear coupling can be an important and
often non-negligible ingredient in realistic network models, we will focus more on

this in the next section.
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Table 3.3: Phase models derived with different reduction techniques for nonlinear cou-
pling and near the Hopf bifurcation, u = 0.0417. The notation is the same as in Table

3.1 Parameters are (a,d) = (2.55,0.75).

Approach w ai b as bo
Reductive perturbation 2.537 - — = —— 0t 0t
Nonlinear transform 2.524 - —— —— + 0~
Direct averaging X X X X X
Numerical /adjoint 2.474 ++ - 0~ 0+

Table 3.4: Phase models derived with different reduction techniques for nonlinear cou-
pling and away from the Hopf bifurcation, g = 0.1670. The notation is the same as in

Table 3.1 Parameters are (a,d) = (2.55,0.75).

Approach w ai b1 as bs
Reductive perturbation 2.345 - — = - + 0F
Nonlinear transform 1.832 - —— ++ ++ —
Direct averaging X X X X X
Numerical /adjoint 2.671 +++ ++ — -
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3.2 Networks of identical Wilson-Cowan neural

masses

As a second example we use the seminal Wilson-Cowan neural mass model as

7. In their pioneering

a representative example for a smooth neural oscillator!
work 5% Wilson and Cowan derived a neural population model that comprises N,
excitatory and N; inhibitory neurons. Denoting by e, /i, the firing rate of a single
excitatory/inhibitory neuron, the respective mean firing rates can be given by the
averages E = (1/N,) ™ ‘e, and I = (1/N;) 3% i,. Every neuron receives
inputs from all other neurons within the population and every excitatory neuron
receives an external input p,,, whose average is given by P = (1/N,) Zr]:[; Pn. Once
the sum of all inputs exceeds a certain threshold 6,,, a neuron elicits a spike. For
a particular distribution of threshold values across the population, one can assign
a sigmoidal activation function!® § to the population dynamics®. Alternatively,
the introduction of & can be motivated starting from a single neuron level and
along an ergodicity argument, as the time average of individual, saturating firing
rates equals the population average!™. Without loss of generality, we choose
S[x] =1/(1+e*) and denote the population-specific threshold values by O and
O; for the excitatory and inhibitory part, respectively. Then the coarse-grained

dynamics of the mean firing rates of a neural population obeys the form

ppE = —E(t)+ [l —rpE]S[ap (cppE — cipl — O + P)] |

. (3.14)
,u;[ = —I(t) -+ [1 — 7’[]] S [CL[ (CE[E(t) —cil — @])] .

The coupling parameters c; with k, j € {E, I}, indicate the strength of interaction
between the different parts within the population, and ag, a; define the slopes of
the transfer function 8. The terms [1 — rgF] and [1 — r;I] represent the refractory
dynamics of the excitatory and inhibitory subpopulations, respectively. They track
the period of time during which the corresponding cells are incapable of being
stimulated after an activation. In our considerations, we will neglect this term
and set rgp = r; = 0, thereby following Pinto and co-workers!™, who showed
that the terms effectively rescale the parameters of the nonlinear transfer function
8. For the sake of simplicity, we further consider the time scales ug = u; = 1.
Depending on the choice of parameters, this model can exhibit rich dynamics such

e.g.,69,78,79

as self-sustained oscillations and multi-stability, see . Here, we restrict

[7 By smooth we refer to the smooth limit-cycle trajectory in the two-dimensional coordinate

plane as in case of the Wilson-Cowan model. By contrast, integrate-and-fire models present
an example for non-smooth neural oscillators, as the reset mechanism leads to discontinuities
along the trajectory.

81 Other names for the activation function 8 are transfer function or gain function.
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the parameter values to the dynamical regime in which every population (E, 1)
displays stable limit cycle oscillations.

To build a cortical network model, we connect N different populations of excita-
tory and inhibitory neurons (Ey, I},), k = 1,..., N, via their excitatory parts*!42:67;

see Fig. 3.5 for illustration.

Figure 3.5: Network of two coupled

CrE CrE )
Wilson-Cowan neural masses. Each

Cik neural population k contains excitatory
P —>| Eg E, |« P and inhibitory units (Fj and Ij), which
Cyy are internally coupled with strengths

CEIl [CIE CEIl |CIE c¢ij, 1,5 € {E,I}. Moreover, the pop-
ulation receives an external input FP.

Interaction between two neural masses

k,j7 occurs via their respective excita-

U U tory parts only, where C}; denotes the
i u connectivity whether node k receives in-

put from node j.

Taken together the dynamics at node k becomes

Ey=—-FE,+8

N
K
ap (CEEEk —ciply — ©p + P, + N Z ijEj>

j=1

(3.15)
jk =—-1.+38 [CLI (CEIEk: —crrdy — @I)] :

Here, 0 < k < 1 denotes the overall coupling strength and C' = {Cj; }x; is an ad-
jacency matrix that indicates structural connectivity between two cortical regions
k and j. The population specific average input Py of the respective excitatory

subpopulations may differ across the different cortical regions.

3.2.1 Single node dynamics

As for the Brusselator model, first we briefly discuss the dynamics of a single

41,42

unit using dynamics (3.15) without coupling, x = 0. Following , we fix several

parameters to physiologically motivated values
ap =12, ar =2, cggp = cgr =10, c;p =6, ¢;r = 1, O = 2.5, ©; = 3.5, (3.16)

unless stated otherwise. Furthermore, we consider Py to represent external inputs.
Taking P as the bifurcation parameter results in the bifurcation diagram depicted
in Fig. 3.6,

[9]

Despite the lack of symmetry, one can realize the resemblance with Hoppensteadt and Izhike-
vich’s bifurcation diagram Fi&- 21278 with O ; as key parameters, as well as with the deriva-
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SNIC
SNL

SN \

Figure 3.6: Bifurcation diagram of the uncoupled Wilson-Cowan model (3.15) with
respect to the bifurcation parameter Pj. By increasing Py, one can find four qualitatively
different dynamical regimes possible; see inlets — filled /empty dots: stable/unstable fixed
points, red: stable limit cycle. A saddle-node (SN) bifurcation at P, ~ —0.3937 initiates
bistability of two stable fixed-points. The stable fixed point emerging from the SN
bifurcation undergoes a supercritical Hopf bifurcation (HB) at Py ~ —0.3663, while the
saddle point coincides with the other stable fixed point and disappears in another SN
bifurcation at P, ~ —0.2914. Up to the SN bifurcation at P, ~ 1.3272 away from the
stable limit-cycle. The latter is the unique attractor of the dynamics. The collision of
the saddle point with the limit-cycle in a homoclinic bifurcation (HC) at P, ~ 1.3648
terminates the oscillatory regime. BT - Bogdanov-Takens point, CP - cusp point, SNL
- saddle-node loop bifurcation, SNIC - saddle node on invariant cycle bifurcation.

3.2.2 Coupled Wilson-Cowan neural masses

We are interested in the dynamics of a network of coupled Wilson-Cowan neural
masses of the form (3.15). The interplay between the excitatory and inhibitory
parts of a single unit is governed by the coupling topology sketched in Fig. 3.5.
By reason of appropriate rescaling, we couple distinct neural masses only via their
excitatory parts, where the adjacency matrix C' = C}; defines structural links
between the different neural masses. While the coupling term in (3.15) of inter-
connected neural masses appears natural when compared to the internal coupling
structure of a single neural mass, it deserves some discussion.

In Wilson and Cowan’s original work®, the sigmoid function was constructed
in such a way that in the absence of external influences the baseline activity state
(Ek, Ir) = (0,0) is a fixed point. In our formulation, however, the sigmoid function
takes on a slightly different form and a zero fixed point solution is no longer
feasible. Hence, external perturbations through mutual interaction have a non-
trivial impact: If we assume that all neural masses reside in a stationary state
with mean (excitatory) firing rate E > 0 in the absence of coupling, then as soon
as we increase the coupling strength, x > 0, all neural masses will experience a
sudden perturbation of strength x> i Cr;E; > 0 even if they are all identical.
Not the presumably small relative distance E; — EJQ to the fixed point, but its

tion by Borisyuk and Kirillov™, who used P = P, and c3 = cg; as key parameters.
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absolute value F; drives the network dynamics. For this reason, we propose a

direct coupling in form of

N N
%ZCMEJ- %Z (B; — EY) (3.17)
=1 =1

where E}J is the unstable fixed point solution of neural mass (£}, I;) in the absence
of coupling. In general, E} = EJ(P;) depends on the heterogeneous input P; =
Py + p. Here, Py denotes the value of external input at the supercritical Hopf
bifurcation, cf. Fig. 3.6. When expanding EJ(Py + ) around Py, the coupling
term (3.17) reduces to

% Z (E; — EY(Py)) 4+ O(kp) (3.18)

Consequently, the coupling term in the subsequently transformed dynamics (3.20)
- (3.22) obtains the form

N

N
Jj=1 J=1

3.2.3 ldentifying the Hopf normal form

The type of bifurcation leading to limit-cycle oscillations usually manifests in the
eigenspectrum of the linearized dynamics. In the case of a Hopf bifurcation, stable
oscillations emerge around an unstable fixed point. We therefore expect that for
an uncoupled (Ej, I;)-node the Jacobian of the Wilson-Cowan dynamics (3.15)
evaluated at the unstable fixed point (EP,I?) has a pair of complex conjugate
eigenvalues with negative real part, which corresponds to the distance p := P,— Py
to the Hopf bifurcation point. By changing the parameter Py, both the position
(and size and shape) of the limit cycle as well as the position of the fixed point
change, that is, (EY, I?) = (EQ(u), I (1)).

It is advantageous to express the dynamics in terms of the deviations x; =
Ey, — E) = By — EY(1) and yy, = I, — I} = I, — I)(1) around the unstable fixed
points. Effectively, we shift the fixed point undergoing the Hopf bifurcation to
the origin in phase and parameter space. The corresponding transformed system

exhibits stable limit cycle behavior with identical phase and amplitude properties
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as the original system. It reads
= — (wx + E(n))

+8[as (e (o0 + BLG) = ca (e + 12(0) = Os 1+ 2 3 Con (w5 + B () )|

j=1

e = — (yr + I2(1) + 8 [ay (e3 (w + BL(w)) — ea (i + I2(1)) — ©,)]
(3.20)

where we changed the notation of the parameters:
(aEa ar,CEgp,CIEg,CEI, CIT, @E7 @I) = (axa aya ¢, C2, C3, C4, @xa @y)

Since (EQ(u), I2(1)) solves (3.20), one can simplify the transformed dynamics for
weak coupling 0 < xk < 1 and sufficiently small ;4 < 1 by Taylor expanding the

sigmoid function & around the fixed point:
T = —x + ; ES(") [Xﬂc,k] . a; <Cll’k — Coyr. + N ]Zl Cjk (.Z‘j + E]O(,u)) )

. . 1 n n n
o=yt ES( M [Xyok) - aly (esmr, — cayi)”
n=1 """

(3.21)
In (3.21) we abbreviated

Xadk = Xak(1t) = ag (1B (1) — c2I (1) — Oy + 1)
Xy = Xy (1) = ay (csEQ (1) — cadi (1) — ©,)

and 8 refers to the n-th derivative of 8. Unfortunately, the sigmoidal shape of
the original dynamics (3.15) does not allow for a simplified form of (Ep(u), IP (1))

in p, but one can find numerically a polynomial fit

EQ(1) = EQ(Py) + g + O*(p)
R(p) = L)(Py) + pdy + O? ()

where (Ep(Py), I)(Pg)) denotes the fixed point at the Hopf bifurcation. At this
point, which corresponds to (xy,yx) = 0, the Jacobian of the dynamics (3.15) or

(3.20) has purely complex eigenvalues Fiwy.
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To simplify the dynamics, we discard higher-order terms in x4 and x and write

= =T + Z Ixe] + 187V o] @ (10 — 291 + )) w (c1zy — cay)”
Y c
(m m m k
+/€Z +1) ] c A, +1 (clxk—Cka ZWJ 37]+E](0))
7=1

+ O*(p) + (92(/43) + O(kp)
= —yr+ Z " Ixy] 4+ 18" [yl ay (395 — caly)) - alf (cszn — cay)”

+ O2(M) :
(3.22)
where Xo = Xak(1 = 0) and xy = xy(p = 0).

Before continuing with simplifying the dynamics, we would like to add that in
the limit of weak coupling, only monomials of the form xiy,l;mj withc=0o0rc=1
appear in the coupling term for the k-th neural mass. That is, the coupling effect
from another neural mass j is at most linear and of order O(z;). Still, the mixed
terms x%y,ﬁx;’ can lead to nonlinear coupling effects. One may ask: When do these
nonlinear coupling effects invoke non-negligible phase-amplitude interactions? Or,
put differently: What is the upper boundary for the weak coupling approximation?
To the best of our knowledge, as of yet there is no general answer to this ques-
tion. Stronger coupling, or strong perturbations, induce amplitude effects. But
at which critical value of x these amplitude modulations fail to admit a unique
phase description of the single units, remains an open problem. Strikingly, the
critical value is exceeded by far when oscillatory states lose stability and eventu-
ally cease to exist. Such a scenario has been coined amplitude death, which has
attracted much attention in the literature. Analytic results about such coupling
induced effects are limited to very small network sizes of a few coupled oscillators,
see also Appendiz 3.3.5.1 for an illustration of oscillation death and its somehow
connected counterpart, oscillation birth. For larger network sizes amplitude death
states elude analytical tractability, but their occurence in networks of coupled
oscillators is reported in numerical studies!™ 17",

Considering from now on only weak coupling, we next incorporate the coupling
form (3.18) in (3.22) and subsequently truncate the Taylor expansion after third

order. Introducing the abbreviations

1 " L o n
Sen = HS( ) Xax]az; and Sy, = as( : Dyalay
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we can write the dynamics (3.21) as

ik = fi(@r y) + rge(X) + O (k)

(3.23)
Uk = fo(Th, Ur)

where for X = (@1,...,xy) and &, = (xy,yx) the functions f = (f1, f2) and gy

are defined in the following way:

fi (xa ?J) = =T+ le(cﬂ - CQy) + Sx2(0%372 — 2c1c0wy + 033/2) =+ Sx?,(ClﬂU - 029)3 )
fo(@,y) = =y + Sy1(csr — cqy) + Sya(3a? — 2cscazy + ciy®) + Syalczr — cay)?

9e(X) = STy, + 2Spe(c12r — Coyp)Th + 3Sua(cr1r — oy )* Ty -
(3.24)
The bar = denotes the (weighted) average, T, = ~ Zjvzl Cjrxj. More concisely, we

have for weak non-diffusive coupling between two Wilson-Cowan nodes x = (z,y)

and & = (,7)
z=Jr+ f(x;p)+rg(x,x), (3.25)
with
3
x? x2
-y
flx;p)=Ni| zy | +N, , | and
v "
%
0 22 0 B
x
g(x, ;)= | G1 + G +Gs |zy O (:f) i
y 0 20 Y

In these expression we abbreviated the matrices

J = <—1+Sx1€1 —lecg ) N, — <SJQC% —QSmgchg SIQC§>
= 1=

2 2
Sleg —1—Sy1C4 Sy2C3 —25y26304 Sy2C4

3 2 2 3

N ngcl —35;530102 385536102 — ac302
2 p—

3 2 2 3

0 c1 —Co c% —2c169 c%
G =5, G: =25, G = 35, .
L (0 0) T (0 0 ) T (o 0 0

Similiar to the Brusselator model, also here the Jacobian J = J(u) is not in

—_

Jordan real form. Using the eigenvectors corresponding to J’s eigenvalues A\(p) =
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o(p) £ iw(p) with w(0) = wp, we can transform

L=T"'JT = (9 _w> . (3.26)

w 0

Finally, we can rewrite (3.25) as
&=Lx+T 'f(Tx;p)+xT 'g(Tz, Tx) , (3.27)

The dynamics (3.27) exhibits qualitatively the same behavior as (3.25), but due
to the Jordan real form the circular symmetry of the limit cycle is now induced

on the full dynamics.

The connection between analytic phase reduction techniques While Ku-
ramoto’s reductive perturbation does not require this last transformation and can
be applied to (3.25), the dynamics in Jordan real form (3.27) are necessary for
Taken’s reduction via Lie brackets. For Poincaré’s reduction via nonlinear trans-
forms we have to reformulate the dynamics further, now in terms of a single

complex variable z € C via the transformation
x = zu(p) + zu(p) , (3.28)

with w(u) being the right eigenvector of the Jacobian J(u) corresponding to the
eigenvalue A(p). (3.28) establishes a linear relation between @ and the real and
imaginary part of z = zg + iz;. In particular, (zg, z;) are the coordinates of x in
the (real) eigenbasis of J(u) composed by {2Re (w(u)), —2Im (u(u))}, that is, we
recover the same transformation of J(u) into its canonical Jordan real form as in

(3.26).

3.2.4 Haken'’s reduction via averaging

In contrast to the Brusselator model discussed in Section 3.1, our version of the
Wilson-Cowan dynamics (3.27) in Jordan real form allows a meaningful reduction
along Haken’s averaging approximation even without a transformation into Hopf
normal form. Hence we discuss it first. We can insert the ansatz @, = (zx, yx) =
(Ry cos(Qt+ox), Ry sin(Qt+¢y)) into (3.27), where Ry, ¢5, are amplitude and phase
(deviations) of the oscillations at node k, which are slowly varying with respect to
the (mean) frequency 2 defined via the eigenvalues at the Hopf point, 2 = w(0).
Near the onset of oscillations through a supercritical Hopf bifurcation, Ry < 1 is
small and, thus, the right-hand side of (3.27) is at least of order O(Ry). Given the

slower time scales of Ry and ¢y, one can average over one cycle T' = 27 /). In line
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with®”, this direct averaging of the dynamics (3.27) yields the phase model

N

qZBk = Wk + Z ij sin(¢j — O + Akj) (329)
j=1
with
K Rj
ij = ﬁszlAkajR_k and Akj = arctan(pk) — QTkj

where A? = 1+ p? and pj, = @}, ' (Sp1c1 + Syica). Note that we here included time
delays 73; between nodes x; and x;, within the coupling function g,, that is, g, =
Gz (xk, ) = go (@i (t), 2;(t — 715)), as discussed in more detail in Appendiz 3.3.4.2.
Note also that since Sy, Sy1,c1,cq, @, > 0, we have p, > 0. In the absence of
delay, that is, for 7 = (731, ..., 7n) and 7; = 7 = 0, we have Ay; € (0,7/2). On
the other hand with delay we have Ay; € (—m/2,7/2) because Q7 € (0,7/2). In
either case, (3.29) resembles the Kuramoto-Sakaguchi model with phase lag |A;| <
/2, so that a transition to full synchronization occurs if the coupling strength x
exceeds a critical value k. = k.(J), where § denotes the width of distribution of

the natural frequency terms wy. The natural frequency w; can be determined as
wy = — + wy, (330)

at least to first order in Ry; here we used @i = det J — (tr J)?/4 = S;1S,1¢003 —
(Spic1 + Syica)?/4. @y is the imaginary part of the right eigenvalue of J. Being
near the Hopf bifurcation, we can safely assume that @, ~ 2 and wyp — 0. If the
Wilson-Cowan dynamics is fully symmetric, that is, in particular ¢; = —c4, then
pr — 0, and we retrieve the actual Kuramoto model in the absence of any delay.
The here-presented averaging of the Wilson-Cowan network dynamics results
in a phase dynamics (3.29), whose phase interaction function only consists of first
harmonics. The absence of higher harmonics hampers, e.g., clustering effects. This
is in remarkable contrast to the other phase models that have been derived from
dynamics in Hopf normal form. The main reason is that the Hopf normal form
reduction induces circular symmetry also on the coupling function g,, that is, the
coupling terms are transformed such that only resonant monomials survive. On
the other hand, averaging considers the coupling terms as they are so that all
nonlinear coupling terms eventually average out at zero because the coupling in
(3.27) is only linear in &. Irrespective of this remark, however, the direct averaging
along Haken’s method stands out for its simplicity and its potential to be applied
in a straightforward way. Below, we will compare it against the other two analytic

reduction techniques that build on the by now well-known reduction into Hopf
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normal form prior to extracting the phase dynamics.

3.2.5 Comparing analytic and numerical phase reductions

The ultimate goal of any of the phase reduction techniques introduced above is to
simplify the network dynamics of (weakly) coupled Wilson-Cowan neural masses

in terms of a corresponding phase model (2.16),

For simplicity, we consider that all nodes are identical, in particular, they have the
same natural frequency w, = w, and that they are globally, or all-to-all, coupled
with adjacency matrix Cy; = 1 for all j # k. Note that the factor 1/N is for
convenience and ensures that the phase model is well-behaved in the limit N —
oo. Recall that the phase interaction function H (1)) admits a representation as a

Fourier series (2.17),

H(y) = Z a, cos(ny) + by, sin(niy)

n>0

= ap + ay cos(¢0) + by sin(y)) + ag cos(2¢)) + by sin(2¢)) +

We illustrate the reduction to a phase model first close to the Hopf bifurcation,
that is, for small distances y = P, — Py. After that, we will treat the case of
larger distances, i.e. further away from the Hopf point. In both cases, we will
compare the results of the analytic techniques Kuramoto’s reductive perturbation,
Poincaré’s reduction via nonlinear transforms and Haken’s averaging — the latter
here denoted as direct averaging. We also include the results for numerical phase
reduction techniques, where we complement the findings of the adjoint method
using XPPAUT with those of the direct method. Both reduction techniques show
consistent results, so that we will refer to them as one, here numerical/adjoint.
The subsequent section will be devoted to direct numerical assessment without

exploiting the Hopf normal form.

Near the Hopf point  Applying the different reduction techniques in close vicinity
of the Hopf bifurcation point, we find resulting Fourier coefficients of the phase
interaction function H as summarized in Table 3.5. For typical parameter choices
very near the Hopf bifurcation, the four different reduction techniques correctly
recover the natural frequencies as well as the dominant first harmonics with a

non-negligible and positive sinusoidal component.
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Table 3.5: Phase models derived with different reduction techniques very close to the
Hopf bifurcation (x = 0.0013). The oscillators’ natural frequency is w, and ay, b, are
the amplitudes of the Fourier components of the phase interaction function H. Symbols
+/— denote the sign of each amplitude. Their quantity corresponds to their influence
on the dynamics, with +++ representing dominant contributions of order O(1), while
0"/~ corresponds to amplitudes < 1073. Exact numerical values can be found in the

Appendix 7.
Approach ‘ w ay by a2 bs
Reductive perturbation 0.701 - — = ++ + 0~ 0F
Nonlinear transform 0.701 -———=  +++ 0~ 0t
Direct averaging 0.701 - —— ++ 0 0
Numerical /adjoint 0.701 —— +++ 0~ 0+

Using the numerical and normal form reductions, the amplitudes of the sec-
ond harmonics turn out to be smaller of three orders of magnitude than the first
harmonics. Therefore, we here consider the different phase models qualitatively
identical. Moreover, the closer we choose the bifurcation parameter near the Hopf
point, the more “accurate” becomes the numerical method: the phase interaction
function resembles a pure sine curve, whereas the other analytic methods retain a
dominant cosine component!'?, cf. the Appendix'™.

In a next step, we vary the parameter P and slightly increase the distance u
from the Hopf bifurcation point. Fig. 3.7 illustrates how sensitive a phase reduc-
tion to minute parameter changes is, note the smallness of y. The slope of the
phase interaction function at the origin changes signs already close to the Hopf bi-
furcation point, which results in a different dynamics of the reduced phase model.
It is thus crucial for a meaningful phase reduction to investigate the underlying
model with respect to its bifurcation boundaries and to the corresponding govern-
ing dynamical regime. Only by this one can avoid false conclusions when linking

the phase dynamics to the underlying model.

Away from the Hopf point There arises another highly intricate issue when
choosing the parameter P, such that the dynamics is further away from the Hopf
bifurcation point: the different reduction techniques start to diverge from each

other even more strongly, which is shown in Table 3.6.

(197 The Hopf normal forms obtained with the normal form reductions might be further trans-
formed into the topological Hopf normal form, see!?2. In this case, the phase interaction
function H becomes purely sinusoidal. However, this additionally requires a rescaling of time,
after which a direct comparison with the other methods appears more difficult. We refer to 22
for more details of this laborious step.
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Figure 3.7: Phase interaction function: (a) Trajectory of the Wilson-Cowan dynamics
in phase space, (b,c) numerically determined phase sensitivity function as solutions to
the adjoint problem, (d) coupling term evaluated at the limit cycle, and (e) phase in-
teraction function for different input value parameters Py € (—0.366, —0.36). As shown
in (a), the limit cycle solution of the underlying (and uncoupled) Wilson-Cowan model
changes its shape. Its amplitude grows monotonically. The shape of the phase sensitivity
function Z deviates from the initial shape, and higher harmonics seem to occur; see pan-
els (b) and (c) — we refer to the two-component phase sensitivity function Z = (Zg, Z7)
as adjoints, underlying the here-applied numerical reduction technique. The phase inter-
action function H depends on both the phase sensitivity function and the coupling term
and absorbs their variation (e). At a particular parameter value Py, the derivative of H
at the origin, H'(0), changes signs. While a network of identical and globally coupled
units will fully synchronize if H'(0) > 0, this state loses stability if H’'(0) becomes neg-
ative. Hence, a small parameter change at about P, = —0.364 will cause qualitatively
different network behavior — using XPPAUT, the change from H'(0) > 0 to H'(0) < 0
already appears at P, = —0.3658 and not at P, = —0.364, which we can confirm using
the adjoint solver implemented in Matlab.

Table 3.6: Phase models derived with different reduction techniques away from the
Hopf bifurcation, ¢ = 0.1663. The notation is the same as in Table 3.5.

Approach ‘ w ai b1 as bs
Reductive perturbation 0.73 - — — +++ —— ++
Nonlinear transform 1.02 —— ++ — +
Direct averaging 1.33 —— ++ 0 0
Numerical /adjoint 0.94 —_ — — _

Remarkably, only the numerical method captures the change of slope of the
phase interaction function H, whose derivative at @y = 0 is dominated by b; as

has been illustrated in Fig. 3.7. In line with the findings for the Brusselator, Sec-
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tion 3.1, we presume that the numerical method provides the best approximation
of the phase dynamics. Then, only Poincaré’s reduction via nonlinear transforms
recovers proper amplitudes of the first and second harmonics, at least in terms of
orders of magnitude. While Kuramoto’s reductive perturbation overestimates the
second harmonics, by construction Haken’s averaging does not contain any higher
harmonics; see the Appendix'™ for exact numerical values. Strong first harmonics
of the phase interaction function H amplify the coupling and thus result in faster
(de-)synchronization, depending on the sign of the sinusoidal component. Second
and higher harmonics, on the other hand, can play a crucial role for clustering.
An over- or underestimation of the amplitudes of higher harmonics can hence lead

to erroneous multiple- or one-cluster effects, respectively.

3.2.6 Numerical methods identify collective dynamics

The farther one moves away from the particular bifurcation boundary, the more the
differently reduced phase models diverge. While the accuracy of analytic reduc-
tion techniques scales with distance to the bifurcation point, numerical reduction
techniques may not suffer from this shortcoming and can capture the actual dy-
namics of the underlying high-dimensional oscillator networks to great accuracy.
Hlinka and Coombes investigated in this way a network of identical Wilson-Cowan
units with respect to its functional connectivity®. They showed that the predic-
tions based on the derivative of the numerically reduced phase interaction function
agreed almost perfectly with the synchronization properties of the original network,
cf. their Figures 6 and 7. However, they reported small parameter regions in which
their predictions did not match the actual dynamics. To recapitulate their results,
we analyzed the Wilson-Cowan model with a different set of parameters as used

in%! for more details see the Appendix!.

In particular, we set O + P, — P
and ©7 — @ and consider the inputs P, and )} to the excitatory and inhibitory
parts of neural mass k as bifurcation parameters. In Fig. 3.8, the colored region
represents parameter values (P, Qx) at which the Wilson-Cowan model exhibits
self-sustained stable limit-cycle oscillations. This region falls perfectly within the
analytically determined Hopf bifurcation boundaries, see ®8- ™ for a more detailed
bifurcation analysis.

According to the reduced phase model, the network will synchronize close to

I assessed the synchro-

the Hopf bifurcation boundaries.™ Hlinka and Coombes®
nization properties of the original Wilson-Cowan model in terms of mean phase

coherence and correlation. With this they confirmed that the network dynamics

[11] This can be anticipated from the topological normal form of the supercritical Hopf bifurcation:
The corresponding phase sensitivity function H is purely sinusoidal with derivative H'(0) > 0.
Thus, for positive coupling the network will synchronize.
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3 28 26 24 22 2

Figure 3.8: Oscillatory regime of the Wilson-Cowan neural mass model using the same
parameters as in®'. The color coding indicates the derivative of the phase interaction
function H at ¢ = 0 determining the stability of the fully synchronized solution: if
H'(0) > 0 the fully synchronized solution is stable, and unstable otherwise. In view of
the results in Section 3.2.5, we used the numerical/adjoint reduction method to generate
this figure.

followed the predictions about global synchronization based on H'(0). To show
that higher harmonics of the phase interaction function H capture cases in which
the fully synchronized solution is no longer stable, we zoomed in into the corre-
sponding parameter region; see the inset in Fig. 3.8. The Hopf bifurcation occurs at
the lower boundary between oscillatory and stationary behavior, where a positive
value of H'(0) predicts synchronized oscillations, irrespective of the other (even)
Fourier components. Moving upwards, i.e. increasing the parameter (), leads to
a change of signs, H'(0) becomes negative and the fully synchronized state is no
longer stable.

Considering only first and second harmonics, Kori and co-workers summarized
possible network states in® where they stated that for positive coupling strength
(i) the fully synchronized solution (one-cluster state) is stable if by > 0 and b; >
|bo|, (ii) the incoherent solution (anti-cluster state) is stable if b; < 0 and by < 0
with |b1] > |be|, and (iii) the (balanced) two-cluster state is stable if by < 0
and by > 0; see also Section 2.1.5.2. Analyzing the numerically reduced phase
interaction function with respect to the higher harmonics, we find that all of the
three possible states above should be realizable. When fixing P, = —3 and using
the direct numerical method, we find at () = —9.3 that b; > 0, at @, = —8.9
that by < 0 and by < 0, and at , = —8.7 that b; < 0 and by > 0; for the exact
numerical values we refer to the Appendix!™.

To verify our predictions, we simulated a network of N = 30 Wilson-Cowan
models for these parameter values and with global coupling strength « = 0.15.

The simulations displayed the predicted fully synchronized solution, an anti-cluster
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state, i.e. incoherence, and a stable two-cluster state, respectively; see Fig. 3.9.
Interestingly, the other phase reduction techniques did not only fail to predict the
existence of two-cluster states, but they also missed the change of stability of the

fully synchronized solution; cf. Table 3.6.
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Figure 3.9: Non-trivial network dynamics of N = 30 coupled Wilson-Cowan neural
masses. The different network states (a) global synchronization, (b) incoherence, and
(c) a balanced two-cluster state were predicted by the reduced phase model using the
numerical/adjoint method. Displayed are final (Teng = 1000 seconds) conditions (‘0’)
on the uncoupled limit cycle (left column) and the extracted phases (right) for the last
15 seconds. We fixed the coupling strength at x = 0.15 and the simulations started
from uniformly distributed initial conditions along the uncoupled limit cycle. Parameter
values of (P, Q) are (a) (—3,—-9.3), (b) (—3,—8.9) and (c) (—3,—8.7).

3.2.7 Summary & remarks

All the different analytic normal form reductions have the same background,
cf. Section 2.2.1. Since all of them yield the same phase dynamics when start-
ing from the same Hopf normal form one may expect a perfect agreement between
the different reduction techniques. This is, however, only true when considering
a normal form reduction accounting for the full dependence on the bifurcation
parameter . While Poincaré’s reduction via nonlinear transforms respects the
dependence on p throughout every reduction step, the other two methods neglect
this accuracy by approximating nonlinear terms with the corresponding expres-
sions evaluated at p = 0.

There are striking differences between the reduced phase models already at
reasonably small distances y < 1 from the Hopf bifurcation point. One may
wonder whether reduced phase models indeed describe the phase dynamics of
oscillator networks. Needless to say that not all techniques are appropriate to

reduce the correct phase dynamics. Analytic techniques have shortcomings unless
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parameters are considered in a direct vicinity of the Hopf bifurcation. On the other
hand numerical reduction techniques bear the potential to accurately describe the
respective phase dynamics so that predictions about the actual network dynamics

can be drawn from the reduced phase model.

3.3 Discussion

The reduction of a network of interacting oscillatory systems into a network of cou-
pled phase oscillators aims at simplifying the analysis of the collective, macroscopic
network dynamics. General oscillatory networks usually have a high-dimensional,
nonlinear dynamics. As explained, by looking at the phase dynamics one drasti-
cally reduces this dimensionality while keeping the option to infer (the stability
of) collective network states. We will briefly discuss low-dimensional collective
behavior and particular network states of coupled oscillators in Sections 3.3.1 and
3.3.2. Usefulness and strength of a model may be judged by its predictive power.
Quantifying this can be a challenge. Models are built on assumptions, which re-
strict their applicability and range of use. Beyond this range, however, a model
can lose its validity and the dynamics can significantly diverge from model pre-
dictions. All the listed phase reductions techniques dwell on several assumptions.
A first assumptions requires a certain degree of homogeneity among the dynamics
of the network’s nodes, see Sections 3.3.3. Then, we considered only phase reduc-
tions for deterministic systems and without delay. In principle, reduction methods
can be generalized to cope with noise and delay to some extent, see Section 3.3.4.
Another crucial assumptions is that most, if not all, of the phase reductions rely
on the theory of weakly coupled oscillators™: Every node of the original network
has to exhibit stable limit cycle oscillations without any coupling to other nodes.
And, the coupling strength has to be sufficiently weak so that amplitude effects can
largely be neglected, that is, each node’s dynamics remains close to the respective
unperturbed limit cycle solution while (and despite) interacting with other nodes.
How the form and structure of coupling between nodes can influence the collective
behavior will be addressed in Section 3.3.5. The collective dynamics do not only
depend on the coupling between nodes, but also on the oscillatory nature of the
nodal dynamics. Reducing a meaningful phase model can thus become intricate for
nonlinear, or even non-smooth oscillators (Section 3.3.6). More recently, several
phase reduction techniques have been refined and extended so that the assumptions
inherent to the theory of weakly coupled oscillators might be loosened, at least to
a certain degree. This also brings up the topic of phase-amplitude reductions, see
Section 3.3.7. Although we only touch on this important subject, needless to say

that also here a compromise between analytic and numerical reduction methods
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has to be found, as we conclude in Section 3.3.8.

3.3.1 Low-dimensional description of network behavior

A major advantage of coupled phase oscillator models is that they typically give
rise to only a few macroscopic variables, which in addition often allow for an in-

8 as, e.g., the Kuramoto order parameter. Following the

tuitive interpretation'”
Watanabe-Strogatz theory®, it is possible to derive the exact time evolution of
three collective variables for a network of at least three identical and globally cou-
pled phase oscillators. In a similar spirit, one can describe the time-asymptotic
dynamics of a complex order parameter of a network (of infinitely many phase

d®82 In

oscillators on a low-dimensional) on the so-called Ott-Antonsen manifol
both cases, the main restriction is that the phase interaction function must only
contain first harmonics, but no higher harmonics. Both approaches are indeed
strongly related!™. Given its simplicity, the Ott-Antonsen theory is more pop-
ular and widely applied. The dimensionality of the resulting order parameter
dynamics is the lowest possible to create a proper picture of the network behav-
ior'™. However, to apply the Ott-Antonsen theory comes at a price. First, the
number of oscillators has to tend to the continuum limit. Second, the natural
frequency terms have to follow an analytic distribution function with finite width,
such as Gaussian or Lorentzian distributions. That is, the oscillators must not
be identical. Although there are approaches to identify correction terms to the
Ott-Antonsen manifold in case of finite-sized networks, at least for the subcritical

180184 " our own preliminary simulations show clear diver-

(asynchronous) regime
gences from the manifold when decreasing the network size below N = 200 coupled
nodes. The assumption on the frequency terms, however, can somehow be loos-
ened in the limit of “nearly identical” oscillators, and when initial conditions are

selected properly!™

. For particular connectivity structures, this opens the possi-
bility for chimera states to emerge; see the recent and extensive review* for more

details.

3.3.2 Cluster states

Closely linked to chimera states is the emergence of stable cluster states. While
network synchronization of coupled oscillators is commonly referred to as single-
cluster states, i.e. the stationary probability distribution function of the oscillators’
properties is unimodal, in general also (multi-)cluster states, or states of gener-
alized synchrony, can exist and become attractors of the macroscopic dynamics,
see for an overview ®&: 186 Two main ingredients for cluster states are particular

connectivity structures and/or higher harmonics in the phase interaction func-
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tion. As to the latter see Section 2.1.5.2 and we also refer to the comprehensive
Fig. 14 in®. Clustering in neural networks irrespective of a particular underlying
clustered connectivity has been investigated in different neural population models,
ranging from all-to-all coupled Hodgkin-Huxley-like microscopic dynamics®®” to

188 Another important ingredient to gen-

189

more macroscopic, biological networks
erate cluster states appears to be delay-coupling in neural networks'®” or neural
masses?*. As such it is not surprising that the same clustering effect through de-
lay has also been found for networks of pulse-coupled oscillators!?* 192, For the
Wilson-Cowan model we will discuss the (clustering) effects of time delays in more
detail in Section 3.3.4.2. Clustering has been rigorously manifested and numer-
ically explored in globally coupled phase oscillator models, see ©8&-8%93:94,1937195
where often symmetry aspects determine stability of cluster states. The theory of
weakly coupled oscillators allows for translating appropriate conditions for cluster
states into the framework of nonlinearly coupled Stuart-Landau oscillators 4!,

A thorough analysis of clustering behavior in globally coupled heterogeneous
Stuart-Landau oscillators can be found in'%. Stuart-Landau oscillators have the
advantage that the dynamics is generic for coupled dynamical systems near a Hopf
bifurcation, such that the actual dimension of the dynamics can drastically be re-
duced and theoretical results can readily be applied in order to predict cluster

5

states®: it is due to higher harmonics in the phase interaction function H that

clustering behavior occurs. It is noteworthy that cluster states can naturally ap-

pear and are attracting if the coupling is either non-pairwise, i.e. the interaction

141 "and/or is nonlinear, which automatically

95,141

is between more than two oscillators
yields higher harmonics in the phase interaction function . Interestingly, clus-
ter states can become macroscopic attractors already for linear coupling!%. How-
ever, a reasonably large shift between frequency parameters is required here, so
that the network of Stuart-Landau oscillators must be sufficiently heterogeneous.
That, in turn, prohibits an immediate application of the theory of weakly coupled

oscillators, where the frequency mismatch of the oscillators has to tend to zero.

3.3.3 Identical versus heterogeneous oscillators

As our main focus lies on an accurate phase description of networks of interacting
oscillators, it appears legitimate to oversimplifyingly assume that the coupled non-
linear oscillators are (almost) identical. This simplification has two advantages:
First, it facilitates the derivation of the phase model insofar as it is sufficient to
consider the phase dynamics of only two coupled neural oscillators. Second, it
allows to predict the network behavior of the reduced phase model based solely

on the phase interaction function. The assumption of identical nodes is, however,
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inaccurate. This is in particular the case when modeling realistic networks of bio-
physiological, chemical, or neuronal oscillators. Given for instance the immense
number of neurons in the human brain together with the fact that no two neurons
are identical, modeling two neural oscillators as nearly identical is far from realistic.
Nonetheless, different brain regions may share similar properties concerning their
collective dynamics, so that a network of (more or less) identical neural masses
still appears an acceptable candidate for a brain network model.

Approaches to determine the stability of synchronized network or cluster states
along the master stability function formalism or via symmetry arguments rely on
coupled identical oscillators, cf. Section 2.1.5. To some extent, though, some ex-
tensions of the methods above have been proposed in order to deal with (small)
heterogeneity among oscillators, see, e.g., an extended master stability function

approach for nearly identical systems!9" 199,

It is also true that the theory on
phase reductions, as presented in Sections 2.2 — 2.3, holds for heterogeneous os-
cillators as long as their frequencies are e-close such that small heterogeneities
can be subsumed under the coupling terms, see 8%, Practical application, nev-
ertheless, becomes more cumbersome, in particular for the numerical reduction
methods, when the phase dynamics has to be retrieved for each oscillator individ-
ually. Still, another option could be that the heterogeneity only affects the natural
frequency terms, but leaves the phase interaction terms identical. This scenario,
although again it is hardly plausible, allows to treat the resulting phase oscillator
network in terms of heterogeneous Kuramoto-like coupled oscillators. Under a cer-
tain form of heterogeneity, that is, given some analytic distribution of the natural
frequencies, and in the limit of infinitely many oscillators, the theories mentioned
in Section 3.3.1 allow to describe the macroscopic behavior of the network on a

low-dimensional manifold.

3.3.4 Extended analytic phase reduction techniques

Throughout the outline of the different phase reduction techniques, we skipped
an intricate feature of realistic oscillatory networks: the self-sustained limit cycle
dynamics can also be subject to noisy and time-dependent perturbations, or to
time-delayed coupling with other oscillators. How will such inputs change the

oscillators dynamics, their phase description and eventually the network behavior?

3.3.4.1 Stochastic and time-varying systems

Exemplarily, we reconsider the Wilson-Cowan neural mass model (3.15) with

population-specific input P, that combines both a stochastic term and a deter-
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ministic time-varying term,
P. = gk(t) + P ((1 + Ay sin(wp,kt + (b(],k)) . (331)

The deterministic term oscillates sinusoidally with amplitude Ay, frequency w,,
and phase shift ¢g . & () is an arbitrary noise term. When restricting it to white
Gaussian noise, the noise characteristics are given by (£,(¢)) = 0 and (& (t)&(s)) =
2D%§(k — 1)6(t — s), where (-) denotes averaging over the realizations of &, and
D > 0 scales the noise intensity. In either case, noise and time-variability can
lead to more complex dynamics and may complicate the phase reduction to great
extent.

Periodic forcing without noise, i.e. A, > 0 and D = 0, can, in general, already
lead to quasi-periodic oscillations of the single neural masses. Quasi-periodic os-
cillations can also be caused by the time-delay structure, see Section 3.3.4.2, or

0

by unidirectional coupling?"’. Phase reduction techniques for weakly connected

quasi-periodic Wilson-Cowan oscillators have been proposed by Izhikevich?’!, and

U2 The application to networks of

further extended by Demirt and co-workers?
weakly coupled Wilson-Cowan neural masses where time-periodic input is induc-
ing quasi-periodic oscillations at the single node level, however, is still missing and
requires further investigation. Likewise, non-autonomous input functions may gen-
erate chaotic oscillations. While a phase can be defined for chaotic oscillators2°3,
to the best of our knowledge no phase reduction approach has been attempted for
weakly coupled chaotic oscillators.

