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Bastian Pietras, MSc

Modeling phase synchronization of interacting neuronal populations –

From phase reductions to collective behavior of oscillatory neural networks.

Thesis submitted for a double PhD degree in December 2018.

Synchronous, coherent interaction is key for the functioning of our brain. The co-

ordinated interplay between neurons and neural circuits allows to perceive, process

and transmit information in the brain. As such, synchronization phenomena occur

across all scales. The coordination of oscillatory activity between cortical regions

is hypothesized to underlie the concept of phase synchronization. Accordingly,

phase models have found their way into neuroscience.

The concepts of neural synchrony and oscillations are introduced in Chapter 1

and linked to phase synchronization phenomena in oscillatory neural networks.

Chapter 2 provides the necessary mathematical theory upon which a sound

phase description builds. I outline phase reduction techniques to distill the phase

dynamics from complex oscillatory networks. In Chapter 3 I apply them to net-

works of weakly coupled Brusselators and of Wilson-Cowan neural masses. Numer-

ical and analytical approaches are compared against each other and their sensitivity

to parameter regions and nonlinear coupling schemes is analyzed.

In Chapters 4 and 5 I investigate synchronization phenomena of complex phase

oscillator networks. First, I study the effects of network-network interactions on

the macroscopic dynamics when coupling two symmetric populations of phase os-

cillators. This setup is compared against a single network of oscillators whose

frequencies are distributed according to a symmetric bimodal Lorentzian. Sub-

sequently, I extend the applicability of the Ott-Antonsen ansatz to parameter-

dependent oscillatory systems. This allows for capturing the collective dynamics

of coupled oscillators when additional parameters influence the individual dynam-

ics.

Chapter 6 draws the line to experimental data. The phase time series of rest-

ing state MEG data display large-scale brain activity at the edge of criticality.

After reducing neurophysiological phase models from the underlying dynamics of

Wilson-Cowan and Freeman neural masses, they are analyzed with respect to two

complementary notions of critical dynamics.

A general discussion and an outlook of future work are provided in the final

Chapter 7.



»Gut, daß du fragst!« sagte er lachend. »Man
muß immer fragen, man muß immer zweifeln.«

Herrmann Hesse – Demian (1919)
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S.3 Poincaré’s reduction via nonlinear transforms . . . . . . . . . . . . 226

S.4 Takens’ reduction via Lie brackets . . . . . . . . . . . . . . . . . . . 237

S.5 Ashwin & Rodrigues’ reduction via SN × S1-symmetry . . . . . . . 242

S.6 Malkin’s adjoint method . . . . . . . . . . . . . . . . . . . . . . . . 248

S.7 Limit of infinite attraction method . . . . . . . . . . . . . . . . . . 249

Bibliography 252

Main contributions 272

Acknowledgements 273



xi

List of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of FiguresList of Figures

2.1 A network of coupled oscillators . . . . . . . . . . . . . . . . . . . . 17

2.2 An uncoupled planar oscillator . . . . . . . . . . . . . . . . . . . . . 18

2.3 Amplitude and phase description . . . . . . . . . . . . . . . . . . . 19

2.4 Phase map and isochrons . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Phase response of limit-cycle oscillators . . . . . . . . . . . . . . . . 24

2.6 Non-trivial collective dynamics . . . . . . . . . . . . . . . . . . . . . 30

3.1 Stable synchrony of linearly coupled Brusselators . . . . . . . . . . 78

3.2 Cluster states of linearly coupled Brusselators . . . . . . . . . . . . 79

3.3 Stable synchrony of nonlinearly coupled Brusselators . . . . . . . . 81

3.4 Cluster states of nonlinearly coupled Brusselators . . . . . . . . . . 81

3.5 Network of two coupled Wilson-Cowan neural masses . . . . . . . . 87

3.6 Bifurcation diagram of the uncoupled Wilson-Cowan model . . . . . 88

3.7 Phase interaction function of the Wilson-Cowan model . . . . . . . 97

3.8 Oscillatory regime of the Wilson-Cowan model . . . . . . . . . . . . 99

3.9 Non-trivial network dynamics of coupled Wilson-Cowan oscillators . 100

3.10 Oscillation birth bifurcation diagram . . . . . . . . . . . . . . . . . 113

3.11 Oscillation birth network dynamics . . . . . . . . . . . . . . . . . . 114

3.12 Oscillation death bifurcation diagram . . . . . . . . . . . . . . . . . 115

3.13 Oscillation death network dynamics . . . . . . . . . . . . . . . . . . 115

3.14 Hagmann and small-world connectivity matrices . . . . . . . . . . . 117

3.15 Network dynamics with non-trivial connectivity . . . . . . . . . . . 118

3.16 Phase dynamics with non-trivial connectivity . . . . . . . . . . . . . 119

4.1 Two coupled networks vs. one bimodal network . . . . . . . . . . . 125

4.2 Bifurcation boundaries of two-population network . . . . . . . . . . 130

4.3 Partial derivatives of ∂κG . . . . . . . . . . . . . . . . . . . . . . . 132

4.4 Bifurcation boundaries (cross-section) of two-population network . . 132

4.5 Bifurcation boundaries (back view) of two-population network . . . 134

4.6 Bistability region of two-population network . . . . . . . . . . . . . 134

4.7 Three coupled networks vs. one trimodal network . . . . . . . . . . 136

4.8 Bifurcation boundaries of trimodal network . . . . . . . . . . . . . . 138

4.9 Bifurcation boundaries of three-population network . . . . . . . . . 141



xii

6.1 Coupling structure of both neural mass networks . . . . . . . . . . 177

6.2 DTI-derived structural connectivity matrices . . . . . . . . . . . . . 178

6.3 DFA results for the R(t) autocorrelations . . . . . . . . . . . . . . . 184

6.4 Pearson correlation values between the P S and P (MEG) matrices . . 185

6.5 Mean values 〈R(t)〉 as function of delay and coupling strength . . . 185

6.6 Mean values 〈R(t)〉 for large coupling strengths . . . . . . . . . . . 186

6.7 Pearson correlation values between the P S and Skl matrices . . . . 194

7.1 Higher harmonics in the Wilson-Cowan phase sensitivity function . 209

7.2 Phase sensitivity functions of generic neural oscillator models . . . . 210

List of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of TablesList of Tables

3.1 Brusselator phase models for linear coupling close to the Hopf bi-

furcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Brusselator phase models for linear coupling away from the Hopf

bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Brusselator phase models for nonlinear coupling close to the Hopf

bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Brusselator phase models for nonlinear coupling away from the Hopf

bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Wilson-Cowan phase models very close to the Hopf bifurcation . . . 96

3.6 Wilson-Cowan phase models away from the Hopf bifurcation . . . . 97



1

ChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapter 1
Introduction

Interaction is key –



Introduction 2

Life builds upon interactions in every possible way, be they imaginable or not.

Interaction often bears communication, which can be regarded as a form of interac-

tion that involves information transfer between the participating entities. Analo-

gously to the saying “one cannot not communicate” by the communication theorist

Paul Watzlawick, interaction arises naturally whenever two or more people, ob-

jects, entities belong to the same, or form a, bigger entity. A clear definition of

interaction between entities implies that they act in such a manner so as to affect

one another. This interplay of an ensemble of discrete units is commonly framed

in the notion of a network, where it gives rise to emergent collective behavior.

One of the most fascinating examples of a complex network is the human brain.

Without interaction the brain is not able to function. Coordinated and synchro-

nized interaction facilitates communication. In this way information can be per-

ceived, processed, and exchanged across the brain. Despite a tremendous history

of brain research, however, the mechanisms behind the functioning of our brain re-

main a mystery. Interaction occurs on a multitude of spatial and temporal scales.

But how do different neural processes interact along anatomical structures and

generate recognizable patterns of functional brain activity? And, how do these

patterns lead to coherent behavior and cognition? Answers to these questions

have continued to elude researchers for ages.

Over the past two decades, a hypothesis has become manifest that the exchange

of information and the communication in the brain occur via phase synchroniza-

tion1. Synchronous firing activity within a neural population gives rise to oscil-

latory brain signals that are believed to encode information. Their transmission

across different brain areas relies on a careful coordination of these neural oscil-

lations. Presumably, it is the respective phase relationship between the neural

dynamics that plays a key role in neuronal communication. Oscillatory behavior

abounds on all different scales of the human brain. On mesoscopic and macroscopic

levels one often refers to these oscillations as brain rhythms2–4. Different frequency

bands have been associated with distinct cortical functions. A disruption of the

regular interplay of this oscillatory activity, such as the suppression of certain

frequencies, is often deemed a signature for pathologies5,6. All the more it is im-

portant to understand the underlying mechanisms how these oscillations emerge,

evolve, and dissolve under a changing environment, and how cortical oscillations

interact and influence each other in order to generate large-scale synchronization

patterns. Understanding the neuronal and cortical mechanisms that are linked

to perception, to cognitive and motor functions, but also to diseases, is among

the most important and yet unresolved problems of this century1,7–10. Oscillatory

network activity is central to this dissertation.

There are numerous approaches to unravel the mysterious orchestration of in-
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tertwined neural processes, both experimental and theoretical. Bridging the gap

between experiments and theory, however, has only been achieved in very restric-

tive cases and mainly on very small scales. An overall and generic picture linking

these two sides of the same coin is still being sought for. To detect brain rhythms

experimentally, neuroimaging techniques such as electro- or magnetoencephalogra-

phy (EEG/MEG) or functional magnetic resonance imaging (fMRI) are commonly

resorted to. EEG and MEG measure voltage fluctuations resulting from ionic cur-

rents within the neurons, i.e. they record electrical activity of the brain. On the

other hand, fMRI detects changes of the cerebral blood flow via the so-called BOLD

contrast, which is an indirect marker of brain activity. Given the non-invasive na-

ture of these techniques, the recorded data display synchronous activity of several

thousands of interacting neurons rather than the dynamics of a single neuron. This

population dynamics, or mean field behavior, has often very little in common with

what happens on the microscopic scale. An urgent challenge in theoretical neu-

roscience is to deduce macroscopic dynamics from activity on these much smaller

scales11–15.

1.1 Neural synchronization and oscillations

The functioning of the human brain dwells on coordinated and coherent co-activity

of a multitude of neurons. Perceptual, cognitive and motor functions are believed

to require an orchestration of distributed neuronal processes. If spike discharges

of a large number of neurons exhibit correlated behavior in different areas of the

brain, their (large-scale) integration leads to, e.g., cognition or limb movements.

Unraveling this integration process poses an intriguing question in itself, and is

often referred to as the binding problem 16. The mechanisms to bind distributed

neuronal activity can broadly be classified in two different but complementary

strategies. On the one hand, binding by convergence results in the grouping of spe-

cialized neurons that encode a particular fixed constellation of contextual features.

On the other hand, dynamic binding assembles individual neurons dynamically to

generate and represent a particular pattern at a particular point in time17. One

neuron can participate in the representation of one pattern in one moment, but

an instant later it is involved in encoding a different pattern. This dynamic and

flexible recruiting of neurons and/or neuronal populations is called assembly cod-

ing18–20. The high temporal precision of synchronizing neuronal discharges in the

millisecond range allows for generating a sequence of subsequently active assem-

blies, which can effectively encode complex information to be exchanged among

cortical networks. Time is thus an important coding dimension to process and

exchange information.
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As hypothesized, e.g., by Buszáki and co-workers21, the temporal organization

of neuronal activity capitalizes on self-organized information retention and local-

global integration. The ability to preserve and store information is just as im-

portant as integrating distributed local processes into globally ordered states and

controlling local computations through global brain activity. Moreover, these two

features can be maintained by a hierarchical system of brain rhythms3,4. Hence,

synchronization of cortical activity and neural oscillations can be considered hall-

marks of the temporal coordination of distributed brain activity.

Brain oscillations as characterized by rhythmic changes in, e.g., local field po-

tentials, set a recurrent temporal reference frame and thereby allow for temporal

coding within oscillatory cycles. The ups and downs in fluctuating local field

potentials reflect high and low degrees, respectively, of the synchronization of neu-

ronal currents within a certain brain area. That is why synchronization and neural

oscillations are often used interchangeably to express coherent activity of a popu-

lation of neurons. However, there is a subtle difference between the two phenom-

ena18. Oscillatory activity, on the one hand, can be induced on a population level

through single oscillatory neurons, so-called pacemaker cells. It may also manifest

as an emergent property of the underlying network architecture when a particular

dynamic circuit motif is activated. Such a motif comprises the physical circuit

structure, its electrophysiological signature, and the corresponding computational

function22. Upon activation it leads to characteristic rhythmic neuronal activity.

Synchronization, on the other hand, can occur in the absence of oscillations. Two

cells may always discharge simultaneously but at irregular intervals when driven

by common noise. Or, a presented stimulus induces simultaneous bursting of neu-

ral populations. This is a typical signature of response synchronization, which

can be non-repetitive, but also recurrent. In this way, synchronization can lead

to oscillations. Similarly, oscillations may facilitate synchronization. For instance,

shared oscillatory input can drive a neural population close to the firing threshold

where it becomes prone to particular stimuli that induce response synchronization.

Oscillatory activity can thus be seen as an indicator for synchrony.

While oscillatory population activity can be related to synchronous interaction

of single cells, one should be careful when relating single cell responses to syn-

chronous network activity. There is a certain microscopic-macroscopic dichotomy

with respect to the transition from individual neuronal dynamics to the collective

behavior of a neural population. It may happen that individual discharges of a

neuron are precisely time-locked with the oscillating field potential, but the auto-

correlation function does not show any sign of oscillatory activity on the neuron

level. The seminal work by Brunel and Hakim offered a theoretical account of

a collection of experimental studies hinting at so-called sparse synchronization of
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neuronal networks23. By contrast, regular spiking activity of single neurons does

not necessarily result in (regular) oscillations on the population level, but can also

lead to collective chaos, see, e.g., the recent modeling study24. Likewise, asyn-

chronous network states can emerge in spite of a considerable amount of shared

input25. Discernible neural network activity depends on correlated activity of

a large number of neurons. Such neural correlation, or synchronization, occurs

on some (smaller or larger) time scale, and with or without oscillations. More-

over, synchronous oscillations produce and enhance temporal correlations between

neurons, thus providing a temporal reference frame for encoding and decoding in-

formation. A temporal structure of neural responses is crucial for distinguishing

synchronous from asynchronous states, and for establishing synchronization over

large distances18. For this reason, it is widely accepted that brain rhythms and

cortical oscillations play an important part in neural communication, which is un-

derlined by the abundant literature on rhythmic, synchronous brain activity. In

the remainder of this dissertation the cellular and circuit basis of emergent col-

lective dynamics will not be addressed further; the interested reader is referred to

the extensive review by Wang26 for more details.

Different brain rhythms may indicate different states and functions, which re-

quire integration of neural processes at different temporal and different spatial

scales. Brain rhythms cover a broad range of different frequency bands spanning

more than four orders of magnitude3. The higher the frequency, the higher the

temporal precision. By contrast, the amplitude of oscillations increases for lower

frequencies, which hints at a bigger size of a synchronously active cell assembly.

By this, binding by synchrony can be achieved over large distances. The focus

of this dissertation lies on synchronization effects of large-scale brain networks,

hence on rather slow-frequency but robust oscillations of cortical activity. Here, a

particular kind of synchronization becomes attractive for identifying the network

dynamics, which builds on the concept of phase synchronization.

1.1.1 From correlated behavior to phase synchrony

In general, synchronization indicates (time-)coordinated interaction. When con-

sidering time series of experimental or synthetic data, synchrony manifests in

some correlation structure of the respective time series. There exists a variety

of synchrony measures that help to classify the kind and quantify the degree of

synchronized activity. Synchrony measures range from correlation coefficients to

magnitude-squared coherence, from phase coherence to Granger causality, from

phase synchrony indices to information-theoretic divergence measures, and from

state space based measures to stochastic event synchrony measures27. Some of

these measures show a strong correlation among one another, whereas others are
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independent from the rest. When studying a population of neurons, neuronal

synchrony measures28 can be used to quantify the degree to which firing rates

of individual neurons are related. Typically, a synchrony measure is normalized

between 0 and 1, with 0 denoting an asynchronous, or incoherent, state, whereas

1 refers to full synchronization when the individual firing times are all identical.

In the following, I will usually assume that the mean firing rate of a neuronal pop-

ulation fluctuates rhythmically around some mean value. If two or more of such

populations interact, it is convenient to describe the degree of synchronization

between them in terms of the characteristics of their oscillatory dynamics.

Oscillations, generally speaking, are characterized through their frequency and

amplitude. For a given frequency, one can define the period as the duration of

time of one cycle of oscillation. The period is the time needed between successive

occurrences of, e.g., the same level of activity. In between those periods, one can

further determine the phase of oscillation, which continuously increases between

0 and 2π during one period and thereby indicates the fraction of period already

covered. Phase and amplitude thus become the main (time-resolved) determinants

of the state of oscillation. Consequently, oscillatory neural activity is commonly

analyzed with respect to their phase and amplitude dynamics.

For interacting neuronal populations it appears natural to use synchrony mea-

sures that refer to the corresponding phases and amplitudes. Instantaneous phases

and amplitudes can be extracted from the signals by the Hilbert transform or by

time-frequency transforms. Phase synchrony measures29 aim at quantifying the

closeness of the phases when mapped on the unit circle. Alternative measures

often dwell on mutual information such as the frequency coherence in the time-

frequency domain. They are strongly correlated with phase synchrony measures,

but, strictly speaking, not directly linked27. And, there are also measures that

analyze the amplitude synchronization of oscillatory dynamics. When considering

only weak coupling regimes, however, amplitude modulations can be widely dis-

carded. In consequence, the relevant information about the network state can be

inferred exclusively from phase synchrony measures.

1.1.2 Phase synchronization of large-scale brain networks

Brain rhythms and neuronal oscillations become predominant for describing brain

dynamics when considering meso- or macroscopic spatial scales. This is underlined

by a plethora of experimental studies relying on both invasive and non-invasive

neuroimaging techniques. There is reason to believe that information processing

in the brain is intrinsically linked to synchronization phenomena of oscillatory

dynamics30,31. Non-invasive EEG and MEG studies typically depict distributed



Introduction 7

cortical activity as of large-scale brain networks. Although M/EEG recordings

have high temporal resolution, they reflect activity on rather coarse spatial scales

given that signals to be perceivable require synchronous neuronal currents of a

large number of neurons, commonly of the order of 104 to 105 cells. The resulting

time series of the recordings are duly and extensively analyzed for their extracted

phase and amplitude dynamics. Emerging synchronization patterns in the data

are then assigned to particular brain functions corresponding to the underlying

hypothesis or the behavioral observations. The research on the phase dynamics of

cortical oscillatory activity is rather recent compared to amplitude modulations in

the M/EEG. However, there are several reports indicating that the phase dynam-

ics play a crucial role for information processing and inter-cortical communica-

tion1,32–35. Phase synchronization plays also an integral part in defining functional

connectivity structures of the brain. The technological advance of modern brain

imaging methods has led to elucidate the interplay of structural and functional

brain connectivity. The structure of anatomical connections between brain areas

is widely believed to facilitate temporal synchronization of neural activity, and

thus leads to spatial patterns of functional connectivity, even in spatially remote

areas. Yet, the extent to which structure shapes function is still unclear36,37. In

order to unveil functional brain connectivity, it is crucial to identify functional

modules consisting of remote but synchronized neuronal populations. This can be

achieved by analyzing the phase dynamics of the different brain areas.

1.2 Towards modeling

Mathematical theory and computational modeling have gone along with exper-

imental neuroscientific research ever since. The theoretical underpinning of ex-

perimentally observed behavior does not only support research paradigms, but,

importantly, adds to the general scientific knowledge. Modeling helps to under-

stand the mechanisms behind complex behavior. At the same time, it can provide

crucial information about future study design and save time and money other-

wise spent for long and expensive, yet foredoomed experiments. That does not

mean that models downgrade or diminish the importance of experiments. On the

contrary, experiments are invaluable for scientific progress. Modeling can aid to

explain and even predict particular phenomena, and thereby shape experimental

observations. In this regard, a careful conception of underlying assumptions is vital

to build relevant and verifiable models, which are fundamental for a comprehensive

theory where models and experiments go hand in hand.



Introduction 8

1.2.1 Modeling large-scale oscillatory brain networks

Much progress has been made in the direction of theoretical, mathematical and

computational neuroscience. There exists a plethora of physiologically motivated

and highly accurate neuronal models to investigate synchronization properties.

Given their inherent complexity, a thorough analysis can be challenging even de-

spite ever increasing computational capacities. In some cases, models of cortical

oscillations can be simplified to coupled phase oscillators, which often take a mod-

ified form of the seminal Kuramoto model38–40. In recent years, the use of phase

oscillator models has been popularized in order to describe synchronization phe-

nomena of oscillatory neural networkssee, e.g., 41–49. Phase models have been widely

used to explain anatomical effects on synchronization in terms of functional con-

nectivity50–55 as well as on the route of synchronization56,57. The emergence of

functional modules can exemplarily be explained through remote synchronization

of phase oscillators58,59. And also spatial patterns in the visual cortex have been

modeled in a similar way60. Moreover, local population dynamics may play a

significant role in shaping functional connectivity patterns, and neural phase os-

cillator models have been succesfully used to explain how changes in the local

dynamics affect functional connectivity61. Phase models have also been applied to

investigate the effect of cortical lesions on overall dynamics by introducing random

perturbations to a synchronized state62 or by removing network nodes63. Simi-

larly, the concept of the brain as a dynamical system close to a critical regime has

been manifested through the analysis of phase models see, e.g., 64–68.

The wide use of phase oscillator models in neuroscience, however, comes at a

price. Despite the simplicity of phase oscillator dynamics, the reduction to phase

models requires great care. Any (heuristic) approximation of an oscillatory neural

network with a phase model has to withstand the confrontation with the extracted

or, alternatively, rigorously reduced phase dynamics of the original dynamics of

interacting neural oscillators. By avoiding this intermediate step of phase reduc-

tion the phase description of the oscillatory model is bereft of its fundamental

justification. The link from the actual dynamics to the phase model may become

spurious and its validity questionable. Certainly, a rigorous derivation from the

underlying dynamics to the phase dynamics can be laborious. But doing so will

clearly add to the significance of the network analysis and, more importantly, to

its impact in the scientific world.

1.2.2 Modeling neural oscillators

In view of large-scale oscillatory brain networks, the elementary network compo-

nents can be assumed to be neural populations consisting of a large number of
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neurons. Modeling the collective dynamics of a population of neurons experienced

a literal boost in the 1970s, when various phenomenological neural mass models

emerged as mean field models of neural population activity69–76. Phenomenological

models are advantageous in that they pass over the cellular and circuit properties

of the neural populations and thereby avoid to resolve an often recurring dichotomy

between seemingly stochastic dynamics of single neurons and synchronous collec-

tive dynamics26. Rather, they aim at integrating a handful of general assumptions

on the collective of neurons, which results in coarse-grained macroscopic variables

that describe the neural mass behavior. Traditionally, the notion of a neural mass

model has been introduced as a form of an ensemble density model75. The full

ensemble density is replaced with a mass at a particular point, i.e., a delta func-

tion, and the density dynamics is summarized by the location of that mass. The

resulting neural mass model then comprises a set of differential equations that de-

scribe the evolution of the (expectation of a) probabilistic mode of the system11.

Ignoring all higher moments, neural mass models are comparably simple mean

field models. The simplicity in terms of only a few coupled differential equations

is however undermined by their nonlinear character, typically involving a variant

of a sigmoid function.

A seminal neural mass model has been propsed by Wilson and Cowan69,70. It

describes the (mean) activity of excitatory and inhibitory neurons within a popu-

lation of synaptically coupled neurons. Among the plethora of different approaches

to model collective neural activity, it stands out for the fact that it can be readily

derived from microscopic single-neuron descriptions and it provides at the same

time a comprehensive link toward macroscopic descriptions of cell assemblies77. It

can be viewed as an intermediate but in some sense generic description of a densely

connected neural population as in a particular cortical region42. When assuming

strong coherence within a certain area, the ensemble activity can be approximated

by the population mean and the effect of the variance is negligible, which motivates

the mean field approach over a Fokker-Planck approach to describe the collective

dynamics15. Accordingly, the Wilson-Cowan neural mass model represents the

interdependent collective neuronal dynamics in terms of the mean firing rates of

the excitatory and inhibitory parts of the population. It exhibits rich dynamic

behavior as well as different transitions to oscillatory dynamics78,79. This makes it

also exemplary for a neural oscillator model. For a particular choice of parameters,

the model features stable limit-cycle oscillations between the firing rates of the ex-

citatory and inhibitory neurons, respectively. These oscillations reflect a waxing

and waning of locally synchronized (firing) activity. Hence, synchronization within

a neural population is crucial for generating (local) cortical oscillations of a neural

mass.
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1.2.3 Phase and amplitude description of neural oscillators

Rhythmic behavior of neural mass models is manifested in the oscillatory dynamics

of the macroscopic variables. If these dynamics are periodic, then the phase space

spanned by the macroscopic variables exhibits a limit cycle. This limit cycle can

be conveniently parametrized by a scalar phase variable, so that the state of the

neural oscillator is identified by a unique value between 0 and 2π during one period

of oscillation. If this limit cycle is stable, then the dynamics in a close vicinity will

be attracted towards the limit cycle. In this case, the distance to the limit cycle

can be captured by so-called amplitude variables. Taken together, the dynamics of

a neural oscillator can be rewritten in terms of phase and amplitude variables. In

general, this reformulation does not lead to a reduction of dimensionality and the

dynamics of the phase-amplitude model are as complex as the original dynamics.

However, if the attraction to the limit cycle is sufficiently fast, then the dynamics

away from the limit cycle can be approximated by the dynamics on the limit

cycle. Thus, the possibly high-dimensional dynamics of the neural oscillator can

be uniquely identified by a one-dimensional phase variable.

This phase reduction becomes especially useful when studying a network of

interacting neural oscillators. The analysis of the full system is daunting and a

simplification desirable. The phase reduction approach retains its justification as

long as interactions are weak, that is, the coupling strength between oscillators is

sufficiently small. To be precise, the coupling is weak enough to invoke only small

perturbations off the respective limit cycles so that amplitude effects are negligible.

The reduced phase model can be analyzed along the well-established techniques

for networks of coupled phase oscillators. Eventually, the resulting findings on

the synchronization properties of the network are equally valid for the full system

under the assumptions inherent to the preceding phase reduction.

1.2.4 Collective dynamics of coupled phase oscillators

The analytical and computational advantage of phase dynamics is striking when

compared to high-dimensional and typically nonlinear dynamics of oscillatory neu-

ral networks. As mentioned earlier, phase synchrony measures provide a conve-

nient means to quantify the correlation between phase time series. In fact, such a

measure introduces a powerful macroscopic observable that allows to describe the

qualitative collective dynamics of an oscillatory network. When considering a net-

work of globally coupled phase oscillators, as is, e.g., the Kuramoto model, there

exists a rigorous theory to describe the state of the network with a few macro-

scopic variables. Following either the Watanabe-Strogatz80 or the Ott-Antonsen

theory81–83, the time evolution of these macroscopic variables can be exactly de-
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rived if the network satisfies some generic conditions, which will be addressed in

more detail later. It thus becomes possible to characterize low-dimensional behav-

ior of the collective dynamics in a straightforward way.

Given that we deal with phase time series, we have to assess their correlation

in terms of circular, or directional, statistics84. Identifying each phase φ ∈ [0, 2π)

as a point z ∈ C on the complex unit circle {z ∈ C : |z| = 1} through z = eiφ, the

nth moment mn of the (circular) distribution of phases is given by

mn =

∫ 2π

0

P (φ)zn dφ ,

where P (φ) is the probability density function of the circular distribution. For a

finite set of phases, φk, k = 1, . . . , N <∞, these moments are analogously defined

as

mn =
1

N

N∑
j=1

znj , with zj = eiφj .

In the physics literature, the first moment m1 is usually referred to as the complex-

valued Kuramoto order parameter 38 Z ∈ C,

m1 = Z = ReiΨ where R = |m1| and Ψ = arg(m1) .

The Kuramoto order parameter is the main observable within the Watanabe-

Strogatz and Ott-Antonsen theories, and its time evolution is found to follow

a low-dimensional system of ordinary differential equations. The absolute value

R = |Z| is sometimes called the real-valued Kuramoto order parameter[1]. It takes

values between 0 and 1. If R = 0, then all phases are equally distributed along

the complex unit circle and the corresponding macroscopic state is said to be

asynchronous. By contrast, if the network is fully synchronized and all phases

are identical, then R = 1. When analyzing experimentally recorded data and the

extracted phase time series, one also resorts to the circular variance CV = 1−R,

which is 0 for full synchrony, and increases up to CV = 1 the more asynchronous

the network dynamics become.

Throughout the dissertation, the Kuramoto order parameter will serve as the

main macroscopic observable to quantify the collective dynamics of oscillatory

networks. It can also be applied to only a subset of oscillators. In this way, it is

possible to quantify the coherence within substructures of the network, which have

previously been identified, e.g., by means of phase clustering. Likewise, one can

determine population-specific degrees of synchronization when a network consists

[1] Alternatively, we can compute R = |Z| =
√
C2 + S2 with C = 1

N

∑
j cosφj and S =

1
N

∑
j sinφj .
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of multiple populations of phase oscillators. The interplay between these local

Kuramoto order parameters then allows to draw conclusions about such network-

network interactions in terms of their respective collective dynamics.

1.3 Contributions of the dissertation & research

questions

The modeling of phase synchronization phenomena in oscillatory neural networks

is the recurrent theme of this dissertation. In the preceding sections, the funda-

mental ideas of synchronizing neural oscillations and their putative key role for

cortical communication have been addressed. As mentioned above, a compre-

hensive theory of the functioning of the brain builds upon both experiments and

theoretical models. I focus on the modeling of neural dynamics and the interaction

of oscillatory activity across different brain regions. Aiming for a mathematically

rigorous model description, the immediate link to experimental data may appear

spurious in some of the following chapters. Nevertheless, this rigor is important

to rule out model-inherent inconsistencies when explaining experimental observa-

tions. In the end, a unifying theory of the brain will not be complete unless exact

models can explain the mechanisms leading to experimentally observed behavior

and withstand scrutiny from both a theoretical and experimental perspective. In

this regard my dissertation scrutinizes existing approaches to explain phase syn-

chronization phenomena in oscillatory neural networks.

The main contributions are twofold. The first part provides an extensive in-

troduction to phase reductions of general oscillatory networks. As an inventory

of different phase reduction techniques, its contribution is mainly methodologi-

cal. In due course, the examination of existing techniques, their comparison and

juxtaposition, as well as extensions of the techniques have been guided along the

question

• What is the best way to distill the phase dynamics of a complex oscillatory

network?

The second part addresses more specific applications of phase models in the

realm of computational neuroscience. The aim is to explore the scope of phase

oscillator networks for describing neuronal synchronization phenomena. Accord-

ingly, a rigorous reduction of oscillatory neural networks into appropriate phase

models is here of less concern than identifying which synchronization patterns can

be realized when focusing on phase dynamics alone. The key advantage of phase

models is that a particular class of them can be rigorously analyzed within the
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Ott-Antonsen theory. Describing the network synchronization in terms of the Ku-

ramoto order parameter introduced above, the theory allows to derive an exact

low-dimensional system of differential equations that governs the time evolution

of the Kuramoto order parameter. An immediate question is whether the restric-

tions on the class of phase models applicable for the Ott-Antonsen theory can be

loosened. The corresponding research question thus reads:

• Under which circumstances can a low-dimensional description capture the

collective dynamics of complex phase oscillator networks?

Even if phase models do not fall in the applicable class, the concept of phase

synchronization remains very appealing for its direct expression in the easy-to-

interpret Kuramoto order parameter. This suggests to reduce biophysiologically

realistic neural oscillator models into phase models. While the former establish

an immediate link to neural recordings, the latter conveniently capture the phase

dynamics of interest. But, and this becomes the third research question:

• Do phase oscillator networks cover seminal characteristics of experimental

data from the cortex?

This dissertation strives for shedding light on these three research questions.

They are, understandably, intricately linked with one another. Yet, answers to

them have to be found in different fields such as nonlinear dynamics, complex

systems, and bifurcation theory. Combining insights from mathematical analyses,

numerical simulations and experimental data analysis will aid to explore and to

model phase synchronization phenoma of oscillatory neural networks.

1.4 Outline of the dissertation

In Chapter 2 I provide the mathematical backbone of phase reduction techniques.

After a more general introduction to the phase description of oscillator networks,

I explicate different analytic and numeric phase reduction techniques including an

outline of the mathematical theory that is necessary to distill the phase dynamics

from network models of coupled oscillators.

The different reduction techniques will be applied subsequently to two classic

examples in Chapter 3. Performing the phase reductions point-by-point allows

for a thorough comparison between analytic and numeric techniques as well as

between model predictions and the actual collective network behavior.

Chapter 4 is devoted to network-network interactions between populations of

heterogeneous phase oscillators. Dwelling on the Ott-Antonsen ansatz, I derive the
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governing equations of the collective dynamics of two coupled networks and investi-

gate their possible synchronization patterns. Moreover, I compare the macroscopic

dynamics to those of a single network with a bimodal frequency distribution.

In Chapter 5 I extend the applicability of the Ott-Antonsen ansatz to parameter-

dependent oscillatory systems. This is illustrated for a network of quadratic

integrate-and-fire neurons, for which I derive the exact dynamics of the macro-

scopic observables. Moreover, I briefly revise a variety of further complex network

examples that fall within the class of parameter-dependent systems that is appli-

cable for the Ott-Antonsen ansatz and thus entails a low-dimensional description

of the network dynamics.

The model performance of neurophysiological phase oscillator networks is tested

against experimental data from the human cortex in Chapter 6. The resting state

MEG data feature two distinct notions of criticality, namely partial phase syn-

chronization and scale-free temporal dynamics. Given two seminal neural mass

models, their respective phase dynamics is derived and analyzed with respect to

these two dynamical features of criticality.

Finally, Chapter 7 provides a general discussion of the results of this dissertation

and their implications. The use of phase models in computational neuroscience

thrives on the straightforward link to identify (phase) synchronization phenomena

in networks of coupled neural oscillators. In view of the main research questions

I will reflect on the reduction of phase models from complex oscillator networks,

on the power of such phase models and on the involved macroscopic observables.

I also address the modeling of complex dynamic spectra of experimental data,

the representativeness of neural mass models as neural oscillators and possible

extensions of the presented work.
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ChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapter 2
Phase reduction techniques

for oscillator networks

Investigating the dynamics of a network of oscillatory units is a timely and urgent

topic at the frontiers of science. Often, the focus is on phase synchronization prop-

erties that are believed to play an important role in information transfer within a

network. Defining the phase dynamics, however, is not a trivial task per se. The

literature provides an arsenal of solutions, in particular for the case of so-called

weakly coupled oscillators. Here, we provide a catalogue of popular techniques for

deriving such phase dynamics. They fall into three classes. (i) Many phase reduc-

tion techniques starting off with a Hopf normal form description provide mathe-

matical rigor. Unfortunately, they come with a caveat in that the proper normal

form has to be derived first. We explicate several ways to do that, both analytically

and numerically. (ii) Other analytic techniques capitalize on time scale separation

and/or averaging over cyclic variables. While appealing for their more intuitive

implementation, they often lack accuracy. (iii) Direct numerical approaches help

to identify non-trivial network behavior but come at the cost of exhaustive and la-

borious parameter scans. We here review the necessary mathematical details that

underlie the different phase reduction techniques and prepare them for further ap-

plication.

Adapted from: Pietras B., Daffertshofer A. (2018). Network dynamics of coupled

oscillators and phase reduction techniques, (Sections 2 – 4). Under review.
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2.1 Phase dynamics of oscillator networks

Recorded signals from oscillator networks often stand out for their dynamical rich-

ness, which is typically manifested in non-trivial or complex macroscopic dynamics.

In a network, macroscopic complexity emerges through an interplay of the activity

of individual nodes. The interaction between the nodes can hence be considered

crucial for the complexity of the network as a whole. To provide a dynamical

account of this macroscopic behavior, one typically introduces phases and ampli-

tudes at every node, even if the precise oscillator dynamics are unknown. In fact,

this dynamics might already be very complicated. However, if phase-amplitude in-

teractions can be neglected at the nodal level, the respective phase and amplitude

dynamics decouple from one another. In this case it suffices to focus on the first.

Eventually, the macroscopic network dynamics can be expressed in terms of nodal

phases only. The separation of phase and amplitude dynamics at the nodal level

is a typical characteristic of weakly connected networks, or, more specific, weakly

coupled oscillators. The attribute ‘weak’ implies that at every node, perturbations

through external forcing or internal coupling are sufficiently small when compared

to the size of the state variable of the unperturbed, single-node dynamics. Large

perturbations may induce a qualitative change in the network dynamics rather

than mere quantitative adjustments that, in the case of isolated perturbations,

will lead to an asymptotic return to the state prior to the perturbation. Put dif-

ferently, there is a critical strength of perturbation at which the network undergoes

a transition from one macroscopic behavior to a qualitatively distinct macroscopic

behavior. This critical value is arguably reached whenever a bifurcation in the

dynamics occurs in at least one of the nodes. Then, dynamical systems theory no

longer allows for describing the node evolution by its linear approximation. We

will hence assume that this critical perturbation strength will not be exceeded,

implying that the nodes of the network are weakly coupled.

To illustrate a weakly coupled network, we sketch five nonlinear oscillators in

Fig. 2.1. Every node shows oscillatory behavior in the two-dimensional state vari-

ables xk = (xk, yk) ∈ R2, k = 1, . . . , 5. In the absence of coupling, the nodal

dynamics will converge towards stable limit cycles in the x − y planes shown in

Fig. 2.2. There is a closed orbit in the coordinate plane[1] spanned by the two state

variables xk and yk. Each of the state variables is periodic in time, xk(t) = xk(t+T )

[1] Usually, this coordinate space is called the phase space. In two dimensions, it is also referred
to as the phase plane of xk and yk. However, to avoid confusion between the ‘phase as a
state’ and the ‘phase as function of time’, we stick to the notion of ‘coordinate plane’. For the
same reason we do not adopt the notion of ‘phase transitions’ but rather refer to ‘qualitative
changes in macroscopic behavior’ to describe the transition from one dynamical regime of the
collective dynamics to another.
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Figure 2.1: A network of weakly coupled planar limit cycle oscillators. Each oscillator
k = 1, . . . , N = 5, is described in the two-dimensional state variabels xk = (xk, yk).
The coupling between oscillators is depicted as red arrows. Without coupling, each
oscillator follows the blue limit-cycle trajectory. Upon perturbution, the oscillator will
be kicked away from the limit cycle and follows a trajectory that leads exponentially fast
towards the globally attracting limit cycle. Globally attracting implies that the basin
of attraction spans the whole x − y plane except for the unstable origin (red). Two
trajectories from within the basin of attraction are shown in black.

and yk(t) = yk(t+T ) for some period T > 0. On the limit cycle, one can introduce

a phase θc = θc(t) that increases monotonically from 0 to 2π during one period T

after which it is reset to zero – throughout this Chapter, the superscript C indicates

that the variables are evaluated exactly on the limit cycle. A perturbation, e.g.,

via the coupling to another oscillator xj 6=k, can kick the oscillator away from its

limit cycle. If the perturbation is weak enough and the oscillator remains in the

so-called basin of attraction of the limit cycle, the oscillator’s trajectory will spiral

back into the limit cycle; see Fig. 2.3 (panel a). As will be shown below, also in

this case a monotonically increasing 2π-periodic phase can be defined that we will

denote as θ = θ(t).

Next to the phase, one can define an amplitude variable rk that describes the

distance to the limit cycle. This amplitude variable is different from the actual

amplitude Rk of oscillator k, which is given as the (Euclidean) distance to the

center of oscillation, which we set to the origin, such that R2
k = x2

k + y2
k; Fig. 2.3

(panel b). While the amplitude of the limit cycle oscillation Rc
k wobbles steadily

around a constant, non-zero value, the amplitude Rk approaches Rc
k after a short

transient. By contrast, the amplitude variable rk is the distance to the limit cycle:

rk = Rc
k −Rk. It converges to zero as the oscillator reaches the stable limit cycle.

In general, one can convert the amplitude variable rk to the actual amplitude of

oscillation Rk and vice versa. In the following, we will refer to the distance to the

limit cycle rk as the amplitude dynamics unless stated otherwise.

Phase and amplitude descriptions can readily be extended to oscillatory dy-

namics in more than two dimensions. And, if oscillators approach their respective

limit cycles exponentially fast, one can focus solely on the phase dynamics. The

different time scales at which fast amplitudes and rather slow phases evolve allows

for time scale separation. If additionally the perturbations are sufficiently weak so

that the oscillators are not kicked too far off the limit cycle trajectory, the ampli-



Phase reduction techniques 18

tude values will converge to their asymptotic value in a fraction of a period; see

Figure 2.3. Hence, it appears reasonable to consider the amplitudes constant and

approximate them with their asymptotic values. In consequence, one can represent

a high-dimensional dynamics at every node by its one-dimensional phase dynam-

ics only. This greatly facilitates the study of synchronization and other complex

collective phenomena in oscillator networks.

In the following, we will provide a rigorous account of how the network dynamics

of weakly coupled oscillators can be reduced to a phase model. To do so, we

presume that the network consists of N � 1 nodes, whose dynamical state is given

by the vector xk = xk(t) ∈ X , k = 1, . . . , N , where X ⊂ Rn is an n-dimensional

state space. The evolution of the state vector is governed by the dynamical system

ẋk = Fk(x1, . . . ,xN ;µk), which shall be of the form[2]

ẋk = fk(xk;µk) + κgk (x1,x2, . . . ,xN) . (2.1)

The function fk : Rn → Rn determines the node-specific dynamics without cou-

pling, while gk : RN×n → Rn comprises all coupling effects on oscillator xk through

other nodes xj 6=k. The overall coupling strength is denoted by κ ∈ R and µk are

bifurcation parameters. We will further impose three main assumptions:

(1) The network is weakly coupled. In particular, we assume that the coupling

strength κ � 1 is sufficiently small that it cannot induce bifurcations, that

[2] In general, the vector field Fk = Fk(x1, . . . ,xN , t), and hence also fk = fk(xK , t) and
gk = gk(x1, . . . ,xN , t), can explicitly depend on time t. The theory developed below also
holds in this non-autonomous case. For the sake of conciseness, however, we consider here
only autonomous individual dynamics fk and state-dependent coupling gk without further
time variations and refer to Section 3.3 for a corresponding discussion.
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Figure 2.2: An uncoupled planar limit cycle oscillator. (a) The two-dimensional state
variable xk = (xk, yk) follows a closed periodic orbit in the x− y plane, the oscillator’s
limit cycle. (b) The state variables xk(t) = xk(t+ T ) and yk(t) = yk(t+ T ) are periodic
in time. (c) The corresponding phase θ of the oscillator increases monotically between
0 and 2π during one period T . We choose a reference point on the limit cycle where the
value of yk is maximal, see the dashed lines in (a) and (b). Whenever the oscillatory
crosses this point, the phase is reset to θ = 0.
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Figure 2.3: Amplitude and phase description. (a) Two trajectories (black, red) converge
to the oscillator’s limit cycle (blue). (b) The amplitudes in oscillation R2

k = x2
k + y2

k as
the distance from the origin. (c) The amplitudes rk = Rck−Rk denote the distance from
the limit cycle C. (d) The respective phases θ coincide for all times t ≥ 0.

is,

0 < |κ| � |µk| � 1.

(2) The oscillators are nearly identical, i.e. the node-specific dynamics can be

written as fk = f + εf̃k for some small fluctuations f̃k with |ε| � 1; these

fluctuations will be subsumed into the term κgk.

(3) The coupling structure is pairwise, i.e. the coupling function can be decom-

posed into the sum of pairwise interactions, unless stated otherwise.

By virtue of these assumptions, one can rewrite the dynamical system as

ẋk = f (xk;µ) + κ
N∑
j=1

gkj (xk,xj) (2.2)

with µ being a general bifurcation parameter. In the remainder of this section we

will introduce the mathematical ingredients that enable us to transform (2.2) into

the phase model

θ̇k = ω + κ
N∑
j=1

Hkj (θk − θj) . (2.3)

In particular, we will characterize the state xk of every oscillatory node by a phase

variable θk, k = 1, . . . , N . The corresponding phase dynamics comprises a natural

frequency term ω and contributions from the other oscillators. These contributions

sum up by means of the so-called phase interaction functions Hkj that depend on

the pairwise phase differences θk − θj between oscillators k and j.
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2.1.1 Phase definition

The detailed form of oscillators may vary substantially within and between net-

works under study. To define phase variables, the oscillatory dynamics are required

to exhibit self-sustaining limit cycle oscillations. We illustrate this for the case of

a single oscillator that we write as

ẋ = Fx(x,p;µ) ,

ṗ = Fp(x,p;µ) .
(2.4)

The vector x = x(t) ∈ X ⊂ Rn represents the state variables x1, x2, . . . , xn ∈ R
that evolve according to a vector field Fx. This dynamics is subject to perturba-

tions p = p(t) ∈ Rn, whose evolution is governed by a vector field Fp. As said,

µ is a general bifurcation parameter that we will drop in this section whenever

possible to ease legibility. If we consider merely additive perturbations, the first

equation in (2.4) becomes

ẋ = f(x) + κp(t) , (2.5)

where the perturbations are scaled by the parameter κ, which is typically con-

sidered small. In light of the network cases (2.1) and (2.2), the intrinsic network

coupling is simply replaced by the external perturbations p.