Recently, several studies have extended the deterministic Wilson-Cowan model
by a noisy component??4 2% The origin of an additional noise term can be moti-
vated in various ways: intrinsic fluctuations in neural activity, microscopic random-
ness in neural connectivity, or stochastic perturbations due to finite-size effects;

210,211

see and the references therein. Moreover, there is still an ongoing discus-

sion about stochastic descriptions of meso-scale neural populations, see, e.g., the

212 We here aim at revis-

recently proposed model by Schwalger and co-workers
ing briefly how one can rigorously describe a network model of stochastic Wilson-
Cowan neural masses in terms of their phase dynamics. To do so, we consider noisy
external input Py(t) = Py + €& (t) to the external part of the kth Wilson-Cowan

population and omit further state-dependencies, i.e. the dynamics of interest read
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N
. I
Ek = —Ek + S ag (CEEEk — CIE[k: — @E + Po,k; + N Z Ck:lEl> + Egkr(t)]
=1
(3.32a)
Iy = =1+ Slas (cp1 By, — el — ©7)] (3.32b)

We assume that the noise is weak, i.e. ¢ < 1 is sufficiently small, and, as before,
we consider the parameter regime exhibiting self-sustained oscillations when xk =
0 = e. The perturbations by noise will affect the limit cycle oscillations in the
same manner as is done by the other weakly coupled Wilson-Cowan populations.
In particular, the effects of noisy perturbations crucially depend on the phase
sensitivity function Z of the Wilson-Cowan neural mass, and a reduced dynamics
is favorable. Therefore, it appears legitimate to linearize about the noise term

such that we arrive at the dynamics (3.32a) of the excitatory part now given by

Ey=—E,+8

N
K
ap (CEEEk —ciply —Op + Py + N ; Cszz(t)>

(3.33)
+ 0kl (t) + O(ke, %)

ok = ox(Ex, Ir) = Slag (cepEr — crply — Op + Pog)] + O(k) .

Note that the multiplicative character of the noise becomes evident as & (t) ap-
pears in the sigmoidal transfer function S|-] in (3.32). Again, the aim is to deduce
the phase dynamics of the network of coupled Wilson-Cowan neural masses with
noisy input. In general, noise can lead to strongly irregular oscillations, such that
an extended phase description for stochastic oscillators is needed as has been sug-

213 and Thomas and Lindner?2'.

gested alternatively by Schwabedal and Pikovsky
In the case of weak noise these strong irregularities may not arise, and we can
rely on phase reduction methods for stochastic limit-cycle oscillators with both
additive and multiplicative noise?'®2!®, The main focus in these references lies on
the synchronization of a network by common (white and colored) noise, but not
necessarily on a phase description where coupling and noise terms affect the oscil-
lators’ phase dynamics. Nonetheless, the work provides important insight into the
subtleties of phase reduction that arise due to (distinct) characteristic time scales
of both the noise and the deterministic dynamics®”.

To be more precise, let 7¢ and 7, denote the characteristic correlation time of
the noise and the relaxation time of the amplitude of the limit cycle, respectively.
For simplicity, we assume 7, to be independent of the phase 6. In the case of white

noise, we can consider the limit 7z — 0. Moreover, when the dynamics converges
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towards the limit cycle solution instantaneously, we can assume the “phase limit”
7, — 0. In general, however, both 7 and 7, are finite. If we ignore the coupling

for a moment, then the general form of the phase dynamics associated to (3.32)

reads?!” )
€

1+ (7¢/7,)

O = |wi + Y (0r)| + eZ(6)&(t) (3.34)

in the Stratonovich interpretation?!?. Note that in (3.34) the natural frequency
wy, of the oscillator may vary when driven by white noise. Although this variation
is of order O(g?), it is of the same intensity as effects due to additional forcing, or
coupling, and might therefore not be neglected®”. In order to derive the the actual
expressions of Z(0y) = Zi(0y) and Y (0;) = Yi(6x), we first have to define the phase
and amplitude coordinates 6y, p, similarly as in Section 2.3.1.2. These definitions
hold in a vicinity U of the limit cycle solution (E¢(t), I5(t)) = (Eg(0k), I¢(6k)) of

the unperturbed system whose period is T}, = 27 /wy. Then, we find

o, (Eg, Ir)

Z1(0k) = Zy, - ( 0 >‘(Ek1k)=(Eka) 7

where Zj, is the phase sensitivity function of the (deterministic and uncoupled)
neural mass k. The expression Y (0y) is more complicated and crucially depends
on the amplitude dynamics p, evaluated on the limit cycle. For the general forms
of Z(0) and Y, (0y), we refer to2!6217, Note, however, that in the limit of weak

coupling, 0 < kK < 1, we arrive at

52

9’ _ I
O (/)

Vi (0) % Z (05 — O) + e Zi(01) &k (1) (3.35)

with Hj; the usual phase interaction function introduced earlier; for the underlying

theory see38:168:220-223

For the practical application of an analytic reduction it
is again advantageous to first cast the dynamics (3.32) into Hopf normal form,
determine the phase sensitivity function Z and the amplitude dynamics p;,, and
subsequently apply a phase reduction resulting into (3.35). We would like to
remark that when the amplitude dynamics towards the limit cycle is much faster
than the correlation time 7¢ of the noise, or when the limit cycle is sufficiently
robust against amplitude perturbations, then the ratio 7¢/7, can be assumed to
tend to infinity and the term with Y;(#) will vanish. In this case, the phase
reduction to 0, = wy + £Z;(0x)&x(t) is of the same (non-stochastic) nature as the
‘standard’ phase reduction method?'".

In the end, the phase reduction of the stochastic Wilson-Cowan neural mass
network is based on strong assumptions on the weakness of perturbations through

coupling and noise. Although there are recent extensions to strongly perturbed
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limit cycle oscillators??, the method dwells on the separation of a slow but large-
amplitude component and weak fluctuations of the perturbation. In this sense, the
approach seems rather adequate to model weakly coupled oscillators with chang-
ing background activity??®. Although not explicitly mentioned, the incorporation
of noise appears to be straightforward. External input functions, both determin-
istic and stochastic, can lead to complex collective behavior, such as the onset

67 or stochastic, i.e. noise-induced, synchronization %218,

of collective oscillations!
However, a comprehensive theory for the reduction of dimensionality in terms of
phase (and amplitude) dynamics is still being sought for and remains in the focus

of current research.

3.3.4.2 Systems with delay

Another important feature of a realistic network topology is the incorporation
of a transmission rate, that is, the time needed for the signal of oscillator k£ to
perturb or affect oscillator j. Up to now, we only considered infinitely fast, or
instantaneous, interactions between oscillators. However, in general one ought to
take also the (transient) dynamics of signal propagation into account, which is
mainly, and sufficiently well, approximated by an additional delay structure.

In the following, we briefly revisit the phase reduction theory for delay-coupled
systems. As in the previous sub-section, we focus on the Wilson-Cowan mass
model. Delays can occur both within a single neural mass and between distinct
neural masses. Usually, the (internal) interactions are assumed to be considerably
fast compared to the typical transmission speed across cortical regions. Therefore,
delays within each neural mass can be neglected so that only delays in the cou-
pling between different neural masses generate a global (cortical) delay structure.
Such delay structure can be neurobiologically motivated when, e.g., inferred from
diffusion spectrum imagining. Once axonal pathways have been identified, the
Euclidean distances between connected brain regions and physiologically realistic
conduction velocities then provide an estimate on the delays 73 between nodes

k,l. The network dynamics with time-delay read

N
. K
Ek = —Ek + S ag (CEEEk — C]Efk — @E + Pk; + N ; Ck:lEl(t - Tk:l))]
(3.36a)
I = —I+ Sla; (cerBy — eIy — ©5)] . (3.36b)

Assuming that the time delays 75, are of the same order of magnitude as the
period T}, of oscillation of each of the neural masses, they will manifest themselves

as model-dependent phase shifts Ay = (27 /T) 7 in the coupling function of the
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reduced phase dynamics:

N
Op = wi+ K Y H(O — 0 — Ag) ; (3.37)

=1

for the derivation see ©8»42:44,48

Intuitively, this phase shift can be explained
within the theory of weakly coupled oscillators: Given that x < 1 is small, the
time-delayed coupling term corresponds to a phase-shifted point on the (uncou-
pled) limit cycle. When expanding the phase interaction function H in Fourier
space, the phase shifts Ay will effectively shape the amplitudes of the odd and
even harmonics, i.e. of the sine and cosine components, respectively, which may
affect the collective dynamics of the network. In fact, prior studies that respected
transmission delays in phase oscillator networks have reported elaborate synchro-
nization dynamics?26-239,

In the case of time delays where a phase shift-approximation as above is not ade-
quate, e.g., when 7 represents the time of propagation of the signal from one neuron
to another, the dynamics become more complex. Indeed, delayed dynamical sys-
tems are infinite-dimensional, and thus present a serious mathematical challenge.
Numerical tools have been developed such as DDE-BiFTOOL?*1232 which can
be used to investigate the dynamical properties of coupled systems with delay.
Coombes and Laing?*? applied the methods to a single Wilson-Cowan population
with multiple time delays. In particular, time delays influence the creation of oscil-
lations as well as the form of the limit-cycle. Even quasi-periodic orbits can emerge,
as has been shown for a slightly different version of a Wilson-Cowan population
with delays?3*. How coupling, with and without delays, to other Wilson-Cowan
populations further shapes the oscillatory properties of the single neural masses
has not been answered yet.

Similar to coupling-induced oscillations, which will be the focus in the following
Section 3.3.5.1, also the incorporation of time delays may lead to oscillations. It
is noteworthy that phase reduction techniques have been extended to tackle these
delay-induced oscillations®723%236 The theoretical framework developed there has
yet to be generalized to analyze weakly coupled delay-induced limit-cycle oscilla-
tors. Likewise, another open and crucial question is whether reduction techniques
can be applied to deduce a phase model when oscillations are not necessarily delay-
induced but strongly affected by the delay: delays leading to too strong amplitude
effects prohibit phase reductions without a loss of (too much) information so that

alternative ways have to be found.
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3.3.5 Coupling functions

The coupling dynamics of interacting nonlinear oscillators is a research theme
already in itself, and we do not dare to even intend to treat this subject thoroughly.
The interaction between two units can take too many forms, is too diverse and may
feature too distinct dynamics, so that most of the times realistic coupling scenarios
are approximated by simpler terms to render a network analysis feasible. When
confronted with interacting systems, it is important to identify the correct type
of coupling function between them, especially given the role of coupling dynamics
in shaping non-trivial network behavior. Therefore, we will briefly comment on
general aspects of coupling terms, on the modeling approximations of realistic
coupling as well as on the effects of coupling matrices reflecting realistic structural
connectivity. All of them can, and usually do, influence the reduction of a phase
model.

As we briefly noted in our Brusselator example, Section 3.1, for systems with dy-
namics @ = f(x)+g(x,y) the character of the coupling can be direct, g(x,y) = g(y),
diffusive, g(x,y) = gy — x), reactive, g(x,y) = (e + iB)g(x — y), conjugate,
g(z,y) = g(x — Py), as a chemical synapse, g(z,y) = g(z)S(y) with S(-) of
sigmoidal shape, or environmental, g(x,y) = efg e =9 (z(s) 4 y(s))ds; see the

237 and the references therein. One may further distinguish between

recent review
linear and nonlinear coupling, depending on the order of g(z,y). While the origi-
nal dynamics of interacting systems exhibit one or more coupling functions of the
types above, their counterpart in the corresponding and reduced phase model often
boils down to either a diffusive phase coupling term §(6,,6,) = §(6, — 6,) or to a
pulse-response coupling of the form §(6,,0,) = P(6,)R(6,). How coupling terms
of the original dynamics translate into the particular phase coupling functions,
depends both on the characteristics of the underlying dynamical system as well
as on the strength of interaction. The pulse-response coupling, as was established
by Winfree in his original work®®, appears to be the more general form of phase
interactions where the coupling term is the product of the external perturbation
P(6,) through the other oscillator with the response R(f,) of the perturbed oscil-
lator, the latter commonly referred to as the phase response function. Averaging
procedures, however, can be applied if the perturbations and /or coupling strength
are sufficiently weak, in which case a diffusive phase coupling term can be recov-
ered again. Moreover, there are other exceptions where an averaging procedure is
also possible, such as when multiple strong pulses are dispersed around the cycle,
of. 147

We are also fully aware that models of interconnected nonlinear oscillators, in

particular neural oscillators, often feature rather complex coupling terms with in-
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dividual dynamics®32%%23  Keyword here is ‘event driven’ coupling. For instance,
let two neurons be connected via a chemical synapse. When the presynaptic neuron
elicits a spike, an action potential travels along the axon and provokes the release
of neurotransmitters at the synapse. This in turn leads to a temporary change
of the membrane potential of the postsynaptic neuron with characteristic finite
rise and fall times. Taken together, event driven coupling can be defined as the
time-resolved interaction between nodes (e.g., neurons) that is triggered through
a particular event (e.g., the spiking of the presynaptic neuron). This transient
dynamical process can be described mathematically with a linear differential oper-
ator that has a given response (or Green’s function). When allowing for this kind
of complex coupling, the corresponding network model becomes more detailed and
high-dimensional. Still, the theory outlined in Chapter 2 above applies also in this
case and a proper phase model can be reduced. The coupling functions in the re-
duced phase model, however, are now time-dependent and can become arbitrarily
difficult. Sometimes, these reduced coupling functions can be approximated and
continue to provide an accurate model of the underlying system, see ©8+240, We
discourage, however, from ad hoc approximations without a sensitive assessment
of both the full dynamics and the reduced, or simplified, phase dynamics. Here,
we first analyzed the parameter range in which the nonlinear, sigmoidal coupling
function in the Wilson-Cowan neural mass model can be adequately approximated
by polynomial terms, and then we employed the analytic reduction techniques for
these parameters, cf. Section 3.2. Incorporating delays between cortical regions

e.g., 241
&:24 and

or spatial kernels leads to far more intricate coupling dynamics, see
Section 3.3.4.2. Friston popularized Volterra series to model inherent nonlinear
interactions when also taking neuronal transients into account, i.e. the recent his-

2

tory of neural activity of connected neuronal populations?*?. Phase reduction

strategies have been extended recently to cope with time-varying external pertur-

224225243 which hints at ways how to tackle dynamically more intricate

bations
coupling terms. However, a thorough analysis of complex coupling functions and
their translation into phase models is beyond the scope of this review. Yet, we
trust that our results can help to construct particular phase coupling terms, which
especially becomes important for the modeling of neural cross-frequency interac-

tions 244245

3.3.5.1 Coupling-induced behavior

The reduction of phase dynamics from a network of coupled oscillators retains
its mathematical justification as long as the theory of weakly coupled oscillators
applies. However, no rigorous definition of weak coupling exists, nor a concrete

limit of the coupling strength at which the character of interaction switches from
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weak to strong. Usually, phase reduction is achieved with the tacit understanding
that each isolated system already displays stable limit cycle oscillations, which is a
necessary condition for the theory of weakly coupled oscillators. However, in some
cases it is the coupling between systems that induces oscillations. Smale was among
the first to investigate the emergence of oscillations via a Hopf bifurcation due to
diffusive coupling?*6. On the other hand, coupling between systems can also make
oscillations cease. Ermentrout and Kopell reported this kind of oscillation death

%3 see also the work by Daffertshofer

and van Wijk on a (heterogeneous) network of Wilson-Cowan neural masses 2.

for a chain of Wilson-Cowan neural masses!

Those effects only occur for reasonably large coupling strengths, and a straight-
forward identification of the phase dynamics as within the theory of weak coupling
is not possible. While sufficiently weak coupling ensures that the shape and the fre-
quency of the limit-cycle orbits remain almost unchanged, strong coupling leads to
non-negligible amplitude effects. These can destabilize synchronized states, cause
(amplitude and thus) oscillation death or collective chaos, and a phase reduction

224 and the references

has only been proposed for quite restrictive assumptions; see
therein. Hence, phase-amplitude reductions?*" 24 have to be employed that also
take interactions between phase and amplitude dynamics into account. The the-
ory of weakly coupled oscillators additionally requires that the actual trajectories
of the oscillators are always close to the isolated limit-cycle solution. Recently,
Wilson and Ermentrout proposed a method that allows for a phase reduction far-
ther away from the underlying periodic orbit?°, thereby admitting also stronger
perturbations and coupling strengths, see also Section 3.3.7. For the sake of con-
ciseness, we omitted the difficulties mentioned above, knowing well the intricacies
tied to a more careful investigation of other urgent questions beyond the realm of
the weak coupling limit. Yet, we would like to briefly discuss the emergence of

oscillations through coupling, as well as their cessation.

Oscillation birth and clustering From an analytic point of view, it appears
illustrative to start with two coupled identical oscillators, which rest in a stationary
state when uncoupled. As can be seen in the corresponding bifurcation diagram in
Fig. 3.10, oscillations can be induced through coupling via a Hopf bifurcation (red
dot). The critical coupling strength can be determined analytically, see also!™. In
our example, it is considerably small with £ = 0.0531 (note that we did not rescale
the coupling by a factor 1/N). Interestingly, already for two coupled oscillators
the initial conditions have a major impact on the resulting dynamics: while for
coupling strengths k < 0.6 (see green dot), all initial conditions run either into
the same two limit cycles or into the low activity resting state (blue solid curve),

for larger coupling strengths only identical initial conditions result into the same
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Figure 3.10: Bifurcation diagram of two coupled identical Wilson-Cowan neural masses
with parameters P = —3 and Q = —9.4. At low coupling strengths « < 0.05, the two
units are at rest (black solid curve). Oscillations emerge at the Hopf bifurcation (red
dot), where the resting state becomes unstable (black dashed). The limit cycles of the
two oscillators (red curves display upper and lower limit) are identical up to the green
dot. Beyond this point, identical initial conditions of the neural masses result in the two
identical limit cycles with upper and lower limits as shown in red. Finally, oscillations
cease through a fold bifurcation of limit cycles for higher coupling strengths (second red
dot). The yellow dot represents a homoclinic bifurcation, induced through the unstable
counterpart (blue dashed) of the pair of fixed points that emerged through a saddle-
node bifurcation (blue dot). For non-identical initial conditions of the neural masses,
the attracting limit cycles are distinct for coupling strengths higher than at the green
dot. Stable oscillations (with limits on either the outer or inner branches of the green
curves) are then also possible beyond those coupling strengths for which identical initial
conditions evolve into a low-activity resting state (blue solid).

(red) limit cycles. Different initial conditions for the two coupled neural masses
may still lead to stable oscillations, but the respective limit cycles can differ in
amplitude and shape (green curves). Moreover, oscillations starting from distinct
initial conditions are stable for even larger coupling strengths, where those from
identical initial conditions have ceased through a fold bifurcation of limit cycles
(see the inset).

Based on our brief analytic insights concerning only two coupled oscillators,
we anticipate that coupling-induced effects will increase the dynamic intricacy of
larger networks of strongly coupled oscillators. To illustrate this, we simulated a
fully connected network of 30 identical Wilson-Cowan neural masses starting from
random initial conditions. Fig. 3.11 displays the network behavior for different
coupling strengths. Without coupling, the network remains at rest (top row). For
weak coupling, there is perfect synchronization between coupling-induced oscilla-
tions. Moreover, all oscillators describe the same limit cycle (middle row). For
stronger coupling, the coupling-induced oscillations become more complex. Dif-
ferent oscillators form clusters, which furthermore evolve on distinct limit cycles

(bottom row).
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Figure 3.11: Coupling induced behavior of N = 30 globally coupled identical Wilson-
Cowan neural masses with parameters P = —3 and Q = —9.4. Without coupling (top
row), only the resting state is stable. At low coupling strength x = 0.05 (middle row),
all neural masses synchronize on the same limit cycle. At very high coupling strength
x = 0.81 (bottom row), the neural masses form three clusters on distinct limit cycles and
show intermittent synchronization. Left: dynamics of all neural masses in the Ey — Iy,
plane for the lase ¢ = 15 seconds. Middle: extracted phases of all neural masses. Right:
real Kuramoto order parameter displaying phase synchronization of the network.

Oscillation death and quasiperiodic dynamics To investigate the phenomenon
of oscillation death, we chose parameters such that a single, unperturbed Wilson-
Cowan neural mass exhibited stable limit-cycle oscillations. Starting again with
two coupled identical oscillators, we display the corresponding bifurcation diagram
with respect to the coupling strength in Fig. 3.12. For identical initial conditions,
the red curves represent the upper and lower limit of the amplitude of the (iden-
tical) limit cycles. Note that oscillation death occurs via a homoclinic bifurcation
(yellow dot). For distinct initial conditions, we find again two different oscilla-
tory regimes: at low coupling strengths, both limit cycles coincide. However, for
larger coupling strengths beyond x =~ 0.45 (red dot) each neural mass exhibits
quasiperiodic behavior, as depicted in Fig. 3.12b.

Similar to before, we also simulated the network dynamics and confirmed the
analytic predictions extrapolated from two coupled oscillators to a larger network.
Results are shown in Fig. 3.13. Note that the parameters P, () are chosen such that
the reduced phase model predicts asynchronous network dynamics for low coupling
strengths, as is demonstrated by the simulations (top row). Stronger coupling leads
first to a general increase in network synchronization as indicated by the (mean
value of the) Kuramoto order parameter, and to quasiperiodic dynamics (middle

row). Eventually, for even stronger coupling oscillations cease and the dynamics
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Figure 3.12: Oscillation death: bifurcation diagram similar to Fig. 3.10, now starting
with stable limit cycle oscillations without coupling. Oscillation death occurs via a ho-
moclinic bifurcation (yellow dot) for identical initial conditions. The red dots denote the
emergence of quasiperiodic behavior for distinct initial conditions. In (b) quasiperiodic

behavior is depicted for coupling strength £ = 0.475

1000 2000 3000 4000 5000

MWW

collapse into a low activity state (bottom row).

\

=

O =

/

L

/=

0 05 1 4985 4990 4995 5000 1000 2000 3000 4000 5000
x =0.81
1
2
—< 05 << 0
-2
0
0 05 1 4985 4990 4995 5000 1000 2000 3000 4000 5000
E Time t Time t

Figure 3.13: Coupling induced behavior of NV = 30 globally coupled identical Wilson-
Cowan neural masses with parameters P = —3 and () = —9. At low coupling strength
k = 0.15 (top row), all neural masses desynchronize on the same limit cycle as predicted
by the phase model. At intermediate coupling strength £ = 0.75 (middle row), oscillators
move along quasiperiodic trajectories and tend to synchronize. At very high coupling
strength x = 0.81 (bottom row), oscillation death occurs and the neural masses run into
a low activity resting state. Left: dynamics of all neural masses in the Ej — I} plane
for the lase t = 15 seconds. Middle: extracted phases of all neural masses. Right: real
Kuramoto order parameter displaying phase synchronization of the network.



Collective behavior and phase models 116

3.3.5.2 Effects of structural connectivity

The analytic insight with respect to the bifurcation diagram of two coupled oscilla-
tors, helped us in Section 3.3.5.1 to draw conclusions about possible network states
of N > 2 globally coupled oscillators. As mentioned before, pairwise interaction
between the oscillators in a network allows us to generalize the findings about
two oscillators to larger networks. In principle, however, the coupling terms can
combine the simultaneous effects from more than one oscillator, which results in a
multivariate coupling function with more than two input variables. Multivariate
interaction has recently attracted increased attention; an overview can be found
in Section I1.C.3%3" and see various references therein. As long as the coupling
is sufficiently weak, phase reduction techniques can cope also with multivariate
coupling terms, see, e.g., Malkin’s Theorem in Section 2.3.1. Moreover, reduced
phase models may feature phase interaction functions with up to four interacting
phases, see the reduction via Sy x Sl-symmetry in Section 2.2.6. Still, already
in the case where the phase interaction function only depends on pairwise phase
differences, the network can exhibit rich and non-trivial dynamics as seen before.

Another important factor that can shape the network dynamics is the structural
connectivity between nodes. The underlying network topology plays a significant
role for the observed network behavior. In particular, many results about expected
network behavior based on (higher harmonics of) the reduced phase interaction
function are no longer valid when the connectivity structure deviates from global,
all-to-all coupling, as we will illustrate below. Yet, on a first level, the derivative
of the reduced phase interaction function can still provide important information
about (remote) synchronization properties of a realistically connected network, see
e, 58

As before, we assume that possibly multivariate coupling terms g, (@1, ..., Zxy)
of the underlying oscillator model of N interacting nonlinear oscillators can safely

be approximated by the sum over pairwise coupling terms

gk(mla B aa:N) ~ chjg(mkawj)'

j=1

If such a decomposition is not possible for all units of the network, an exit strat-
egy may be the following: first, the network is parceled into interacting subnet-
works, and subsequently each oscillating subnetwork is characterized in terms of
its macroscopic rhythm, employing collective phase description methods as devised

by Kawamura, Nakao, Kuramoto and co-workers 67-168:221,222
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As usual our goal is to establish a phase model of the form (2.16),

N
ék =w+ % Z ijH (Gk — 91) s (338)

j=1

where C}; denote the entries of the adjacency or connectivity matriz, which rep-
resents the structural connectivity between oscillators. In the simplest case, all
oscillators are coupled to all the others, that is the case of global coupling with
Cr; = 1 for all k # j. More realistic network topologies, on the other hand, can
be translated into adjacency matrices that respect graph-theoretical properties of,
e.g., the structural brain connectivity as derived from diffusion tensor imaging.
The effects of the network topology on the macroscopic behavior are to great ex-
tent still unclear. Indeed, particular features in the network topology, such as,
e.g., small-worldness, which is believed to resemble the connectivity of the hu-
man brain, elude analytic treatment completely, but at the same time bear rich
non-trivial network behavior251 254,

To give a slight insight into the additional complexity, we compared the simu-
lated phase dynamics with the phases extracted from the original Wilson-Cowan
neural mass model (3.15) and considered three different coupling topologies: a
fully connected homogeneous network, an anatomical network reported by Hag-
mann and co-workers?®, and a network with small-world topology generated by
the Watts-Strogatz model?®; see Fig. 3.14 for the corresponding adjacency matri-

ces.

(a) Hagmann network. (b) Small-world network.

Figure 3.14: Connectivity matrices for the Hagmann dataset and the generated small-
world topology using an average degree of 10 and a rewiring probability of 0.2.

Following Section 3.2.5, we simulated the network in the parameter regions
where we expect synchronization, incoherence and cluster states, and changed
the connectivity matrix subsequently. As displayed in Fig. 3.15, the particular
connectivity structures led to macroscopic dynamics that became indistinguishable
from one another, the red and blue graphs correspond to small-world and Hagmann

network connectivity, respectively. Only in case of a fully connected homogeneous
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network, see the black graphs, the actual dynamics matched the predictions of the
numerically reduced phase model.

Moreover, we simulated the different phase models as retrieved by the four
reduction techniques. The numerically reduced phase dynamics (black graphs)
correctly captured the original Wilson-Cowan dynamics for full connectivity, see
the left column in Fig. 3.16. For non-trivial connectivity structures, however, none
of the phase models can follow the predictions based on the (global) phase inter-
action function H. While for the small-world network (middle column) the sim-
ulations hint slightly at the synchronous, asynchronous and two-cluster regimes,
respectively from top to bottom, the observed dynamics on the Hagmann network
appear arbitrary. Note that the direct averaging technique (green graphs) leads to
synchronized macroscopic behavior for almost all parameter settings and connec-
tivity structures. The two analytic techniques feature rather distinct behavior for
full connectivity: the reductive perturbation approach (red) leads to full synchro-
nization, whereas the nonlinear transform approach (blue) results in a two cluster
state. On the other hand, for the small-world and Hagmann networks, the two
techniques converge to the same network behavior. For more details about the

connectivity structures as well about the simulations, we refer to the Appendix'™.
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Figure 3.15: Simulation of the Wilson-Cowan dynamics at coupling strength x = 0.15
for regimes as predicted by the reduced phase model: synchronization (top row), asyn-
chrony (middle) and two-cluster state (bottom). Left: final (7" = 2000) position of
all 66 connected Wilson-Cowan oscillators on the unperturbed limit cycle (green) with
random initial conditions (black dots). Middle: phase histogram of final Wilson-Cowan
oscillators. Right: phase synchronization of the network measured with the real Ku-
ramoto order parameter with a moving average over 20 seconds. Colors correspond
to full connectivity (black, circles), small world (blue, diamonds), and Hagmann (red,
squares).
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Figure 3.16: Simulation of the reduced phase models at coupling strength x = 0.25
with full (left column), small-world (middle) and Hagmann network connectivity (right).
Insets show histogram of the final (7' = 2000 for full connectivity, and 7' = 10000
otherwise) phase distribution for N = 200 oscillators (N = 66 for Hagmann network).
Colors correspond to numerical reduction (black), direct averaging (green), reductive
perturbation (red), and nonlinear transform approach (blue).

In a nutshell, we can conclude that topology effects overcome otherwise precise
predictions of the phase model such that even the least accurate direct averaging

method does not perform worse than the other techniques.

3.3.6 Phase versus other oscillators

3.3.6.1 Nonlinear oscillators

The limitations as presented in Section 3.3.5 culminate in the natural question
how well phase models are actually able to approximate and predict the behavior
of the network model of coupled, often high-dimensional nonlinear oscillators. As
shown in Sections 3.1 and 3.2, a properly tailored phase reduction can lead to a
phase model that not only describes synchronization transitions of the underlying
model accurately, but also captures non-trivial network behavior such as cluster
states. It can, however, also be the case that complex emergent phenomena, e.g.,
cluster states (and chimera states as a special case of clustering), self-organized
quasiperiodic synchrony, or amplitude death, are due to amplitude effects in the
oscillator network. Then, the validity of a reduced (and averaged) phase model is
highly questionable. To give an example, Rosenblum and Pikovsky considered a

system of identical Stuart-Landau oscillators with global nonlinear coupling 2.
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In deriving the corresponding phase dynamics, they found® a dynamic depen-
dence of the coupling strength as well as of the amplitudes of the first harmonics
on the network’s order parameter. It is true that the resulting phase model is
integrable within the Watanabe-Strogatz theory. However, the additional dynam-
ics pose an irreconcilable obstacle for the varying phase interaction function to be
retrieved: The numerical phase reduction techniques only provide a static picture.
But also the normal form reduction methods, which usually transform the origi-
nal dynamics near a supercritical Hopf bifurcation into the form of Stuart-Landau
oscillators, fail to respect the higher order dependence on the order parameter,

91,92 The reason is that the particular

even in case of constant global coupling
nonlinear coupling term considered by Rosenblum and Pikovsky will be culled as
it merely provides higher order corrections to the first dominant harmonics, see
Section 2.2.1.2. Interestingly, nonlinear coupling is not necessary to induce non-
trivial network behavior. Sethia and Sen considered it surprising that chimera
states in a network of Stuart-Landau oscillator already exist for linear coupling?®”.
However, the results by Kori and co-workers, who detected cluster states as well
as slow switching behavior for a network of diffusively coupled Brusselators based
on their reduced phase model®®, and also our findings, suggest that complex and

rich network behavior can be predicted by adequately derived phase models.

3.3.6.2 Non-smooth oscillators

The way the T-periodic limit cycle C has been introduced above, suggests that
the trajectory ¢(t;x) is a smooth curve in phase space for 0 < t < kT with
k — oco. However, the definition of C also holds for non-smooth trajectories, e.g.,
for a piece-wise smooth trajectory that features sudden jumps. In this manner it is
possible to define a phase also for so-called integrate-and-fire neuron models: every
time the voltage variable exceeds a particular threshold value, a spike is elicited
and the voltage is reset to a lower reset value. For the time between two spikes,
the voltage can then be parametrized in terms of a phase value. Consequently, it is
possible to determine the phase dynamics of an integrate-and-fire model'%2. Politi
and Rosenblum recently demonstrated the equivalence between phase-oscillator
and integrate-and-fire models in the weak-coupling limit for a fully connected

network of identical units?2°8.

Moreover, models of electric circuits with discon-
tinuous switching or gait models with sudden collisions with the ground feature
non-smoothness of the state variables. The dynamical systems describing these
models are usually called hybrid dynamical systems. If they exhibit limit-cycles,
then one refers to those oscillations as hybrid limit-cycle oscillations. The recent
work?%? by Shirasaka, Kurebayashi and Nakao provides a detailed mathematical

account of the phase reduction of such hybrid limit-cycle oscillators.
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3.3.7 Phase-amplitude models

A more general approach to the definition of phases and amplitudes is the trans-
formation into a so-called phase-amplitude model. Typically, one introduces a
moving orthonormal coordinate system around the limit cycle and fixes one axis
pointing in the direction of the tangent vector along the periodic orbit. The coor-
dinate corresponding to this tangential axis indicates the phase whereas all other
coordinates are associated with the distance from the limit cycle, previously de-
fined as amplitudes. Phase-amplitude descriptions allow for tracking dynamical
phenomena that are not visible within the isochronal (phase) description. Exam-
ples are shear-induced chaos or oscillation death. The recent review by Ashwin,
Coombes, and Nicks®® and the references therein provide more details. Despite the
greater accuracy of phase-amplitude models, however, isochronal phase models are
often in favor for their simplicity and are generally valid as long as perturbations
are weak, or considerably moderate. For larger perturbations, discarding the am-
plitude dynamics may be improper. It seems promising to introduce a simplified
coordinate system via so-called isostable coordinates, which correctly describes the
phase dynamics away from the limit-cycle?®®. This approach does not rely on the
weak coupling assumption. Likewise promising are recent approaches that allow,

224,225 (1 fast

e.g., for large external perturbation that oscillate at sufficiently slow
frequencies®*3. In Section 2.3.1.2, we briefly sketched a phase reduction approach
that crucially relies on the fast relaxation rate of the oscillator towards its limit
cycle. There, the introduced phase-amplitude coordinate system reduces by means
of a separation of time scales to a phase description only.

As a final note we would like to add that Koopman operators provide a very
useful framework to accurately describe transient dynamics of systems with stable
limit cycles in reduced phase and amplitude coordinates. Similar to the notion
of isochrons as level sets of the same asymptotic phase value, it is possible to
define the above-mentioned isostables as a set of initial conditions that have the
same relaxation rate towards the attracting limit cycle?%. An isostable represents
an amplitude degree of freedom, which in addition is independent of the phase
and of other amplitude degrees of freedom. Both isochrons and isostables can be
understood from a unified perspective via the spectral properties of the Koopman

247,260,261 Thig operator has proven to be of invaluable use

(composition) operator
for dynamic mode decomposition, a data-driven approach to complex nonlinear
systems. Wilson and Moehlis further extended the theory to systems with limit
cycle attractors?02. A rigorous extension to phase-amplitude dynamics, also away
from the limit cycle, has recently been proposed by Shirasaka, Kurebayashi and

Nakao?*"; see also?%? including an alternative numerical approach to compute the
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phase and amplitude responses via a forward-integration method. The Koopman
operator framework further allows to reduce phase and amplitude dynamics in a
consistent way and can be implemented numerically. As we mainly focused on weak
perturbations off the limit cycle, such that amplitude effects become negligible, we
refrain from further elaboration on the Koopman operator theory and refer the

2

interested reader to the literature, see?*” and numerous references therein.

3.3.8 Analytic approaches versus numerics — a final word

The ‘competition’ between analytic phase reduction techniques and numeric reduc-
tion techniques boils down to seeking a compromise between qualitative insights
and quantitative accuracy of the resulting phase model. Either, one can gain ana-
lytic insights into how parameters of the underlying oscillatory dynamics translate
into the phase model, which may come at the cost of losing accuracy as soon as
the dynamics are away from a bifurcation point. Or, we derive the phase dynamics
numerically and with high accuracy, but may forego explicit analytic expressions
that can provide an intuition about which parameters of the underlying model
influence the phase dynamics to what extent and in which direction. We therefore
advise to combine both analytic and numerical reduction techniques. In this way,
numerical techniques can, e.g., be used to verify the validity of analytic reduc-
tion techniques so that analytic insights can be gained in an optimally extended

neighborhood around a bifurcation point.
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CHAPTER

Interactions between networks

of heterogeneous phase oscillators

Populations of oscillators can display a variety of synchronization patterns de-
pending on the populations’ intrinsic coupling and the coupling between them. We
consider two coupled, symmetric (sub)populations with unimodal frequency dis-
tributions. If internal and external coupling strengths are identical, a change of
variables transforms the system into a single population of oscillators whose nat-
ural frequencies are bimodally distributed. Otherwise an additional bifurcation pa-
rameter k enters the dynamics. By using the Ott-Antonsen ansatz, we rigorously
prove that k does not lead to new bifurcations, but that a symmetric two-coupled-
population-network and a network with a symmetric bimodal frequency distribution
are topologically equivalent. Seeking for generalizations, we further analyze a sym-
metric trimodal network vis-a-vis three coupled symmetric unimodal populations.
Here, however, the equivalence with respect to stability, dynamics and bifurcations

of the two systems does no longer hold.

Adapted from: Pietras B., Deschle N., Daffertshofer A. (2016). FEquivalence of
coupled networks and networks with multimodal frequency distributions: conditions
for the bimodal and trimodal case. Phys. Rev. E 94, 052211.

doi: 10.1103/PhysRevE.94.052211.
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4.1 ‘Multimodal networks’ or ‘networks of

networks’ ?

The Kuramoto model is seminal for describing synchronization patterns in net-
works of phase oscillators. It has been investigated to great detail in numerous

studies using different approaches; for reviews see ©&-3%264,

The analytical treat-
ment typically relies on the formation of a common variable, the so-called order
parameter, and seeks to pinpoint its dynamics. The more recently suggested ansatz
by Ott and Antonsen®' proved particularly fruitful for analyzing this dynamics.
It applies to the thermodynamic limit, i.e. to infinitely large populations, and it
contains major simplifications including the ‘parametrization’ of the phase distri-

5

bution’s Fourier transform. Abrams and co-workers?® were the first to describe the

dynamics of two coupled populations using the Ott-Antonsen ansatz, confirming

earlier results based on perturbation techniques?692%; see also Laing’s extension

including heterogeneity and phase lags?%?. Similarly, Kawamura and co-workers?™
derived a collective phase sensitivity function to describe synchronization across
subpopulations, but they assumed only very weak coupling between them. A de-
tailed bifurcation analysis of these dynamics without such restrictions, however, is
still missing.

We discuss a network of two populations of Kuramoto oscillators with uni-
modally distributed natural frequencies. The dynamics will be compared with
that of a single population of oscillators with bimodally distributed frequencies.
The latter case has been extensively studied by Martens and co-workers?™!. In
Fig. 4.1 we sketch the contrasting network configurations. Here we prove that a
symmetric two-population network does fully resemble the case of one network with
bimodally distributed frequencies. Assuming that the internal coupling strength
(identical for both networks) can be distinct from the bidirectional external cou-
pling strength, we introduce another degree of freedom in the dynamics, and by
that go beyond a simple change of variables, which may transform the bimodal
description into two populations. As we will show, this additional parameter does
not lead to qualitatively different dynamics. Instead we prove the topological
equivalence of the two systems.

A natural question is whether this equivalence can be generalized. For this we
couple more than two populations and compare their dynamics to a network with
a multimodal frequency distribution. We show that for a symmetric trimodal net-
work vis-a-vis three subpopulations with identical internal coupling and identical
(though distinct to the internal coupling strength) bidirectional external coupling,

the dynamics already differ qualitatively from each other. Therefore, in the sym-
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Figure 4.1: Two all-to-all coupled networks (left) with unimodal frequency distributions
each; a single all-to-all coupled network (right) with a symmetric bimodal frequency
distribution function.

metric case considered here, the topological equivalence between coupled networks
and networks with multimodal frequency distributions appears limited to two cou-
pled networks vs. one bimodal network, and fails when considering more than two

subpopulations.

4.2 Reuvisiting the existing theory on interacting

populations of Kuramoto phase oscillators

The Kuramoto model displays the long-term dynamics of a system of N € N
weakly-coupled limit-cycle oscillators, where each oscillator £ is fully described by

its phase ;. The latter evolves in time by following the dynamics

| =

) N
Qk:wk NZ (9 _ek . (41)

Here, the natural frequencies wy, are drawn from a distribution function g(w), and
K denotes the strength of the all-to-all-coupling between the oscillators. In his
original work?® Kuramoto assumed g to be symmetric and centered around the
origin thanks to the rotational invariance of the model. Introducing the notion of

a complex-valued order parameter

1 N
=5 Z:: (4.2)

allows for measuring the degree of synchronization in the system. For the thermo-
dynamic limit of infinitely many oscillators, N — oo, Kuramoto derived a critical
coupling strength K. at which the incoherent solution, i.e. z = 0, becomes unsta-
ble and a partially synchronized state, z = const € (0, 1], emerges?3: e als0272 Ty

the case of a unimodal Lorentzian frequency distribution of width A and centered
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at wy = 0, this critical coupling is given by

K, = =2A . (4.3)

In particular, the onset, and in the following also the extent of synchronized be-
havior depends crucially on both coupling strength K and distribution width A.

Of particular interest for our work is the coupling of two such Kuramoto net-
works. There we define two order parameters: A global one covers the entire
network. Equivalently, we can decompose the global order parameter into local
ones, each describing the dynamics of a single subpopulation. The interplay of
these local order parameters has already been investigated in the literature. In
1991 Okuda and Kuramoto investigated the mutual entrainment of two oscilla-
tory populations under the influence of noise?™. All oscillators were assumed to
have identical natural frequencies in their respective population and the result-
ing dynamics differed depending on coupling strength K, noise strength D, and
the distance between the population-specific frequencies Awy. Next to a global
incoherent and partially synchronized solution, they did not only find the exis-
tence of an oscillatory steady state, which was later referred to as “standing wave”

d 274

solution by Crawford*®, but numerical results revealed regimes of multistability,

i.e. the coexistence of (at least) two stable solutions. Montbrié and co-workers?%
extended and generalized these findings by changing the setting slightly: Instead
of letting the system be driven by noise, they assumed inhomogeneous natural
frequencies drawn from unimodal distributions (per population). In the case of
Lorentzians, they derived stability boundaries and illustrated their results for two
coupled populations with numerical performance, and were among the first to dis-
cover “chimera states” states, a notion that later that year had been introduced by
Abrams and Strogatz2™ to denote regions of synchronization in an unsynchronized
surrounding.

We would like to briefly comment on these two seemingly identical approaches:
the first, in which the phase dynamics of identical oscillators is subject to noise, and
the second, in which one considers heterogeneous oscillators without noise. As to
the former, Okuda and Kuramoto assumed that the oscillators in each population
have identical natural frequencies, i.e. wy; = w, for all k = 1,...,N,, and, in

general, w; # wo. Let us rearrange their governing equation as follows (cf. Eq.(2.1)
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in?™ with T'(¢) = sin(¢) and KV = K?) = K):

2 N
. K
Hg,k = Wy + N Z Z Sil’l(eU/J — 9071{) + &,,k(t) (4.4&)
o’'=1 j=1
K 2 N
== (Da,k + N Z Z Sin(ea,j - Qa,k) ) (44b)
o'=1 j=1

where @, 1 (t) = (wo + &k (1)), and &, (t) = & (t) denote independent Gaussian
noise processes with statistics (§(¢)) = 0 and (&(¢)&;(t')) = 2D ;0(t —t'). As
Sakaguchi argued?™®, in the thermodynamic limit the dynamics of the Langevin
equations (4.4a) can be described by a Fokker-Planck equation, whose diffusion
coefficient coincides with the noise strength D. Given that the &, x(t) are Gaussian
noise terms, one can consider the population dynamics (4.4a) as an Ornstein-
Uhlenbeck (OU) process. Then, the results by Okuda and Kuramoto?™® appear in
a different light. OU processes possess a Lorentzian shaped power spectrum. That
is, assuming complex-valued relaxation rates H, = —A — iw,, the power spectra

of the corresponding OU processes read

A
(W—wy)?+ A2

So(w) =

see Eq.(1.8.38) in?™". In due course, this noise-driven approach dwelling on the
Fokker-Planck equation is equivalent to the case of coupled phase oscillators with
natural frequencies drawn from Lorentzian distributions. This equivalence be-
comes evident in the continuum limit of oscillators, a necessary assumption for

deriving mean-field dynamics by both a Fokker-Planck formalism s¢¢ ¢8- 38273278

81,82,271

and by the Ott-Antonsen ansatz . Hence, the following section can be un-

derstood as an analytic confirmation (and extension) of the numerical results by

Okuda and Kuramoto?™

, who assumed two symmetric -peaks as their bimodal
frequency distribution and allowed Gaussian noise processes to drive the system
as in (4.4a). Note that this equivalence mentioned is only valid for the linearized
dynamics. Indeed, this linearization is sufficient for characterizing fixed points
and bifurcation boundaries. When, however, considering the fully nonlinear sys-
tem with noise, the Ott-Antonsen ansatz, which the following analysis will heavily
dwell on, does no longer exhibit the exact dynamics 5 ¢8-27,

Before 2008, the general idea to analytically reveal the dynamical behavior of
these systems was to investigate small perturbations of (the distribution function)
of the incoherent state. Major simplifications for characterizing oscillatory systems
arose with Ott and Antonsen’s breaking idea to simplify the Fourier series of the

oscillators’ distribution functions®!; see Section 4.3. Their proof that the manifold
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of such a class of distribution functions does indeed capture the long-term dynamics

of Kuramoto (and more general) models®?83

paved the way for the success of the
Ott-Antonsen ansatz, see also Chapter 5. Martens and co-workers?™ were the
first to tackle a bimodal Kuramoto network with the new theory and revealed a
thorough bifurcation diagram including stability properties of the corresponding
solutions. Although the disguise of two coupled unimodal Kuramoto networks as a
single network with natural frequencies following a bimodal distribution has often

f271

been claimed, above all in the Appendix of“"', a rigorous proof has never been

provided yet.

4.3 Two-population dynamics along the

Ott-Antonsen ansatz

We consider two symmetric populations of N phase oscillators 0, each, with
o=12andk =1,...,N. The oscillators have natural frequencies w, ; distributed
according to Lorentzians g, of width A; = Ay, = A that are centered around 4wy
and —wy, respectively. We assume all-to-all coupling within each population with
strength K, and also all-to-all coupling across populations with strength K.

The corresponding dynamics obeys the form

: K,

N K
Ot = Wo i + ]\1;1t jzlsin(ﬁm — O ) +

N
;‘t > sin(lor,; — Oak)  (4.5)
j=1

with (0,0") = (1,2) or (2,1). Set Kijn = Ke = K, and let 6, = 6, and
Onir = Oo k. Then, (4.5) reads

2N

. K )
Qk:wk—kﬁ;sm(ﬁj—ek), k=1,...,2N, (4.6)

with wy, drawn from a bimodal distribution ¢ = (g1 + ¢2)/2 with g1 as defined
earlier. This change of variables unveils the equivalence of both descriptions. Here,
a crucial point is the assumption that the intrinsic coupling strength equals the
external one. In the next section we will prove that both systems are topologically
equivalent even if K = Koy /Kine # 1.

To avoid confusion with the bimodal approach of Martens et al., we discriminate
between internal and external coupling strengths Kiy # Ke. We consider the
limit N — oo and introduce continuous, time-dependent distribution functions f,

of the subpopulations’ oscillators. The integral of f, over phase and frequency
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defines the (local) order parameters

21
zg—// folw,0,t) e df dw |
rJo

i.e. a (circular) ‘mean value’ for each population o. The Ott-Antonsen ansatz®!

incorporates the 27-periodicity of f, and further simplifies its Fourier series to a

} |

21
/0 folw,0,t)dl = g,(w) := p o wJ)Q Yk

single Fourier component o, (w, t), i.e.

(ﬁ@mei):ggf){l+

Z o (w, t)"e™ + c.c.
n=1

With the normalization

where w; /5 = &y, the dynamics of the order parameters z, reduce to

K ext

Kin
2, = — (A Fiwo) 2z, + —tza (1 — |za|2) + 5

5 (20 — 222%) . (4.7)

Since g, (w) are continuous, non-constant frequency distributions, the Ott-Antonsen
manifold comprises the entire dynamics®2. Next, we rewrite the order parameters
as 2, = p,e'?s such that with the assumed symmetry p := p; = p, the system

(4.7) transforms into

p = —AP + B(]- - ,02) [Kint + Kext COS q/)]
| 2 (4.8)
= 2wy — Kext(1 4+ p2) sin ;

here we introduced the mean relative phase between the subpopulations as ¢ =
¢o—¢1. Finally, we rescale the parameters by means of 7= Ky -t, k= Kext/ Kint,
A =2A/K;y and wy = 2w/ King, substitute ¢ = p?, and transform ¢(t) — q(7) as
well as 1(t) — 1(7) if not stated otherwisel!l. Then, we find for 0 < p < 1

i=qll =& =g+ (1= g)cos] (4.9)

¥ =wo— kKl +g)siny ;

from hereon the dot notation refers to the derivative with respect to 7. The
system (4.9) resembles Eqs. (25 & 26) in?"! with the additional parameter . For

r=1 both systems agree entirely?. As we will show, the additional parameter

[ We consider Ki,; # 0 and note that the scaling does not affect the quality of bifurcations,
i.e. the original and scaled systems are topologically equivalent.
2] Our unscaled system (4.8) is an exact representation of Eqs. (22 & 23) for K = K/2 in the
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does not alter the qualitative bifurcation scheme of our network. Hence, we can
understand the bimodal formulation as an equivalent representation of the network

consisting of two symmetric subpopulations.

Incoherent state

Before discussing (4.9) in more detail, we briefly analyze the stability of the fully

271

incoherent state ¢ = 0. Following Martens et al.*"', we linearize (4.7) around

z1 = 2o = 0 and find two pairs of degenerated eigenvalues

)\1/3:)\2/4:1—Aq:\//<;2—w3 (410)

expressed in the aforementioned, rescaled parameters. Given the rotational invari-
ance of the incoherent state, we expected this degeneracy. The incoherent state
is linearly stable if and only if the real parts of these eigenvalues are less than or

equal to zero. Using x > 0 and wy > 0 we find the stability boundary as

2,2 >
Aol VE e for mzwo (4.11)

0 otherwise

which can be confirmed by perturbing the uniform distribution f(w,6,t) = (27)~';
see Montbrié and co-workers?%¢ or Okuda and Kuramoto?™. Crossing this bound-
ary for kK >wq corresponds to a degenerated transcritical bifurcation, while crossing
the half line A=1 resembles a degenerated supercritical Hopf bifurcation; see Fig.
4.2, where the red plane displays the Hopf bifurcation and the orange cone the

transcritical one.

Figure 4.2: Bifurcation bound-
Lsifjifm aries. Red plane: Hopf, or-
3FA ange cone: transcritical, green
plane (within green lines): sad-
dle node, blue: homoclinic bi-
furcation. Blue line: Saddle-
node loop curve, yellow: inter-
section of Hopf and SN, black
lines: cross-section at x = 0.8,
see also Fig. 4.4.

notation of271.
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Bifurcation analysis of the coherent state

Coming back to the system (4.9) we realize that its fixed points satisfy 1—A—g=
k(1 — q)costp and wy = k(1+q)sintp. Combining these using cos? ¢ +sin®¢ = 1
yields 52 = (1-=A—q)/(1—q))* + (wo/(1+4q))?, or, equivalently,

14+¢

w()::lzl—_q

VAR 20— A) - (1-m)(1 g (4.12)
as the implicit form of a hyperplane of fixed points ¢s = ¢s(wo, A, k). After in-
serting dwy/0g = 0 in (4.12), the solution wy = wy(A, k) forms a surface (green
in Fig. 4.2) across which a saddle-node bifurcation appears. If both subpop-
ulations contain oscillators with identical natural frequencies w,, i.e. if A =0,
then the saddle-node curve emerges from x = wy/2. We stress this because in
the literature the saddle-node curve has only been approximated numerically,
while here we find that the Ott-Antonsen ansatz allows for deriving an ana-
lytical solution in a straightforward manner. The saddle-node plane starts at
(wo, A) = (2k,0) and approaches tangentially the transcritical bifurcation plane
at (wo, A) = 1/4(\/8%2—2%—2\/@,3—1—\/@). This solution is consistent
with the intersection point (wp, A),—; = (v/3/2,3/2) reported in*™.

Can a change in k lead to new bifurcation behavior?

To show that the parameter x does not lead to qualitatively new macroscopic
behavior, we let G1(q,1; A, wg, k) denote the right-hand side of (4.9) and define
Ga(q,1¥; A, wy, m):det{a(qw)Gl(q,@b; A, wo, Ii)} For k =1 it follows that

G(q,V; A wo, K) = (Gl(q,w;A,wo,m)> 0

Ga(q, ¥; A, wo, K) (4.13)

along the saddle-node curve; cf. Eq. (33) in®"!. According to the implicit function

theorem, there is no qualitative change in the (A, wg)-bifurcation diagram if
0.G(q,V; A, wo, k) # 0 (4.14)

for any neutrally stable fixed point (q,1; A, wp, k) =: ®. Here, however, we have
to extend this to a family of fixed points s = ®(A) along the saddle-node curve
parametrized by A. Therefore, if (4.14) holds for a fixed point @y, i.e. if 0,G(x1) #
0, then we still may end up at another point &5 on that curve. We circumvent this

case by also requiring for any arbitrary a € R

85G1(q,?/)§A7W07/<) 7& a'aAGl((L@D;AawOa’%) (415)
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at every point along the saddle-node curve. Fig. 4.3 shows that the inequality
(4.14) holds for all &,. We note that, because @/} is independent of A, it suffices to
consider only the second equation of 0,G4, which is non-zero for 0 <A <4. That
is, the bifurcation diagram is persistent against (small) perturbations around k=1

and there are no bifurcations of co-dimension larger than 2.

a) A by A
05 1 15 2. 25
< -0.05
-1
56, -0.15
2 -0.25

Figure 4.3: Partial derivatives of 0,G along the saddle-node-plane at k = 1; (a) first
(blue) and second (orange) component of 9,G1(A), (b) 0.Ga(A).

Multistability and oscillatory regimes

As to co-dimension 2 bifurcations, Martens and co-workers suggested the existence
of saddle-node loop bifurcation points on the saddle-node plane below the Hopf
bifurcation that can be identified numerically. In fact, the reduced dynamics (4.9)
has a Jacobian along the saddle-node plane that is (conjugate to) a diagonal matrix
with only one zero eigenvalue in the parameter range under study. This underlines
the saddle-node character of that plane, but more importantly, it shows that these

equations cannot be exploited for bifurcation points of co-dimension 2.

Figure 4.4: Bifurcation boundaries:
cross-section of Fig. 4.2 at kK <
1; red: Hopf, orange: transcriti-
cal, green: saddle node, blue: ho-
moclinic, blue point: saddle-node
loop bifurcation.  Insets: (q,1)-
phase portraits (in polar coordinates)
in their specific parameter regions,
red circle: stable fixed point, gray:
unstable fixed point, green: sad-
dle point. The bistability region
(red/blue) overlaps with the oscilla-
tory regime (blue/gray). (a) Coexis-
tence of two stable fixed points, (b)
a stable fixed point outside a sta-
ble limit cycle, (c¢) the more regular,
stable limit cycle away from the SN
curve.

A
(B+V/1+8k2)/4

Numerical simulations demonstrate the existence of a multistability region; cf.
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Fig. 4.4 and Martens et al.’s Figs. 5 & Ta. Multistability has been reported inde-
pendently in?266:269.271.273 " The red parameter region, bounded by the transcritical
cone (orange curve), the Hopf plane (red) and the saddle-node plane (green), re-
veals the coexistence of another stable, but non-trivial fixed point next to the
stable incoherent solution (separated by a saddle point). In the blue parameter
region left to the saddle-node plane and below the red Hopf plane, the incoherent
solution has undergone a supercritical Hopf bifurcation such that a stable limit
cycle coexists with the pair of stable fixed and saddle points. For the transverse
stability properties of our solutions, i.e. stability against perturbations off the
symmetry p; = py, we refer to Section IV. in?"t. Due to the equivalence of both
the bimodal and the two subpopulation system, the stability results there can be
readily adopted. Note that the equivalence also holds when introducing small time
delays; see the Appendix of 2.

Particularly interesting for future applications are the limit cycle oscillations in
the plane spanned by gcost and ¢sint, shown in Figs. 4.4(b) and (c). There,
both ¢(t + T) = q(t) and ¥(t + T) = ¢¥(t) mod 27 hold for all t € R given a
fixed period length T' = T(A,wp, k). We study these oscillations in more detail
by introducing the global complex-valued order parameter z = (21 +22)/2, whose

magnitude |z| = R readsl’l
R:%\/l—l—cosw (4.16)

with p = /q. If U(t) # 0, then R(t) will oscillate. We would like to note that
in this case oscillations in R would be even observable without ¢ being periodic.
However, for all parameter values outside the oscillatory regime, the dynamics
contains stable fixed points at which obviously ¢ = 0, i.e. R — const. As can be
seen in Fig. 4.4(b), the limit cycle is deformed: it is neither circular nor symmetric
about the origin. Then, also ¢ oscillates, i.e. not only the global order parameter
R oscillates, but so do the local ones p = p; = py. For larger wy the limit cycle
gains symmetry, but does not become a perfect circle. Hence oscillations contain
higher harmonics; see Fig. 4.4(c). Future studies will address more details of the
parameter dependency on the frequency and amplitude of the p and R oscillations

as well as on their relative phase shift.

Summary of the bifurcation scheme

Figs. 4.5 and 4.6 provide a comprehensive overview of the bifurcation scheme of

system (4.9). The red plane displays the supercritical Hopf bifurcation while the

B The absolute value of the global order parameter z reads in general: R = lz| =
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3 Wo

Figure 4.5: Bifurcation boundaries — back view of Fig. 4.2. Red plane: Hopf, orange
cone: transcritical, green plane (within green lines): saddle node, blue: homoclinic
bifurcation. Blue line: Saddle-node loop curve, yellow: intersection of Hopf and SN,
black lines: cross-section at x = (0.8, see also Fig. 4.6.

orange cone represents the transcritical bifurcation. Between the green curves we
find the saddle-node plane, which denotes the parameter values, for which a pair of
a stable fixed point and a saddle point emerges as a neutral fixed point. Along the
saddle-node plane, however, we have to distinguish two cases of this bifurcation.
For all points on the plane with A bigger than some critical value A., the neutral
fixed point emerges away from the stable limit cycle (for A < 1), or away from
the stable incoherent solution (A > 1). For A < A. < 1 the creation of that
fixed point takes place directly on the limit cycle, where A, denotes the value for
the co-dimension 2 bifurcation points (blue) on the green plane in Fig. 4.5 — for
r = 1 this critical parameter is A = A, ~ 0.7384. In particular, the emergent
fixed point is about to split into a pair of a stable fixed point and a saddle point,
therefore it destroys the limit cycle by forcing the period to infinity. This is
a saddle-node infinite-period bifurcation (SNIPER or SNIC). The (blue) critical

3 |preir + paet®2| = $1/p} + p3 + 2p1p2 cos(d2—1).

Figure 4.6: Bifurcation boundaries (left) and bistability region (dashed / right): cross-
section of Fig. 4.5 at k < 1. Red: Hopf, orange: transcritical, green: saddle node, blue:
homoclinic, blue point: saddle-node loop bifurcation. Insets: (g,1)-phase portraits (in
polar coordinates) in their specific parameter regions, red circle: stable, gray: unstable
fixed point, green: saddle point. The right figure is a detailed view of the dashed box in
the left figure.
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curve A. = A.(wyp, k), which separates the two types of saddle-node bifurcations,
consists of saddle-node loop bifurcation points, which are also bifurcation points
of co-dimension 2.

Furthermore, numerics reveals a plane connecting the (blue) saddle-node loop
curve with the (red) curve {A =1,k = wy | kK,wp > 0}. The latter curve comprises
the parameter values for which the saddle point (emerging from the saddle-node
bifurcation) collapses with the stable incoherent solution, which then becomes
unstable. Along the blue plane in Fig. 4.5, a homoclinic bifurcation takes place.
Here, the saddle point approaches the limit cycle, which is therefore destroyed in
the end. Fig. 4.6 displays the cross-section at x = 0.8 of the three-dimensional
bifurcation boundaries, and elucidates the generic dynamical behavior within the
corresponding parameter regions. As we have proven above, this cross-section is
representative for all k > 0. Unfortunately, analytic formulas for the homoclinic
and saddle-node loop bifurcations are still missing both in the bimodal case as well

as in the subpopulation approach, and we have to rely on the numerics.

4.4 Extension to three interacting populations

Given that two coupled networks and networks with bimodal frequency distri-
butions are equivalent, it appears obvious to search for generalizations. Can we
derive a similar equivalence, as before, between multiple coupled unimodal net-
works and networks with symmetric multimodal frequency distributions? Ander-
son and co-workers studied communities of oscillators in systems with multiple
subpopulations®!. They included mixes of attractive and repulsive couplings (in
our notation Kj, and Key should differ in sign) rendering the dynamics too di-
verse for analytical treatment. Closer to our approach, however, is the work by

282 who showed a variety of synchronization characteristics

Komarov and Pikovsky
as well as the emergence of chaotic states in the case of three positively coupled
subpopulations. Thereby, they extended the numerical results for a trimodal net-

283. see also our comment above about noise driven networks

work driven by noise
with d-functions as frequency distributions.

We sketch the case of three subpopulations with a unimodal Lorentzian fre-
quency distribution each: g,(w) = (A/7)/((w—(—=100, 0, +w¢))*+A?) with peaks at
(=0, 0, +c9) 1. This is compared with oscillators with a symmetric trimodal fre-

quency distribution: g(w) = g1 (w)+ags(wHBgs(w) with a = (4wwi—2A%)/(12w3),

[ @y is assumed to be sufficiently large to guarantee isolated peaks and all distributions have

width A.
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and B = (4w2+A?)/(12w2) Pl. The two systems read

. K 3
Qk = Wi + 3_N ]Z_; SiH(Qj — Hk) (417&)
‘ 3 N
Ok = wok + - > sin(0r; — o) | (4.17b)
T=1 j=1

where K, = K|,_; with K denoting the internal coupling strength Kj,; within
each population, K; the coupling strength between adjacent populations, and K»
that between distant populations, see Fig. 4.7. In (4.17a) we have k = 1,...,3N,

b)

O

int int

W 0 Wo w
Figure 4.7: (a) Three all-to-all coupled networks; (b) symmetric trimodal frequency

distribution function.

while in (4.17b) k =1,..., N and ¢ = 1—3. When considering the thermodynamic
limit, however, both systems consist of a continuum of oscillators. As before, we
introduce (local) order parameters z, = p,e'?7. Since the two outer populations
are considered symmetric, we use p13 = p; = p3 and ¢o — P = Py — ¢3 := . By
this we find the dynamics of (4.17a) after rescaling 7 = (K/2) -t and wy = 2wy /K
and A =2A/K and k, = o and kg = ( as

013 = P13 [—A+(1—P%3) (Happ—Q cos P+kg(14cos 2@)]
13
P2 = P2 {—A—i—(l—pg) (lia—i-Qﬁg% cos ¢>] (4.18)
2
= wo— (1+p%3) (Iia& sin 1+ kg sin 2@/}) :
P13

Accordingly, we rescale system (4.17b) using K = K+ K1+ K> and 7 = (K/2) - t,

The symmetric trimodal distribution features three peaks of the distribution function that
have the same height. Our notion is not to be mistaken with the case where three symmetric
unimodal distributions, i.e. identical widths and centers symmetrically arranged, sum equally
up to form the trimodal distribution. Then, the middle peak is dominant, which we prevent
by weighting the central distribution less than the outer two.
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A =2A/K, wy = 2wy /K and abbreviate k, 3 = 2K, 2/ K, which yields

P13 = P13 [—A%— (1—0%3) (Ho+/<;app—2 cos +Kg cos 2w>]
13

P2 = po {—A—l—(l—pg) (HO—FZKQ@ coS 1?)} (4.19)

P2

1& = wp— (1—|—p§3) |:I<La& sin Y+ kg sin 214 ,
P13

where Ky = 1 — ko, — Kg. Both systems can display a richer dynamical behavior
than the dynamics (4.9) since they, e.g., contain coupling terms of first and second
harmonics, which may result in 2 : 1-phase synchronization. When it comes to

linking the two, we realize that they are only identical for the special case

[y

Ka=kg=3 = a=f.

As a and f8 only differ by A%/(4wy), this implies A — 0, hence the distribution
function will consist of three d-peaks and the inhomogeneity is strongly reduced.
As a consequence, the Ott-Antonsen manifold may not exhibit the whole dynamics
of our system® and our description may remain incomplete, as has been found by
Martens for even stronger symmetry assumptions in a network of three popula-
tions, though including phase lags?®*. This is an arguably heuristic way of saying.
In the following, we would therefore like to show that for our symmetric setup the
dynamics of the two systems indeed differ qualitatively from each other.

Both systems can be described by the governing equations for pi3, ps and .
This enabled us to reduce the originally six-dimensional dynamics with z; € C
to three dimensions. Furthermore, the control parameters are A and wg, and
the coupling parameters are s, and kg. In the symmetric trimodal case, the
latter two are already fully described by the corresponding control parameters,
ie. Kap = Kap(A,wy). Thus, the bifurcation diagram is two-dimensional. In
contrast, in the three-network case we are free to choose k,, kg as long as they
fulfill 0 < Kkep < 1 and 0 < K, + kg < 1. This implies that the bifurcation
diagram becomes four-dimensional and we may be confronted with bifurcations of

co-dimension higher than 2.

4.4.1 Symmetric trimodal network

We first analyze the trimodal system with respect to fixed points and their stabil-
ity, which leads us to the bifurcation diagram presented in Fig.4.8a. We consider
(p13, P2, 1) as cylindrical coordinates with pi32 € [0,1] and ¢ € [0,27); py repre-

sents the height of the cylinder. For our symmetry assumptions, these variables
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Figure 4.8: (a) Bifurcation boundaries of the symmetric trimodal network. Curves
display a pitchfork (PF, orange), Hopf (HB, red), saddle-node (SN, green and dark red),
SNIPER (green) and homoclinic (HC, black) bifurcation. Points denote codimension 2-
bifurcations: Cusp (A), Bogdanov-Takens (B) and Saddle Node Loop (C). (b) Order
parameter R versus A for fixed wp according to the dashed lines a),b),c) in Fig.4.8a.
Solid lines denote stable, dashed lines unstable fixed points. The dark red line in c)
denotes maximum amplitude of the (stable) limit cycle around the unstable fixed point.
When the upper unstable fixed point coalesces with the limit cycle, oscillations cease in
an homoclinic (HC) bifurcation.

fully represent the order parameter dynamics of the system (4.17a) away from the
incoherent solution
z=3(n1+2+23)=0, (4.20)

since for z; = 0 the phases ¢;, and hence v are not defined. Nevertheless, the
cylindrical dynamics (4.18) still indicate the origin p13 = 0 = po as a fixed point,
so that the dynamical picture remains valid for pi132 > € > 0 with € arbitrary
small. The system exhibits the symmetry (p13, p2,1) — (—p13, —p2, 1), such that
the cylinder defined above can be point mirrored about the origin to p, € [—1,0].
In due course, bifurcation points as well as bifurcating branches off the incoherent
solution will always appear in pairs (£pi;, £05, ¥*).

Having this said, we can focus on the bifurcation diagram Fig.4.8a. The orange
curve denotes a pitchfork (PF) bifurcation of the incoherent solution z = 0, at
which it loses stability for A < App(wp). Point A = (w4, Aa) ~ (0.614,0.418)
(green) on the curve denotes the point where the PF bifurcation changes from sub-
critical (wy < wa) to supercritical (wy > wy). Let us first consider the parameter
region where the PF bifurcation is subcritical, see, e.g., the dashed gray vertical
line a). At the PF point there are two unstable solution branches bifurcating off
the incoherent solution (A > App), which gain stability via a saddle-node (SN)
bifurcation (green curve). Between the SN and the PF curves we find bistabil-

ity of the stable incoherent solution together with a non-trivial fixed point — the
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branch with py < 0 is not a physical solution as here the global order parameter
has negative absolute value, |z| < 0.

Beyond point A the incoherent solution undergoes a supercritical PF bifurcation
(wp > wa). The stable branches can then either lose stability via a SN bifurcation
(dark red, wy < wp), which will be regained via a second SN bifurcation at the
green curve, or the branches undergo a Hopf bifurcation (HB), see the red curve,
beyond which we have oscillations of the order parameter. The point B (red),
which distinguishes the two cases, is a Bogdanov-Takens point (co-dimension 2).
Interestingly, oscillations can also cease. One possibility for this is that the unstable
branch of the (green) SN bifurcation coalesces with the limit cycle, leading to a
homoclinic (HC) bifurcation (black/dashed). The other possibility is that the SN
bifurcation takes place directly on the limit cycle, leading to a SNIPER (saddle-
node infinite period, or SNIC) bifurcation (green). The point C' (dark blue),
where the SN, HC, and SNIPER curves meet, is referred to as a saddle-node loop
bifurcation; see also the discussion above for two coupled networks, Section 4.3.

Alternatively, we can characterize solutions via the behavior of the (global)
order parameter z(t), which evolves in the complex unit disc. To compare our
results with?®®, we focus on the absolute value R(t) = |z(t)| € R that reads in the

cylindrical variables

R(t) = %\/Qp%3 + p3 + 4p13p2 cos Y . (4.21)

Fig. 4.8b displays the typical behavior of R along the dashed gray vertical lines
a), b), ¢) in Fig. 4.8a. Since we are only interested in physical solutions, we
concentrate on R(t) € [0, 1]. For small values of wy < wa ~ 0.614 — in scenario a)
in Fig. 4.8 we used wy = 0.4 —, there is a subcritical pitchfork bifurcation (orange
dot), where R = 0 loses stability. The off-branching solution is first unstable
and gains stability at the saddle-node point (SN, green). For Aprp < Agy we
find multistability of two fixed points. In scenario b) in Fig. 4.8 we consider
wg = 0.672 > wy. Here, the PF bifurcation of R = 0 is supercritical. The non-
trivial stable solution loses stability at the first SN point (dark red), before it
regains stability at the second SN point (green). During this snaking behavior,
we find multistability of the incoherent solution with a non-trivial solution for
Apr < A < Agngreen, and of two non-trivial solutions for Agyea < A < App.
This is typical near cusp bifurcations, because of which point A in Fig. 4.8a can
be considered a (degenerate) cusp point. For even larger wy, e.g., wg = 0.8 as
in scenario c) in Fig. 4.8, the incoherent solution loses stability at App and then
the stable branch undergoes a Hopf bifurcation (HB, red dot). In between, a SN

bifurcation appeared at Agy, where the stable branch is monotonic increasing and
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the unstable branch decreases until it touches the limit cycle at Agc. At this point
the oscillations, whose upper bound is depicted as a red dashed curve, cease in a
homoclinic bifurcation.

We would like to remark that our findings confirm earlier results by Acebrén
and co-workers?®3. Furthermore, we extend the theory for a symmetric trimodal
Kuramoto model with a qualitative bifurcation analysis of all the fixed points.
In particular, all bifurcation boundaries found in Fig. 4.8a could be derived an-
alytically (except for a numerical approximation of the HC curve), which again

manifests the capacity of the OA ansatz.

4.4.2 Three coupled symmetric networks

With a proper bifurcation diagram of the symmetric trimodal network at hand,
we now focus on the network consisting of three all-to-all coupled symmetric pop-
ulations each with a unimodal frequency distributions, see schematic in Fig. 4.7a).
The external coupling strengths K » for near and distant interactions across sub-
population boundaries, respectively, led to two additional bifurcation parameters
Ka,p in the order parameter dynamics. Using the symmetry assumptions as pre-
sented above, we are able to describe this dynamics as a 3-dimensional system of
coupled ODEs with in total four bifurcation parameters. A description of the full
bifurcation scheme is beyond the scope of the paper. However, in order to disprove
the claim that three coupled networks and the trimodal network are topologically
equivalent, at least in the symmetric case considered here, it suffices to present a
single counter example.

We consider again the cylindrical coordinates (pi3, p2, ), whose dynamics are
given by (4.19). Transforming them into Euclidean coordinates (z,y,z) in the

cylinder
Z={(z,y,2) eR*|0<2”+y*<land 0< 2 < 1}
with £ = p13cosv, y = pi13siny and z = p,, the dynamics in Euclidean space read

i=—Az —wy + (1 — ko — 265)(1 — 2* — y?) + (1 — 2% + y?) (Kaz + 2K57) |
= —Ay+wor + (1 — kg — 265)(1 — 2> — y?) — 2K7y2 — 4Kg2y
t=—Az+ (1= 2°)[(1 = ko — k)2 + 2k4a7] .
(4.22)
For kq + 2kg # 1 the origin (0,0,0) is no longer a fixed point of the transformed
system (4.22). This shows that the introduction of polar coordinates z; = p;e'% is
only valid away from the incoherent solution z; = 0 = p; for all j = 1,2,3. Note

that for the full six-dimensional dynamics, the incoherent solution z = (2 + 25 +
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z3)/3 = 0is always a solution. However, the subsequent transformations into polar,
cylindrical and Euclidean coordinates show that the reflection symmetry as in the
trimodal case breaks down in three population approach when we choose coupling
parameters off the line {k, + 2k = 1}. Hence, we expect already here qualitative
changes of the bifurcation boundaries from those obtained in the trimodal case.
Moreover, we can detect a qualitative difference for more similar settings, i.e.
when reflection symmetry is maintained. Therefore, we assume in the following
that ko + 2k3 = 1. In fact, the k4 of the trimodal network do fulfill this prop-
erty. A bifurcation analysis of system (4.22) with respect to fixed points and
their stability equivalent to Section 4.4.1 reveals the following bifurcation diagram
Fig. 4.9. Note that here we fixed the coupling parameters to x, = 0.4 and kg = 0.3.
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Figure 4.9: Bifurcation boundaries of three coupled symmetric networks with coupling
parameters k., = 0.4 and kg = 0.3. Colors and abbreviations correspond to those in Fig.
4.8a.

Nonetheless, we consider this example representative. We achieved similar bifur-
cation diagrams for a broad variety of parameter choices, even if we allowed K, g
to depend on A and wy as in the trimodal case. Comparing Figs. 4.8a and 4.9, one
recognizes similar bifurcations, such as a pitchfork (PF, orange), a Hopf (HB, red),
two saddle-node (SN, green and dark red), a SNIPER (green), and a homoclinic
(HC, black/dashed) bifurcation curve. The major difference, however, is that the
PF bifurcation of the incoherent solution is supercritical for all parameter values
A > 0,wy > 0. Moreover, the point A moves down in the parameter space away
from the PF curve. There, it becomes a cusp point (CP), from which both SN
curves (green and dark red) emerge. It is true that we still find a multistability
region bounded by the SN and the HC curves, see also the inset in Fig. 4.9. Above
the HB curve, there are two stable non-trivial fixed points, while below the HB
curve a stable fixed point and a stable limit cycle coexist. However, we do not
find stable solutions coexisting with the incoherent solution while being stable.
Therefore it is safe to argue that the symmetric trimodal network and the network

of three coupled symmetric populations are not topologically equivalent.
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4.5 Discussion and conclusion

The Ott-Antonsen ansatz strongly boosted the analysis of Kuramoto models. Net-
works are assumed to consist of a continuum of oscillators, whose long-term dynam-
ical behavior can be derived in the thermodynamic limit. Of particular interest
for this paper is the extension to multiple coupled networks. A simple change
of variables may transform two symmetrically coupled networks (with oscillators
whose natural frequencies follow a unimodal distribution each) into one global
network where the natural frequencies are drawn from a symmetric bimodal dis-
tribution. When assuming that internal and external coupling strengths in the
two-population case differ, this transformation breaks down, and one is left with
an additional degree of freedom. As we have proven in this paper, the additional
parameter does not lead to new bifurcations but leaves both systems topologically
equivalent. Stability, dynamics, and bifurcations of a symmetric two population
system of phase oscillators are equivalent to a single population with a bimodal
frequency distribution. This topological equivalence can also be shown when in-
troducing small symmetric time-delays that allows for a phase-lag parameter re-
duction.

In the second part we aimed for generalizing the equivalence between multi-
modal and multiple coupled networks. However, already for the case of three
subpopulations, where we adapted the same symmetry assumptions as in the two-
population/bimodal case, this equivalence does no longer hold. Our symmetry
assumptions are admittedly restrictive. Above all they only represent a slice of
possible network configurations. That is, we cannot claim that the dynamics dis-
cussed here should be considered generic or not. However, our example clearly
shows that the symmetric bidirectional coupling topolgy (cf. K75 in Fig. 4.7) does
not admit its dynamics to be described by a single network of oscillators whose
natural frequencies follow a symmetric trimodal distribution. A detailed analysis
in the presence of asymmetries in both the two-population/bimodal approach and
the multiple populations/multimodal networks is beyond the scope of the present
paper but will be published elsewhere?8?.

Throughout the paper we based our work on the original Kuramoto model, a net-
work of phase oscillators that are all-to-all coupled through the sine of the pairwise
phase differences. Coupling two of such networks leads to new long-term behavior
such as partially-synchronized states, so-called chimeras in the case of identical
oscillators 5¢® ¢&:286  Also. multistable regimes and oscillatory solutions are pos-

sible. For sure, non-local coupling, the introduction of phase-lag parameters as

in265’266’284 see, e.g., 287

, or of more general time-delays , would have further enriched

the dynamics. Recently, Martens, Bick and Panaggio investigated how the intro-



Interactions between networks 143

duction of heterogeneous phase-lags in our two-population-scenario of Section 4.3
shapes the dynamics. The additional control parameters were internal versus ex-
ternal phase-lag parameters next to (internal and external) coupling strengths and
the intrinsic frequency w. Assuming only homogeneous oscillators in both popu-
lations renders the OA ansatz not applicable in a rigorous way. However, it has
been argued that in the limit of zero width of the frequency distribution, A — 0,
the assumption of “nearly identical” oscillators enabled the authors to analyze
the system analytically?®®. Interestingly, they found chaotic attractors and reso-
nance effects, which shows again the variety of dynamics of a mere two-population
system, and highlights the importance to really understand their behavior.

In our two-population/bimodal scenarios the governing dynamics could be re-
duced to be effectively two-dimensional. Hence, they cannot exhibit chaos. On the
other hand, in the three-population/trimodal network chaotic trajectories should
be possible. Though our focus mainly lay on (disproving) the equivalence between
the different approaches, a full picture should also take chaos in both systems into
account by assessing maximal Lyapunov exponents?8? see also 284,288

Away from the symmetry assumptions considered throughout this work, but also
when dealing with non-local coupling, phase-lag parameters, general time-delay or
even finite-sized networks, i.e. in particular when the OA ansatz can no longer
be applied, topological equivalences, or even (weaker) correspondences between
multimodal and multiple coupled networks have to be demonstrated in order to
show that coupled networks and networks with multimodal frequency distributions
are equivalent, indeed. The analytic tractability of the Ott-Antonsen ansatz helped
us to rigorously prove first results about similarities and differences between these
two approaches. We believe that, despite the limited range of application of such
models, our findings can be assumed seminal for a broader variety of models, and
therefore will further enlighten the view on an accurate interchangeability of the
notions of multimodal networks and coupled unimodal networks, which in the
end will increase the flexibility to derive and specify models in diverse fields of

applications.
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CHAPTER

Parameter-dependent oscillatory

systems

The Ott-Antonsen (OA) ansatz [Chaos 18, 037113 (2008), Chaos 19, 023117
(2009)] has been widely used to describe large systems of coupled phase oscilla-
tors. If the coupling is sinusoidal and if the phase dynamics does not depend on
the specific oscillator, then the macroscopic behavior of the systems can be fully
described by a low-dimensional dynamics. Does the corresponding manifold re-
main attractive when introducing an intrinsic dependence between an oscillator’s
phase and its dynamics by additional, oscillator specific parameters? To answer
this we extended the OA ansatz and proved that parameter-dependent oscillatory
systems converge to the OA manifold given certain conditions. Our proof confirms
recent numerical findings that already hinted at this convergence. Furthermore we
offer a thorough mathematical underpinning for networks of so-called theta neu-
rons, where the OA ansatz has just been applied. In a final step we extend our
proof by allowing for time-dependent and multi-dimensional parameters as well as
for network topologies other than global coupling. This renders the OA ansatz an

excellent starting point for the analysis of a broad class of realistic settings.

Adapted from: Pietras B., Daffertshofer A. (2016). Ott-Antonsen attractiveness
for parameter-dependent oscillatory networks. Chaos 26, 103101.
doi: 10.1063/1.4963371.
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5.1 Collective dynamics and parameter dependence

Coupled phase oscillators are being widely used to describe synchronization phe-
nomena. The study of their collective dynamics has experienced a major break-
through by the results by Ott and Antonsen®®3. The asymptotic behavior of
the mean field of infinitely many coupled oscillators can be cast into a reduced,
low-dimensional system of ordinary differential equations. The evolution is hence
captured by the so-called Ott-Antonsen (OA) manifold.

Very recently, the OA ansatz has been applied to networks of theta neurons
see, e.,290-296 A particular property of coupled, inhomogeneous theta neurons
is that both the phase of a single neuron as well as its dynamics depend on a
parameter, which establishes an intrinsic relation between them. While numerical
results suggest the attractiveness of the OA manifold in the presence of such a
parameter dependence, it has as to yet not been proven whether the dynamics
really converges to it. For a certain class of parameter dependencies we here extend
the existing theory of the OA ansatz and show that the OA manifold continues to
asymptotically attract the mean field dynamics.

Parameter-dependent systems and their description through the OA ansatz

297

have been considered by, e.g., Strogatz and co-workers<”’, Wagemaker and co-

workers??®, and So and Barreto?®

. There, parameters seemingly did not yield a
correlation between an oscillator’s phase and its dynamics but a rigorous proof for
this is still missing. We explicitly address this last point. In particular, we prove
a conjecture later formulated by Montbrié and co-workers??® on the attractiveness
of the OA manifold for parameter-dependent systems. The case of parameters
serving as mere auxiliary variables readily follows from our result — we will refer

to this as “weak” parameter dependencel’.

By showing that a network of theta
neurons can be treated as a parameter-dependent oscillatory system, our result
establishes an immediate link to networks of quadratic integrate-and-fire (QIF')
neurons: That is, the so-called Lorentzian ansatz as an equivalent approach to
the OA ansatz is analytically substantiated. By this we may exert an important
impact in mathematical neuroscience.

Finally, we extend the parameter dependence for more general classes of net-
works. First, we address non-autonomous systems and show that our proof can be

applied to time-varying parameters. An important example here is a biologically

(I Parameter-dependent systems comprise a wide class of systems, from which we here only
choose a single family. This family represents a rather weak parameter-dependent system.
However, we refrain from this notion since weak parameter dependence would imply that
parameter changes have little to no considerable effect. Here, the original proof by Ott and
Antonsen has to be changed, such that the parameter effect can be strong. We use the
attribute “weak” to highlight that a specific oscillator does not depend on the additional
parameter but its mean field dynamics only.
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realistic approach to oscillatory systems proposed by Winfree®s.

Second, we in-
clude multiple distributed parameters illustrated by coupled limit-cycle oscillators
with shear. Third, we apply our proof to networks with different coupling topolo-

gies including non-local coupling by using an heterogeneous mean field approach.

5.2 Extending the Ott-Antonsen ansatz for

parameter-dependent systems

The Kuramoto model can be considered the most seminal description of globally
coupled networks of phase oscillators. It has been investigated in great detail but
its various extensions still make it the model-to-work-with when it comes to the
study of network dynamics3%?%4. We adopt the notion of Montbrié, Pazé, and

Roxin??® and write the Kuramoto-like model as
6, = w; +Im [He 1] | (5.1)

where the phase dynamics of the j-th oscillator (j = 1,...,N) depends on its
natural frequency w; and a driving complex-valued field H. The latter can depend
on time ¢, on the mean field z(t) = Zjvzl e ® and on other auxiliary variables,
but not on the (index of) oscillator, i.e. it remains identical for all oscillators
j=1,...,N. Given the right-hand side of (5.1), the oscillators are sinusoidally
coupled.

In the thermodynamic limit (N — oo) the OA ansatz yields solutions for the
dynamical evolution of the corresponding distribution function (of all the oscilla-
tors), which are attracted towards a reduced manifold of states®':%2. Central to
this is the description of the system via its distribution density p(0,w,t). The
quantity p(0,w,t) df dw is the fraction of oscillators whose phases are in the range
[0,0+df] and have natural frequencies in [w,w+dw] at time t. The distribution

function p obeys the continuity equation
Op+ 0y (pr) =0 (5.2)

with velocity field
v(0,w,t) = w+Im [H(t)e ] . (5.3)

The latter can equivalently be written as?7:2%8

v(f,w,t) = fe + h+ fre . (5.4)

In agreement with the assumptions on H we require that the functions f and h
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may explicitly depend on time ¢, on the (now continuum form of the) mean field
2(t) = ffooo fOQﬂ pe®dfdw, and on other auxiliary variables, but not on the the phase
0 itself.

Asymptotic attractiveness of the OA manifold, given by distribution functions

} (5.5)

o] 2T
/ / p(0,w,1) dfdw — 1 , (5.6)
—00 J 0

of the form

Z aw, t)"e™ +c.c.

p(0,w,t) = %ﬁ:) {1+

that satisfy the normalization condition

has been proven for continuous frequency distribution functions g(w) of non-zero
width and for H being independent of #; c.c. stands for complex conjugate. Other
requirements include |a(w,t)| < 1, and some analytic continuity conditions. 82
In what follows we extend this approach by rigorously proving the asymptotic
attractiveness of the OA manifold in the case of H and w depending on an ad-
ditional parameter n that may also influence 6. Equivalently, we include a time-
and n-dependence of f and h in (5.4). By this, we allow for an intrinsic relation
between 0, H, and w, or #, f, and h, respectively. As of today, the attractiveness
of the OA manifold in the (time- and) parameter-dependent case has only been

hypothesized ™27 but not proven.

5.2.1 Parameter-dependent systems

When including additional parameters at the oscillator level, the dynamics (5.1)
becomes

The natural frequency € of oscillator j may therefore deviate from wj;, which
promotes further heterogeneity among oscillators. Moreover the driving field H
may depend on 7;. The right-hand side of (5.7) expresses a certain dependence on
the (index of the) j-th oscillator. Hence, such a dependence is no longer exclusive
to the sinusoidal coupling, but also affects the natural frequency Q(w;,n;) and the
driving field H(n;,t) .