Oscillators If a solution x(t) of (2.4) is periodic in time, x(t) = x(t + T ) for

some constant T > 0, then (2.4) describes oscillatory dynamics. For a given

vector field F = (Fx,Fp) one can associate the flow φ(t) with F starting at

some initial state x0 ∈ X as x(t) = φ(t;x0,p). If (2.4) exhibits a stable time-

periodic dynamics without external perturbations, p ≡ 0, then the dynamical

system ẋ = Fx(x,0) = f(x) describes an oscillator and the corresponding flow

will be denoted by x(t) = φ(t;x0).

Limit cycles & basin of attraction The stable, non-constant, time-periodic so-

lution xc(t) = xc(t + T ) of an oscillator ẋ = f(x) follows a trajectory along a

closed periodic orbit C ⊂ X . This stable periodic orbit is referred to as the oscil-

lator’s limit cycle. If we choose an initial condition x(t0) = xc0 ∈ c on the limit

cycle, then the unperturbed flow φ(t;xc0) will stay on C for all times t ≥ t0. One

can parametrize the limit cycle as the set

C := {xc ∈ X | xc = φ(t;xc0), t ∈ [0, T )} . (2.6)
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The smallest positive constant T > 0 such that C in (2.6) is a closed orbit is called

the period. The corresponding angular frequency ω of the oscillator xc will be

ω = 2π/T . We always consider the limit cycle C to be hyperbolically stable and

without self-crossings.

A hyperbolically stable limit cycle C attracts all solutions with initial condi-

tions x0 ∈ B in a close vicinity B = B(C) of C. The maximal open set of these

initial points is the basin of attraction. Formally, it can be given by B(C) :=

{x0 ∈ X | limt→∞ dist(φ(t;x0), C) = 0}, where dist(x, C) := infxc∈C ‖x − xc‖2 is

the distance from x ∈ X to the set C ⊂ X in the Euclidean norm ‖·‖2 on Rn.

Phase The limit cycle C is a one-dimen-sional manifold in Rn. Every one-

dimensional manifold can be parametrized by a scalar variable. In the case of

limit cycle oscillations, the most appropriate variable is the phase θ that results

from a smooth bijective phase map Θ: C → S1, where Θ(xc) = θc. Naturally, a

phase-reparametrization of the limit cycle (2.6) can be achieved by introducing

θ = ωt.

The notion of phase can be extended to the limit cycle’s basin of attraction

B(C). This is an important statement because it underlies all of the to-be-discussed

mathematical descriptions of phase dynamics[3]. We briefly show that this is true:

Without loss of generality, we consider a reference point xc0 of zero phase by putting

Θ(xc0) = 0. In the absence of external perturbation, the phase θc increases con-

stantly on the limit cycle C. In particular, we have θc = Θ(φ(t;xc0)) = ωt+Θ(xc0) =

ωt and θ̇c = ω. Within the basin of attraction, one can define the unique asymp-

totic phase θ of the oscillator x ∈ B(C) as

θ := Θ(x) ∈ [0, 2π) (2.7)

such that limt→∞ ‖φ(t;x) − φ(t;φ(θ/ω;xc0))‖2 = 0 holds. The asymptotic phase

θ increases along all unperturbed trajectories by means of θ = ωt + Θ(x) at the

same constant rate ω. This enables us to use xc(t) and xc(θ) interchangeably when

parametrizing the time t = θ/ω along the limit cycle. We can therefore rephrase

[3] While arguably abstract, our notion of phase enables us to define a phase even for non-smooth
oscillators. An example for this is a so-called integrate-and-fire dynamics, in which a scalar
state variable x monotonically increases according to ẋ = f(x) between two thresholds νr < νf
with f(x) > 0 for x ∈ [νr, νf ]. When reaching the upper (firing) threshold νf , the state will
be instantaneously reset to the lower (reset) threshold νr and start integrating again. In that
case one can define the asymptotic phase map Θ as the bijective change of variables

Θ(x) : x 7→ ω

∫ x

νr

1

f(y)
dy ,

with the threshold values νr and νf mapped to θ = 0 and θ = 2π, respectively.
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the condition above that defines the asymptotic phase more intuitively as

lim
t→∞

∣∣x(t)− xc
(
θ(t)

)∣∣ = 0 . (2.8)

Isochrons Sets of points x ∈ B(C) with the same asymptotic phase Θ(x) = θ

are called isochrons. Accordingly, (2.8) can be regarded as the isochron condition.

As to a rigorous definition, the isochron I(θ) associated with the phase θ is the

set I(θ) := {x ∈ B(C) | Θ(x) = θ}, which is a co-dimension one sub-manifold in

B(C) that transversally crosses the periodic orbit C.
We illustrate the concept of isochrons and the asymptotic phase map in Fig. 2.4.

The isochrons are perpendicular to the limit cycle. In general, isochrons cover the

whole basin of attraction B(C). In mathematical terms, they define a so-called

fibration of B(C).

Figure 2.4: Phase map Θ: B(C)→ S1 associates to each point xj in the neighborhood
B(C) of the limit cycle C an asymptotic phase θj ∈ S1. The set of all points in B(C)
that are mapped onto the same phase θ forms the isochron I(θ) associated with phase
θ. Shown are ten isochrons associated to the phases θn = nT/10, n = 0, . . . , 9. An
arbitrarily chosen reference point xc0 ∈ C serves as the initial phase θ = 0.

2.1.2 Phase response

Phase response curve The phase response curve or phase resetting curve is a

crucial determinant for the interaction between oscillators. It measures to what

extent an external perturbation p(t) advances or pushes back the asymptotic phase

of an oscillator. A perturbation thus leads to a phase advance or phase delay,

respectively. More formally, given a trajectory xc(t) along the limit cycle subject to

a pulse-like perturbation p(t) during an infinitesimal time interval T = limδ→0(t0−
δ, t0 + δ), i.e. p(t ∈ T ) 6= 0, an immediate strategy to identify the corresponding

phase response G(θ,p) at phase θ0 = Θ(xc(t0)) reads:

(i) determine the perturbed point limδ→0 x̃(t0 +δ) ∈ B(C) and its corresponding

asymptotic phase Θ(x̃);
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(ii) take the difference between the perturbed asymptotic phase and the unper-

turbed phase Θ(xc) = θ0;

(iii) repeat (i) and (ii) for all phases θ0 = θ ∈ S1 in order to determine the phase

response curve

G(θ;p) = Θ (x̃)−Θ (xc) = Θ (xc + p)− θ . (2.9)

One can determine the phase response curve also for arbitrary perturbations during

finite time intervals T = (t0, t1) with t1 > t0. For this, the first step above has to

be modified slightly:

(ia) determine the perturbed point x̃(t1) = φ(t1; x̃(t0),p) = φ(t1;xc(t0),p) and

the unperturbed one xc(t1) = φ(t;xc(t0)), as well as the corresponding

(asymptotic) phases Θ(x̃(t1)) and Θ(xc(t1)).

The dynamics has to be integrated to determine both the perturbed and unper-

turbed state at time t = t1. One can continue integrating for longer times, ideally

for t→∞ and, subsequently, estimate the asymptotic phase difference according

to

G(θ;p) = Θ
(

lim
t→∞

φ(t;xc(t0),p)
)
−Θ

(
lim
t→∞

φ(t;xc(t0))
)
.

Note that this definition coincides with

G(θ;p) = Θ (φ(t1;xc(t0),p))−Θ (φ(t1;xc(t0))) .

In the following we will only consider pulse-like perturbations p(t) that are

non-zero at the time instant t0 of the pulse, and therefore omit the explicit time-

dependence of p.

Infinitesimal phase response curve If the perturbation is pulse-like, i.e. T →
δ(t0), and sufficiently weak, |p| � 1, then it is convenient to express the phase

response in terms of the infinitesimal phase response curve[4]. Using the direc-

tional derivative DΘ(x) [y] := limh→0[Θ(x + hy) − Θ(x)]/h, we can define the

infinitesimal phase response curve as a map Q : S1 → R with

Q(θ) := DΘ (xc) [∂pF (xc,0)] = ∇xΘ (xc)·∂pF (xc,0) .

Here, we expressed the directional derivative as the inner product in Rn. ∇xΘ(xc)

denotes the gradient of the asymptotic phase map Θ evaluated on the limit cycle C,
[4] Several papers refer to this as infinitesimal phase resetting curve or phase response function.
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and ∂pF (xc,0) corresponds to an infinitesimal perturbation from the limit cycle

trajectory xc at phase θ.

Phase sensitivity function The afore-introduced gradient now written as

Z(θ) = ∇xΘ (xc(θ)) = ∇Θ(x)|x=xc(θ) , (2.10)

can serve to determine the phase response. Z : S1 → Rn is commonly referred to

as phase sensitivity function or linear response function85. It is closely related to

the infinitesimal phase response curve Q: If ∂pF (xc,0) is a unit vector ej along

the j-th direction, then we have Q(θ) = Zj(θ). In fact, this follows immediately

from the dynamics (2.5) with uni-directional additive perturbation κp = κej. The

phase response curve (2.9) can always be computed using Q(θ) since the definitions

(2.10) and (2.9) imply

Zj(θ) = lim
p→0

G (θ, pej)

p
. (2.11)

In Fig. 2.5, we depict the phase sensitivity functions of two classic examples,

the Stuart-Landau and the Rayleigh oscillator. The components of Z = (Zx, Zy)

describe the effect of infinitesimal perturbations in the x- and y-direction, re-

spectively. While the phase sensitivity function of the Stuart-Landau oscillator

is sinusoidal in both components, the slightly angular limit cycle dynamics of the

Rayleigh oscillator results in more complicated phase responses as indicated by

the phase sensitivity function.
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Figure 2.5: Phase response of limit-cycle oscillators. (a) Circular limit cycle of the
Stuart-Landau oscillator ż = z − (1 + i)|z|2z with z = x+ iy and (b) the two sinusoidal
components of the phase sensitivity function Z = (Zx, Zy), characterizing the response
to infinitesimal perturbations in the x- and y-direction, respectively. (c) The Rayleigh
oscillator ẋ = y, ẏ = −ω + (1− x2)y and (c) its phase sensitivity function.

2.1.3 Phase dynamics of a single oscillator

For infinitesimal perturbations |p| � 1, the phase response curve (2.9) can be

linearly approximated by the aforementioned phase sensitivity function (2.10) in
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terms of

G(θ;p) ∼= Z(θ)·p . (2.12)

Whenever the dynamics stays close to the limit cycle C, one may further approx-

imate each x by its corresponding value xc on C such that the reduced phase

dynamics can be given by

θ̇ = ω +G(θ;p) = ω + εZ(θ)·p . (2.13)

In (2.13) we used the parameter κ = ε � 1 to indicate that the perturbation is

very small. In other words, the phase response to a weak, pulse-like perturbation

p at phase θc can be approximated by the product Z(θc)·p.

More rigorously, small perturbations |p| � 1 do not kick the oscillator too far

away from the limit cycle C and the dynamics x can be approximated sufficiently

well by the value on the periodic orbit, x(t) ≈ xc(t), see Fig. 2.3. Moreover, one

can formally expand the dynamics ẋ = F(x,p) for small p around the unperturbed

dynamics f(x), i.e., F(x,p) = f(x) + ∂pF(x,0)p + O2 (p). Taken together, we

obtain the asymptotic phase dynamics

θ̇ =
d

dt
Θ(x) = ∇xΘ(x)·ẋ ≈ ∇xΘ (xc)·ẋc ≈ ∇xΘ (xc)·[f(xc) + ∂pF (xc,0)p]

and because θ̇c = ∇xΘ(xc) ·f(xc) = ω holds, this form reduces at first order to

(2.13).

2.1.4 Phase dynamics of oscillator networks

The phase model (2.13) can be extended to a network of oscillators x1, . . . ,xN

with dynamics (2.2). In the uncoupled case, i.e. for κ = 0, the systems ẋk =

f(xk) have the same hyperbolically stable limit cycle C with period T > 0 and

frequency ω = 2π/T . Starting again with defining phase variables θk according

to the isochron condition (2.8) and following the same reasoning as in the single

oscillator case, we end up with

θ̇k = ω + κZ (θk)·
N∑
j=1

gkj(θk, θj) ;

here, we abbreviated gkj(θk, θj) = gkj(x
c(θk),x

c(θj)). If the coupling is again

sufficiently weak, one can make use of averaging. For this, we introduce relative
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phase variables θk = φk + ωt and find

φ̇k = κZ (φk + ωt)·
N∑
j=1

gkj (φk + ωt, φj + ωt)

with 0 < κ � 1. In order to apply averaging appropriately, the (relative) phases

φk have to be slow variables. To be precise, they have to be so slow that they

do not vary within a period. Then, one can average the right-hand side over one

period, which yields the sought-for phase dynamics (2.3),

θ̇k = ω + κ
N∑
j=1

Hkj(θk − θj) ,

with the phase interaction function

Hkj(ψ) =
1

2π

∫ 2π

0

Z(ϕ+ ψ)·gkj(ϕ+ ψ, ϕ) dϕ . (2.14)

More detailed derivations can be found in, e.g., Kuramoto’s seminal book38 (Chap-

ter 5) or Ermentrout and Terman’s textbook86(Chapter 8.3); see also the recent

review87 by Nakao.

In what follows, the network (2.2) and its phase dynamics (2.3) will be our

central equations. We will present different ways how to determine the phase

interaction function (2.14). Obtaining analytical expressions of Hkj can be an

arduous endeavor. The exact determination of the natural frequency ω as well as

of Hkj depends on an accurate description of the limit cycle and related quantities,

e.g., the phase map Θ of every oscillator xk. Accordingly, one would determine

the phase sensitivity function Z first and subsequently Hkj. How this can be

done numerically will be sketched in Section 2.3. Numerics, however, may fail to

unravel the details about the link between the original oscillator dynamics and the

reduced phase model. Therefore, we start with an overview of analytic approaches

in Section 2.2.

2.1.5 Collective behavior

Before going into the details of phase reductions of complex oscillator networks, we

briefly recapitulate how macroscopic behavior may look like and how it is typically

evaluated and categorized. The by now conventional outcome measures will be

included in our quality assessment of the to-be-explained techniques. For the sake

of simplicity and in line with our main assumptions above, we consider a pairwise

coupling structure where the existence of a link between two oscillators k 6= j is
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prescribed by adjacency values Ckj. Moreover, we consider the pairwise coupling

functions gkj(xk,xj) = Ckjg(xk,xj) to differ only by this factor. This leads to

a slight simplification of the oscillator network dynamics and the corresponding

phase dynamics, but suffices to prepare various examples to come.

Considering pairwise coupling, the general dynamical form of (2.2) reduces to

ẋk = f(xk;µ) +
κ

N

N∑
j=1

Ckjg(xk,xj) (2.15)

When the coupling matrix C = {Ckj}k,j has only binary entries, it is also referred

to as adjacency matrix. The pairwise coupling structure in (2.15) leads to the

phase dynamics

θ̇k = ω +
κ

N

N∑
j=1

CkjH (θk − θj) , (2.16)

where H is the sole phase interaction function. Comparing this with (2.3) and

(2.14), we have replaced Hkj with CkjH so that we have to determine the phase

interaction function only once instead for each pair of oscillators individually.

Moreover, the function H is periodic with period T = 2π/ω. It can hence be

expressed as a Fourier series

H(ψ) =
∑
n≥0

an cos(nψ) + bn sin(nψ) . (2.17)

The (number of) Fourier components an and bn insinuate the ‘degree of complexity’

in the phase dynamics. In fact, including higher harmonics (n > 1) may give rise

to modularity and clustering of phases, or even to switching behavior between

clusters.

2.1.5.1 Synchronization

Synchronization and de-sychronization are arguably the most discussed phenom-

ena in oscillator networks. In case of two coupled oscillators 1 and 2 with C12 =

C21 = 1, conditions for their synchronization can be summarized as follows. If

the oscillators have identical natural frequencies, ω1 = ω2, and the frequency mis-

match ∆ = ω1 − ω2 vanishes, then the oscillators will synchronize in-phase with

θ1(t) = θ2(t) for large enough t or out-of-phase with |θ1(t) − θ2(t)| = π. In fact,

when defining Γ(ψ) = H(ψ)−H(−ψ) one can write θ̇k− θ̇j := ψ̇ = ∆+κΓ(ψ). The

resulting in-phase synchronized solution ψ = 0 is stable for κΓ′(0) = 2κH ′(0) > 0.

In this case, the phase model exhibits attractive coupling. On the other hand,

the anti-phase solution, ψ = ±π, is stable if κH ′(±π) > 0. Then one speaks of

repulsive coupling. For non-identical oscillators, ωk 6= ωj, phase locking or mutual
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synchronization, can be observed as long as κmin Γ(ψ) < ∆ < κmax Γ(ψ) holds.

All these properties can be extended to networks of more than two coupled

oscillators. To illustrate this, we consider positive coupling strengths κ > 0 from

now on, unless stated otherwise. If H(ψ) consists only of first harmonics, i.e.

a1, b1 6= 0 but an = bn = 0 for all n > 1, we retrieve the seminal Kuramoto-

Sakaguchi model

θ̇k = ωk − κ
N∑
j=1

sin (θk − θj + α)

with phase lag parameter α. In our previous notation, we have Ckj = −1 for all

k, j. The special case α = 0 yields the classic Kuramoto model, for which a1 = 0

and b1 > 0. By construction, the Kuramoto model ‘only’ features attractive cou-

pling. The more general Kuramoto-Sakaguchi model, whose phase interaction

function is commonly written as H(ψ) = A sin(ψ + α), exhibits also attractive

coupling[5] for |α| ≤ π/2. In networks of identical and globally coupled oscilla-

tors, the strength of (attractive) coupling can be arbitrarily small such that the

network synchronizes. For non-identical oscillators, by contrast, the heterogeneity

in the natural frequency terms tends to suppress synchronization. Yet, when the

coupling exceeds a critical value, a transition to collective synchronization can be

observed38,85.

Commonly, the degree of network synchronization is measured in terms of the

complex Kuramoto order parameter defined as

ReiΨ =
1

N

N∑
k=1

eiθk . (2.18)

The modulus R and the complex argument Ψ represent the amplitude and phase,

respectively, of collective oscillations, that is, of the mean field behavior. R takes

values between R = 0, corresponding to a fully incoherent state, and R = 1,

corresponding to complete synchronization of all oscillators. The Kuramoto model

provides a seminal example of a synchronizable phase oscillator network. In the

continuum limit, N → ∞, and for an appropriately chosen distribution g(ω) of

natural frequencies, it can be solved analytically. When increasing the coupling

strength, the real-valued Kuramoto order parameter R undergoes a pitchfork-

[5] We can use trigonometric identities to write a1 cos(ψ) + b1 sin(ψ) = A sin(ψ + α) with A2 =
a21 + b21 and α = arctan(a1/b1); the latter is the quadrant corrected inverse tangent. If we fix
the sign of A by imposing A = sgn(b1)[a21 + b21]1/2, we find α = arctan(a1/b1) ∈ (−π/2, π/2)
for b1 > 0, and |α| > π/2 for b1 < 0. Hence, the coupling is attractive whenever b1 > 0. When
b1 < 0, the repulsive character of the coupling can be revoked through negative coupling
strengths κ < 0, in which case κA > 0. On the other hand, using the convention sgn(A) =
sgn(a1), synchronization may not occur when κA > 0 is fulfilled.
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bifurcation at a critical value (which depends on the properties of g) and the state

of the network switches from incoherence to (partial) synchronization see 38,81,87.

Stability of the synchronized solution

A different approach to assess the network behavior of identical, coupled systems,

not necessarily phase oscillators, is based on the master stability function (MSF)

formalism88. The MSF approach is used to determine the stability of the fully

synchronized state, corresponding to a vanishing order parameter R = 0, in terms

of the eigenstructure of the connectivity matrix see also 89. For our phase model

θ̇k = ω+ κ
∑

j CkjH(θk − θj), we are interested in the stability of the synchronous

state θk = θ for all k, that is, θk − θj = 0 for all j 6= k. Given that close to full

synchrony the phase differences tend to be small, we can expand H around the

origin and find at first order H(θk−θj) ≈ H ′(0)[θk−θj]. Writing the phase model in

vector form, one can find the Jacobian Ĥ at the synchronous state Θ0 = (θ, . . . , θ)

with entries Ĥkj having graph-Laplacian structure Ĥkj = κH ′(0)
(
Ckj−δkj

∑
l Ckl

)
.

The (linear) stability of the synchronous state here depends on the eigenvalues of

Ĥ. We note that one eigenvalue is always zero. If the network is globally coupled,

i.e., Ckj = 1 for all j, k, the synchronized state is stable if κH ′(0) > 0 and unstable

if κH ′(0) < 0 cf. 61. Nicosia and co-workers recently used a similar approach to

investigate the mechanisms behind remote synchronization behavior58. When full

synchronization cannot be achieved, network symmetries play a crucial role in

establishing functional modules, which do not even require structural connectivity

as represented in the adjacency matrix Ckj.

2.1.5.2 Between incoherence and full synchrony

Observed macroscopic behavior emerges from the dynamics of the network’s nodes.

However, collective dynamics also influence the individual oscillators in turn. It is

therefore often convenient to rewrite the phase model (2.16) & (2.17) in the form

of a single oscillator that is driven by the mean field variables R(t) and Ψ(t):

θ̇k = ωk + κ
∑
n≥0

an(R) cos(Ψ− θk) + bn(R) sin(Ψ− θk) . (2.19)

The Fourier amplitudes an, bn now depend on R, possibly in a nonlinear way.

Rosenblum and Pikovsky investigated a form of the Kuramoto-Sakaguchi model90–92

where a1 and b1 depended on both R and R3. Due to this nonlinear coupling, a

self-consistent partial synchrony solution can arise with 0 < R < 1 at the bor-

der between stability and instability domains for the synchronous state. More-

over, Rosenblum and Pikovsky found a mismatch between the time-averaged fre-
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quencies of the oscillators and the frequency of the mean field, which they called

self-organized quasiperiodic solutions. Detecting these non-trivial states requires

a more careful inspection of the network behavior than merely considering the

(averaged) evolution of the order parameter. Poincaré sections can hint at the

quasiperiodic character of the mean-field solution. Furthermore, the evolution

of the (instantaneous) phases, or of their distribution, sheds light on the actual

collective dynamics.

Higher harmonics in the phase model increase the variety of non-trivial net-

work behavior. For instance, for a biharmonic phase interaction function H, i.e.

where in addition a2, b2 6= 0, the occurrence of balanced two-phase-cluster states

is expected, and has frequently been reported93–95. In particular, one can indicate

stability boundaries for cluster states according to the eigenvalues associated with

intracluster and intercluster perturbations, respectively. The eigenvalues for intr-

acluster perturbations can be computed as λintra
n =

∑∞
k=1 bkn, with bm,m = kn,

the (odd) Fourier amplitudes of H. Combining them with those for interclus-

ter perturbations, we can determine the stability of synchronized (one-cluster,

λintra
1 ) and anti-phase cluster solutions (balanced two-cluster, λintra

2 , λinter
2 ) using

λintra
1 = H ′(0), λintra

2 = 1
2

(H ′(0) +H ′(π)), and λinter
2 = H ′(π). The biharmonic

phase model will feature global synchrony for κb1 > 0, and a balanced two-cluster

state will be realized if κb1 < 0 and κb2 > 0. Moreover, heteroclinic cycles may

occur when κb1 < 0, κb2 < 0 and b1 is comparable to b2. Heteroclinic cycles de-

fine a slow switching behavior of individual oscillators between two clusters. As

illustrated in Fig. 2.6 (panel a), slow switching is characterized by spontaneous

decreases of the real-valued Kuramoto order parameter (top panel). During these

(a) Slow switching (b) Oscillating three-cluster state

Figure 2.6: (a) Slow switching between two clusters in a network of N = 1000 bi-
harmonically coupled phase oscillators. (b) Oscillating three-cluster state for N = 30
identical phase oscillators with phase interaction function H(ψ) =

√
2 sin(ψ + π/4) −

0.09 sin(2ψ) + 0.16 sin(3ψ)− 0.09 sin(4ψ)− 0.03 sin(5ψ)− 0.06 sin(6ψ). Top panels: time
evolution of the real-valued Kuramoto order parameter. Bottom: time evolution of the
individual phases.
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rapid drops of synchrony some oscillators switch from one cluster to the other

as can be seen in the corresponding phase evolution (lower panel). Kori and

Kuramoto96,97 argued that slow-switching may be explained as an effective con-

vergence to an unstable unbalanced two-cluster solution, and explored the effect

of delay on the robustness of the mechanism.

Clusella and co-workers summarize the possible macroscopic dynamics for identi-

cal biharmonically coupled phase oscillators in98. They also reported self-consistent

partial synchrony solutions; see also the work by Komarov and Pikovsky for an

analytic account of the network behavior for a biharmonic coupling function99,100.

When further increasing the number of harmonics in the phase interaction func-

tion, even small networks of identical phase oscillators can display very rich col-

lective behavior up to macroscopic chaos, as has been shown for fourth harmonics

in101. Numerical simulations can give insight into the variety of clustering behav-

ior when more than two harmonics are present; e.g., Okuda reported an oscillating

three-cluster state in93. While the order parameter dynamics may hint at such

non-trivial network behavior, it typically fails to provide a clear picture of the

actual phase dynamics. The oscillating order parameter in Fig. 2.6 (panel b, top)

does not provide any sign that there are actually three oscillating cluster states

as revealed by the phase time series (bottom). For that reason, it is important to

identify the characteristics of the collective behavior first and subsequently choose

an appropriate macroscopic observable that is able to capture the actual dynam-

ics.

2.2 Analytic phase reduction techniques

The literature comes with a variety of analytic phase reduction techniques. Pri-

mary disciplines providing these techniques are the physics of complex systems and

applied mathematics while engineering adds more to the numerical approaches. As

such the techniques are often tailored to more or less specific settings. While this,

in principle, should not be a problem, there are important differences in the re-

sulting phase models. These differences are not ‘only’ quantitative ones but can

be qualitative in nature, as will be illustrated in Chapter 3.

The goal of analytic phase reduction is not only to reduce an oscillator network

into a phase model of the form (2.3) but to derive explicit expressions of the

natural frequency ω and of the phase interaction function Hkj in terms of the

parameters of the underlying oscillator model. As outlined in Section 2.1, the

phase interaction function Hkj can be determined through the phase sensitivity

function Z(θ) and through the coupling function gkj, cf. (2.14). Both of them

depend on the limit cycle properties of the underlying dynamics. To extract these
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properties we make use of an important observation: Oscillator dynamics on the

limit cycle are similar across models if these oscillations emerge through the same

particular type of bifurcation. This similarity gives rise to canonical models for

every type of bifurcation, which capture the essence of the dynamics near the

bifurcation point. All dynamical systems with similar dynamical behavior can be

transformed into a canonical model.

The insights from a canonical model can be very fruitful for identifying the

phase dynamics of the oscillator network. To derive the phase dynamics for sys-

tems close to the same bifurcation, it suffices to consider canonical models of the

corresponding dynamical systems78. Even without knowing the exact equations

of the canonical model, the phase sensitivity function can often be anticipated to

have a particular form that is characteristic for the type of bifurcation see, e.g., 102,103.

However, in order to determine the exact form of the other indispensable ingredi-

ent necessary for deriving the phase dynamics, that is, the coupling function gkj

evaluated at the limit cycle, we crucially depend on the equations of the canon-

ical model. Unfortunately, there is a caveat. As Hoppensteadt and Izhikevich

properly remarked in their textbook78, there does not exist a general algorithm

for deriving canonical models. Normal form and center manifold theories have

proven successful candidates to obtain simplified equations and to reduce their

dimension, respectively. We will clarify the intricate link between these theories

in Section 2.2.1, and illustrate how to apply them in the subsequent sections. In

some cases, however, the derivation of canonical models cannot avoid heuristic ar-

guments and restrictive approximations. This is in particular true if bifurcations

are global[6]. When an oscillatory dynamics is close to a Hopf bifurcation, which

is a local bifurcation, one can utilize sound mathematical approaches to explicitly

derive a canonical model. As we base the derivations on normal form theory, we

will refer to it as a normal form. In fact, we will specify it as a Hopf normal

form due to the particular type of bifurcation that will be considered here. Once

a Hopf normal form is obtained, it can be further reduced to the phase dynamics.

A rigorous analytic phase reduction is thus a two-step approach: it consists of

a normal form reduction and a subsequent phase reduction of the normal form.

Note that the resulting phase dynamics is described in terms of the original pa-

rameters. Indeed, the normal form/canonical model is achieved through an exact

transformation of the underlying system. Likewise, the phase reduction of the

[6] A local bifurcation is characterized through the loss of stability or the disappearance of an
equilibrium. Qualitative changes of the system’s dynamical behavior are localized in a small
neighborhood. Outside this neighborhood the dynamics remains qualitatively identical unless
other bifurcations occur there simultaneously. If one cannot confine the qualitative changes
through a bifurcation to a (small) neighborhood, one speaks of a global bifurcation. Exam-
ples for local bifurcations are saddle-node, pitchfork, transcritical or Hopf bifurcations, while
homoclinic and saddle-node on a limit cycle (SNIC) bifurcation are of global character.



Phase reduction techniques 33

Hopf normal form is an exact transformation into the phase model.

Reduced phase models are not unique. This is also true for coupled dynam-

ical systems near Hopf bifurcations. Both for normal form reductions as well

as for subsequent phase reductions one can pick and choose one out of various

alternatives. We will present three of the Hopf normal form reductions in Sec-

tions 2.2.2.1–2.2.2.3. They are representative for the most commonly used normal

form reduction techniques, and dwell on time-scale separation and perturbation

arguments (dating back to Kuramoto), subsequent near-identity coordinate trans-

formations (Poincaré), and a Lie bracket formalism (Takens), respectively. In

Sections 2.2.4–2.2.7 four different phase reduction techniques will be outlined. In

principle, they are applicable to any network of coupled dynamical systems that

exhibit stable oscillations. However, three of them, namely Winfree’s reduction

via isochrons, Kuramoto’s reduction via Floquet eigenvectors, and Ashwin & Ro-

drigues’ reduction via symmetries, capitalize to some degree on the aforementioned

Hopf normal form and there they can be solved to all extent. The fourth one that

falls into the category of averaging and/or time-scale separation approaches has

been extensively used in the context of nonlinear optics dating back to Haken.

Strictly speaking it does not require a normal form description. Our juxtaposition

of these techniques will point at how they differ in their conceptual background

and methodological implementation, the general applicability, as well as their ac-

curacy. For the latter we will particularly focus on the correct determination of

the coupling function, where we even extend the existing theory by incorporating

nonlinear coupling terms. After all, the coupling defines the interaction between

oscillators and is thus crucial for the collective dynamics.

Before going into medias res along exemplary applications in Chapter 3, we will

first provide a very concise inventory of generic analytic techniques to treat oscil-

lator networks and their phase dynamics. All of them apply to general dynamics

with the only assumption that they exhibit stable oscillatory behavior. However,

we will concentrate on oscillators that are close to a so-called Hopf bifurcation,

i.e. around the transition at which oscillations with a finite frequency emerge or

vanish. The Hopf bifurcation allows to rigorously derive a canonical model[7]. We

[7] The Hopf bifurcation is the only type of bifurcation that allows a step-for-step reduction of
the phase dynamics without rough heuristics. In fact, the seminal work by Eric Shea-Brown
and co-workers102 provides a welcoming account of phase reductions of the four co-dimension
one bifurcations that lead to oscillatory dynamics: Hopf, Bautin, SNIC and homoclinic. The
global character of the SNIC and homoclinic bifurcations, however, requires an educated
guess about the limit cycle trajectories away from the respective fixed points undergoing
the particular bifurcation, so that the corresponding phase sensitivity function cannot be
parametrized in terms of the original oscillator dynamics. Moreover, the Bautin bifurcation (or
generalized Hopf bifurcation) has the normal form that agrees with that of the Hopf bifurcation
except for the sign of the parameter of the cubic term is different. This leads to a subcritical
Hopf bifurcation, whose branch of unstable periodic orbits becomes stable at a saddle-node
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will present three different reduction techniques in Section 2.2.2. Central to these

reductions are center manifolds and normal forms. Due to their importance, we

will revisit the corresponding theories briefly.

2.2.1 Center manifold and normal form

The concepts of center manifolds and of normal forms are so closely related that

many textbooks do not bother to distinguish between them. Often, the center

manifold reduction of a dynamical system is computed first in order to reduce the

dimension of the system. Afterwards, this simplified, lower-dimensional system

is brought into normal form. However, there is a subtle conceptual difference

to the actual normal form reduction. A normal form reduction is characterized

through smooth, consecutive transformations or changes of coordinates, which

preserve the essential characteristics of the underlying dynamical system and which

do not reduce its dimension. Via the coordinate transformations a normal form

reduction leads to a thorough picture of the dynamics in terms of the system’s

stable, unstable and center manifolds. Normal form reductions even provide the

stable and unstable fibrations over the center manifold104. In this sense, normal

forms can be considered more general because the reduced analytic expressions

accurately describe the dynamics also away from bifurcation points. We will briefly

summarize center manifolds and normal forms in the following.

Center manifold Whenever a dynamical system passes through a bifurcation,

there is a sudden qualitative change in the system’s behavior. For instance, a

fixed point solution of the dynamical system switches its stability. This change

in stability is represented in the spectrum of the linearized dynamics about the

fixed point: the real part of at least one eigenvalue changes signs and becomes

zero at the critical bifurcation point. The center manifold is an invariant manifold

corresponding to the eigenvectors associated with the eigenvalues with zero real

part[8]. The dynamics on the center manifold is slower than that on the stable and

unstable manifolds, corresponding to the eigenvalues with negative and positive

non-vanishing real parts, respectively. The attraction towards the stable manifold

as well as the repulsion from the unstable manifold are exponentially fast. Hence,

it is possible to determine the entire dynamics via the center, or critical, modes,

i.e. through the variables xslow corresponding to the slow flow along the center

bifurcation of periodic orbits. Given the similarity of their normal forms, it appears reasonable
to restrict our considerations on the phase reduction of oscillatory dynamics that emerge
through a Hopf bifurcation.

[8] The eigenvectors associated with the eigenvalues with vanishing real part span the center
eigenspace of the respective fixed point. The center manifold has the same dimension as the
center eigenspace and is tangential to it at the fixed point.
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manifold. More formally, the local behavior of the fast variables xfast around the

fixed point can be expressed as

xfast = C (xslow) . (2.20)

Importantly, the function C, albeit arbitrary, only contains terms of second and

higher order. In fact, the expression (2.20) characterizes the center manifold locally

with the corresponding dynamics given by

ẋslow = Lxslow +N (xslow,C (xslow)) . (2.21)

The real parts of all the eigenvalues of the matrix L vanish and N contains all

the nonlinear terms. This center manifold reduction effectively reduces the di-

mensionality of the system to the number of eigenvalues with vanishing real part.

One may interpret this dimensionality reduction in that the fast variables xfast are

prescribed by the slow ones xslow, which in the physics literature is often referred

to as Haken’s slaving principle 105,106.

In the case of a supercritical Hopf bifurcation, a stable fixed point loses stability

as a pair of complex conjugate eigenvalues crosses the imaginary axes and stable

limit-cycle oscillations emerge. Hence, we have two eigenvalues with zero real part,

and the corresponding center manifold is two-dimensional.

Normal form The normal form of a bifurcation is the ‘simplest’, reduced equation

(2.21) that exhibits the qualitative features of the bifurcation type. The dimension

of the normal form coincides with the number of critical modes, and hence with

the dimension of the center manifold. The normal form can be achieved, e.g., by

removing all non-resonant terms in the nonlinear function C.[9]

Although the nomenclature appears somewhat misleading, normal form reduc-

tions do not necessarily result in the normal form of a bifurcation as defined above.

This is only true close to bifurcations of dynamical systems where all eigenvalues

have zero real part, e.g., as in the case of a Hopf bifurcation in a two-dimensional

dynamical system. The reason for this is that normal form reductions yield a sim-

plified equation – a ‘normal form’ in the strict sense – of the same dimension as

[9] In consequence, the normal form will contain only resonant monomials wm1
1 · · · · · wmn

n with
mj ∈ N, j = 1, . . . , n, satisfying

m1 + · · ·+mn = k and m1λ1 + · · ·+mnλn − λk = 0, for each k ≥ 2. (2.22)

For pure imaginary eigenvalues λj of the dynamic’s Jacobian, the second equation of (2.22)
becomes indeed a resonance among frequencies in the usual sense. This resonance property can
be proven in a straightforward way for the semi-simple normal form style cf. Theorem §2.1.5, 107;
see also below.



Phase reduction techniques 36

that of the underlying dynamical system. As such, a normal form reduction is a

rigorous transformation of a dynamical system into a simplified equation without

reducing its dimension, whereas a center manifold reduction reduces the dimension

without simplifying the equation[10]. Interestingly, given the normal form through

a normal form reduction, the critical center modes will ‘miraculously’ decouple

from the fast variables and the normal form of the bifurcation on the center man-

ifold is retained104,108. In the following we will refer to the ‘normal form of a

bifurcation’ simply as normal form unless stated otherwise.

A bit of history Normal form theory goes back to Poinaré’s work109 and has

ever since attracted attention as a technique of transforming nonlinear differential

equations to generic and simpler standard forms near a (local) bifurcation point.

The precise normal form can be determined in different ways. While coordinate

transformations have been frequently used, addressing normal form calculations

more categorically involves a matrix representation method, an adjoint method

and a method based on the representation theory of the Lie algebra sl(2,R). All

these methods are strongly connected and, as mentioned earlier, based on the ideas

of Takens110,111. The resulting normal form can be expressed as lying in the kernel

of an adjoint linear operator on the space of homogeneous polynomials104,107,112.

Alternatively, a perturbation technique has been proposed by Nayfeh113 and Yu114,

which dwells on the methods of multiple time scales115 and of intrinsic harmonic

balancing116. The reductive perturbation approach of Kuramoto in Section 2.2.2.1

below also uses a two time-scale separation.

More recent developments Other approaches to derive normal forms can be

subsumed into time averaging112,117, a Lyapunov-Schmidt reduction method118,

and a singular point value method119,120. The latter were originally meant to de-

termine focus, or focal, values of a (degenerated Hopf) critical point to prove the

existence (and the maximal amount of multiple) limit cycle(s), but this requires to

computation of higher-order normal forms121. The idea behind the singular point

value method is to introduce formal power series and recursive forms to calcu-

late singular point quantities. The Lyapunov-Schmidt reduction approach, on the

other hand, elegantly reformulates the problem of proving the existence of periodic

solutions emerging from Hopf bifurcations as that of finding a family of solutions

of an abstract equation in a functional space of periodic functions. Its reformu-

lation in terms of functional analysis allows for a generalization of the problem

in infinite-dimensional space cf. 122. Essentially, one projects the entire system un-

[10] A center manifold reduction may even lead to the loss of some important nonlinear properties
of the system under study that are linked to the dynamics on the stable and unstable manifolds.
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der study into the subspace that is spanned by the eigenvectors associated with

the pair of purely imaginary eigenvalues at the Hopf point. In contrast to the

other approaches, this results into a set of algebraic equations while the others

yield differential equations121. From the point of view of projecting the system

into a specific subspace, also the methods of time averaging and of multiple time

scales fall in the same category. For time averaging one transforms the original

autonomous system ẋ = f(x;µ) into a non-autonomous one via y = exp(tJ)x.

Here, J is the Jacobian of the vector field f(x;µ) at x = 0. Moreover, the domain

Ω ⊂ Rn of x ∈ Ω is invariant under the Lie group Γ = {exp(tJ) | t ∈ R}. The

time-dependent system is subsequently solved using the conventional averaging

method117,123,124. It is important to realize that most of these methods rely on a

‘preprocessing’ and a dimensionality reduction following center manifold theory,

which assures the existence of an amplitude equation and also indicates its order.

For instance, the singular point value method first applies a center manifold re-

duction to the original dynamics, which yields a two-dimensional center manifold

associated with the Hopf bifurcation. The perturbation method, by contrast, does

not necessarily require such a center manifold reduction121,125,126.

Uniqueness of normal forms Given the plethora of derivation schemes, it ap-

pears obvious to ask whether they all result into the same, unique normal form.

Needless to say, uniqueness of normal forms can, in general, not be guaranteed, at

least not for ‘classic’ normal forms. Yet, classic normal forms are usually simple

enough to become solvable and can be truncated at a given degree. This leaves

the question of asymptotic validity. That is, is a normal form in terms of a (for-

mal) series, or a truncated normal form, a reasonably good approximation of the

original dynamics? In fact, quite detailed error analyses can be found in the liter-

ature104,127,128. Murdock presents several error estimates in Chapter 5104, among

which there is a basic theorem that allows to estimate an asymptotic error (de-

pending on the order of truncation and on the initial distance) if (a) the matrix

of the linear term is semi-simple and has all its eigenvalues on the imaginary axis,

and (b) if the semi-simple normal form style is used, see Lemma 5.3.6104[11]. Fix-

ing a normal form style, however, does not necessarily determine a unique normal

[11] An M × M matrix A is called semi-simple if it is diagonizable with diagonal entries
λ1, . . . , λM ∈ C, otherwise A is non-semi-simple. A normal form style is connected with
the choice of a complementary subspace Hk of the image of a homological operator applied
to a particular vector space Pk, as will be shown below. The operator is associated with
the Jacobian, that is, with the linear term of the dynamics. In the case that the Jacobian
is semi-simple, e.g., in the case of a Hopf bifurcation, there is only one useful choice of Hk
as the kernel of the operator applied to Pk, which is the semi-simple normal form style. For
non-semi-simple Jacobians, the mainly used styles are the adjoint operator or inner product
normal form popularized by Elphick and co-workers129, and the sl(2,R) normal form due to
Cushman and Sanders130.
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form104. The main reason being is that all higher order terms in the normal form

are normalized with respect to the linear term only, i.e. the normal form satisfies

a condition which is defined through the Jacobian. A more complete normaliza-

tion, by contrast, builds on a series of normalizations: first the quadratic term is

normalized with respect to the linear one, then the cubic term is normalized with

respect to the sum of the linear and quadratic terms, etc.[12].

2.2.1.1 Hopf normal form

In view of illustrating the pure theory above, we consider different reduction tech-

niques that lead to networks of oscillators in Hopf normal form. We will duly

introduce Hopf normal forms in this section both for an uncoupled oscillator, as

well as for coupled oscillators in a network. In Section 2.2.2.1 we will present a

physically motivated, reductive perturbation approach promoted by Kuramoto38.

Its inherent separation of time-scales lets this approach resemble a center manifold

reduction. A mathematical approach of a Hopf normal form reduction using non-

linear, so-called Poincaré transformations will be subject in Section 2.2.2.2. For

simplicity, we will consider a two-dimensional system so that the dimension of the

phase space already coincides with the one of the expected center manifold. While

this approach is hence kept as mathematically exact as possible, the concept ex-

tends naturally to general n-dimensional systems, where the governing equations

restricted to the center manifold can be computed with a projection method as

outlined in Chapter 5.4122. Ultimately, we will provide a rather general normal

form reduction approach in Section 2.2.2.3 that goes back to early ideas of Tak-

ens111 and utilizes an adjoint linear operator expressed in a Lie bracket formalism.

To compare it against the two other methods, we have applied it exemplarily to a

two-dimensional system in Section S.4 of the Supplementary Material, where we

also showed the computations of Hopf normal forms of higher order.

Hopf normal form of a single oscillator The Hopf normal form of a single

oscillator in the vicinity of a (supercritical) Hopf bifurcation generally reads

ẇ = f(w;µ) =
M−1∑
m=0

(−1)mσm|w|2mw +O2M(w) , w ∈ C , (2.23)

[12] The resulting higher-level normal forms require more advanced calculations see, e.g., 117,131.
The actual ideas of these fully normalized normal forms go back to Belitskii132 and the work by
Baider and co-workers133,134 One can find alternative notions for higher-level normal forms
in the literature like hypernormal forms, simplest normal forms, or unique normal forms.
Higher-level normal forms can differ for distinct normal form styles applied, but uniqueness
may be established within a fixed normal form style.
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with complex-valued coefficients σm = σm(µ) ∈ C. The parameter µ ∈ R denotes

the bifurcation parameter and can be viewed as the distance to the Hopf bifurcation

at µ = 0. The integer M ∈ N defines the order of the Hopf normal form. For

second order, i.e. for M = 2, equation (2.23) takes on the form of a complex

Stuart-Landau oscillator.

The complex-valued w ∈ C can be written in polar coordinates (R, θ) as w =

Reiθ, or in planar coordinates x = (x, y) ∈ R2 as w = x + iy. Then the radius

R ≥ 0 and angle θ ∈ S1 satisfy R =
√
x2 + y2 and θ = atan2(y, x). The Hopf

normal form (2.23) reads in polar coordinates

Ṙ =
M−1∑
m=0

(−1)mumR
2m+1 = R · < , θ̇ =

M∑
m=0

(−1)nvmR
2m = = , (2.24)

with σm = um + ivm and real-valued um, vm ∈ R, we abbreviated

< =
M−1∑
m=0

(−1)mumR
2m , = =

M∑
m=0

(−1)nvmR
2m .