When considering 7 a random variable, we may regard n; to be drawn from a
distribution function g(n). Likewise w; may be drawn from a (different) distribu-
tion function. The oscillator-specific parameter 7; may change this distribution
function in the oscillator’s favor. Therefore, we here incorporate a joint distri-
bution g(w,n) in the normalization condition (5.6). In general, w and 7 are not

independent and the joint distribution consists of two nested distributions. We
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hence replace Q(w;, n;) by w(n;). Then, in the continuum limit (5.7) reads:
90(n,t) = w(n,t) +Im [H(n,t) e ] . (5.8)

The relation through n becomes now even more evident as the temporal derivative
of 6 has become partial.

Again, one can introduce a distribution function p(6,w,n,t), which now addi-
tionally depends on 7. And again, this distribution function satisfies the continuity
equation (5.2) with velocity field (5.8). In line with the parameter-independent
case, in which the distribution function g(w) of the natural frequencies w had non-
zero width®%2 we assume that the distribution function g(n) of the parameter n
also has non-zero width. The frequency w, thus, cannot be constant but depends
on 7. Likewise, the driving field H depends on 7. Importantly, these two terms
exhibit so an implicit dependence on 6, such that the proof for the attractiveness
of the OA manifold as has been derived in®? may no longer hold. However, there is
strong numerical incentive that the OA manifold fully covers the long-term behav-
ior of the dynamics of the population of parameter-dependent phase oscillators,
See €& 178,200-296,300-304

In the following we demonstrate the proof of this conjecture for a particular class
of parameter-dependent systems. We consider 7 to follow a Lorentzian distribution
and assume that w depends linearly on 7, i.e. w(n,t) = a-n+c, where, without loss
of generality, we set @ = 1 and consider ¢ = ¢(t) € Ly 10.(R) a locally integrable,
and in particular piecewise smooth, function. Our line of argument follows closely
that of Ott and Antonsen®? but we extend their results whenever necessary. We
would like to note that our findings remain valid for a larger class of distribution
functions as has been depicted in detail in®. We will comment on this and consider
more general n-dependencies of w in Sections 5.2.2 and 5.4.

Let g(n) be a Lorentzian centered around n = 7y with width A, i.e. g(n) ~
L(no, A). For the aforementioned linear dependency w(n,t) = a - n + ¢, we have
g(w) = g(n)~ L(no + ¢, A) with frequency w = w(n) that, in general, will depend
on 7. In this case w is fully described by (the distribution of) n and the distribution
density reduces to p(0,w,n,t) = p(6,n,t).2 This can be expanded as a Fourier
series in 6 similar to Eqs.(5&6) in®2, where it is further decomposed into p(6,7,t) =
g/ 2n) - [1+ pr(0,n,t) + p_(6,n,t)]. Next to the assumption that the analytic
continuation of p, (p_) into Im(0) >0 (Im(#) <0) has no singularities and decays
to zero as Im(f) — +oo (Im(f) — —o0), we exploit the symmetry of the Fourier

expansion and focus on p,. In particular, we expect p, to fulfill these conditions

(2l Alternatively, the dependence w(n) may be constituted by considering p as a conditional
probability density p(6,w,t|n) = p(8,w|n,t) in line with2%3,
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initially, i.e. p4(6,1,0) can be continued into the complex 7-plane, is analytic in
Im(n) < 0 and decays to zero for Im(n) — —oo. These conditions will then be
satisfied for all £ > 0.5

We can further decompose py into two parts, p. = p4 + p,, where the inhomo-
geneous solution p, lies on the OA manifold and follows the dynamics given by
Eq.(9) in®2. For the sake of completeness, this dynamics prescribes the evolution

of the Fourier coefficients f/, to the form pl,(n,t) = [a(n,t)]", and reads
- 1 2 *
8ta—|—ma—|—§(Ha -~ H*)=0. (5.9)

The quantity p, on the other hand, is the (homogeneous) solution of

1
8@54. +89 { |:W‘|‘

% (He ™ — H*eie)} m} =0. (5.10)

Both the frequency w and the field H may depend explicitly on . To guarantee
that the dynamics (5.7), whose state at time ¢ can be represented by the afore-

defined order parameter z(¢) in its continuous form,

fe'e) 27
A= [ [ pomteasay. (5.11)
—o0 J O

is asymptotically attracted by the OA manifold, it suffices to show that

+o00
i N p+(0,m,8)g(n)dn =0 (5.12)
holds.®? Before showing this, however, we would first like to remark that, without
loss of generality, the center of the Lorentzian frequency distribution g(n) ~ L(no+
¢, A) can be considered zero since we may introduce a change of variables, 0 =
60— (not+C(t)), where C(t) is an antiderivative of ¢(t). Furthermore, we can adjust
(5.12) by substituting g by g.
If p, is analytic in the lower half n-plane and decays to zero as Im(n) — —oo
as assumed above, one can multiply (5.10) by g(n)dn and integrate the result
by employing the residue theorem. Hence, the integrals can be evaluated at the

residue of the enclosed pole of g(n) at n = —iA. We find

0tﬁ+(9, —ZA, t) + 39{—ZA . ﬁ+<9, —ZA, t) +

1 +oo ) +oo
2i [ _

H(n, t)p+ (0,1, t)g(n)dn e — H*(n,t)p+(8,n,t)g(n)dn eie] } =0.

e} —00
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The two remaining integrals can be determined provided that A and H* have no
singularities in the lower half n-plane and do not increase “too” fast for Im(n) —
—0o0. Since ¢ is a Schwartz function, that is, a smooth, rapidly decreasing function,
we only need H to diverge at most sub-exponentially. For common choices of H,

as listed in®2, these requirements are met indeed, which yields

Ouf+(0,1) + 0y [0(0,1) 1. (6,0)] = 0, (5.13)

1 ) .

v(0,t) = —i |A+ 3 (e7™H(t) — eH*(1))| . (5.14)
Here we substituted f,(6,t) = p. (0, —iA,t) and H(t) = H(—iA,t). These equa-
tions agree exactly with Eqgs.(17 & 18) in®2. Hence, following the same reasoning
around Eqgs.(19-31) in® one can conclude that (5.12) is fulfilled. To underscore
the line of argument, we would like to give a short sketch of the proof. First, by
introducing a conformal transformation of the upper half complex #-plane into the
unit disc via w = €, one can rewrite (5.13 & 5.14) as

d - < -

%f%*(wa t) + f+(w7 t)awv(w7 t) =0 ) (515>
where f, and ¥ are the transformed functions from (5.13 & 5.14), and d/dt =
J/0t + v0/0w. (5.15) can be integrated using the method of characteristics for

305

linear and homogeneous partial differential equations®”®. Here we require ﬂ €

C?(R) but © does not need to be continuous. This yields

f+<w7t) = f+(W<w>O)7O> exXp [_:u(wat)] ) (516>

as solution with .
j(w, £) = / D (W0 ) oy (5.17)
0

and the characteristics are given by
W (w, t") = o(W(w,t'),t") , (5.18)

with final condition W (w,t) = w. Finally, in order to show that f, (w,t) — 0 for
t — oo, which, by (5.16), we prove that

lim Re [p(w,t)] = +o0 . (5.19)

t—o00

The details for the rather lengthy computation can be found in®2.

We here we
would only like to mention that the integral in (5.17) is split into three distinct

parts, each of which is evaluated and while two of them remain bounded, the third
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diverges at the rate At, presuming A > 0. This eventually completes the proof
and underlines the importance that the distribution function g(7) must have non-
zero width A. We would also like to note that in the final step of the proof the
continuity of v is required, i.e. H in (5.14) must be continuous. If one includes,
e.g., square functions in the time-dependent parts of the frequency term and/or
driving field, one is confronted with jump discontinuities, which become present in
the right-hand side of (5.14) either directly or indirectly via the order parameter
z(t). A closer look at® however, confirms that for small jumps the reasoning can
be guaranteed and for proper choices of a time constant 7' their Eq.(31) holds.
Thus, we can argue that OA attractiveness will be maintained even in the case of
discontinuities, which also confirms our rather long assumption for ¢(¢) to be in
L110c(R) in the linear dependence of w(n) = an + c.

So far we only considered a Lorentzian distribution and some linear dependence
of w on 1. However, our result can be extended to a much broader class of dis-
tribution functions g(n), non-linear dependencies w(n), or even joint distributions
g(w,n) in the case of Q(w,n); see Section 5.2.2 below. Hence, it is proper to say
that the asymptotic attractiveness of the OA manifold for parameter-dependent
systems of coupled phase oscillators is generic. Note that the proof remains iden-
tical if 6 = 6(¢) does not depend on the parameter 7, that is, when there is
no correlation between specific oscillators and their dynamics. We call this case
“weak” parameter dependence, which has been considered in several earlier studies
€8 178297299 " where parameters were introduced as auxiliary variables. Our result
therefore confirms the attractiveness of the OA manifold also in this case, as has

simplifyingly been taken for granted in the afore-cited studies.

5.2.2 General parameter distributions

As already mentioned in Section 5.2.1, the assumptions of a linear relation be-
tween w and 1 and of n being drawn from a Lorentzian can be loosened in many
respects. We first consider g(n) to still be a Lorentzian centered around n = nq
with width A, i.e. g(n)~ L(no, A). The linear dependency w(n,t) = a - n + ¢ may
be generalized by considering both a = a(t) and ¢ = ¢(t) time-dependent. Then,
by the common transformation properties for Lorentzian (Cauchy) distributions,
w follows a Lorentzian of the form g(w)~ L(any + ¢, Alal). Let a # 0 be constant.
Then a similar change of variables, § = 6 — (anot + C(t)), with C(t) being the
antiderivative of ¢(t), keeps the distribution function centered around 0. Without
loss of generality we set a = 1; even if a = a(t) and a(t) > 0 or a(t) < 0 for all
t > 0, the rescaling of # retrieves that we can stick to our assumption a = 1. If,

however, a changes sign at, e.g., t = to, then the scale parameter Ala| tends to
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zero for t — to. Due to (5.5) also p(#,w,t) will exhibit a J-peak at t = ¢y. In this
case our results are not readily applicable®®. However, if a(tg) # 0, then we can
shift the initial time to zero, to — 0. Whenever p, (6, w,ty) satisfies the necessary
initial conditions, the OA manifold will remain attracting for all ¢ > %y, given that
to = max{t € R | a(t) = 0}.

We proceed with more general cases of frequency and parameter distributions.
In®3 the authors elegantly extend the original proof, which considers only Lorentzian
frequency distributions: Instead of demanding analytic continuity of both the fre-
quency distribution g(w) and the initial condition into the whole lower half of the
complex w-plane, it suffices that g and the initial condition have analytic contin-
uations into a strip S defined by 0 > Im(w) > —0 and —oo < Im(w) < +oo with
o > 0, where neither of them has singularities and both approach zero as |w| — 0.
Thereby the class of applicable distribution functions includes Gaussians, sech-
distributions, and many more, and even multimodal distributions can be incorpo-
rated as long as these functions have finite non-zero widths s°¢ references in83 = g
approach can be adopted and used in our n-parameter-dependent case. For this
let us assume again individual oscillators given by (5.7). As mentioned in Sec-
tion 5.2.1, we might be confronted with a nesting of the distributions §(w) and
g(n) for w and 7. In particular, the latter may determine the first in an oscillator-
specific way. That is the reason why the resulting distribution function g(n) can
become arbitrarily complicated. However, as long as the analytic continuations of
g and g into the strip S (for some o > 0 as defined above) do not have singularities,
and neither g nor g features a d-peak in their time evolutions, also g will behave
as required. An additional requirement is that the product H(n,t)g(n) satisfies
these conditions, too. This means that we have to find a strip S’ C S, defined by
0 < ¢’ <o, in which Hg has an analytic continuation, does not have singularities,
its time evolution does not feature J-peaks (if necessary we have to reset the initial
time point after such a peak), and that we require |H (1, + in;,t)g(n. + in;)| — 0
for |n.] — oo and 0 > n; > —o’. In particular, H must not grow faster than ¢
decays, such that the OA manifold continues to capture the long-term dynamics
of the system.

We would like to remark that initial conditions on the oscillator distribution
function, p(0,n,0), play an important role. If they fail to be satisfied, this may
hinder the OA manifold to attract the dynamics. For an example we would like to

£3%6 in which the specific time point has to be determined

refer to Appendix C o
appropriately in order to set up promising initial conditions.

In summary, we have proved that the OA ansatz captures the time-asymptotic
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dynamics of parameter-dependent systems of coupled oscillators of the form
00(n,t) = Q(w,n,t) + Im[H (n, t)e™"]

if next to the basic assumptions®? the following additional requirements are ful-
filled:

e The complex-valued driving field H (-, ) admits an analytic continuation into
a strip S C C~ and does not diverge too fast for Re(s) — +o00 with o € 5.

e Both Q(w,n,-) and H(n,-) are locally integrable in time: Q(w,n,-), H(n,) €
Ll,loc(R)-

e The joint distribution g(w,n) admits an analytic continuation into the strip
S and is such that Q(w,n,t) follows a distribution of non-zero width in at

least one parameter (and for at most a finite number of instants ¢, in time).

5.3 Networks of quadratic integrate-and-fire neurons

As mentioned above, there is a variety of recent papers that showed numerically
how the dynamics of networks of theta neurons is time asymptotically attracted
by the OA manifold?°°2%2. Recently, Montbrié and co-workers studied how the
macroscopic dynamics of a network of quadratic integrate-and-fire (QIF) neurons
is described by a low-dimensional system by using a so-called Lorentzian ansatz2%3.
By transforming the QIF neurons into a network of theta neurons, their Lorentzian
ansatz does resemble the OA ansatz with parameter-dependent frequency and
driving field, as considered in Section 5.2.1.

To be more precise, the dynamics of the membrane potential V; of a QIF neuron

may be described by
Vi=V2+1;, ifV;>V,, then V;« V,, (5.20)

for j = 1,...,N. Here, I; denotes an input current, V,, a peak value, and V, a
reset value. Once the membrane potential V; reaches V,, the neuron emits a spike,
and V; will be reset to V;.. Commonly, the limit V,, = =V, — oo is considered. The
input current I; consists of a neuron-specific quenched component 7;, a common
time-dependent input I(¢) and a coupling term Js(t), combining the synaptic

weight J and a smooth mean synaptic activation s(t), resulting in

L=n+ Js(t) + I(t) . (5.21)

B H can be regarded as a “tempered distribution”.
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The latter two time-dependent components are identical for all neurons in the
network. In order to describe the macroscopic behavior of the network, Montbrio

and co-workers used the Lorentzian ansatz

o(Vint) = = z(n, 1) , (5.22)
TV =y OF —x(n,t)?

with center y(n,t) and time-dependent half-width z(n,t), which turns out to ex-
hibit the long-term solution for the distribution of the membrane potentials. The
properties x(n,t) and y(n,t) that define the distribution function (5.22) are also
closely linked to the firing rate of the neuronal population and to the mean mem-
brane potential, respectively. While the Lorentzian ansatz applies to the (mem-
brane voltage) dynamics of QIF neurons, we are here primarily interested in the
phase dynamics. Using V; = tan(6;/2) one can transform (5.20 & 5.21) into theta

neurons 307,

0; = (1—cos ;) + (1+cosb;) [n; + J-s(t) + I(t)] . (5.23)
In (5.23) the time-independent injected current n; is drawn from a distribution
function g(n). For the sake of legibility we abbreviate the non-autonomous part
of (5.23) as
Jes(t)+1I(t)=c(t)—1.

Rearranging terms and considering the thermodynamic limit, one can rewrite
(5.23) as
0,0(n,t) = v(0,n,t) = Qn,t) + Im [H(n, t)e™"] (5.24)

with H(n,t) =i(=1+n+Js+ 1) =i(n+c—2) and Q(n,t) = n + ¢ 29,

To apply our result from above, one has to show that H does not diverge ex-
ponentially when Im(n) — —oo, and that ¢(t) possesses an antiderivative. On the
one hand, for the components of ¢(t) with s(¢) being smooth and I(t) piecewise
smooth and (locally) integrable, there will always exist an antiderivative of ¢(¢).
On the other hand, we have H(n) = in + const, such that H grows only linearly
for Im(n) — —oo.

To be more precise and in view of Section 5.2.2, we have H(n) = i(n+c—2) and
G(n) ~ L(no+e¢, A), so that g decays exponentially for |7,.| — oo and hence H must
not increase at an exponential rate. In fact, H does not have any singularities in
the whole complex n-plane (except for || — o0), and H(n, + in;) = —n; +in, +
const = O(n,) for |n,| — oo. Consequently, for large |n,|, the product Hg will be
dominated by g such that all assumptions are fulfilled. Thus, we can confirm again

the asymptotic attractiveness of the OA manifold.¥ What is more, due to the

[l To give a brief idea of the proof, it is important to note that, next to the assumption that in S’

the product H g decays to zero for |w| — oo, the crucial point for proving the attractiveness of
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existence of a conformal mapping between the quantity w(n,t) = z(n,t) + iy(n, t)
and the function a(n,t) defining the OA manifold (5.5)F | see also Eq.(15) in?%
we have also proven the attractiveness of the Lorentzian ansatz (5.22) for a network

of QIF neurons.

5.4 Further applications

So far, we only considered non-independent frequency and parameter distributions,
g(w) and g(n), respectively. In general, however, one cannot take this “simple”
dependence for granted. The additional parameter might be multi-dimensional,
ie. n € R” with n > 1. When considering the thermodynamic limit of infinitely

many coupled oscillators, the dynamics (5.7) may obey

90(n,t) = Qw,n,t) + Im [H(n,t) e ] . (5.25)

tions given by

Employing the OA ansatz for this system one has to encounter distribution func-
w o0
p(0,w,n,t) = g( 77) {1+ > a(w,n,t)fe™ +cc
k=1

Ir /2” o i1 o

the joint distribution g(w,n) is a major modification to the setting considered

before. Does the OA manifold remain attracting? (5.25) suggests the phase 6 =
6(n,t) to depend on the parameter 7 in line with our notion of parameter-dependent
systems. But it is unclear whether the OA manifold is attracting even without
this particular correlation between phase, natural frequency, and driving field. If,
however, the OA attractiveness can be proven for systems with generalized natural
frequency Q and driving field H as in (5.25), this will allow for a further and
even broader extension of the existing theory. In the following we first list a few
examples for which numerical simulations have been reported and that give strong
incentive that the OA ansatz may indeed be valid. We will show how our proof can
be adopted, thereby confirm the OA attractiveness, and set the numerical results

on solid ground. Last, we provide some general properties of €2 and H for which

the OA manifold is that ¢’ > 0. To be more precise, given the integral expression (equivalent
to) (5.12), the idea is to shift the path of integration from the real n-axis to the line 7, + in;
with 0 > n; > —0’, —00 < 1, < 00, for details see®3. This leads directly to (5.13 & 5.14) from
where one can complete the proof along the known formalism outlined in Section 5.2.1.

[5] We substituted w by 7 in line with our arguments in Section 5.2.1. However, we do assume
an implicit dependence w = w(n).



Parameter-dependent oscillatory systems 156

the OA ansatz holds.

We start with the Winfree model® which is an early mathematical descrip-
tion of synchronization phenomena in large populations of biological oscillators.
Rewritten in terms of (5.25) this model takes the form

0 = Qw,n,t) + Im [H(n, t)e ]

, (5.27)
Q(wﬂ%t) =w+ 077(0» H(n’t) = e_wn(t)’ and U(t) = Eh(t) ’

where h(t) is a smooth function depending only on the mean field z(t) but not on
the phase itself?®6. In particular, this model contains time-dependent parameters
see also 308

Next, we consider reaction-diffusion systems with heterogeneous, self-oscillating
elements. In particular, we study the mean-field version of the complex Ginzburg-
Landau equation, whose equation describes a population of globally coupled limit-
cycle oscillators. Hence, we can rewrite the dynamics in form of (5.25). By intro-
ducing a shear (or nonisochronicity) parameter 1 as an additional random variable
and transforming the system through a phase reduction, the governing equations

in the continuum limit read300-392.

08 = Q(w, 7, 1) + T [H (1), t)e™"]

(5.28)
Quw,m,t) = w+ Kn and H(n,t) = K=(1—in) ,

where K denotes the coupling strength and z = z(¢) is the order parameter.
The frequency w and the shear n are drawn from a joint distribution g(w,n). In
contrast to Section 5.2.1, we explicitly allow the additional parameter 7 to be
drawn from another frequency distribution. For the joint distribution one has to
address two scenarios. Either, the random variables are independent, such that the
joint distribution can be split into g(w,n) = g1(w)ga(n), or they are not. Iatsenko
and co-workers, who independently investigated the Kuramoto model with both
distributed natural frequencies w and distributed coupling strengths 7, coined the
term uncorrelated joint distributions when the two random variables w and 7 are
independent, as opposed to correlated joint distributions $°¢393:304:309 " Furthermore,

frequency-weighted coupling3!931!

, i.e. the driving field additionally depends on
w, H = H(w,n,t), can be approached with the formalism introduced above.

As a third point, we will deal with systems that are not all-to-all coupled but
exhibit some particular (and sparse) network topology. Therefore, these networks
can barely be studied analytically. Although it was conjectured and numerically
illustrated by Barlev, Antonsen, and Ott3'? in 2011 that the OA ansatz can be
extended for uniform in-degree, Erdos-Rényi, and scale-free networks, a thorough

proof has as to yet not been delivered. However, the upcoming branch of hetero-
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313 presents a promising loophole to overcome this obstacle of

geneous mean fields
intricate network topologies. We will prove that heterogeneous mean field models
indeed fall in a category whose mean field dynamics can be described along the
OA ansatz. Given a network with a particular degree distribution, it is possible to
introduce so-called degree-block variables, whose dynamics govern the evolution
of all nodes which have the same degree k. This approach reveals the same equa-

39,314

tions as the annealed networks approximation , which can hence be considered

equivalent. Recent studies considered the heterogeneous mean fields of the Ku-

315-317 and random Erdés-Rényi networks3!. The

ramoto model, e.g., on scale-free
starting point is a specifically coupled Kuramoto network with coupling strength

K and adjacency matrix A = (a;;) with 4,5 =1,..., N,

N
0, = w; + KZ ajrsin(f; — 6;) . (5.29)

k=1
We can cluster various node dynamics by replacing the adjacency term with an
expectation value for their node degree n;. Ideally, the underlying topology exhibits
some well-defined degree distribution P(n). In the continuum limit N — oo,
these node degrees are substituted in the phase dynamics as weighted, distributed

coupling strengths, so that the governing dynamics read

0,0(n,t) = Qw,n,t) +Im [H(n,t)e™]

(5.30)
Qw,n,t) =w and H(n,t) = Knz(t) ,

where w and 7 are drawn from a joint distribution g(w,n) = P(n)gi(w). This setup

317

is amenable to, e.g., random fields, as has been presented in®'" where oscillators

are enforced through local fields, which find their way into the specific forms for
Q and H.
In all these different classes of parameter-dependent networks, we will show how

the OA attractiveness can be regained.

5.4.1 Winfree model

As said, the Winfree model describes macroscopic synchronization phenomena of
large oscillator systems whose individual nodes are naturally pulse-coupled with
one another. The introduction of phase response curves (PRC) allows for quanti-
fying how the phase of an oscillator responds to the pulse-like perturbations from

the other oscillators. The general form of the model reads at the single node level

b, = w; + Q) ~ > P | (5.31)
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where ¢ denotes the coupling strength, () is the PRC and P is a pulse-like signal.

6 we consider PRCs with sinusoidal

Following the notation of Paz6 and Montrbrié?®
shape,

Q0) =0 —sin(d + B) , (5.32)

with an offset parameter o, and a phase-lag 8. Moreover, we assume the pulse-like
signal to be smooth,
P(0) = P,(0) = a,(1 + cos)" , (5.33)

with n € N>, controlling the width of the pulses, and a,, is a normalizing constant.

In the thermodynamic limit, we regain (5.27) as
00 = w + eoh(t) + Im [ce h(t)e ] | (5.34)

where the coupling function incorporates the smooth mean field

h(t) = ha(t) = /0 " pL(0)do =1+ 2(n!)* Y - i‘;((zn)_ ] (5.35)

with z the common (Kuramoto) order parameter (5.11). The frequency Q(w,t) =
w+c(t) with ¢(t) = ech(t) has a form identical to Section 5.2.1, where w follows a
Lorentzian frequency distribution g(w). Since the order parameter z(t) is bounded
with |z] < 1, we have h(t) > 0 for all ¢ > 0. Furthermore, the driving field does
not depend on additional parameters, so that our proof can be directly applied,
confirming that the OA ansatz holds and the OA manifold indeed captures the
long-term dynamics of the Winfree model.

An alternative proof for the case of time-dependent frequency and driving field

08 However, as we have depicted in Section 5.2.2, our proof

can be found in?
generalizes their findings and extends them to a broader class of frequency distri-
bution functions g(w). Of particular interest in the non-autonomous extension is
also the matter of discontinuities. Recall that in Section 5.3 we introduced a time-
dependent input current /(t), see (5.21), which can, e.g., take the form of a square
function with jump-discontinuities. Our proof applies to this specific feature and

confirms existing numerical results?.

5.4.2 Limit-cycle oscillations with shear

Investigating collective synchronization usually addresses networks of coupled ele-
mentary oscillatory units. The dynamics of these units may be described in normal

form
o=01—-0%), O=wt+nl-o%, (5.36)
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where o denotes the radius and w determines the frequency of rotation on the
stable limit cycle with o(t) = 1. The parameter n quantifies the shear, or non-
isochronicity, of the flow, i.e. how strongly perturbations away from the limit cycle
modify the phase dynamics. When we consider an all-to-all coupled population of
N > 1 of these oscillatory units, we arrive at the mean-field version of the complex

Ginzburg-Landau equation with dissipative coupling

N
K
) . . 2
g =25 [L+i(wy+my) — (L+iamy) [7]7] + N D (e —2) (5.37)
k=1
zj = 0;¢"%. Heterogeneity among the population is promoted by having the fre-

quency w; and shear parameters 7; drawn from a distribution function g(w,n).
In the weakly coupled case, i.e. the coupling strength |K| is small, a phase re-
duction allows us to describe the dynamics of the system by their phases only.
In the continuum limit N — oo, we can introduce the phase distribution func-
tion p(f,w,n,t). Note that w and n are independent, so that neither of them is

redundant. Accordingly, the order parameter z takes now the form

o) oo 27
2(t) = / / / p(0,w,n,t)e” dodwdn . (5.38)
—o0 J —00 JO

Thus, the phase dynamics reads
0 =w+ Kn+1Im [Kz(t)(1 —in)e™™] | (5.39)
and the phase distribution function satisfies the continuity equation
Op+ g (vp) =0, (5.40)

with v the right-hand side of (5.39) se© 80300302 [Jsing the notion of (5.25), the
frequency and the driving field are both time-varying and depend on the additional

shear parameter 7:
Qw,n,t) =w+Kn, H(nt)=Kz(t)(1—in) . (5.41)

To assure that the OA manifold indeed exhibits the mean field dynamics of this
system with shear, we have to adapt our proof from Section 5.2.2 for the joint
distribution g(w,n).

The general idea is again to decompose the distribution function p in Fourier
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space into

g(w,n)
2

p(0,w,n,t) = [1+ p4(0,w,m,) + p—(0,w,n,1)] (5.42)

and use symmetry assumptions to focus on p,, which again will be decomposed

into py = py + p,. While p, lies on the OA manifold and has Fourier coefficients

ﬁ/—i-,n = [a(wanvt)]nu ﬁ-i— solves

Oipy + 0o { [Q(w, n,t) + % (H(n,t)e™™ — H(n, t)*e”)] ,a+} =0. (5.43)

The assumptions on the analytic continuation properties of Section 5.2.2 hold — in
particular we need analytic continuations with respect to both w and 7 into strips

S, and S,. Hence we have to show that

t—o00

fim [ [ pe(Oen0) o) diodn 0. (5.44)

Discussing general solutions of (5.44) given an arbitrary joint distribution function
are beyond the scope of this paper. However, for particular g(w,n) we can affirm
the attractiveness of the OA manifold for these parameter-dependent systems. To
begin with, we use the assumption of Montbrié and Pazé that the joint distribution

can be written as the product of two Lorentzians3%,

d/m /T
w—wp)? + 0% (n—m0)* +7*

9w, n) = g1(w)g2(n) = ( (5.45)
Multiplying (5.43) with g(w,n) and integrating over (w,n), we can use Fubini’s
theorem (on the assumption of integrability of Qgp, and Hgp,) and compute the
double integral by changing the order of integration. First, we can evaluate the
integral over w by applying the residue theorem as in Section 5.2.1 and then move

on to the second integral, which reads

0Py (0,wo — 16, —iy,t) =

e . 1 —i % 0 ~ .
~ [ ao{en 5oty + 5 (0007 — 10.0767) | ) 600~ i6,0.0) f

While the term [ Qgop, can be evaluated at the pole n = ny+4v (£ depending on

the contour of integration, which again depends on the coupling K, see also3)

, We
have to assure that the product H(n,t)gs(n) vanishes for Im(n) — 4o00. Indeed,
the linear growth of H in 7, see (5.41), will be dominated by the exponential
decay of g9, such that the residue theorem can be applied here, too, which results

finally in (5.13)&(5.14), from which the claim follows as presented in Section 5.2.1.
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As has been shown in Section 5.2.2, the restrictions to unimodal Lorentzians can
be dropped and the OA attractiveness is sustained. Here we can even handle 6-
functions as long as one of the partial distribution functions has finite width: due
to the special form of Q(w,n,t), the OA ansatz holds for homogeneous frequencies
w;j = w while the shear is heterogeneous and the coupling K > 0 does not vanish.

The case in which the joint distribution g(w,n) is no longer uncorrelated, i.e. if
the first equality in (5.45) fails, demands a more careful investigation in order to
estimate the long-time evolution of p,. Although the ultimate goal is to categorize
adequate joint distributions that allow for the OA ansatz, there might appear
a variety of uncertainties for a general proof. For instance, to the best of our
knowledge it is an open problem whether and how singularities can appear in joint
distributions given smooth marginal distributions. This issue becomes even more
intricate in the case for multi-dimensional parameters n € R", n € N. However,
there are certain approaches using the OA ansatz for parameter-dependent systems
with correlated joint distributions, which we would like to briefly revise.

The introduction of shear into the oscillator system shows how an additional
parameter can be treated as a random variable and thereby changing the natural
frequency and driving field of the original Kuramoto model. A more fundamental
approach has been presented by Petkoski and co-workers?303:394:308:309. " Given the
Kuramoto model with heterogeneous natural frequencies, they assume the coupling

strengths to be drawn from a distribution function. That is, their model reads
: K,
b =w;+ 5 ;sin(ﬁk — ;) (5.46)

with (w, K) following a joint distribution g(w, K). Given the strong resemblance
between their numerical simulations and the predictions via the OA ansatz, the
authors realized that the latter “formulas were derived on the assumption of at
least asymptotic validity of the OA ansatz.” 3% They also investigated necessary
initial conditions with respect to their analytic continuation and applicability to
the OA ansatz. Unfortunately, they did not prove that their system dynamics
(5.46) does not belong to the class of systems considered in the proofs by Ott

and Antonsen® 83,

We would like to remind that a general characterization of
correlated joint distributions g(w, K) # ¢1(w)ge(K) which are applicable for the
extended OA ansatz is hardly feasible. However, for three examples used in liter-
ature we can prove that the OA manifold defines the asymptotic evolution of the
whole system.

First, let g(w, K) ~ 6(K — k) [w2 + e*“ﬂ} _1, see Fig. 1 in3%. The specific form

with the o-function in K reduces system (5.46) to the common Kuramoto model
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—1
with heterogeneous frequencies w x ¢;(w) = [wQ + e*“ﬂ , which can be dealt

with along the proof of the original OA ansatz.
The other two examples are more elaborate in that the joint distribution func-

tions are given by3%

g(w, K) = (1 —p)o(K — K1) L(w;wo, 1) + pd(K — Ko)L(w; —wo,72) ,  (5.47)

with p € (0,1}, and

g(w,K) =T(K) ian(w;wnﬁn) with iqn(K) =1. (5.48)

Here, L(w;wp,v,) denotes a Lorentzian with width 5, > 0 and centered around
w = wy, and I'(K) is a multimodal-d-function. For properly chosen ¢, » the dis-
tributions (5.48) can be regarded a generalization of (5.47) so that it suffices to
consider the former. For simplicity, let N, = 2, i.e. g(w, K) be a bimodal joint
distribution. Inserting g(w, K') in the definition of the order parameter (5.38),
we can decompose the latter into z(t) = ¢121(t) + q222(t) with ¢1 + ¢ = 1. Put
differently, we can view our system as two all-to-all coupled populations with
population-specific coupling strengths K;,. Given that the frequency distribu-
tions are Lorentzians of finite width v; 5, the results for two-population/bimodal

Kuramoto models?71:280,318

can be readily applied, which confirms the attractive-
ness of the OA manifold for this kind of joint distributions. Note that we do not
require g, € [0, 1] but may choose, e.g., ¢ = §/(6—¢§) > land ¢ = —=§/(6—&) < 0.
Then, the bimodal distribution results from one Lorentzian being subtracted from
the other one, which, in principle allows the central minimum between the two

peaks to converge to zero38.

The case of multiple Kuramoto populations with
specific coupling strengths can be approached by transforming the system into
one global system whose oscillators’ frequencies follow a multimodal distribution
consisting of weighted inhomogeneous unimodal distributions, which can mirror
the underlying coupling topology across populations?®.

Admittedly, the aforementioned examples are not exhaustive, let alone complete.
They represent a concise set of a broad variety of joint distribution functions. Nev-
ertheless, we believe that our results may be a major breakthrough for the appli-
cability of the OA ansatz for systems with more intricate distribution functions.
First extensions concentrated on a multiple-population-approach and have been
presented in29%:319:320  Skardal and Restrepo'? focused on hierarchical synchrony
effects in modular networks and investigated how local and global synchrony evolve

differently by allowing for different subpopulation sizes, heterogeneous intra- and
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inter-population coupling strengths as well as population-specific frequency distri-
butions. Reformulating their approach results in (5.48). This rigorously establishes
the agreement of the predictions by the OA ansatz and their numerical results. So
and co-workers, on the other hand, aimed for synchronization criteria in a network
of two coupled populations with static and time-varying coupling topologies267:320
Their governing equations can be cast into (5.47) when additionally considering
K = K(t) to be time-dependent. Also, they numerically determined macroscopic
chaos by assuming a single network with bimodally distributed natural frequen-
cies?®. Combining our results from this section together with the preceding part
where we incorporated non-autonomicity, we again corroborate the numerous nu-
merical findings by providing the ingredients to prove the implicit assumption that
the OA ansatz holds for these kinds of parameter-dependent and non-autonomous

systems.

5.4.3 Heterogeneous mean field models

While the general case of uncorrelated joint distributions has already been cov-
ered in the preceding Section 5.4.2, we would like to concentrate on the specific
derivation of the heterogeneous mean field model. Recall the standard Kuramoto

model on a given network,

N
éj = Wy + KZ Ak SiIl(Gk — 9]) y (549)
k=1
where K is the coupling strength and the adjacency matrix is given by A =
(aij)ij=1,. n. We substitute the adjacency values a;, € {0,1} by their expectation
values (aj) € [0, 1], which are given by

_ Nk
k= F gy

(5.50)

Introducing the complex order parameter as

the dynamics for all nodes with the same degree n; read
0p = wy, + KnkIm(zefg’“) .

In this special form, in which the single nodes are replaced by block-degree vari-

ables, we returned to the all-to-all coupling. For a given degree distribution P(n)
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property (5.50) also holds in the continuum limit N — oo where the governing
dynamics read

0(n,t) = w+Im [Knz(t)e ] | (5.51)

with w and 7 being drawn from a joint distribution g(w,n) = P(n)gi1(w). As
above we can introduce a phase distribution function p(#,w,n,t), which fulfills
the continuity equation d;p + Jg(vp) = 0 with v the right-hand side of (5.51).
Note, however, that depending on the underlying network topology and its degree
distribution P(n), one has to choose the domain of 1 properly. In the case of a
scale-free network, the degree distribution follows P(n) o< =7 with v > 1. Hence

the normalization conditions for the distribution function p obey

0 27 00 27
[ pent) dody=gi) and [ [ pio.oin.t) dods = P(a).
1 0 —o0 J0

We can apply the OA ansatz as above. By the same reasoning as in Section 5.4.2,
we can prove the OA attractiveness for heterogeneous mean field models, rendering
also non-globally coupled oscillator networks applicable for the OA theory, which
guarantees that their mean field dynamics evolve on a low-dimensional manifold.

Before elaborating more on coupling schemes other than global coupling, we
briefly discuss further topological network effects such as nodal correlations be-
tween in and out degrees, correlations between nodal frequencies and degrees, and
degree as well as so-called frequency assortativity in the formation of links. Re-

1321322 exploited assortative

cent numerical findings by Restrepo, Ott, and Skarda
networks and gave strong incentive to believe that their dimensionality reduction
techniques along the OA ansatz do capture the dynamics of the full network. An
assortativity function a,s _,, represents the probability that a link exists from an
oscillator with target property p’ to one with property p. Using this one can
indicate an exact instruction on how to construct a network model of the form
(5.49). The nodal properties p are chosen in such a way that the network displays,

e.g., a particular degree®?! (u = k), frequency®?? (1 = wy), or even a combined
(u = {k,wo}) assortativity. Key ingredient for relating this to the OA ansatz is

the reformulation of the order parameter. We first define
2(p,t) = Z Pyay_,, ff pu (0, w,t)edodw (5.52)
!

where p,/(0,w,t) = p(6,w, ', t) is the common phase distribution function with
target property 1/, see (5.26), Py = P,(i') is a normalized target property dis-
tribution, and a,/_,, = a(y’ — u) the assortativity function; for details see®*!322,

Then, we can integrate over all possible properties p — note that we write the sum
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over the target properties y' also in integral form — and we arrive at the order

parameter
ij Ja(p' — p jjﬂ (0, w, 1, t) e?dfdw dy'dp, (5.53)

with (n) the average degree. Given a specific degree distribution P(7n) one finally
ends up with (5.51), from which we can follow the lines of argument as presented
above to complete the proof. The addition of assortativity in the network topology
enriches the existing theory further. It discloses many new qualitative effects on
the dynamics such as transitions between steady state, periodic, quasiperiodic
attractors, and even macroscopic chaos may emerge without external driving or

time-varying parameters.

5.4.4 Non-local coupling

Two months before Ott and Antonsen published their ansatz, Ko and Ermentrout
investigated the creation of partially locked states in a network of identical all-to-
all coupled oscillators due to inhomogeneous coupling®??. Instead of heterogeneity
of the oscillators’ frequencies, it was the coupling heterogeneity that led to partial
synchronization. Carlo Laing analytically investigated this network of globally
coupled oscillators with coupling strengths drawn from a power-law distribution3**
along the line of the OA ansatz — recall the resemblance to the heterogeneous mean
field approach for scale-free networks. Assuming “nearly” identical oscillators,
i.e. the frequencies w were drawn from a Lorentzian with width 0 < A < 1, he
could verify the earlier results that were derived via a self-consistency argument 323,
and extend them by including a thorough bifurcation analysis. Our findings in
Section 5.4.2 put these results on a solid mathematical ground.

Of particular interest is Laing’s work on a ring of oscillators?%324, For a given
ring topology, the typical coupling scheme is neither local neighbor-to-neighbor,
nor global coupling. Instead, the oscillators are non-locally coupled via a coupling
kernel G. We assume that each oscillator 7 = 1,..., N has some fixed spatial
position z; € [—m, 7], a natural frequency w; drawn from a continuous distribution
function g(w) with non-zero width, and interacts with the others depending on the
distance between their sites modulo periodic boundary conditions. The governing

dynamics read
27T
0, = w, + g G(xp —x;)sin(0y — 6; + a) , (5.54)

where « is a phase-lag parameter and GG: R — R a continuous even and 27-periodic
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coupling function3?5. We retrieve global coupling, if G # 0 is constant. Commonly
used coupling functions G are of exponential form G(z) ~ eIl with x > 0, or of
trigonometric form G(z) = 1/2m(1 + Acosx + Bsinx) with A > 0,B > 0. The
reflection symmetry of G is lost for B # 0. In the continuum limit, the velocity
field (5.8) becomes

0 =w+1Im [H(z,t)e ] |

| (5.55)
H(z,t)e" = / (x — / / (0,y,w,t)e” didwdy .

While the inner two integrals have the form of a local complex order parameter
z(y, t), measuring the synchronization degree of oscillators around y, we can in-
terpret the last integral as a convolution of the local order parameter with the
(spatial coupling) kernel G. In particular, we can regard the dynamics 9,0(x,t) of
an oscillator at position x as being controlled by the local mean field H(z,t). Un-
like the case of global coupling, the order parameter has become space-dependent
and thus the driving field. However, a similar “physical picture” as for global
coupling is valid: practically we deal with an assembly of independent oscilla-
tors under the control of a common forcing field3?*326. We now go a step further
and interpret the space variable z as a subpopulation index?3?”. Equivalent to the
block-degree variables in the heterogeneous mean field approach, we consider the
subpopulation index as a parameter that follows a particular, in this case a uni-
form, distribution function. Hence, (5.55) represents the governing dynamics of
a parameter-dependent system, for which we proved the OA attractiveness in the

preceding sections.

5.4.5 External forcing and time delay

Already in their original work, Ott and Antonsen proposed that their ansatz ex-
tends to external forcing and the incorporation of time delays. However, recent
results that leaned against the OA ansatz for tackling more intricate issues of
external forcing and/or time delays went beyond the reach of the original proof.
Therefore, we first revisit the existing theory and revise the proof appropriately
with the concepts introduced above.

Ott and Antonsen considered the forced Kuramoto model®!,

N
~ K : :
Gj = Wj + N Eﬁ sm(@k — QJ) + nsm(wt — (9]) . (556)

Rearranging terms, moving in a rotating frame, 6 — 6 + wt, and considering the
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thermodynamic limit, the velocity field reads

0 = Qw, @) + Im [H(w, K,n,t)e ] |

(5.57)
Q(w>w):w_w> H(W>K777>t):Kz(t)+777

with z(¢) the common Kuramoto order parameter. While Ott and Antonsen pro-
vided a proof for systems with constants K, w, and 7, conjoining thereby the
numerical findings and the extensive analysis by Childs and Strogatz®?®, we gener-
alized their proof extensively in Section 5.2.1. By this, the additional parameters
w and n that characterize the forcing can be both random and time-dependent
variables. This adaptation renders a more detailed analysis of, for instance, the
circadian rhythm problem possible. One extension has been published very re-
cently addressing the east-west asymmetry of jet-lag3??, where a discontinuous
phase quantity p is added to model the travel across time-zones. The adapted

model reads
. K
0; = w; + N ; sin(f — 0;) + nsin(wt — 0; + p(t)) , (5.58)

where p jumps from one constant value to another depending on the corresponding
time-zone. In particular, p(t) is locally integrable, which allows for a thorough
analytic description of how the human organism may adapt after several cross-
time-zone travels. This extends the existing work where the authors solely focused
on the recovery dynamics of circadian rhythms after a single travel “shock”.

To address the presence of time delays, let us first concentrate on time-delayed
coupling, i.e. the response of oscillator j at time ¢ depends on the state of another
oscillator k at time t —73;. Here, 74, is some specific delay time for the interaction.