The corresponding planar dynamics of (2.23) is

ẋ =

(
= −<
< =

)
x . (2.25)

Note that in (2.24) the radial dynamics Ṙ decouples from the angular dynamics θ̇.

If the parameters σm = um + ivm are such that Ṙ has a stable non-trivial solution

Rc, then there exists a T -periodic circular limit-cycle solution of (2.23),

wc(t) = xc(t) + iyc(t) = Rceiθ
c

, or xc(t) =

(
xc(t)

yc(t)

)
= Rc

(
cos θc

sin θc

)
with constant radiusRc and constantly increasing phase θc(t) = ωt+θ0. The period

T = 2π/ω is defined through the frequency ω. Note that both Rc and ω depend on

the normal form coefficients σm or (um, vm), respectively, with m = 0, . . . ,M−1.[13]

Without loss of generality we set θ0 = 0 so that θc is uniquely defined through the

frequency ω.

[13] For second order Hopf normal forms, i.e. M = 2, Rc =
√
u0/u1 and ω = v0 − u0v1/u1 if

u0, u1 > 0. For third order, M = 3, Rc > 0 solves u0 − u1R2 + u2R
4 = 0 if u0, u1, u2 > 0 and

u21 − 4u0u2 ≥ 0. The frequency ω then depends on u0, u1, u2, v0, v1, v2.
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Hopf normal form with coupling If we consider an oscillator in Hopf normal

form as one node in a network of oscillators, the governing dynamics read

ẇk = f(wk;µ) + κ gk(w1, . . . , wN)
(2.23)
=

M−1∑
m=0

(−1)mσm|wk|2mwk + κ gk(w1, . . . , wN) ,

(2.26)

with coupling function gk : CN → C that depends on all other oscillators wj 6=k ∈ C.

The coupling strength κ is usually assumed to be small, |κ| � 1.[14]

Capitalizing on the assumption of exclusively pairwise interactions as in (2.2),

then normal form reductions preserve this pairwise coupling structure; the proper

derivation can be found in Section S.3 of the Supplementary Material. For simplic-

ity, we further assume that the pairwise coupling functions gkj between oscillators

coincide up to an adjacency value Ckj ∈ {0, 1} that denotes structural connectivity

between nodes. Hence, the coupling simplifies to

gk(w1, . . . , wN) =
1

N

N∑
j=1

gkj(wk, wj) =
1

N

N∑
j=1

Ckjg(wk, wj) . (2.27)

In summary, we consider the network dynamics

ẇk =
M−1∑
m=0

(−1)mσm|wk|2mwk +
κ

N

N∑
j=1

Ckjg(wk, wj) . (2.28)

Two remarks are due at this point: First, thanks to the pairwise coupling struc-

ture it suffices to consider only two coupled oscillators w,w′ with dynamics

ẇ = f(w;µ) + κ g(w,w′) , (2.29)

and a similar equation holds for w′. The analytic results of (2.29) can be readily

extended to the whole network in an analogous way. Second, the coupling function

g(w,w′) in (2.29) depends in general also on the complex conjugates of w and w′.

We can formally expand g(w,w′) as a power series

g(w, w̄, w′, w̄′) =
∑

k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n (2.30)

with complex-valued coefficients gklmn ∈ C. Importantly, not all of these coeffi-

cients contribute to the reduced phase dynamics. Indeed, only linear and cubic

terms provide substantial contributions to the first and second harmonics of the

resulting phase model; see the subsequent sub-section 2.2.1.2* that builds on95.

[14] In line with the foregoing sections we refrain from an explicit time-dependence of the coupling
function gk, but note that the theory also holds for time-varying functions.
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Hopf normal form of an oscillator network Considering a network of coupled

oscillators close to a supercritical Hopf bifurcation, the Hopf normal form of the

full network reads[15]

ẇk = αwk − β|wk|2wk +
κ

N

N∑
j=1

Ckj
[
γwj + δw̄kw

2
j

]
. (2.31)

For the sake of legibility we renamed σ1 = α and σ2 = β, and introduced the

complex-valued coupling parameters γ = γR + iγI and δ = δR + iδI . With the

definitions in Section 2.2.1, (2.31) defines the Hopf normal form of the entire

network w1, . . . , wN as the monomials

N∑
j=1

wj and w̄k
∑
j=1

w2
j

are the only resonant monomials of the pairwise coupling function (2.27).

2.2.1.2 Nonlinear coupling terms in Hopf normal forms*

Allowing for nonlinear coupling terms (2.30) in the network dynamics (2.28),

the corresponding phase interaction function H of the reduced phase model in-

cludes also higher harmonics, which may hint at richer collective behavior, see

Section 2.1.5. However, only a few nonlinear terms gklmn contribute to the (av-

eraged) phase interaction function H. To be more precise, only two terms, g0010

and g0120, are the dominant contributors to the first and second harmonics of H

at leading order.

To demonstrate this result, we consider the dynamics (2.29) of two coupled

oscillators in Hopf normal form of arbitrary order M ≥ 1. As mentioned in the

previous sub-section, without coupling, κ = 0, we find a stable limit-cycle solution

wc(t) = Rceiθ
c(t) for the two oscillators; for the sake of legibility we will drop

the c and refer to them as w,w′. The resulting phase model takes then the form

θ̇ = ω + κH(θ − θ′), where the phase interaction function H can be expanded in

Fourier space as in (2.17). In the complex plane, we can compute H as

H(θ − θ′) = 〈Z(θ) · g(w, w̄, w′, w̄′)〉 , (2.32)

where a · b = (āb+ ab̄)/2 with a, b ∈ C is the complex dot product, the averaging

can be expressed in compressed form as 〈f(θ, θ′)〉 = 1
2π

∫ 2π

0
f(θ+ ϑ, θ′ + ϑ) dϑ and

[15] To be precise, (2.31) is the Hopf normal form of the full network (2.28) with SN × S1-
equivariance and for exclusively pairwise interactions and large network size N � 1, see
Section S.5.
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the (complex-valued) phase sensitivity function is given by Z(θ) = −c2+i
R

eiθ; see

also Section 2.2.4.

The assumption of the Hopf normal form implies that f(w, w̄) consists only of

the resonant terms |w|nw with n = 0, 1, 2, ..., and that the dynamics ẇ = f(w, w̄)

is rotation invariant. Consequently, both w(θ) and the phase sensitivity function

Z(θ) are of the form w = w(0)eiθ and Z(θ) = Z(0)eiθ. For direct linear coupling

g(w, w̄, w′, w̄′) = g0010w
′ the interaction function H(θ − θ′) = 〈Z(θ) · g0010w

′(θ′)〉
thus contains only first harmonics.

Being near a supercritical Hopf bifurcation, the amplitude of the oscillations

is R = |w| = O(
√
µ), where µ denotes the distance to the Hopf bifurcation in

parameter space. Introducing ε2 = µ, we have R = O(ε) and Z(θ) = O−1(ε). Any

higher order term |w|nw in f(w, w̄) presents then corrections of order O3(ε) and

O1(ε) to w(θ) and Z(θ), respectively. In view of the expansion in Fourier space

(2.17), these terms lead to corrections of order O2(ε) in a1 and b1, but they do not

contribute to higher harmonics an, bn 6= 0 for n ≥ 2.

If we want the phase interaction function H to contain higher harmonics, we thus

have to take higher-order terms gklmn in the coupling function g(w, w̄, w′, w̄′) into

account. For simplicity, we consider g(w, w̄, w′, w̄′) = wkw̄lw′mw̄′n a single mono-

mial with k, l,m, n ≥ 0 and gklmn = δklmn. Then we have Z · g = Ok+m+n+l−1(ε).

On the other hand, it is

Z · g(w,w′) ∝ e−iθ ·
(
eiθ
)k(

e−iθ
)l(

eiθ
′)m(

e−iθ
′)n

= ei(k−l−1)θei(m−n)θ′ .

The latter term contributes to the amplitudes aj and bj of the j-th harmonic

(j > 0) when it is a function of only ±j(θ−θ′). This means that the set (k, l,m, n)

has to fulfill k − l − 1 = ±j and m − n = ∓j. In particular, the term w̄j−1w′j =

O2j−1(ε) contributes significantly to aj and bj. Therefore, the amplitudes of the

j-th harmonic are of order O(Z · g(w,w′)) = O(2j−1)−1(ε), that is,

aj, bj = O2(j−1)(ε) . (2.33)

Note that the reasoning above is in line with the coefficient a0 of the zeroth har-

monic, j = 0, whose major contributions come from the monomial g(w, w̄, w′, w̄′) =

w and result into a constant increase or decrease of the natural frequency depend-

ing on the sign of a0. For j > 0, the term wj+1w̄′j = O2j+1(ε) gives contributions

of order O2j(ε) to the j-th harmonic. However, these contributions present only

minor corrections as they are smaller than aj, bj of two orders of magnitude, and

can therefore be neglected. Following this argumentation, we consider coupling

terms of order 3, which yield contributions of order O2(ε) to the phase dynam-

ics. The terms w2w̄′, |w|2w′, and |w′|2w′ contribute to the first harmonics a1, b1.
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However, their values differ at one order of magnitude from a1, b1, so that their

contributions can be neglected. Likewise, |w|2w and w|w′|2 contribute negligibly

to the zeroth harmonic, namely by less than two orders of magnitude. The only

cubic resonant term that affects the phase dynamics is w̄w′2, which contributes to

the second harmonics a2, b2 at the same order of magnitude O2(ε).

Moreover, we can show that no monomial in g(w, w̄, w′, w̄′) of even order will

contribute to H. Indeed, employing the inner product in complex form (2.32) for

g(w,w′) ∝ exp
(
i(k − l)θ + i(m− n)θ′

)
, we have

H(θ − θ′) ∝ 1

2π

∫ 2π

0

αklmne−i(θ+ϑ)ei((k−l)θ+(m−n)θ′+(k−l+m−n)ϑ)

+ βklmnei(θ+ϑ)e−i((k−l)θ+(m−n)θ′+(k−l+m−n)ϑ)dϑ

∝ 1

2π

∫ 2π

0

αklmnei((k−l+m−n−1)ϑ) + βklmne−i((k−l+m−n−1)ϑ)dϑ , (2.34)

where αklmn, βklmn ∈ C are constants. Due to the inherent averaging in (2.34) and

as exp(inϑ) is 2π-periodic, H(θ − θ′) will vanish if (k − l + m − n) is even. This

means that only monomials of odd order will contribute to the phase interaction

function H.

2.2.2 Identifying the Hopf normal form

The starting point for all the Hopf normal form reductions is the oscillator network

(2.1), where each node xk ∈ Rn is close to a supercritical Hopf bifurcation. More

specifically and given the main assumptions on weak coupling, (nearly) identical

oscillators and the pairwise coupling structure, we reconsider (2.15),

ẋk = f(xk;µ) +
κ

N

N∑
j=1

Ckjg(xk,xj)

with vector functions f = (f1, . . . , fn) : Rn → Rn and g = (g1, . . . , gn) : RN×n →
Rn and small coupling strength |κ| � 1. Without coupling, κ = 0, each node has

a stable fixed point solution x̃k. Then f(x = x̃k;µ) = 0 for all k = 1, . . . , N and

small values of the bifurcation parameter µ ∈ R.

The essential assumption for the supercritical Hopf bifurcation is that there is

a parameter value µ = µk such that each fixed point x̃k undergoes a supercritical

Hopf bifurcation in the absence of coupling: For µ < µk, the dynamics (2.15)

has a stable fixed point, which loses stability at µ = µk, and stable oscillations

emerge for µ > µk. Without loss of generality we translate the fixed point to the

origin, i.e. x̃k = 0 for all k, and assume that µk = 0. Then for µ > 0, each

node exhibits stable limit cycle oscillations with natural frequency ωk 6= 0 and
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amplitude Rk = O(ε) where ε =
√
µ.

In the following sub-sections we will illustrate three different ways how to reduce

(2.15) to the Hopf normal form network (2.31),

ẇk = αwk − β|wk|2wk +
κ

N

N∑
j=1

Ckj
[
γwj + δw̄kw

2
j

]
.

Note that all four parameters α, β, γ, δ ∈ C will depend on the functions f and g as

well as on the bifurcation parameter µ. The different Hopf normal form reductions

to be presented below vary not only in their methodical approach, but also in their

accuracy. To be precise, while, e.g., the reductive perturbation approach in Sec-

tion 2.2.2.1 discards any higher order dependence on µ, the nonlinear transforms

approach, Section 2.2.2.2, respects this µ-dependence at all times. The differences

between the reduction techniques[16] may be negligible for small-amplitude oscil-

lations, that is, close to the Hopf bifurcation point with 0 < µ � µ0 � 1. But

the resulting normal form techniques will diverge drastically when the amplitudes

of oscillation become larger. These differences eventually become evident in the

reduced phase dynamics and may cause qualitatively different collective dynamics.

In anticipation of Section 2.2.3, the subsequent phase reductions of the reduced

Hopf normal form dynamics (2.31) are all identical within the theory of weakly

coupled oscillators. Hence, possible inconsistencies between the resulting phase

models are solely due to the different levels of accuracy of the normal form reduc-

tions. For this reason, we will refer to the analytic phase reduction techniques as

their underlying normal form reductions, reductive perturbation reduction and the

nonlinear transform reduction, respectively.

2.2.2.1 Kuramoto’s reductive perturbation

To outline Kuramoto’s early approach to derive the Hopf normal form we adopt

the reasoning of Chapter 2 in his seminal book “Chemical Oscillations, Turbu-

lence, and Waves”38. The approach belongs to the general group of reductive

perturbation methods, which include all related techniques using stretched space-

time coordinates. It builds on the method of multiple scales by dwelling on a

small parameter expansion, much related to bifurcation theory135. Although the

[16] The accuracy of the reductive perturbation method is at first order in µ. The accuracy of
the nonlinear transform approach is at the same order in µ as the order M of the normal
form. As to the third approach based on Takens, it is possible to achieve the same accuracy
as with the nonlinear transform approach. To do so, one assumes the parameter µ to be
an additional variable and consider the n + 1-dimensional, so-called extended system. The
subsequent transformations then become parameter-dependent and can be implemented in
the corresponding algorithm, see Section 2.2.2.3 and108. For the sake of simplicity, however,
we present only the non-extended system, thereby providing another normal form with the
same accuracy as the reductive perturbation approach.
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mathematical theory in the presented reductive perturbation approach lacks some

preciseness, as has already been noted by Haken and Kuramoto136,137, the method

has proven to be of indisputable utility in practice.

The ultimate goal of the reductive perturbation approach is to derive a so-called

amplitude equation, which coincides with the canonical model of the the network

of oscillators close to a supercritical Hopf bifurcation. Given the system (2.15),

we recall that we can actually focus on two coupled oscillators x,x′ ∈ Rn with

dynamics

ẋ = f(x;µ) + κ g(x,x′) (2.35)

and an analogous expression for x′, ẋ′ = f(x′;µ)+κ g(x′,x). Due to the symmetry

it suffices to consider only the dynamics of x in the following. The stable fixed

point solution x = 0 undergoes a Hopf bifurcation at µ = 0, giving rise to stable

limit-cycle oscillations with amplitude R = O(ε) where ε =
√
µ. In the following

we will only consider µ > 0 and small coupling strengths 0 ≤ |κ| � µ � 1. We

further substitute κ 7→ ε2κ, which indicates the smallness of κ compared to µ. The

dynamics (2.35) thus becomes

ẋ = f(x; ε2) + ε2κ g(x,x′) .

Next, we expand f(x; ε2) around x = 0 in terms of

f(x; ε2) = n1(x; ε2) + n2(x,x; ε2) + n3(x,x,x; ε2) +O4(x) , (2.36)

where the functions nk are given by

nk(u
(1),u(2), . . . ,u(k); ε2) =

n∑
i1,...,ik=1

1

k!

(
∂kf(x; ε2)

∂xi1∂xi2 . . . ∂xik

)
x=0

u
(1)
i1
u

(2)
i2
. . . u

(k)
ik

(2.37)

with u(j) =
(
u

(j)
1 , . . . , u

(j)
n

)ᵀ
∈ Rn. We further expand nk with respect to ε2 and

immediately obtain

f(x; ε2) = L̂0x+ ε2L̂1x+ n2(x,x) + n3(x,x,x) +O4(x) , (2.38)

where n2(x,x) = n2(x,x; ε2 = 0) and a similar expression for n3; see also Sec-

tion S.1 in the Supplementary Material. In (2.38) we omitted all O(ε2) terms in

n2 and n3. Since we assumed x to undergo a Hopf bifurcation, the operator L̂0

has a pair of purely imaginary eigenvalues ±iω0, while the other n− 2 eigenvalues

have non-vanishing real part. Let u and v denote the right and left eigenvec-

tors of L̂0, respectively, corresponding to the eigenvalue +iω0. That is, L̂0u =

iω0u and vL̂0 = iω0v. They are normalized as vu = v1u1 + · · · + vnun = 1
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and fulfill vū = v̄u = 0. Furthermore, let x0 denote the solution to the linearized

unperturbed system, ẋ = L̂0x, which can be given as

x0(t) = weiφ(t)u+ w̄e−iφ(t)ū . (2.39)

w is an arbitrary complex number (the “complex amplitude”), and φ(t) = ω0t.

In general, however, a solution x(t) that satisfies the full dynamics (2.35) will

deviate from x0(t). When introducing a rescaled time, τ = ε2t, and considering

w = w(τ) to be time-dependent (on the slower time scale), we can describe the

time-asymptotic behavior of x(t) in the form

x = x0(w, w̄, φ) + ρ(w, w̄, w′, w̄′, φ) ,

ẇ = f(w, w̄) + κg(w, w̄, w′, w̄′) . (2.40)

The functions ρ, f, g are to be determined through perturbations, i.e., by consid-

ering a ‘small’ deviation from the exact solution x = x0 and expanding ρ, f, g

around it. Equation (2.40) is referred to as amplitude equation. The explicit form

of f(w,w′) in lowest order is

f(w, w̄) = αw − β|w|2w . (2.41)

Here, α and β satisfy

α = vL̂1u ,

β =− 3vn3(u,u, ū) + 4vn2

(
u, L̂

−1

0 n2(u, ū)
)

+ 2vn2

(
ū, (L̂0 − 2iω0I)−1n2(u,u)

)
,

(2.42)

where I denotes an n-dimensional identity matrix; cf. Eqs. (2.2.17–20) in38. The

exact derivation with all mathematical details as well as a general form of the

coupling function g(w, w̄, w′, w̄′) can be found in Section S.1 in the Supplementary

Material.

Linear coupling can be either diffusive or direct (non-diffusive), i.e g = gdiff or

g = gdir, respectively, yielding

gdiff(x,x′) = D̂(x′ − x)

gdir(x,x
′) = D̂x′

}
=⇒

{
gdiff(w,w′) = γ(w′ − w)

gdir(w,w
′) = γw′

, (2.43)

with γ = vD̂u and D̂ ∈ Rn×n, see also95.

According to (2.31), a second-order amplitude equation for weakly coupled oscil-

lators near a supercritical Hopf bifurcation point with linear coupling κγw′ obeys
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the form

ẇ = αw − β|w|2w + κ(γw′ + δw̄w′2) , (2.44)

where the complex constants α, β, and γ are given in (2.42) and (2.43), and δ ∈ C
reads

δ = 2vn2

(
ū, (L̂0 − 2iω0I)−1D̂(L̂0 − 2iω0I)−1n2(u,u)

)
. (2.45)

For more general, nonlinear couplings g(x,x′) =
∑

j,k≥0Gjk(x,x
′), only the pa-

rameter δ in (2.44) changes to

δ = 2vn2

(
ū,
(
L̂0 − 2iω0I

)−1
[
G01

(
L̂0 − 2iω0I

)−1 · n2(u,u)−G02(u,u)
])

− vG11

(
ū,
(
L̂0 − 2iω0I

)−1
n2(u,u)

)
+ vG12(ū,u,u) , (2.46)

where G01 is the matrix corresponding to direct linear coupling, that is, G01 = D̂,

see (2.43), and Gjk are nonlinear coupling terms of order j + k as defined in

Section S.2 in the Supplementary Material. For linear coupling all Gjk vanish

except for G01, in which case we retrieve (2.45).

2.2.2.2 Poincaré’s reduction via nonlinear transforms

Instead of employing perturbation theory one can alternatively derive the Hopf

normal form via nonlinear transforms, as already used by Poincaré. To introduce

this, we follow closely the line of argument in Kuznetsov’s textbook122 (Chapter

3). We consider again the dynamics (2.35) for two weakly coupled oscillators as

in the previous sub-section. To simplify notation, we restrict our case to only two

dimensions x = (x, y),x′ = (x′, y′) ∈ R2. The straightforward extension to n-

dimensional dynamical systems can be found in Chapter 5122. As usual, for µ = 0

both uncoupled units undergo a supercritical Hopf bifurcation. We can decompose

f into a linear and nonlinear part,

f(x) = L(µ)x+ F (x;µ) ,

where L(µ) has eigenvalues λ(µ) = %(µ) ± iω(µ) that satisfy %(0) = 0 and

ω(0) = ω0 > 0. The goal of the nonlinear transform approach is to rewrite the

dynamics in a generic form (2.26) and to provide an instruction how to determine

the corresponding complex parameters with a sequence of near-identity transfor-

mations. For this, the two main steps are as follows: (i) transform the uncoupled

part f(x;µ) into the desired Hopf normal form α(µ)w−β(µ)|w|2w, and (ii) apply

the transformation to the coupling term g(x,x′) and derive the respective param-

eters of the coupling function g(w,w′). The nonlinear coupling terms in g(x,x′)
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can pose a challenge, indeed. That is why often all nonlinear coupling terms are

disregarded in order to derive the reduced coupling function g(w,w′). We here

show, however, how nonlinear coupling terms can be treated within the nonlinear

transforms approach. In the following, we briefly sketch the strategy and refer to

Section S.3 in the Supplementary Material for all mathematical details.

(i) We write the dynamics (2.35) in complex form

ż = λz + f̃(z, z̄;µ) + κ g̃(z, z̄, z′, z̄′;µ) , (2.47)

where the transformation x ∈ R2 7→ z ∈ C in the complex plane is deter-

mined by the eigenvectors of the Jacobian L. Provided that the uncoupled

part of (2.47) can be approximated in polynomial from up to third order,

that is,

ż = λz +
∑

2≤k+l≤3

fklz
kz̄l +O4(z) , (2.48)

we can achieve the Hopf normal form for an uncoupled oscillator ẇ = λw −
β|w|2w+O4(w) via a Poincaré transformation, i.e. a nonlinear near-identity

coordinate transform

z = ψ(w) = w +
∑

2≤k+l≤3

hklw
kw̄l . (2.49)

The coefficients hjk depend on λ and the fkl and can be identified through

introducing a local inverse transform and a subsequent comparison of coeffi-

cients, see Section S.3.

(ii) The more cumbersome part is to reduce the coupling function g(w,w′) =

g(w, w̄, w′, w̄′) explicitly. This yields a formal power series

g(w, w̄, w′, w̄′) =
∑

k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n , (2.50)

from g̃(z, z′) = g̃(z, z̄, z′, z̄′) using the transform (2.49). Note that the near-

identity character of the transforms leaves the linear terms of g̃(z, z′) un-

changed. This means, in case of direct linear coupling g̃(z, z′) = γz′ we can

directly infer the coefficients g0010. However, due to the higher order terms in

(2.49), we readily find coefficients gklmn with k+ l+m+n > 1. As mentioned

above, we do not need to calculate all of them. The coefficients of third or-

der are g2100, g2001, g0120, g0021, g1110, g1011 and those contributing dominantly
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to the first and second harmonics of the phase model can be given by

g0010 = g̃0010

g0120 = 1
2

(
g̃0120 − h11g̃0020 − h01g̃0002 + h20g̃0110 + h02g̃0101

−h11h20g̃0010 − h11h02g̃0001 − |h02|2g̃0010 − h20h02g̃0001

)
,

where g̃klmn are the coefficients of the respective power series of g̃(z, z̄, z′, z̄′)

in (2.47). These coefficients again depend on the foregoing transformation

into complex coordinates and can be expressed in terms of the eigenvectors

of L and of the original coupling term g(x,x′). The resulting expression

become rather lengthy and we refrain from computing them explicitly but

note that the method can be implemented in algorithmic form[17].

2.2.2.3 Takens’ reduction via Lie brackets

This admittedly more abstract, yet frequently used technique to compute the Hopf

normal form has been introduced by Leung and co-workers138,139 but is coined

according to Takens’ corresponding work111. The approach belongs to the class of

the so-called matrix representation methods. It allows for determining arbitrary

higher-order Hopf normal forms, though the resulting normal form is of the same

order of accuracy as the reductive perturbation technique in Section 2.2.2.1[18].

We again start off with dynamics (2.35) in the vicinity of the fixed point x = 0

with |µ| � 1 sufficiently small. After diagonalizing the Jacobian L(µ) = Df(x;µ)

evaluated at (x;µ) = (0, 0), we find the dynamics in Jordan normal form

ż = Jz + F (z) + κG(z, z′) , (2.51)

with J = diag(λ1, . . . , λn), where λj ∈ C, j = 1, . . . , n, are the complex eigenvalues

of L(0), and F comprises all nonlinear terms in z. As usual, we first consider (2.51)

with κ = 0 and neglect the coupling function G(z, z′) for the time being. Once

[17] There is a prevailing and inherent dependence of all coefficients on the bifurcation parameter
µ. Evaluating the resulting formulas at the bifurcation point, µ = 0, reveals the similarity to
the reductive perturbation approach, cf. Section 2.2.2.1. For instance, we can determine the
parameter β(0) = β(µ = 0) that relates to the cubic term in the normal form as

β(0) = − i
2ω0

(
f20f11 − 2|f11|2 − 1

3 |f02|
2
)
− 1

2
f21 .

This closely resembles equation (2.42) in the previous sub-section.
[18] The technique presented here applies only to vector fields that have a single zero eigenvalue

or a single pair of purely imaginary eigenvalues112. Moreover, we restrict the theory to the
semi-simple case only, that is, the dynamics have a diagonizable linear part.
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we have established a transformation

z = P (w) = w + p(w) , (2.52)

which removes all irrelevant terms (up to a given order) from the Taylor series of

ẇ = (DP (w))−1 [JP (w) + F
(
P (w)

)]
, (2.53)

we can apply the same change of coordinates also to the coupling terms. The

transformation (2.52) is nearly-identical due to its linear part, such that G(z, z′)

and the transformed coupling function G̃(w,w′) coincide up to first order. We

expand the nonlinear function F (z) as a series of homogeneous polynomials

F (z) = F 2(z) + F 3(z) + · · ·+ F r(z) +Or+1(z) , F k ∈ Pk , (2.54)

where Pk is the set of homogeneous polynomials of order k, and r ∈ N. Next, we

introduce an adjoint operator LJ : Pk → Pk via

LJ(Y )(z) = [Y ,Jz] (z) = JY (z)− (DY (z))Jz , (2.55)

where [·, ·] denotes the Lie bracket. With this definition we can immediately use

the Takens’ normal form theorem111,112,138: Given a system ż = Jz + F (z) of

differential equations, with F = F 2 + F 3 + . . . as in (2.54) truncated at order r,

F (0) = 0, choose a complementHk of LJ(Pk), such that Pk = LJ(Pk)⊕Hk. Then,

there is an analytic change of coordinates in a neighborhood of the origin which

transforms the system above to ẇ = h(w) = h1(w) + h2(w) + · · ·+ hr(w) + Rr

with h1(w) being the linear term and hk ∈ Hk for k = 2, . . . , r, and residual

Rr = Or+1(w). The proof of this theorem is constructive and by induction, using

a series of coordinate transforms z = w+pk(w) with pk homogeneous polynomials

of degree k with k = 1, . . . , r. The coefficients of pk are to be determined in each

step such that

F k(w) + LJ(pk)(w) ∈ Hk . (2.56)

Details of the proof and further examples can be found in104,111–113,138,139[19]. Since

we address classical, first-level normal forms only, the entire transformation pro-

cedure is based on the Jacobian, that is, on the linearized dynamics near the

bifurcation point. If the bifurcation possesses a certain symmetry, these symmetry

properties become apparent in the Jacobian and are thus induced on the nonlinear

[19] J is semi-simple, so the complement Hk will be chosen as Hk = ker
(
LJ(Pk)

)
as mentioned

above. In this case, a direct calculation shows that Hk is spanned by all resonant monomials
of order k for each k ≥ 2, from which (2.22) follows.
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part of the computed normal form. In particular, systems near a Hopf bifurcation

are mapped by a polynomial transformation to a normal form that has circular

symmetry.

A practical application of this computational approach to a two-dimensional

system z = (z1, z2) near the Hopf bifurcation can be found in Section S.5 of the

Supplementary Material including further mathematical details. Unfortunately,

the complexity of computing the coefficients for higher order normal forms in-

creases rapidly as the determination of parameters builds recursively upon each

other and on the lower order near-identity transformations pk, k ≤ 4. It hence be-

comes necessary to implement efficient algorithms in symbolic computation soft-

ware without running in danger of overflow errors due to memory storage. An

arithmetic algorithm including the computation of normal forms up to order 11

has been presented in139. In fact, once higher-order normal forms and their cor-

responding series of transformations pk have been established, the latter can be

applied to the coupling term κG(z, z′) of (2.51). For our purposes, however, it is

sufficient to consider the transformed coupling up to third order. Since we already

illustrated the derivation of the coupling term using nonlinear transforms in great

detail in sub-section 2.2.2.2, we here refrain from further heavy mathematics.

2.2.3 Interlude

Against the background of normal form reductions from the previous Section 2.2.2,

we will now introduce four commonly used techniques to reduce oscillator networks

to phase models. Section 2.2.4 will be devoted to the explicit computation of the

asymptotic phase map Θ(w), whose gradient evaluated at the limit cycle readily

provides the phase sensitivity function Z. This method has already been promoted

by Winfree85 but reaches its limits when considering Hopf normal forms of order

higher than M = 2. In this case, Kuramoto’s method using Floquet eigenvectors

can be applied, which will be presented in Section 2.2.5. In Section 2.2.6 we

revise an elegant phase reduction approach dwelling on equivariant theory and

symmetry properties of the network. This approach requires the network to be in

Hopf normal form. While the previous two methods can, in principle, be applied to

any dynamical systems that exhibit stable limit cycle oscillations, the Hopf normal

form presents one of the few examples where they can be explicitly exerted to all

extent. In Section 2.2.7 we will reconsider averaging theory. The rotating wave

approximation and slowly varying amplitude approximation introduced there are

widely applicable and also hold for oscillatory networks beyond the weak coupling

assumption. However, for oscillator networks in Hopf normal form within the

theory of weakly coupled oscillators, all four presented phase reduction techniques
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(Winfree, Kuramoto, Ashwin & Rodrigues, and Haken) will result in the same

reduced phase model despite the different methodical approaches. To demonstrate

this, we use, as usual, a network of weakly coupled oscillators. They are close

to a supercritical Hopf bifurcation such that we can use the Hopf normal form

description (2.31) of the network,

ẇk = αwk − β|wk|2wk +
κ

N

N∑
j=1

Ckj
[
γwj + δw̄kw

2
j

]
, (2.57)

with sufficiently small coupling |κ| � 1. Then, all the analytic phase reduction

techniques will result in the phase model (2.16),

θ̇k = ω + κ
N∑
j=1

CkjH (θk − θj) , (2.58)

where the phase interaction function H can be expanded as a Fourier series (2.17),

H(ψ) =
∑
n≥0

an cos(nψ) + bn sin(nψ) . (2.59)

The analytic phase reduction techniques present mathematical recipes along which

we can determine the frequency ω and the amplitudes an, bn of the Fourier modes

in terms of the normal form coefficients α = u0 + iv0, β = u1 + iv1 as well as

γ = γR + iγI and δ = δR + iδI . The frequency and the Fourier coefficients of first

and second harmonics of the reduced phase models will coincide across all analytic

phase reduction techniques. The frequency reads ω = u0(c0 − c2) and the Fourier

coefficients are

a1 = γR(c1 − c2) , b1 = −γR(1 + c1c2) ,

a2 = R2δR(c3 − c2) , b2 = −R2δR(1 + c2c3) ,
(2.60)

where we abbreviated c0 = v0/u0, c2 = v1/u1, c1 = γI/γR, and c3 = δI/δR, and R

denotes the amplitude of oscillation.

2.2.4 Winfree’s reduction via isochrons

The idea behind the reduction via isochrons dwells on explicit expressions of the

asymptotic phase map Θ(x) along the isochrons I(θ) and of the limit cycle C.
Once these expressions have been obtained, the phase sensitivity function can

be determined as the gradient of the asymptotic phase map and the coupling

function can be evaluated at the limit cycle as has been outlined in Section 2.1.4.

Their product eventually determines the phase sensitivity function H, which is the
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backbone of the phase model (2.16). In principle, this approach can be applied to

every dynamical system that exhibits stable limit cycle oscillations. However, it is

essential to include explicit expressions of Θ and C, which, unfortunately, cannot

be obtained analytically in the majority of cases.

Here, we illustrate the procedure along a network of oscillators in Hopf normal

form (2.31) of second order, M = 2. The uncoupled oscillator in polar coordinate

form (2.24) has a globally attracting limit cycle

wc(t) = Rceiωt

with radiusRc =
√
c2 and frequency ω = v0−v1c2 with c2 = u0/u1. The asymptotic

phase map θ = Θ(w) defined in Section 2.1.1 for x = (Re(w), Im(w)) in R2 \ {0}
fulfills θ̇ = ω. Its explicit form reads

Θ
(
w = Reiφ

)
= argw − v1

u1

ln
∣∣∣ w
wc

∣∣∣ = φ− βI
βR

ln
∣∣∣ R
Rc

∣∣∣ .
The phase sensitivity function Z(θ) =

(
Zx(θ), Zy(θ)

)
= ∇Θ(w)

∣∣
w=wc

is the gradi-

ent of the phase map Θ evaluated at the limit cycle wc. For infinitesimally small

and pulse-like perturbations p = xp + iyp, we can compute Z also via the phase

response function G(θ,p = xp + iyp) = Θ(wc(θ) + p)− θ according to (2.11) as

Z(θ) =

(
Zx(θ)

ZY (θ)

)
=

(
∂xG(θ,p)

∂yG(θ,p)

)
xp=yp=0

The explicit forms of Z(θ) ∈ R2 as well as of the corresponding complex-valued

form Z(θ) = Zx(θ) + iZy(θ) are

Z(θ) =
1

Rc

(
− sin θ − c2 cos θ

−c2 sin θ + cos θ

)
and Z(θ) =

−c2 + i

Rc
eiθ . (2.61)

When considering the network dynamics (2.31), we strive for the phase model

(2.16) with interaction function H, which was defined as the scalar product of the

(real-valued vector function) Z and the corresponding (real-valued) coupling func-

tion g in vector form[20] averaged over one period T = 2π/ω. In the complex plane,

the scalar product becomes the complex dot product[21] and the phase interaction

[20] The coupling function g = (gx, gy) as required for the computation of H has components
gx = gx(θk, θj), gy = gy(θk, θj), which are the real and imaginary parts, respectively, of
g
(
wck(θk), wcj(θj)

)
.

[21] The complex dot product for a, b ∈ C is defined as a · b = (āb+ ab̄)/2.
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function can be computed as

H(ψ) =
1

2π

∫ 2π

0

(−c2 + i)ei(ψ+ϕ) ·
(
γei(ψ+ϕ) + δ(Rc)2e−i(ψ−ϕ)

)
dϕ .

Evaluating the integral results exactly in (2.17) & (2.60).

2.2.5 Kuramoto’s reduction via Floquet eigenvectors

When allowing for general oscillatory dynamics, deriving explicit formulas for the

asymptotic phase map Θ(x) and for the isochrons of an oscillator ẋ = f(x) ∈ Rn

becomes too complicated to follow the theory of the previous Section 2.2.4. This

is already true when considering the Hopf normal form of order M = 3. Yet, we

can overcome this problem by exploiting the relationship between the asymptotic

phase and the eigenvectors associated with the linearized part of f(x) about its

periodic limit cycle solution xc. The underlying theory of first-order linear systems

with periodic coefficients is called Floquet theory140 and has been promoted by

Kuramoto to being applied for phase reductions38. Also this technique can be

applied, in principle, to any dynamical system with stable limit cycle oscillations.

While it does no longer rely on the explicit form of the phase map Θ, it still

requires an explicit expression of the limit cycle C.
Before we illustrate Kuramoto’s reduction for a network of oscillators in Hopf

normal form of order M = 2 and 3, we will briefly revise the idea of Floquet

eigenvectors. These will be used to derive the phase sensitivity function Z. Note

that once Z is obtained, the computation of the phase interaction function H will

follow the same procedure as in the previous section. To start with we consider

an oscillator ẋ = f(x) with a stable T -periodic limit cycle solution xc. For small

deviations u(t) off xc(t), we find for x(t) = xc(t) + u(t) the linear system

u̇ = L(t)u , with L(t) = ∇f(x)
∣∣
x=xc(t)

(2.62)

and L(t) is a T -periodic n × n-matrix. A general solution of (2.62) takes the

form u(t) = S(t)eΛtu(0), where S(t) is a T -periodic matrix with initial condition

S(0) = I and Λ is a time-independent matrix. The matrix exponential exp(Λt) is

defined in the usual way.[22] The normalized left and right eigenvectors of Λ asso-

ciated with eigenvalue λj will be denoted by vj and uj. The limit cycle solution

xc being stable implies Re(λj) ≤ 0. While one eigenvalue λ0 ≡ 0 vanishes, which

corresponds to (phase) disturbances along the periodic orbit C = {xc(t) | t ∈ R},
the other eigenvalues λ1, . . . , λn−1 are assumed to have negative real parts. Fur-

[22] eΛt =
∑∞
k=0

1
k!Λ

ktk = In + Λt+ Λ2t2

2! + . . .
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thermore, we set u0 = ẋc(0). u0 is thus a tangent vector of C at point xc(0) and

has the same direction as that of the infinitesimal phase disturbances. Moreover,

u0 satisfies S(t)u0 = ẋc(t).[23] Next we use the facts that the phase sensitivity

function Z(θ) is normal to the tangent space T (θ) of the isochron I(θ) at point

θ(t) = xc(θ(t)), and that T (0) is free from the zero-eigenvector component, cf. Sec-

tion 2.2.4 and Chapter 3.438. This means thatZ(0)uj = 0 for all j > 0, henceZ(0)

must be proportional to the left zero-eigenvector v0. As Z(θ) has been introduced

as the gradient of the asymptotic phase map Θ(x) evaluated on the limit cycle,

we can differentiate Θ(xc) = θc(t) on the limit cycle and find Z(θ) · ẋc(t) = ω,

where we used that θ̇c = ω = 2π/T . Identifying Z(t) with Z(θ) via θ 7→ t/ω, we

can combine our findings above and arrive at

Z(t) = ωv0S(t)−1 . (2.63)

Now, we can apply the result to Mth order Hopf normal forms (2.23). In fact,

we have to determine v0 and S(t) to derive the phase sensitivity function Z. To do

so, we consider a stable limit cycle solution wc(t) = Rceiωt in the polar coordinate

dynamics (2.24). A small deviation z(t) off the limit-cycle trajectory wc(t) as

w(t) = wc(t) [1 + z(t)] has the linearized dynamics

ż =

(
M−1∑
m=0

(−1)m(um + ivm)(Rc)2mm

)
(z+ z̄)+O2(z) =: (ςR+ iςI)(z+ z̄)+O2(z) .

(2.64)

Separating real and imaginary parts in terms of z = ξ+ iη, we can simplify (2.64)

in matrix form as

d

dt

(
ξ

η

)
= Λ

(
ξ

η

)
where Λ = −2ςR

(
1 0

c2 0

)
(2.65)

with c2 = ςI/ςR. Usually, c2 = cM2 depends on the order of the Hopf normal

form[24]. The eigenvalues of Λ are λ0 = 0 and λ1 = −2ςR with corresponding left

[23] Indeed, differentiating ẋ0(t) = f(x0(t)) on both sides results in

d

dt
ẋc(t) =

d

dt
f(xc(t)) = ∇f(x)

∣∣
x=xc(t)

·ẋc(t) = L(t)ẋc(t) .

So ẋc(t) is a particular solution of u̇ = L(t)u. Thus we can write ẋc(t) = S(t)eΛtẋc(0).
Using the definition of the matrix exponential together with Λu0 = λ0u0 = 0, the right-hand
side reduces to S(t)u0 as wanted.

[24] For second (M = 2) and third order (M = 3) Hopf normal forms

ω̇ =

M−1∑
m=0

(−1)mσm|ω|2mω , with σm = um + ivm ,
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and right eigenvectors

u0 = Rcω

(
0

1

)
, u1 =

(
1

c2

)
,

v0 =
1

Rcω
(−c2, 1), v2 = (1, 0);

(2.66)

the factor Rcω is for consistency with u0 = ẋc(0). Moreover, we find the matrix

S(t) by linking the deviations ξ, η from wc in the complex plane with deviations

u ∈ R2 of the corresponding planar limit cycle solution xc via

u(t) = RcS(t)

(
ξ(t)

η(t)

)
where S(t) =

(
cos(ωt) − sin(ωt)

sin(ωt) cos(ωt)

)
. (2.67)

According to (2.63), the phase sensitivity function is given by

Z(t) = ωv0S(t)−1 =
1

Rc

(
− sin(ωt)− c2 cos(ωt)

−c2 sin(ωt) + cos(ωt)

)
(2.68)

By the change of variables t 7→ θ/ω, we arrive at the same form (2.61) as in the

previous section.

The shape of the phase sensitivity function Z(θ) does not change when incorpo-

rating higher order terms in the Hopf normal form (2.23). In fact, the preceding

normal form reduction imposes circular symmetry on the dynamics, so that the

oscillations with constant radius of the Hopf normal form are to be expected. In-

corporating higher order terms in the Hopf normal form increases the accuracy

further away from the bifurcation point. These terms will lead at most to a hori-

zontal translation of the phase sensitivity function. Still, this can have important

consequences for the synchronization properties of the network. Z is an integral

part of the phase interaction function H and shifting Z might change the slope

of H at the origin, H ′(0), which determines the stability of the fully synchronized

network state, see also Section 2.1.5.

2.2.6 Ashwin & Rodrigues’ reduction via SN×S1-symmetry

In their recent work, Ashwin and Rodrigues proposed an elegant phase reduction

technique by exploiting the symmetry properties of a network of weakly coupled

oscillators141, see also142. In this way it is possible to derive a phase model that

respects interaction terms beyond mere pairwise coupling. In fact, Ashwin and

we have

c22 =
v1
u1

, and c32 =
v2
u2

(
1− u1

[
u21 − 4v0u2

]−1/2)
+ v1

[
u21 − 4u0u2

]−1/2
.
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Rodrigues derived terms that represent pairwise, triplet and quadruplet phase

interactions. As such, this symmetry approach presents an important extension

to previous reported reduction techniques, especially when dealing with networks

featuring complex coupling functions of multiple interacting oscillators. Note,

however, that in its rigorous mathematical form, this symmetry approach requires

each oscillator to undergo a generic supercritical Hopf bifurcation and, in addition,

to meet strong symmetry assumptions, which will be specified below. Although

this setting appears restrictive at first, we sketch an idea how to loosen some of the

assumptions. As any dynamical system close to a Hopf bifurcation can be reduced

in Hopf normal form, this will again be our starting point for the following brief

revision of the reduction technique. Moreover, we demonstrate that for pairwise

coupling, it will lead to the same phase model as the other previously presented

methods.

Given a network of N ≥ 4 all-to-all coupled oscillators, where each can be

described in Hopf normal form given by ẇk = f(wk;µ) as in (2.23), the symmetry

assumptions by Ashwin and Rodrigues manifest in the network dynamics

ẇk = f(wk;µ) + κ g(wk, w1, . . . , wk−1, wk+1, . . . , wN) (2.69)

through a full permutation symmetry SN and through the rotational invariance S1.

Intuitively, full permutation is given if the dynamics (2.69) can be interchangeably

used for any two oscillators k 6= j. That is, the network dynamics remains the

same for any permutation σ ∈ SN with

σ (w1, . . . , wN) =
(
wσ−1(1), . . . , wσ−1(N)

)
.

As f is the same for all oscillators, this means that

g(wk, w1, . . . , wN) = g(w1, w2, . . . , wN)

is symmetric under all permutations of the last N − 1 arguments that fix the first.

In particular, we need the network to be globally (all-to-all) coupled with Ckj = 1

for all k 6= j with the same coupling function for all nodes.

Rotational invariance is fulfilled if both the uncoupled term f and the coupling

g are in Hopf normal form. To be more precise, (2.69) is rotational invariant if the

rotation of all variables w1, . . . , wN by the same phase θ ∈ S1 does not change the

network dynamics. Formally, the action of the group S1 on CN is defined by

θ(w1, . . . , wN) := eiθ(w1, . . . , wN)
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for any (phase) θ ∈ S1. Indeed, the non-vanishing, resonant polynomial com-

ponents (monomials) appearing in the Hopf normal form are exactly those that

satisfy the circular S1 symmetry. While we previously assumed g to be an arbi-

trary power series in its variables, this power series is restricted to consist of only

resonant monomials. For g with monomials of degree lower or equal to three, we

have at most 11 non-vanishing terms that fulfill the symmetry assumptions141.