In general, the single oscillator dynamics may be given by

QJ(t) = Wj + % Z sm(ﬁk(t — Tkj) - (%(t)) (559)
k=1

There already exists a plethora of studies?87:324:330

considering the case in which
7i; follows some given distribution function h(7). That the OA ansatz also holds
in this case, has been proven by Ott and Antonsen®!, where they generalized
their original idea of identical time delays®, 7,; = 7/ for all j,k = 1,..., N, ie.

h(t) = §(7 —7’). The driving field H of the original velocity field (5.3) is replaced

by
H = K/ z(t —7)dr |
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where 2 C R is the domain of the time delay distribution h and z(¢) the common
Kuramoto order parameter. Slightly more elaborate and not covered by Ott and
Antonsen’s original proof is the extension to so-called coupling adaptation®3!. The
coupling strength is no longer constant but slowly adapts depending on the current
coupling strength and the delayed order parameter. As long as the function that
models the adaptation process is locally integrable, our extended proof guarantees
the OA attractiveness for such time-varying parameter-dependent systems. For
this reason we believe that the mainly numerical work by Skardal and co-workers33!
can also be analytically substantiated. This will not only contribute to exploring
the underlying phenomena of explosive synchronization®3%333  but also enhance
the modeling of information processing and memory effects, for which network

adaptation is crucial334 336,

5.5 Relaxation dynamics towards the Ott-Antonsen

manifold

As discussed, we allow time-varying parameters to affect the oscillator dynamics.
The change of parameters comes with its time scale(s). The change can be pe-
riodic. This periodicity may also influence the evolution of the mean field and
thereby the OA manifold. Therefore, the relation between this periodicity and the
characteristic time of the system to approach the manifold needs to be investigated.
If the relaxation dynamics onto the manifold is way slower than the characteristic
time scale of the time-varying manifold itself, then our findings will remain true
for the limit ¢ — oco. They are, however, of minor interest for describing the tran-

293,303,304,308 suggest that

sient behavior of the mean field. Several numerical results
the relaxation to the OA manifold is reasonably fast, in some cases even instanta-
neous. To address this analytically, we briefly recall the proof for the attractiveness
from Section 5.2.1. After having Fourier expanded the phase distribution func-
tion p(6,7n,t), and then decomposed the positive Fourier modes into a part that
already lies on the manifold, p’,, and a residual part p,, we showed how the latter
converged to zero in a weak sense, cf. (5.12). We can extract the relaxation time
to the OA manifold from out of the proof: From (5.13 & 5.14) we obtain a solu-
tion f1.(0,t) = p, (0, —io,t), with ¢’ > ¢ > 0 where p/, (6,7,t) admits an analytic
continuation into the strip S = {n € C| —oo < Re(n) < oo, 0 >1Im(n) > —0o'};
the solution (5.16) obeys

f—i—(w? t) - f+(W<w= 0)7 O) €xp [_:U'(wﬂ t)] )



Parameter-dependent oscillatory systems 169

hence the relaxation time 7 is by definition

t

et (5.60)

const - exp(—t/7) = exp [—p(w,t)] = 7T
Put differently, Re [u(w,t)] scales with ot, such that 7 = 1/0. The wider the
frequency distribution becomes, the larger o can be chosen. Thus, one may argue
that the characteristic time scale decreases with increasing heterogeneity among
the single oscillators. This relation has already been noted for a particular exam-
ple of a Lorentzian frequency distribution by Ott and Antonsen®'. It has been
investigated in more detail by Petkoski and Stefanovska for the non-autonomous
Kuramoto model®®®. Interestingly, there is an intrinsic relation between the fre-
quency inhomogeneity and the coupling strength. Therefore, at critical coupling
strengths, which distinguish different dynamical regimes, the relaxation times tend
to infinity, which has been reported independently by Petkoski et al.?%® and Yoon
et al.?1% for the full Kuramoto network, its non-autonomous version and the het-
erogeneous mean field model.

For the non-autonomous case we would like to mention that the proof presented
in Section 5.2.1 entirely holds for continuous time-varying parameters. Introducing
discontinuities in either the frequency 2 and/or the driving field H, however, will
eventually lead to a non-continuous right-hand side of (5.14) — due to H itself, or
via the order parameter z, which absorbs the time-varying part of 2 and influences
H directly or indirectly. While employing the method of characteristics still can
be performed, estimating the integral in (5.17) cannot exploit the continuity as-
sumption and a proper evaluation has to be circumvented. In spite of this sinister
outlook, numerical results remain promising; for instance, the simulations in2%3
with a square input function (Fig.2a,c,e,g therein). A possible way to overcome
this obstacle might be to approximate the jumps by smooth sigmoid functions,
which might be valid as long as the height of the jumps is lower than their length.
Another more rigorous approach might be to find weak solutions for (5.13 & 5.14)
and estimate their long-time behavior. There, a starting point could be the very
recent results by Dietert, Fernandez and co-workers, who investigated stability
properties of different dynamical regimes of the Kuramoto model in a mathemati-
cally rigorous way, confirming the exponential decay to the manifold33" 339, More
details are way beyond the scope of our paper.

Interestingly, the approach by Dietert and others is based on the idea of “Landau
damping” in plasma physics. Strogatz, Mirollo and Matthews were the first who
incorporated this concept in order to understand relaxation dynamics of the Ku-
ramoto model?™?34°, They showed that for frequency distributions g(w) supported

on the whole real axis, the decay towards the incoherent state is exponentially fast
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for coupling strengths below the critical threshold, K < K.. If g(w) has compact
support, i.e. g is non-zero only on a compact interval [—y,7] C R, 0 < v < o0,
the rate may be considerably slower, even polynomial. In the example they used
to illustrate their result, the authors assumed the frequencies w to be distributed
uniformly on Z = [—~,7], i.e. g(w) =1/2v if w € Z, and 0 otherwise. The jump
discontinuities of g on 0Z, however, prohibited an analytic continuation of g into
a strip S in the lower complex w-plane, contradicting the required conditions for
applying the OA ansatz®. That is why the proofs above cannot be applied here,
and our argumentation about the relaxation times remains unaffected.

Last but not least, we would like to add that decay times typically depend on
initial conditions. Pikovsky and Rosenblum pointed out that for identical macro-
scopic, i.e. mean field, initial conditions the microscopic initial states can lead to
very different transient dynamics towards the OA manifold, see Section 3.2 in!™.
A more thorough investigation about this specific topic has not been undergone,
yet, but might shed light on the underlying dynamics of the microscopic variables

of large oscillatory systems in contrast to its mean field behavior.

5.6 Discussion and conclusion

The OA ansatz has proven considerably fruitful for investigating the macroscopic
behavior of systems of coupled phase oscillators in terms of a low-dimensional
system. Although parameter dependence has already been mentioned in Ott and
Antonsen’s original work, parameters were merely considered auxiliary variables
and the velocity field was required to incorporate the phase only through a sinu-
soidal coupling term.

Our main result was to prove that the n-dependence sustains the time-asymptotic
attractiveness of the OA manifold for systems of coupled oscillators. For this we
required that the driving field H does not have singularities in the complex 7-
plane and that it diverges at most sub-exponentially for Im(n) — —oo, next to
the conditions in the original Ott and Antonsen formulation®"*2. Furthermore, we
assumed the frequency w(n,t) to be linear in 7. We were able to depict the proof
step by step. Subsequently we loosened the restrictive assumptions and showed
that our results remain valid for a much broader class of distribution functions g(n)
as well as more complex dependencies of the driving field H(n) and the natural
frequencies w(n) on the parameter 7.

Although the main idea of introducing a common parameter n was to correlate
the driving field and the natural frequency with their specific oscillator, our proof
is identical for the case when 71 does only influence the mean field dynamics. By

this, we have proved the claim in® that the OA manifold remains attractive in the
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“weak” parameter-dependent case when H depends on “other non-phase-oscillator
variables obeying auxiliary dynamical systems.”

Common choices of H and w usually fulfill the aforementioned assumptions
as stated in Section 5.2.1. That is, our result can be immediately applied in
a variety of circumstances. Here, we highlighted an application in mathematical
neuroscience. By this, our findings strengthen the theory of coupled theta neurons:
The many recent numerical findings in?% and the references therein are finally set
in a solid mathematical framework. Moreover, the link between QIF neurons and
theta neurons has been underscored by proving the attractiveness of the Lorentzian
ansatz.

We generalized and extended existing proofs for non-autonomous systems. In
particular we addressed the Winfree model, which is biologically more realistic
than the Kuramoto model and therefore closer to applications. We also addressed
coupled oscillatory systems with an additional shear parameter, another impor-
tant tool to render the Kuramoto model more realistic. The major novelty was
our rigorous proof of the OA attractiveness for systems with uncorrelated joint
distribution functions when more parameters than only the natural frequencies
are treated as a random variable. This finding opened the way for networks with
specific underlying coupling topologies other than the restrictive global coupling.
Using the heterogeneous mean field approach, we showed how these networks can
be treated along the OA ansatz. First steps were also taken in the direction of
correlated joint distributions.

All in all, we consider the explicit dependence on an additional parameter 7
of both the oscillator’s phase and the (non-sinusoidal) components an important
extension introducing an intrinsic relation between phase, frequency, and driving
field of an oscillator. The latter two are correlated with the phase so that the
n-dependence does not allow for applying the original theory.

Still, there are several open problems concerning the mean field dynamics of
an oscillatory system and its description by a low-dimensional system. A first
urgent one is the case of d-peaked frequency distributions. Numerical simula-

34

tions®#! and heuristic arguments hint at convergence of the OA manifold, where a

proper mathematical derivation is omitted under the pretence of “nearly identical

» 269,288,342

oscillators A thorough proof would render the OA ansatz rigorously

applicable to “chimera states”, a topic that is particularly en vogue; see, e.g., the

recent review paper by Panaggio and Abrams!®

. Importantly, such a proof has
to circumvent the main argument of Ott and Antonsen’s original proof, where the
width A > 0 of the distribution g(w) allowed for a consequent evaluation of the
mean field dynamics. On the other hand, Pikovsky and Rosenblum?* already

showed that more complicated dynamics can emerge from the OA manifold when
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describing the system along the Watanabe-Strogatz ansatz®’. Deviations from the
OA ansatz appear only if the Watanabe-Strogatz constants of motion are not uni-
formly distributed over the whole domain, but only over a compact subset. Given
(a) the direct correspondence between the constants of motion and the initial con-

80.178 “and (b) the necessary requirements on

ditions of phases in the OA ansatz
(analytic continuation properties of) the initial conditions, it may be worth inves-
tigating the influence of nonuniform distributions of the constants of motion and
whether this may hinder the initial conditions of phases to satisfy the requirements
of the OA ansatz.

Another intriguing open problem is whether the mean field dynamics is attracted
by a low-dimensional manifold when the parameter dependence of the frequency
and driving field is extended by an explicit dependence on the individual phases.
A recent example is given by Laing**, who considered the driving field H to
follow a dynamics that explicitly depends on the phase 6. This system exhibits
partial synchronization patterns, which are also covered by the OA ansatz, but
any attempt to apply the OA ansatz has been avoided “due to the dynamics of

the extra variables.” 344

see, e.g., 345,346 no low-
)

When the coupling term incorporates higher harmonics
dimensional analytic solution for the mean field evolution has been found. This
is another open question whether further generalizations of the work of Ott and

81 can be rigorously manifested. We believe that our current proof for

Antonsen
parameter-dependent networks is a good starting point for tackling these important

1ssues.
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CHAPTER

Criticality in neural mass

phase oscillator models

Modeling and interpreting (partial) synchronous neural activity can be a challenge.
We illustrate this by deriving the phase dynamics of two seminal neural mass mod-
els: the Wilson-Cowan firing rate model and the voltage-based Freeman model. We
established that the phase dynamics of these models differed qualitatively due to an
attractive coupling in the first and a repulsive coupling in the latter. Using empir-
1cal structural connectivity matrices, we determined that the two dynamics cover
the functional connectivity observed in resting state activity. We further searched
for two pivotal dynamical features that have been reported in many experimental
studies: (1) a partial phase synchrony with a possibility of a transition towards
either a desynchronized or a (fully) synchronized state; (2) long-term autocorrela-
tions indicative of a scale-free temporal dynamics of phase synchronization. Only
the Freeman phase model exhibited scale-free behavior. Its repulsive coupling, how-
ever, let the individual phases disperse and does not allow for a transition into
a synchronized state. The Wilson-Cowan phase model, by contrast, could switch
into a (partially) synchronized state, but it did not generate long-term correlations
although being located close to the onset of synchronization, i.e. in its critical
regime. That 1s, the phase-reduced models can display one of the two dynamical
features, but not both.

Adapted from: Daffertshofer A., Ton R., Pietras B., Kringelbach M.L., Deco G.
(2018). Scale-freeness or partial synchronization in neural mass phase oscillator
networks: pick one of two? Neurolmage 180 428-441.

doi: 10.1016/j.neuroimage.2018.03.070.
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6.1 Scale-freeness and partial synchronization

Characterizing the underlying dynamical structure of macroscopic brain activity
is a challenge. Models capturing this large-scale activity can become very com-

plex, incorporating multidimensional neural dynamics and complicated connec-

347,348

tivity structures . Neural mass models, or networks thereof, that cover the

dynamics of neural populations offer a lower-dimensional and therefore appealing

11,349,350

alternative . To further enhance analytical tractability one may consider

the (relative) phase dynamics between neural masses. We previously showed un-

der which circumstances certain neural mass models can be reduced to mere phase

42,44 41,48,61

oscillators — see also — and thus established a direct link between these

two types of models. A minimal model describing phase dynamics is the Ku-

138,351

ramoto networ , which in its original form consists of globally coupled phase

oscillators. Generalizations of this model by adding delays and complex coupling

40.264 " Even in its original

structures result in a wide variety of complex dynamics
form, however, the Kuramoto model is capable of showing non-trivial collective
dynamics. A mere change of the (global) coupling strength can yield a sponta-
neous transition from a desynchronized to a synchronized state, i.e. the dynamics
can pass through a critical regime.

Synchronization of neural activity plays a crucial role in neural functioning?3>2.
In the human brain, synchronized activity can be found at different levels. At the
microscopic level temporal alignment in neuronal firing is a prerequisite for measur-

353 However, it also manifests itself at the macroscopic

354,355

able cortical oscillations
level in the form of global resting state networks Synchronization prop-
erties are modulated under the influence of task conditions in, e.g., motor per-

356 5 358-360

formance3®, visual perception'?, cognition®7 and information processing

Epilepsy, schizophrenia, dementia and Parkinson’s disease come with pathologi-

361 'When aiming for a concise but encompassing

cal synchronization structures
description of brain dynamics, a macroscopic network model should capture this
wide range of synchronization phenomena.

According to the so-called criticality hypothesis%?, the human brain is a dynam-
ical system in the vicinity of a critical regime. Its dynamics is located at the cusp
of dynamic instability reminiscent of a non-equilibrium phase transition in ther-

363364 The conceptual appeal of the critical brain lies in the

modynamic systems
fact that networks operating in this regime show optimal performance in several
characteristics relevant to cortical functioning3®®. Critical dynamics often display
power laws in multiple variables3%® and have been observed in, e.g., size and dura-
tion distributions of neuronal avalanches®7” and EEG cascades®%®. Power-laws are

also manifested as scale-free autocorrelation structures of the amplitude envelopes
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369,370

of encephalographic activity Very recently, long-range temporal correla-

tions have been reported in fluctuations of the phase (synchronization) dynamics

371,372 The nature of these power-law forms in the correlation

in neural activity
structure can be quantified by the Hurst exponent H3™. Its value characterizes
the correlations between successive increments of the signal, with H > 0.5 marking
persistent behavior in the time series, i.e. positive, long-range correlations, and
H < 0.5 anti-persistent behavior, i.e. a negative auto-correlation.

In this study we considered the phase descriptions of two classical neural mass
networks: the Wilson-Cowan firing rate and Freeman voltage model, both equipped
with neurobiologically motivated coupling and delay structures. Coupling and de-
lay structures were obtained from DTI data and the Euclidean distances between
nodes, respectively. To anticipate, the two models lead to two qualitatively differ-

ent phase synchronization dynamics.

6.2 Phase description of neural mass models

Phase reduction techniques, as have been introduced in Chapter 2 together with
some exemplary applications in Chapter 3, are key to describe the Wilson-Cowan
and Freeman neural mass models in terms of their phase dynamics. To facilitate
the comparison between the network models and the experimental MEG data,
we assumed each network to consist of N = 90 coupled nodes whose oscillatory

dynamics were described by the respective neural mass model. The resulting phase

dynamics of each node k = 1,..., N were found to obey the form
. 1 <
Ok = Wi + N 521 Dy sin (¢ — ¢ + D) (6.1)

with wy denoting the natural frequency of the oscillator at node k. Dy, is the phase
coupling matrix, which incorporated the particular dynamics of the underlying
neural mass model and the structural connectivity of the network. The coupling
between neural masses was scaled by a strength factor K. Moreover, we assumed
that time delays 7; between nodes k and [ were of the same order of magnitude as
the period of oscillation, such that they could be captured by phase shifts A; in the
phase dynamics. The model-dependent terms wy, Dy and Ay will be explicated

in the subsequent presentations of the neural mass models.

6.2.1 Wilson-Cowan model

The first neural mass model we studied is the Wilson-Cowan model that describes

the dynamics of firing rates of neuronal populations®. We always considered
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properly balanced pairs of excitatory and inhibitory populations, Ey = FE(t)
and Iy = Ii(t), respectively. We placed such pairs at every node of a network.
Nodes were coupled to other nodes through the connections between excitatory
populations given by a DTI-derived coupling matrix Sj; forming a network of
k=1,...,90 nodes. We illustrate the basic structure of this network in Fig. 6.1
and the coupling matrix in Fig. 6.2, left panel. The dynamics per node k was cast

in the form

by = —E, + Q

N
ag (CEEEk —cprly — 0 + qr + K Z SklEl<t - Tkl))] ( )
6.2

=1
el = — I, + Q[al (creEy — crrly, — 91)},

where the coupling constants cgr, crg, cgg, ¢r; quantify the coupling strength
within each (F/I) pair. The function Q[z] = (14 e®)7! is a sigmoid function!!
that introduces the thresholds 6z and 6; that need to be exceeded by the total
input into neural mass k to elicit firing; the parameters ag and a; describe the
slopes of the sigmoids. The delays 73; were determined by conduction velocity and
the Euclidean distance between nodes k, [. In the following, delay values are given
in milliseconds. Appropriate choices of the time constants p; and external inputs
qx guaranteed self-sustained oscillations in the alpha band (8-13 Hz). By random-
izing the constant external inputs g, ux across £ we introduced heterogeneity in
oscillation frequencies.

The phase dynamics could be derived along Haken’s reduction via averaging, see
Section 2.2.7 for details. We transformed the system to its corresponding polar
coordinates around an unstable focus, and described its dynamics in terms of the
periodic function Ay cos(€2t + @), with Ay denoting the amplitude, ¢ the relative
phase, and €2 the central frequency of the oscillation. We averaged the dynamics
over one period 27 /€ under the assumption that the characteristic time scale of the
; ‘Qbk‘ < [Q.

That is, the variables ¢, Ay evolved slowly enough to be considered constant

Ay and ¢, dynamics significantly exceeded this period, i.e. ‘Ak [ Ay

within one period. In consequence, we obtained the Wilson-Cowan phase model

(6.1) with expressions (superscript WC)

WV = —Q+ bl
HE
K 1 R
D¢ = = [x)] aw [1+ A7) Sup- (6.3)
2t ’ 1y,

Az}lc = arctan (Ak) — QTkl

(] Note the slight change of notation compared with Section 3.2.
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where @' denotes the derivative of Q resulting from a Taylor approximation around

the points Xg)m X(Io,l; the detailed expressions of the aforementioned unstable focus

as well as the definition of the parameters A, and w, are given in Section 3.2.4;
see also Appendiz B.1 of®". By virtue of the definition of Q, one has Q' > 0.

6.2.2 Freeman model

The Freeman model™ describes the mean membrane potentials Ej, I of neural

populations. In analogy to (6.2) its dynamics per node can be given by

B = — (o + Br) Br — awbiBr + anBrai+
El (t—Tkl)—(g
o

N
+aeByK Y S Q

=1

I.—0
— apBrcery Q{ i }

o (6.4)

I = — (o + B) I, — anBrli + cwfrcrey Q{

Ek—e]

where £k = 1,..., N with N being the number of excitatory populations — the
corresponding schematic is again given in Fig. 6.1. The sigmoid function Qz]
here covers the effects of pulse coupled neurons in the populations adjusted by
the scaling parameter3™ ~. The parameters «y, i, represent mean rise and decay
times of the neural responses in population k, which we here varied to introduce
frequency heterogeneity in the system. Analogous to (6.2) appropriate parameter

values guaranteed self-sustained oscillations in the alpha frequency band.

i 49
l S, l Figure 6.1: Coupling structure of both neu-
E, E, ral mass networks. A proper balance be-
g tween excitatory (Ej) and inhibitory (Ij)
e populations leads to self-sustained oscilla-
tions in the network. Self-coupling (cgg,
€| |Car €| (Car crr) is only present in the Wilson-Cowan

network and, hence, plotted in gray. Exter-
nal inputs are indicated by q;. The coupling
matrix Sg; connecting the excitatory popu-
lations was based on structural DTI data.

In (6.4) we separated the excitatory and inhibitory nodes to stress the similarity
between both networks. For the sake of simplicity, however, we rather combine
both equations in (6.4) into a single one. To this end we introduce the variable
V=I|EI ]T and incorporate the terms cgy, crg, and the scaled structural coupling

matrix K - S into an ‘overall’ coupling matrix C¥ = [fwi 70‘5’1} with 1 and 0
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denoting the identity and the zero matrix, respectively; see Fig. 6.2, right panel.
This abbreviation yields the form

’ : < Vi(t—7i)—0
Vi = — (o + Br) Vi — w8 Vie + cuBrq + By Z Ca9Q {#

=1

} . (6.5)

g

with k,l=1,...,2N. In (6.5), the delays 7, between excitatory nodes are equal
to delays 75 in (6.4). Note that we assumed delays between the local pairs of
excitatory and inhibitory nodes ([k {]=][1,..., N;k+N] and [k [|=[[+N;1,...,N])
to be negligible.

kl

CF

>0

<0

180

90 o, u
1 90 1 90 180

Figure 6.2: Illustration of the DTI-derived structural connectivity matrix Si; and the
matrix C}; in (6.6). In the latter we incorporated the inter-pair coupling cg; and crg
together with the scaled structural connectivity K - S;. The upper left block of C’};l has
the same structure as Sg;. The two diagonals represent the coupling strengths cgy and

CIE.

Following the same phase reduction method as above, we eventually obtained
the Freeman phase model (6.1) where the expressions (superscript F) for wg, Dy
and Ay; read

F o B —Q?
“PTTTon

v Al /
Dy, = _akﬁk@fl—kg [VJ(O)] Cha (6.6)

F .

here V,%) refers to the unstable focus — we refer to Appendic B.2 of67 g q44 for details.

Remarks on the phase description

The phase reduction method The inherent complexity of the underlying net-
work model of neural masses, including the heterogeneity among nodes, their struc-

tural connectivity and the occurent time delays, confines the applicability of most
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phase reduction techniques presented in Chapter 2. Nevertheless, Haken’s reduc-
tion method appears a valid compromise as long as the oscillatory dynamics of

each node remain close to the Hopf bifurcation boundary, see also Section 3.2.

The reduced phase models [t is important to realize that due to the inhibitory
coupling cgr, the coupling matrix C}; and hence D}, have both positive and neg-
ative entries. In contrast, for Sy; and hence for Dgc we have Sy, Dgc > (. This
change in sign can have major consequences. For instance, the Wilson-Cowan
phase model (6.3) resembles the Kuramoto-Sakaguchi model with phase lag Ayy;
for 1y = 7 = 0 we have Ay € (0,7/2), and otherwise Ay, € (—7/2,7/2) since
Qry € (0,7/2) and because of our particular choice of parameters which yields
A > 0. That is, a transition to full synchronization can occur if the coupling
strength K exceeds a critical value K.. However, from (6.6) it follows that the
left upper block of DI contains negative entries. Together with the 7/2 phase
shift, the Freeman phase dynamics is therefore more closely related to the repul-
sive cosine-variant of the Kuramoto network3™37. As will be shown below, this

qualitative difference in dynamics led to profound contrasts in model behavior.

Numeric simulations Phase time series ¢ (t) were obtained by integrating the
system (6.1) using either (6.3) or (6.6). We first determined the fixed points
E,io), I l£0) (Wilson-Cowan) or Vk(o) (Freeman) around which we observed stable os-
cillations. For these oscillations we also determined the characteristic (central)
frequency €2 and amplitudes Ax. We followed the same numerical procedure as a
previous publication of the group!. In brief, these initial estimates were achieved
by a five second simulation of the systems (6.2)/(6.5) until they reached a steady
state and using an Euler scheme with time step At = 1 ms. To compute the central
frequency €2, we determined the power spectral density per node and considered
) as the lowest frequency with a coinciding peak for all nodes. The choice for
the Euler method was motivated by the implementation of delays in the coupling

37T revealed little

terms. Testing a more elaborated predictor/corrector algorithm
to no difference but required far more numerical resources.

The control parameters in this study were conduction velocity v and global
coupling strength K. Conduction velocity v determined delay values 7y, by as-
suming 73, to be proportional to the Euclidean distance Dy; between nodes k, [, i.e.
Tri = Dy /v. The range of coupling strengths amounted to K = [0,0.1,...,0.7,0.8].
Conduction velocities were v = [1,2,...10,12,15,30,60,00] ms™! leading to av-
erage delay values (1) = [75, 39, 25, 19, 15, 13, 11, 9.4, 8.4, 7.5, 6.3, 5.0, 2.5,
1.3, 0] ms. We performed simulations of the phase dynamics (6.1) only for param-

eter values that resulted in oscillations in the underlying neural mass dynamics
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(6.2)/(6.4) because only in this case a phase reduction can be considered valid (in
consequence the range of K values displayed in Fig. 6.4 varies).

Integration of the phase systems (6.1) was performed by means of an adaptive
Runge-Kutta (4,5) algorithm with variable step size. Simulation time 7" = 302
seconds matched the length of the available empirical time series, where we dis-
carded the first two seconds of simulation to avoid transient effects due to the
first random initial condition. To exclude effects of a specific natural frequency
distribution of w,(g'), T was split into twenty bins with random duration 7}, > 14 s.
The initial condition of bin n was matched to the last sample of bin n — 1. For
each n a new set of parameter values gy, ur, (Wilson-Cowan) or ay, fx (Freeman)
was chosen at random, under the constraint that the characteristic frequency €2
fell within the alpha band in all cases. The parameters pu, qx, o, Bk, and 1), were
drawn at random but the corresponding sets were kept equal across all simulation
conditions, i.e. for all combinations of K and (7). We thus obtained twenty sets

{w('), D,E;l)}. For all parameter values we generated ten realizations by choosing

different initial conditions and permutations of the set {w('), D,E;l)} for each run.
Results were averaged over these realizations for each combination of parameter
values.

Further parameter values were chosen in such a way that the neural mass net-
works (6.2) and (6.4) displayed self-sustained alpha band oscillations. For the
Wilson-Cowan model the parameters amounted to ag = 1, a;f = 1, ¢;7 = —2,
cie=cgp=cpr =10, g =2, 0; =4.5, ¢, € [-0.15,0.15] and p; € [0.125,0.175]
where the latter two were randomly chosen to introduce heterogeneity in oscillation
frequencies throughout the network. For the Freeman model we chose cpr=crp=1,
cep=c =0, g =20, 6=15, v=250, oy, € [60,80] and [y € [165,185]. The pa-
rameters ay, O were chosen randomly to introduce heterogeneity in the oscillation

frequency in the network.

6.3 Comparing model behavior with experimental
MEG data

6.3.1 Power-law behavior

We measured the amount of synchronization via the phase coherence, i.e. the

modulus of the Kuramoto order parameter given as

N

Z eix(t)

k=1

1

N : (6.7)
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where ¢ (t) followed the dynamics (6.1).

Next, we assessed the autocorrelation structure of R(¢) by means of a detrended
fluctuation analysis (DFA)3™. In DFA the cumulative sum of a time series y(k), i.e.
Y(t) = EZ:l y(k), is divided into non-overlapping segments Y;(¢) of length Ti,.
Upon removing the linear trend Y;™4(¢) in segment 4, the fluctuations Fj(Tieq)

corresponding to window length T, are given by

When these fluctuations scale as a power law, i.e. Fj(Tieg) ~ (Tieg)®, the fluc-

o i v (6:5)

tuations, and hence the associated autocorrelations, can be considered scale-free.
The corresponding scaling exponent « resembles the Hurst exponent®™® H and
characterizes the correlation structure (the resemblance is proper if y(t) stems
from a fractional Gaussian noise process). We assessed the presence of a power
law in F; in a likelihood framework by testing this model against a set of alterna-
tives®™. By applying the Bayesian information criterion (BIC) we could determine

the model that constituted the optimal compromise between goodness-of-fit and

parsimony>°. More details of the DFA and model comparison are given in Ap-
pendiz 6.7.1.
To determine the significance of the model results, we constructed surrogate data

(surr)

sets by generating 90 phase times series ¢, ' (t), which equalled the number of
excitatory nodes. The surrogate phase time-series consisted of random fluctuations
around linear trends sampled from the w} distribution using the same T;, partitions
as in the model simulation conditions. We used a Wilcoxon rank-sum test to
test the results from surrogate time series against simulated time series in a non-
parametric way. For evaluation of the scaling exponents, we only incorporated

those conditions that showed power-law scaling as assessed by the BIC.

6.3.2 Functional connectivity

We compared spatial correlation structures in terms of the functional connectiv-
ity matrices generated by both models with an empirically observed functional
connectivity. For the latter we incorporated a previously published data set*3372,
We refer to* for details concerning data acquisition and preprocessing of both
the MEG and the DTI derived anatomical coupling matrix S that was used in
the coupling matrices D,(C'l) given in (6.3&6.6). In brief, MEG of ten subjects was
recorded in resting state conditions (eyes closed) for approximately five minutes.

1

These MEG signals were beamformed onto a 90 node brain parcellation®®!, such

that 90 time-series yx(t) were obtained with a sampling frequency of 250 Hz. The
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signals yx(t) were bandpass filtered in the frequency range 8-12 Hz and subjected
to a Hilbert transform to obtain the analytical signal, from which the Hilbert phase
could be extracted.

Using the phase time series from both MEG data, ¢kMEG

series generated by (6.1), ¢,:lm (), we calculated the pair-wise functional connec-

(t), and phase time

tivity PO) via the pair-wise phase synchronization in the form of the phase locking

value (PLV)?%. In its continuous form its matrix elements are defined as

. T[T (400
Py = ‘T/o (0= ®) gy (6.9)

Note that for PMES) we removed all individual samples that displayed relative
phases in intervals I around 0 or +7, as for these samples true interaction and
effects of volume conduction could not be disentangled®®?. The intervals I were
defined as I = +1,,/2, I, =, - F5 where Q. is the center frequency (in this case
10 Hz) and Fj the sampling frequency. In the simulations we calculated the PLV
matrix according to (6.9) for each partition 7,, and afterwards averaged the thus

obtained twenty PLV matrices.

6.3.3 Synchronization

Although both R(t) and P,Eé) are synchronization measures, they measure two
qualitatively different forms of synchronization, which is the reason why they offer
resolution in either the temporal or the spatial domain, respectively. Functional
connectivity Pk(l') measures temporal alignment of two phase time series gzﬁ,(g’)(t),
¢l(')(t) by means of an averaging over time in (6.9), such that P,gé) provides reso-
lution in the spatial domain, as indicated by the subscript kl. In contrast, from
(6.7) it follows that calculating R(t) involves an average over k, i.e. over spatial
coordinates, for each time instant ¢. This measure therefore provides resolution in
time. That is, P,él') measures temporal synchronization and offers spatial resolution,
whereas for R(t) the opposite holds.

To gain more insight into the mechanisms responsible for the differential effects

on synchronization behavior in the two models, we further considered the measures

N

(R(t)) :% / TR(t)dt and (PV) = Z ; Py, (6.10)

k=1 l=1

that is, <R(t)> is the temporal averagel? of the order parameter and <P(')> cor-

responds to the average magnitude of pair-wise phase synchronization over the

I In a strict sense, the time dependence of the temporal average <R(t)> is redundant. Still, we
keep this notation to demarcate this average from a spatial averaging over the network.
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network.

Statistics Model performance in terms of replicating spatial correlation structure
was measured by calculating the Pearson correlation coefficient p between the lower
triangular entries of P®™) and PMF®)  where we excluded the main diagonal to
omit spurious correlations. Since the sampling distribution of the P() entries are
not normally distributed, we applied a Fisher z-transform before calculating the
correlations. Restricting ourselves to the lower-diagonal entries was sufficient due
to the symmetry in the phase coherence measure. We also excluded the diagonal

entries to avoid spurious correlations resulting from the trivial value Pk(k) =1.

6.4 Results

6.4.1 Power-law behavior

Only the Freeman phase dynamics generated power laws and thus long-range tem-
poral correlations in the evolution of phase synchronization for a broad range of pa-
rameter values. In Fig. 6.3a we display the results as function of coupling strength
K and mean delay 7. Since for none of the parameter values the Wilson-Cowan
phase model yielded power laws, we do not show the corresponding results for this
model. The average value (& SD) of the scaling exponents was a = 0.56 £ 0.02
for the Freeman model, which is significantly different from the surrogate results
a = 0.501 + 0.012 (p < 107%). In this average we only considered those realiza-
tions that were classified as power laws. This result qualitatively agreed with the
observed value in MEG data (o = 0.62,37%), as both indicate persistent behavior
and thus long-range temporal correlations.

Fig. 6.3b provides examples of the log-log fluctuation plots for a single realization
(K = 0.7, (t) = 9.4) for both the Freeman and the Wilson-Cowan based model
(upper and lower panel, respectively). The latter clearly deviated from linearity
indicating that it did not scale as a power law. There the model selection procedure
assigned a piece-wise linear function (dashed gray in Fig. 6.3b) to the F; results
confirming the deviation from linearity. Other parameter values yielded similar
results for this model. The Freeman phase model yielded a power law with scaling

exponent a = 0.56; Fig. 6.3b, upper panel.

6.4.2 Functional connectivity & synchronization

As said, we quantified functional connectivity as pair-wise phase synchronization

of the phase variables gzﬁ,(c') following either the dynamics (6.1) indicated by the su-
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perscript (sim) or (surr) or the instantaneous Hilbert phase extracted from source-
reconstructed MEG data, superscript (MEG). Model performance was quantified
by means of the Pearson correlation coefficient p between the P®™) and PMEG)
matrices. Maximal PMEG)_pPEim) correlations were p = 0.56 in both models for
parameter values (K = 0.8, (1) =9.4) for the Freeman and (K =0.7, (73;) =9.4)
for the Wilson-Cowan phase model (Fig. 6.4). This value is comparable to values

45,383,384 'hut in contrast to the latter two

reported in previous simulation studies
studies no critical coupling strength was found at which model-data correlations
collapse. The Freeman phase model appeared less sensitive to overall coupling
strength than the Wilson-Cowan phase dynamics.

We mentioned above that R(t) and P,ié) measure two qualitatively different forms
of synchronization. That Pk(é) and R(t) indeed constitute two different aspects of
synchronization is reflected in the results. Whereas the qualitative difference in
the phase coupling matrices D}Y° and D}, did affect the autocorrelation struc-
ture in R(t) (Fig. 6.3b), i.e. the Wilson-Cowan model did not resemble power-law

behavior while the Freeman model did, it had only a minor influence on func-
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Figure 6.3: (a) DFA results for the R(¢) autocorrelations generated by the Freeman
phase model as a function of coupling strength K and mean delay (7y;) (in milliseconds).
Colors code the values of the scaling exponents « and are indicated by the colorbar. In all
cases we observed persistent behavior in line with our empirical findings. (b) Examples
of the fluctuation plots for the Freeman phase and Wilson-Cowan phase model (upper
and lower panel, respectively) for K =0.7; (1) =9.4 together with the linear fits (gray)
and the assigned model (dashed gray; fi° in (6.13)). The values on the x-axis are in
milliseconds on a logarithmic scale (based on segment sizes of 10* to about 10%® ms).
On the vertical axis the expectation value of F; is shown that was determined via the
corresponding probability densities p,; see also Appendiz 6.7.1. The Wilson-Cowan
phase model did not result in scale-free correlations for any of the parameter values,
with typical results for the log-log fluctuation plots similar to (b, lower panel). The
DFA result for the Freeman phase model (b, upper panel) was classified as a power law
with o = 0.56 — this was significantly different from mere random noise when tested
against surrogates.
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Figure 6.4: Pearson correlation values between the Fisher-z transformed P° and
PMEG) functional connectivity matrices for the Wilson-Cowan phase model (left) and
the Freeman phase model (right) as function of coupling K and mean delay (7y;) (millisec-
onds). The colored shading codes the correlation values and correspond to the colorbar
on the right-hand side. The non-shaded area corresponds to the case in which the cor-
relation was not significant. To respect weak coupling, the maximum coupling strength
was set to K = 0.7. Results were averaged over ten realizations for every parameter
combination.

tional connectivity in that in both cases a similar maximum correlation with the

empirical functional connectivity could be achieved (Fig. 6.4).
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Figure 6.5: Mean values (R(t)) as function of delay (7y;) in milliseconds (a) and coupling
strength (c). Black solid lines correspond to the Freeman phase model results, dashed
black lines to those for the Wilson-Cowan phase model. Empirical values are indicated
by the solid gray lines, surrogate values by dashed gray lines. (b) and (d) show averaged
functional connectivity <P(')> as function of delay (in milliseconds) and coupling strength
respectively. Values are averaged over coupling values K = 0.1,...,0.7 when displayed
as function of delay and over (73;) =0, ..., 75 as function over coupling strength.

The averaged measures (R(t)) and (P")) served to quantify differential effects
on synchronization behavior in the two models. In Fig. 6.5 we display the results as
function of both delay and coupling together with the surrogate and MEG data val-

ues. As expected from the repulsive coupling in the Freeman phase model, phases
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were dispersed with (R(#)) values significantly below surrogate values (p < 107%).
In contrast, the Wilson-Cowan model resulted in a partially synchronized state,
which better corresponded to empirical findings (gray solid lines). In accordance
with the results on P®™)-PMEG) correlations, the qualitative difference between
models in <R(t)> did not transfer to pair-wise synchronization magnitude <P(')>.
That is, both models yielded significantly larger <P(‘)> values than obtained for
the surrogate data set (p<10~%). This was the case despite the spatial desynchro-
nization of the network of Freeman models.

This striking result led us to further assess the dynamics of both phase models
by supplementary simulations with considerably larger coupling strengths. These
coupling values were beyond the weak coupling assumption, rendering the va-
lidity of the phase dynamics for these parameter values questionable; see also
Appendix of67 " Tt did, however, provide additional insight into the dynamical prop-
erties of the phase model (6.1), especially with respect to the synchronizability of
these networks. As shown in Fig. 6.6, the Freeman phase model did not allow for
a (partially) synchronized state even for large coupling strength. In contrast, for
sufficiently small delays the Wilson-Cowan phase model entered a fully synchro-
nized state. This is consistent with the coupling structure of both models given

by (6.6) and (6.3), respectively.

Figure 6.6: Mean values (R(t)) for large

coupling values equivalent to K = 5

q (black) and K = 10 (gray) for the Free-
A} man (solid) and Wilson-Cowan (dashed)
= > phase models. The gray solid line denotes
| the surrogate (R) value. While, consis-
o~ tent with the standard Kuramoto model
. - _ strong coupling induced a synchronized
= - state in the Wilson-Cowan phase dynam-
0 10 20 30 10 50 ics, this was not the case for the Freeman
(Tki) phase model. The delay values (1y;) are

in milliseconds.

Although the degree of phase synchronization of the Freeman phase model was
consistent with a repulsively coupled phase oscillator network, the inhibitory con-
nections in Cf; made a direct comparison with the repulsive cosine variant of the
Kuramoto network non-trivial. Nevertheless we expected these models to show
similar behavior, since the inhibitory connections were rather sparse compared to
excitatory ones (Fig. 6.2). To test this, we also considered an alternative: a Free-
man model that only comprised the excitatory part D}, i.e. the left upper block
of this matrix. Results are summarized in #PPerdix of67 T a nutshell, these results

indicate that the scale-free correlation structure displayed by the Freeman phase
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model is caused by (the nature of) the coupling between the excitatory units. Its
dynamics can thus be understood by considering the phase dynamics (6.1)/(6.6)

as a repulsively coupled Kuramoto network.

6.5 Discussion

We contrasted the phase dynamics derived from two seminal neural mass mod-
els, representing the integrated contribution of large numbers of neurons within
populations. Neural mass models have been used for modelling a wide range of
neural phenomena, ranging from the origin of alpha band oscillations and evoked
potentials ™™ to the onset of pathological brain activity patterns such as epileptic
seizures®>3%6 The phase reduction yielded phase oscillator networks that differed
qualitatively in their coupling structure. Nevertheless, both models performed
comparably well in the spatial domain as assessed by the PE™-PMEG) correla-
tions, i.e. they resulted in similar pair-wise synchronization characteristics as fea-
tured by the experimentally observed data. A related finding has been reported by
Messé and coworkers®*” who showed that model performance in terms of P correla-
tions was relatively independent of nodal dynamics. Here it is important to realize
that structural connectivity has a high predictive value for (empirical) functional

44.61,388 ) and

connectivity , which here could also be confirmed by correlating P,Sim
Sk (see Fig. 6.7). That is, both models generated functional connectivity struc-
tures that were highly correlated with Sg;. This same notion forms the basis for
the general finding in RSN modelling studies that optimal model performance oc-

t355. The critical slowing down around the bifurcation

curs near the critical poin
point allows for a maximal reflection of Sj; into functional connectivity383. We
showed that the reflection of structural into functional connectivity may occur in
two models generating qualitatively different dynamics. This indicates that an
inference about the dynamical regime, in particular regarding criticality, on basis
of the P correlations alone is non-trivial — at least for the phase oscillator models
considered here; see also® for a related conclusion. Whether this extends to more
complex networks consisting of detailed neuronal models is beyond the scope of
the current study.

In contrast to the pair-wise phase synchronization (PLV), the models differed
qualitatively regarding the phase synchronization quantified by the phase coher-
ence R(t). In particular, only the Freeman phase model displayed scale-free au-
tocorrelation structures observed in data, revealing complex characteristics in its
dynamics. The values of the scaling exponents (a > 0.5) revealed the presence of
long-range temporal correlations, which qualitatively agrees with the correlation

structures reported in brain activity 39372,
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In the Kuramoto model®>!, critical coupling strength is the value of the coupling
parameter K for which the desynchronized state loses stability and the system

enters a (partially) synchronized regime?".

Here, synchronization is quantified
by R(t), and hence measures spatial synchronization in the network. Functional
connectivity, however, is determined by the temporal alignment of, in the present
study, phase signals ¢;(t), ¢x(t) and thus reflects a fundamentally different form
of synchronization. We showed that these forms of synchronization were affected
differently by the generating dynamics: pair-wise synchronization largely agreed
between models, whereas R(t) did not. The average value and the autocorrelation
structure of R(t) were affected by the qualitative difference in coupling structure
between models.

The Wilson-Cowan phase model displayed a transition into a fully synchronized
state for sufficiently large coupling; see Fig. 6.6. Combined with the partial syn-
chronization displayed in Figs. 6.5c and 6.5a, this indicates that the Wilson-Cowan
model for K = [0.1,0.7] is located at the onset of synchronization, i.e. in its critical

regime. Although associated with critical dynamics3%6

, we did not observe power-
law correlation structures in this model. Similar findings have been reported3®
for phase difference time series ®y(t) = ¢;(t) — ¢r(t), not only in case of the
standard uniformly coupled Kuramoto network, but also for a more biologically
plausible model incorporating a DTI derived coupling matrix and distance-related
delays s°¢ #5043 However, long-range temporal correlations were observed in ®y,(t)
as well as R(t) in resting state brain activity in3"! and3™, respectively. This sug-
gests that the critical regime in Kuramoto-type networks has different properties
compared to the dynamical regime of the resting brain, be the latter critical or
not.

The desynchronized state for the repulsive coupling in the Freeman phase model
(6.6) was consistent with various analytical results?:37376391. cf Fig. 6.6. A
desynchronized network, however, does not exclude complex dynamics as reflected
in the presence of scale-free autocorrelations in the Freeman model. The topology
of this model may be regarded as related to phase oscillator networks consisting
of so-called conformists and contrarians studied in37%3%2, The latter showed that,
even for small networks, a variety of complex dynamics including chaos may occur.
A similar finding has recently been reported by Sadilek and Thurner*®, who studied
a two-layered Kuramoto network derived from the same Wilson-Cowan dynamics
as considered here. They identified a chaotic region with the largest Lyapunov
exponents arising at the boundary of synchronization, i.e. in the critical regime.
By changing the value of the delay parameter range, this model could switch
between a synchronized and desynchronized state through a bifurcation.

Despite the fact that the model in*® and the Wilson-Cowan phase model in the
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current study were derived from the same dynamics (6.2), both networks are quite
different in their topology and in their delay structure. The model in*® contained
an excitatory and inhibitory layer, whereas this was not the case in (6.1)/(6.3).
The reason for this discrepancy is that Sadilek and Thurner described the oscil-
latory trajectory solely by the phase variable, whereas we also took amplitude
into account %€ 24142 =~ Ag a consequence the reduction in dimensionality in the
Wilson-Cowan phase description that we found when deriving (6.1)/(6.3) from
(6.2), did not occur in*®. As a consequence, the inhibitory connections in the
neural mass dynamics were retained in the phase model in that study. A second
distinction between both models is the delay structure. In both models (6.2) and
(6.4) we regarded the delays between excitatory and inhibitory units to be negligi-
ble compared to those between excitatory units, as these connections represented
long-range connections subject to finite conduction delays. In contrast, the delay
parameter in“® quantified the delay between excitatory and inhibitory units and
excitatory-excitatory delays were assumed to be zero.

With the two models considered here we could explain two profound phenomena
observed in brain activity. The Freeman phase model generated the type of auto-
correlation structures observed in brain activity, but its coupling structure resulted
in a desynchronized network, i.e. low R(t) values, that did not agree with MEG
recordings (see Fig. 6.5). Additionally it could not account for a transition into
partially synchronized states, let alone the (pathological) fully synchronized one.
In contrast, the Wilson-Cowan phase model could cover these synchronization phe-
nomena, but it did not show the complex dynamics associated with (resting state)
brain activity. The fundamental difference in coupling structure, combined with
the analytical results discussed above, suggests that these dynamical properties
are mutually exclusive for the models considered here.

We are left with the question, whether one of these models could be modified
in such a way that it can exhibit both phenomena. First we have to admit that
our DTI-based construction of anatomy and delays is a clear simplification of the
‘real’ structural connectivity. Adjusting this may have major consequences for the
resulting phase dynamics. The aforementioned study by Sadilek and Thurner*®
gives an indication for this, since they showed that a connectivity structure allow-
ing for comparatively dense inhibitory connectivity yielded complex dynamics in
the form of chaos. Interestingly, in other types of models inhibitory connections

393-395

have been shown to be determinants in generating critical states and for

information transfer362-396

. However, these results reflected the dynamics within
a neural population rather than the dynamics in the global cortical network con-
sidered here. Neurophysiological findings indicate that the long-range connections

between areas are excitatory with inhibitory connections only providing local in-
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hibitory feedback?349:397:3% From such a neurophysiological perspective we regard
our coupling structure to be more realistic in the context of global cortical networks
than the one in*®. Thus, although incorporating inhibitory connections could po-
tentially merge the dynamical properties of the Wilson-Cowan and Freeman phase
descriptions, such a coupling structure would violate its neurophysiological plausi-
bility and thus the appeal of deriving these networks from a neural mass dynamics.
This is not to say that the network in*® is unrealistic from a neurophysiological
point-of-view, but both the connectivity and the delay structure may be more rep-
resentative of local interactions within a cortical region than of global large-scale
brain networks considered here.

As an alternative one may extend the models to the stochastic regime, e.g., by
adding noise to the firing rate or membrane dynamics. Dynamic noise is known for
its capacity to alter the correlation structure of global outcome variables like the
order parameter R(t). Dynamic noise can also influence synchronization patterns
and that not only by causing phase diffusion or shifting the critical point at which
synchronization may emerge; in the case of common noise, it may even induce
synchronization. A more detailed discussion of network dynamics under impact of
random fluctuations, however, is far beyond the scope of the current study.

Delays in networks can lead to very complex dynamics. Since we considered
the dynamics of the relative phases that were assumed to evolve slowly with re-
spect to the oscillation frequency €2, the delays between neural masses mapped
to mere phase shifts in (6.1). Therefore a comparison of the networks in which

4

delays explicitly influence the phase interactions, such as in*® and the analytical

399-401

results by , cannot be readily made. In the case of delayed phase interac-

tions, however, scale-free correlations could not be observed in a phase oscillator
network incorporating a similar coupling scheme to the one employed here*3:3%.
Taken together, our findings suggest that phase oscillator networks without dense
inhibitory coupling throughout the whole network, are not capable of showing the
entire dynamic spectrum of resting state brain activity. Whether this limitation
is posed by the phase oscillator network itself or the consequence of collapsing
population dynamics onto a low-dimensional description in the form of a neural

mass model remains to be seen.

6.6 Conclusion

We illustrated some challenges when deriving and interpreting the phase dynamics
of neural mass models. As an example we employed networks of Wilson-Cowan
firing rate models and networks of voltage-based Freeman models. The phase dy-

namics of these models differed qualitatively by means of an attractive coupling
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in the first and a repulsive coupling in the latter. While both phase dynamics did
cover the functional connectivity observed in resting state activity, they failed to
describe two pivotal dynamical features that have been reported in many exper-
imental studies: (1) a partial phase synchrony with a possibility of a transition
towards either a desynchronized or a (fully) synchronized state; (2) long-term
autocorrelations indicative of a scale-free temporal dynamics of phase synchro-
nization. The phase dynamics of the Freeman model exhibited scale-free behavior
and the Wilson-Cowan phase model could switch into a (partially) synchronized
state. However, none of the phase models allowed for describing both dynamical
features in unison.

There is a range of possibilities to modify these models, e.g., by misbalancing
excitatory and inhibitory units or by introducing delays that are biologically less
plausible than the ones we chose. Alternatively, one may consider the phase dy-
namics further away from the onset of oscillations (Hopf-bifurcation) that limits
analytic approaches. By either of these adjustments one may lose the direct link
to the structural connectivity structure. In our example, neither of the phase dy-
namics can capture the full dynamical spectrum observed in cortical activity. We
have to conclude that modeling phase synchronization and, in particular, inferring

characteristics of its underlying neural mass dynamics require great care.
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6.7 Appendix

6.7.1 Detrended fluctuation analysis with model comparison

To assess the temporal character of gb,(g'), we determined the Kuramoto order pa-

rameter

R() =

N
> eiei’ 0
k=1

That is, we only used the excitatory phases to calculate R(t). In analogy with
the procedure for empirical data discussed in®" we z-scored the R(t) time series,
such that differences in scaling behavior could not be attributed to differences
in the stationary statistics of the R(t) time series. We resampled R(t) to 250
Hz to match the sampling frequency of the data as well as to obtain an equally

378

spaced time axis necessary for the detrended fluctuation analysis (DFA)®" used
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to characterize the R(t) autocorrelation structure. To assess the presence of scale-
free autocorrelations in R(t), we used a modified version of the conventional DFA
procedure. We shortly summarize this below; for a detailed explanation we refer
0379
In line with the outline around (6.8), consider (the cumulative sum of) a time
series Y(t), t = 1,..., N that is divided into | N/n]| non-overlapping segments
Y; (t) of length n with ¢ = 1,...,n. Upon removing the linear trend Y;*"4 (¢) in

segment i, the fluctuations F; (n) corresponding to window length n are given by

Fi(n) = || = D7 (V1) = Vi (1)

In the conventional DFA procedure one calculates the average fluctuation magni-

tudes

LN/n]

R0 =\ [y 25 M0

We regarded {F;} as a set of | N/n] realizations of the ‘stochastic’ variable F; and
determined its probability density p,(F;). When these fluctuations scale as a power
law, i.e. F;(n-c) = n*F;(c), we find that log (F; (n-c)) = alog(n) + log(F;(c)).
Hence, under a transformation to logarithmic coordinates 7 = log(n), F; =
log (F;), a power law appears as a linear relationship. To identify whether power-
law scaling was present we fitted a set of candidate models fp (i) parametrized by
the set . The linear model corresponding to power-law scaling was contained in
this set, such that we could compare it against alternatives. For this comparison

we defined the log-likelihood function as

tn (£610) ) =t (TL5n () = Xt (u () ) - (6.11)

where p,, denotes the probability density p,, transformed to the double logarithmic
coordinate system. In (6.11) one evaluates for each n the probability density p at
model value fp(n) and defines the likelihood function as its product. The purpose
of calculating £ was to be able to use of the Bayesian Information criterion (BIC)
defined as

BIC = —210 (Lyna) + k In(M) (6.12)

to compare different models fp. In (6.12) M denotes the number of different

interval sizes n, k the number of parameters in the model (the size of the set )
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and L., the maximized likelihood with respect to a particular model fé'). The
model resulting in a minimal value of the BIC compared to alternative models was
considered to be the optimal model; providing the optimal compromise between

380 The set of candidate models was given by a

goodness-of-fit and parsimony
combination of polynomial forms including the sought-for linear model. We further
included an alternative exponential model fit as well as the form resulting from an

Ornstein-Uhlenbeck process and, last but not least, a piece-wise linear model:

f;(l’) = 91 + 621’ fg(l‘) = 01 + 492[E2

fg’(l’) (91 + le’ + 03[[’ fél(ﬂf) = 01 + 02I3

fo(x) = 0y + Oz + O3 (1) = 01 + 02 + O52°

fa(x) = 0y + 02 + O32% + 042 i) =6, + B,e?3” (6.13)
9 _ _9261n<10>z

fol@) =%+ 155 (10)ln<91< >>

O+ byr =<6
100,y = J P T IEEET e O = 0+ (0, — 605)0s
C+0x x>0,

The scaling exponent o was determined as the slope of the linear relationship
fo, i.e. @ = 0y in fj(x). When reporting mean « values, we only use those a
values obtained in realizations for which the BIC indicated power-law scaling.
We also calculated the finite-size corrected Akaike information criterion AIC, =
—210 Lo + 2k + 2EH)
F; for the range of interval sizes n = [10, N/10], where N denotes the length of

the time series, here amounting to 300 - 250 = 7.5 - 10* samples.

which led to similar results (not shown). We determined

6.7.2 Correlating functional and structural connectivity

We computed the correlation between P,gs‘“” and Si; to show that both models
generated functional connectivity structures that were highly correlated with Sy;
see Fig. 6.7.
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Figure 6.7: Pearson correlation values between the P° and Sjy; matrices for (a) the
Wilson-Cowan phase model and (b) the Freeman phase model as function of coupling
strength K and mean delay (73;) (in milliseconds). The colors code the correlation
values and correspond to the colorbar at the right. Correlation values were averaged
over ten realizations for each parameter combination. Note the similarity of this figure
with Fig. 6.4 suggesting that the reflection of Si; is an important determinant in high
functional connectivity correlations 402,
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Epilogue

Synchronous, coherent interaction s key —
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Phase synchronization is a fundamental concept to assess and quantify coherent
network activity. This dissertation aimed at a thorough introduction to analyz-
ing the phase dynamics of oscillatory networks. The human brain represents an
important example of a complex oscillatory network. It therefore provides an
ideal playground for mathematical and computational neuroscientists where we
can apply ideas and tools from nonlinear dynamics and complex systems theories
to model the experimentally observed, collective dynamics that emerge from the
interplay of a multitude of neurons. In particular, I focused on populations of
neurons that exhibit rhythmic macroscopic behavior and investigated the mutual
interaction of these oscillatory neural populations, typically represented as coupled
neural masses.

In Chapter 1 I introduced the concept of synchronization in the realm of neural
dynamics, and addressed the notion of phase synchronization as a powerful means
to describe the interplay of neuronal oscillations and coherent brain network ac-
tivity. Chapter 2 presents an extensive overview of phase reduction techniques. I
explicated both numerical and analytical techniques to derive the phase dynamics
of oscillator networks. Moreover, I complemented the overview with an outline of
normal form reductions, which form an integral part of analytical phase reduction
techniques. In Chapter 3 I subsequently illustrated the different phase reductions
along two seminal examples of oscillator networks. The first part dealt with a
network of identical Brusselators, which is an exemplary chemical oscillator. The
Brusselator model displays a broad spectrum of complex dynamics and is at the
same time mathematically tractable. It was therefore perfectly suited for testing
how phase reduction techniques differ when allowing for more realistic, complex
and nonlinear coupling schemes. The second part focused on the phase reduction
of a network of identical Wilson-Cowan neural masses, which can be considered a
raw model for introducing biophysical realism in macroscopic neural dynamics. I
concluded that analytic phase reduction techniques provide a parametrization of
the phase dynamics in terms of the underlying model parameters. Close to bi-
furcation boundaries, the analytically reduced phase models perform equally well
as those derived numerically. Further away from bifurcation boundaries, numer-
ical reduction techniques outperform analytic approaches, however at the price
for computationally expensive scanning of the parameter regions in order to gain
intuition about the influence of particular parameters on the collective phase dy-
namics.

In Chapters 4 and 5 I briefly left a rigorous phase reduction aside and con-
centrated on the collective dynamics of coupled phase oscillators. In Chapter 4 1
elucidated the effects of network-network and cross-frequency interactions. I found

that the phase synchronization properties of two coupled symmetric populations of
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phase oscillators coincide with those of a single population whose oscillators follow
a bimodal frequency distribution. Following the Ott-Antonsen theory, I was able
to exactly describe the low-dimensional collective dynamics of the networks. In
Chapter 5 1 extended the existing Ott-Antonsen theory to parameter-dependent
oscillatory systems. An important example of this class of oscillators is the theta
neuron, which corresponds to the quadratic integrate-and-fire model, resembling
a spiking neuron. I illustrated the proof along a network of quadratic integrate-
and-fire neurons and thus put a broader applicability of the Ott-Antonsen theory
on mathematically firm ground.

Eventually, I returned to reduced phase models in Chapter 6 and investigated
the phase dynamics of Wilson-Cowan and Freeman neural mass models. Given
experimental MEG data displaying large-scale brain activity at the edge of criti-
cality, the aim was to model two corresponding but distinct dynamical features,
namely partial phase synchronization and scale-free temporal dynamics. The Free-
man phase model exhibited scale-free behavior, whereas the Wilson-Cowan phase
model showed a transition to partial synchrony. However, neither of the reduced
phase models could capture the full dynamical spectrum of cortical oscillatory
activity.

We are left to discuss the implications of the foregoing studies, including their
implicated results as well as their relevance for neuroscience. In the following
Section 7.1 1 will briefly revisit the research questions initially stated in Section 1.3.
I will address general aspects of phase reductions in Section 7.2, shed light on
the predictive power of phase models in Section 7.3, and place the previously
addressed neural mass models in context of other frequently used neural oscillators

in Section 7.4, before I conclude with a brief outlook.

7.1 Reuvisiting the research questions

The first part of the dissertation arguably sought for an answer to the question,

o What is the best way to distill the phase dynamics of a complex oscillatory

network?

There exist a short and a long answer. The long one follows the reasoning of
Chapter 2. The mathematical theory of different phase reduction techniques and
their comparison have been illustrated in various applications in Chapter 3. The
short answer to the research question is: there is no easy solution. Determining an
accurate phase model that captures the (phase) dynamics of a complex oscillatory
network is a challenge. Although sophisticated mathematical theory and numer-

ical analysis techniques exist, the main problem is that there is no ground truth
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of exact phase dynamics of complex oscillatory networks. Despite the seemingly
philosophical touch, the statement builds on the fact that phase (and amplitude)
variables are essentially relativistic observables and no absolute properties of (com-
plex) oscillatory behavior. Yet, within the realm of weakly coupled limit-cycle
oscillators the phase description becomes instrumental in characterizing the state
of each oscillator. From this perspective, phase reduction techniques as outlined in
Chapter 2 are crucial in that they enable us to properly derive a phase model that
corresponds to the actual phase dynamics. While both analytical and numerical
phase reduction techniques have their respective pros and cons, I suggest the fol-
lowing: The interplay between analytics and numerics is key to validate the phase
model. Analytic intuition should be combined with numerical accuracy and the

phase dynamics can be accurately distilled from the underlying network model.

e Under which circumstances can a low-dimensional description capture the

collective dynamics of complex phase oscillator networks?

Here, I refer to Chapters 4 and 5 for all mathematical details. Network-inherent
properties, such as an underlying connectivity structure or distributed parameters
across the nodes, specify the complexity of a network, and thus shape the col-
lective dynamics. The Ott-Antonsen ansatz had been successfully introduced to
capture the exact low-dimensional macroscopic dynamics of phase oscillator net-
works, whose major complexity was confined to a smooth distribution of natural
frequencies®!. A first more complex situation arose by allowing for multiple peaks
in the frequency distribution function®"*. The low-dimensional description of the
corresponding collective dynamics capitalized on introducing local (Kuramoto)
order parameters around the peaks of the distribution. These local quantities sug-
gested to disentangle the full network into interacting but separate populations of
phase oscillators. In Chapters 4 I rigorously proved that this view can indeed be
justified, at least for a particularly symmetric case. Seen from another perspective,
my proof points at a way how network-network interactions can be summarized
within a single (bigger) network that allows for casting the collective dynamics
onto the low-dimensional Ott-Antonsen manifold.

Further examples of complex phase oscillator networks whose collective dynam-
ics are low-dimensional and that can be retrieved along the Ott-Antonsen ansatz,
were addressed in Chapter 5. Buzzword here is “parameter-dependent oscillatory
systems”. Upon a reformulation into a particular phase model whose phase interac-
tion function is dominated by first harmonics only, I simplified the nodal dynamics
of the network by introducing appropriate parameter distributions or by identify-
ing additional dynamics as time-varying parameters. In this way, I could set the

applicability of the Ott-Antonsen theory on firm ground and use low-dimensional
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systems of differential equations to describe the exact collective dynamics of net-
works of quadratic integrate-and-fire (aka theta) neurons, of pulse-coupled Winfree
oscillators, of limit-cycle oscillators with shear, as well as of networks with partic-

ular connectivity structures, external forcing, and time delay.

e Do phase oscillator networks cover seminal characteristics of experimental

data from the cortex?

In order to find a satisfying and comprehensive answer, the utility of phase models
has to be judged critically and for their predictive power, which will be addressed
in more detail in Section 7.3. Chapter 6 provided a suitable scenario to test
whether neurophysiologically sophisticated phase models can capture the complex
dynamical notions of experimental data. In short, the phase time series of resting
state MEG data under investigation featured a dynamical spectrum that could
not be reflected in phase models reduced from seminal neural mass descriptions.
The reasons for the apparent gap between the recorded data and the simulated
phase dynamics can only be hypothesized. Considering the nature of the available
data, one possible reason comprises frequency and amplitude modulations that are
inherent in the experimental data but ignored in the phase model. Allowing for

time variability in the phase model can be a first step to bridge the gap to data.

7.2 Networks of complex neural oscillators and

phase reductions

Phase reduction is a powerful method to simplify the analysis of a network of inter-
acting oscillatory systems. While the systems’ dynamics are governed by nonlinear
and often high-dimensional differential equations, a phase reduction generally al-
lows for a dynamical description of the network’s nodes in terms of one-dimensional
phase variables only. Unfortunately, a unique phase reduction does not exist and
there is no straightforward recipe, either, along which the phase dynamics should
be reduced. Instead, one has to choose from a variety of different phase reduction
techniques, all of which have their advantages and disadvantages. This renders the
notion of phase dynamics somewhat ambiguous. As has been shown in Section 2,
for any chosen technique, the reduced phase dynamics have to be considered with
care. With the present inventory of phase reduction techniques we pointed out sim-
ilarities and differences between techniques. A common basis that all techniques
share is the theory of weakly coupled oscillators. The system has to exhibit stable
limit-cycle oscillations without the (external) influence or perturbation through

coupling or noise. And, the coupling strength has to be sufficiently weak so that
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the full dynamics remain close to the unperturbed limit cycles, and amplitude ef-
fects can be neglected. Under these assumptions, a comparison between reduction
techniques is possible, which can generally be grouped in analytic, and numerical
approaches.

While numerical approaches can be used to reduce phase dynamics for almost
every kind of oscillatory dynamics, analytic approaches heavily rely on emerg-
ing oscillations via a supercritical Hopf bifurcation. In this case the analytic phase
reduction splits into a two-step reduction: a normal form reduction brings the orig-
inal dynamics in Hopf normal form and, subsequently, phase reduction extracts the
corresponding phase dynamics. Once a system has been brought into Hopf normal
form, all phase reduction techniques, including numerical approaches, result in the
same reduced phase model, at least, in leading order. Differences between analytic
approaches do occur, though, due to different normal form reductions. Their ac-
curacy depends on the distance to the Hopf bifurcation point. Very close to this
point, the reduced phase models coincide almost perfectly for different analytic
and numerical reduction techniques.

Analytic techniques have the advantage that they allow for a parametrization
of the reduced phase model in terms of the original model parameters. Numerical
reduction techniques, by contrast, remain “black boxes”, at least to some degree,
and the link between phase model parameters and original parameters may re-
main opaque. For larger distances from the bifurcation point, however, numerical
techniques clearly outperform the analytic ones. A combination of both analytic
and numerical reduction techniques hence appears unavoidable when looking for
a thorough picture of the emerging collective dynamics of interacting oscillators.

A brief comment is at place about the Haken approach, also coined ad-hoc av-
eraging in Chapter 3, and upon which the phase descriptions in Chapter 6 dwell.
This method clearly stands out for its pragmatic applicability. In a straightfor-
ward way, it allows to express the phase model parameters in terms of the original
dynamics. Moreover, it avoids the assumptions of the theory for weakly cou-
pled oscillators. As long as small-amplitude oscillatory dynamics are of (or can
be transformed into) circular shape, it is possible to (semi-) analytically reduce
the corresponding phase dynamics — no matter whether these oscillations have
emerged through a supercritical Hopf, any other or no bifurcation at all, whether
they are induced by coupling strength or coupling direction, or induced by noise
or delay. This approach may lack mathematical rigor, and the reduced phase dy-
namics have to be compared to the actual evolution of the phases. However, it can
hint at the role of particular model parameters on the network dynamics, which
numerical techniques can only achieve by a computationally expensive scanning of

the parameter space.
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Last but not least, a thorough comparison between different methodological ap-
proaches usually implies a quantitative account to what extent these techniques
generate qualitatively equivalent results, which, in our case, are the resulting phase
models. It would be desirable to present particular error estimates for each tech-
nique. When based on the original model parameters, it might be possible to set
upper bounds beyond which a reduction technique can no longer be applied to de-
termine the corresponding phase dynamics at a given (small) error. Such estimates
are, however, few and far between. We hope that our inventory in Chapter 3 will

serve to establish this long-needed error estimation.

7.3 The predictive power and limitations of

(reduced) phase models

The reduction of a network of interacting oscillatory systems into a network of
coupled phase oscillators serves to facilitate the analysis of the collective, network
dynamics. In general, the oscillatory dynamics per node can be quite complex and
their evolution may be governed by a high-dimensional system of coupled nonlinear
differential equations. Phase reduction techniques allow to express the state of each
node in terms of a single, one-dimensional phase variable. The resulting phase
model thus reduces the dimensionality of the network dynamics to great extent.
But, how powerful is such a phase model? Obviously, this question is connected
to the first research question above. Yet, a satisfying answer must also address
the predictive power of phase models in general, and of reduced phase models in
particular. Whether a comprehensive observable of the collective dynamics can be
expressed in terms of the phase dynamics will be challenged in sub-section 7.3.1.
And whether phase models can be used to describe experimental data is in the

focus of sub-section 7.3.2.

Is a phase model a good model? A phase model, like any other model, is
neither good nor bad. A model cannot be good, or bad. It is either descriptive,
or it is not. A model can be more descriptive, or less. That is, it is more or less
accurate in a particular parameter region. And, it may uphold this accuracy over
a larger or smaller parameter region. Phase models capture the phase dynamics
of oscillatory systems. Not more, and not less. They gain their predictive power
by allowing for an accurate description of the phase dynamics of the underlying
system, and thus by predicting possible collective behavior of coupled oscillators

based on the dynamics of the phase relationships between them.
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Predictive power of phase models Usefulness and strength of a model is, in
general, judged by its predictive power. In view of this dissertation, the question
arises whether a simplified phase model can still provide an accurate description
of the oscillatory system under investigation. Quantifying the accuracy, and thus
the predictive power, of a phase model can be a challenge. It becomes particularly
difficult if such an assessment is supposed to be both quantitative and qualita-
tive. Qualitatively, an accurate phase model has to correctly describe the different
dynamical regimes of the underlying model as well as the transitions from one
regime to another. Quantitatively, an accurate phase model reflects the various
qualitative features of the underlying model, and, at the same time, numerical
differences between the respective observables of the original and the approximate
models converge to zero. A qualitative and quantitative assessment of the phase
model is especially important to determine a certain (parameter) range of validity
and applicability. Within this range, the model can be applied and is accurate up
to some error bounds. Beyond this range, however, it may lose its validity in a
strict sense and the actual dynamics diverge from predictions by the reduced or
simplified model.

As an example, I consider the case of a finite network of slightly heterogeneous,
nonlinear but smooth oscillators that are coupled with respect to an adjacency
matrix C. If these oscillations emerged through a supercritical Hopf bifurcation,
then for parameter values close to the Hopf point it seems reasonable to approxi-
mate the network by coupled Kuramoto phase oscillators as long as the coupling
is sufficiently weak. There are, however, three main concerns that have to be con-
sidered in order to predict network behavior by relying on the extensive literature
about the Kuramoto model.

1) How important is structural connectivity? If the adjacency matrix C' is suffi-
ciently dense, one may approximate it with an all-to-all coupling scheme without
losing too much accuracy. Obviously, sufficiently and too much are always rela-
tive and can only be quantified from case to case. The matrix C, however, can
also entail more complex connectivity structures, such as network modularity or
small-worldness. In the former case, it may be possible to extract modular struc-
tures and define interacting subpopulations that have similar internal properties.
We investigated a special, symmetric case of interacting subpopulations in Chap-
ter 4. For small-world and more realistic brain connectivity structures, simplifying
assumptions have to be made with care. The underlying network topology may
obscure other properties of the phase model and lead to false conclusions, see also
the Discussion of Chapter 3. In either case, the qualitative predictions of the phase
model may diverge from the actual network dynamics.

2) How important is heterogeneity? As has been briefly addressed in Section 3.3,
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there exist powerful techniques that allow for an exact low-dimensional descrip-
tion of the collective dynamics of a network, such as the Watanabe-Strogatz the-
ory® or the Ott-Antonsen theory®! se¢ @178 Both theories rely on a particular
distribution of the heterogeneity (up to the limit of identical oscillators). The
heterogeneity is usually expressed in the natural frequency terms of the coupled
oscillators, but can also emerge through other parameters, see Chapter 5. If the
heterogeneity can be approximated by a distribution function admissible to either
of the theories, then explicit equations for the evolution of the network’s observ-
ables can be derived. This makes not only a qualitative prediction of the network
behavior possible, but also a quantitative comparison to the actual dynamics. Let
me remark that also multimodal distributions are admissible. Given the results
on the interchangeability of a bimodal network formulation vis-a-vis a network-
network formulation from Chapter 4, the theories above apply also to interacting
populations of oscillators.

3) How important is network size? Next to the assumptions on network hetero-
geneity, a rigorous application of the Ott-Antonsen theory dwells on a fairly large
network. In fact, the theory is valid in the continuum limit when the network size
tends to infinity. This assumption is far from realistic for any biological network,
and even though the number of neurons in the human brain is reasonably large,
it still is finite. The literature suggest various approaches to determine so-called
finite size fluctuations around the exact macroscopic dynamics whose evolution
is governed by a few differential equations that are, strictly speaking, only valid

for inifinitely many oscillators 80184,

These fluctuations introduce a seemingly
stochastic character into the phase dynamics, which may clash with the determin-
istic nature of the actual network dynamics. A way out can be to apply some
temporal averaging. But then averages may remove important transient behavior.
In consequence, a compromise between a quantitative and a qualitative fit of the
macroscopic dynamics has to be found.

In summary, phase models provide the opportunity to express the collective net-
work dynamics in a low-dimensional system of differential equations. Some basic
assumptions on the structural connectivity and the heterogeneity of the underlying
oscillatory network model have to be fulfilled, however, to allow for an approxima-
tion of the network by such a phase model. The predictions of the phase models
can then be tested against the actual network dynamics and the dynamics of the

respective observables can be compared both qualitatively and quantitatively. In

this way, an assessment of the phase model’s predictive power becomes feasible.

Predictive power of reduced phase models The reduction of a meaningful

phase model along the reduction techniques presented in Chapter 2 builds on a
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handful of assumptions. As mentioned above, most reduction techniques rely on

8. Recently, phase reduction techniques

the theory of weakly coupled oscillators
have been refined and extended so that the assumptions inherent to the theory
of weakly coupled oscillators can be loosened to a certain degree, see Section 3.3.
Still, the closeness (in parameter space) to a particular bifurcation boundary is
a key ingredient for an accurate analytic phase reduction. In fact, bifurcation
boundaries explicitly delimit the range of applicability of a mathematically sound
phase reduction. Analytic phase reductions also provide the possibility to quan-
tify the accuracy of the phase dynamics at each node. This allows for a more
detailed assessment of macroscopic observables, and it becomes possible to trace
back whether particular parameters of the underlying network model are respon-

sible for a possible discrepancy between macroscopic observables.

7.3.1 Observables

Closely linked to the question of predictive power of a phase model is that of the
kind of predictions a (reduced) phase model is capable of. There are some observ-
ables of the network that can be quantified with the phase model, but for other
observables the full network dynamics have to be exploited. In most cases, reduced
phase dynamics are used to infer (the stability of) stationary collective network
states. As we have seen in Chapter 3, phase reductions provide a useful means to
predict whether one-, two-, or m-cluster states of the network are stable. These
predictions are based on the form of the reduced phase interaction function. In
principle, also complex and non-stationary network states can be foreseen through
the phase reduction, e.g., self-consistent partial synchrony or slow switching be-
havior, see Section 2.1.5.2. However, the transient and time-varying behavior of
non-stationary solutions requires rather a qualitative than a quantitative analysis
of the observable.

Throughout the dissertation I considered the degree of phase synchronization as
the main observable, which we measured in terms of the Kuramoto order param-
eter. For each point in time, the Kuramoto order parameter quantifies to what
extent the phases of the oscillators are mutually synchronized. Again one may ask
whether this order parameter is a good observable? And again, the answer has to
be that an observable is neither good nor bad. An observable has to be chosen
such that it can describe the aspects under investigation. Or rather the other way
round, the available observables define which aspects can be investigated. Consid-
ering the (network’s average) degree of synchronization, a simple value between 0
(full asynchrony) and 1 (full synchrony) may hint at some coherent behavior. But

it does not reveal any implicit structure of the oscillators, such as phase cluster-
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ing. In Section 3.1, I resorted to a phase clustering algorithm that determined the
number of clusters at a particular point in time. Unfortunately, such a snapshot
does not indicate whether these clusters persist over a longer period of time, that
is, whether the cluster states are stable. To investigate their stability, we labeled
the oscillators with respect to their (initial) cluster membership, and traced the
Kuramoto order parameter of only those oscillators within the same initial cluster.
If the Kuramoto order parameter stayed above some threshold value over some
time and its variance was negligible, we concluded that the corresponding cluster
was indeed stable. This example already shows the intricacy of observables: while
a qualitative inspection by eye, say, of the oscillators’ evolution in phase space, im-
mediately shows that, e.g., two clusters are stable and remain at a constant (phase)
difference from each other, the quantitative validation requires several subsequent
analysis steps.

As has been addressed in Chapter 6 in detail, the Kuramoto order parameter
provides a time-resolved spatial measure of phase synchronization, but it does not
indicate any temporal alignment of the phase time series of two oscillators. For
the latter, a temporal average of pair-wise phase synchronization in the form of
the phase locking value may hint at functional connectivity structures within a
network.

There are further important observables that help to quantify collective behav-
ior. To name but another two, valuable information about the collective dynamics
of finite-sized networks of coupled (phase) oscillators can be extracted, for in-
stance, from the generalized (Daido) order parameters'®4%. Another important

concept may be that of susceptability #0440

when investigating the effect of exter-
nal (stochastic) perturbations on oscillatory networks.

At the end of the day, the predictive power of (reduced) phase models is in-
tricately linked with quantifiable observables. For this reason, it is important to
clearly state the object of investigation and how this can be observed and quan-
tified with macroscopic variables. Predicting the behavior of these observables by
using the (reduced) phase model can cut an extensive analysis of the full underly-
ing system short. In this way, the collective dynamics can be described correctly
as long as the parameter region falls within the previously determined range of use

of the phase model.

7.3.2 Modeling experimental data

Revisiting the results of Chapter 6, the reduced phase models of Wilson-Cowan
and Freeman neural masses were not able to simultaneously describe two impor-

tant features of the experimental resting state data. Despite realistic connectivity
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and time-delay structures, the neural mass phase models either described (spa-
tial) partial phase synchrony or detected (temporal) scale-freeness, but none of
the phase models captured both features of the experimental phase time series
that were extracted from recorded MEG data after beamforming onto a 90-node
brain parcellation, filtering in the alpha band (8-12 Hz), and constructing the an-
alytic signal using the Hilbert transform. One may speculate about the origin
why the phase models cannot capture both dynamical features of the phase dy-
namics of resting state networks. Points of departure comprise both data analysis
and model reduction. Stepping over the model-inherent assumptions of the sem-
inal Wilson-Cowan and Freeman neural mass models dating back to Wilson and

™ as well as over our assumptions on the subsequent phase

Cowan® and Freeman
reductions, see Section 6.2, I would like to focus on the nature of the filtered data.
Although the data is confined to a 4 Hz-narrow frequency range, the oscillatory
dynamics exhibit both frequency and amplitude modulations, which cannot be

see, e.g., Fig. 1372 Tt o0es without saying that explanations for

disentangled easily’
these modulations (and emerging brain rhythms, in general) are vague and still
being sought for. Nonetheless, the structural connectivity of the brain as obtained
from DTI data together with parcellation schemes, either in the form of func-
tional neuroimaging®® or neuroanatomical and cytoarchitectonic approaches’”,
allows for a coarse-grained description of interconnected areas in terms of neural
masses or neuronal populations. As demonstrated in Chapter 6, it is apparently
not sufficient to approximate the oscillatory dynamics in each such brain area by
a reduced neural mass phase oscillator in order to retain the full picture of critical
brain dynamics expressed in terms of phase synchronization measures. Formu-
lated in a more positive way, our results still reveal that neural mass phase models
were, in fact, able to describe at least one aspect of criticality, which supports the
use of phase models for large-scale brain networks — as long as these neural mass
phase models were properly derived and applied within reasonable model-specific
boundaries.

More accurate models should take frequency and amplitude modulations into
account. These modulations may or may not be due to strong coupling effects
through other brain areas. If so, unfortunately, a mathematically rigorous phase re-
duction, as outlined in Chapter 2, would not be feasible. A different starting point
for a more adequate neural mass description requires time-varying parameters in
the neural mass models, and/or may introduce additional dynamics. Again, a sub-
sequent phase reduction is beyond the realm of mathematically thorough reduction
techniques. An exit strategy can involve phase-amplitude models. The recent de-

velopments within the Koopman operator framework?%%261 appear promising for

a meaningful and simplified phase-amplitude description of neural mass models.
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Whether the dynamical notions of criticality manifest in those models is, however,

beyond the scope of this dissertation.

7.4 Coupled neural masses and other neural

oscillator models

The main neuronal population model that has recurrently been used in this disser-
tation is the Wilson-Cowan neural mass model. Its rich dynamic behavior and the
various bifurcations it may undergo renders the dynamics representative for neu-
ral oscillator models. Naturally, the representativeness of the model is not alone
justified in the correct types of bifurcation through which oscillations emerge, as,

% models are generic neural oscil-

e.g., the FitzHugh-Nagumo“®® or Morris-Lecar?
lators close to Hopf and homoclinic (and SNIC) bifurcations, respectively. But
the dynamics of the Wilson-Cowan model also resembles the qualitative behavior
of the other neural oscillator models away from the bifurcation boundaries. At
the bifurcation points, the respective normal forms enforce a particular dynamic
behavior and a reduced network model of coupled oscillators can be established.
Further away from the bifurcation, however, the shape of the particular limit cycle
changes. This has an immediate effect on the coupling term, on the phase sensitiv-
ity function Z and thus on the phase interaction function H of the corresponding
phase model. In Section 7.4.1, 1 briefly comment on how higher harmonics in
the phase interaction function emerge, which are crucial for non-trivial collective
behavior, and we show that the underlying mechanisms are similar across neural
oscillator models. As we refer again to normal forms, the quadratic integrate-and-
fire neuron deserves a closer inspection, too. It is the canonical model for a SNIC
bifurcation, which defines together with the Hopf bifurcation the most prominent
transitions to oscillatory behavior. I will comment further on the emergence of
collective dynamics of coupled spiking neurons, as is the integrate-and-fire model,
in Section 7.4.2.

7.4.1 Emergence of higher harmonics in the phase interaction

function

The phase sensitivity function Z and the coupling term evaluated on the respective
limit cycles, are the main contributors to the phase interaction function H of the
reduced phase model, and thus influence the (predictions on the) collective network
dynamics. A biophysically realistic description of the coupling dynamics between

oscillators plays a pivotal role in the corresponding phase dynamics and can lead
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to higher harmonics in the phase interaction function H. This is in particular true
when the underlying dynamics has to be transformed in Hopf normal form in an
intermediate step. In fact for Hopf normal forms, the shape of the phase sensitivity
function Z remains always sinusoidal, even for normal forms of higher order, see
Section 2.2.5. Therefore, it is crucial to compute the transformed and nonlinear
coupling terms in normal form so that higher harmonics in H and non-trivial
(phase) network behavior can occur.

In view of numerical phase reduction methods, the intermediate normal form
reduction, including a careful transformation of the nonlinear coupling terms, be-
comes obsolete. Still, higher harmonics may emerge for rather simple yet nonlinear
coupling between neural oscillators. In this case, it is of paramount importance
to accurately assess the properties of the limit cycle dynamics, which become evi-
dent in the phase sensitivity function Z. I would like to remark that the correct
determination of higher harmonics in the latter has a twofold influence: not only
may it lead to higher harmonics in the reduced phase model, but it also gives
crucial information about a (numerical) phase extraction from the neural dynam-
ics in terms of time-series analysis. If higher harmonics become dominant and
in the extreme case, the limit cycle trajectory exhibits self-crossings in the phase
plane, a straightforward phase extraction using the Hilbert transform will not be
sufficient to define a meaningful phase. For this reason, I investigated the emer-
gence of higher harmonics in the phase sensitivity function when moving through
parameter space.

To anticipate my main finding, in very close vicinity to the Hopf and SNIC
bifurcation boundaries, the phase sensitivity function is well described by the an-
alytically predicted form, that is, it consists of first harmonics only. However,
moving away from the bifurcation point but still staying in close proximity, higher
harmonics in the phase sensitivity function become dominant. This phenomenon
is not a peculiar feature of the Wilson-Cowan neural mass model, but appears
generic across neural oscillator models ¢¢ &8~ also Figure 4 in102 T nymerically deter-
mined the adjoint solution for the phase sensitivity function of the Wilson-Cowan
dynamics and investigated how its shape changed along the parameter space. Ex-
tending the analysis in Fig. 3.7, I further increased the input parameter P, up to
the point where limit-cycle oscillations ceased via another bifurcation, see Fig. 7.1.
Although the first harmonic is the dominant one throughout the parameter space,
the analysis is quite insightful. When considering the fixed parameter values from
Section 3.2.1, oscillations emerge via a Hopf and cease through a homoclinic bi-
furcation. Directly on the Hopf bifurcation at P, =~ —0.3663, the first harmonics
is not only dominant, but also exclusive: the amplitudes of the second and higher

harmonics converge to zero faster than exponentially. This is perfectly in line with
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the analytically predicted purely sinusoidal shape of the phase sensitivity function.
On the other side, the nature of the homoclinic bifurcation becomes also apparent.
All harmonics tend to a non-vanishing constant amplitude, giving rise to the expo-
nential character of the bifurcation, see also!%? for theoretical arguments. Between
these oscillation boundaries, higher harmonics have a non-negligible effect on the
phase sensitivity function and must not be discarded. This becomes even more
striking when investigating the phase sensitivity function near SNIC bifurcations.
While higher harmonics vanish directly on the bifurcation points and thereby allow
the phase sensitivity function to take the known (co-)sinusoidal shape 1 — cos(#),
off these bifurcation points but in their immediate vicinity the amplitudes of the
higher harmonics contribute to the shape beyond merely higher-order corrections.