For weak coupling |κ| � 1 and using equivariant theory, Ashwin and Rodrigues

derived a phase model

θ̇k = ω̃(θ, κ) + κ
(
H

(2)
k (θ) +H

(3)
k (θ) +H

(4)
k (θ)

)
, (2.70)

which allows interactions of up to four phases: The functions H
(j)
k denote the sums

over pairwise, triplet and quadruplet interactions of the phases for j = 2, 3, 4, re-

spectively, and θ = (θ1, . . . , θN) is the phase vector. In Section S.5 of the Supple-

mentary Material, we provide the explicit expressions of the particular terms in

(2.70).

If we consider only pairwise interactions in the coupling function g as in (2.15)

and (2.16), then the dynamics (2.70) reduces to

θ̇k = ω − κµϑ4

u1

cos(ψ4) +
κ

N

N∑
j=1

[
ξ0

1 cos(θj − θk + χ0
1)

+ µ
(
ξ1

1 cos(θj − θk + χ1
1) + ξ1

2 cos
(
2(θj − θk) + χ1

2

))] (2.71)

with parameters defined in Section S.5. Note that (2.71) consists of the first two

harmonics only. Indeed, the terms ξ0
1 cos(ϕ + χ0

1) + εξ1
1 cos(ϕ + χ1

1) can be com-

prised by trigonometric identities. Furthermore, the constant term −ϑ4/u1 cos(ψ4)

presents only minor corrections to the natural frequency ω = v0 − u0v1/v2. Like-

wise, the term ξ1
1 cos(θj−θk+χ1

1) can be discarded as it contributes only negligibly

to the first harmonics. By neglecting all non-dominant terms, we retrieve a phase

model of the form

θ̇k = ω +
κ

N

N∑
j=1

[
ξ0

1 cos(θj − θk + χ0
1) + µξ1

2 cos
(
2(θj − θk) + χ1

2

)]
. (2.72)

The parameters ξ0
1 , χ

0
1 and ξ1

2 , χ
1
2 for first and second harmonic correspond exactly

to the coupling coefficients γ and δ of the coupling function as considered in (2.16).

Moreover, the amplitude of the second harmonics scale with µ = (Rc)2 close to

the Hopf bifurcation.

In view of a practical application of the theory oulined above, we are confronted

with two major concerns. First, the normal form transformation, as introduced
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in Section 2.2.1, recasts only the uncoupled part in Hopf normal form, which

satisfies the required symmetry conditions. The transformed coupling function,

however, exhibits in general terms of all powers and is a priori not shaped to comply

with the S1 × SN -symmetry as assumed in (2.69). Nonetheless, the averaging

inherent to determine the phase interaction function H has shown that only a

specific selection of coupling terms contributes to the phase dynamics (at leading

order), see Section 2.2.1.2*. Hence, averaging – which is intrinsically tied to the

assumption of weak coupling and slowly varying phase deviations38,78 – imposes

the symmetry constraints on the coupling function g(wk, w1, . . . , wN) after the

normal form reduction.

The second concern refers to the the underlying connectivity structure of the

network. Indeed, for any particular choice of coupling topology other than global,

all-to-all coupling, the permutation symmetry SN cannot be upheld. However, for

a coupling function h = (h1, . . . , hN) we can heuristically define a substitution

operator K via the formal convolution

(
K ? h

)
j
(w1, . . . , wN) = hj

(
Cj1w1, . . . , CjNwN

)
.

Then, we can first follow the theory presented in this section to derive (2.72), and

subsequently apply the convolution K ? g, which reveals the phase model

θ̇k = ω +
κ

N

N∑
j=1

Ckj
[
ξ0

1 cos(θj − θk + χ1) +Rc2ξ1
2 cos

(
2(θj − θk) + χ2

)]
.

Using trigonometric identities, we eventually arrive at the Fourier coefficients of

the desired form as in (2.17) & (2.60).

2.2.7 Haken’s reduction via averaging

Although the previous phase reduction techniques are formulated for rather gen-

eral oscillatory dynamical systems, their practical application is limited to a few

exceptional cases in which either explicit formulas for the limit cycle and the

asymptotic phase maps are available, or the dynamics has already been reduced

to normal form. An alternative and more direct approach to reduce an oscillatory

network to its phase dynamics, has been promoted by Haken and applies averaging.

The idea is to average each oscillator over one cycle when assuming that its

amplitude and phase change slowly as compared to the oscillator’s frequency. Fol-

lowing a three-step approach, first the time-dependent amplitude and phase are

fixed. The system is then integrated over one period to remove all harmonic oscil-

lations; see also143,144 for a more rigorous reasoning. Last, amplitude and phase are
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considered again to be time-dependent see 42,112. Haken popularized this procedure

as a combination of rotating wave and slowly varying amplitude approximations105.

While this technique is usually applied to weakly nonlinear oscillations described

by second-order differential equations, see for an overview e.g., 115,145, it can also be

applied to systems of first-order differential equations, as will be illustrated be-

low. Moreover, this phase reduction technique can also be applied for oscillatory

networks beyond the limit of weak coupling.[25] In fact, it allows to (analytically)

reduce oscillatory network dynamics that are induced through (strong) coupling

between the (excitable) elements, see e.g., 42 and Section 3.3.5.1. As averaging is

applied to the linearized dynamics around an unstable fixed point within a stable

limit cycle solution xc (in contrast to the linearized dynamics around xc as in

Section 2.2.5), this technique loses accuracy for large-amplitude oscillations, see

also Section 3.1. Still, it provides a straightforward phase model whose parame-

ters are directly linked to those of the underlying oscillatory model, and presents

a valuable addition to the variety of phase reduction techniques. Above all, when

applied in the framework of weakly coupled oscillators, the reduction results in the

same phase model as obtained with the other reduction techniques, which will be

illustrated below for coupled oscillators in second order Hopf normal form.

Applying Haken’s reduction technique to an oscillatory network requires that

every node in the network exhibits stable limit cycle oscillations that can be trans-

formed by an appropriate change of variables into (nearly) circular shape.[26] Note

that these oscillations may also be coupling induced. In the following we will as-

sume that each node describes stable circular oscillations. In case of planar oscilla-

tory systems ẋk = f(x;µ)+κgk(x1, . . . ,xN) with state vector xk = (xk, yk) ∈ R2,

we can perform a polar coordinate transformation xk = Rk cos(θk), yk = Rk sin(θk)

with θk = ωt+ φk. Note that while R2
k = x2

k + y2
k and θk = atan(yk, xk), the (cen-

tral) frequency ω has to be determined, e.g., as the mean of individual frequencies

ω = (1/N)
∑

j ωj, or alternatively, as the (absolute value of the) imaginary part of

the complex conjugate pair of eigenvalues of the Jacobian of f , that is, ω = Im(λ+)

with λ± ∈ C the pair of complex eigenvalues. φk denotes a slowly varying phase

deviation of unit k from the mean. Assuming that Rk, φk hardly change over one

period of oscillation, T = 2π/ω, i.e.∣∣∣Ṙk/Rk

∣∣∣� ω and
∣∣∣φ̇k/φk∣∣∣� ω , (2.73)

[25] Note the change from “oscillator network” to “oscillatory network” as we have introduced
“oscillators” in Section 2.1.1 such that they exhibit stable limit cycle oscillations without
external coupling.

[26] Such a coordinate change is always possible for, e.g., oscillations that emerge through a
Hopf bifurcation. Away from that point, higher order corrections might be in place; for a
corresponding approximation scheme see 143.
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one can average the dynamics over the interval [0, T ) by means of 〈f(s)〉 :=
1
T

∫ T
0
f(s)ds. Exploiting trigonometric identities, the (averaged) dynamics φ̇k and

Ṙk can be expressed in the state variables xk, yk as[27]

φ̇k = −ωk +

〈
1

R2
k

(xkẏk − ykẋk)
〉

(2.74a)

Ṙk =

〈
xkẋk + ykẏk

Rk

〉
. (2.74b)

We retrieve the full phase dynamics by inserting (2.74a) into θ̇k = ω + φ̇k. Note

that the system (2.74) describes both phase and amplitude dynamics, which can be

reduced further if we assume that the (non-trivial) fixed point solution of (2.74b)

approximates the (time-varying) amplitude Rk sufficiently well. Upon inserting

the (stationary) solution Rk into (2.74a), we eventually find the reduced phase

dynamics φ̇k, which will split into a natural frequency part of order O(1) and a

coupling part of order O(κ).

A mathematical rigorous application of the Haken approach, as noted above,

respects the basic assumption of weakly coupled oscillators in that we find stable

limit cycle oscillations already in the uncoupled case. For two coupled oscillators

w,w′ ∈ C in second order Hopf normal form with nonlinear coupling as in (2.31),

ẇ = αw − β|w|2w + κ
(
γw′ + δw̄w′2

)
,

where γ = γR + iγI and δ = δR + δI , we consider the dynamics (2.25) in two-

dimensional real-valued coordinates w = x1 + iy1 and w′ = x2 + iy2. We first

transform the nonlinear coupling terms in real coordinates and use polar coor-

dinates w = Rei(ω+φ), w′ = R′ei(ω+φ′) as above. In particular, we can use the

following identities

〈xkyk〉 = 0 and
〈
x2
k

〉
=
〈
y2
k

〉
= 1

2
R2
k . (2.75)

Inserting them and the corresponding (xk, yk)-dynamics in (2.74), we define ψ =

[27] The averaging in (2.74) is sound also from a time-scale separation argument. The assumption
(2.73) implies that φk = φk(τ) and Rk = Rk(τ) depend on a slower time τ = εt. As a result,
we obtain the dynamics of the phase deviation φk and of the slowly varying amplitude Rk by
averaging over the period Tk = 2π/ωk. Indeed, using polar coordinates in the angular brackets
of (2.74) one can see that all terms at least of order O(Rk). Close to the supercritical Hopf
bifurcation, 0 < Rk � 1 is small so that this averaging is appropriate.
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φ− φ′ and arrive at

φ̇ = −ω + v0 − v1R
2

+ κ

[
R′

R

(
γI cosψ − γR sinψ

)
+R′2

(
δI cos(2ψ)− δR sin(2ψ)

)]
(2.76a)

Ṙ = u0R− u1R
3

+ κ
[
R′
(
γR cosψ + γI sinψ

)
+RR′2

(
δR cos(2ψ) + δI sin(2ψ)

)]
. (2.76b)

In the case of weak coupling κ� 1 and close to the Hopf bifurcation R � 1, the

R-dynamics (2.76b) evolves very slowly compared to φ. Therefore, one can assume

that R and R′ are constant and do not vanish. We can solve (2.76b) for R2 by

setting Ṙ = 0 as

R2 =
u0

u1

+
κ

u1

[
R′

R

(
γR cosψ + γI sinψ

)
+R′2

(
δR cos(2ψ) + δI sin(2ψ)

)]
,

which is close to the uncoupled limit cycle radius Rc =
√
u0/u1. Substituting Rc

into (2.76a) and using θ̇ = ω + φ̇, we find that

θ̇ = v0 − u0
v1

u1

+ κ

{[(
γI − γR

v1

u1

)
cos(θ − θ′)−

(
γR + γI

v1

u1

)
sin(θ − θ′)

]
+

+ Rc2

[(
δI − δR

v1

u1

)
cos
(
2(θ − θ′)

)
−
(
δR + δI

v1

u1

)
sin
(
2(θ − θ′)

)]}
.

(2.77)

This result can immediately be extended to a network of coupled oscillators yield-

ing the phase model (2.17) with Fourier coefficients (2.60).

2.3 Numerical phase reduction techniques

As repeatedly said, analytic techniques can provide useful information about the

properties of the limit cycle behavior of the coupled oscillators, which can be used

to determine the corresponding phase model explicitly in terms of the underlying

model equations. Analytic expressions thus explicitly link the parameters of the

original dynamics to those of the phase model. This allows to predict reliably how

specific model parameters shape the phase dynamics of the system. However, as we

have seen in the previous sections, only few examples are mathematically tractable

and often an intricate normal form reduction has to precede the actual phase

reduction. Furthermore, the accuracy of such analytic approaches scales with the

distance to the bifurcation point. And, as appealing as the analytic reduction

techniques are, as bulky can be the accompanying algebraic computations. Thus,

one may look for a compromise between the qualitative insights mentioned above
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and quantitative accuracy of the phase reduction.

More accurate reduction techniques heavily rely on a careful assessment of the

limit cycle’s properties, such as its shape and its dynamics. This assessment can

be automatized numerically, giving rise to the notion of numerical phase reduction

techniques. In contrast to analytic reduction techniques, the numerical approaches

do not necessarily aim at explicit equations that describe the limit cycle, but store

all numeric values that are needed in the subsequent reduction steps. In this way

the phase dynamics can be obtained with high accuracy, both near and far from

bifurcation points; see also Sections 3.1 and 3.2 for illustration.

Conceptually, numerical approaches can be distinguished between adjoint and

direct methods, which will be presented in the following sub-sections 2.3.1 and

2.3.2, respectively. In a nutshell, direct methods numerically evaluate the phase

response to perturbations p via the phase response function G(θ,p), whereas ad-

joint methods numerically compute the phase sensitivity function Z(θ), which has

been defined in Section 2.1.2. In a strict sense, both of them build on a thorough

analytic basis. Yet, determining the phase response properties of an oscillator is

not enough to constitute a phase model of the form (2.3). One also needs to in-

corporate the coupling function gkj to estimate the phase interaction function Hkj

introduced already in (2.14) as

Hkj(ψ) =
1

2π

∫ 2π

0

Z(ϕ+ ψ)·gkj(ϕ+ ψ, ϕ) dϕ . (2.78)

Recall that the coupling function g in (2.14) is evaluated on the limit cycle C. Even

if C cannot be determined analytically, this can be achieved numerically. Deriving

numerically the phase model thus combines the numerical computation of the

phase response, which becomes the phase sensitivity function Z(θ) in the limit of

infinitesimal perturbations, and the evaluation of the coupling function g(θk, θj) at

the numerically estimated limit cycle. We will refer to this algorithmic procedure

as a numerical phase reduction technique. The particular type of numerical phase

reduction technique eventually depends on whether Z(θ) is determined with an

adjoint or a direct method. In the following sub-sections we will revise the main

ideas behind the different methods, where we focus mainly on the computation

of Z(θ), and refer to several numerical toolboxes for more details about their

implementation.

To anticipate, both adjoint and direct techniques provide very similar results.

In our applications in Sections 3.1 and 3.2 we will hence use them interchangeably

as “the” numerical phase reduction technique.
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2.3.1 Adjoint method

The adjoint method presents an accurate way to derive the phase dynamics of cou-

pled oscillators78,86,146,147. It is closely related to the direct method in the limit of

infinitesimal perturbations due to the link between the phase sensitivity function

and the phase response function, see Section 2.2.4 and102. From a mathematical

point of view they are even equivalent, together with the method based on Floquet

eigenvectors in Section 2.2.5, since all of them evaluate the linearized dynamics

around the oscillator’s stable limit cycle. Due to the practical advantage of nu-

merical algorithms, the adjoint and direct methods present powerful alternatives

to analytic reduction techniques.

2.3.1.1 Malkin’s theorem

The adjoint method has been summarized in Theorem 9.278 by Hoppensteadt

and Izhikevich. It follows earlier work by Malkin148 and is often referred to as

Malkin’s method. Malkin’s theorem states that for a network of weakly coupled

oscillators ẋk = fk(xk) + κ gk(x1, . . . ,xN) ∈ Rn, where each uncoupled oscillator

has an exponentially orbitally stable T -periodic solution xck, the reduced phase

dynamics is given by θ̇k = ω + κHk(θ − θk) with ω = 2π/T , phase vector Ψ :=

(θ1 − θk, . . . , θN − θk), and the phase interaction function Hk at first order

Hk(Ψ) = 1
2

∫ 2π

0

Zk(ϕ) · gk (xc1(ϕ+ θ1 − θk), . . . ,xcN(ϕ+ θN − θk)) dϕ ,

The oscillators’ phase sensitivity function Zk(θ) ∈ Rn is the unique non-trivial

T -periodic solution to the linear system[28]

ẏ = −
(
∇fk(x)|x=xck(t)

)ᵀ
y(t) (2.79)

satisfying the normalization condition

y(0) · fk (xck(0)) = ω . (2.80)

This theorem is fairly general and can also be extended for weakly coupled oscil-

lators whose stable limit cycle oscillations have slightly different periods Tk, see78.

Moreover, the theorem does not rely on assumptions of the kind that any oscillator

is required to be close to some bifurcation point.

In the case of a network of (nearly) identical oscillators, fk = f , equations

(2.79) & (2.80) must only be solved once to retrieve the phase sensitivity function

[28] We again identify Zk(θ) and Zk(t) via the constantly increasing phase θ̇ = ω on the limit
cycle and by fixing a reference phase θ0 = 0 at t = 0.
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Z. An alternative but illustrative proof that Z solves (2.79) & (2.80) has been

provided by102, see also Section S.6 in the Supplementary Material. In a nutshell,

when considering an infinitesimal perturbations p to the stable limit cycle solution

xc(t) at time t = 0, then u(t) defined via x(t) = xc + u(t) follows the linearized

dynamics

u̇(t) = ∇f(x)|x=xc(t) u(t) =: L(t)u(t) , (2.81)

see also Section 2.2.5. By rewriting (2.81) as Lu = 0 with the linear operator

(Ly) (t) := ẏ(t)−L(t)y(t), it can be shown that the phase sensitivity function Z

is a solution of the adjoint problem

L∗Z = 0 , where (L∗y) (t) := −ẏ(t)−L(t)ᵀy(t) ,

with initial condition Z(0) · ẋ = ω, which is (2.80). Importantly, solving the

adjoint problem (2.79) & (2.80) for an oscillator in Hopf normal form reveals the

same phase sensitivity function that has been reported in Section 2.2.4 cf. 86.

For arbitrary limit cycle oscillators, one can solve L∗y = 0 numerically by

integrating the equation ẏ = −L(t)ᵀy backward in time149. As long as the limit

cycle is asymptotically stable, backward integration exactly retrieves the periodic

solution of the adjoint equation and cancels possible higher harmonics out. In this

way the adjoint method is efficiently automated in Ermentrout’s software package

XPPAUT150. As the numerical procedures do not rely on a critical distance to a

bifurcation point, the adjoint method can provide a valuable reference to monitor

accuracy, and, by this, the validity of analytic phase reduction techniques as a

system gradually moves away from a supercritical Hopf point. We will exploit this

capacity in the forthcoming Sections 3.1 and 3.2

XPPAUT and Matcont The numerical exploration of the phase sensitivity func-

tion as the solution to the adjoint problem (2.79) & (2.80) may present a problem

in itself. In fact, the solution Zk(T ) = Z(0) of (2.79) is periodic, so that we en-

counter a boundary value problem. While a direct integration is impossible, the

XPPAUT package uses backward integration149 after which the solution of (2.79)

approaches the periodic solution corresponding to the phase sensitivity function.

This algorithm, however, has to rely on a numerical interpolation of the Jacobian

matrix being evaluated at the limit cycle solution. Another drawback of the pro-

cedure is the slow convergence of the adjoint solution towards the phase response

curve when the limit cycle is only weakly stable. Govaerts and Sautois151 proposed

an alternative numerical approach to solve the adjoint problem. It does not suffer

from the aforementioned shortcomings. Their algorithm solves the correspond-

ing boundary value problem using an orthogonal collocation method with Gauss

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html


Phase reduction techniques 66

collocation points. As a by-product, they obtain the phase sensitivity function.

The method is fast, rendering it particularly useful when a large number of phase

response curves are needed, e.g., for the evolution of limit cycles if one parameter

of the system is changed. This method is implemented in the Matlab software

package MatCont152.

2.3.1.2 Ermentrout & Kopell’s reduction

An alternative method that relies on the gradient evaluated on the oscillator’s limit

cycle has been put forward by Ermentrout and Kopell146,147,153. They propose

a coordinate transformation xk = Tk(θk,ρk) resembling, at first sight, a phase-

amplitude description; cf. Section 3.3.7 for discussion. An isolated oscillator ẋk =

fk(xk),xk ∈ Rn, has an asymptotically stable limit cycle solution xck(t) with

period Tk and frequency ωk = 2π/Tk. Then, the transform Tk maps xk to variables

θk ∈ S1 and ρk ∈ Rn−1. The phase θk parametrizes xck along the limit cycle C and

the amplitudes ρk are normal coordinates in a neighborhood of C, with ρk = 0

directly on it. One can choose the transform of the form

xk(t) = Tk (θk(t),ρk(t)) = xck (θk(t)) +M k (θk(t))ρk(t) +O2(ρk) , (2.82)

where M k(θ) is an n× (n− 1)-matrix and

M k(θ)
ᵀM k(θ) = I(n−1)×(n−1)

x′0,k(θ)
ᵀMk(θ) = 01×(n−1) .

(2.83)

The prime ′ denotes the derivative with respect to θ. Then for small ρk, one can

express the dynamics ẋk = fk(xk) as

θ̇k = ωk +O(ρk) , ρ̇k = ak(θk)ρk + o(ρk) . (2.84)

Coupling the oscillators according to ẋk = fk(xk) + gk(x1, . . . ,xN), results in the

dynamics

θ̇k = ωk + hk(θ1, . . . , θN) +O(|{ρ1, . . . ,ρN}|) , (2.85a)

ρ̇k = ak(θk)ρk + dk(θ1, . . . , θN) +O(|{ρ1, . . . ,ρk−1,ρk+1, . . . ,ρN}|) + o(|ρk|) .
(2.85b)

While the ak only depend on the fk’s, the hk and dk also depend on the coupling

terms gk, k = 1, . . . , N . The precise form of the terms in the dynamics (2.85) as

well as the corresponding proofs can be found in Section S.7 of the Supplementary

Material. In the limit of ‘infinite attraction’ to the limit cycle, ρk → 0, (2.85)

http://www.scholarpedia.org/article/MATCONT
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reduces to the θk dynamics only. That is, the larger the strength of attraction of

the limit cycle, the more accurate the phase model.

Ermentrout and Kopell showed that if the coupling functions gk have some

specific form, the interaction terms in the reduced phase model display a pulse-

response coupling like

θ̇k = ωk + α0

N∑
j=1

Pj(θj)R(θk) , α0 ∈ R . (2.86)

The function Pj(θj) represents a perturbation through oscillator j and R(θk) can

be understood as a phase response curve, see also153 for explanatory comments on

this relationship. From a historical point of view, Winfree was among the first who

proposed reduced phase dynamics of the above form85. As to their derivation, we

first assume that the coupling function gk : RN×n → Rn can be expressed as the

sum of pairwise interactions gk(x1, . . . ,xN) =
∑

j g̃k(xj,xk). Omitting the tildes,

we suppose that the terms gk = (gk,1, . . . , gk,n)ᵀ : R2×n → Rn are nonzero in only

one variable, say gk,i. We further assume that this component can be written as

gk,i = α(xj)β(xk) for some functions α, β : Rn → R. Then, the functions hk in

(2.85a) decouple and we regain the dynamics (2.86).

This pulse-response type of phase models holds for oscillator dynamics with

arbitrary large coupling strengths. However, if interactions are scattered along

the period of the oscillators, the system can behave as though the coupling was

averaged over a period147. In that case, the phase interaction function H(θj −
θk) = (1/2π)

∫ 2π

0
hk(φ + θj − θk, φ)dφ will only depend on the phase differences

ψkj = θk − θj. When considering two coupled oscillators with pulse-response

coupling in the reduced phase equations of the form hk(θk, θj) = P (θj)R(θk) with

a non-negative pulse function P (θ) = 1 + cos(θ) and general response function

R(θ) = sin(θ), the phase interaction function becomes purely sinusoidal,

H(ψ) = 1
2π

∫ 2π

0

hk(θ, θ + ψ)dθ = 1
2

sin(ψ) .

Furthermore, if the rate of attraction to the limit cycle is finite, but the coupling is

sufficiently weak, one can use invariant manifold theory154 to establish an invariant

torus. Single contributions through the coupling may not appear immediately.

But cumulative coupling effects arise after one period and averaging is needed to

constitute a phase interaction function H. For oscillators with only small frequency

differences of order O(ε), one can rewrite the isolated oscillator dynamics as ẋk =

fk(xk) = f(xk)+O(ε) and subsume the O(ε) terms of frequency differences under

the coupling terms gk. Then, formally we have identical oscillators with limit cycle
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solutions xc(t) and frequencies ω = 2π/T . Given small coupling strengths, one

can also replace gk by εgk. By performing the coordinate transform (2.82) one

finds that ρk will be ε-close to the invariant torus so that we can write ρk = εsk.

Following147, one eventually arrives at the phase interaction function H(ψkj) for

the differences ψkj = φk−φj of phase deviations φk from the uncoupled limit cycle

phases θk = ωkt+ φk, which reads

Hk(ψkj) =
1

T

∫ T

0

b(t)sk(t) + ρ−1(t)
(
xc′(t)

)ᵀ
gk (xc(t),xc(t+ ψkj)) dt . (2.87)

The exact form of b(t) can be found in Section S.7. Simplifying the expression

above, (2.87) can be recast as

Hk(ψkj) =
1

T

∫ T

0

Z(t) · gk (xc(t),xc(t+ ψkj)) dt , (2.88)

whereZ is the solution to the adjoint problem of the previous Section 2.3.1. In fact,

Ermentrout and Kopell provided two different methods in the appendix of147 to

derive (2.88). While their second method overlaps to great extent with the adjoint

method above, we recapitulate their other “geometric” method in Section S.7.[29]

Both methods as well as the one presented in Section 2.3.1 are equivalent and the

difficulties remain to find exact solutions when evaluating the dynamics along the

(analytically unknown) limit cycle trajectory. Nevertheless, these approaches have

proven quite successful and serve for that reason as a valuable means to test and

validate analytic results.

2.3.2 Direct method

Direct methods differ conceptually from adjoint methods in that they do not im-

mediately solve for the phase sensitivity function Z. Instead, direct methods aim

at quantifying the phase response to an (arbitrarily small or large) stimulus p of

the limit cycle trajectory xc(t) at a particular phase θ. We introduced this type of

response as the phase response function G(θ,p) in Section 2.1 and presented an ex-

act description how to determine G. This direct method can also be implemented

experimentally, which dates back to the work by Glass, Mackey and co-workers155

in the 1980s. Despite its simplicity, the experimental procedure is not very ac-

curate when it comes to infinitesimal perturbations. That is why direct methods

[29] An alternative proof to establish phase equations for oscillatory neural networks is given in
Theorem 9.178 by Hoppensteadt and Izhikevich. They focus on the phase dynamics of (2.85)
and use normal form theory as presented in Section 2.2.1 to describe perturbations P off the
invariant manifold of (the product of) hyperbolic limit cycles. Ad-hoc they interpret their
choice P ≡ 0 as an ‘infinite attraction’ to the invariant manifold and thus link their result to
Ermentrout and Kopell’s work.
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have been avoided to compute the phase sensitivity function Z via G(θ,p) in the

limit of infinitesimal perturbations ‖p‖ � 1. Recently, however, Novičenko and

Pyragas proposed an algorithm based on the same idea of the oscillator’s response

to short finite pulses at different phases of the limit cycle156. Their algorithm

does not require any backward integration nor a numerical interpolation of the

Jacobian. Moreover, it is faster than the algorithms implemented in XPPAUT,

see Section 2.3.1 above. This is especially true when the limit cycle is only weakly

stable. The idea behind this algorithm builds on the (linearized) dynamics (2.81)

of infinitesimal deviations u from the limit cycle C = {xc(t) : 0 ≤ t ≤ T} as the

adjoint method,

u̇(t) = ∇f(x)|x=xc(t) u(t) , (2.89)

where xc(t) denotes the T -periodic limit cycle solution of ẋ = f(x) with initial con-

dition x(0) = xc(θ) (initial phase θ). To obtain the j-th component Zj of the phase

sensitivity function Z, we choose the initial condition u(0) = (u1(0), . . . , un(0))ᵀ

with uk(0) = δkj where δkj denotes the Kronecker-δ. Then, it can be found156 that

Zj(θ) = lim
p→∞

f (xc(θ)) · u(pT )

f (xc(θ)) · f (xc(θ))
. (2.90)

To improve this algorithm, the authors replaced the vector u by the fundamen-

tal matrix Φ and eventually extract the phase sensitivity function Z from Φ.

For more details, we refer to their instructive work156, which includes numerical

demonstrations of the algorithm and a comparison with the standard algorithm as

implemented in XPPAUT.

For our purposes, we tested the standard algorithm, both using XPPAUT as well

as our own adjoint solver implemented in Matlab (The Mathworks Inc., Natwick,

MA), against the one presented here. We found a very good agreement between

all methods, such that we use either of them interchangeably as “the” numerical

method unless stated otherwise.

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://mathworks.com
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ChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapter 3
Collective behavior of coupled

oscillators and their reduced phase

models

Having a battery of analytic and numerical phase reduction techniques introduced

and explicated in the previous Chapter, we duly apply them to two classic exam-

ples. The first is a network of Brusselators, which is one of the most discussed

chemical oscillators. The second example comprises a more elaborate interdisci-

plinary model of coupled Wilson-Cowan oscillators. Both of them illustrate the

benefits and pitfalls of the different phase reduction techniques. A point-by-point

application further allows for a thorough comparison between the techniques. The

reduction of complex oscillatory systems is crucial for numerical analyses but more

so for analytical estimates and model prediction. The most common reduction is

towards phase oscillator networks that have proven successful in describing not

only the transition between incoherence and global synchronization, but in predict-

ing the existence of non-trivial network states. Many of these predictions have been

confirmed in experiments. The phase dynamics, however, depends to large extent

on the employed phase reduction technique.

Adapted from: Pietras B., Daffertshofer A. (2018). Network dynamics of coupled

oscillators and phase reduction techniques, (Sections 5 – 7). Under review.



Collective behavior and phase models 71

3.1 Networks of identical Brusselators

The Brusselator is a theoretical model of oscillating chemical reactions. It perfectly

serves to illustrate our approaches to phase reduction introduced in Chapter 2 since

it exhibits a supercritical Hopf bifurcation. The system comprises four hypotheti-

cal chemical reactions and has been developed by the Brussels school around Ilya

Prigogine and René Lefever157 – hence the name. For a long time, reports on

oscillating chemical reactions were facing harsh skepticism. Despite the strong

interest in biological and biochemical oscillations in the 1950s and 60s, the dis-

covery of oscillatory patterns in a closed chemical system by Belousov158 in 1951

had to be meticulously reproduced and investigated for years by Zhabotinsky159

until the nowadays so famous Belousov-Zhabotinsky reaction found its way into

the scientific community160; for an overview of oscillating chemical reactions see

also38,161,162. In a way, the Belousov-Zhabotinsky reaction was conceived as a man-

ageable model of more complex systems, which simultaneously bore a close analogy

to biology: Strogatz describes this analogy where “propagating waves of oxidation

[. . . ] annihilate upon collision just like waves of excitation in neural or cardiac tis-

sue. [. . . ] spiral waves are now an ubiquitous feature of chemical, biological, and

physical excitable media”162. The original Belousov-Zhabotinsky reaction, which

involves more than twenty elementary reaction steps, could effectively be rewrit-

ten in three differential equations. From a similar perspective, one can regard the

Brusselator as a simplified chemical oscillator, which can be described in two dif-

ferential equations. Despite its ability to exhibit oscillatory dynamics, as found in

the Belousov-Zhabotinsky reaction, the Brusselator is a mere hypothetical model

and is not based on a particular chemical reaction. Nonetheless, it serves as an

exquisite example to apply the arsenal of phase reduction techniques presented in

the previous section.[1]

[1] There exists also a natural extension of the Brusselator model into a two-component reaction-
diffusion system, which allows for so-called chemical waves and other pattern formation, such
as, e.g., traveling fronts or rotating spirals in an extended medium38. It is not only possible
to define a phase for rhythmic patterns in extended media, but also to derive the correspond-
ing phase dynamics from the underlying spatio-temporal dynamics, as has been successfully
demonstrated by Nakao, Kawamura and co-workers87,163,164. This strategy can be used to
determine a meaningful phase dynamics of periodic fluid flows165. It has been extended to
reduce the phase dynamics of limit cycle solutions to general partial differential equations166.
In the same way, the phase dynamics of collective oscillations of globally coupled noisy ele-
ments can be derived, given that these oscillations are solutions to a nonlinear Fokker-Planck
equation167,168.
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3.1.1 Single node dynamics

The chemical reactions of the Brusselator are described in terms of

A
ka−−→ X (3.1a)

B +X
kb−−→ Y + C (3.1b)

2X + Y
kc−−→ 3X (3.1c)

X
kd−−→ D , (3.1d)

which sum up to A + B → C + D. Each of the reactions (3.1a–d) has a rate

constant ka to kd. Under the assumption that the chemicals A and B are in vast

excess, one can assume that their concentrations stay constant. On the other hand,

the products C and D are constantly removed. The concentrations of X and Y

will react sensitively to already weak perturbations and reach an oscillatory state

when the overall reaction is far from an equilibrium solution. (3.1) can thus be

considered a thermodynamically open system with the following rate equations for

the (dimensionless) concentrations x = [X] and y = [Y ]

ẋ = ka[A]− kb[B]x+ kcx
2y − kdx

ẏ = kb[B]x− kcx2y
(3.2)

with free parameters ka[A], kb[B], kc and kd. The rate equations (3.2) can be un-

derstood as follows: Reaction (3.1a) always leads to an increase of concentration

x, which is proportional to the product of the rate ka and the concentration [A]

of chemical A. Likewise, reaction (3.1d) leads to a decrease of concentration x at

rate kd. Whenever the two chemicals B and X are involved in reaction (3.1b), this

leads to an increase in concentration y that is proportional to the rate kb times the

concentrations of B and X, and a simultaneous decrease of the same amount of

concentration x. Reaction (3.1c) can be understood in the same manner, only that

this reaction leads to an increase in x and a (balanced) decrease in concentration

y.

3.1.2 Coupled Brusselators

We consider a network of Brusselators by coupling multiple nodes xk = (xk, yk) ∈
R2, k = 1, . . . , N . In the following, we will fix the rate constants kc = kd = 1

and consider a = ka[A], b = kb[B] ∈ R+ as possible bifurcation parameters. Our
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Brusselator network model then reads

ẋk = a− (b+ 1)xk + x2
kyk + κgk,x(x1, . . . , xN , y1, . . . , yN)

ẏk = bxk − x2
kyk + κgk,y(x1, . . . , xN , y1, . . . , yN)

(3.3)

for some weak coupling strength 0 ≤ |κ| � 1 and with coupling functions gk,x, gk,y :

R2N → R. Without coupling, κ = 0, every node has a stable fixed point at

(x0, y0) = (a, b/a), which undergoes a supercritical Hopf bifurcation at b = 1 + a2.

Introducing the new variables x̃k = xk − x0 and ỹk = yk − y0, we can shift the

fixed point to the origin, (x̃0, ỹ0) = (0, 0). Moreover, we restrict the form of the

coupling to be the sum of pairwise interactions between nodes x̃k, x̃j, k 6= j, so

that the dynamics (3.3) become

ẋk = (b− 1)xk + a2yk +
b

a
x2
k + 2axkyk + x2

kyk +
κ

N

N∑
j=1

Ckjgx(xk,xj)

ẏk = −bxk − a2yk −
b

a
x2
k − 2axkyk − x2

kyk +
κ

N

N∑
j=1

Ckjgy(xk,xj) .

(3.4)

Note that we omitted the tildes for the sake of readability. We also assumed the

coupling terms g = (gx, gy) to be identical across nodes. The adjacency matrix

C = {Ckj} specifies the connectivity between nodes xk and xj. We define the

bifurcation parameter as

µ =
b

1 + a2
− 1 (3.5)

and aim at transforming the dynamics (3.4) into Jordan real form, that is, the

linearized dynamics with Jacobian L(µ) around the fixed point (0, 0) is of the

form (
ẋk
ẏk

)
=

(
%(µ) −ω(µ)

ω(µ) %(µ)

)(
xk
yk

)
,

To do so, we use the transformation matrix

T (µ) = 1
2(1+µ)(1+a2)

(
− (µ+ a2(2 + µ))

√
4a2 − µ2(1 + a2)2

2(1 + µ)(1 + a2) 0

)
, (3.6)
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where
√

4a2 − µ2(1 + a2)2/2 = ω(µ) is the emergent frequency of the oscillatory

dynamics for µ ≥ 0 and ω0 = ω(0) = a.[2] The to-be-analyzed system then reads

ẋk = L(µ)xk + T−1N 1(Txk;µ) + T−1N 2(Txk;µ) +
κ

N

N∑
j=1

CkjT
−1g(Txk,Txj)

(3.7)

with

L(µ) =
1

2

(
µ(1 + a2) −

√
4a2 − µ2(1 + a2)2√

4a2 − µ2(1 + a2)2 µ(1 + a2)

)

N 1(x;µ) =

(
(1 + µ)(1 + a2) 2a 0

−(1 + µ)(1 + a2) −2a 0

)x
2

xy

y2



N 2(x;µ) =

(
0 1 0 0

0 −1 0 0

)
x3

x2y

xy2

y3

 .

3.1.3 Identifying the Hopf normal form

To prepare the different reduction techniques, in particular Kuramoto’s reductive

perturbation and Poincaré’s nonlinear transform approach, we first specify the

parameters that are independent of the coupling.

Kuramoto’s reductive perturbation Following Section 2.2.2.1, the normal form

parameters α, β in (2.41),

f(w, w̄) = αw − β|w|2w ,

can be identified as

α = 1
2
µ
(
1 + a2

)
+ ia and β = 1

2

(
1 +

2

a2
+ i

4− 7a2 + 4a4

3a3

)
. (3.8)

Note that β is independent of the bifurcation parameter µ, whereas α depends on µ.

Hence, varying µ may strongly affect the normal form. The coupling parameters of

order O(κ) can be computed using the expressions above once the type of coupling

has been established.

Considering one Brusselator as an integral element of a network of coupled

[2] Note that for a ≥ 0 and |µ| � 1, T (µ) can only become singular when µ = a = 0. In this
case, det

(
T (0)

)
= 0, and the Jacobian L(0) = 0 vanishes, too.
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oscillators, each oscillator is now subject to ‘perturbations’ from the respective

other nodes. The initial and indispensable step is to investigate how an individual

Brusselator reacts to perturbations in general. For this, we determine the phase

sensitivity function[3] Z either analytically from the reduced Hopf normal form, or

numerically as presented in Sections 2.3 and 2.3.2. The analytically derived phase

sensitivity function is perfectly sinusoidal. It reads

Z(θ) =
1

R

(
−c2 cos θ − sin θ

−c2 sin θ + cos θ

)
, where R2 =

Re(α)

Re(β)
and c2 =

Im(β)

Re(β)
, (3.9)

α and β are determined by the analytic normal form reduction technique, e.g.,

by (3.8), see also Section 2.2.5. By contrast, the numerically computed phase

sensitivity function may exhibit higher harmonics for growing distance from the

Hopf bifurcation point as there is no preceding Hopf normal form reduction that

imposes circular symmetry on the limit cycle.

Poincaré’s reduction via nonlinear transforms In a similar way, one can com-

pute the (uncoupled part of the) normal form according to the reduction approach

via nonlinear transforms from Section 2.2.2.2. There, no assumptions on the small-

ness of the bifurcation parameter µ are imposed. On the one hand this improves

the accuracy by making both α, β depend on µ. But on the other hand it yields

equations that are too lengthy to report, given dynamics (3.7). As an alternative,

we will compare the different reduced phase dynamics numerically and graphically.

3.1.4 Comparing analytic and numerical phase reductions

3.1.4.1 Linear coupling

A comparison of the different phase sensitivity functions provides only limited

insight about the network’s phase dynamics. Arguably more important is the

shape of the entire phase interaction function H, which also accounts for the

type of coupling. For our network of Brusselators, we first consider global, linear

[3] All phase reduction techniques discussed in Sections 2.2 and 2.3 build on an explicit com-
putation of the phase sensitivity function Z except for the phase reduction approach based
on SN × S1-symmetry, Section 2.2.6. However, since this symmetry approach requires the
underlying dynamics in Hopf normal form, one can readily extract Z from the normal form
parameters.
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diffusive coupling between oscillators[4]

Ckjg(xk,xj) =

(
xj − xk
d(yj − yk)

)
(3.10)

with some coupling constant d ∈ R cf. 95; d ≥ 0 ‘weights’ the coupling between yj

and yk relative to that between xj and xk.

In the following, we will investigate how collective dynamics of weakly and lin-

early coupled Brusselators can be predicted with the help of reduced phase models

when varying the parameters a, d, and µ. We will focus on the boundaries between

stability and instability of the fully synchronized state and of the (balanced) two

cluster state. These boundaries are described in terms of the amplitudes an, bn of

the first and second harmonics of the phase interaction function (2.17),

H(ψ) =
∑
n≥0

an cos(nψ) + bn sin(nψ) .

i.e. for n = 1 and n = 2, respectively.

Analytic phase reductions Recall that the sought-for dynamics (2.31) reads

ẇk = αwk − β|wk|2wk +
κ

N

N∑
j=1

Ckj
[
γwj + δw̄kw

2
j

]
.

This means that the parameters γ and δ remain to be specified. Along Kuramoto’s

reductive perturbation technique we obtain for the Brusselator network with linear

coupling (3.10)

γ =
1

2
+
d

2
+ i

a

2
(1 + d) ,

δ = −4 + a2(2− 10d) + d+ a4(−2 + 7d)

9a4

− i 4 + a2(2− 11d) + 2a4(−1 + d) + 5d

9a3
.

(3.11)

[4] Approximate linear coupling schemes have also been realized in experiments with electro-
chemical oscillators, see e.g., 95,169, which underlines the relevance of this comparably simple
type of coupling.
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When combined with the parameters α, β in (3.8), this leads to

c1 =
Im(γ)

Re(γ)
=
−a(1− d)

1 + d
,

c2 =
Im(β)

Re(β)
=

4− 7a2 + 4a4

6a+ 3a3
,

c3 =
Im(δ)

Re(δ)
=
a [4 + a2(2− 11d) + 2a4(−1 + d) + 5d]

4 + a2(2− 10d) + d+ a4(−2 + 7d)
,

(3.12)

and to the radius R = µ
√

a2(1+a2)
2+a2

. From there we can derive the amplitudes a1,

a2, b1, and b2 of H, see Section 2.2.3.

Analogously, one can derive these amplitudes along Poincaré’s reduction via

nonlinear transforms. Although the parameters α, β, γ, δ are the main contrib-

utors to the reduced phase dynamics, the nonlinear transform approach allows

to include corrective coupling terms gklmn apart from γ = g0010 and δ = g0120,

see Section 2.2.2.2. The resulting amplitudes a1, a2, b1, and b2 of H using the

nonlinear transform approach can thus be expected more accurate. Besides that

corrective coupling terms are taken into account, the nonlinear transform approach

also employs parameter-dependent transformations at every order. The reductive

perturbation approach, in contrast, discards these parameter effects across all non-

linear terms.

As said, the explicit parameter-dependent expressions of a1, a2, b1, and b2 are

quite lengthy and, therefore, we compare the outcome of these two phase reduction

techniques graphically. For this, we determined the stability boundaries of the

synchronized state and of the balanced two cluster state in the a − d plane for a

fixed radius of the limit cycle oscillations that emerged through the supercritical

Hopf bifurcation. In particular, we investigated oscillations with radius R = 0.1

and R = 0.4. These values correspond to the distance µ > 0 from the Hopf

bifurcation point via µ = R [(2 +a2)/(a2(1 +a2))]1/2. By increasing the parameter

a between 1 ≤ a ≤ 3, µ decreases from 0.49 to 0.14 for large-amplitude oscillations,

R = 0.4, and from 0.12 to 0.035 for R = 0.1, respectively. Moreover, d is varied in

the interval [0, 1]. The stability of the synchronized state can be directly assessed

using the derivative H ′(0) of the phase interaction function H, which we display

in Fig. 3.1.

As H ′(0) changes signs, the synchronized state switches from stable to unstable

depending on the sign of the coupling κ. Note that the stability boundary of

the synchronized state can be given by {b1 + 2b2 = 0} and the one of the two

cluster state by {b2 = 0} for the Hopf normal form network dynamics (2.31). The

parameter regions where the fully synchronized and the two cluster states are

stable are depicted in Fig. 3.2 for the reductive perturbation approach (panels a
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and e) and the nonlinear transforms approach (b and f).