This sensitivity of the phase sensitivity function to even small parameter changes
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Figure 7.1: Higher harmonics in the phase sensitivity function of the Wilson-Cowan
neural mass model for varying input Pj.

is not a model-specific phenomenon, but it is inherent in most generic oscilla-
tor models. Brown and co-workers!? already reported changing phase sensitivity
functions, but did not explicitly point to this sensitivity. More rigorously, I com-
pared the numerically computed phase sensitivity function as the solutions to the
adjoint problem near and away the typical bifurcation boundaries. The generic
bifurcations (Hopf, homoclinic and SNIC) appear for different parameter values
in the Wilson-Cowan model. On the other hand, the FitzHugh-Nagumo model
displays oscillatory behavior near a Hopf bifurcation, and the Morris-Lecar model
can be tuned such that its dynamics are either close to a homoclinic or a SNIC
bifurcation. In Fig. 7.2 T illustrate how quickly the shape of the phase sensitivity
function changes and higher harmonics occur for increasing distances d from the
respective bifurcation points in parameter space from d = 1/10000 to d = 1/10.
It thus becomes crucial to properly define the parameters in all neural oscillator
models in order to not be ‘surprised’ by emerging nonlinear and complex coupling
effects. Consequently, an ad-hoc approximation of bio-physiologically accurate
nonlinear oscillator models, realistic coupling dynamics included, with a simpler
generic oscillator model, or even with its normal form, has to be regarded with
greatest care, and moreover may only be sound in an embryonically small parame-

ter region around the respective bifurcation boundary. Emerging higher harmonics
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Figure 7.2: Phase sensitivity functions (numerically computed via the adjoint method)
quickly diverge from the analytically predicted shape in the Wilson-Cowan neural mass
model (left) and in generic neural oscillator models (right) close to Hopf (FitzHugh-
Nagumo model) as well as to homoclinic and SNIC bifurcations (Morris-Lecar model for
different parameter values). The normal forms predict sinusoidal (Hopf), exponential
(homoclinic) and cosinusoidal /non-negative (SNIC) adjoint solutions near the respective
bifurcation points. Non-negligible higher harmonics emerge for increasing distance d
from the bifurcations. Colors represent this distance in parameter space: d = 1/10000
(blue), d = 1/1000 (red), d = 1/100 (yellow), d = 1/10 (violet). Insets for the homoclinic
bifurcations show the first two graphs in log-scale and display exponential decay. Phase
sensitivity functions are normalized in amplitude.

of the phase sensitivity function away from bifurcation boundaries and nonlinear
coupling terms will mutually interact and catalyze, thus generate rich and highly
non-trivial network effects. A careful investigation of particular parameter regions
and the corresponding dynamical regimes as well as their respective bifurcation
boundaries has to precede the appropriate choice of reduction technique, such that

meaningful and representative phase dynamics can be extracted.

7.4.2 A note on integrate-and-fire neurons

The normal form for the SNIC (saddle-node on a limit cycle, also SNIPER) bi-
furcation is given by the quadratic integrate-and-fire (QIF) neuron model, which
was introduced in more detail in Section 5.3. If a model exhibits dynamics close
to a SNIC bifurcation, it can be reduced to the QIF model in a straightforward

307410411 * The QIF model, like any other integrate-and-fire model, is strictly

412

way
speaking a pure phase model due to the absence of amplitude effects***. It can

be readily transformed into the theta neuron model®’”, which underlines the QIF
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neuron’s ‘phase’ character. The reduction of high(er)-dimensional neural oscilla-
tor models into integrate-and-fire models has thus to be considered with care. In
general, the oscillatory dynamics of higher-dimensional neural oscillators close to
a SNIC bifurcation describe a smooth closed limit cycle in phase space. Along
this limit cycle, the dynamics can be well described to be of integrate-and-fire
type. This description holds approximately also in the immediate vicinity of the
limit cycle. If, however, perturbations kick the dynamics off the limit cycle, am-
plitude dynamics towards the limit cycle have to be taken into account. The
amplitude effects, even if the rate towards the limit cycle is sufficiently high, are
crucial to analytically determine the phase response to the (finite) perturbation.
Weak coupling allows to approximate the phase response linearly and by using the
phase sensitivity function, which directly follows from the normal form. However,
the so-obtained phase model is only valid on the limit cycle and lacks a rigor-
ous justification for stronger coupling strengths. Moreover, this approach does
not allow to establish the (often informative) isochrons, much less a meaningful
phase-amplitude model. The global character of the SNIC bifurcation, opposed to
the local Hopf bifurcation, presents an insurmountable obstacle for a mathemat-
ically thorough, step-by-step reduction of the original dynamics. For this reason,
I chose to focus solely on dynamics close to a Hopf bifurcation in Chapters 2 and
3. This choice was not meant to undermine the importance of other bifurcations,
but served perfectly our purposes to present an inventory of different reduction

techniques.

Network dynamics of spiking neurons The SNIC bifurcation, and the QIF
neuron model itself, proved to be of fundamental importance for extending the
Ott-Antonsen theory to parameter-dependent systems in Chapter 5. The trans-
formation into a theta neuron revealed a phase dynamics that depended on an
additional parameter, thus requiring a more sophisticated treatment than avail-
able in the literature. The corresponding proof that networks of QIF neurons
fall in the category of phase models applicable to the Ott-Antonsen theory, auto-
matically captured further extensions, one of which addressed so-called heteroge-
neous mean field models, see Section 5.4.3. This in particular allowed for applying
the Ott-Antonsen theory to coupled phase oscillators given a specific connectivity
structure. Recently, the group around Ott and Antonsen treated in the same man-
ner QIF networks with non-trivial connectivity*'®. This extension opens the way
to further expand the range of applicability of spiking and pulse-coupled neurons,

as is the QIF model, to more realistic neural network topologies.
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7.5 Concluding remarks and outlook

Not only interaction but synchronized and coherent interaction is key for the func-
tioning of the brain. This dissertation addressed how phase synchronization phe-
nomena emerge and can be measured in coupled neuronal population models. Even
though phase synchronization is but one measure of neural synchrony and coherent
brain activity, the underlying concept is fundamental and captivates with its sim-
plicity and tractability. Investigating the collective dynamics of complex systems
by means of phase synchronization, however, bears some intricacies when applied
in a mathematically rigorous way. The first part of this dissertation provides an
inventory of phase reduction techniques and highlights some sensitive issues in the
reduction. Taking them in mind, allows to set the modeling of phase synchroniza-
tion on a firm ground. The second part of the dissertation dealt with applications
of (reduced) phase models, and pointed at possible extensions of mathematically
sound approaches to simplify the collective network dynamics. In the end, phase
synchronization can be used in many oscillatory networks as a well-descriptive
observable to quantify collective behavior.

Looking both back- and forward, there remain many questions that have de-
veloped during my PhD research project “Frequency-doubling bifurcations in neu-
ronal networks — a means of cross-frequency interactions”, and that await answers.
The nature of such questions concerns both mathematical as well as neuroscientific
aspects. Importantly, satisfactory answers will require a healthy balance between
these two disciplines, and analytic insights have to be combined with experimental
evidence and intuition. The emergence and function of brain rhythms still needs
to be elucidated, and how the interplay between distinct cortical and subcortical
rhythms shapes collective brain dynamics, thus leading to coherent behavior and
cognition, is widely unclear. We believe that changes on the micro-scale affect the
macroscopic dynamics. For this reason we investigated how tuning the parameters
of coupled (neural) oscillators induced different (brain) network behavior, and thus

generated macroscopic rhythms.

Asymmetry and time variability A straightforward example for cross-frequency
interactions between neuronal populations presented a network of two coupled,
symmetric populations of Kuramoto oscillators, as analyzed in Chapter 4. The os-
cillators’ natural frequencies of either population were distributed around a mean,
which was different for each population. Thereby I modeled the interplay of differ-
ent frequency bands in neural networks. Depending on the width of the frequency
distributions, on the distance between their respective means and on the overall

coupling strength, the collective dynamics indeed showed macroscopic oscillations
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and even a frequency-doubling bifurcation occurred (which is typically masked as
a Hopf bifurcation in the rotating frame formulation). While I considered a highly
symmetric setup, it can be interesting to include more realistic asymmetries: Neu-
ral populations featuring cortical low-frequency rhythms (delta, theta, or alpha)
usually show a frequency distribution in a fairly narrow frequency band, whereas
higher-frequency rhythms (beta, or gamma) cover wider frequency bands. More-
over, the lower the frequency of cortical oscillations, the higher their amplitude.
‘Translated’ into a mathematical phase oscillator model, these amplitude effects
can be expressed in a coupling strength asymmetry. Whether these asymmetries
allow for a similar topological equivalence between coupled and multimodal net-
works as in Chapter 4, will be shown in future studies.

As mentioned above, experimental data suggest (beamformed) cortical dynam-
ics that have a certain frequency variability. This can be modeled in terms of
time-varying natural frequency terms, see also the pioneering work by Petkoski

308 on a Kuramoto model with time-varying parameters. The

and Stefanovska
interaction of such parameter-dependent oscillatory systems and their collective
dynamics was the central issue in Chapter 5. Whether and how the adaptation
of phase models to include variable frequencies indeed results into exhibiting all
dynamical features of criticality as addressed in Chapter 6, remains another open

problem.

Collective dynamics of spiking neurons and cortical models Emergent rhyth-
mic behavior of networks of spiking neurons is an important topic in the field.
The mathematical proof in Chapter 5 captures the dynamics of spiking, quadratic
integrate-and-fire neurons due to their transformation into parameter-dependent
phase oscillators, aka theta neurons (this nomenclature is not to be confused with
the cortical theta rhythms). A rigorous application of the theory requires global
coupling of all neurons. The coupling between neurons can, in general, occur
through chemical or electrical synapses. Coupling effects at chemical synapses
are induced through the firing rates of the adjacent neurons. The global cou-
pling assumption, however, lets each neuron ‘see’ only the mean firing rate of
the population, which in turn facilitates the network analysis in terms of the
macroscopic observables — mean firing rate and mean membrane potential. In
the quadratic integrate-and-fire model, chemical coupling alone does not lead to
rhythmic macroscopic behavior!!l, which would manifest in oscillatory firing rates

and membrane potential fluctuations. Following the discussion about oscillations

[ 'We here refer to instantaneous chemical coupling as in2?3. If, however, we incorporate synap-
tic dynamics as in*!'*, or change the form of synaptic activation?299:291:415:416 " macroscopic
oscillations do emerge.
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and synchronization in the Introduction, this may indicate that chemical synapses
are not sufficient to synchronize a network. One way to induce oscillations is to
couple two populations of spiking neurons representing the excitatory (E) part
and inhibitory (I) part of a neural network, very similar to the assumptions of
the Wilson-Cowan model. Dumont and co-workers considered such a spiking E-I
network model*!” and determined the stability and robustness of collective oscil-
lations in terms of the (macroscopic) phase sensitivity function. Not only does
this work combine the different aspects of the dissertation at hand, it also points
at a possible way to underpin the oscillatory nature of phenomenological neural
mass models, such as the Wilson-Cowan model. Similar in nature, Rodrigues
and co-workers proposed mappings between a leaky integrate-and-fire model and
the Freeman model*®. A rigorous derivation of (low-dimensional) cortical mod-
els of spiking neurons certainly presents a possibly critical endeavor to overcome
the frequent criticism of heuristic neural mass model. To provide a neuroscien-
tifically satisfactory cortical model, neural plasticity should be incorporated. But
including the corresponding concepts into mathematical tractable model equations
requires a great deal of effort. Although synaptic and homeostatic plasticity are
conceptually well-understood, low-dimensional descriptions of network behavior

that respect plasticity rules at the microscopic level are long being sought for.
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LIST OF SYMBOLS

Throughout Chapter 2 and the Supplementary Material we use:

T, T,y
z

X CR”
n €N
f

¢

I

9.9
L

<
I
s}
_|_
g.

Real-valued state variable (non bold-face = scalar)
Complex-valued state variable

State space

Dimension of state space

Vector field

Flow

Nonlinear function prescribing the internal dynamics (non bold-face = scalar)
Nonlinear coupling function (non bold-face = scalar)
Jacobian matrix

Diagonalized Jacobian

Eigenvalues of the Jacobian

Bifurcation parameter

Coupling strength

Perturbation

Time

Slow time

Limit cycle

State variable on the limit cycle

Phase on the limit cycle

Amplitude of oscillation (radius of the limit cycle)
Amplitude (distance to the limit cycle)

Basin of attraction

Isochron

(Asymptotic) phase map
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0 Phase

) Phase difference

w Natural frequency

g(w) Natural frequency distribution

T Period

Q:S' =R Infinitesimal phase response curve

G:S'xR*" >R

Phase response function

Z:S' - R" Phase sensitivity function in n real dimensions
Z:St—=C Phase sensitivity function in one complex dimension
H Phase interaction function

Qn, by, Amplitudes of phase interaction function

C ={Cjit}jx Adjacency matrix, where j,k=1,...,N

NeN Network size

Tik Time delay between nodes j and k

R Kuramoto order parameter (real-valued)

v Mean phase

weC Normal form variable

MeN Order of normal form

Om = Um +iv,;,  Coefficients of Hopf normal form

a,B,v,6 € C Coefficients of the Hopf normal form of an oscillator network
Aintra FEigenvalue associated with intracluster perturbations
Ainter Eigenvalue associated with intercluster perturbations
1,1, Identity matrix in R™*"™

B Complex conjugation

) Temporal average (over one period)

(,) Inner product on R"™, also used in dot-notation

[, ] Lie bracket

St Rotation group on CV

SN Permutation group on CV

L Linear operator

S.1 Kuramoto’s reductive perturbation

Let us consider two coupled systems x,x’ € R", whose dynamics are described by

&= f(x,tp) + rg(z, ', t; 1) (S.1)

and an equivalent expression for ', with f: R™ — R", the coupling function g: R™ x
R"™ — R™ with coupling strength x € R and a bifurcation parameter y € R. We assume
xo(p) a steady solution for k = 0, i.e., f(xo(p); n) =0 for all u. We set

T=x—x9 and &' =x' -z,
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and expand f around x = xg, or around & = 0, respectively. By omitting the tilde, we

have
f(@; 1) = ny(x; ) + no(z, @ ) + ng(x, @, @; 1) + O(||*) |

where the n;’s are given by

n

1 OFF(x; k
e u® . a®) ) = E o <8aj‘ 83:‘( gw ) ul(ll)ug) . ugk) (S.2)
: 10Ty - .- Oy ) g

Utk =1

with u() = (ugj), . ,u(j)) € R™. Note that the n; are symmetric in their arguments
u® .. u®). We further expand my, with respect to p, e.g., ny(x; p) = Loz+uLliz+. ..,
and obtain

f(x;e?) = Loz + plyx + Moxzx + Nozzx + O(|z[*) | (S.3)

where Mouv = na(u,v;p = 0) and Nopuvw = nz(u, v, w;p = 0). We thus discarded

all O(p) terms in ny and ng in (S.3). Furthermore, we Taylor-expand g as
g(m, 33,) = Go + Giox + Gmw’ + G20m2 + Gnscac’ + Gogma + ... (84)

The underlying assumption of the derivation is that the system undergoes a supercriti-
cal Hopf bifurcation at 4 = 0 (and k = 0). Then, the operator L has a set of eigenvalues
o(Lo) = {\* | a = 1,...,n}, each of which can be expanded as A* = A§ + pA§ + ...
The Hopf bifurcation condition requires that )\(1) = —A% = jwp are purely imaginary and
that Re(\§) > 0 for all @ > 2. For convenience, we set w = u; as the right eigenvector

of Ly corresponding to the eigenvalue )\(1] = Ao, that is
.t/()’u = Xu and .t/()’l_L = 5\01_14

where \3 = Xo. Likewise, we denote by v = v the left eigenvector of Ly corresponding to
the eigenvalue \j = \¢: vLy = \gv. The left and right eigenvectors fulfill va = vu = 0.

Besides, we normalize them such that vu = v = 1. In particular, we have

Ao = 09 + 1wy = vLou

A =01 +iw =vliu .

From this, we see that the solution to the linearized unperturbed system, & = f)ow, is
given by

xo(t) = we“ly + we Wiy | (S.5)

where w is an arbitrary complex number, which we will refer to as the complex amplitude.
Taking the full dynamics (S.1) including the perturbations into account, x(t) generally
deviates from xo(t). In order to describe the asymptotic evolution of x(t), we consider

the complex amplitude w to be time dependent. In the following, we will derive the
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dynamics of w in the form
w = g(w,w) + e2kg(w, 0, w', @) , (S.6)

where the prime ’ indicates the coupled oscillator.

To begin with, we define € = \/m and y = sgn u. We can consider € = 1 + a2+ ...
where ; = O(¢!) and abbreviating ni (z) = L, we have L = Lo + xe2Li 4+ O(e*). We
further introduce a scaled time 7 = €2t such that = z(t, 7) depends both on ¢ and T,
which should be treated as mutually independent. Then, the time derivative becomes

d 0 9 0

@& ot o

Taken together, (S.3) reads

0 0 . .
<8t+€287_—L0—€2XL1—...>(wl—l-wg—i-...):

Moyxi21 + (2M0$C1.’132 + Nozclwla:l) + 0(84)
+ K [Go +¢€ (Gmﬂ?l + G01$/1) + g2 (G20$1m1 + G11$1m/1 + G02$,1m/1) + 0(63)] .
(S.7)
As we consider merely weak coupling, that is, 0 < k < u < 1, it is appropriate to

assume k — e2k. The right-hand side of (S.7) becomes
(M0$1m1 + IiGo) + (2M0$1$2 + Nox121221 + 2k [Gloml + G01£B/1]) + 0(54) . (SS)

The term in the first parentheses is of order O(g?) and the term in the second of order
O(e?). Note further that for this particular choice of coupling parameter n = &2k, the
coupling function reduces to at most linear coupling terms. If, e.g., n = O(e), then also
quadratic terms have to be taken into account. Here, however, we constrain ourselves
to mere linear coupling.

Equating the coefficients of different powers of € in (S.7), we get a set of equations of

the form
0

(at—fi())my:By, v=1,2,..., (S.9)

where B, = O(e”) and the first B, ’s are given by

Bl =0 )
By = Myz1z1 + %KGY

B3 = — (82387 - 62x1i1> x) + 2Myz1@2 + Nowi 11 + 2% [Groz + Gorw)]
(S.10)
Note that, in general, the B,’s are depending on x,, with v/ < v. Therefore, we can
solve the system (S.9) of linear inhomogeneous differential equations subsequently. In

order to ease the computation, we can make use of the following solvability condition.
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Lemma S.1. The solvability condition for system (S.9) reads
vB(r) =0, (S.11)

where B,(,l) 1s the first Fourier coefficient of the expansion

o0
B,(t,r)= Y BY(r)e" (S.12)
l=—0c0
Proof. First of all, we use the fact that
27 Jwo ) 27 /wo )
/ vB,e 0 dt = / vT-Bye ™ dt =0, (S.13)
0 0

which we prove via

27!'/0.)() . (S.g) 277/‘*’0 8 R .
/ vl - Be Wwol gy "= / |:UT . <8t - L0> my} e ™ol dt (note that Ao = iwp)
0 0

— /OQW/WO [v (Aox,) — (’U.t/()) wy} e” ot gt =0,

where the second equality is due to partial integration and the last due to v being the
left eigenvector of L corresponding to the eigenvalue Ag.

Having a closer look at system (S.9), the homogeneous part suggests that the x,’s are
2m-periodic functions of wot. Hence, also B, = B,(t,7) has to be 2r-periodic, which

admits the Fourier expansion (S.12). Substituting the latter into (S.13), we have

2m Jwo ) o0
/ vB, e Wl gt = Z
0

27 Jwo )
| eBY et d—o.
I=—00 V0

Evaluating all the integrals on the right-hand side, we see that all but the one where
[ =1 vanish, which leaves the solvability condition (S.11). O

Now, one can solve system (S.9) iteratively. For v = 1, we have

ol ~
(&t—L0>x1:07

which provides the “neutral solution”
x1(t,7) = w(T)ue™"! + c.c. (S.14)

where w(7) is the complex amplitude and c.c. stands for the complex conjugate of the
foregoing part. In particular, we have |w(7)| = O(e). As to v = 2, we would like to
mention first that since x; oc €0t the term Moz x €20f. Due to the solvability
condition (S.13), we know that (i) By has to be periodic and that (ii) the constant

coupling term G has to vanish as it will be averaged out. In the case that the coupling
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function g in (S.1) is explicitly time-dependent, in particular, all terms G in (S.4)
have to be time-dependent, we can likewise Fourier expand GGy and see that the first two
coefficients G(()O) = G(()l) = 0 have to vanish. Moreover, we can argue in the same manner
that all even Fourier coefficients Gﬁ"), n=0,1,2,..., of any coupling term G, J, k € N,
must be zero. In any case, By only contains zeroth and > 2nd harmonics, and the same

holds for @2 (t, 7). Therefore, we can write
xo(t,7) = V yw(7)2e¥0t LV _ip(7)2e 720t + Volw(T)|? + h.h. (S.15)

where h.h. stands for higher harmonics that will not be further defined. Substituting ao
into (S.9) and equating coefficients of different harmonics, we can solve the equation for

the constants V4 o and find

_ ~ 1 "
V,=V_=— (Lo - ino) Mywu and Vo= —2Ly Myua . (S.16)

For v = 3, we first substitute in x; and @2 into B3 as given in (S.10), and subsequently

solve for the first Fourier coefficient

0 ~

BV (r) = — ( 2@ ~ 2y L1>w(7')’u + <2M0uV0 +2MouV 4 + 3Nouuﬁ) Jw () Pw(r)
+ a%(Glouw(T) + G01uwl(7)> )

(S.17)

where we assumed no explicit dependence of g on time. Using the solvability condition

(S.11), i.e., vBél) = 0, and that vwu = w, we finally arrive at the amplitude equation
W = aw — Blw|*w + %k (1w + you) (S.18)
with complex constants

o =wveiyLiu,

B =—(2vMyuVy + 2vMyuV 4 + 3vNouuu), (5.19)
7N = vGiou,
Y2 = vGo1u .

Going back to the original notation with the n;’s and noting that the latter are linear

in each of their arguments, we find

8= —2vngs (u, u, '&) + 4vng (ﬁ, i}glng (u,w) ) + 2vngy (u, (IA/O — Ziwo)_l ny (u, u) ) i

(S.20)

As a final remark about the dot-notation in the amplitude equation (S.18), we replaced

£20/07 by 9/0t, such that the derivative is now taken with respect to the original time
t, although w = w(e?t) changes only slowly.

Coming back to the initial dynamics (S.1), we seek for the phase dynamics of the
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perturbed solution x(t) from the linearized solution x((t). We can write x(t) as
z(t) = w(t)e™'u + w(t)e “°'u + h.h. (S.21)

Differentiating with respect to time ¢ and inserting (S.18) gives &(t) = Weolu + c.c. +

h.h., where W = w + iwow describes the full amplitude dynamics
W = (o 4 iwo)w — Blw|?w + e2k(y1w + yow') (S.22)

on the slower time scale, where the natural frequency wg is added to the dynamics of
mere amplitude deviations (S.18).
Following the theory of weakly coupled oscillators, the crucial assumption for the

coupling constant is that
n=¢c’k with0<rk<e<1. (S.23)

This allows the linear coupling term to be correct of order O(e). Higher-order corrections
of the coupling term up to order O(£?) have been presented by Kori and co-workers?® and
we will elaborate on them further in Section S.2. If we drop the assumption (S.23), we
may consider nonlinear coupling terms in the phase-space dynamics (S.1). Furthermore,
the inhomogeneities B, in the reduced system (S.9) take more intricate forms and the

derivation leading to the amplitude equation (S.18) has to be revised accordingly.

Remark. The here presented Reductive Perturbation Method as one possible phase
reduction technique has been established by Kuramoto®®. Another technique closely
linked is the so-called Renormalization Group Method of Goldenfeld, Oono and co-
coworkers#19420 - Kunihiro demonstrates the intricate link between the two methods4?!:
Kuramoto’s solvability condition (S.11) is circumvented by introducing an appropriately

chosen constant & such that unwanted secular terms vanish.

S.2 Higher-order corrections and nonlinear coupling

We here follow the theory established in the preceding section. Not only do we want to
establish higher-order corrections of the coupling term up to order O(e?) as presented
by Kori and co-workers?®, but also we refrain from the direct, linear coupling. Note that
the results (S.19) for the parameters «, 3,712 remain the same for nonlinear coupling.

Yet, if we allow for higher-order corrections in the amplitude equation (S.18), that is, in
W = aw — Blw*w + 2k (yw’ + sSww'?) (S.24)

the additional parameter ¢ will incorporate the nonlinear effects of the underlying cou-
pling nonlinearity in the original dynamics.

Therefore, let us consider in the notation of the preceding section, the coupling func-
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tion
g(x, ') = Groz + Gor1x’' + Gaoo(z) + Gr1(z, ') + Goz(x') (5.25)
+ Gao() + Goy(z, ') + Gra(z, ') + Gos (') + ... '
where the functions
Gip(w,2') =Gz ,...,x,2',....2) (S.26)
— o
J times 1mes

are of order for Gj;, = O(e7%) for @, &' = O(e). For instance, we are interested in the
effect of nonlinear coupling terms xa’, ya’, 222’, zya’, y*a’ when & = (2,y), 2’ = (2/,y)
are two-dimensional. Possible examples for G, are Gii(x, ') = a - xz2’ +b - yz’ or
Goi(x,x') = c- 222" +d - xyx’ + e - y*a’ with parameters a,...,e. More general, if we

write all possible products of (z,y), (2',y’) of order j + k as a vector

(2.g) * (o) = Y T L Ll L T O T2 LA
Y Y= wia'k pi—Yyx'k o ydalk piakLy o yiyR )
we can rewrite the coupling terms Gj;, as
Gy ((,9), (&', 9)) = G [ (2,9 % (2',9))"] (5.27)

with G, a 2 x (j + 1)(k + 1)-matrix. In particular, Gip and Gg; are quadratic, 2 x 2-
matrices.
As before, we denote by xo(t) the solution to the linearized unperturbed system

& = Lox. The general solution, though, will be of the form
x = xo(w,w,0) + p(w, w,w, @, 0) €R", (S.28)
with w € C following the dynamics (S.6). For convenience, we rewrite the dynamics as

& = Lox + 2Ly + no(x, ) + n3(x, x, ) + %k gz, @) | (S.29)
W= W(w,w,w,w) . (S.30)

The functions W and p have to be determined perturbatively, as outlined in the preceding
section. Note also that W is free from § = 6(t). If we insert the ansatz (S.28) into (S.29)
and use (S.30), we find

Lop = Wexp(if)u + W exp(—if)u + b(w,w,w’, @', 0) , (S.31)
with the operator Ly = (ilo — wo%>, the right eigenvector u of L corresponding to

the eigenvalue iwg, and where

b=—c2L1x —no(x, x) — n3(x, z, )
dp - 0p

op — . 0p
_ 2 / / /
e’k Gl@, ) + Wo o+ Wom W s 4 W

(S.32)
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Regarding (S.31) formally as an inhomogeneous linear differential equation for p(0)
where the right-hand side is the inhomogeneous part, we solve it by first expanding p(6)
and b(0) as

p(0) = i pWexp(ild) , b(h) = i b exp(ilf) . (S.33)

l=—o00 l=—o00

Then, we use that exp(if)u and its complex conjugate are by construction the zero
eigenvectors of the operator Lo, i.e. Lo(exp(if)u) = Lo(exp(—if)u) = 0. Since the
left-hand side of (S.31) does not contain any of these zero-eigenvector components due
to the action of Ly, we require that these components are canceled also in the right-hand
side — this is the solvability condition corresponding to (S.11) in the preceding section.
Inserting the expansions (S.33) into (S.31) and comparing the first coefficients in the
basis {exp(ilf) | | € Z}, the solvability condition reads

W = —wbM | (S.34)

where v is the left eigenvector of L, corresponding to the eigenvector iwgy. For complete-

ness, we find for the other coefficients

p¥ = (i,o —ilw())_ b0 (1 #£+1), (S.35)
p) = (io - iw())il (b(l) n Wu) , (S.36)
pl = (io + z'w())_l (b(*l) + Vva) . (S.37)

Furthermore, we expand p® and b in powers of e:

S S SN TR SEL RS DL CE
v=2 v=2 v=2 v=2

or, correspondingly, we have

pzZs“ﬁV:Zpy, b:ZS”i)V:Zby. (S.39)
v=2 v=2 v=2 v=2

Likewise, we want to expand W. As we are close to a Hopf bifurcation, the only resonant
terms in w,w are of the form |w|"w with n = 0,1,2,...; see main text Section 2.2.2.1
and 12122 Since w,w’ = O(e) and based on our previous reasoning, the only mixed
terms with non-negligible effect on the amplitude dynamics (S.6) are of odd powers in

€. This justifies an expansion of the form
o0 B [e.9]
W = Z€2y+1W2y+1 = ZWQV+1 . (8.40)
v=1 v=1

In total, we have W, = O(e")(v > 3), by, p, = O(g”)(v > 2), and xy = O(e). In order
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to calculate W,, we need expressions for b, with 1 < u < v. After substituting all
the expansions above into (S.32), we compare terms of same order in £. Respecting the

symmetry of the n’s in their arguments, we find

b2 = —’I’I,Q(xo,a’:o) 5 (841)

by = —*Ly@o — 2na (w0, py) — n3(xo, To, To) — ke? (Gromo + Gorx() (S.42)

by = —£*L1py — 2n2(wo, p3) — n2(ps, pa) — 3n3(wo, To, ps)

— ke’ [G10p2 + Go1py + Gao(xo, o) + Gr1(xo, ) + Goa(xp, ) | (S.43)
b5 = _522-’1/)3 - 2”2(%0, p4) - 2n2(p27 p3) - 3”3(%0, Zo, p3) - 3”3(‘”03 P2, p2)
9py 5 0Py 1 0Py 5 0Py
+Ws Dw + W3 9% +W33w/ +W38w'

— ke’ [Glopg + Go1p5 + 2Gao(Z0, p2) + Gr1 (o, p5) + G11(p2, p) + 2Go2 (2, Pé)]

— ke’ [G:so(wo, xg, o) + Gai1 (@0, o, ) + Gr2(x0, 20, ) + Goz(xp, o, "136)} -

(S.44)
Using the solvability condition (S.34), we can calculate W5 = —'vbél) via

b:gl) = —52f11w[()1) — 2ny(xo, pz)(l) — ns(xo, To, :1:0)(1) — ke? (Glomél) + Gmwgl))

(S.45)
— Enl) —onafaf?, o) ol o2)
— ng(:c((]l), ac(()l),a:(fl)) — ke? (Glomél) + Gmmg(l)) .
Combining (S.35) and (S.41), we have
péo) = i);lbéo) = —22)5172,2 (w(()l),cc(()_l)> , (S.46)
pgz) = <fL0 — 2iw0)71 bg) = (i)o — 2iw0)71 (D) <$(()1), az(()l)> . (S.47)
Finally, noting that w(()l) = wu and 2§V = wu, we retrieve from (S.46)
Wi = %o — BlwlPw + % [yi0w + 01w’ (S.48)
with

a=vLiu, (S.49)
_ ~—1 _ RS . 1
g = —3vns (u,u,u) + 4vn (u, L, ns(u, u)) + 2vngy (u, (Lo — 2iwp) ™ na(u, u)) ,
(S.50)
(S.51)

Y10 = vGrouw , Y1 = vGoru .
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Analogously, we calculate W5 = —'vbgl):

bél) = _52i1P§,1) — 2na(xo, P4)(1) — 2n2(p2; Pz)(l)
— 3n3(z0, T0, p3) M) — 3ns(zo, py, py) Y

ap! ops) opY) 3/0(1) o[ () (1)
w +Ws o +Ws o +W3 Br — KE [G10P3 +Goip's }

— ke? [ZGzo(iBo, p2) Y + Gii(z0, ph) Y + Gri(py, )V + 2Goa (), Pé)(l)}

+Ws

— ke? |:G30(m0, X, 330)(1) + G21(m0; Zo, mi))(l)

+ Gha(@o, ), ) + Gos(xh, ), wg)(l)] (S.52)

Again, we have to expand the terms as before, which we show here for only the first line

of (S.52), the other terms follow equivalently,

’I’Lg(mo, p4)(1) - 7’1,2(3381), PS;O)) + n?( ((]_l)a pz(12)) )

na(pg, p3) D = na(pS?, p5 ) + ma (), o) + ma(p, pi)

+ma(pS Y, pP) + ma(pl 2, 6
na (o, @0, p3) M = ny(al), 2, pV) + 2m(alV, 20, plV) + ma(@l Y 2 o)

n3(o, py, po) ) = 20328, o8, p5 ) + 2ma(@l), o 05 + 2ma (2, p3, o)

+2na(ay o5 o) + malag 0y pl))

2ww'. Following Kori et al.?

exclude all terms that (a) include p,, (b) include :1:(()1), and (c) include a:(()_l) twice. We

We aim for those terms that contribute to ke , We can

find the remaining terms

2o — 2m, (w(() o) pf)>
(1

) (S.53)
—re?[Gropl ) +G01p’§1) e (m(() )7p/§2)> em (wé 1)’m161)7$/((]1)>} .

The first term can be dropped because the coupling term included there is linear. Fur-

thermore, the first two terms in brackets can be dropped, too, as each yields exclusively

(1)

either w,w or w',w’. Hence, the only relevant terms in by’ are the two last terms in

brackets and the k-dependent term in
—n (a7, p) (S.54)
As to the latter, according to (S.35) and (S.43) the x-dependent terms in pf) are

(ifo - 2iw0> _1< — ke? [GmP;Q) + Golp’g)

+ Goo(2,28)) + G (@, ') + Goa (2! )733'81))}) '

For the same reasons as above, all but the second and the last term in brackets can be
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dropped. Using (S.41), we have
. -1 . -1
p/éZ) = (LO — 2in) ( — Ny <:]3’((]1), :L'Iél)) ) = —w/2 (LO — 2in> ng(u, u) . (8.55)
Hence, (S.54) reduces to the x-dependent terms
. -1 . ~1
— 2ke2ww?ns (ﬂ, <L0 — 2iwo> [Gm (Lo — 2iw0> no(u,u) — Goz(u, U)D . (S.56)
In addition to this term, we find additionally
2 2 7 -t
+ kefww' [Gll <’l_l,, (L() — 2iw0> ’I’LQ(’LL, u)) — Glg(’l_l,, u, u)] . (857)
Taken (S.56) and (S.57) together, we find the following expression for ¢ in (S.24):

§ = 2vns (ﬁ, <i)o — 27jw0>_1 [Gm <i)o — 2iw0>_1 na(u,u) — Goz(u, U)D
—vG1y (ﬁ, <i;0 — 27Lw0>_1 ng(u,u)> +vGi2(a,u,u) . (559

Note that in the case of linear coupling, all G'j; vanish but Go1, in which case we confirm

the results by Kori et al.?.

S.3 Poincaré’s reduction via nonlinear transforms

We consider two weakly coupled two-dimensional oscillators = (z,y), 2’ = (z/,%') € R?

near a supercritical Hopf bifurcation, whose general dynamics is given by

&= f(z,t;p) +r gz, 2t p) (S.59)
and which we seek to transform into a generic normal form

W = aw — Blw*w + Kk h(w,w') (S.60)

where the complex parameters o = a(p), 8 = f() and the coupling function?) 4 have
to be determined subsequently. For the sake of legibility, we drop the explicit time-
dependence of f and g, and note that the theory also holds when allowing for time
variations.

By definition and without loss of generality, the dynamics of an uncoupled unit

& = f(x;p) (5.61)

2] In this section we denote the coupling function of the resulting Hopf normal form by h and

thereby deviate from the general notation g.
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has for all sufficiently small || < 1 the equilibrium (0,0) with eigenvalues

Ar2(p) = o(p) £ iw(p) , (5.62)

where (0) = 0 and w(0) = wp > 0. The first Lyapunov coefficient /; (0) = —Re £(0)/w(0),
which depends on the properties of the function f, does not vanish and ¢/(0) # 0. In

particular, we can rewrite (S.61) as

d(x\ _ x . wi _ (an(p)  az(p)
dt <Z/> =L <y> F <<y> ’ M) th Lix) (am(ﬂ) az2(#)) ’ (5:63)
where we further set o(u) = tr L(u) and A(p) = det L(u), such that

M) = & [o(w) £ Vo ()2 = 1500 - (5.64)

The Hopf bifurcation assumption translates into o(0) = 0 and A(0) = w3 > 0. For small

|pe|, we can introduce

o(p) = 30(p),  w(p) = 5V/4A(u) — o(p)? (S.65)

and set A\ = A\, A2 = \. As can already be anticipated, the parameter o in (S.60) is
exactly the eigenvalue A.

Let us now couple this unit, & = (x,y), to another identical unit, ' = (2/,y’), that
is, f = f’, via the coupling function g(z,’) and with coupling strength x € R. In
general, g depends on both the control parameter p and the coupling . Since |k| < 1
is sufficiently small, we will assume that the coupling function depends on x only up to

first order, so that the system of interest reads
& = f(a;p) + wg(a, @' 1) + O(x?) (S-66)

where g = g + O(k). In the following we omit the tilde. While common normal form
transforms merely consider single units, the following lemmata along the line of Chapter
3, Lemmata 3.3 — 3.6, in'?? are adapted to take the full, coupled system (S.66) into
account. By subsequently applying the theory outlined in this section, we can derive
the transformed equations in Hopf normal form and thereby allow for a reduction of
the dynamics onto the center manifold where we provide also the exact transformations
of the nonlinear terms in the coupling function g. To start with, we first rewrite the

dynamics in complex form.

Lemma S.2. By introducing a complex variable z € C, system (S.66) can be written for

sufficiently small |u| as a single equation:

=AWz + f(z,20) + £3(2,2,2, 25 1) + O(K%) (S.67)

where f,§ = O(|z|?) are smooth functions of (z,%; ), and (2,%,2',2'; 1), respectively.
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Note that z refers to unit © and 2’ represents x'.

Proof. As we assume x and @’ being identical in the uncoupled case, x = 0, the following
reasoning applies to both & and =’. Let w(u) = (u1(p), ua(i))" € C? be a right eigenvec-
tor of L(u) corresponding to the eigenvalue \(p): L(p)u(p) = AM(p)uw(p), and let v(pu) =
(v1(p), v2(1t)) € CH*2 be the corresponding left eigenvector: v(u)L(u) = A(p)v(u). We
assume u, v are normalized such that v(p)u(p) = vi(p)ur(p) + va(p)uz(p) = 1. Every

vector € R? can be uniquely represented for any small |u| as
x = zu(p) + zu(p) (S.68)

for some complex z and provided the eigenvectors are specified. Then, z = v(u)z. A

rigorous justification can be found in Lemma 33,122 By vector calculus we find that

¢ =v(w)z =v(u) [L(p)z + F(;p) + wg(z, @' p) + O(r)]
=MMMMw+M)F@M) Fai

+rv(p)g (zu(n) + Z0(p), 2'u(p) + 2'u(p); 1) + O(x%)
A(v+fvzuwwm 52,75 0) + O(s?) (5.69)
where F' denotes the nonlinear part of the function f(x;u) = L(p)x + F(x; ). O

It is favorable to write f as a formal Taylor series in the two complex variables z and

femm = 3 e (5.70)

k+1>2

where
3k+l
Tri(p) = W’U(Mf (zu(p) + zu(p); 1)
fork+10>2 k1=0,1,... .

Remark. Suppose at =0 the function f(x,0) in (S.66) is represented as
1
f(z.0) = ;B(z,2) + gCla, )+ o(llz)*) ,

where B(p,q) and C(p,q,r) are symmetric multilinear vector functions of p, q,r € R2.

In coordinates, we have

X:yﬁgo‘ Py . i=1,2
54k = L4
k=1 afjafk £=0

and

2. 8%fi(€,0)

par)= 2 0&;06,06 |

7,k,1=1

ijkrl ) i = 172 .
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Then,
B(zu + zZu, zu + za) = 2°B(u,u) + 222B(u,w) + z°B(a,a) , (S.71)

where u = u(0),v = v(0). Hence, the Taylor coefficients fi; of the quadratic terms in
f(z,i, 0), i.e. k+1=2, can be expressed by

f20 = ’UB(U, u), f11 =vB(u, ﬂ), fo2 = vB(u, '&) . (8.72)
Similar calculations with C give
fo1 =vC(u,u,u) . (S.73)

The following two lemmata are the key to transform system (S.66) into Hopf normal
form. In fact, both are polynomial coordinate transformations whose coefficients depend
smoothly on p. The proofs of the respective lemma use their inverse transformations,
which are again smoothly dependent on p but not necessarily polynomial. However, we
will not provide the proofs here but refer to Chapter 35122 Tt s worth mentioning that
in some neighborhood of the origin @ = (0,0), these transformations are near-identical
due to their linear parts.

The first lemma transforms the equation into one without any quadratic terms:

Lemma S.3 (Lemma 3.4'%2). The equation

PRV ;L e f—,zQ +0(zP) (S.74)

2

where A = AMp) = o(p) + iw(p), 0(0) = 0,w(0) = wo > 0, and f = fu(p), can be

transformed by an invertible parameter-dependent change of complex coordinate

hao o h2,2

z—w+7w + hjjww + —

for all sufficiently small |p|, into an equation without quadratic terms:
W= dw + O(|w|?).

The second lemma transforms the quadratic-free equation into an equation with only

one cubic term left:

Lemma S.4 (Lemma 3.5'%2). The equation

Z_Az+fg° i "’21 2*+@ *M% 2 +0(z") (S.75)

where X = ANp) = o(p) + iw(p), 0(0) = 0,w(0) = wo > 0, and fig = fr(p), can be
transformed by an invertible parameter-dependent change of complex coordinate
hso 5 ha hia

h
d=wt S +7w2w+7ww2+%w6
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for all sufficiently small |u|, into an equation with only one cubic term:
W = I + crw?w + O(jw|h),

where ¢; = c1(p) = fa1/2.

Combining the previous two lemmata, we can achieve the Poincaré normal form for

the Hopf bifurcation cf. also Lemma 3.6 in 122‘
Lemma S.5. The equation

1 -
f=Xit Y mfk,zkzl +kj(z, 2,2, 2 1) + O(12)4, &2 (S.76)

2<k+1<3
with Z = (z,2'), and where X = A(u) = o(u) + iw(p), 0(0) = 0,w(0) = wy > 0, and
frr = fr(p), and where g denotes § truncated after cubic terms, can be transformed by

an invertible parameter-dependent change of complex coordinate, smoothly depending on

the parameter,

h h h h h
2= p(w) = w4 —2w? 4+ hpwd + 2w + 2w + wd? + 2@, (S.T7)

2 2 6 2 6

for all sufficiently small |u|, into an equation with only one cubic term:
W= \w — fw?© + kh(w, @, w, @) + O(|W|*, K?), (S.78)

with W = (w,w’), and where 8 = B(n) = —c1(p) is given by
foofuiCA+A) | funl? | fo2|? J1

= — 4 = S.79
2NZ A 2w 2 (8.79)

and h has only polynomial components of degree lower or equal than 3, i.e. h is of the
form
h(w,w,w', w') = Z Rpgtmnw*@lw ™0™ (S.80)
0<k+l4+m+n<3
where for k+1+ m +n = 0 we have hgjmn = Grimn With the latter being the Taylor
coefficients of g, and if g has no constant term, i.e. Goooo = 0, then hgimn = Grkimn holds
also fork+1l+m+n=1.

Proof. The first part of the proof is a combination of the previous two lemmata. We
apply the first lemma to (S.76) in order to get rid of the quadratic terms. Then, we can
apply the second lemma and arrive at the amplitude equation as wanted. Note that by
the first transformation the coefficients of the cubic and higher order terms may have
changed. Therefore, the coefficients of the inverse transforms as given in the proofs for

122 are no longer valid in our scenario. Once the two subsequent

the two lemmata as in
near-identity transforms have been established, we can also apply them to the coupling
term. Indeed, the near-identity character leaves the linear terms unchanged such that

hklmn = Gkimn at order O(|Z|7 |W’)
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Practically, the idea of finding the coefficients in (S.78) breaks down to identifying the

coefficients aj; of a local inverse transform up to order O(|w|?):
R N 2 - 22 3 22 22 =3
w=1" "(z) =z+az”+a1122 + 2022° + a30z° + a212°2 + a122z2° + ag3z”° +... . (S.81)

Inserting the forward transform (S.77) into (S.81) and evaluating the right- and left-hand

sides coefficient-wise, provides the inverse coefficients ay:

h20 hOZ
a2 ==~ a1 = —haa, a = ==,
_ hgo  hYy  hathee
W=7 Ty T
3hogh hos|?
ag1 = 723 1 + ‘hll’Z + ‘ 022’ 5
h hooh hiih hiih
a1y = 7%+ 202 02 p2 4 112 20 112 02
hog h11h02 E20h20
e Ty Ty

By differentiating the inverse transform (S.81) with respect to ¢ and by using the ab-
breviations f(2) = Yo, 1/(RID fiush 2, g(2,2)) = 52 2,2, 7), and f(w) = f ($(w)),
g(w,w') = g (P(w), (w')), we have

W= %d}_l(z) = 2+ 2a02% + a2z +anzz + ...