The differences between the two different analytic normal form reductions (to-

gether with a subsequent phase reduction) are hardly visible for small-amplitude

oscillations, both in the H ′(0)- and in the cluster plots. Increasing the radius of os-

cillation leads to a minor reduction in size of the synchronization region (depicted

in red) for both reduction techniques. The boundary indicating the emergence of

a stable (anti-phase) two cluster state (blue) is slightly bent following the reduc-

tive perturbation approach, but becomes a straight line in the nonlinear transform

approach.

a) b) c)

d) e) f)
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Figure 3.1: Stability of the globally synchronized state of the network of linearly coupled
Brusselators is determined through the phase interaction function H. If sgn(κ)H ′(0) > 0,
the synchronized state is stable, otherwise unstable. In line with the subsequent analysis,
we use κ < 0 and show −H ′(0) color coded in the a− d plane for (a-c) small-amplitude
oscillations, R = 0.1, i.e. near the Hopf bifurcation point, and for (d-f) large-amplitude
oscillations, R = 0.4, further away from the Hopf point. A change of stability occurs
at H ′(0) = 0 (green), between positive (red) and negative (blue) areas. The phase
interaction function is reduced via (a,d) Kuramoto’s reductive perturbation approach,
(b,e) Poincaré’s nonlinear transform approach, and (c,f) the direct numerical method.

Numerical phase reductions We also determined the properties of the Brusse-

lator’s limit cycle and its phase sensitivity function H numerically using either of

the reduction techniques presented in Section 2.3.[5] Extracting the amplitudes

of the first and second harmonics of H, we again calculated the stability bound-

aries of the fully synchronized and two cluster states, respectively. The results are

summarized in Fig. 3.1 (panels c, f) and Fig. 3.2 (panels c, g).

When comparing the network predictions to those based on the analytic tech-

niques, we found that for small-amplitude oscillations the agreement appeared

almost perfect and the stability boundaries are nearly identical. However, for

large-amplitude oscillations, the different techniques diverged significantly. While

[5] In particular, we employed the direct numerical method presented Section 2.3.2.
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Figure 3.2: Stable globally synchronized states (red) and stable balanced two-cluster
states (blue) of the network of linearly coupled Brusselators in the a− d plane for (a-d)
small-amplitude, and for (e-h) large-amplitude oscillations with R = 0.1 and R = 0.4,
respectively. The (negative) coupling strength is set at κ = −0.001. Results are ob-
tained via (a,e) Kuramoto’s reductive perturbation approach, (b,f) Poincaré’s nonlinear
transform approach, and (c,g) the direct numerical method, and compared against (d,h)
simulations of the full network of N = 30 weakly coupled Brusselators. In the full
network, also stable three-cluster states occurred (green).

the synchronization region shrank according to the analytic techniques, it enlarged

following the numerical reduction. The boundary for the two cluster state slightly

rectified, but it did not match either of the other two predicted lines.

Network simulations To test whether the predictions based on the reduced phase

models actually recovered the original network dynamics, we simulated the dynam-

ics of N = 30 Brusselators coupled with some weak strength κ = −0.001. The

results are shown in Fig. 3.2 (panels d, h). For both small- and large-amplitude os-

cillations, the analytic as well as the numeric phase reduction techniques performed

sufficiently well. Yet, the numeric phase reduction outperformed the analytic ones

for large-amplitude oscillations. This holds equally for the synchronization and the

two-cluster regions. While both analytic techniques underestimated synchroniza-

tion (smaller red area), the reductive perturbation approach slightly overestimated

the two-cluster region and the nonlinear transform approach underestimated it. Fi-

nally, the network simulations revealed a large area where a three-cluster state is

stable for large-amplitude oscillations, Fig. 3.2 (panel h). By construction, none

of the phase reduction techniques was able to detect this. More details about the

numeric implementations can be found in Appendix of 170.

3.1.4.2 Nonlinear coupling

The arguably more appealing problem is that of nonlinear coupling. To illustrate

this we add to the diffusive linear coupling an additional coupling term gsyn of the
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form

gsyn(xk,xj) = ĝ(xk)S(xj) for all k 6= j = 1, . . . , N,

which may resemble a chemical synapse, see also Section 3.3.5. The function

S = (Sx, Sy) is usually of sigmoidal shape, which we simplify as a polynomial of

some degree n ∈ N – this can be thought of as, e.g., a truncated Taylor expansion

of a sigmoidal function. As a particular example we choose the nonlinear coupling

of the form[6]

g(xk,xj) = gdiff(xk,xj) + ĝ(xk)S(xj)

=

(
xj − xk + g1x

2
j + g2xkxj + g3xkx

2
j + g4x

2
kxj

d(yj − yk)

)
(3.13)

with coupling parameter d as in the linear case above, and with new nonlinear

coupling terms scaled by gj ∈ R, j = 1, . . . , 4. Here we already realize that in the

reductive perturbation approach, the term g4x
2
kxj does not influence the resulting

phase model as x2
kxj is a resonant monomial.

Analytic phase reductions Equivalent to the case of linear coupling, we display

the predictions about synchronization in Fig. 3.3 and about two cluster states in

Fig. 3.4. The fixed coupling parameter values are

g1 = 0.3, g2 = −0.2, g3 = 0.35, g4 = 0.3

while d is varied in the interval [0, 1] as before.

Again, the analytic predictions of network states for small-amplitude oscillations

are roughly identical. However, for large-amplitude oscillations the differences be-

tween the two analytic techniques appear more drastic as compared to the lin-

ear coupling case. The synchronization region is enlarged following the nonlinear

transform approach and by the same token the two cluster state region shrinks,

consisting of an almost parallel stripe on the left and of a second, small triangular

region in the top right corner of the a−d plane. On the other hand, the boundaries

[6] Expanding both ĝ = (gx, gy) and S = (Sx, Sy) as power series in xk = (xk, yk) and xj =
(xj , yj), respectively, we will consider in the following only non-zero x-components of the
particular form

gx(xk) = 1 + a1xk + a2x
2
k +O3(xk) and Sx(xj) = b1xj + b2x

2
j + b3x

3
j +O4(xj) .

In order to obtain (3.13), we choose the non-vanishing coefficients

a1 = g2/g1, a2 = g4/g1, b1 = g1, b2 = g1g3/g2.
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predicted by the reductive perturbation method hardly vary when increasing the

radius R of the limit cycle.
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Figure 3.3: Stability of the globally synchronized state of the network of nonlin-
early coupled Brusselators is determined through the phase interaction function H. If
sgn(κ)H ′(0) > 0, the synchronized state is stable, otherwise unstable. In line with the
subsequent analysis, we use κ < 0 and show −H ′(0) color coded in the a − d plane for
(a-c) small-amplitude oscillations, R = 0.1, i.e. near the Hopf bifurcation point, and for
(d-f) large-amplitude oscillations, R = 0.4, further away from the Hopf point. A change
of stability occurs at H ′(0) = 0 (green), between positive (red) and negative (blue) areas.
The phase interaction function is reduced via (a,d) Kuramoto’s reductive perturbation
approach, (b,e) Poincaré’s nonlinear transform approach, and (c,f) the direct numerical
method.

Figure 3.4: Stable globally synchronized states (red) and stable balanced two-cluster
states (blue) of the network of nonlinearly coupled Brusselators in the a−d plane for (a-
d) small-amplitude, and for (e-h) large-amplitude oscillations with R = 0.1 and R = 0.4,
respectively. The (negative) coupling strength is set at κ = −0.001. Results are ob-
tained via (a,e) Kuramoto’s reductive perturbation approach, (b,f) Poincaré’s nonlinear
transform approach, and (c,g) the direct numerical method, and compared against (d,h)
simulations of the full network of N = 30 weakly coupled Brusselators. In the full
network, also stable three-cluster states occurred (green).
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Numerical phase reductions As in the linear coupling case we used the nu-

merical phase reduction technique to determine the stability boundaries of the

synchronized and two cluster states. The results are depicted in Fig. 3.3 (panels

c, f) and Fig. 3.4 (panels c, g). Remarkably, the predictions for small-amplitude

oscillations and close to the Hopf bifurcation point agreed with those of the an-

alytic reduction techniques. For the large-amplitude oscillations, the predictions

of the numerically reduced phase model rather wend in the direction as proposed

by the nonlinear transform approach: The synchronization regions grows, the two

cluster region shrinks. Strikingly, the triangular region in the top right corner has

almost fully disappeared.

Network simulations As before, we simulated the dynamics of N = 30 weakly

coupled (κ = −0.001) Brusselators but now employing the nonlinear coupling

scheme. The results are depicted in Fig. 3.4 (panels d, h). We believe that they

speak for themselves as the reading agrees with the results for the case of linear

coupling. Again, we refer to the Appendix 170 for more details about the numerical

implementation.

3.1.5 Other analytic phase reduction techniques

3.1.5.1 Isochrons, Floquet eigenvectors, and SN × S1-symmetry

The first alternative analytic phase reduction techniques comprise of Winfree’s

reduction via isochrons, Kuramoto’s reduction via Floquet eigenvectors and Ashwin

& Rodrigues’ reduction via SN×S1-symmetry. As we explained in Section 2.2.3 all

these techniques will result in the same reduced phase model despite their different

methodical background. Hence, there is no need to discuss this further.

3.1.5.2 Haken’s reduction via averaging

When introducing polar coordinates xk = (xk, yk) =
(
Rk cos(Ωt+φk), Rk sin(Ωt+

φk)
)

with Ω = Im
(
λ1(0)

)
, one can realize that the right-hand side of (3.7) is of

order O(Rk). Assuming that 0 ≤ µ � 1, i.e. close to the Hopf bifurcation, the

amplitude Rk � 1 is small and we may consider to apply Haken’s averaging to

(3.7) as outlined in Section 2.2.7. For simplicity, we approximate all nonlinear

terms in (3.7) by the corresponding expressions at the Hopf point, µ = 0, that

is, one can use T (0),N 1(x; 0),N 2(x; 0). In that case, averaging over one period
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T = 2π/Ω will result in the approximate phase and amplitude dynamics

φ̇k = 1 +
a

8(1 + a2)
R2
k +O(κ)

Ṙk = Rk

[
−a+ µ− 3a2

8(1 + a2)
R2
k

]
+O(κ) ,

where O(κ) denotes the coupling terms. However, the uncoupled dynamics of the

phase deviations φk is too large for slight deviations from the offset frequency at

the Hopf point. Moreover, the amplitude dynamics Rk does not exhibit a non-

trivial fixed point solution unless 0 < a ≤ µ � 1 is very small, which stands in

clear contrast to the well-established supercritical Hopf bifurcation character of

the Brusselator. That is, in the current setting, this kind of averaging may yield

spurious results and we will not proceed along these lines.

3.1.6 Summary & remarks

To summarize, we analyzed the collective dynamics of a network of weakly cou-

pled Brusselators with respect to (stable) synchronized, incoherent, and balanced

two-cluster states. Numerical reduction techniques are perfectly able to detect the

correct dynamical regimes as revealed by full network simulations. Analytic reduc-

tion techniques, by contrast, capture the actual collective dynamics only in a close

neighborhood to the Hopf bifurcation point. This holds across linear and nonlin-

ear coupling schemes. For illustration, we fixed the parameter value a = 2.55 and

investigated numerically the resulting phase model in terms of the frequency term

and the Fourier coefficients of first and second harmonics of the reduced phase

interaction function H.

For linear coupling and close to the Hopf bifurcation point, the analytic reduc-

tion techniques do not only capture the correct collective dynamics, but they also

provide the same order of amplitudes as obtained by numeric methods, see Table

3.1. Away from the Hopf point, the reduction techniques still perform consid-

erably well, but slightly incorrect estimations of the first and second harmonics

result in different predictions: according to the reductive perturbation approach

a too strong second harmonic forces the phase dynamics into an incoherent state,

whereas both the nonlinear transform approach and the numerical reduction cor-

rectly capture synchronization of the network, cf. Fig. 3.2 and Table 3.2.

Nonlinear coupling, by contrast, affects the performance more drastically. For

small-amplitude oscillations, the differences in sign of the b2 values in Table 3.3

may be due to numerical artifacts, so that the (wrongly) predicted incoherent

state by the nonlinear transform approach has to be taken with care in contrast to

the correct prediction of a stable two-cluster state by the reductive perturbation
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Table 3.1: Phase models derived with different reduction techniques for linear coupling
and near the Hopf bifurcation, µ = 0.0417. The oscillators’ natural frequency is ω, and
an, bn are the amplitudes of the Fourier components of the phase interaction function H.
Symbols +/− denote the sign of each amplitude. Their quantity corresponds to their
influence on the dynamics, with +++ representing dominant contributions of orderO(1),
while 0+/− corresponds to amplitudes ≤ 10−3. Parameters are (a, d) = (2.55, 0.65).
Exact numerical values can be found in the Appendix170.

Approach ω a1 b1 a2 b2

Reductive perturbation 2.537 −−− + 0+ 0−

Nonlinear transform 2.524 −−− + + −

Direct averaging × × × × ×

Numerical/adjoint 2.474 ++ + 0− 0−

Table 3.2: Phase models derived with different reduction techniques for linear coupling
and away from the Hopf bifurcation, µ = 0.1670. The notation is the same as in Table
3.1. Parameters are (a, d) = (2.55, 0.65).

Approach ω a1 b1 a2 b2

Reductive perturbation 2.348 −−− + ++ −−

Nonlinear transform 1.832 −−− ++ ++ −−

Direct averaging × × × × ×

Numerical/adjoint 2.671 + + + ++ − −

approach and the numerical reduction. For large-amplitude oscillation, however,

the phase reduction techniques diverge as shown in Fig. 3.4. Since the nonlinear

transform approach respects the parameter-dependence in the normal form reduc-

tion, it outperforms the reductive perturbation approach and largely retrieves the

results of the numeric reduction technique, see Table 3.4, where the amplitudes of

first and second harmonics agree.

To conclude the example of coupled Brusselators, we can add that phase re-

duction techniques are, in general, capable of predicting the collective dynamics

of weakly coupled networks by identifying the properties of the phase interaction

function. We would like to point out, however, that nonlinear coupling terms

strongly limit the applicability of analytic reduction techniques to a close vicinity

of the Hopf bifurcation point. As nonlinear coupling can be an important and

often non-negligible ingredient in realistic network models, we will focus more on

this in the next section.
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Table 3.3: Phase models derived with different reduction techniques for nonlinear cou-
pling and near the Hopf bifurcation, µ = 0.0417. The notation is the same as in Table
3.1 Parameters are (a, d) = (2.55, 0.75).

Approach ω a1 b1 a2 b2

Reductive perturbation 2.537 −−− −− 0+ 0+

Nonlinear transform 2.524 −−− −− + 0−

Direct averaging × × × × ×

Numerical/adjoint 2.474 ++ − 0− 0+

Table 3.4: Phase models derived with different reduction techniques for nonlinear cou-
pling and away from the Hopf bifurcation, µ = 0.1670. The notation is the same as in
Table 3.1 Parameters are (a, d) = (2.55, 0.75).

Approach ω a1 b1 a2 b2

Reductive perturbation 2.345 −−− −− + 0+

Nonlinear transform 1.832 −−− ++ ++ −

Direct averaging × × × × ×

Numerical/adjoint 2.671 + + + ++ − −
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3.2 Networks of identical Wilson-Cowan neural

masses

As a second example we use the seminal Wilson-Cowan neural mass model as

a representative example for a smooth neural oscillator[7]. In their pioneering

work69,70 Wilson and Cowan derived a neural population model that comprises Ne

excitatory and Ni inhibitory neurons. Denoting by en/in the firing rate of a single

excitatory/inhibitory neuron, the respective mean firing rates can be given by the

averages E = (1/Ne)
∑Ne

n=1 en and I = (1/Ni)
∑Ni

n=1 in. Every neuron receives

inputs from all other neurons within the population and every excitatory neuron

receives an external input pn, whose average is given by P = (1/Ne)
∑Ne

n=1 pn. Once

the sum of all inputs exceeds a certain threshold θn, a neuron elicits a spike. For

a particular distribution of threshold values across the population, one can assign

a sigmoidal activation function[8] S to the population dynamics69. Alternatively,

the introduction of S can be motivated starting from a single neuron level and

along an ergodicity argument, as the time average of individual, saturating firing

rates equals the population average171. Without loss of generality, we choose

S [x] = 1/(1 + e−x) and denote the population-specific threshold values by ΘE and

ΘI for the excitatory and inhibitory part, respectively. Then the coarse-grained

dynamics of the mean firing rates of a neural population obeys the form

µEĖ = −E(t) + [1− rEE] S [aE (cEEE − cIEI −ΘE + P )] ,

µI İ = −I(t) + [1− rII] S [aI (cEIE(t)− cIII −ΘI)] .
(3.14)

The coupling parameters ckj with k, j ∈ {E, I}, indicate the strength of interaction

between the different parts within the population, and aE, aI define the slopes of

the transfer function S. The terms [1− rEE] and [1− rII] represent the refractory

dynamics of the excitatory and inhibitory subpopulations, respectively. They track

the period of time during which the corresponding cells are incapable of being

stimulated after an activation. In our considerations, we will neglect this term

and set rE = rI = 0, thereby following Pinto and co-workers172, who showed

that the terms effectively rescale the parameters of the nonlinear transfer function

S. For the sake of simplicity, we further consider the time scales µE = µI = 1.

Depending on the choice of parameters, this model can exhibit rich dynamics such

as self-sustained oscillations and multi-stability, see e.g., 69,78,79. Here, we restrict

[7] By smooth we refer to the smooth limit-cycle trajectory in the two-dimensional coordinate
plane as in case of the Wilson-Cowan model. By contrast, integrate-and-fire models present
an example for non-smooth neural oscillators, as the reset mechanism leads to discontinuities
along the trajectory.

[8] Other names for the activation function S are transfer function or gain function.
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the parameter values to the dynamical regime in which every population (E, I)

displays stable limit cycle oscillations.

To build a cortical network model, we connect N different populations of excita-

tory and inhibitory neurons (Ek, Ik), k = 1, . . . , N , via their excitatory parts41,42,67;

see Fig. 3.5 for illustration.

Ek Ej

Ik I j

cEE cEE

cII cII

Cjk

Ckj

cEI cIE cEI cIE

Pk Pj

Figure 3.5: Network of two coupled
Wilson-Cowan neural masses. Each
neural population k contains excitatory
and inhibitory units (Ek and Ik), which
are internally coupled with strengths
cij , i, j ∈ {E, I}. Moreover, the pop-
ulation receives an external input Pk.
Interaction between two neural masses
k, j occurs via their respective excita-
tory parts only, where Ckj denotes the
connectivity whether node k receives in-
put from node j.

Taken together the dynamics at node k becomes

Ėk = −Ek + S

[
aE

(
cEEEk − cIEIk −ΘE + Pk +

κ

N

N∑
j=1

CkjEj

)]
İk = −Ik + S [aI (cEIEk − cIIIk −ΘI)] .

(3.15)

Here, 0 ≤ κ� 1 denotes the overall coupling strength and C = {Ckj}k,j is an ad-

jacency matrix that indicates structural connectivity between two cortical regions

k and j. The population specific average input Pk of the respective excitatory

subpopulations may differ across the different cortical regions.

3.2.1 Single node dynamics

As for the Brusselator model, first we briefly discuss the dynamics of a single

unit using dynamics (3.15) without coupling, κ = 0. Following41,42, we fix several

parameters to physiologically motivated values

aE = 1.2, aI = 2, cEE = cEI = 10, cIE = 6, cII = 1, ΘE = 2.5, ΘI = 3.5 , (3.16)

unless stated otherwise. Furthermore, we consider Pk to represent external inputs.

Taking Pk as the bifurcation parameter results in the bifurcation diagram depicted

in Fig. 3.6[9].

[9] Despite the lack of symmetry, one can realize the resemblance with Hoppensteadt and Izhike-
vich’s bifurcation diagram Fig. 2.12, 78 with ΘE,I as key parameters, as well as with the deriva-
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Figure 3.6: Bifurcation diagram of the uncoupled Wilson-Cowan model (3.15) with
respect to the bifurcation parameter Pk. By increasing Pk, one can find four qualitatively
different dynamical regimes possible; see inlets – filled/empty dots: stable/unstable fixed
points, red: stable limit cycle. A saddle-node (SN) bifurcation at Pk ≈ −0.3937 initiates
bistability of two stable fixed-points. The stable fixed point emerging from the SN
bifurcation undergoes a supercritical Hopf bifurcation (HB) at Pk ≈ −0.3663, while the
saddle point coincides with the other stable fixed point and disappears in another SN
bifurcation at Pk ≈ −0.2914. Up to the SN bifurcation at Pk ≈ 1.3272 away from the
stable limit-cycle. The latter is the unique attractor of the dynamics. The collision of
the saddle point with the limit-cycle in a homoclinic bifurcation (HC) at Pk ≈ 1.3648
terminates the oscillatory regime. BT - Bogdanov-Takens point, CP - cusp point, SNL
- saddle-node loop bifurcation, SNIC - saddle node on invariant cycle bifurcation.

3.2.2 Coupled Wilson-Cowan neural masses

We are interested in the dynamics of a network of coupled Wilson-Cowan neural

masses of the form (3.15). The interplay between the excitatory and inhibitory

parts of a single unit is governed by the coupling topology sketched in Fig. 3.5.

By reason of appropriate rescaling, we couple distinct neural masses only via their

excitatory parts, where the adjacency matrix C = Ckj defines structural links

between the different neural masses. While the coupling term in (3.15) of inter-

connected neural masses appears natural when compared to the internal coupling

structure of a single neural mass, it deserves some discussion.

In Wilson and Cowan’s original work69, the sigmoid function was constructed

in such a way that in the absence of external influences the baseline activity state

(Ek, Ik) = (0, 0) is a fixed point. In our formulation, however, the sigmoid function

takes on a slightly different form and a zero fixed point solution is no longer

feasible. Hence, external perturbations through mutual interaction have a non-

trivial impact: If we assume that all neural masses reside in a stationary state

with mean (excitatory) firing rate E0
k > 0 in the absence of coupling, then as soon

as we increase the coupling strength, κ > 0, all neural masses will experience a

sudden perturbation of strength κ
∑

j CkjEj > 0 even if they are all identical.

Not the presumably small relative distance Ej − E0
j to the fixed point, but its

tion by Borisyuk and Kirillov79, who used P = Pk and c3 = cEI as key parameters.



Collective behavior and phase models 89

absolute value Ej drives the network dynamics. For this reason, we propose a

direct coupling in form of

κ

N

N∑
j=1

CkjEj 7−→ κ

N

N∑
j=1

Ckj
(
Ej − E0

j

)
, (3.17)

where E0
j is the unstable fixed point solution of neural mass (Ej, Ij) in the absence

of coupling. In general, E0
j = E0

j (Pj) depends on the heterogeneous input Pj =

PH + µ. Here, PH denotes the value of external input at the supercritical Hopf

bifurcation, cf. Fig. 3.6. When expanding E0
j (PH + µ) around PH , the coupling

term (3.17) reduces to

κ

N

N∑
j=1

Ckj
(
Ej − E0

j (PH)
)

+O(κµ) . (3.18)

Consequently, the coupling term in the subsequently transformed dynamics (3.20)

- (3.22) obtains the form

κ

N

N∑
j=1

Ckj
(
xj + E0

j

)
7−→ κ

N

N∑
j=1

Ckjxj . (3.19)

3.2.3 Identifying the Hopf normal form

The type of bifurcation leading to limit-cycle oscillations usually manifests in the

eigenspectrum of the linearized dynamics. In the case of a Hopf bifurcation, stable

oscillations emerge around an unstable fixed point. We therefore expect that for

an uncoupled (Ek, Ik)-node the Jacobian of the Wilson-Cowan dynamics (3.15)

evaluated at the unstable fixed point (E0
k , I

0
k) has a pair of complex conjugate

eigenvalues with negative real part, which corresponds to the distance µ := Pk−PH
to the Hopf bifurcation point. By changing the parameter Pk, both the position

(and size and shape) of the limit cycle as well as the position of the fixed point

change, that is, (E0
k , I

0
k) = (E0

k(µ), I0
k(µ)).

It is advantageous to express the dynamics in terms of the deviations xk =

Ek − E0
k = Ek − E0

k(µ) and yk = Ik − I0
k = Ik − I0

k(µ) around the unstable fixed

points. Effectively, we shift the fixed point undergoing the Hopf bifurcation to

the origin in phase and parameter space. The corresponding transformed system

exhibits stable limit cycle behavior with identical phase and amplitude properties
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as the original system. It reads

ẋk = −
(
xk + E0

k(µ)
)

+ S
[
ax

(
c1

(
xk + E0

k(µ)
)
− c2

(
yk + I0

k(µ)
)
−Θx + µ+

κ

N

N∑
j=1

Cjk
(
xj + E0

j (µ)
) )]

ẏk = −
(
yk + I0

k(µ)
)

+ S
[
ay
(
c3

(
xk + E0

k(µ)
)
− c4

(
yk + I0

k(µ)
)
−Θy

)]
,

(3.20)

where we changed the notation of the parameters:

(aE, aI , cEE, cIE, cEI , cII ,ΘE,ΘI) 7→ (ax, ay, c1, c2, c3, c4,Θx,Θy).

Since (E0
k(µ), I0

k(µ)) solves (3.20), one can simplify the transformed dynamics for

weak coupling 0 ≤ κ � 1 and sufficiently small µ � 1 by Taylor expanding the

sigmoid function S around the fixed point:

ẋk = −xk +
∞∑
n=1

1

n!
S(n) [χx,k] · anx

(
c1xk − c2yk +

κ

N

N∑
j=1

Cjk
(
xj + E0

j (µ)
) )n

ẏk = −yk +
∞∑
n=1

1

n!
S(n) [χy,k] · any (c3xk − c4yk)

n .

(3.21)

In (3.21) we abbreviated

χx,k = χx,k(µ) = ax
(
c1E

0
k(µ)− c2I

0
k(µ)−Θx + µ

)
χy,k = χy,k(µ) = ay

(
c3E

0
k(µ)− c4I

0
k(µ)−Θy

)
.

and S(n) refers to the n-th derivative of S. Unfortunately, the sigmoidal shape of

the original dynamics (3.15) does not allow for a simplified form of (E0
k(µ), I0

k(µ))

in µ, but one can find numerically a polynomial fit

E0
k(µ) = E0

k(PH) + µϑE +O2(µ)

I0
k(µ) = I0

k(PH) + µϑI +O2(µ) ,

where (E0
k(PH), I0

k(PH)) denotes the fixed point at the Hopf bifurcation. At this

point, which corresponds to (xk, yk) = 0, the Jacobian of the dynamics (3.15) or

(3.20) has purely complex eigenvalues ±iω0.
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To simplify the dynamics, we discard higher-order terms in µ and κ and write

ẋk = −xk +
∞∑
n=1

1

n!

(
S(n) [χx] + µS(n+1) [χx] ax (c1ϑE − c2ϑI + 1)

)
· anx (c1xk − c2yk)

n

+ κ
∞∑
m=0

1

m!
S(m+1) [χx] · am+1

x (c1xk − c2yk)
m ·

N∑
j=1

Cjk
N

(xj + Ej(0))

+O2(µ) +O2(κ) +O(κµ)

ẏk = −yk +
∞∑
n=1

1

n!

(
S(n) [χy] + µS(n+1) [χy] ay (c3ϑE − c4ϑI)

)
· any (c3xk − c4yk)

n

+O2(µ) ,

(3.22)

where χx = χx,k(µ = 0) and χy = χy,k(µ = 0).

Before continuing with simplifying the dynamics, we would like to add that in

the limit of weak coupling, only monomials of the form xaky
b
kx

c
j with c = 0 or c = 1

appear in the coupling term for the k-th neural mass. That is, the coupling effect

from another neural mass j is at most linear and of order O(xj). Still, the mixed

terms xaky
b
kx

c
j can lead to nonlinear coupling effects. One may ask: When do these

nonlinear coupling effects invoke non-negligible phase-amplitude interactions? Or,

put differently: What is the upper boundary for the weak coupling approximation?

To the best of our knowledge, as of yet there is no general answer to this ques-

tion. Stronger coupling, or strong perturbations, induce amplitude effects. But

at which critical value of κ these amplitude modulations fail to admit a unique

phase description of the single units, remains an open problem. Strikingly, the

critical value is exceeded by far when oscillatory states lose stability and eventu-

ally cease to exist. Such a scenario has been coined amplitude death, which has

attracted much attention in the literature. Analytic results about such coupling

induced effects are limited to very small network sizes of a few coupled oscillators,

see also Appendix 3.3.5.1 for an illustration of oscillation death and its somehow

connected counterpart, oscillation birth. For larger network sizes amplitude death

states elude analytical tractability, but their occurence in networks of coupled

oscillators is reported in numerical studies173–177.

Considering from now on only weak coupling, we next incorporate the coupling

form (3.18) in (3.22) and subsequently truncate the Taylor expansion after third

order. Introducing the abbreviations

Sxn =
1

n!
S(n) [χx,k] a

n
x and Syn =

1

n!
S(n) [χy,k] a

n
y ,
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we can write the dynamics (3.21) as

ẋk = f1(xk, yk) + κgk(X) +O2(κ) ,

ẏk = f2(xk, yk) ,
(3.23)

where for X = (x1, . . . ,xN) and xk = (xk, yk) the functions f = (f1, f2) and gk

are defined in the following way:

f1(x, y) = −x+ Sx1(c1x− c2y) + Sx2(c2
1x

2 − 2c1c2xy + c2
2y

2) + Sx3(c1x− c2y)3 ,

f2(x, y) = −y + Sy1(c3x− c4y) + Sy2(c2
3x

2 − 2c3c4xy + c2
4y

2) + Sy3(c3x− c4y)3 ,

gk(X) = Sx1xk + 2Sx2(c1xk − c2yk)xk + 3Sx3(c1xk − c2yk)
2xk .

(3.24)

The bar · k denotes the (weighted) average, xk = 1
N

∑N
j=1Cjkxj. More concisely, we

have for weak non-diffusive coupling between two Wilson-Cowan nodes x = (x, y)

and x̃ = (x̃, ỹ)

ẋ = Jx+ f (x;µ) + κ g (x, x̃) , (3.25)

with

f(x;µ)=N 1

x
2

xy

y2

+N 2


x3

x2y

xy2

y3

 and

g(x, x̃;µ)=

G1 +G2

(
x 0

y 0

)
+G3

x
2 0

xy 0

y2 0


(x̃

ỹ

)
.

In these expression we abbreviated the matrices

J =

(
−1 + Sx1c1 −Sx1c2

Sy1c3 −1− Sy1c4

)
N 1 =

(
Sx2c

2
1 −2Sx2c1c2 Sx2c

2
2

Sy2c
2
3 −2Sy2c3c4 Sy2c

2
4

)

N 2 =

(
Sx3c

3
1 −3Sx3c

2
1c2 3Sx3c1c

2
2 −Sx3c

3
2

Sy3c
3
3 −3Sy3c

2
3c4 3Sy3c3c

2
4 −Sy3c

3
4

)

G1 = Sx1

(
1 0

0 0

)
G2 = 2Sx2

(
c1 −c2

0 0

)
G3 = 3Sx3

(
c2

1 −2c1c2 c2
2

0 0 0

)
.

Similiar to the Brusselator model, also here the Jacobian J = J(µ) is not in

Jordan real form. Using the eigenvectors corresponding to J ’s eigenvalues λ(µ) =
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%(µ)± iω(µ) with ω(0) = ω0, we can transform

L = T−1JT =

(
% −ω
ω %

)
. (3.26)

Finally, we can rewrite (3.25) as

ẋ = Lx+ T−1f (Tx;µ) + κT−1g (Tx,T x̃) , (3.27)

The dynamics (3.27) exhibits qualitatively the same behavior as (3.25), but due

to the Jordan real form the circular symmetry of the limit cycle is now induced

on the full dynamics.

The connection between analytic phase reduction techniques While Ku-

ramoto’s reductive perturbation does not require this last transformation and can

be applied to (3.25), the dynamics in Jordan real form (3.27) are necessary for

Taken’s reduction via Lie brackets. For Poincaré’s reduction via nonlinear trans-

forms we have to reformulate the dynamics further, now in terms of a single

complex variable z ∈ C via the transformation

x = zu(µ) + z̄ū(µ) , (3.28)

with u(µ) being the right eigenvector of the Jacobian J(µ) corresponding to the

eigenvalue λ(µ). (3.28) establishes a linear relation between x and the real and

imaginary part of z = zR + izI . In particular, (zR, zI) are the coordinates of x in

the (real) eigenbasis of J(µ) composed by {2Re (u(µ)) ,−2Im (u(µ))}, that is, we

recover the same transformation of J(µ) into its canonical Jordan real form as in

(3.26).

3.2.4 Haken’s reduction via averaging

In contrast to the Brusselator model discussed in Section 3.1, our version of the

Wilson-Cowan dynamics (3.27) in Jordan real form allows a meaningful reduction

along Haken’s averaging approximation even without a transformation into Hopf

normal form. Hence we discuss it first. We can insert the ansatz xk = (xk, yk) =

(Rk cos(Ωt+φk), Rk sin(Ωt+φk)) into (3.27), where Rk, φk are amplitude and phase

(deviations) of the oscillations at node k, which are slowly varying with respect to

the (mean) frequency Ω defined via the eigenvalues at the Hopf point, Ω = ω(0).

Near the onset of oscillations through a supercritical Hopf bifurcation, Rk � 1 is

small and, thus, the right-hand side of (3.27) is at least of order O(Rk). Given the

slower time scales of Rk and φk, one can average over one cycle T = 2π/Ω. In line
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with67, this direct averaging of the dynamics (3.27) yields the phase model

φ̇k = ωk +
N∑
j=1

Dkj sin(φj − φk + ∆kj) (3.29)

with

Dkj =
κ

2N
Sx1ΛkCkj

Rj

Rk

and ∆kj = arctan(ρk)− Ωτkj

where Λ2
k = 1 + ρ2

k and ρk = $−1
k (Sx1c1 + Sy1c4). Note that we here included time

delays τkj between nodes xk and xj, within the coupling function gx, that is, gx =

gx(xk,xj) = gx(xk(t),xj(t− τkj)), as discussed in more detail in Appendix 3.3.4.2.

Note also that since Sx1, Sy1, c1, c4, $k ≥ 0, we have ρk ≥ 0. In the absence of

delay, that is, for τ = (τk1, . . . , τkN) and τkj = τ = 0, we have ∆kj ∈ (0, π/2). On

the other hand with delay we have ∆kj ∈ (−π/2, π/2) because Ωτkj ∈ (0, π/2). In

either case, (3.29) resembles the Kuramoto-Sakaguchi model with phase lag |∆kj| ≤
π/2, so that a transition to full synchronization occurs if the coupling strength κ

exceeds a critical value κc = κc(δ), where δ denotes the width of distribution of

the natural frequency terms ωk. The natural frequency ωk can be determined as

ωk = −Ω +$k (3.30)

at least to first order in Rk; here we used $2
k = detJ − (tr J)2/4 = Sx1Sy1c2c3 −

(Sx1c1 + Sy1c4)2/4. $k is the imaginary part of the right eigenvalue of J . Being

near the Hopf bifurcation, we can safely assume that $k ≈ Ω and ωk → 0. If the

Wilson-Cowan dynamics is fully symmetric, that is, in particular c1 = −c4, then

ρk → 0, and we retrieve the actual Kuramoto model in the absence of any delay.

The here-presented averaging of the Wilson-Cowan network dynamics results

in a phase dynamics (3.29), whose phase interaction function only consists of first

harmonics. The absence of higher harmonics hampers, e.g., clustering effects. This

is in remarkable contrast to the other phase models that have been derived from

dynamics in Hopf normal form. The main reason is that the Hopf normal form

reduction induces circular symmetry also on the coupling function gx, that is, the

coupling terms are transformed such that only resonant monomials survive. On

the other hand, averaging considers the coupling terms as they are so that all

nonlinear coupling terms eventually average out at zero because the coupling in

(3.27) is only linear in x̃. Irrespective of this remark, however, the direct averaging

along Haken’s method stands out for its simplicity and its potential to be applied

in a straightforward way. Below, we will compare it against the other two analytic

reduction techniques that build on the by now well-known reduction into Hopf
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normal form prior to extracting the phase dynamics.

3.2.5 Comparing analytic and numerical phase reductions

The ultimate goal of any of the phase reduction techniques introduced above is to

simplify the network dynamics of (weakly) coupled Wilson-Cowan neural masses

in terms of a corresponding phase model (2.16),

θ̇k = ω +
κ

N

N∑
j=1

CkjH (θk − θj) .

For simplicity, we consider that all nodes are identical, in particular, they have the

same natural frequency ωk = ω, and that they are globally, or all-to-all, coupled

with adjacency matrix Ckj = 1 for all j 6= k. Note that the factor 1/N is for

convenience and ensures that the phase model is well-behaved in the limit N →
∞. Recall that the phase interaction function H(ψ) admits a representation as a

Fourier series (2.17),

H(ψ) =
∑
n≥0

an cos(nψ) + bn sin(nψ)

= a0 + a1 cos(ψ) + b1 sin(ψ) + a2 cos(2ψ) + b2 sin(2ψ) + . . . .

We illustrate the reduction to a phase model first close to the Hopf bifurcation,

that is, for small distances µ = Pk − PH . After that, we will treat the case of

larger distances, i.e. further away from the Hopf point. In both cases, we will

compare the results of the analytic techniques Kuramoto’s reductive perturbation,

Poincaré’s reduction via nonlinear transforms and Haken’s averaging – the latter

here denoted as direct averaging. We also include the results for numerical phase

reduction techniques, where we complement the findings of the adjoint method

using XPPAUT with those of the direct method. Both reduction techniques show

consistent results, so that we will refer to them as one, here numerical/adjoint.

The subsequent section will be devoted to direct numerical assessment without

exploiting the Hopf normal form.

Near the Hopf point Applying the different reduction techniques in close vicinity

of the Hopf bifurcation point, we find resulting Fourier coefficients of the phase

interaction function H as summarized in Table 3.5. For typical parameter choices

very near the Hopf bifurcation, the four different reduction techniques correctly

recover the natural frequencies as well as the dominant first harmonics with a

non-negligible and positive sinusoidal component.

http://www.math.pitt.edu/~bard/xpp/xpp.html
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Table 3.5: Phase models derived with different reduction techniques very close to the
Hopf bifurcation (µ = 0.0013). The oscillators’ natural frequency is ω, and an, bn are
the amplitudes of the Fourier components of the phase interaction function H. Symbols
+/− denote the sign of each amplitude. Their quantity corresponds to their influence
on the dynamics, with +++ representing dominant contributions of order O(1), while
0+/− corresponds to amplitudes ≤ 10−3. Exact numerical values can be found in the
Appendix170.

Approach ω a1 b1 a2 b2

Reductive perturbation 0.701 −−− + + + 0− 0+

Nonlinear transform 0.701 −−− + + + 0− 0+

Direct averaging 0.701 −−− ++ 0 0

Numerical/adjoint 0.701 −− + + + 0− 0+

Using the numerical and normal form reductions, the amplitudes of the sec-

ond harmonics turn out to be smaller of three orders of magnitude than the first

harmonics. Therefore, we here consider the different phase models qualitatively

identical. Moreover, the closer we choose the bifurcation parameter near the Hopf

point, the more “accurate” becomes the numerical method: the phase interaction

function resembles a pure sine curve, whereas the other analytic methods retain a

dominant cosine component[10], cf. the Appendix170.

In a next step, we vary the parameter Pk and slightly increase the distance µ

from the Hopf bifurcation point. Fig. 3.7 illustrates how sensitive a phase reduc-

tion to minute parameter changes is, note the smallness of µ. The slope of the

phase interaction function at the origin changes signs already close to the Hopf bi-

furcation point, which results in a different dynamics of the reduced phase model.

It is thus crucial for a meaningful phase reduction to investigate the underlying

model with respect to its bifurcation boundaries and to the corresponding govern-

ing dynamical regime. Only by this one can avoid false conclusions when linking

the phase dynamics to the underlying model.

Away from the Hopf point There arises another highly intricate issue when

choosing the parameter Pk such that the dynamics is further away from the Hopf

bifurcation point: the different reduction techniques start to diverge from each

other even more strongly, which is shown in Table 3.6.

[10] The Hopf normal forms obtained with the normal form reductions might be further trans-
formed into the topological Hopf normal form, see122. In this case, the phase interaction
function H becomes purely sinusoidal. However, this additionally requires a rescaling of time,
after which a direct comparison with the other methods appears more difficult. We refer to122

for more details of this laborious step.
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Figure 3.7: Phase interaction function: (a) Trajectory of the Wilson-Cowan dynamics
in phase space, (b,c) numerically determined phase sensitivity function as solutions to
the adjoint problem, (d) coupling term evaluated at the limit cycle, and (e) phase in-
teraction function for different input value parameters Pk ∈ (−0.366,−0.36). As shown
in (a), the limit cycle solution of the underlying (and uncoupled) Wilson-Cowan model
changes its shape. Its amplitude grows monotonically. The shape of the phase sensitivity
function Z deviates from the initial shape, and higher harmonics seem to occur; see pan-
els (b) and (c) – we refer to the two-component phase sensitivity function Z = (ZE , ZI)
as adjoints, underlying the here-applied numerical reduction technique. The phase inter-
action function H depends on both the phase sensitivity function and the coupling term
and absorbs their variation (e). At a particular parameter value Pk, the derivative of H
at the origin, H ′(0), changes signs. While a network of identical and globally coupled
units will fully synchronize if H ′(0) > 0, this state loses stability if H ′(0) becomes neg-
ative. Hence, a small parameter change at about Pk = −0.364 will cause qualitatively
different network behavior – using XPPAUT, the change from H ′(0) > 0 to H ′(0) < 0
already appears at Pk = −0.3658 and not at Pk = −0.364, which we can confirm using
the adjoint solver implemented in Matlab.

Table 3.6: Phase models derived with different reduction techniques away from the
Hopf bifurcation, µ = 0.1663. The notation is the same as in Table 3.5.

Approach ω a1 b1 a2 b2

Reductive perturbation 0.73 −−− + + + −− ++

Nonlinear transform 1.02 −− ++ − +

Direct averaging 1.33 −− ++ 0 0

Numerical/adjoint 0.94 −− −− − −

Remarkably, only the numerical method captures the change of slope of the

phase interaction function H, whose derivative at ψ = 0 is dominated by b1 as

has been illustrated in Fig. 3.7. In line with the findings for the Brusselator, Sec-

http://www.math.pitt.edu/~bard/xpp/xpp.html
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tion 3.1, we presume that the numerical method provides the best approximation

of the phase dynamics. Then, only Poincaré’s reduction via nonlinear transforms

recovers proper amplitudes of the first and second harmonics, at least in terms of

orders of magnitude. While Kuramoto’s reductive perturbation overestimates the

second harmonics, by construction Haken’s averaging does not contain any higher

harmonics; see the Appendix170 for exact numerical values. Strong first harmonics

of the phase interaction function H amplify the coupling and thus result in faster

(de-)synchronization, depending on the sign of the sinusoidal component. Second

and higher harmonics, on the other hand, can play a crucial role for clustering.

An over- or underestimation of the amplitudes of higher harmonics can hence lead

to erroneous multiple- or one-cluster effects, respectively.

3.2.6 Numerical methods identify collective dynamics

The farther one moves away from the particular bifurcation boundary, the more the

differently reduced phase models diverge. While the accuracy of analytic reduc-

tion techniques scales with distance to the bifurcation point, numerical reduction

techniques may not suffer from this shortcoming and can capture the actual dy-

namics of the underlying high-dimensional oscillator networks to great accuracy.

Hlinka and Coombes investigated in this way a network of identical Wilson-Cowan

units with respect to its functional connectivity61. They showed that the predic-

tions based on the derivative of the numerically reduced phase interaction function

agreed almost perfectly with the synchronization properties of the original network,

cf. their Figures 6 and 7. However, they reported small parameter regions in which

their predictions did not match the actual dynamics. To recapitulate their results,

we analyzed the Wilson-Cowan model with a different set of parameters as used

in61, for more details see the Appendix170. In particular, we set ΘE + Pk 7→ Pk

and ΘI 7→ Qk and consider the inputs Pk and Qk to the excitatory and inhibitory

parts of neural mass k as bifurcation parameters. In Fig. 3.8, the colored region

represents parameter values (Pk, Qk) at which the Wilson-Cowan model exhibits

self-sustained stable limit-cycle oscillations. This region falls perfectly within the

analytically determined Hopf bifurcation boundaries, see e.g., 78 for a more detailed

bifurcation analysis.

According to the reduced phase model, the network will synchronize close to

the Hopf bifurcation boundaries.[11] Hlinka and Coombes61 assessed the synchro-

nization properties of the original Wilson-Cowan model in terms of mean phase

coherence and correlation. With this they confirmed that the network dynamics

[11] This can be anticipated from the topological normal form of the supercritical Hopf bifurcation:
The corresponding phase sensitivity function H is purely sinusoidal with derivative H ′(0) > 0.
Thus, for positive coupling the network will synchronize.
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Figure 3.8: Oscillatory regime of the Wilson-Cowan neural mass model using the same
parameters as in61. The color coding indicates the derivative of the phase interaction
function H at ψ = 0 determining the stability of the fully synchronized solution: if
H ′(0) > 0 the fully synchronized solution is stable, and unstable otherwise. In view of
the results in Section 3.2.5, we used the numerical/adjoint reduction method to generate
this figure.

followed the predictions about global synchronization based on H ′(0). To show

that higher harmonics of the phase interaction function H capture cases in which

the fully synchronized solution is no longer stable, we zoomed in into the corre-

sponding parameter region; see the inset in Fig. 3.8. The Hopf bifurcation occurs at

the lower boundary between oscillatory and stationary behavior, where a positive

value of H ′(0) predicts synchronized oscillations, irrespective of the other (even)

Fourier components. Moving upwards, i.e. increasing the parameter Qk, leads to

a change of signs, H ′(0) becomes negative and the fully synchronized state is no

longer stable.

Considering only first and second harmonics, Kori and co-workers summarized

possible network states in95 where they stated that for positive coupling strength

(i) the fully synchronized solution (one-cluster state) is stable if b1 > 0 and b1 �
|b2|, (ii) the incoherent solution (anti-cluster state) is stable if b1 < 0 and b2 < 0

with |b1| � |b2|, and (iii) the (balanced) two-cluster state is stable if b1 < 0

and b2 > 0; see also Section 2.1.5.2. Analyzing the numerically reduced phase

interaction function with respect to the higher harmonics, we find that all of the

three possible states above should be realizable. When fixing Pk = −3 and using

the direct numerical method, we find at Qk = −9.3 that b1 > 0, at Qk = −8.9

that b1 < 0 and b2 < 0, and at Qk = −8.7 that b1 < 0 and b2 > 0; for the exact

numerical values we refer to the Appendix170.

To verify our predictions, we simulated a network of N = 30 Wilson-Cowan

models for these parameter values and with global coupling strength κ = 0.15.

The simulations displayed the predicted fully synchronized solution, an anti-cluster
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state, i.e. incoherence, and a stable two-cluster state, respectively; see Fig. 3.9.

Interestingly, the other phase reduction techniques did not only fail to predict the

existence of two-cluster states, but they also missed the change of stability of the

fully synchronized solution; cf. Table 3.6.

Figure 3.9: Non-trivial network dynamics of N = 30 coupled Wilson-Cowan neural
masses. The different network states (a) global synchronization, (b) incoherence, and
(c) a balanced two-cluster state were predicted by the reduced phase model using the
numerical/adjoint method. Displayed are final (Tend = 1000 seconds) conditions (‘o’)
on the uncoupled limit cycle (left column) and the extracted phases (right) for the last
15 seconds. We fixed the coupling strength at κ = 0.15 and the simulations started
from uniformly distributed initial conditions along the uncoupled limit cycle. Parameter
values of (Pk, Qk) are (a) (−3,−9.3), (b) (−3,−8.9) and (c) (−3,−8.7).

3.2.7 Summary & remarks

All the different analytic normal form reductions have the same background,

cf. Section 2.2.1. Since all of them yield the same phase dynamics when start-

ing from the same Hopf normal form one may expect a perfect agreement between

the different reduction techniques. This is, however, only true when considering

a normal form reduction accounting for the full dependence on the bifurcation

parameter µ. While Poincaré’s reduction via nonlinear transforms respects the

dependence on µ throughout every reduction step, the other two methods neglect

this accuracy by approximating nonlinear terms with the corresponding expres-

sions evaluated at µ = 0.

There are striking differences between the reduced phase models already at

reasonably small distances µ � 1 from the Hopf bifurcation point. One may

wonder whether reduced phase models indeed describe the phase dynamics of

oscillator networks. Needless to say that not all techniques are appropriate to

reduce the correct phase dynamics. Analytic techniques have shortcomings unless
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parameters are considered in a direct vicinity of the Hopf bifurcation. On the other

hand numerical reduction techniques bear the potential to accurately describe the

respective phase dynamics so that predictions about the actual network dynamics

can be drawn from the reduced phase model.

3.3 Discussion

The reduction of a network of interacting oscillatory systems into a network of cou-

pled phase oscillators aims at simplifying the analysis of the collective, macroscopic

network dynamics. General oscillatory networks usually have a high-dimensional,

nonlinear dynamics. As explained, by looking at the phase dynamics one drasti-

cally reduces this dimensionality while keeping the option to infer (the stability

of) collective network states. We will briefly discuss low-dimensional collective

behavior and particular network states of coupled oscillators in Sections 3.3.1 and

3.3.2. Usefulness and strength of a model may be judged by its predictive power.

Quantifying this can be a challenge. Models are built on assumptions, which re-

strict their applicability and range of use. Beyond this range, however, a model

can lose its validity and the dynamics can significantly diverge from model pre-

dictions. All the listed phase reductions techniques dwell on several assumptions.

A first assumptions requires a certain degree of homogeneity among the dynamics

of the network’s nodes, see Sections 3.3.3. Then, we considered only phase reduc-

tions for deterministic systems and without delay. In principle, reduction methods

can be generalized to cope with noise and delay to some extent, see Section 3.3.4.

Another crucial assumptions is that most, if not all, of the phase reductions rely

on the theory of weakly coupled oscillators78: Every node of the original network

has to exhibit stable limit cycle oscillations without any coupling to other nodes.

And, the coupling strength has to be sufficiently weak so that amplitude effects can

largely be neglected, that is, each node’s dynamics remains close to the respective

unperturbed limit cycle solution while (and despite) interacting with other nodes.

How the form and structure of coupling between nodes can influence the collective

behavior will be addressed in Section 3.3.5. The collective dynamics do not only

depend on the coupling between nodes, but also on the oscillatory nature of the

nodal dynamics. Reducing a meaningful phase model can thus become intricate for

nonlinear, or even non-smooth oscillators (Section 3.3.6). More recently, several

phase reduction techniques have been refined and extended so that the assumptions

inherent to the theory of weakly coupled oscillators might be loosened, at least to

a certain degree. This also brings up the topic of phase-amplitude reductions, see

Section 3.3.7. Although we only touch on this important subject, needless to say

that also here a compromise between analytic and numerical reduction methods
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has to be found, as we conclude in Section 3.3.8.

3.3.1 Low-dimensional description of network behavior

A major advantage of coupled phase oscillator models is that they typically give

rise to only a few macroscopic variables, which in addition often allow for an in-

tuitive interpretation178, as, e.g., the Kuramoto order parameter. Following the

Watanabe-Strogatz theory80, it is possible to derive the exact time evolution of

three collective variables for a network of at least three identical and globally cou-

pled phase oscillators. In a similar spirit, one can describe the time-asymptotic

dynamics of a complex order parameter of a network (of infinitely many phase

oscillators on a low-dimensional) on the so-called Ott-Antonsen manifold81,82. In

both cases, the main restriction is that the phase interaction function must only

contain first harmonics, but no higher harmonics. Both approaches are indeed

strongly related178. Given its simplicity, the Ott-Antonsen theory is more pop-

ular and widely applied. The dimensionality of the resulting order parameter

dynamics is the lowest possible to create a proper picture of the network behav-

ior179. However, to apply the Ott-Antonsen theory comes at a price. First, the

number of oscillators has to tend to the continuum limit. Second, the natural

frequency terms have to follow an analytic distribution function with finite width,

such as Gaussian or Lorentzian distributions. That is, the oscillators must not

be identical. Although there are approaches to identify correction terms to the

Ott-Antonsen manifold in case of finite-sized networks, at least for the subcritical

(asynchronous) regime180–184, our own preliminary simulations show clear diver-

gences from the manifold when decreasing the network size below N = 200 coupled

nodes. The assumption on the frequency terms, however, can somehow be loos-

ened in the limit of “nearly identical” oscillators, and when initial conditions are

selected properly179. For particular connectivity structures, this opens the possi-

bility for chimera states to emerge; see the recent and extensive review185 for more

details.

3.3.2 Cluster states

Closely linked to chimera states is the emergence of stable cluster states. While

network synchronization of coupled oscillators is commonly referred to as single-

cluster states, i.e. the stationary probability distribution function of the oscillators’

properties is unimodal, in general also (multi-)cluster states, or states of gener-

alized synchrony, can exist and become attractors of the macroscopic dynamics,

see for an overview e.g., 186. Two main ingredients for cluster states are particular

connectivity structures and/or higher harmonics in the phase interaction func-
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tion. As to the latter see Section 2.1.5.2 and we also refer to the comprehensive

Fig. 14 in89. Clustering in neural networks irrespective of a particular underlying

clustered connectivity has been investigated in different neural population models,

ranging from all-to-all coupled Hodgkin-Huxley-like microscopic dynamics187 to

more macroscopic, biological networks188. Another important ingredient to gen-

erate cluster states appears to be delay-coupling in neural networks189 or neural

masses44. As such it is not surprising that the same clustering effect through de-

lay has also been found for networks of pulse-coupled oscillators190–192. For the

Wilson-Cowan model we will discuss the (clustering) effects of time delays in more

detail in Section 3.3.4.2. Clustering has been rigorously manifested and numer-

ically explored in globally coupled phase oscillator models, see e.g., 89,93,94,193–195,

where often symmetry aspects determine stability of cluster states. The theory of

weakly coupled oscillators allows for translating appropriate conditions for cluster

states into the framework of nonlinearly coupled Stuart-Landau oscillators141.

A thorough analysis of clustering behavior in globally coupled heterogeneous

Stuart-Landau oscillators can be found in196. Stuart-Landau oscillators have the

advantage that the dynamics is generic for coupled dynamical systems near a Hopf

bifurcation, such that the actual dimension of the dynamics can drastically be re-

duced and theoretical results can readily be applied in order to predict cluster

states95: it is due to higher harmonics in the phase interaction function H that

clustering behavior occurs. It is noteworthy that cluster states can naturally ap-

pear and are attracting if the coupling is either non-pairwise, i.e. the interaction

is between more than two oscillators141, and/or is nonlinear, which automatically

yields higher harmonics in the phase interaction function95,141. Interestingly, clus-

ter states can become macroscopic attractors already for linear coupling196. How-

ever, a reasonably large shift between frequency parameters is required here, so

that the network of Stuart-Landau oscillators must be sufficiently heterogeneous.

That, in turn, prohibits an immediate application of the theory of weakly coupled

oscillators, where the frequency mismatch of the oscillators has to tend to zero.

3.3.3 Identical versus heterogeneous oscillators

As our main focus lies on an accurate phase description of networks of interacting

oscillators, it appears legitimate to oversimplifyingly assume that the coupled non-

linear oscillators are (almost) identical. This simplification has two advantages:

First, it facilitates the derivation of the phase model insofar as it is sufficient to

consider the phase dynamics of only two coupled neural oscillators. Second, it

allows to predict the network behavior of the reduced phase model based solely

on the phase interaction function. The assumption of identical nodes is, however,
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inaccurate. This is in particular the case when modeling realistic networks of bio-

physiological, chemical, or neuronal oscillators. Given for instance the immense

number of neurons in the human brain together with the fact that no two neurons

are identical, modeling two neural oscillators as nearly identical is far from realistic.

Nonetheless, different brain regions may share similar properties concerning their

collective dynamics, so that a network of (more or less) identical neural masses

still appears an acceptable candidate for a brain network model.

Approaches to determine the stability of synchronized network or cluster states

along the master stability function formalism or via symmetry arguments rely on

coupled identical oscillators, cf. Section 2.1.5. To some extent, though, some ex-

tensions of the methods above have been proposed in order to deal with (small)

heterogeneity among oscillators, see, e.g., an extended master stability function

approach for nearly identical systems197–199. It is also true that the theory on

phase reductions, as presented in Sections 2.2 – 2.3, holds for heterogeneous os-

cillators as long as their frequencies are ε-close such that small heterogeneities

can be subsumed under the coupling terms, see e.g., 89. Practical application, nev-

ertheless, becomes more cumbersome, in particular for the numerical reduction

methods, when the phase dynamics has to be retrieved for each oscillator individ-

ually. Still, another option could be that the heterogeneity only affects the natural

frequency terms, but leaves the phase interaction terms identical. This scenario,

although again it is hardly plausible, allows to treat the resulting phase oscillator

network in terms of heterogeneous Kuramoto-like coupled oscillators. Under a cer-

tain form of heterogeneity, that is, given some analytic distribution of the natural

frequencies, and in the limit of infinitely many oscillators, the theories mentioned

in Section 3.3.1 allow to describe the macroscopic behavior of the network on a

low-dimensional manifold.

3.3.4 Extended analytic phase reduction techniques

Throughout the outline of the different phase reduction techniques, we skipped

an intricate feature of realistic oscillatory networks: the self-sustained limit cycle

dynamics can also be subject to noisy and time-dependent perturbations, or to

time-delayed coupling with other oscillators. How will such inputs change the

oscillators dynamics, their phase description and eventually the network behavior?

3.3.4.1 Stochastic and time-varying systems

Exemplarily, we reconsider the Wilson-Cowan neural mass model (3.15) with

population-specific input Pk that combines both a stochastic term and a deter-
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ministic time-varying term,

Pk = ξk(t) + P0 ((1 + Ak sin(ωp,kt+ φ0,k)) . (3.31)

The deterministic term oscillates sinusoidally with amplitude Ak, frequency ωp,k

and phase shift φ0,k. ξk(t) is an arbitrary noise term. When restricting it to white

Gaussian noise, the noise characteristics are given by 〈ξk(t)〉 = 0 and 〈ξk(t)ξl(s)〉 =

2D2δ(k − l)δ(t − s), where 〈·〉 denotes averaging over the realizations of ξk, and

D ≥ 0 scales the noise intensity. In either case, noise and time-variability can

lead to more complex dynamics and may complicate the phase reduction to great

extent.

Periodic forcing without noise, i.e. Ak > 0 and D = 0, can, in general, already

lead to quasi-periodic oscillations of the single neural masses. Quasi-periodic os-

cillations can also be caused by the time-delay structure, see Section 3.3.4.2, or

by unidirectional coupling200. Phase reduction techniques for weakly connected

quasi-periodic Wilson-Cowan oscillators have been proposed by Izhikevich201, and

further extended by Demirt and co-workers202. The application to networks of

weakly coupled Wilson-Cowan neural masses where time-periodic input is induc-

ing quasi-periodic oscillations at the single node level, however, is still missing and

requires further investigation. Likewise, non-autonomous input functions may gen-

erate chaotic oscillations. While a phase can be defined for chaotic oscillators203,

to the best of our knowledge no phase reduction approach has been attempted for

weakly coupled chaotic oscillators.

Recently, several studies have extended the deterministic Wilson-Cowan model

by a noisy component204–209. The origin of an additional noise term can be moti-

vated in various ways: intrinsic fluctuations in neural activity, microscopic random-

ness in neural connectivity, or stochastic perturbations due to finite-size effects;

see210,211 and the references therein. Moreover, there is still an ongoing discus-

sion about stochastic descriptions of meso-scale neural populations, see, e.g., the

recently proposed model by Schwalger and co-workers212. We here aim at revis-

ing briefly how one can rigorously describe a network model of stochastic Wilson-

Cowan neural masses in terms of their phase dynamics. To do so, we consider noisy

external input Pk(t) = P0,k + εξk(t) to the external part of the kth Wilson-Cowan

population and omit further state-dependencies, i.e. the dynamics of interest read
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Ėk = −Ek + S

[
aE

(
cEEEk − cIEIk −ΘE + P0,k +

κ

N

N∑
l=1

CklEl

)
+ εξk(t)

]
(3.32a)

İk = −Ik + S [aI (cEIEk − cIIIk −ΘI)] . (3.32b)

We assume that the noise is weak, i.e. ε� 1 is sufficiently small, and, as before,

we consider the parameter regime exhibiting self-sustained oscillations when κ =

0 = ε. The perturbations by noise will affect the limit cycle oscillations in the

same manner as is done by the other weakly coupled Wilson-Cowan populations.

In particular, the effects of noisy perturbations crucially depend on the phase

sensitivity function Z of the Wilson-Cowan neural mass, and a reduced dynamics

is favorable. Therefore, it appears legitimate to linearize about the noise term

such that we arrive at the dynamics (3.32a) of the excitatory part now given by

Ėk = −Ek + S

[
aE

(
cEEEk − cIEIk −ΘE + P0,k +

κ

N

N∑
l=1

CklEl(t)

)]
+ εσkξk(t) +O(κε, ε2) ,

σk = σk(Ek, Ik) = S [aE (cEEEk − cIEIk −ΘE + P0,k)] +O(κ) .

(3.33)

Note that the multiplicative character of the noise becomes evident as ξk(t) ap-

pears in the sigmoidal transfer function S
[
·
]

in (3.32). Again, the aim is to deduce

the phase dynamics of the network of coupled Wilson-Cowan neural masses with

noisy input. In general, noise can lead to strongly irregular oscillations, such that

an extended phase description for stochastic oscillators is needed as has been sug-

gested alternatively by Schwabedal and Pikovsky213 and Thomas and Lindner214.

In the case of weak noise these strong irregularities may not arise, and we can

rely on phase reduction methods for stochastic limit-cycle oscillators with both

additive and multiplicative noise215–218. The main focus in these references lies on

the synchronization of a network by common (white and colored) noise, but not

necessarily on a phase description where coupling and noise terms affect the oscil-

lators’ phase dynamics. Nonetheless, the work provides important insight into the

subtleties of phase reduction that arise due to (distinct) characteristic time scales

of both the noise and the deterministic dynamics87.

To be more precise, let τξ and τρ denote the characteristic correlation time of

the noise and the relaxation time of the amplitude of the limit cycle, respectively.

For simplicity, we assume τρ to be independent of the phase θ. In the case of white

noise, we can consider the limit τξ → 0. Moreover, when the dynamics converges
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towards the limit cycle solution instantaneously, we can assume the “phase limit”

τρ → 0. In general, however, both τξ and τρ are finite. If we ignore the coupling

for a moment, then the general form of the phase dynamics associated to (3.32)

reads217

θ̇k =

[
ωk +

ε2

1 + (τξ/τρ)
Y (θk)

]
+ εZ(θk)ξk(t) (3.34)

in the Stratonovich interpretation219. Note that in (3.34) the natural frequency

ωk of the oscillator may vary when driven by white noise. Although this variation

is of order O(ε2), it is of the same intensity as effects due to additional forcing, or

coupling, and might therefore not be neglected87. In order to derive the the actual

expressions of Z(θk) = Zk(θk) and Y (θk) = Yk(θk), we first have to define the phase

and amplitude coordinates θk,ρk similarly as in Section 2.3.1.2. These definitions

hold in a vicinity U of the limit cycle solution
(
Ec
k(t), I

c
k(t)
)

=
(
Ec
k(θk), I

c
k(θk)

)
of

the unperturbed system whose period is Tk = 2π/ωk. Then, we find

Zk(θk) = Zk ·
(
σk(Ek, Ik)

0

)∣∣∣(
Ek,Ik

)
=
(
Eck,I

c
k

) ,
where Zk is the phase sensitivity function of the (deterministic and uncoupled)

neural mass k. The expression Yk(θk) is more complicated and crucially depends

on the amplitude dynamics ρk evaluated on the limit cycle. For the general forms

of Zk(θk) and Yk(θk), we refer to216,217. Note, however, that in the limit of weak

coupling, 0 < κ� 1, we arrive at

θ̇k = ωk +
ε2

1 + (τξ/τρ)
Yk(θk) +

κ

N

N∑
j=1

Hkj(θj − θk) + εZk(θk)ξk(t) (3.35)

with Hkj the usual phase interaction function introduced earlier; for the underlying

theory see38,168,220–223. For the practical application of an analytic reduction it

is again advantageous to first cast the dynamics (3.32) into Hopf normal form,

determine the phase sensitivity function Z and the amplitude dynamics ρk, and

subsequently apply a phase reduction resulting into (3.35). We would like to

remark that when the amplitude dynamics towards the limit cycle is much faster

than the correlation time τξ of the noise, or when the limit cycle is sufficiently

robust against amplitude perturbations, then the ratio τξ/τρ can be assumed to

tend to infinity and the term with Yk(θ) will vanish. In this case, the phase

reduction to θ̇k = ωk + εZk(θk)ξk(t) is of the same (non-stochastic) nature as the

‘standard’ phase reduction method217.

In the end, the phase reduction of the stochastic Wilson-Cowan neural mass

network is based on strong assumptions on the weakness of perturbations through

coupling and noise. Although there are recent extensions to strongly perturbed
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limit cycle oscillators224, the method dwells on the separation of a slow but large-

amplitude component and weak fluctuations of the perturbation. In this sense, the

approach seems rather adequate to model weakly coupled oscillators with chang-

ing background activity225. Although not explicitly mentioned, the incorporation

of noise appears to be straightforward. External input functions, both determin-

istic and stochastic, can lead to complex collective behavior, such as the onset

of collective oscillations167 or stochastic, i.e. noise-induced, synchronization215,218.

However, a comprehensive theory for the reduction of dimensionality in terms of

phase (and amplitude) dynamics is still being sought for and remains in the focus

of current research.

3.3.4.2 Systems with delay

Another important feature of a realistic network topology is the incorporation

of a transmission rate, that is, the time needed for the signal of oscillator k to

perturb or affect oscillator j. Up to now, we only considered infinitely fast, or

instantaneous, interactions between oscillators. However, in general one ought to

take also the (transient) dynamics of signal propagation into account, which is

mainly, and sufficiently well, approximated by an additional delay structure.

In the following, we briefly revisit the phase reduction theory for delay-coupled

systems. As in the previous sub-section, we focus on the Wilson-Cowan mass

model. Delays can occur both within a single neural mass and between distinct

neural masses. Usually, the (internal) interactions are assumed to be considerably

fast compared to the typical transmission speed across cortical regions. Therefore,

delays within each neural mass can be neglected so that only delays in the cou-

pling between different neural masses generate a global (cortical) delay structure.

Such delay structure can be neurobiologically motivated when, e.g., inferred from

diffusion spectrum imagining. Once axonal pathways have been identified, the

Euclidean distances between connected brain regions and physiologically realistic

conduction velocities then provide an estimate on the delays τkl between nodes

k, l. The network dynamics with time-delay read

Ėk = −Ek + S

[
aE

(
cEEEk − cIEIk −ΘE + Pk +

κ

N

N∑
l=1

CklEl(t− τkl)

)]
(3.36a)

İk = −Ik + S [aI (cEIEk − cIIIk −ΘI)] . (3.36b)

Assuming that the time delays τkl are of the same order of magnitude as the

period Tk of oscillation of each of the neural masses, they will manifest themselves

as model-dependent phase shifts ∆kl = (2π/Tk)τkl in the coupling function of the
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reduced phase dynamics:

θ̇k = ωk + κ
N∑
l=1

H(θl − θk −∆kl) ; (3.37)

for the derivation see e.g., 42,44,48. Intuitively, this phase shift can be explained

within the theory of weakly coupled oscillators: Given that κ � 1 is small, the

time-delayed coupling term corresponds to a phase-shifted point on the (uncou-

pled) limit cycle. When expanding the phase interaction function H in Fourier

space, the phase shifts ∆kl will effectively shape the amplitudes of the odd and

even harmonics, i.e. of the sine and cosine components, respectively, which may

affect the collective dynamics of the network. In fact, prior studies that respected

transmission delays in phase oscillator networks have reported elaborate synchro-

nization dynamics226–230.

In the case of time delays where a phase shift-approximation as above is not ade-

quate, e.g., when τ represents the time of propagation of the signal from one neuron

to another, the dynamics become more complex. Indeed, delayed dynamical sys-

tems are infinite-dimensional, and thus present a serious mathematical challenge.

Numerical tools have been developed such as DDE-BiFTOOL231,232, which can

be used to investigate the dynamical properties of coupled systems with delay.

Coombes and Laing233 applied the methods to a single Wilson-Cowan population

with multiple time delays. In particular, time delays influence the creation of oscil-

lations as well as the form of the limit-cycle. Even quasi-periodic orbits can emerge,

as has been shown for a slightly different version of a Wilson-Cowan population

with delays234. How coupling, with and without delays, to other Wilson-Cowan

populations further shapes the oscillatory properties of the single neural masses

has not been answered yet.

Similar to coupling-induced oscillations, which will be the focus in the following

Section 3.3.5.1, also the incorporation of time delays may lead to oscillations. It

is noteworthy that phase reduction techniques have been extended to tackle these

delay-induced oscillations87,235,236. The theoretical framework developed there has

yet to be generalized to analyze weakly coupled delay-induced limit-cycle oscilla-

tors. Likewise, another open and crucial question is whether reduction techniques

can be applied to deduce a phase model when oscillations are not necessarily delay-

induced but strongly affected by the delay: delays leading to too strong amplitude

effects prohibit phase reductions without a loss of (too much) information so that

alternative ways have to be found.
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3.3.5 Coupling functions

The coupling dynamics of interacting nonlinear oscillators is a research theme

already in itself, and we do not dare to even intend to treat this subject thoroughly.

The interaction between two units can take too many forms, is too diverse and may

feature too distinct dynamics, so that most of the times realistic coupling scenarios

are approximated by simpler terms to render a network analysis feasible. When

confronted with interacting systems, it is important to identify the correct type

of coupling function between them, especially given the role of coupling dynamics

in shaping non-trivial network behavior. Therefore, we will briefly comment on

general aspects of coupling terms, on the modeling approximations of realistic

coupling as well as on the effects of coupling matrices reflecting realistic structural

connectivity. All of them can, and usually do, influence the reduction of a phase

model.

As we briefly noted in our Brusselator example, Section 3.1, for systems with dy-

namics ẋ = f(x)+g(x, y) the character of the coupling can be direct, g(x, y) = g(y),

diffusive, g(x, y) = g(y − x), reactive, g(x, y) = (ε + iβ)g(x − y), conjugate,

g(x, y) = g(x − Py), as a chemical synapse, g(x, y) = g(x)S(y) with S(·) of

sigmoidal shape, or environmental, g(x, y) = ε
∫ t

0
e−κ(t−s)(x(s) + y(s))ds; see the

recent review237 and the references therein. One may further distinguish between

linear and nonlinear coupling, depending on the order of g(x, y). While the origi-

nal dynamics of interacting systems exhibit one or more coupling functions of the

types above, their counterpart in the corresponding and reduced phase model often

boils down to either a diffusive phase coupling term g̃(θx, θy) = g̃(θx − θy) or to a

pulse-response coupling of the form g̃(θx, θy) = P (θy)R(θx). How coupling terms

of the original dynamics translate into the particular phase coupling functions,

depends both on the characteristics of the underlying dynamical system as well

as on the strength of interaction. The pulse-response coupling, as was established

by Winfree in his original work85, appears to be the more general form of phase

interactions where the coupling term is the product of the external perturbation

P (θy) through the other oscillator with the response R(θx) of the perturbed oscil-

lator, the latter commonly referred to as the phase response function. Averaging

procedures, however, can be applied if the perturbations and/or coupling strength

are sufficiently weak, in which case a diffusive phase coupling term can be recov-

ered again. Moreover, there are other exceptions where an averaging procedure is

also possible, such as when multiple strong pulses are dispersed around the cycle,
cf. 147.

We are also fully aware that models of interconnected nonlinear oscillators, in

particular neural oscillators, often feature rather complex coupling terms with in-
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dividual dynamics153,238,239. Keyword here is ‘event driven’ coupling. For instance,

let two neurons be connected via a chemical synapse. When the presynaptic neuron

elicits a spike, an action potential travels along the axon and provokes the release

of neurotransmitters at the synapse. This in turn leads to a temporary change

of the membrane potential of the postsynaptic neuron with characteristic finite

rise and fall times. Taken together, event driven coupling can be defined as the

time-resolved interaction between nodes (e.g., neurons) that is triggered through

a particular event (e.g., the spiking of the presynaptic neuron). This transient

dynamical process can be described mathematically with a linear differential oper-

ator that has a given response (or Green’s function). When allowing for this kind

of complex coupling, the corresponding network model becomes more detailed and

high-dimensional. Still, the theory outlined in Chapter 2 above applies also in this

case and a proper phase model can be reduced. The coupling functions in the re-

duced phase model, however, are now time-dependent and can become arbitrarily

difficult. Sometimes, these reduced coupling functions can be approximated and

continue to provide an accurate model of the underlying system, see e.g., 240. We

discourage, however, from ad hoc approximations without a sensitive assessment

of both the full dynamics and the reduced, or simplified, phase dynamics. Here,

we first analyzed the parameter range in which the nonlinear, sigmoidal coupling

function in the Wilson-Cowan neural mass model can be adequately approximated

by polynomial terms, and then we employed the analytic reduction techniques for

these parameters, cf. Section 3.2. Incorporating delays between cortical regions

or spatial kernels leads to far more intricate coupling dynamics, see e.g., 241, and

Section 3.3.4.2. Friston popularized Volterra series to model inherent nonlinear

interactions when also taking neuronal transients into account, i.e. the recent his-

tory of neural activity of connected neuronal populations242. Phase reduction

strategies have been extended recently to cope with time-varying external pertur-

bations224,225,243, which hints at ways how to tackle dynamically more intricate

coupling terms. However, a thorough analysis of complex coupling functions and

their translation into phase models is beyond the scope of this review. Yet, we

trust that our results can help to construct particular phase coupling terms, which

especially becomes important for the modeling of neural cross-frequency interac-

tions244,245.

3.3.5.1 Coupling-induced behavior

The reduction of phase dynamics from a network of coupled oscillators retains

its mathematical justification as long as the theory of weakly coupled oscillators

applies. However, no rigorous definition of weak coupling exists, nor a concrete

limit of the coupling strength at which the character of interaction switches from
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weak to strong. Usually, phase reduction is achieved with the tacit understanding

that each isolated system already displays stable limit cycle oscillations, which is a

necessary condition for the theory of weakly coupled oscillators. However, in some

cases it is the coupling between systems that induces oscillations. Smale was among

the first to investigate the emergence of oscillations via a Hopf bifurcation due to

diffusive coupling246. On the other hand, coupling between systems can also make

oscillations cease. Ermentrout and Kopell reported this kind of oscillation death

for a chain of Wilson-Cowan neural masses153, see also the work by Daffertshofer

and van Wijk on a (heterogeneous) network of Wilson-Cowan neural masses42.

Those effects only occur for reasonably large coupling strengths, and a straight-

forward identification of the phase dynamics as within the theory of weak coupling

is not possible. While sufficiently weak coupling ensures that the shape and the fre-

quency of the limit-cycle orbits remain almost unchanged, strong coupling leads to

non-negligible amplitude effects. These can destabilize synchronized states, cause

(amplitude and thus) oscillation death or collective chaos, and a phase reduction

has only been proposed for quite restrictive assumptions; see224 and the references

therein. Hence, phase-amplitude reductions247–249 have to be employed that also

take interactions between phase and amplitude dynamics into account. The the-

ory of weakly coupled oscillators additionally requires that the actual trajectories

of the oscillators are always close to the isolated limit-cycle solution. Recently,

Wilson and Ermentrout proposed a method that allows for a phase reduction far-

ther away from the underlying periodic orbit250, thereby admitting also stronger

perturbations and coupling strengths, see also Section 3.3.7. For the sake of con-

ciseness, we omitted the difficulties mentioned above, knowing well the intricacies

tied to a more careful investigation of other urgent questions beyond the realm of

the weak coupling limit. Yet, we would like to briefly discuss the emergence of

oscillations through coupling, as well as their cessation.

Oscillation birth and clustering From an analytic point of view, it appears

illustrative to start with two coupled identical oscillators, which rest in a stationary

state when uncoupled. As can be seen in the corresponding bifurcation diagram in

Fig. 3.10, oscillations can be induced through coupling via a Hopf bifurcation (red

dot). The critical coupling strength can be determined analytically, see also173. In

our example, it is considerably small with κ = 0.0531 (note that we did not rescale

the coupling by a factor 1/N). Interestingly, already for two coupled oscillators

the initial conditions have a major impact on the resulting dynamics: while for

coupling strengths κ < 0.6 (see green dot), all initial conditions run either into

the same two limit cycles or into the low activity resting state (blue solid curve),

for larger coupling strengths only identical initial conditions result into the same
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Figure 3.10: Bifurcation diagram of two coupled identical Wilson-Cowan neural masses
with parameters P = −3 and Q = −9.4. At low coupling strengths κ < 0.05, the two
units are at rest (black solid curve). Oscillations emerge at the Hopf bifurcation (red
dot), where the resting state becomes unstable (black dashed). The limit cycles of the
two oscillators (red curves display upper and lower limit) are identical up to the green
dot. Beyond this point, identical initial conditions of the neural masses result in the two
identical limit cycles with upper and lower limits as shown in red. Finally, oscillations
cease through a fold bifurcation of limit cycles for higher coupling strengths (second red
dot). The yellow dot represents a homoclinic bifurcation, induced through the unstable
counterpart (blue dashed) of the pair of fixed points that emerged through a saddle-
node bifurcation (blue dot). For non-identical initial conditions of the neural masses,
the attracting limit cycles are distinct for coupling strengths higher than at the green
dot. Stable oscillations (with limits on either the outer or inner branches of the green
curves) are then also possible beyond those coupling strengths for which identical initial
conditions evolve into a low-activity resting state (blue solid).

(red) limit cycles. Different initial conditions for the two coupled neural masses

may still lead to stable oscillations, but the respective limit cycles can differ in

amplitude and shape (green curves). Moreover, oscillations starting from distinct

initial conditions are stable for even larger coupling strengths, where those from

identical initial conditions have ceased through a fold bifurcation of limit cycles

(see the inset).

Based on our brief analytic insights concerning only two coupled oscillators,

we anticipate that coupling-induced effects will increase the dynamic intricacy of

larger networks of strongly coupled oscillators. To illustrate this, we simulated a

fully connected network of 30 identical Wilson-Cowan neural masses starting from

random initial conditions. Fig. 3.11 displays the network behavior for different

coupling strengths. Without coupling, the network remains at rest (top row). For

weak coupling, there is perfect synchronization between coupling-induced oscilla-

tions. Moreover, all oscillators describe the same limit cycle (middle row). For

stronger coupling, the coupling-induced oscillations become more complex. Dif-

ferent oscillators form clusters, which furthermore evolve on distinct limit cycles

(bottom row).
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Figure 3.11: Coupling induced behavior of N = 30 globally coupled identical Wilson-
Cowan neural masses with parameters P = −3 and Q = −9.4. Without coupling (top
row), only the resting state is stable. At low coupling strength κ = 0.05 (middle row),
all neural masses synchronize on the same limit cycle. At very high coupling strength
κ = 0.81 (bottom row), the neural masses form three clusters on distinct limit cycles and
show intermittent synchronization. Left: dynamics of all neural masses in the Ek − Ik
plane for the lase t = 15 seconds. Middle: extracted phases of all neural masses. Right:
real Kuramoto order parameter displaying phase synchronization of the network.

Oscillation death and quasiperiodic dynamics To investigate the phenomenon

of oscillation death, we chose parameters such that a single, unperturbed Wilson-

Cowan neural mass exhibited stable limit-cycle oscillations. Starting again with

two coupled identical oscillators, we display the corresponding bifurcation diagram

with respect to the coupling strength in Fig. 3.12. For identical initial conditions,

the red curves represent the upper and lower limit of the amplitude of the (iden-

tical) limit cycles. Note that oscillation death occurs via a homoclinic bifurcation

(yellow dot). For distinct initial conditions, we find again two different oscilla-

tory regimes: at low coupling strengths, both limit cycles coincide. However, for

larger coupling strengths beyond κ ≈ 0.45 (red dot) each neural mass exhibits

quasiperiodic behavior, as depicted in Fig. 3.12b.

Similar to before, we also simulated the network dynamics and confirmed the

analytic predictions extrapolated from two coupled oscillators to a larger network.

Results are shown in Fig. 3.13. Note that the parameters P,Q are chosen such that

the reduced phase model predicts asynchronous network dynamics for low coupling

strengths, as is demonstrated by the simulations (top row). Stronger coupling leads

first to a general increase in network synchronization as indicated by the (mean

value of the) Kuramoto order parameter, and to quasiperiodic dynamics (middle

row). Eventually, for even stronger coupling oscillations cease and the dynamics
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Bifurcation diagram for two coupled Wilson-Cowan oscillators

(a) Bifurcation diagram. (b) Quasiperiodic dynamics.

Figure 3.12: Oscillation death: bifurcation diagram similar to Fig. 3.10, now starting
with stable limit cycle oscillations without coupling. Oscillation death occurs via a ho-
moclinic bifurcation (yellow dot) for identical initial conditions. The red dots denote the
emergence of quasiperiodic behavior for distinct initial conditions. In (b) quasiperiodic
behavior is depicted for coupling strength κ = 0.475

collapse into a low activity state (bottom row).

Figure 3.13: Coupling induced behavior of N = 30 globally coupled identical Wilson-
Cowan neural masses with parameters P = −3 and Q = −9. At low coupling strength
κ = 0.15 (top row), all neural masses desynchronize on the same limit cycle as predicted
by the phase model. At intermediate coupling strength κ = 0.75 (middle row), oscillators
move along quasiperiodic trajectories and tend to synchronize. At very high coupling
strength κ = 0.81 (bottom row), oscillation death occurs and the neural masses run into
a low activity resting state. Left: dynamics of all neural masses in the Ek − Ik plane
for the lase t = 15 seconds. Middle: extracted phases of all neural masses. Right: real
Kuramoto order parameter displaying phase synchronization of the network.
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3.3.5.2 Effects of structural connectivity

The analytic insight with respect to the bifurcation diagram of two coupled oscilla-

tors, helped us in Section 3.3.5.1 to draw conclusions about possible network states

of N � 2 globally coupled oscillators. As mentioned before, pairwise interaction

between the oscillators in a network allows us to generalize the findings about

two oscillators to larger networks. In principle, however, the coupling terms can

combine the simultaneous effects from more than one oscillator, which results in a

multivariate coupling function with more than two input variables. Multivariate

interaction has recently attracted increased attention; an overview can be found

in Section II.C.3237 and see various references therein. As long as the coupling

is sufficiently weak, phase reduction techniques can cope also with multivariate

coupling terms, see, e.g., Malkin’s Theorem in Section 2.3.1. Moreover, reduced

phase models may feature phase interaction functions with up to four interacting

phases, see the reduction via SN × S1-symmetry in Section 2.2.6. Still, already

in the case where the phase interaction function only depends on pairwise phase

differences, the network can exhibit rich and non-trivial dynamics as seen before.

Another important factor that can shape the network dynamics is the structural

connectivity between nodes. The underlying network topology plays a significant

role for the observed network behavior. In particular, many results about expected

network behavior based on (higher harmonics of) the reduced phase interaction

function are no longer valid when the connectivity structure deviates from global,

all-to-all coupling, as we will illustrate below. Yet, on a first level, the derivative

of the reduced phase interaction function can still provide important information

about (remote) synchronization properties of a realistically connected network, see
e.g., 58.

As before, we assume that possibly multivariate coupling terms gk(x1, . . . ,xN)

of the underlying oscillator model of N interacting nonlinear oscillators can safely

be approximated by the sum over pairwise coupling terms

gk(x1, . . . ,xN) ≈
∑
j=1

Ckjg(xk,xj).

If such a decomposition is not possible for all units of the network, an exit strat-

egy may be the following: first, the network is parceled into interacting subnet-

works, and subsequently each oscillating subnetwork is characterized in terms of

its macroscopic rhythm, employing collective phase description methods as devised

by Kawamura, Nakao, Kuramoto and co-workers167,168,221,222.
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As usual our goal is to establish a phase model of the form (2.16),

θ̇k = ω +
κ

N

N∑
j=1

CkjH (θk − θj) , (3.38)

where Ckj denote the entries of the adjacency or connectivity matrix, which rep-

resents the structural connectivity between oscillators. In the simplest case, all

oscillators are coupled to all the others, that is the case of global coupling with

Ckj = 1 for all k 6= j. More realistic network topologies, on the other hand, can

be translated into adjacency matrices that respect graph-theoretical properties of,

e.g., the structural brain connectivity as derived from diffusion tensor imaging.

The effects of the network topology on the macroscopic behavior are to great ex-

tent still unclear. Indeed, particular features in the network topology, such as,

e.g., small-worldness, which is believed to resemble the connectivity of the hu-

man brain, elude analytic treatment completely, but at the same time bear rich

non-trivial network behavior251–254.

To give a slight insight into the additional complexity, we compared the simu-

lated phase dynamics with the phases extracted from the original Wilson-Cowan

neural mass model (3.15) and considered three different coupling topologies: a

fully connected homogeneous network, an anatomical network reported by Hag-

mann and co-workers255, and a network with small-world topology generated by

the Watts-Strogatz model256; see Fig. 3.14 for the corresponding adjacency matri-

ces.

(a) Hagmann network. (b) Small-world network.

Figure 3.14: Connectivity matrices for the Hagmann dataset and the generated small-
world topology using an average degree of 10 and a rewiring probability of 0.2.

Following Section 3.2.5, we simulated the network in the parameter regions

where we expect synchronization, incoherence and cluster states, and changed

the connectivity matrix subsequently. As displayed in Fig. 3.15, the particular

connectivity structures led to macroscopic dynamics that became indistinguishable

from one another, the red and blue graphs correspond to small-world and Hagmann

network connectivity, respectively. Only in case of a fully connected homogeneous
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network, see the black graphs, the actual dynamics matched the predictions of the

numerically reduced phase model.

Moreover, we simulated the different phase models as retrieved by the four

reduction techniques. The numerically reduced phase dynamics (black graphs)

correctly captured the original Wilson-Cowan dynamics for full connectivity, see

the left column in Fig. 3.16. For non-trivial connectivity structures, however, none

of the phase models can follow the predictions based on the (global) phase inter-

action function H. While for the small-world network (middle column) the sim-

ulations hint slightly at the synchronous, asynchronous and two-cluster regimes,

respectively from top to bottom, the observed dynamics on the Hagmann network

appear arbitrary. Note that the direct averaging technique (green graphs) leads to

synchronized macroscopic behavior for almost all parameter settings and connec-

tivity structures. The two analytic techniques feature rather distinct behavior for

full connectivity: the reductive perturbation approach (red) leads to full synchro-

nization, whereas the nonlinear transform approach (blue) results in a two cluster

state. On the other hand, for the small-world and Hagmann networks, the two

techniques converge to the same network behavior. For more details about the

connectivity structures as well about the simulations, we refer to the Appendix170.

Figure 3.15: Simulation of the Wilson-Cowan dynamics at coupling strength κ = 0.15
for regimes as predicted by the reduced phase model: synchronization (top row), asyn-
chrony (middle) and two-cluster state (bottom). Left: final (T = 2000) position of
all 66 connected Wilson-Cowan oscillators on the unperturbed limit cycle (green) with
random initial conditions (black dots). Middle: phase histogram of final Wilson-Cowan
oscillators. Right: phase synchronization of the network measured with the real Ku-
ramoto order parameter with a moving average over 20 seconds. Colors correspond
to full connectivity (black, circles), small world (blue, diamonds), and Hagmann (red,
squares).
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Figure 3.16: Simulation of the reduced phase models at coupling strength κ = 0.25
with full (left column), small-world (middle) and Hagmann network connectivity (right).
Insets show histogram of the final (T = 2000 for full connectivity, and T = 10000
otherwise) phase distribution for N = 200 oscillators (N = 66 for Hagmann network).
Colors correspond to numerical reduction (black), direct averaging (green), reductive
perturbation (red), and nonlinear transform approach (blue).

In a nutshell, we can conclude that topology effects overcome otherwise precise

predictions of the phase model such that even the least accurate direct averaging

method does not perform worse than the other techniques.

3.3.6 Phase versus other oscillators

3.3.6.1 Nonlinear oscillators

The limitations as presented in Section 3.3.5 culminate in the natural question

how well phase models are actually able to approximate and predict the behavior

of the network model of coupled, often high-dimensional nonlinear oscillators. As

shown in Sections 3.1 and 3.2, a properly tailored phase reduction can lead to a

phase model that not only describes synchronization transitions of the underlying

model accurately, but also captures non-trivial network behavior such as cluster

states. It can, however, also be the case that complex emergent phenomena, e.g.,

cluster states (and chimera states as a special case of clustering), self-organized

quasiperiodic synchrony, or amplitude death, are due to amplitude effects in the

oscillator network. Then, the validity of a reduced (and averaged) phase model is

highly questionable. To give an example, Rosenblum and Pikovsky considered a

system of identical Stuart-Landau oscillators with global nonlinear coupling90–92.
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In deriving the corresponding phase dynamics, they found90 a dynamic depen-

dence of the coupling strength as well as of the amplitudes of the first harmonics

on the network’s order parameter. It is true that the resulting phase model is

integrable within the Watanabe-Strogatz theory. However, the additional dynam-

ics pose an irreconcilable obstacle for the varying phase interaction function to be

retrieved: The numerical phase reduction techniques only provide a static picture.

But also the normal form reduction methods, which usually transform the origi-

nal dynamics near a supercritical Hopf bifurcation into the form of Stuart-Landau

oscillators, fail to respect the higher order dependence on the order parameter,

even in case of constant global coupling91,92. The reason is that the particular

nonlinear coupling term considered by Rosenblum and Pikovsky will be culled as

it merely provides higher order corrections to the first dominant harmonics, see

Section 2.2.1.2. Interestingly, nonlinear coupling is not necessary to induce non-

trivial network behavior. Sethia and Sen considered it surprising that chimera

states in a network of Stuart-Landau oscillator already exist for linear coupling257.

However, the results by Kori and co-workers, who detected cluster states as well

as slow switching behavior for a network of diffusively coupled Brusselators based

on their reduced phase model95, and also our findings, suggest that complex and

rich network behavior can be predicted by adequately derived phase models.