= Az + f(2) + kg(2,2') + 2a20 [\2* + f(2)z + kg(2, 2')2]

+an [(/\ +N)2Z2+ f(2)2 + f(2)Z2 + k(g(2,2)z + g(z, z’)Z)} +...
= M(w) + f(w) + 2a20 [Mp(w)? + f(w)i(w)]
ann (A M) (@) + Tl (w) + fw)(@)

+ K {g(w, w') + 2a209(w, w' ) (w) + a1y (g(w, w)p(w) + g(w, w’)w(ﬂ))) +.. }

+ ...

[ E—

= w — w4 kh(w,w,w', @) + O(w|?) ,

where we inserted the dynamics (S.76) in the second equality and used the forward
transform (S.77) in the third equality. Note that we assumed that z and 2z’ coincide
in the uncoupled case k = 0. That is why the coordinate transforms z = ¢(w) and
2 = 4'(w') take the same form, that is, ¥ = ¢)’. Now, by collecting terms of the same
order and requiring that all quadratic and cubic terms except for the ww?-coefficient 3
are zero, we can solve the last equality and find 8 = —¢; as (S.79) and the resulting

coefficients hjj, of the forward transform (S.77) as

fin fo2
h == -— h = —— f— —
20 11 by 5 02 2)\_)\7
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and

fa0 | 3f5% | 3fuifor A=A
hao = \
Do T TR oo

f21 f20f02 f11 fllf?[)
hay = __J20jez , Ju JiL
SIS SUYVG) S VRS CILNE Y€

_ Jos 3 fa0 fo2 3f11fo2
M3 = A T B =N T B )@=

fi1fo2 22 — 3)

3X— 2\ -
( )T

The next step is to evaluate all terms of order x, that is, to find the hgpy,,’s from

h(w, w,w', @) = g(w,w")+2a209(w, w")h(w)+a1; <m¢(w) + g(w, w')¢(u?)) +...

(S.82)
Since ¢ (w) = O(w), we have that h(w,w,w’,w’") = g(w,w’) at order O(1). Moreover,
if g(0,0) = 0, i.e. g has no constant term, then h(w,w,w’,@w") = g(w,w") holds up to
order O(w,w’). We expand g into a formal Taylor series as has been done before for 1,

o I
G(z,2,2) 2 u) = Z mgklmn(u)zkzlz'mzm . (S.83)

0<k+I+m+n

Then, g(w,w") = §(¢(w), ¥(w), Y (w'), Y (@0'); u) and since 1 (w) = w + O(|w|?), we have
that hoooo = goooo, and if goooo = 0, then

hkimn = Gktmn for k+1+m+n=1, k,l,mn>0.

Remark. The coefficient 5 reduces at the bifurcation parameter value u =0 to

Ja .

B(0) = <f20f11 —2|ful* - *|f0 |2> (S.84)

Note that, together with the foregoing remark, the normal form resembles to great ex-
tent the formula derived in the reductive perturbation method, see the main text’s Sec-
tion 2.2.2.1, although the latter pursues an alternative way to arrive at the amplitude

equation.

In the following, we will briefly state the relationship between the original coupling
function g(x, ’; ) in (S.66) and the coupling coefficients hyjmn, of the dynamics in Hopf
normal form as in Lemma S.5. Recall from Lemma S.2 that we can write g(x,z’; 1) in

complex form as

9(2,2,7, 7' ) = v(p)g(2v(p) + 20(n), 2'v(p) + Z0(p); ) - (S.85)

Given a Taylor expansion of g = (g1, g2)T with @ = (z,y)T, 2’ = («/, )T,

1 ; .
gi(®, x',a) = Z mg,(;l)mn( a)zFyla™y™,  fori=1,2, (S.86)
0<k4l+m+n
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there exists a mapping

{ <gl(€l2rm’ glilr)nn) } = {Gktmn }

(%)

klmn

from the coupling coefficients g of the original dynamics (S.66) to those of the
complex-valued coupling function (S.83). To be precise, substituting @ = (zu(u) +

Zuy(p), zug(p) + Zuz(p))T and an equivalent expression for &’ into (S.86), we have

(2,222 1) = > vi(w)gi(zu(p) + zu(p), 2'u(p) + 2'0(u); 1)

=1
2
Z Z klll;lnl i( )glgzl)mn(u) {[ZUI(M) + ziag (1)]F [zua (k) + Ziao (u)]!
i=1 0<k-+i+m+n
[ ua () + 2 ()] " [z () + 2aa ()]}

Using the binomial theorem, (a 4+ b)" = >"7_, (}) a¥b" % we can simplify the equation

to

5w (S} 532525 ()6) () ()

0<k+l+m+n a=0 c=
(uzlz—l-cuk—l-m a— cub—i-d l+n b— d) Za—i—bzk’—i-l—a—bzlc-i-dzlm—i-n—c—d]}

= X k!u;!n!g’“’m”(“)zkzlz/mzm'
0<k+l+m+n
Note that u = u(u) still depends on the parameter u, which we omitted for the sake
of simplicity. Equating the sums in the first equation and collecting coefficients of the
same order leads directly to the correct expressions for gg;mn of the second equation.
Once we have the coefficients ggimn, we can apply the forward transform (S.77) to the
coupling function (S.83) as has been done at the end of Lemma S.5, and express ¢ in

terms of w,w’ as the formal power series

glw,w') = § (¥(w), $(), v(w'), H('))
= Y et () @) ) )"
k+l+m+n>0

Z Grtmn W@l w ™ @™ (S.87)
k+l+m+n>0

Due to the near-identity character of the transform i (w), the terms Grimn and grimn
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coincide for k + 1+ m +n € {0,1}. Yet, for higher-order terms we have

1~ hao . hoa - N _
92000 = 592000 + 791000 + 790100, 91010 = 91010, 91001 = 91001;
1~ ho2 . hao - . _
90200 = 590200 + 791000 + 790100, go110 = go110, goio1 = goio1,
1~ hao - hoz - . N o
90020 = 590020 + 5 90010 + 5 Jooot; 91100 = g1100 + h11g1000 + 1150100,
1~ hoz . hao - . N .
90002 = 590002 + 5 90010 + 5 9ooot; goo11 = Joo11 + h11goo1o + h11G0001,

and some particular terms of third order

l\)\H

92100 = 592100 + ( + hll) gi100 + 790100

hao

92001 = 592001 + 791001 + 790101

hao - hoa -

790110 + 790101

hao _ hia
goo21 + (2 + hll) Joo11 + 5 Jooo1

)_l

1 ~
90120 = 590120 +

goo21 =

l\)\H

g1110 = J1110 + h11G1010 + P11do110

g1011 = Gio11 + h11g1010 + hi1goror -
We can insert (S.87) into (S.82)

h(w,w,w',w") = g Rgtmmw 0l w ™™
k+l+m+n>0

E : k-l 'm —m

= www ow
Gkimn (888)
k+l+m+n>0

+ 2a9g Z gklmnwkwlw,mﬂ)m . ¢(w) + ...,
k+l+m+n>0

and solve for the hgj,n’s. As has been shown in the main text’s Section 2.2.1.2*, we

only need a particular choice of coupling coefficients, which are

hoooo = goooo,
hoo1o = goo10 + 2a2090000 + @1190000,

hOOOl = gooo1 + a1190000 + 2002§OOOOa
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ha100 = 92100 + @20 [2g1100 + h2090100 + 2h1191000]
+ a2 [2G0200 + 2h11G0100 + ho251000 + P12G0000]

_ - ho2 hao _ _ hia
+ a1 [92000 + g1100 + h1191000 + 790100 + 791000 + h11Ggo100 + 790000

+ 3a3o [go100 + 2h1190000] + @21 [2g1000 + 1000 + (h20 + 2h11) goooo + 2h11Goo0o)
+ a12 [2g0100 + ho290000 + (h2o + 2h11) Goooo| + 3aoshoz2doooo,

hao ho2 _ hao _
h2001 = g2001 + 2a20 [91001 + 290001] +an [290001 + go110 + 790010

ho2 _ _
+ 2ap2 — gooto -+ 3as090001 + a2190010,

ho120 = go120 + @1190020 + 2202900025

hoo21 = goo21,

h1110 = g1110 + 2a20 [gor10 + h1190010] + @11 [g1010 + h1190010 + Groo1 + 110001 ]
+ 2a02 [o101 + h11gooo1] + 2a2190010 + 2a12Gooo1

hio11 = g1011 + 2a2090011 + a119oo11 -

In comparison with the reductive perturbation approach presented in the main text’s
Section 2.2.2.1, we thus find the coefficients

hoo1o = goo10 = Jooro = V1 (u)géé)lom(u) + U2(H)9(()(2))10U2(M) ; (S.89)
ho120 = go120 — h1190020 — h02g0002 (5.90)
= %(ﬁomo — h11 §oo20 — ho2 Goooz + h20 Gor10 + hoz Goro1
— ha1hao Gooto — h11hoz Gooor — |ho2|? Gooro — h2ohos 50001) :
Note that the first term in parentheses, o120, can be ascribed to the coupling function
G112, the second and third to Ggeo, the fourth and fifth to G171, and the latter four to Goq,

as they are used in Section S.1. In particular, in case of linear coupling in the original

dynamics, only the terms corresponding to Gp; survive and (S.90) reduces to

hoi2o = —% <h11h20 0010 + h11ho2 Gooor + [ho2|? Gooro + h2ohos 50001) . (S.91)

Last but not least, we consider a network of N > 2 coupled oscillators &y = (xg, yx) €

R2 k=1,...,N, following the equivalent dynamics to (S.66),
iy, = f(@r;p) + rgp(@1, . 2N p) + O(K7) . (5.92)

In principle, the reasoning above naturally extends to the full system dynamics (S.92).
Especially the type of coupling between oscillators fully translates into the correspond-

ing coupling function hj in the reduced normal form dynamics w, = awy — Bwiwk +



Supplementary material 236

khi(wi,...,wy). In fact, we can prove the following

Lemma S.6. As before, we consider system (5.92), where each uncoupled unit xj, is
close to a supercritical Hopf bifurcation with |u] < 1 and that the coupling between units

is sufficiently weak, 0 < k < |pu| < 1. If the coupling function

N
gk(mlv cee 7mN;:u) = gk(mb .. .,$N) = ngj(mj7mk)
=1

can be decomposed into the sum of pairwise coupling functions gy, then also the coupling

function hy in the reduced Hopf normal form decomposes into pairwise interactions,
N
hi(w,...,wN) = Z higj (wj, wy)
j=1

Proof. The demonstration of the lemma is constructive and follows closely the proof of
Lemma S.5. The main assumption lies within the theory of weak coupling can be justified
in following way, see also the reasoning and proof around Theorem 58,78, A mathematically
rigorous normal form reduction of the full network may consider coordinate transforms
of the form Z = W(W) where Z = (21,...,2n), W = (w1, ..., wy) and ¥ = (¢1,...,9N)
with 1; = 9¥;(w1,...,wy). This general transformation can presumably lead to mixed
coupling terms in the normal form beyond pairwise interactions; see Section S.5 for the
full Hopf normal form of a network with Sy x S'-equivariance. For weak coupling,
however, we may consider ¢;(wi,...,wy) = w?(wj) + mﬁ}(wl, ...,wy) and for k — 0
we have (w1, ..., wy) = w? (wj). Given that the uncoupled systems are all identical,
the local coordinate transforms 1,/1? = 1) coincide with (S.77), which results in U(W) ~
(Qb(wl), . ,w(wN)). Then, the proof of the Lemma follows immediately.

For the sake of completeness, we here provide the details of the proof: Recall that we
identified both the normal form and coupling parameters 3, Agny, by inserting the local
coordinate transform ¥ (w), see (S.77), into the derivative of the local inverse transform
(S.81) and by a subsequent comparison of coefficients. Focusing on the terms of order

O(k), we have

Wy = fwg) + H[gk(wla oo WN) + 2a20gk (w1, - -, W)Y (W)
(5.93)

+ ant (gelon, - o) (wr) + gl won)(mg) + |

with f(w) consisting of terms that eventually become aw — Bw?w + O(|w|*). Recall also
that the coupling function gi(ws,...,wy) is determined from the original coupling g

via the transformations

gk(wl, ... ,iIZN) — gk(zl, .. ,ZN) — gk(wl, ... ,wN) .
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Fach of these transformations respects the form of coupling. In particular, for
gk(mla o 793N) = ng](mjawk))
J
then g and eventually also gi can be decomposed exactly into

ge(wi, ... wy) = gej(wy, wy).
J

Inserting this into (S.93) and given that 1(wy) is a polynomial only in wy, the right-hand
side of (S.93) can be written in the form f(wg) + £, hij(w;, wg) with

hij(ws, wi) := grj(w;, wr) + 2a209k; (w;, wi) Y (wy,)

+ a1 (gkj(wj7wk)1/}(wk) + ij(wjvwk)zp(wk)) +o 4 O(lw|?)

S.4 Takens’ reduction via Lie brackets

We consider a two-dimensional system x = (z,y) € R? near a Hopf bifurcation. For
a small perturbation parameter p > 0 and an equilibrium solution with eigenvalues
+iwg # 0 at u = 0, we can shift the origin appropriately such that = 0 is the
equilibrium solution undergoing a supercritical Hopf bifurcation. Furthermore, we can
bring the system into Jordan real form so that the dynamics expanded as a Taylor series

around = = 0 reads
@& =L+ Fy(x)+ F3(x)+ -+ Fo(x) + O(|z|") | (S.94)

with

L=Lo+puL +0(2) = (0 _”°> +u (5 _O‘) +O(u?)

x
Fo(x az air ap2
Faw) = () - vy
Foo(x) boo D11 bo2 9
Y
Note that for © > 0 we can introduce u = €? with 0 < ¢ < 1 and that the common
asymptotic scaling O(z;) = € is used in (S.94) and all subsequent series approximations.
Note further that we can also extend the (n = 2)-dimensional system & = f(x; u) to the
larger, n 4+ 1-dimensional system

T = f(w;ﬂ) > (895)

L=
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We can perform the normal form calculations in a likewise manner, requiring the coordi-
nate transforms P(x; i) to be of the form P(x;u) = (P(x; 1); 1). Apparently, they will
leave the equation j = 0 invariant, but transform & = f(x;u) in a p-dependent way.
Practically, the normal form calculations remain the same, yet the n-dimensional nor-
mal form system remains in normal form as p is varied to drive the system through the
bifurcation. While the normal form transformation following Poincaré in the main text’s
Section 2.2.2.2 takes the parameter dependence into account, the reductive perturbation
approach in the main text’s Section 2.2.2.1 does not consider the extended system. As
the deviations between these two approaches are hardly noticeable, we will stick to the
non-extended system also in this section — given that the higher order normal form is
meant for illustration purposes only.?!

Now, for w = (w1, w2)T and Py denoting the set of homogeneous polynomials of order
k, we find the Lie bracket for system (S.94) with L = Lox and p;, = (pr1,pk2)T € Pk as

(0 —wo)\ (pra(w)\  (Opk1/O0x Opp1/Oy) [0 —wo) (w:
ad L(py)(w) = (wo 0 ) (pkz(’w)) <8pk2/8x 0pk2/8y> (wo 0 ) <w2> .
(5.96)

For second-order normal forms, we are looking for a transformation p, of the form

T = w + py(w), where

Po(w) = <p21(w)) - <Z§° cijwiw%) L i=2- . (.97)

p22(w) Z?:O dijuﬂiw%

We shall perform the Lie bracket operation (S.96) on each basis element of Py, which is

o { ()57 (0) () (o) ()} - 9
We find

2 50 0 0
ad L(P2) = span { <w1 Wiz 1w 2) A%} =Py- A2, (S.99)

given by

0 0 0 w? wiwy w?
with
0O -1 0 -1 0
2 0 -2 0 -1
0 1 0 0 0o -1
A2 =

=11 0 0o o0 -1 o0
0 1 0 2 0o -2
0O O 1 0 0

B] In this particular section the order of the normal form is indicated by the index k of the
subsequent transformations p,. Compared to the notation in all other parts of the thesis,

k = 3 corresponds to second-order normal forms, k = 5 to third-order, etc.
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We can compute det (A%) = 8wy > 0 for wy > 0, that is, A% is non-singular and has
full rank. This implies that the image of P» under ad L is the whole subspace Po,
and therefore all second order terms can be removed by a suitable change of variables.
Indeed, substituting (S.97) into (2.53) of the main text and using that

(Dp(w))™" = (I + Dpy(w)) ™" = I - Dpy(w) + O(Jwl?) , (5.100)

we have

= 3" (1) [Dpy(aw)]¥ {Lw s Ipgw) + 30 30 2 Fulw) [m(w)]m} (8.101)

N= n=2m=0

o

=Lw+ ) F(w) (S.102)

where we truncated the Taylor series at order N and with

(1) 2 (1)
Fq(ll)(w) _ (Fn} (w)) _ (Z] =0 al] w1w2) , n — 27 el N’ 1 =2 — J ; (8103)
F7(12) (w) Z?:o bg;)w1w2

the number in the superscript parentheses refers to the index of coordinate transforma-
tions. Since the complement Hs of im (ad L(P2)) in Py is Ha = {0}, we have

F)(w) = Fa(w) + Lpy(w) — Dpy(w) - L(w) =0, (S.104)

that is, a( ) = b(l) = 0 for all i 4+ j = 2. Note that in order to derive F( ) at order 0O(g?),

we again used that p = €% and that F%)

= O(e") in the series representation (S.103).
Solving now the linear algebraic equation (S.104) for p, in the space Pq, we find the

coefficients ¢;;, d;; in (S.97) as

€20 azo bao + a11 + 2bo2

11 ai —2ag0 — b11 + 2aop2

o2 | _ (A%)—l a2 | _ =1 | 2by — a1+ bo2 . (S.105)
dao b2o 3wo | ago + bi — 2a02

diy b11 —2bao + a11 + 2bp2

do2 bo2 —2agp — b11 — ap2

As said, the higher order normal form computations build upon each other iteratively.

Hence, for the third-order normal form we are looking for a transformation x = w-+p;(w)

with . <P31(w)> ) (Z?;o cijij§> o3 (S.106)

Paz(w) >0 dijwiwy



Supplementary material 240

P53 is eight-dimensional and given by

o= { () (°57)- () (9): () (uts) (omeg) ()} -

(5.107)
Similar to (S.99), we find now
ad L(P3) = P3 - A} (S.108)
with
0o -1 0 0 -1 0 0
3 0 -2 0 0 -1 0
0o 2 0 -3 0 -1 0
o 0 1 0 O -1
A3 =y
1 0 0 0 O -1 0 O
o1 0 0 3 0 -2 0
o 0 1 0 O 0 -3
o 0 0 1 0 0

We can calculate that the vectors

er = (1,0,1,0,0,1,0,1)T
ey = (0,—1,0,—1,1,0,1,0)7

are two eigenvectors corresponding to the zero eigenvalue of A?i. Therefore, A% induces

a non-vanishing complementary space Hg given by

Hs =Py (e1 e2) = span { (wl(w% * “@), <_w2(w% i w§)> } . (.109)

wa(wi + w3) wy (w} + w3)

The resulting third-order normal form takes the following form

= Buw; — (ot + wo)ws + aywy (wi + w3) — bywe(w? 4+ w3) + O(lw |, |wa®) ,

Uy = (ap — wo)wy + Bpaws + agwa(wi + w3) + biwy (wi + w3) + O(lwi|?, Jwa?) |
(.110)

where a1, by are to be determined. In the same manner as before, we have

N v DmF
— Z N Dps(w)] Lw + Lps(w) + Z Z [p3(w)]™
=0 n=2m=0

N
= Lw+F§1)(w) —i—ZFﬁf)(w) (S.111)
n=3
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where
2) 2 )
F 2 (2 s
FO (w) = ( nl (“’)) — (Zﬂoaw w,lw2) . n=3,...,N,i=3—j. (S.112)

Thus, we have to solve
F{) (w) = F{)(w) + Lpy(w) — Dpy(w) - L(w) = Hs(w) (S.113)
for ps, which we can rewrite in terms of the basis functions of P3 as
A} e=F —Hy=k (S.114)
where we used (S.109) to get

€ = {c30, 21, €12, Co3, d30, d21, d12, do3 } T,

K = {aé%)) —ai, agll) + bl, agl2) —ai, a[%) + bl, bi(%%)) — bl, bgll) —ai, bglz) — bl, bé? — al}T .

138,139

Following the procedure outlined in , we find the resulting coefficients as

(a1> 1 ( ) + 3ay) + b + 3 )

) =5 el — sl ly 2y
€30 0
e | 1 3a§)) 3(1512) + bgll) b(%)
cia | 8wo 3aé11) —3a (()3) + bz(’,o) + b(l) 7 (S.115)
€03 0
o o) all ) o
do | 1 | aly) +3ay) + 565 — by
dp | 4wo | 3§ + a§2) +b5) + 5603

dos ayy + aly + b5y + by

Applying the same procedure, we can continue these calculations and derive the coef-
ficients of the normal forms of order 5 and higher. Generalizing system (S.110), the

normal form of order (2M — 1) can be written as

S R [

o (S.116)
+ Z(wQ +w2)j (aj _bj> <w1> +O(‘w’2M+3)
: 1 2 b s wo 3
j=1 j J
or in complex form for w € C as
M-1
= [(B + i) p + iwo] w + Z a; + ib;)|w|¥w + O(jw*MF3) . (S.117)

Jj=1
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For fifth order, the next coefficients can be found as

N R

by) T 16\ =0 — o — a® _ o® 4 5@ 14D 4 p®)

(S.118)
50 T b3g + 03

1 — Qo3 — Q14 — Qg

The corresponding coefficients c¢;;, d;; with ¢ + j = 5 for the transform ps(w) are listed

in'3®, The complexity of computing the coefficients for higher order normal forms in-

(3) 1(3) (2) (2
i+ ij ij »ij
near-identity transformations p;, k < 4. It becomes necessary to implement efficient al-

creases rapidly — determining a builds recursively on a and the lower order
gorithms in symbolic computation software without running in danger of overflow errors
due to memory storage. An arithmetic algorithm including the computation of normal
forms up to order 11 has been presented in'3?.

Once higher-order normal forms and their corresponding series of transformations p;,
have been established, the latter can be applied to the coupling term kg(x, ') of (2.51).
For our purposes, however, it is sufficient to consider the transformed coupling up to
third order. As we have illustrated the derivation of the coupling term using nonlinear
transforms in great detail in the main text’s Section 2.2.2.1, we refrain here from further

cumbersome calculations.

S.5 Ashwin & Rodrigues’ reduction via

Sy X Sl-symmetry

Ashwin and Rodrigues consider in'*' coupled oscillators w € C, k = 1,...,N > 4,

which follow the dynamics
W = flwg; p) + kKg(Wk, Wiy« oy W1, Wit 1y -- - WN; L) + O(K2) , (S.119)

and where the whole network respects full permutation symmetry Sy and rotational
invariance S'. Using equivariant theory, they prove their main result in terms of the

following phase reduction.

Theorem S.7 (Theorem 3.2.141). Consider system (S.119) with Sx-symmetry (for fized
N > 4) such that the N uncoupled systems (k = 0) undergo a generic supercritical Hopf
bifurcation on p passing through p = 0. There exists pg > 0 and kg = ko(p) such
that for any p € (0; o) and |k| < ko(p) the system (S.119) has an attracting C”-smooth

invariant N -dimensional torus for arbitrarily large r. On this invariant torus, the phases
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01 of the flow can be expressed as a coupled oscillator system

bp = Q6,K) + & (H,E,Q)(G) +H Y (0) + ng4><9>) (S.120)

N
1
H(0) = N2 Z 930 + 01— 204) + 75 5 > ga(26; — 6, — 6) (S.121)
Jil=1 Jil=1
4 -
Y (0) = N3 > 950+ 0 — O — 61)
7, l,m=1

for fized 0 < p < pg in the limit k — 0, where Q(0, k) is independent of k and

92(p) = &1 cos(p + x1) + péi cos(p + x1) + pés cos(2¢ + x3)
= &k cos + i
g3() u&j (@ xi,) (5.122)
ga(p) = péy cos(p + xy)
95(p) = p&s cos(p + x3) -

The constants 517 and X{ are generically non-zero. The natural frequency Q of each

oscillator in the reduced phase dynamics (S.120) is given by

U5

Q0,k) = Q+ ku icos(i/)z;) FaN?

5 Z cos(1s + 0; — O) (S.123)

7,k=1

with Q = oy —p(Br/Br)+O(u?). The error term truncated in (S.120) satisfies § = O(u?)
uniformly in the phases 0;,. This truncation by removing § and O(k?) terms is valid over
time intervals 0 < t < t where t = O(k~'u~2) in the limit 0 < k < p < 1. In particular,

for any N, this approxzimation involves up to four interacting phases.

Before we go into detail of the proof, we first state an immediate corollary for large
oscillator systems of the form (S.119) with Sy x S'-equivariance, where each uncoupled

system is close to a supercritical Hopf bifurcation.

Corollary S.8. In the limit of weak coupling 0 < k < u <K 1 and for a reasonably large
network size N > 4, the coupled oscillator system (S.120) reduces to

N
. 1
Op = Q + ie? Z [{1 cos (0; — O + x7) + £2&5 cos (2(0; — Ok) + X%)} +O(e?)
]:1
(S.124)

with Q = ay—e%(Br/Br)+O(e*) and €2 = p as well as & = ke with e > 0. In particular,
the phase interaction function of (S.124) consists of first and second harmonics with

merely pairwise interactions.

Proof. For large N > 4, we can assume that 1/N = O(e) where ¢ > 0 is such that
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€2 = p. In the weak coupling limit, we set & = ke2. The natural frequency € coincides
with  at order O(e?, ke?), see also (S.123). The terms H,£3)(9), H,g4) (0) in Theorem S.7
are of order O(/e%). Moreover, the term u&f cos(¢ + x1) in g2(#) is only some higher-
order correction to the first harmonics, and can thus be discarded. The remaining terms
finally constitute (S.124). O

The proof of Theorem S.7 can be found in'#! where the authors use Theorem 3.1, which
is proven in Theorem 42,422 T4 ig poteworthy that this Theorem 3.1 provides a thorough
decomposition of the coupling function g(ws, ..., wy;p) when given as a polynomial of
degree lower or equal than 3. In fact, any polynomial function h: C¥ — C¥ of degree

lower or equal than 3 with N > 4 and which respects the Sy x S'-equivariance can be

written as h = (hq,...,hy) where
11
hl(wl,wg, NN ,wN) = Z aihi(wl,wg, e ,wN)
i=—1
ha (w1, w2, ..., wy) = hi(wa, w1, ..., wN) (S.125)
hN(wl,wQ, cen ,wN) = hl(wN,wg, e ,wl)

and ho(w) = w1, h1(w) = |wi|?wr, as well as

1 & 1 & 1 &
7 7 2 — 7 2
h_1(w) = N,Z“’j’ ha(w) = 1y ng hs(w) = |w] NZU)JA
Jj=1 7=1 j=1
1 & 1 O 1 &
ha(w) = w1 > Jwyl%, hs(w) = w1575 > widp,  he(w) = w137 > wj,
Jj=1 Ji.k=1 j=1
1 & 1 & 1 &
h7(w) = 11_1172 Z W; Wi, hg(w) = N Z \wj\ij, hg(ﬂ]) = W Z w?wk,
Jik=1 Jj=1 g.k=1
1 & R
. 5 . -
hio(w) = N2 Z wilwgl®,  hu(w) = N3 Z W WLy,
7,k=1 7,k,1=1
(S.126)
for constants a; € C,i = —1,...,11. Note that in order to respect the rotational

invariance, no constant terms can appear. Moreover, the symmetries make all polynomial
terms of degree two vanish. Now, assuming that the linear term agw; and the first cubic
term ai|wi 2w, are contained in f(w;) = aw; — Blwi 2wy as in (2.23) in the main text,
we are left with in total 11 coupling terms a;h; that will determine the phase interaction
function of the reduced phase dynamics (S.120). Writing the complex constants as

N
a; = pjer’ ,

Ashwin and Rodrigues'®! indicate instructions how to derive the desired constants fg
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and X{ in (S.122). First one determines ¥, and v;, j = —1,1,...,11, by

¥ cos(j + @) := p;sin(p; + ¢) — E;Pj cos(¢; + @) ,

where 5r/Br = C(0)/A(0) with C(0) = —25;/8r and A(0) = —2 with g = Br + ifr.

Using Eq.(4.30) of'*! and abbreviating

S Cf(o)A(of)l(B)g(O)A’(O) ~ tim % 083 7 (S.127)
one can deduce

&=y, X! =11,

el = _;R [0 cos(tha) -+ Vs cos(tbs) + Vs cos(vs) + P10 cos(tbro) + 6Brp—1 cos(d—1)]2 +

+ [—192 sin(v2) + U3 sin(3) + Jg sin(¢g) + Y10 sin(v1o) + 68rp-1 Sin(qf)_l)]Q +O(w),

X% = arctan (

& = —V6/Br + O(p), X3 = Y6,
& = —07/Br + O(p), X3 = ¥,
&1 = —Yo/Br + O(p), X4 = o,
& = —V11/Br + O(p), X5 = i1 -

—192 Sin(wg) + 193 Sin(wg) =+ 198 Sin(lﬂS) + 1910 Sin(’lplo) =+ 551%/)—1 sin(¢_1)>
Vg cos()2) + V3 cos(ths) + Ig cos(g) + Y19 cos(w1p) + 6Brp—1 cos(p—_1) )’

(S.128)

In particular, we can determine an explicit value for ¢ as presented in the following

lemma.

Lemma S.9. For the dynamics
t=az— B2’z +7(2), where T(2) = 22 + O(2°),

we get an explicit value for § as defined in (S.127), which reads

5
L
g 2 agp

Moreover, if x = 0, then also 6 = 0.

Proof. In the following, we will use that A € R and that we can write 7(z) = 7r(2)+it7(2)

with 7g/r real-valued functions. For x € R, we have

Tr(z) = gzt + O(z®) and  77(z) = szt + O(25) .
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As has been defined in'*', A()\) and C()\) are given by

AN = B with Up(z) = A+ 3az? + 1x(2)2 + 7r(2)
R.(N)B(\) _ 2aR. + 7}(R.)

C) = === with BV = o

and R, = R, ()) is the solution of

Ur(Rx)
)

0= tank tma(R) = R(\)=— 100
— Q&R

That is,

cn) 2a1R? + 7(R.) R
AN)  A+3apR2 + 1h(R.) + TrR(RY)

Dividing by R? and substituting in the leading order of R2, we find

C(\) 201 — %{)\ +0(\?)
AN 205 — ZEX+O(N2)

R

Hence, it follows

5 d c(\) _ —8xy + 10%R0%
dX |y A(N)

i

2
4aR

which gives the desired result. Additionally, if 7(z) = O(2°), or even 7 = 0, we have
2 = 0, and therefore also 6 = 0. O

We close this section of the Supplementary material with a few brief comments on the
coupling functions gy in the (Hopf) normal form description (S.119) of the full network

of coupled identical systems close to a supercritical Hopf bifurcation.

Remark. If the coupling function gi in the Hopf normal form description can be fully
decomposed into the sum of pairwise interactions between oscillators, the following cou-

pling parameters as introduced in (S.125) all vanish,
as=a7 =ag =ajg=a11 =0 .
The only non-vanishing coefficients of the Hopf normal form description are
a—1 = hooto, a2 = haoo1, a3 =hiio, a4 =hio1, as = hoi2o, as = hoo21 -
This means that the constants

&.e.6 and X9, x1,x3
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are non-zero, which leads to the reduced phase dynamics

0, = 0+ /-662_—194 cos(1y)
Br
N

Z [5? cos(6; — 0y, + x7) + £ (5% cos(6; — Oy, + x1) + & cos(2(0; — ) + x%))] .
7j=1

K
TN
(S.129)

Note that the coupling term in (S.129) consists again of the first two harmonics only:
the terms &9 cos(¢p+x9) +€&1 cos(p+x1) can be comprised by trigonometric identities to
&1cos(p+ x1). Yet, the contribution of the second term to the (collected) first harmonic
is only minor due to the magnitude being of order O(e?), and hence can be neglected.
Moreover, the amplitude of the second harmonic cos(2p + x3) is O(e?), that is, of one
order higher than the first harmonic. In total, the only constants that represent major
contributions to the phase dynamics are £) and &}, which correspond by (S.128) to a_1 =
hooto and ag = hoi29, respectively — these are also the main contributors to the phase
dynamics considered in Section S.2. Besides, disregarding the minor corrections of order
O(e?), the natural frequency term Q = ay —arfBr/Br (note that ap = €% = ) coincides

with the one derived in the main text’s Section 2.2.2.

In general, the coupling functions g in the Hopf normal form description of the full
network are not restricted to pairwise interactions, but they are linear combinations of
the 11 terms given in (S.126). Deducing the respective factors in this linear combination
from the underlying dynamics &y = f(x) + kgi(x1,...,xn) with N > 4 in a general
way is beyond the scope of this dissertation. Such a general normal form reduction
would probably distort the ostensive link between the original coupling functions g;, and
the normal form coupling functions gx: The structure of pairwise interactions in the
underlying dynamics, gj(x1,...,@n) = >_; gij(Tk, T;), may not be respected in the
reduced Hopf normal form description gg(w1, ..., wn) # >_; grj(wk, w;).

Still, given our goal to provide a phase reduction of the underlying dynamics, it ap-
pears sufficient to concentrate on those coupling terms in the Hopf normal form that have
significant contributions to the reduced phase dynamics. The independent considerations
and derivations in Section 2.2.1.2 and Corollary S.8 suggest that for large networks in the
limit of weak coupling the dominant coupling terms are indeed those stated in the pre-
vious remark. As a consequence, we only need to find these coupling parameters. While
a mathematically thorough normal form reduction for large N becomes rather lengthy
and hence unpractical, the approaches in the main text’s Section 2.2.2 seem to provide
decent approximations for the sought-for coupling parameters, as demonstrated by the
numerical simulations throughout Chapter 3. Nonetheless, both are approximations for
the following distinct reasons: Following Kuramoto’s reductive perturbation approach,
in particular cf. Section S.2, the derivation is based on mere pairwise interactions of
the underlying dynamics and the subsequent reduction steps only respect the bifurca-
tion parameter-dependence up to first order. On the other hand, following Poincaré’s

nonlinear transform approach the parameter-dependence is preserved throughout the
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reduction but the transformation steps are solely targeted at the Hopf normal form of
a single oscillator but not at the Hopf normal form of the full network, see Section S.3.
This latter assumption may be justified in the limit of weak coupling ¢ 2078 hut a

rigorous proof, or an error estimate, respectively, are missing.

S.6 Malkin’s adjoint method

The phase sensitivity function, or infinitesimal phase response function, is defined as
Z(0) = VO(x)|y—geg), which is the gradient of the (asymptotic) phase map O(x)
evaluated on the limit cycle C = {x°(t): t € R}. In general, it is not easy to find
analytic expressions for the phase map so that it becomes cumbersome to compute Z
and g in the direct way. However, as it turns out, the function Z(#) is the solution to

the adjoint problem associated with the dynamics
xp = f(xg) + £ gp(x1,...,xNn), xL€R", k=1,...,N, (S.130)

when linearized about the uncoupled limit-cycle. Indeed, and thereby following the
theory of weakly coupled oscillators, in the uncoupled case (k = 0), the equation & =
f(x) has a T-periodic asymptotically stable limit cycle C. x¢(t) denotes such a T-periodic
limit cycle solution, whose frequency is w = 27 /T. After an infinitesimal perturbation
p the perturbed trajectory a(t) = x°(t) + u(t) can be considered arbitrarily close to
the limit cycle, such that the dynamics of u(t) can be assumed linear. By linearizing

& = f(x) around the limit cycle, we define the matrix L(t) € R™*" as

L(t) = V(@) p_ge(y - (3.131)

Solutions to the linearized equation satisfy

(5~ 20 vl = Cn ) =0, (5132)

where L is a linear operator on the space of R"-valued T-periodic functions. We define

the standard inner product (-,-) on T-periodic functions in R™ as

T
(u(t), v(t)) = /0 u(t) - v(t)dt . (S.133)

Then, the adjoint linear operator £* satisfies (u, Lv) = (L*u,v). In particular, we find
that

(L7y(t)) (t) = —y(t) — L(t)Ty(t) - (5.134)

When determining the phase shift between the asymptotic phase 0, = ©(x°+p) after

an infinitesimal perturbation p = w(t) at time ¢y and the unperturbed phase ¢ = ©(x°),
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we note that for the phase shift A0 = 6, — 6 we have
A§ = <Z(t),:z:c(t) + () —:L'C(t)> +O(lul?) . (S.135)

Moreover, the phase shift Af is independent of time after the perturbation at ¢ = tg.

Hence,

0= 2 (20).ut) = (20, wie)) + (), 21

— <dzdit), u(t)> n <Z(t), L(t)u(t)> - <dzdit), u(t)> + <L(t)TZ(t), u(t)>

dZ(t)

= <7 + L(t)TZ(t),u(t)> = < —(£*Z) (t),u(t)> .

As the perturbation u(t) was assumed arbitrary, it follows that

LZ(t) =0 . (S.136)

Furthermore, by definition we have ©(x¢(#)) = . Differentiating both sides with respect
to t, we find with 0 = w that

=w. (S.137)

This normalization uniquely defines Z(t) as the solution of £*Z = 0 and Z -dz¢/dt = w.

S.7 Limit of infinite attraction method

We derive the phase interaction function H for two coupled oscillators k # j with
strongly attracting limit cycles, as has been considered by Ermentrout and Kopell 147,
The dynamics, where possible inhomogeneities among the oscillators have been subsumed

in the respective coupling terms, are given by
x, = f(xr) + & gr(xk, ;) , xp € R™. (S.138)
We search for solutions of the form
xp(t) = xo(t) + eug(t) , (S.139)

where x((t) denotes a T-period limit cycle solution of & = f(x) with frequency w =
27 /T, and uy, is such that it converges to zero for solutions on the limit cycle (t) = x(t).
Note that we can parametrize the limit cycle solution via the phase 0 = 0;(t) € S!,
such that effectively we search for a transformation Ty = Ty (0x(t), py) with p, € R~
that maps a solution x; € R" of (S.138) in an equivalent form to (S.139), given as

k() = @o (O(1)) + M (0x(t)) p1(t) + Ol ]*) (5.140)
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with the n x (n — 1)-matrix M that satisfies
MBTM(0) = Iy 1yxinyy and ah(6)TM(8) =0

for all @ € S'; the prime / denotes the derivative with respect to §. The corresponding

dynamics of the normal coordinates phase 0 and pj, can be derived!53 as

O = w + hi(6x,6;) + O(lpg. pjl)

(S.141)
P = a(bk)pr + di(0k, 05) + O(lp;]) + o(lpgl) -

Introducing the Jacobian L(6) = Vf(a:)‘x:mo(e

and denoting p = |z{|?, the functions hy, a and dj can be found as

) of f evaluated at the limit cycle x,

x((0r)7
p(O)
a(0r) = w [M(0r)TL(0) M (0) + M'(0)" M (6;)]

di(0r, 05) = wr M (0x)Tgy, (0 (0k), o(05)) -

hi (O, 0;) = w [(L(Ok) + L(0k)T) M (0r) py. + K9y (20(0k), To(05))]

(S.142)

For a two-dimensional system x;, € R? with the limit cycle solution x(t) = (ug(t), vo(t)),
we have p = |z} (t)2 = u)(t)2 + vj(t) and can set M (t) = (v)(t), —uf(t)) /A/p(t), which
fulfills the required conditions above.

Note furthermore that the equations (S.141) with (S.142) are general and hold for
any coupling strength x € R. In the case of weak coupling, 0 < k <« 1, and in the
limit of strong attraction, p,, — 0, we can average hy over one period and find the phase

interaction function

1 2w
Hy(Ok = 05) = o /0 wp(t + 0) " 2t + k)T gy, (@o(t + Ok), o(t + 6;)) dt . (S.143)

In a more rigorous way, we now allow finite attraction to the limit cycle, but further-
more assume weak coupling 0 < kK = ¢ < 1 and that the normal coordinate p;, is e-close

to the limit cycle. We can thus introduce p;, = esi, and (S.141) becomes

O = w + & [b(Or) sk + p(0k) " (k) g (0 (6), 20 (6;)] + O(?)

(S.144)
8k = a(0k)sk + M (0k)" gy, (20 (0k), o (0;)) + O(e) ,

with b(0y) = wp(Or) " taf(0x)T [L(0k) + L(0x)T] M (6;). Additionally, we set w = 1 with-
out loss of generality. In order to determine the phase interaction function Hj for finite
Pr, we have to take the additional term b(6y)sy into account when applying averaging
as in (S.143).

Before deriving the averaged solution, we first recall that we are looking for solutions
of the form (S.139), in which uj, now additionally evolves on a slower time scale 7 = &t,

that is, we seek for solutions

xp(t) = xo (t + Op(7)) + cug(t, 7, ). (S.145)
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We substitute this ansatz in (S.138) and find at first order in

ﬁ(t + Qk)uk(t,T, 0) = |:ddt - L(t + 9].3):| uk(t,T, 0)

90 (S.146)
= —a(t+0k) 5 "+ gi (@olt + 0n), wol(t +67))
To solve (S.146) for periodic solutions uy, we rely on the Fredholm alternativee® & 423
according to which
L(1)&(t) = g(t) (5.147)
has a 2m-periodic solution &(¢) if and only if
2m
/ x(t)g(t) =0, (S.148)
0
where x(t) solves the corresponding homogeneous adjoint problem
. d
L*(t)x(t) = p7in L(t)T| x(t)=0. (S.149)
We achieve uniqueness of the solution by requiring the normalization condition
1 2 ,
— t t)=1. S.150
5 | X (5.150)

Hence, in order to find a solution of (S.146), we combine (S.148) and (S.150) to obtain

2T
o /O X(t)gy, (xo(t), zo(t + Op — 6;)) dt . (S.151)

The function x(t) turns out to be
X(t) = [p() "z (t)e(®)] (8.152)
with
o()" = Q) [T 1yx(nn) — E@] ' = Q)| B M),

where E(t) is the solution to dE/dt = a(t)E with initial condition E(0) = I(,_1)x(n-1)
and Q(t) satisfies Q(t) = fg b(s)E(s)ds. Indeed, inserting the ansatz

X(t) = Th(DE(H) + M(£)=(t) (S.153)

into the adjoint problem (S.149) with normalization (S.150), we find that £(t) = p(¢)~*

and z satisfies 2/ = —a(t)Tz — b(¢)7, which eventually leads to the unique solution

(S.152). For more mathematical details, we refer to!47.
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