3.3.6.2 Non-smooth oscillators

The way the T -periodic limit cycle C has been introduced above, suggests that

the trajectory φ(t;xc) is a smooth curve in phase space for 0 ≤ t ≤ kT with

k →∞. However, the definition of C also holds for non-smooth trajectories, e.g.,

for a piece-wise smooth trajectory that features sudden jumps. In this manner it is

possible to define a phase also for so-called integrate-and-fire neuron models: every

time the voltage variable exceeds a particular threshold value, a spike is elicited

and the voltage is reset to a lower reset value. For the time between two spikes,

the voltage can then be parametrized in terms of a phase value. Consequently, it is

possible to determine the phase dynamics of an integrate-and-fire model102. Politi

and Rosenblum recently demonstrated the equivalence between phase-oscillator

and integrate-and-fire models in the weak-coupling limit for a fully connected

network of identical units258. Moreover, models of electric circuits with discon-

tinuous switching or gait models with sudden collisions with the ground feature

non-smoothness of the state variables. The dynamical systems describing these

models are usually called hybrid dynamical systems. If they exhibit limit-cycles,

then one refers to those oscillations as hybrid limit-cycle oscillations. The recent

work259 by Shirasaka, Kurebayashi and Nakao provides a detailed mathematical

account of the phase reduction of such hybrid limit-cycle oscillators.
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3.3.7 Phase-amplitude models

A more general approach to the definition of phases and amplitudes is the trans-

formation into a so-called phase-amplitude model. Typically, one introduces a

moving orthonormal coordinate system around the limit cycle and fixes one axis

pointing in the direction of the tangent vector along the periodic orbit. The coor-

dinate corresponding to this tangential axis indicates the phase whereas all other

coordinates are associated with the distance from the limit cycle, previously de-

fined as amplitudes. Phase-amplitude descriptions allow for tracking dynamical

phenomena that are not visible within the isochronal (phase) description. Exam-

ples are shear-induced chaos or oscillation death. The recent review by Ashwin,

Coombes, and Nicks89 and the references therein provide more details. Despite the

greater accuracy of phase-amplitude models, however, isochronal phase models are

often in favor for their simplicity and are generally valid as long as perturbations

are weak, or considerably moderate. For larger perturbations, discarding the am-

plitude dynamics may be improper. It seems promising to introduce a simplified

coordinate system via so-called isostable coordinates, which correctly describes the

phase dynamics away from the limit-cycle250. This approach does not rely on the

weak coupling assumption. Likewise promising are recent approaches that allow,

e.g., for large external perturbation that oscillate at sufficiently slow224,225 or fast

frequencies243. In Section 2.3.1.2, we briefly sketched a phase reduction approach

that crucially relies on the fast relaxation rate of the oscillator towards its limit

cycle. There, the introduced phase-amplitude coordinate system reduces by means

of a separation of time scales to a phase description only.

As a final note we would like to add that Koopman operators provide a very

useful framework to accurately describe transient dynamics of systems with stable

limit cycles in reduced phase and amplitude coordinates. Similar to the notion

of isochrons as level sets of the same asymptotic phase value, it is possible to

define the above-mentioned isostables as a set of initial conditions that have the

same relaxation rate towards the attracting limit cycle260. An isostable represents

an amplitude degree of freedom, which in addition is independent of the phase

and of other amplitude degrees of freedom. Both isochrons and isostables can be

understood from a unified perspective via the spectral properties of the Koopman

(composition) operator247,260,261. This operator has proven to be of invaluable use

for dynamic mode decomposition, a data-driven approach to complex nonlinear

systems. Wilson and Moehlis further extended the theory to systems with limit

cycle attractors262. A rigorous extension to phase-amplitude dynamics, also away

from the limit cycle, has recently been proposed by Shirasaka, Kurebayashi and

Nakao247; see also263 including an alternative numerical approach to compute the
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phase and amplitude responses via a forward-integration method. The Koopman

operator framework further allows to reduce phase and amplitude dynamics in a

consistent way and can be implemented numerically. As we mainly focused on weak

perturbations off the limit cycle, such that amplitude effects become negligible, we

refrain from further elaboration on the Koopman operator theory and refer the

interested reader to the literature, see247 and numerous references therein.

3.3.8 Analytic approaches versus numerics – a final word

The ‘competition’ between analytic phase reduction techniques and numeric reduc-

tion techniques boils down to seeking a compromise between qualitative insights

and quantitative accuracy of the resulting phase model. Either, one can gain ana-

lytic insights into how parameters of the underlying oscillatory dynamics translate

into the phase model, which may come at the cost of losing accuracy as soon as

the dynamics are away from a bifurcation point. Or, we derive the phase dynamics

numerically and with high accuracy, but may forego explicit analytic expressions

that can provide an intuition about which parameters of the underlying model

influence the phase dynamics to what extent and in which direction. We therefore

advise to combine both analytic and numerical reduction techniques. In this way,

numerical techniques can, e.g., be used to verify the validity of analytic reduc-

tion techniques so that analytic insights can be gained in an optimally extended

neighborhood around a bifurcation point.
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Interactions between networks

of heterogeneous phase oscillators

Populations of oscillators can display a variety of synchronization patterns de-

pending on the populations’ intrinsic coupling and the coupling between them. We

consider two coupled, symmetric (sub)populations with unimodal frequency dis-

tributions. If internal and external coupling strengths are identical, a change of

variables transforms the system into a single population of oscillators whose nat-

ural frequencies are bimodally distributed. Otherwise an additional bifurcation pa-

rameter κ enters the dynamics. By using the Ott-Antonsen ansatz, we rigorously

prove that κ does not lead to new bifurcations, but that a symmetric two-coupled-

population-network and a network with a symmetric bimodal frequency distribution

are topologically equivalent. Seeking for generalizations, we further analyze a sym-

metric trimodal network vis-à-vis three coupled symmetric unimodal populations.

Here, however, the equivalence with respect to stability, dynamics and bifurcations

of the two systems does no longer hold.

Adapted from: Pietras B., Deschle N., Daffertshofer A. (2016). Equivalence of

coupled networks and networks with multimodal frequency distributions: conditions

for the bimodal and trimodal case. Phys. Rev. E 94, 052211.

doi: 10.1103/PhysRevE.94.052211.



Interactions between networks 124

4.1 ‘Multimodal networks’ or ‘networks of

networks’?

The Kuramoto model is seminal for describing synchronization patterns in net-

works of phase oscillators. It has been investigated to great detail in numerous

studies using different approaches; for reviews see e.g., 39,264. The analytical treat-

ment typically relies on the formation of a common variable, the so-called order

parameter, and seeks to pinpoint its dynamics. The more recently suggested ansatz

by Ott and Antonsen81 proved particularly fruitful for analyzing this dynamics.

It applies to the thermodynamic limit, i.e. to infinitely large populations, and it

contains major simplifications including the ‘parametrization’ of the phase distri-

bution’s Fourier transform. Abrams and co-workers265 were the first to describe the

dynamics of two coupled populations using the Ott-Antonsen ansatz, confirming

earlier results based on perturbation techniques266–268; see also Laing’s extension

including heterogeneity and phase lags269. Similarly, Kawamura and co-workers270

derived a collective phase sensitivity function to describe synchronization across

subpopulations, but they assumed only very weak coupling between them. A de-

tailed bifurcation analysis of these dynamics without such restrictions, however, is

still missing.

We discuss a network of two populations of Kuramoto oscillators with uni-

modally distributed natural frequencies. The dynamics will be compared with

that of a single population of oscillators with bimodally distributed frequencies.

The latter case has been extensively studied by Martens and co-workers271. In

Fig. 4.1 we sketch the contrasting network configurations. Here we prove that a

symmetric two-population network does fully resemble the case of one network with

bimodally distributed frequencies. Assuming that the internal coupling strength

(identical for both networks) can be distinct from the bidirectional external cou-

pling strength, we introduce another degree of freedom in the dynamics, and by

that go beyond a simple change of variables, which may transform the bimodal

description into two populations. As we will show, this additional parameter does

not lead to qualitatively different dynamics. Instead we prove the topological

equivalence of the two systems.

A natural question is whether this equivalence can be generalized. For this we

couple more than two populations and compare their dynamics to a network with

a multimodal frequency distribution. We show that for a symmetric trimodal net-

work vis-à-vis three subpopulations with identical internal coupling and identical

(though distinct to the internal coupling strength) bidirectional external coupling,

the dynamics already differ qualitatively from each other. Therefore, in the sym-
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Figure 4.1: Two all-to-all coupled networks (left) with unimodal frequency distributions
each; a single all-to-all coupled network (right) with a symmetric bimodal frequency
distribution function.

metric case considered here, the topological equivalence between coupled networks

and networks with multimodal frequency distributions appears limited to two cou-

pled networks vs. one bimodal network, and fails when considering more than two

subpopulations.

4.2 Revisiting the existing theory on interacting

populations of Kuramoto phase oscillators

The Kuramoto model displays the long-term dynamics of a system of N ∈ N
weakly-coupled limit-cycle oscillators, where each oscillator k is fully described by

its phase θk. The latter evolves in time by following the dynamics

θ̇k = ωk +
K

N

N∑
j=1

sin(θj − θk) . (4.1)

Here, the natural frequencies ωk are drawn from a distribution function g(ω), and

K denotes the strength of the all-to-all-coupling between the oscillators. In his

original work38 Kuramoto assumed g to be symmetric and centered around the

origin thanks to the rotational invariance of the model. Introducing the notion of

a complex-valued order parameter

z =
1

N

N∑
j=1

eiθj , (4.2)

allows for measuring the degree of synchronization in the system. For the thermo-

dynamic limit of infinitely many oscillators, N →∞, Kuramoto derived a critical

coupling strength Kc at which the incoherent solution, i.e. z = 0, becomes unsta-

ble and a partially synchronized state, z = const ∈ (0, 1], emerges38, see also 272. In

the case of a unimodal Lorentzian frequency distribution of width ∆ and centered
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at ω0 = 0, this critical coupling is given by

Kc =
2

πg(0)
= 2∆ . (4.3)

In particular, the onset, and in the following also the extent of synchronized be-

havior depends crucially on both coupling strength K and distribution width ∆.

Of particular interest for our work is the coupling of two such Kuramoto net-

works. There we define two order parameters: A global one covers the entire

network. Equivalently, we can decompose the global order parameter into local

ones, each describing the dynamics of a single subpopulation. The interplay of

these local order parameters has already been investigated in the literature. In

1991 Okuda and Kuramoto investigated the mutual entrainment of two oscilla-

tory populations under the influence of noise273. All oscillators were assumed to

have identical natural frequencies in their respective population and the result-

ing dynamics differed depending on coupling strength K, noise strength D, and

the distance between the population-specific frequencies ∆ω0. Next to a global

incoherent and partially synchronized solution, they did not only find the exis-

tence of an oscillatory steady state, which was later referred to as “standing wave”

solution by Crawford274, but numerical results revealed regimes of multistability,

i.e. the coexistence of (at least) two stable solutions. Montbrió and co-workers266

extended and generalized these findings by changing the setting slightly: Instead

of letting the system be driven by noise, they assumed inhomogeneous natural

frequencies drawn from unimodal distributions (per population). In the case of

Lorentzians, they derived stability boundaries and illustrated their results for two

coupled populations with numerical performance, and were among the first to dis-

cover “chimera states” states, a notion that later that year had been introduced by

Abrams and Strogatz275 to denote regions of synchronization in an unsynchronized

surrounding.

We would like to briefly comment on these two seemingly identical approaches:

the first, in which the phase dynamics of identical oscillators is subject to noise, and

the second, in which one considers heterogeneous oscillators without noise. As to

the former, Okuda and Kuramoto assumed that the oscillators in each population

have identical natural frequencies, i.e. ωσ,k = ωσ for all k = 1, . . . , Nσ, and, in

general, ω1 6= ω2. Let us rearrange their governing equation as follows (cf. Eq.(2.1)
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in273 with Γ(φ) = sin(φ) and K(1) = K(2) = K):

θ̇σ,k = ωσ +
K

N

2∑
σ′=1

N∑
j=1

sin(θσ′,j − θσ,k) + ξσ,k(t) (4.4a)

= ω̃σ,k +
K

N

2∑
σ′=1

N∑
j=1

sin(θσ,j − θσ,k) , (4.4b)

where ω̃σ,k(t) := (ωσ + ξσ,k(t)), and ξσ,k(t) = ξk(t) denote independent Gaussian

noise processes with statistics 〈ξk(t)〉 = 0 and 〈ξk(t)ξj(t′)〉 = 2Dδk,jδ(t − t′). As

Sakaguchi argued276, in the thermodynamic limit the dynamics of the Langevin

equations (4.4a) can be described by a Fokker-Planck equation, whose diffusion

coefficient coincides with the noise strength D. Given that the ξσ,k(t) are Gaussian

noise terms, one can consider the population dynamics (4.4a) as an Ornstein-

Uhlenbeck (OU) process. Then, the results by Okuda and Kuramoto273 appear in

a different light. OU processes possess a Lorentzian shaped power spectrum. That

is, assuming complex-valued relaxation rates Hσ = −∆ − iωσ, the power spectra

of the corresponding OU processes read

Sσ(ω) =
∆

(ω − ωσ)2 + ∆2
,

see Eq.(1.8.38) in277. In due course, this noise-driven approach dwelling on the

Fokker-Planck equation is equivalent to the case of coupled phase oscillators with

natural frequencies drawn from Lorentzian distributions. This equivalence be-

comes evident in the continuum limit of oscillators, a necessary assumption for

deriving mean-field dynamics by both a Fokker-Planck formalism see, e.g., 38,273,278,

and by the Ott-Antonsen ansatz81,82,271. Hence, the following section can be un-

derstood as an analytic confirmation (and extension) of the numerical results by

Okuda and Kuramoto273, who assumed two symmetric δ-peaks as their bimodal

frequency distribution and allowed Gaussian noise processes to drive the system

as in (4.4a). Note that this equivalence mentioned is only valid for the linearized

dynamics. Indeed, this linearization is sufficient for characterizing fixed points

and bifurcation boundaries. When, however, considering the fully nonlinear sys-

tem with noise, the Ott-Antonsen ansatz, which the following analysis will heavily

dwell on, does no longer exhibit the exact dynamics see, e.g., 279.

Before 2008, the general idea to analytically reveal the dynamical behavior of

these systems was to investigate small perturbations of (the distribution function)

of the incoherent state. Major simplifications for characterizing oscillatory systems

arose with Ott and Antonsen’s breaking idea to simplify the Fourier series of the

oscillators’ distribution functions81; see Section 4.3. Their proof that the manifold
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of such a class of distribution functions does indeed capture the long-term dynamics

of Kuramoto (and more general) models82,83 paved the way for the success of the

Ott-Antonsen ansatz, see also Chapter 5. Martens and co-workers271 were the

first to tackle a bimodal Kuramoto network with the new theory and revealed a

thorough bifurcation diagram including stability properties of the corresponding

solutions. Although the disguise of two coupled unimodal Kuramoto networks as a

single network with natural frequencies following a bimodal distribution has often

been claimed, above all in the Appendix of271, a rigorous proof has never been

provided yet.

4.3 Two-population dynamics along the

Ott-Antonsen ansatz

We consider two symmetric populations of N phase oscillators θσ,k each, with

σ = 1, 2 and k = 1, . . . , N . The oscillators have natural frequencies ωσ,k distributed

according to Lorentzians gσ of width Λ1 = Λ2 = Λ that are centered around +$0

and −$0, respectively. We assume all-to-all coupling within each population with

strength Kint, and also all-to-all coupling across populations with strength Kext.

The corresponding dynamics obeys the form

θ̇σ,k = ωσ,k +
Kint

N

N∑
j=1

sin(θσ,j − θσ,k) +
Kext

N

N∑
j=1

sin(θσ′,j − θσ,k) (4.5)

with (σ, σ′) = (1, 2) or (2, 1). Set Kint = Kext = K, and let θk = θ1,k and

θN+k = θ2,k. Then, (4.5) reads

θ̇k = ωk +
K

2N

2N∑
j=1

sin(θj − θk) , k = 1, . . . , 2N , (4.6)

with ωk drawn from a bimodal distribution g = (g1 + g2)/2 with g1,2 as defined

earlier. This change of variables unveils the equivalence of both descriptions. Here,

a crucial point is the assumption that the intrinsic coupling strength equals the

external one. In the next section we will prove that both systems are topologically

equivalent even if κ = Kext/Kint 6= 1.

To avoid confusion with the bimodal approach of Martens et al., we discriminate

between internal and external coupling strengths Kint 6= Kext. We consider the

limit N →∞ and introduce continuous, time-dependent distribution functions fσ

of the subpopulations’ oscillators. The integral of fσ over phase and frequency
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defines the (local) order parameters

zσ =

∫
R

∫ 2π

0

fσ(ω, θ, t) eiθ dθ dω ,

i.e. a (circular) ‘mean value’ for each population σ. The Ott-Antonsen ansatz81

incorporates the 2π-periodicity of fσ and further simplifies its Fourier series to a

single Fourier component ασ(ω, t), i.e.

fσ(ω, θ, t) =
gσ(ω)

2π

{
1+

[
∞∑
n=1

ασ(ω, t)neinθ + c.c.

]}
.

With the normalization∫ 2π

0

fσ(ω, θ, t) dθ = gσ(ω) :=
Λ

π

1

(ω − ωσ)2 + Λ2
,

where ω1/2 = ±$0, the dynamics of the order parameters zσ reduce to

żσ = − (Λ∓ i$0) zσ +
Kint

2
zσ
(
1− |zσ|2

)
+
Kext

2

(
zσ′ − z2

σz
∗
σ′

)
. (4.7)

Since gσ(ω) are continuous, non-constant frequency distributions, the Ott-Antonsen

manifold comprises the entire dynamics82. Next, we rewrite the order parameters

as zσ = ρσeiφσ such that with the assumed symmetry ρ := ρ1 = ρ2 the system

(4.7) transforms into

ρ̇ = −Λρ+
ρ

2
(1− ρ2) [Kint +Kext cosψ]

ψ̇ = 2$0 −Kext(1 + ρ2) sinψ ;
(4.8)

here we introduced the mean relative phase between the subpopulations as ψ =

φ2−φ1. Finally, we rescale the parameters by means of τ =Kint ·t, κ=Kext/Kint,

∆ = 2Λ/Kint and ω0 = 2$0/Kint, substitute q= ρ2, and transform q(t) → q(τ) as

well as ψ(t)→ ψ(τ) if not stated otherwise[1]. Then, we find for 0 < ρ ≤ 1

q̇ = q [1−∆− q + κ(1− q) cosψ]

ψ̇ = ω0 − κ(1 + q) sinψ ;
(4.9)

from hereon the dot notation refers to the derivative with respect to τ . The

system (4.9) resembles Eqs. (25 & 26) in271 with the additional parameter κ. For

κ= 1 both systems agree entirely[2]. As we will show, the additional parameter κ

[1] We consider Kint 6= 0 and note that the scaling does not affect the quality of bifurcations,
i.e. the original and scaled systems are topologically equivalent.

[2] Our unscaled system (4.8) is an exact representation of Eqs. (22 & 23) for K̃ = K/2 in the
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does not alter the qualitative bifurcation scheme of our network. Hence, we can

understand the bimodal formulation as an equivalent representation of the network

consisting of two symmetric subpopulations.

Incoherent state

Before discussing (4.9) in more detail, we briefly analyze the stability of the fully

incoherent state q = 0. Following Martens et al.271, we linearize (4.7) around

z1 = z2 = 0 and find two pairs of degenerated eigenvalues

λ1/3 = λ2/4 = 1−∆∓
√
κ2 − ω2

0 (4.10)

expressed in the aforementioned, rescaled parameters. Given the rotational invari-

ance of the incoherent state, we expected this degeneracy. The incoherent state

is linearly stable if and only if the real parts of these eigenvalues are less than or

equal to zero. Using κ ≥ 0 and ω0 ≥ 0 we find the stability boundary as

∆ = 1 +


√
κ2 − ω2

0 for κ ≥ ω0

0 otherwise
, (4.11)

which can be confirmed by perturbing the uniform distribution f(ω, θ, t) = (2π)−1;

see Montbrió and co-workers266 or Okuda and Kuramoto273. Crossing this bound-

ary for κ≥ω0 corresponds to a degenerated transcritical bifurcation, while crossing

the half line ∆=1 resembles a degenerated supercritical Hopf bifurcation; see Fig.

4.2, where the red plane displays the Hopf bifurcation and the orange cone the

transcritical one.

Figure 4.2: Bifurcation bound-
aries. Red plane: Hopf, or-
ange cone: transcritical, green
plane (within green lines): sad-
dle node, blue: homoclinic bi-
furcation. Blue line: Saddle-
node loop curve, yellow: inter-
section of Hopf and SN, black
lines: cross-section at κ = 0.8,
see also Fig. 4.4.

notation of271.
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Bifurcation analysis of the coherent state

Coming back to the system (4.9) we realize that its fixed points satisfy 1−∆−q=

κ(1 − q) cosψ and ω0 = κ(1+q) sinψ. Combining these using cos2 ψ+sin2 ψ = 1

yields κ2 = ((1−∆−q)/(1−q))2 + (ω0/(1+q))2, or, equivalently,

ω0 = ±1 + q

1− q
√

∆(2− 2q −∆)− (1− κ2)(1− q)2 (4.12)

as the implicit form of a hyperplane of fixed points qs = qs(ω0,∆, κ). After in-

serting ∂ω0/∂q = 0 in (4.12), the solution ω0 = ω0(∆, κ) forms a surface (green

in Fig. 4.2) across which a saddle-node bifurcation appears. If both subpop-

ulations contain oscillators with identical natural frequencies ωσ, i.e. if ∆ = 0,

then the saddle-node curve emerges from κ = ω0/2. We stress this because in

the literature the saddle-node curve has only been approximated numerically,

while here we find that the Ott-Antonsen ansatz allows for deriving an ana-

lytical solution in a straightforward manner. The saddle-node plane starts at

(ω0,∆) = (2κ, 0) and approaches tangentially the transcritical bifurcation plane

at (ω0,∆) = 1/4
(√

8κ2−2+2
√

1 + 8κ2, 3+
√

1+8κ2
)

. This solution is consistent

with the intersection point (ω0,∆)κ=1 =
(√

3/2, 3/2
)

reported in271.

Can a change in κ lead to new bifurcation behavior?

To show that the parameter κ does not lead to qualitatively new macroscopic

behavior, we let G1(q, ψ; ∆, ω0, κ) denote the right-hand side of (4.9) and define

G2(q, ψ; ∆, ω0, κ)=det
{
∂(q,ψ)G1(q, ψ; ∆, ω0, κ)

}
. For κ = 1 it follows that

G(q, ψ; ∆, ω0, κ) :=

(
G1(q, ψ; ∆, ω0, κ)

G2(q, ψ; ∆, ω0, κ)

)
= 0 (4.13)

along the saddle-node curve; cf. Eq. (33) in271. According to the implicit function

theorem, there is no qualitative change in the (∆, ω0)-bifurcation diagram if

∂κG(q, ψ; ∆, ω0, κ) 6= 0 (4.14)

for any neutrally stable fixed point (q, ψ; ∆, ω0, κ) =: x. Here, however, we have

to extend this to a family of fixed points xs = x(∆) along the saddle-node curve

parametrized by ∆. Therefore, if (4.14) holds for a fixed point x1, i.e. if ∂κG(x1) 6=
0, then we still may end up at another point x2 on that curve. We circumvent this

case by also requiring for any arbitrary a ∈ R

∂κG1(q, ψ; ∆, ω0, κ) 6= a·∂∆G1(q, ψ; ∆, ω0, κ) (4.15)
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at every point along the saddle-node curve. Fig. 4.3 shows that the inequality

(4.14) holds for all xs. We note that, because ψ̇ is independent of ∆, it suffices to

consider only the second equation of ∂κG1, which is non-zero for 0≤∆<4. That

is, the bifurcation diagram is persistent against (small) perturbations around κ=1

and there are no bifurcations of co-dimension larger than 2.

Δ

∂κG1

0.5 1 1.5 2 2.5

- 1

- 2

a) Δ

∂κG2

0.5 1 1.5 2 2.5
- 0.05

- 0.15

- 0.25

b)

Figure 4.3: Partial derivatives of ∂κG along the saddle-node-plane at κ = 1; (a) first
(blue) and second (orange) component of ∂κG1(∆), (b) ∂κG2(∆).

Multistability and oscillatory regimes

As to co-dimension 2 bifurcations, Martens and co-workers suggested the existence

of saddle-node loop bifurcation points on the saddle-node plane below the Hopf

bifurcation that can be identified numerically. In fact, the reduced dynamics (4.9)

has a Jacobian along the saddle-node plane that is (conjugate to) a diagonal matrix

with only one zero eigenvalue in the parameter range under study. This underlines

the saddle-node character of that plane, but more importantly, it shows that these

equations cannot be exploited for bifurcation points of co-dimension 2.
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Figure 4.4: Bifurcation boundaries:
cross-section of Fig. 4.2 at κ <
1; red: Hopf, orange: transcriti-
cal, green: saddle node, blue: ho-
moclinic, blue point: saddle-node
loop bifurcation. Insets: (q, ψ)-
phase portraits (in polar coordinates)
in their specific parameter regions,
red circle: stable fixed point, gray:
unstable fixed point, green: sad-
dle point. The bistability region
(red/blue) overlaps with the oscilla-
tory regime (blue/gray). (a) Coexis-
tence of two stable fixed points, (b)
a stable fixed point outside a sta-
ble limit cycle, (c) the more regular,
stable limit cycle away from the SN
curve.

Numerical simulations demonstrate the existence of a multistability region; cf.
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Fig. 4.4 and Martens et al.’s Figs. 5 & 7a. Multistability has been reported inde-

pendently in266,269,271,273. The red parameter region, bounded by the transcritical

cone (orange curve), the Hopf plane (red) and the saddle-node plane (green), re-

veals the coexistence of another stable, but non-trivial fixed point next to the

stable incoherent solution (separated by a saddle point). In the blue parameter

region left to the saddle-node plane and below the red Hopf plane, the incoherent

solution has undergone a supercritical Hopf bifurcation such that a stable limit

cycle coexists with the pair of stable fixed and saddle points. For the transverse

stability properties of our solutions, i.e. stability against perturbations off the

symmetry ρ1 = ρ2, we refer to Section IV. in271. Due to the equivalence of both

the bimodal and the two subpopulation system, the stability results there can be

readily adopted. Note that the equivalence also holds when introducing small time

delays; see the Appendix of280.

Particularly interesting for future applications are the limit cycle oscillations in

the plane spanned by q cosψ and q sinψ, shown in Figs. 4.4(b) and (c). There,

both q(t + T ) = q(t) and ψ(t + T ) = ψ(t) mod 2π hold for all t ∈ R given a

fixed period length T = T (∆, ω0, κ). We study these oscillations in more detail

by introducing the global complex-valued order parameter z = (z1+z2)/2, whose

magnitude |z| = R reads[3]

R =
ρ√
2

√
1 + cosψ (4.16)

with ρ =
√
q. If ψ̇(t) 6= 0, then R(t) will oscillate. We would like to note that

in this case oscillations in R would be even observable without q being periodic.

However, for all parameter values outside the oscillatory regime, the dynamics

contains stable fixed points at which obviously ψ̇ = 0, i.e. R → const. As can be

seen in Fig. 4.4(b), the limit cycle is deformed: it is neither circular nor symmetric

about the origin. Then, also q oscillates, i.e. not only the global order parameter

R oscillates, but so do the local ones ρ = ρ1 = ρ2. For larger ω0 the limit cycle

gains symmetry, but does not become a perfect circle. Hence oscillations contain

higher harmonics; see Fig. 4.4(c). Future studies will address more details of the

parameter dependency on the frequency and amplitude of the ρ and R oscillations

as well as on their relative phase shift.

Summary of the bifurcation scheme

Figs. 4.5 and 4.6 provide a comprehensive overview of the bifurcation scheme of

system (4.9). The red plane displays the supercritical Hopf bifurcation while the

[3] The absolute value of the global order parameter z reads in general: R = |z| =
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Figure 4.5: Bifurcation boundaries – back view of Fig. 4.2. Red plane: Hopf, orange
cone: transcritical, green plane (within green lines): saddle node, blue: homoclinic
bifurcation. Blue line: Saddle-node loop curve, yellow: intersection of Hopf and SN,
black lines: cross-section at κ = 0.8, see also Fig. 4.6.

orange cone represents the transcritical bifurcation. Between the green curves we

find the saddle-node plane, which denotes the parameter values, for which a pair of

a stable fixed point and a saddle point emerges as a neutral fixed point. Along the

saddle-node plane, however, we have to distinguish two cases of this bifurcation.

For all points on the plane with ∆ bigger than some critical value ∆c, the neutral

fixed point emerges away from the stable limit cycle (for ∆ ≤ 1), or away from

the stable incoherent solution (∆ ≥ 1). For ∆ ≤ ∆c < 1 the creation of that

fixed point takes place directly on the limit cycle, where ∆c denotes the value for

the co-dimension 2 bifurcation points (blue) on the green plane in Fig. 4.5 — for

κ = 1 this critical parameter is ∆ = ∆c ≈ 0.7384. In particular, the emergent

fixed point is about to split into a pair of a stable fixed point and a saddle point,

therefore it destroys the limit cycle by forcing the period to infinity. This is

a saddle-node infinite-period bifurcation (SNIPER or SNIC). The (blue) critical

1
2

∣∣ρ1eiφ1 + ρ2eiφ2
∣∣ = 1

2

√
ρ21 + ρ22 + 2ρ1ρ2 cos(φ2−φ1).
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Figure 4.6: Bifurcation boundaries (left) and bistability region (dashed / right): cross-
section of Fig. 4.5 at κ < 1. Red: Hopf, orange: transcritical, green: saddle node, blue:
homoclinic, blue point: saddle-node loop bifurcation. Insets: (q, ψ)-phase portraits (in
polar coordinates) in their specific parameter regions, red circle: stable, gray: unstable
fixed point, green: saddle point. The right figure is a detailed view of the dashed box in
the left figure.
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curve ∆c = ∆c(ω0, κ), which separates the two types of saddle-node bifurcations,

consists of saddle-node loop bifurcation points, which are also bifurcation points

of co-dimension 2.

Furthermore, numerics reveals a plane connecting the (blue) saddle-node loop

curve with the (red) curve {∆ = 1, κ = ω0 |κ, ω0 ≥ 0}. The latter curve comprises

the parameter values for which the saddle point (emerging from the saddle-node

bifurcation) collapses with the stable incoherent solution, which then becomes

unstable. Along the blue plane in Fig. 4.5, a homoclinic bifurcation takes place.

Here, the saddle point approaches the limit cycle, which is therefore destroyed in

the end. Fig. 4.6 displays the cross-section at κ = 0.8 of the three-dimensional

bifurcation boundaries, and elucidates the generic dynamical behavior within the

corresponding parameter regions. As we have proven above, this cross-section is

representative for all κ > 0. Unfortunately, analytic formulas for the homoclinic

and saddle-node loop bifurcations are still missing both in the bimodal case as well

as in the subpopulation approach, and we have to rely on the numerics.

4.4 Extension to three interacting populations

Given that two coupled networks and networks with bimodal frequency distri-

butions are equivalent, it appears obvious to search for generalizations. Can we

derive a similar equivalence, as before, between multiple coupled unimodal net-

works and networks with symmetric multimodal frequency distributions? Ander-

son and co-workers studied communities of oscillators in systems with multiple

subpopulations281. They included mixes of attractive and repulsive couplings (in

our notation Kint and Kext should differ in sign) rendering the dynamics too di-

verse for analytical treatment. Closer to our approach, however, is the work by

Komarov and Pikovsky282 who showed a variety of synchronization characteristics

as well as the emergence of chaotic states in the case of three positively coupled

subpopulations. Thereby, they extended the numerical results for a trimodal net-

work driven by noise283; see also our comment above about noise driven networks

with δ-functions as frequency distributions.

We sketch the case of three subpopulations with a unimodal Lorentzian fre-

quency distribution each: gσ(ω) = (Λ/π)/((ω−(−$0, 0,+$0))2+Λ2) with peaks at

(−$0, 0,+$0) [4]. This is compared with oscillators with a symmetric trimodal fre-

quency distribution: g(ω) = β·g1(ω)+α·g2(ω)+β·g3(ω) with α = (4$2
0−2Λ2)/(12$2

0),

[4] $0 is assumed to be sufficiently large to guarantee isolated peaks and all distributions have
width Λ.
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and β = (4$2
0 +Λ2)/(12$2

0) [5]. The two systems read

θ̇k = ωk +
K

3N

3N∑
j=1

sin(θj − θk) (4.17a)

θ̇σ,k = ωσ,k +
3∑

τ=1

Kσ,τ

N

N∑
j=1

sin(θτ,j − θσ,k) , (4.17b)

where Kσ,τ = K|σ−τ | with K0 denoting the internal coupling strength Kint within

each population, K1 the coupling strength between adjacent populations, and K2

that between distant populations, see Fig. 4.7. In (4.17a) we have k = 1, . . . , 3N ,

2Δ 2Δ2Δ

K2

K1K1

KintKintKint

a) b) g(ω)

-ω0 ω0 ω0

Figure 4.7: (a) Three all-to-all coupled networks; (b) symmetric trimodal frequency
distribution function.

while in (4.17b) k = 1, . . . , N and σ = 1−3. When considering the thermodynamic

limit, however, both systems consist of a continuum of oscillators. As before, we

introduce (local) order parameters zσ = ρσe
iφσ . Since the two outer populations

are considered symmetric, we use ρ13 ≡ ρ1 = ρ3 and φ2 − φ1 = φ2 − φ3 := ψ. By

this we find the dynamics of (4.17a) after rescaling τ = (K/2) · t and ω0 = 2$0/K

and ∆ = 2Λ/K and κα = α and κβ = β as

ρ̇13 = ρ13

[
−∆+

(
1−ρ2

13

)(
κα

ρ2

ρ13

cosψ+κβ(1+cos 2ψ)

)]
ρ̇2 = ρ2

[
−∆+

(
1−ρ2

2

)(
κα+2κβ

ρ13

ρ2

cosψ

)]
(4.18)

ψ̇ = ω0−
(
1+ρ2

13

)(
κα

ρ2

ρ13

sinψ+κβ sin 2ψ

)
.

Accordingly, we rescale system (4.17b) using K=Kint+K1+K2 and τ = (K/2) · t,

[5] The symmetric trimodal distribution features three peaks of the distribution function that
have the same height. Our notion is not to be mistaken with the case where three symmetric
unimodal distributions, i.e. identical widths and centers symmetrically arranged, sum equally
up to form the trimodal distribution. Then, the middle peak is dominant, which we prevent
by weighting the central distribution less than the outer two.



Interactions between networks 137

∆ = 2Λ/K, ω0 = 2$0/K and abbreviate κα,β = 2K1,2/K, which yields

ρ̇13 = ρ13

[
−∆+

(
1−ρ2

13

)(
κ0+κα

ρ2

ρ13

cosψ+κβ cos 2ψ

)]
ρ̇2 = ρ2

[
−∆+

(
1−ρ2

2

)(
κ0+2κα

ρ13

ρ2

cosψ

)]
(4.19)

ψ̇ = ω0−
(
1+ρ2

13

)[
κα

ρ2

ρ13

sinψ+κβ sin 2ψ

]
,

where κ0 = 1 − κα − κβ. Both systems can display a richer dynamical behavior

than the dynamics (4.9) since they, e.g., contain coupling terms of first and second

harmonics, which may result in 2 : 1-phase synchronization. When it comes to

linking the two, we realize that they are only identical for the special case

κα = κβ = 1
3
⇒ α = β .

As α and β only differ by Λ2/(4$0), this implies Λ → 0, hence the distribution

function will consist of three δ-peaks and the inhomogeneity is strongly reduced.

As a consequence, the Ott-Antonsen manifold may not exhibit the whole dynamics

of our system82 and our description may remain incomplete, as has been found by

Martens for even stronger symmetry assumptions in a network of three popula-

tions, though including phase lags284. This is an arguably heuristic way of saying.

In the following, we would therefore like to show that for our symmetric setup the

dynamics of the two systems indeed differ qualitatively from each other.

Both systems can be described by the governing equations for ρ13, ρ2 and ψ.

This enabled us to reduce the originally six-dimensional dynamics with zj ∈ C
to three dimensions. Furthermore, the control parameters are ∆ and ω0, and

the coupling parameters are κα and κβ. In the symmetric trimodal case, the

latter two are already fully described by the corresponding control parameters,

i.e. κα,β = κα,β(∆, ω0). Thus, the bifurcation diagram is two-dimensional. In

contrast, in the three-network case we are free to choose κα, κβ as long as they

fulfill 0 ≤ κα,β < 1 and 0 ≤ κα + κβ < 1. This implies that the bifurcation

diagram becomes four-dimensional and we may be confronted with bifurcations of

co-dimension higher than 2.

4.4.1 Symmetric trimodal network

We first analyze the trimodal system with respect to fixed points and their stabil-

ity, which leads us to the bifurcation diagram presented in Fig.4.8a. We consider

(ρ13, ρ2, ψ) as cylindrical coordinates with ρ13,2 ∈ [0, 1] and ψ ∈ [0, 2π); ρ2 repre-

sents the height of the cylinder. For our symmetry assumptions, these variables
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Figure 4.8: (a) Bifurcation boundaries of the symmetric trimodal network. Curves
display a pitchfork (PF, orange), Hopf (HB, red), saddle-node (SN, green and dark red),
SNIPER (green) and homoclinic (HC, black) bifurcation. Points denote codimension 2-
bifurcations: Cusp (A), Bogdanov-Takens (B) and Saddle Node Loop (C). (b) Order
parameter R versus ∆ for fixed ω0 according to the dashed lines a),b),c) in Fig.4.8a.
Solid lines denote stable, dashed lines unstable fixed points. The dark red line in c)
denotes maximum amplitude of the (stable) limit cycle around the unstable fixed point.
When the upper unstable fixed point coalesces with the limit cycle, oscillations cease in
an homoclinic (HC) bifurcation.

fully represent the order parameter dynamics of the system (4.17a) away from the

incoherent solution

z = 1
3

(z1 + z2 + z3) ≡ 0 , (4.20)

since for zj = 0 the phases φj, and hence ψ are not defined. Nevertheless, the

cylindrical dynamics (4.18) still indicate the origin ρ13 = 0 = ρ2 as a fixed point,

so that the dynamical picture remains valid for ρ13,2 ≥ ε > 0 with ε arbitrary

small. The system exhibits the symmetry (ρ13, ρ2, ψ) 7→ (−ρ13,−ρ2, ψ), such that

the cylinder defined above can be point mirrored about the origin to ρ2 ∈ [−1, 0].

In due course, bifurcation points as well as bifurcating branches off the incoherent

solution will always appear in pairs (±ρ∗13,±ρ∗2, ψ∗).
Having this said, we can focus on the bifurcation diagram Fig.4.8a. The orange

curve denotes a pitchfork (PF) bifurcation of the incoherent solution z = 0, at

which it loses stability for ∆ < ∆PF (ω0). Point A = (ωA,∆A) ≈ (0.614, 0.418)

(green) on the curve denotes the point where the PF bifurcation changes from sub-

critical (ω0 < ωA) to supercritical (ω0 > ωA). Let us first consider the parameter

region where the PF bifurcation is subcritical, see, e.g., the dashed gray vertical

line a). At the PF point there are two unstable solution branches bifurcating off

the incoherent solution (∆ > ∆PF ), which gain stability via a saddle-node (SN)

bifurcation (green curve). Between the SN and the PF curves we find bistabil-

ity of the stable incoherent solution together with a non-trivial fixed point – the
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branch with ρ2 < 0 is not a physical solution as here the global order parameter

has negative absolute value, |z| < 0.

Beyond point A the incoherent solution undergoes a supercritical PF bifurcation

(ω0 > ωA). The stable branches can then either lose stability via a SN bifurcation

(dark red, ω0 < ωB), which will be regained via a second SN bifurcation at the

green curve, or the branches undergo a Hopf bifurcation (HB), see the red curve,

beyond which we have oscillations of the order parameter. The point B (red),

which distinguishes the two cases, is a Bogdanov-Takens point (co-dimension 2).

Interestingly, oscillations can also cease. One possibility for this is that the unstable

branch of the (green) SN bifurcation coalesces with the limit cycle, leading to a

homoclinic (HC) bifurcation (black/dashed). The other possibility is that the SN

bifurcation takes place directly on the limit cycle, leading to a SNIPER (saddle-

node infinite period, or SNIC) bifurcation (green). The point C (dark blue),

where the SN, HC, and SNIPER curves meet, is referred to as a saddle-node loop

bifurcation; see also the discussion above for two coupled networks, Section 4.3.

Alternatively, we can characterize solutions via the behavior of the (global)

order parameter z(t), which evolves in the complex unit disc. To compare our

results with283, we focus on the absolute value R(t) = |z(t)| ∈ R that reads in the

cylindrical variables

R(t) = 1
3

√
2ρ2

13 + ρ2
2 + 4ρ13ρ2 cosψ . (4.21)

Fig. 4.8b displays the typical behavior of R along the dashed gray vertical lines

a), b), c) in Fig. 4.8a. Since we are only interested in physical solutions, we

concentrate on R(t) ∈ [0, 1]. For small values of ω0 < ωA ≈ 0.614 – in scenario a)

in Fig. 4.8 we used ω0 = 0.4 –, there is a subcritical pitchfork bifurcation (orange

dot), where R ≡ 0 loses stability. The off-branching solution is first unstable

and gains stability at the saddle-node point (SN, green). For ∆PF ≤ ∆SN we

find multistability of two fixed points. In scenario b) in Fig. 4.8 we consider

ω0 = 0.672 > ωA. Here, the PF bifurcation of R ≡ 0 is supercritical. The non-

trivial stable solution loses stability at the first SN point (dark red), before it

regains stability at the second SN point (green). During this snaking behavior,

we find multistability of the incoherent solution with a non-trivial solution for

∆PF ≤ ∆ ≤ ∆SN,green, and of two non-trivial solutions for ∆SN,red ≤ ∆ ≤ ∆PF .

This is typical near cusp bifurcations, because of which point A in Fig. 4.8a can

be considered a (degenerate) cusp point. For even larger ω0, e.g., ω0 = 0.8 as

in scenario c) in Fig. 4.8, the incoherent solution loses stability at ∆PF and then

the stable branch undergoes a Hopf bifurcation (HB, red dot). In between, a SN

bifurcation appeared at ∆SN , where the stable branch is monotonic increasing and
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the unstable branch decreases until it touches the limit cycle at ∆HC . At this point

the oscillations, whose upper bound is depicted as a red dashed curve, cease in a

homoclinic bifurcation.

We would like to remark that our findings confirm earlier results by Acebrón

and co-workers283. Furthermore, we extend the theory for a symmetric trimodal

Kuramoto model with a qualitative bifurcation analysis of all the fixed points.

In particular, all bifurcation boundaries found in Fig. 4.8a could be derived an-

alytically (except for a numerical approximation of the HC curve), which again

manifests the capacity of the OA ansatz.

4.4.2 Three coupled symmetric networks

With a proper bifurcation diagram of the symmetric trimodal network at hand,

we now focus on the network consisting of three all-to-all coupled symmetric pop-

ulations each with a unimodal frequency distributions, see schematic in Fig. 4.7a).

The external coupling strengths K1,2 for near and distant interactions across sub-

population boundaries, respectively, led to two additional bifurcation parameters

κα,β in the order parameter dynamics. Using the symmetry assumptions as pre-

sented above, we are able to describe this dynamics as a 3-dimensional system of

coupled ODEs with in total four bifurcation parameters. A description of the full

bifurcation scheme is beyond the scope of the paper. However, in order to disprove

the claim that three coupled networks and the trimodal network are topologically

equivalent, at least in the symmetric case considered here, it suffices to present a

single counter example.

We consider again the cylindrical coordinates (ρ13, ρ2, ψ), whose dynamics are

given by (4.19). Transforming them into Euclidean coordinates (x, y, z) in the

cylinder

Z =
{

(x, y, z) ∈ R3 | 0 ≤ x2 + y2 ≤ 1 and 0 ≤ z ≤ 1
}

with x = ρ13 cosψ, y = ρ13 sinψ and z = ρ2, the dynamics in Euclidean space read

ẋ = −∆x− ω0y + (1− κα − 2κβ)(1− x2 − y2) + (1− x2 + y2)(καz + 2κβx) ,

ẏ = −∆y + ω0x+ (1− κα − 2κβ)(1− x2 − y2)− 2καxyz − 4κβx
2y ,

ż = −∆z + (1− z2) [(1− κα − κβ)z + 2καx] .

(4.22)

For κα + 2κβ 6= 1 the origin (0, 0, 0) is no longer a fixed point of the transformed

system (4.22). This shows that the introduction of polar coordinates zj = ρje
iφj is

only valid away from the incoherent solution zj = 0 = ρj for all j = 1, 2, 3. Note

that for the full six-dimensional dynamics, the incoherent solution z = (z1 + z2 +
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z3)/3 ≡ 0 is always a solution. However, the subsequent transformations into polar,

cylindrical and Euclidean coordinates show that the reflection symmetry as in the

trimodal case breaks down in three population approach when we choose coupling

parameters off the line {κα + 2κβ = 1}. Hence, we expect already here qualitative

changes of the bifurcation boundaries from those obtained in the trimodal case.

Moreover, we can detect a qualitative difference for more similar settings, i.e.

when reflection symmetry is maintained. Therefore, we assume in the following

that κα + 2κβ = 1. In fact, the κα,β of the trimodal network do fulfill this prop-

erty. A bifurcation analysis of system (4.22) with respect to fixed points and

their stability equivalent to Section 4.4.1 reveals the following bifurcation diagram

Fig. 4.9. Note that here we fixed the coupling parameters to κα = 0.4 and κβ = 0.3.
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Figure 4.9: Bifurcation boundaries of three coupled symmetric networks with coupling
parameters κα = 0.4 and κβ = 0.3. Colors and abbreviations correspond to those in Fig.
4.8a.

Nonetheless, we consider this example representative. We achieved similar bifur-

cation diagrams for a broad variety of parameter choices, even if we allowed κα,β

to depend on ∆ and ω0 as in the trimodal case. Comparing Figs. 4.8a and 4.9, one

recognizes similar bifurcations, such as a pitchfork (PF, orange), a Hopf (HB, red),

two saddle-node (SN, green and dark red), a SNIPER (green), and a homoclinic

(HC, black/dashed) bifurcation curve. The major difference, however, is that the

PF bifurcation of the incoherent solution is supercritical for all parameter values

∆ ≥ 0, ω0 ≥ 0. Moreover, the point A moves down in the parameter space away

from the PF curve. There, it becomes a cusp point (CP), from which both SN

curves (green and dark red) emerge. It is true that we still find a multistability

region bounded by the SN and the HC curves, see also the inset in Fig. 4.9. Above

the HB curve, there are two stable non-trivial fixed points, while below the HB

curve a stable fixed point and a stable limit cycle coexist. However, we do not

find stable solutions coexisting with the incoherent solution while being stable.

Therefore it is safe to argue that the symmetric trimodal network and the network

of three coupled symmetric populations are not topologically equivalent.
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4.5 Discussion and conclusion

The Ott-Antonsen ansatz strongly boosted the analysis of Kuramoto models. Net-

works are assumed to consist of a continuum of oscillators, whose long-term dynam-

ical behavior can be derived in the thermodynamic limit. Of particular interest

for this paper is the extension to multiple coupled networks. A simple change

of variables may transform two symmetrically coupled networks (with oscillators

whose natural frequencies follow a unimodal distribution each) into one global

network where the natural frequencies are drawn from a symmetric bimodal dis-

tribution. When assuming that internal and external coupling strengths in the

two-population case differ, this transformation breaks down, and one is left with

an additional degree of freedom. As we have proven in this paper, the additional

parameter does not lead to new bifurcations but leaves both systems topologically

equivalent. Stability, dynamics, and bifurcations of a symmetric two population

system of phase oscillators are equivalent to a single population with a bimodal

frequency distribution. This topological equivalence can also be shown when in-

troducing small symmetric time-delays that allows for a phase-lag parameter re-

duction.

In the second part we aimed for generalizing the equivalence between multi-

modal and multiple coupled networks. However, already for the case of three

subpopulations, where we adapted the same symmetry assumptions as in the two-

population/bimodal case, this equivalence does no longer hold. Our symmetry

assumptions are admittedly restrictive. Above all they only represent a slice of

possible network configurations. That is, we cannot claim that the dynamics dis-

cussed here should be considered generic or not. However, our example clearly

shows that the symmetric bidirectional coupling topolgy (cf. K1,2 in Fig. 4.7) does

not admit its dynamics to be described by a single network of oscillators whose

natural frequencies follow a symmetric trimodal distribution. A detailed analysis

in the presence of asymmetries in both the two-population/bimodal approach and

the multiple populations/multimodal networks is beyond the scope of the present

paper but will be published elsewhere285.

Throughout the paper we based our work on the original Kuramoto model, a net-

work of phase oscillators that are all-to-all coupled through the sine of the pairwise

phase differences. Coupling two of such networks leads to new long-term behavior

such as partially-synchronized states, so-called chimeras in the case of identical

oscillators see, e.g., 286. Also, multistable regimes and oscillatory solutions are pos-

sible. For sure, non-local coupling, the introduction of phase-lag parameters as

in265,266,284, or of more general time-delays see, e.g., 287, would have further enriched

the dynamics. Recently, Martens, Bick and Panaggio investigated how the intro-



Interactions between networks 143

duction of heterogeneous phase-lags in our two-population-scenario of Section 4.3

shapes the dynamics. The additional control parameters were internal versus ex-

ternal phase-lag parameters next to (internal and external) coupling strengths and

the intrinsic frequency ω. Assuming only homogeneous oscillators in both popu-

lations renders the OA ansatz not applicable in a rigorous way. However, it has

been argued that in the limit of zero width of the frequency distribution, ∆→ 0,

the assumption of “nearly identical” oscillators enabled the authors to analyze

the system analytically288. Interestingly, they found chaotic attractors and reso-

nance effects, which shows again the variety of dynamics of a mere two-population

system, and highlights the importance to really understand their behavior.

In our two-population/bimodal scenarios the governing dynamics could be re-

duced to be effectively two-dimensional. Hence, they cannot exhibit chaos. On the

other hand, in the three-population/trimodal network chaotic trajectories should

be possible. Though our focus mainly lay on (disproving) the equivalence between

the different approaches, a full picture should also take chaos in both systems into

account by assessing maximal Lyapunov exponents289 see also 284,288.

Away from the symmetry assumptions considered throughout this work, but also

when dealing with non-local coupling, phase-lag parameters, general time-delay or

even finite-sized networks, i.e. in particular when the OA ansatz can no longer

be applied, topological equivalences, or even (weaker) correspondences between

multimodal and multiple coupled networks have to be demonstrated in order to

show that coupled networks and networks with multimodal frequency distributions

are equivalent, indeed. The analytic tractability of the Ott-Antonsen ansatz helped

us to rigorously prove first results about similarities and differences between these

two approaches. We believe that, despite the limited range of application of such

models, our findings can be assumed seminal for a broader variety of models, and

therefore will further enlighten the view on an accurate interchangeability of the

notions of multimodal networks and coupled unimodal networks, which in the

end will increase the flexibility to derive and specify models in diverse fields of

applications.
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ChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapter 5
Parameter-dependent oscillatory

systems

The Ott-Antonsen (OA) ansatz [Chaos 18, 037113 (2008), Chaos 19, 023117

(2009)] has been widely used to describe large systems of coupled phase oscilla-

tors. If the coupling is sinusoidal and if the phase dynamics does not depend on

the specific oscillator, then the macroscopic behavior of the systems can be fully

described by a low-dimensional dynamics. Does the corresponding manifold re-

main attractive when introducing an intrinsic dependence between an oscillator’s

phase and its dynamics by additional, oscillator specific parameters? To answer

this we extended the OA ansatz and proved that parameter-dependent oscillatory

systems converge to the OA manifold given certain conditions. Our proof confirms

recent numerical findings that already hinted at this convergence. Furthermore we

offer a thorough mathematical underpinning for networks of so-called theta neu-

rons, where the OA ansatz has just been applied. In a final step we extend our

proof by allowing for time-dependent and multi-dimensional parameters as well as

for network topologies other than global coupling. This renders the OA ansatz an

excellent starting point for the analysis of a broad class of realistic settings.

Adapted from: Pietras B., Daffertshofer A. (2016). Ott-Antonsen attractiveness

for parameter-dependent oscillatory networks. Chaos 26, 103101.

doi: 10.1063/1.4963371.
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5.1 Collective dynamics and parameter dependence

Coupled phase oscillators are being widely used to describe synchronization phe-

nomena. The study of their collective dynamics has experienced a major break-

through by the results by Ott and Antonsen81–83. The asymptotic behavior of

the mean field of infinitely many coupled oscillators can be cast into a reduced,

low-dimensional system of ordinary differential equations. The evolution is hence

captured by the so-called Ott-Antonsen (OA) manifold.

Very recently, the OA ansatz has been applied to networks of theta neurons
see, e.g., 290–296. A particular property of coupled, inhomogeneous theta neurons

is that both the phase of a single neuron as well as its dynamics depend on a

parameter, which establishes an intrinsic relation between them. While numerical

results suggest the attractiveness of the OA manifold in the presence of such a

parameter dependence, it has as to yet not been proven whether the dynamics

really converges to it. For a certain class of parameter dependencies we here extend

the existing theory of the OA ansatz and show that the OA manifold continues to

asymptotically attract the mean field dynamics.

Parameter-dependent systems and their description through the OA ansatz

have been considered by, e.g., Strogatz and co-workers297, Wagemaker and co-

workers298, and So and Barreto299. There, parameters seemingly did not yield a

correlation between an oscillator’s phase and its dynamics but a rigorous proof for

this is still missing. We explicitly address this last point. In particular, we prove

a conjecture later formulated by Montbrió and co-workers293 on the attractiveness

of the OA manifold for parameter-dependent systems. The case of parameters

serving as mere auxiliary variables readily follows from our result – we will refer

to this as “weak” parameter dependence[1]. By showing that a network of theta

neurons can be treated as a parameter-dependent oscillatory system, our result

establishes an immediate link to networks of quadratic integrate-and-fire (QIF)

neurons: That is, the so-called Lorentzian ansatz as an equivalent approach to

the OA ansatz is analytically substantiated. By this we may exert an important

impact in mathematical neuroscience.

Finally, we extend the parameter dependence for more general classes of net-

works. First, we address non-autonomous systems and show that our proof can be

applied to time-varying parameters. An important example here is a biologically

[1] Parameter-dependent systems comprise a wide class of systems, from which we here only
choose a single family. This family represents a rather weak parameter-dependent system.
However, we refrain from this notion since weak parameter dependence would imply that
parameter changes have little to no considerable effect. Here, the original proof by Ott and
Antonsen has to be changed, such that the parameter effect can be strong. We use the
attribute “weak” to highlight that a specific oscillator does not depend on the additional
parameter but its mean field dynamics only.
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realistic approach to oscillatory systems proposed by Winfree85. Second, we in-

clude multiple distributed parameters illustrated by coupled limit-cycle oscillators

with shear. Third, we apply our proof to networks with different coupling topolo-

gies including non-local coupling by using an heterogeneous mean field approach.

5.2 Extending the Ott-Antonsen ansatz for

parameter-dependent systems

The Kuramoto model can be considered the most seminal description of globally

coupled networks of phase oscillators. It has been investigated in great detail but

its various extensions still make it the model-to-work-with when it comes to the

study of network dynamics39,264. We adopt the notion of Montbrió, Pazó, and

Roxin293 and write the Kuramoto-like model as

θ̇j = ωj + Im
[
He−iθj

]
, (5.1)

where the phase dynamics of the j-th oscillator (j = 1, . . . , N) depends on its

natural frequency ωj and a driving complex-valued field H. The latter can depend

on time t, on the mean field z(t) =
∑N

j=1 eiθj(t), and on other auxiliary variables,

but not on the (index of) oscillator, i.e. it remains identical for all oscillators

j = 1, . . . , N . Given the right-hand side of (5.1), the oscillators are sinusoidally

coupled.

In the thermodynamic limit (N → ∞) the OA ansatz yields solutions for the

dynamical evolution of the corresponding distribution function (of all the oscilla-

tors), which are attracted towards a reduced manifold of states81,82. Central to

this is the description of the system via its distribution density ρ(θ, ω, t). The

quantity ρ(θ, ω, t) dθ dω is the fraction of oscillators whose phases are in the range

[θ, θ+dθ] and have natural frequencies in [ω, ω+dω] at time t. The distribution

function ρ obeys the continuity equation

∂tρ+ ∂θ (ρν) = 0 (5.2)

with velocity field

ν(θ, ω, t) = ω + Im
[
H(t)e−iθ

]
. (5.3)

The latter can equivalently be written as297,298

ν(θ, ω, t) = feiθ + h+ f ∗e−iθ . (5.4)

In agreement with the assumptions on H we require that the functions f and h
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may explicitly depend on time t, on the (now continuum form of the) mean field

z(t) =
∫∞
−∞

∫ 2π

0
ρeiθdθdω, and on other auxiliary variables, but not on the the phase

θ itself.

Asymptotic attractiveness of the OA manifold, given by distribution functions

of the form

ρ(θ, ω, t) =
g(ω)

2π

{
1 +

[
∞∑
n=1

α(ω, t)neinθ + c.c.

]}
(5.5)

that satisfy the normalization condition∫ ∞
−∞

∫ 2π

0

ρ(θ, ω, t) dθ dω = 1 , (5.6)

has been proven for continuous frequency distribution functions g(ω) of non-zero

width and for H being independent of θ; c.c. stands for complex conjugate. Other

requirements include |α(ω, t)| ≤ 1, and some analytic continuity conditions.81,82

In what follows we extend this approach by rigorously proving the asymptotic

attractiveness of the OA manifold in the case of H and ω depending on an ad-

ditional parameter η that may also influence θ. Equivalently, we include a time-

and η-dependence of f and h in (5.4). By this, we allow for an intrinsic relation

between θ,H, and ω, or θ, f , and h, respectively. As of today, the attractiveness

of the OA manifold in the (time- and) parameter-dependent case has only been

hypothesized178,297 but not proven.

5.2.1 Parameter-dependent systems

When including additional parameters at the oscillator level, the dynamics (5.1)

becomes

θ̇j = Ω(ωj, ηj) + Im
[
H(ηj, t) e−iθj

]
. (5.7)

The natural frequency Ω of oscillator j may therefore deviate from ωj, which

promotes further heterogeneity among oscillators. Moreover the driving field H

may depend on ηj. The right-hand side of (5.7) expresses a certain dependence on

the (index of the) j-th oscillator. Hence, such a dependence is no longer exclusive

to the sinusoidal coupling, but also affects the natural frequency Ω(ωj, ηj) and the

driving field H(ηj, t) .

When considering η a random variable, we may regard ηj to be drawn from a

distribution function g(η). Likewise ωj may be drawn from a (different) distribu-

tion function. The oscillator-specific parameter ηj may change this distribution

function in the oscillator’s favor. Therefore, we here incorporate a joint distri-

bution g(ω, η) in the normalization condition (5.6). In general, ω and η are not

independent and the joint distribution consists of two nested distributions. We
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hence replace Ω(ωj, ηj) by ω(ηj). Then, in the continuum limit (5.7) reads:

∂tθ(η, t) = ω(η, t) + Im
[
H(η, t) e−iθ

]
. (5.8)

The relation through η becomes now even more evident as the temporal derivative

of θ has become partial.

Again, one can introduce a distribution function ρ(θ, ω, η, t), which now addi-

tionally depends on η. And again, this distribution function satisfies the continuity

equation (5.2) with velocity field (5.8). In line with the parameter-independent

case, in which the distribution function g(ω) of the natural frequencies ω had non-

zero width81,82, we assume that the distribution function g(η) of the parameter η

also has non-zero width. The frequency ω, thus, cannot be constant but depends

on η. Likewise, the driving field H depends on η. Importantly, these two terms

exhibit so an implicit dependence on θ, such that the proof for the attractiveness

of the OA manifold as has been derived in82 may no longer hold. However, there is

strong numerical incentive that the OA manifold fully covers the long-term behav-

ior of the dynamics of the population of parameter-dependent phase oscillators,

see e.g., 178,290–296,300–304.

In the following we demonstrate the proof of this conjecture for a particular class

of parameter-dependent systems. We consider η to follow a Lorentzian distribution

and assume that ω depends linearly on η, i.e. ω(η, t) = a ·η+c, where, without loss

of generality, we set a = 1 and consider c = c(t) ∈ L1,loc(R) a locally integrable,

and in particular piecewise smooth, function. Our line of argument follows closely

that of Ott and Antonsen82 but we extend their results whenever necessary. We

would like to note that our findings remain valid for a larger class of distribution

functions as has been depicted in detail in83. We will comment on this and consider

more general η-dependencies of ω in Sections 5.2.2 and 5.4.

Let g(η) be a Lorentzian centered around η = η0 with width ∆, i.e. g(η) ∼
L(η0,∆). For the aforementioned linear dependency ω(η, t) = a · η + c, we have

g̃(ω) = ĝ(η)∼L(η0 + c,∆) with frequency ω = ω(η) that, in general, will depend

on η. In this case ω is fully described by (the distribution of) η and the distribution

density reduces to ρ(θ, ω, η, t) = ρ(θ, η, t).[2] This can be expanded as a Fourier

series in θ similar to Eqs.(5&6) in82, where it is further decomposed into ρ(θ, η, t) =

ĝ(η)/(2π) · [1 + ρ+(θ, η, t) + ρ−(θ, η, t)]. Next to the assumption that the analytic

continuation of ρ+ (ρ−) into Im(θ)>0 (Im(θ)<0) has no singularities and decays

to zero as Im(θ) → +∞ (Im(θ) → −∞), we exploit the symmetry of the Fourier

expansion and focus on ρ+. In particular, we expect ρ+ to fulfill these conditions

[2] Alternatively, the dependence ω(η) may be constituted by considering ρ as a conditional
probability density ρ(θ, ω, t|η) = ρ(θ, ω|η, t) in line with293.
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initially, i.e. ρ+(θ, η, 0) can be continued into the complex η-plane, is analytic in

Im(η) < 0 and decays to zero for Im(η) → −∞. These conditions will then be

satisfied for all t > 0.81

We can further decompose ρ+ into two parts, ρ+ = ρ̂+ + ρ̂′+, where the inhomo-

geneous solution ρ̂′+ lies on the OA manifold and follows the dynamics given by

Eq.(9) in82. For the sake of completeness, this dynamics prescribes the evolution

of the Fourier coefficients ρ̂′+ to the form ρ̂′n(η, t) = [α(η, t)]n, and reads

∂tα + iηα +
1

2

(
Hα2 −H∗

)
= 0 . (5.9)

The quantity ρ̂+, on the other hand, is the (homogeneous) solution of

∂tρ̂+ + ∂θ

{[
ω +

1

2i

(
He−iθ −H∗eiθ

)]
ρ̂+

}
= 0 . (5.10)

Both the frequency ω and the field H may depend explicitly on η. To guarantee

that the dynamics (5.7), whose state at time t can be represented by the afore-

defined order parameter z(t) in its continuous form,

z(t) =

∫ ∞
−∞

∫ 2π

0

ρ(θ, η, t)eiθdθdη , (5.11)

is asymptotically attracted by the OA manifold, it suffices to show that

lim
t→+∞

∫ +∞

−∞
ρ̂+(θ, η, t)ĝ(η)dη = 0 (5.12)

holds.82 Before showing this, however, we would first like to remark that, without

loss of generality, the center of the Lorentzian frequency distribution ĝ(η) ∼ L(η0+

c,∆) can be considered zero since we may introduce a change of variables, θ̃ =

θ−(η0t+C(t)), where C(t) is an antiderivative of c(t). Furthermore, we can adjust

(5.12) by substituting ĝ by g.

If ρ̂+ is analytic in the lower half η-plane and decays to zero as Im(η) → −∞
as assumed above, one can multiply (5.10) by g(η)dη and integrate the result

by employing the residue theorem. Hence, the integrals can be evaluated at the

residue of the enclosed pole of g(η) at η = −i∆. We find

∂tρ̂+(θ,−i∆, t) + ∂θ

{
−i∆ · ρ̂+(θ,−i∆, t) +

1

2i

[∫ +∞

−∞
H(η, t)ρ̂+(θ, η, t)g(η)dη e−iθ −

∫ +∞

−∞
H∗(η, t)ρ̂+(θ, η, t)g(η)dη eiθ

]}
= 0 .
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The two remaining integrals can be determined provided that H and H∗ have no

singularities in the lower half η-plane and do not increase “too” fast for Im(η)→
−∞. Since g is a Schwartz function, that is, a smooth, rapidly decreasing function,

we only need H to diverge at most sub-exponentially. For common choices of H,

as listed in82, these requirements are met indeed, which yields

∂tf+(θ, t) + ∂θ [v(θ, t)f+(θ, t)] = 0 , (5.13)

v(θ, t) = −i
[
∆ +

1

2

(
e−iθH(t)− eiθH∗(t)

)]
. (5.14)

Here we substituted f+(θ, t) = ρ̂+(θ,−i∆, t) and H(t) = H(−i∆, t). These equa-

tions agree exactly with Eqs.(17 & 18) in82. Hence, following the same reasoning

around Eqs.(19-31) in82 one can conclude that (5.12) is fulfilled. To underscore

the line of argument, we would like to give a short sketch of the proof. First, by

introducing a conformal transformation of the upper half complex θ-plane into the

unit disc via w = eiθ, one can rewrite (5.13 & 5.14) as

d

dt
f̃+(w, t) + f̃+(w, t)∂wṽ(w, t) = 0 , (5.15)

where f̃+ and ṽ are the transformed functions from (5.13 & 5.14), and d/dt =

∂/∂t + ṽ∂/∂w. (5.15) can be integrated using the method of characteristics for

linear and homogeneous partial differential equations305. Here we require f̃+ ∈
C2(R) but ṽ does not need to be continuous. This yields

f̃+(w, t) = f̃+(W (w, 0), 0) exp [−µ(w, t)] , (5.16)

as solution with

µ(w, t) =

∫ t

0

∂w′ ṽ(w′, t′)|w′=W (w,t′) dt
′ , (5.17)

and the characteristics are given by

∂t′W (w, t′) = ṽ(W (w, t′), t′) , (5.18)

with final condition W (w, t) = w. Finally, in order to show that f̃+(w, t)→ 0 for

t→∞, which, by (5.16), we prove that

lim
t→∞

Re [µ(w, t)] = +∞ . (5.19)

The details for the rather lengthy computation can be found in82. We here we

would only like to mention that the integral in (5.17) is split into three distinct

parts, each of which is evaluated and while two of them remain bounded, the third
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diverges at the rate ∆t, presuming ∆ > 0. This eventually completes the proof

and underlines the importance that the distribution function g(η) must have non-

zero width ∆. We would also like to note that in the final step of the proof the

continuity of v is required, i.e. H in (5.14) must be continuous. If one includes,

e.g., square functions in the time-dependent parts of the frequency term and/or

driving field, one is confronted with jump discontinuities, which become present in

the right-hand side of (5.14) either directly or indirectly via the order parameter

z(t). A closer look at82, however, confirms that for small jumps the reasoning can

be guaranteed and for proper choices of a time constant T their Eq.(31) holds.

Thus, we can argue that OA attractiveness will be maintained even in the case of

discontinuities, which also confirms our rather long assumption for c(t) to be in

L1,loc(R) in the linear dependence of ω(η) = aη + c.

So far we only considered a Lorentzian distribution and some linear dependence

of ω on η. However, our result can be extended to a much broader class of dis-

tribution functions g(η), non-linear dependencies ω(η), or even joint distributions

g(ω, η) in the case of Ω(ω, η); see Section 5.2.2 below. Hence, it is proper to say

that the asymptotic attractiveness of the OA manifold for parameter-dependent

systems of coupled phase oscillators is generic. Note that the proof remains iden-

tical if θ = θ(t) does not depend on the parameter η, that is, when there is

no correlation between specific oscillators and their dynamics. We call this case

“weak” parameter dependence, which has been considered in several earlier studies
e.g., 178,297–299, where parameters were introduced as auxiliary variables. Our result

therefore confirms the attractiveness of the OA manifold also in this case, as has

simplifyingly been taken for granted in the afore-cited studies.

5.2.2 General parameter distributions

As already mentioned in Section 5.2.1, the assumptions of a linear relation be-

tween ω and η and of η being drawn from a Lorentzian can be loosened in many

respects. We first consider g(η) to still be a Lorentzian centered around η = η0

with width ∆, i.e. g(η)∼L(η0,∆). The linear dependency ω(η, t) = a · η + c may

be generalized by considering both a = a(t) and c = c(t) time-dependent. Then,

by the common transformation properties for Lorentzian (Cauchy) distributions,

ω follows a Lorentzian of the form g(ω)∼L(aη0 + c,∆|a|). Let a 6= 0 be constant.

Then a similar change of variables, θ̃ = θ − (aη0t + C(t)), with C(t) being the

antiderivative of c(t), keeps the distribution function centered around 0. Without

loss of generality we set a = 1; even if a = a(t) and a(t) > 0 or a(t) < 0 for all

t > 0, the rescaling of θ retrieves that we can stick to our assumption a = 1. If,

however, a changes sign at, e.g., t = t0, then the scale parameter ∆|a| tends to
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zero for t→ t0. Due to (5.5) also ρ(θ, ω, t) will exhibit a δ-peak at t = t0. In this

case our results are not readily applicable83. However, if ȧ(t0) 6= 0, then we can

shift the initial time to zero, t0 7→ 0. Whenever ρ+(θ, ω, t0) satisfies the necessary

initial conditions, the OA manifold will remain attracting for all t > t0, given that

t0 = max{t ∈ R | a(t) = 0}.
We proceed with more general cases of frequency and parameter distributions.

In83 the authors elegantly extend the original proof, which considers only Lorentzian

frequency distributions: Instead of demanding analytic continuity of both the fre-

quency distribution g(ω) and the initial condition into the whole lower half of the

complex ω-plane, it suffices that g and the initial condition have analytic contin-

uations into a strip S defined by 0 ≥ Im(ω) > −σ and −∞ ≤ Im(ω) ≤ +∞ with

σ > 0, where neither of them has singularities and both approach zero as |ω| → ∞.

Thereby the class of applicable distribution functions includes Gaussians, sech-

distributions, and many more, and even multimodal distributions can be incorpo-

rated as long as these functions have finite non-zero widths see references in 83. This

approach can be adopted and used in our η-parameter-dependent case. For this

let us assume again individual oscillators given by (5.7). As mentioned in Sec-

tion 5.2.1, we might be confronted with a nesting of the distributions g̃(ω) and

g(η) for ω and η. In particular, the latter may determine the first in an oscillator-

specific way. That is the reason why the resulting distribution function ĝ(η) can

become arbitrarily complicated. However, as long as the analytic continuations of

g̃ and g into the strip S (for some σ > 0 as defined above) do not have singularities,

and neither g̃ nor g features a δ-peak in their time evolutions, also ĝ will behave

as required. An additional requirement is that the product H(η, t)ĝ(η) satisfies

these conditions, too. This means that we have to find a strip S ′ ⊂ S, defined by

0 < σ′ ≤ σ, in which Hĝ has an analytic continuation, does not have singularities,

its time evolution does not feature δ-peaks (if necessary we have to reset the initial

time point after such a peak), and that we require |H(ηr + iηi, t)ĝ(ηr + iηi)| → 0

for |ηr| → ∞ and 0 > ηi > −σ′. In particular, H must not grow faster than ĝ

decays, such that the OA manifold continues to capture the long-term dynamics

of the system.

We would like to remark that initial conditions on the oscillator distribution

function, ρ(θ, η, 0), play an important role. If they fail to be satisfied, this may

hinder the OA manifold to attract the dynamics. For an example we would like to

refer to Appendix C of306, in which the specific time point has to be determined

appropriately in order to set up promising initial conditions.

In summary, we have proved that the OA ansatz captures the time-asymptotic



Parameter-dependent oscillatory systems 153

dynamics of parameter-dependent systems of coupled oscillators of the form

∂tθ(η, t) = Ω(ω, η, t) + Im
[
H(η, t)e−iθ

]
if next to the basic assumptions82 the following additional requirements are ful-

filled:

• The complex-valued driving field H(·, t) admits an analytic continuation into

a strip S ⊂ C− and does not diverge too fast for Re(σ)→ ±∞ with σ ∈ S.[3]

• Both Ω(ω, η, ·) and H(η, ·) are locally integrable in time: Ω(ω, η, ·), H(η, ·) ∈
L1,loc(R).

• The joint distribution g(ω, η) admits an analytic continuation into the strip

S and is such that Ω(ω, η, t) follows a distribution of non-zero width in at

least one parameter (and for at most a finite number of instants tk in time).

5.3 Networks of quadratic integrate-and-fire neurons

As mentioned above, there is a variety of recent papers that showed numerically

how the dynamics of networks of theta neurons is time asymptotically attracted

by the OA manifold290–292. Recently, Montbrió and co-workers studied how the

macroscopic dynamics of a network of quadratic integrate-and-fire (QIF) neurons

is described by a low-dimensional system by using a so-called Lorentzian ansatz293.

By transforming the QIF neurons into a network of theta neurons, their Lorentzian

ansatz does resemble the OA ansatz with parameter-dependent frequency and

driving field, as considered in Section 5.2.1.

To be more precise, the dynamics of the membrane potential Vj of a QIF neuron

may be described by

V̇j = V 2
j + Ij , if Vj ≥ Vp , then Vj ← Vr , (5.20)

for j = 1, . . . , N . Here, Ij denotes an input current, Vp a peak value, and Vr a

reset value. Once the membrane potential Vj reaches Vp, the neuron emits a spike,

and Vj will be reset to Vr. Commonly, the limit Vp = −Vr →∞ is considered. The

input current Ij consists of a neuron-specific quenched component ηj, a common

time-dependent input I(t) and a coupling term Js(t), combining the synaptic

weight J and a smooth mean synaptic activation s(t), resulting in

Ij = ηj + Js(t) + I(t) . (5.21)

[3] H can be regarded as a “tempered distribution”.
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The latter two time-dependent components are identical for all neurons in the

network. In order to describe the macroscopic behavior of the network, Montbrió

and co-workers used the Lorentzian ansatz

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]2 − x(η, t)2
, (5.22)

with center y(η, t) and time-dependent half-width x(η, t), which turns out to ex-

hibit the long-term solution for the distribution of the membrane potentials. The

properties x(η, t) and y(η, t) that define the distribution function (5.22) are also

closely linked to the firing rate of the neuronal population and to the mean mem-

brane potential, respectively. While the Lorentzian ansatz applies to the (mem-

brane voltage) dynamics of QIF neurons, we are here primarily interested in the

phase dynamics. Using Vj = tan(θj/2) one can transform (5.20 & 5.21) into theta

neurons307,

θ̇j = (1−cos θj) + (1+cos θj) [ηj + J ·s(t) + I(t)] . (5.23)

In (5.23) the time-independent injected current ηj is drawn from a distribution

function g(η). For the sake of legibility we abbreviate the non-autonomous part

of (5.23) as

J ·s(t) + I(t) = c(t)− 1 .

Rearranging terms and considering the thermodynamic limit, one can rewrite

(5.23) as

∂tθ(η, t) = ν(θ, η, t) = Ω(η, t) + Im
[
H(η, t)e−iθ

]
(5.24)

with H(η, t) = i(−1 + η + Js+ I) = i(η + c− 2) and Ω(η, t) = η + c cf. 293.

To apply our result from above, one has to show that H does not diverge ex-

ponentially when Im(η)→ −∞, and that c(t) possesses an antiderivative. On the

one hand, for the components of c(t) with s(t) being smooth and I(t) piecewise

smooth and (locally) integrable, there will always exist an antiderivative of c(t).

On the other hand, we have H(η) = iη + const, such that H grows only linearly

for Im(η)→ −∞.

To be more precise and in view of Section 5.2.2, we have H(η) = i(η+c−2) and

ĝ(η) ∼ L(η0 +c,∆), so that ĝ decays exponentially for |ηr| → ∞ and hence H must

not increase at an exponential rate. In fact, H does not have any singularities in

the whole complex η-plane (except for |η| → ∞), and H(ηr + iηi) = −ηi + iηr +

const = O(ηr) for |ηr| → ∞. Consequently, for large |ηr|, the product Hĝ will be

dominated by ĝ such that all assumptions are fulfilled. Thus, we can confirm again

the asymptotic attractiveness of the OA manifold.[4] What is more, due to the

[4] To give a brief idea of the proof, it is important to note that, next to the assumption that in S′

the product Hĝ decays to zero for |w| → ∞, the crucial point for proving the attractiveness of
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existence of a conformal mapping between the quantity w(η, t) = x(η, t) + iy(η, t)

and the function α(η, t) defining the OA manifold (5.5)[5] , see also Eq.(15) in293,

we have also proven the attractiveness of the Lorentzian ansatz (5.22) for a network

of QIF neurons.

5.4 Further applications

So far, we only considered non-independent frequency and parameter distributions,

g̃(ω) and g(η), respectively. In general, however, one cannot take this “simple”

dependence for granted. The additional parameter might be multi-dimensional,

i.e. η ∈ Rn with n > 1. When considering the thermodynamic limit of infinitely

many coupled oscillators, the dynamics (5.7) may obey

∂tθ(η, t) = Ω(ω, η, t) + Im
[
H(η, t) e−iθ

]
. (5.25)

Employing the OA ansatz for this system one has to encounter distribution func-

tions given by

ρ(θ, ω, η, t) =
g(ω, η)

2π

{
1 +

[
∞∑
k=1

α(ω, η, t)keikθ + c.c.

]}
∫
Rn

∫ ∞
−∞

∫ 2π

0

ρ(θ, ω, t) dθ dω dη = 1 ;

(5.26)

the joint distribution g(ω, η) is a major modification to the setting considered

before. Does the OA manifold remain attracting? (5.25) suggests the phase θ =

θ(η, t) to depend on the parameter η in line with our notion of parameter-dependent

systems. But it is unclear whether the OA manifold is attracting even without

this particular correlation between phase, natural frequency, and driving field. If,

however, the OA attractiveness can be proven for systems with generalized natural

frequency Ω and driving field H as in (5.25), this will allow for a further and

even broader extension of the existing theory. In the following we first list a few

examples for which numerical simulations have been reported and that give strong

incentive that the OA ansatz may indeed be valid. We will show how our proof can

be adopted, thereby confirm the OA attractiveness, and set the numerical results

on solid ground. Last, we provide some general properties of Ω and H for which

the OA manifold is that σ′ > 0. To be more precise, given the integral expression (equivalent
to) (5.12), the idea is to shift the path of integration from the real η-axis to the line ηr + iηi
with 0 > ηi > −σ′, −∞ ≤ ηr ≤ ∞, for details see83. This leads directly to (5.13 & 5.14) from
where one can complete the proof along the known formalism outlined in Section 5.2.1.

[5] We substituted ω by η in line with our arguments in Section 5.2.1. However, we do assume
an implicit dependence ω = ω(η).
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the OA ansatz holds.

We start with the Winfree model85 which is an early mathematical descrip-

tion of synchronization phenomena in large populations of biological oscillators.

Rewritten in terms of (5.25) this model takes the form

∂tθ = Ω(ω, η, t) + Im
[
H(η, t)e−iθ

]
Ω(ω, η, t) = ω + ση(t), H(η, t) = e−iβη(t), and η(t) = εh(t) ,

(5.27)

where h(t) is a smooth function depending only on the mean field z(t) but not on

the phase itself286. In particular, this model contains time-dependent parameters
see also 308.

Next, we consider reaction-diffusion systems with heterogeneous, self-oscillating

elements. In particular, we study the mean-field version of the complex Ginzburg-

Landau equation, whose equation describes a population of globally coupled limit-

cycle oscillators. Hence, we can rewrite the dynamics in form of (5.25). By intro-

ducing a shear (or nonisochronicity) parameter η as an additional random variable

and transforming the system through a phase reduction, the governing equations

in the continuum limit read300–302:

∂tθ = Ω(ω, η, t) + Im
[
H(η, t)e−iθ

]
Ω(ω, η, t) = ω +Kη and H(η, t) = Kz(1− iη) ,

(5.28)

where K denotes the coupling strength and z = z(t) is the order parameter.

The frequency ω and the shear η are drawn from a joint distribution g(ω, η). In

contrast to Section 5.2.1, we explicitly allow the additional parameter η to be

drawn from another frequency distribution. For the joint distribution one has to

address two scenarios. Either, the random variables are independent, such that the

joint distribution can be split into g(ω, η) = g1(ω)g2(η), or they are not. Iatsenko

and co-workers, who independently investigated the Kuramoto model with both

distributed natural frequencies ω and distributed coupling strengths η, coined the

term uncorrelated joint distributions when the two random variables ω and η are

independent, as opposed to correlated joint distributions see 303,304,309. Furthermore,

frequency-weighted coupling310,311, i.e. the driving field additionally depends on

ω, H = H(ω, η, t), can be approached with the formalism introduced above.

As a third point, we will deal with systems that are not all-to-all coupled but

exhibit some particular (and sparse) network topology. Therefore, these networks

can barely be studied analytically. Although it was conjectured and numerically

illustrated by Barlev, Antonsen, and Ott312 in 2011 that the OA ansatz can be

extended for uniform in-degree, Erdös-Rényi, and scale-free networks, a thorough

proof has as to yet not been delivered. However, the upcoming branch of hetero-
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geneous mean fields313 presents a promising loophole to overcome this obstacle of

intricate network topologies. We will prove that heterogeneous mean field models

indeed fall in a category whose mean field dynamics can be described along the

OA ansatz. Given a network with a particular degree distribution, it is possible to

introduce so-called degree-block variables, whose dynamics govern the evolution

of all nodes which have the same degree k. This approach reveals the same equa-

tions as the annealed networks approximation39,314, which can hence be considered

equivalent. Recent studies considered the heterogeneous mean fields of the Ku-

ramoto model, e.g., on scale-free315–317 and random Erdös-Rényi networks315. The

starting point is a specifically coupled Kuramoto network with coupling strength

K and adjacency matrix A = (aij) with i, j = 1, . . . , N ,

θ̇j = ωj +K

N∑
k=1

ajk sin(θk − θj) . (5.29)

We can cluster various node dynamics by replacing the adjacency term with an

expectation value for their node degree ηj. Ideally, the underlying topology exhibits

some well-defined degree distribution P (η). In the continuum limit N → ∞,

these node degrees are substituted in the phase dynamics as weighted, distributed

coupling strengths, so that the governing dynamics read

∂tθ(η, t) = Ω(ω, η, t) + Im
[
H(η, t)e−iθ

]
Ω(ω, η, t) = ω and H(η, t) = Kηz(t) ,

(5.30)

where ω and η are drawn from a joint distribution g(ω, η) = P (η)g1(ω). This setup

is amenable to, e.g., random fields, as has been presented in317 where oscillators

are enforced through local fields, which find their way into the specific forms for

Ω and H.

In all these different classes of parameter-dependent networks, we will show how

the OA attractiveness can be regained.

5.4.1 Winfree model

As said, the Winfree model describes macroscopic synchronization phenomena of

large oscillator systems whose individual nodes are naturally pulse-coupled with

one another. The introduction of phase response curves (PRC) allows for quanti-

fying how the phase of an oscillator responds to the pulse-like perturbations from

the other oscillators. The general form of the model reads at the single node level

θ̇j = ωj +Q(θj)
ε

N

N∑
k=1

P (θk) , (5.31)
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where ε denotes the coupling strength, Q is the PRC and P is a pulse-like signal.

Following the notation of Pazó and Montrbrió286, we consider PRCs with sinusoidal

shape,

Q(θ) = σ − sin(θ + β) , (5.32)

with an offset parameter σ, and a phase-lag β. Moreover, we assume the pulse-like

signal to be smooth,

P (θ) = Pn(θ) = an(1 + cos θ)n , (5.33)

with n ∈ N≥1 controlling the width of the pulses, and an is a normalizing constant.

In the thermodynamic limit, we regain (5.27) as

∂tθ = ω + εσh(t) + Im
[
εe−iβh(t)e−iθ

]
, (5.34)

where the coupling function incorporates the smooth mean field

h(t) = hn(t) =

∫ 2π

0

Pn(θ)dθ = 1 + 2(n!)2

n∑
k=1

Re(zk)

(n+ k)!(n− k)!
(5.35)

with z the common (Kuramoto) order parameter (5.11). The frequency Ω(ω, t) =

ω+ c(t) with c(t) = εσh(t) has a form identical to Section 5.2.1, where ω follows a

Lorentzian frequency distribution g(ω). Since the order parameter z(t) is bounded

with |z| ≤ 1, we have h(t) ≥ 0 for all t ≥ 0. Furthermore, the driving field does

not depend on additional parameters, so that our proof can be directly applied,

confirming that the OA ansatz holds and the OA manifold indeed captures the

long-term dynamics of the Winfree model.

An alternative proof for the case of time-dependent frequency and driving field

can be found in308. However, as we have depicted in Section 5.2.2, our proof

generalizes their findings and extends them to a broader class of frequency distri-

bution functions g(ω). Of particular interest in the non-autonomous extension is

also the matter of discontinuities. Recall that in Section 5.3 we introduced a time-

dependent input current I(t), see (5.21), which can, e.g., take the form of a square

function with jump-discontinuities. Our proof applies to this specific feature and

confirms existing numerical results293.

5.4.2 Limit-cycle oscillations with shear

Investigating collective synchronization usually addresses networks of coupled ele-

mentary oscillatory units. The dynamics of these units may be described in normal

form

%̇ = %(1− %2) , θ̇ = ω + η(1− %2) , (5.36)
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where % denotes the radius and ω determines the frequency of rotation on the

stable limit cycle with %(t) ≡ 1. The parameter η quantifies the shear, or non-

isochronicity, of the flow, i.e. how strongly perturbations away from the limit cycle

modify the phase dynamics. When we consider an all-to-all coupled population of

N � 1 of these oscillatory units, we arrive at the mean-field version of the complex

Ginzburg-Landau equation with dissipative coupling

żj = zj
[
1 + i (ωj + ηj)− (1 + iηj) |zj|2

]
+
K

N

N∑
k=1

(zk − zj) ; (5.37)

zj = %je
iθj . Heterogeneity among the population is promoted by having the fre-

quency ωj and shear parameters ηj drawn from a distribution function g(ω, η).

In the weakly coupled case, i.e. the coupling strength |K| is small, a phase re-

duction allows us to describe the dynamics of the system by their phases only.

In the continuum limit N → ∞, we can introduce the phase distribution func-

tion ρ(θ, ω, η, t). Note that ω and η are independent, so that neither of them is

redundant. Accordingly, the order parameter z takes now the form

z(t) =

∫ ∞
−∞

∫ ∞
−∞

∫ 2π

0

ρ(θ, ω, η, t)eiθ dθdωdη . (5.38)

Thus, the phase dynamics reads

∂tθ = ω +Kη + Im
[
Kz(t)(1− iη)e−iθ

]
, (5.39)

and the phase distribution function satisfies the continuity equation

∂tρ+ ∂θ (vρ) = 0 , (5.40)

with v the right-hand side of (5.39) see also 300,302. Using the notion of (5.25), the

frequency and the driving field are both time-varying and depend on the additional

shear parameter η:

Ω(ω, η, t) = ω +Kη , H(η, t) = Kz(t)(1− iη) . (5.41)

To assure that the OA manifold indeed exhibits the mean field dynamics of this

system with shear, we have to adapt our proof from Section 5.2.2 for the joint

distribution g(ω, η).

The general idea is again to decompose the distribution function ρ in Fourier
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space into

ρ(θ, ω, η, t) =
g(ω, η)

2π
[1 + ρ+(θ, ω, η, t) + ρ−(θ, ω, η, t)] (5.42)

and use symmetry assumptions to focus on ρ+, which again will be decomposed

into ρ+ = ρ̂+ + ρ̂′+. While ρ̂′+ lies on the OA manifold and has Fourier coefficients

ρ̂′+,n = [α(ω, η, t)]n, ρ̂+ solves

∂tρ̂+ + ∂θ

{[
Ω(ω, η, t) +

1

2i

(
H(η, t)e−iθ −H(η, t)∗eiθ

)]
ρ̂+

}
= 0 . (5.43)

The assumptions on the analytic continuation properties of Section 5.2.2 hold – in

particular we need analytic continuations with respect to both ω and η into strips

Sω and Sη. Hence we have to show that

lim
t→∞

∫ ∞
−∞

∫ ∞
−∞

ρ̂+(θ, ω, η, t) g(ω, η) dωdη = 0 . (5.44)

Discussing general solutions of (5.44) given an arbitrary joint distribution function

are beyond the scope of this paper. However, for particular g(ω, η) we can affirm

the attractiveness of the OA manifold for these parameter-dependent systems. To

begin with, we use the assumption of Montbrió and Pazó that the joint distribution

can be written as the product of two Lorentzians300,

g(ω, η) = g1(ω)g2(η) =
δ/π

(ω − ω0)2 + δ2

γ/π

(η − η0)2 + γ2
. (5.45)

Multiplying (5.43) with g(ω, η) and integrating over (ω, η), we can use Fubini’s

theorem (on the assumption of integrability of Ωgρ̂+ and Hgρ̂+) and compute the

double integral by changing the order of integration. First, we can evaluate the

integral over ω by applying the residue theorem as in Section 5.2.1 and then move

on to the second integral, which reads

∂tρ̂+(θ, ω0 − iδ,−iγ, t) =

−
∫ ∞
−∞

∂θ

{[
Ω(ω0 − iδ, η, t) +

1

2i

(
H(η, t)e−iθ −H(η, t)∗eiθ

)]
g2(η)ρ̂+(θ, ω0 − iδ, η, t)

}
dη.

While the term
∫

Ωg2ρ̂+ can be evaluated at the pole η = η0± iγ (± depending on

the contour of integration, which again depends on the coupling K, see also300), we

have to assure that the product H(η, t)g2(η) vanishes for Im(η) → ±∞. Indeed,

the linear growth of H in η, see (5.41), will be dominated by the exponential

decay of g2, such that the residue theorem can be applied here, too, which results

finally in (5.13)&(5.14), from which the claim follows as presented in Section 5.2.1.
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As has been shown in Section 5.2.2, the restrictions to unimodal Lorentzians can

be dropped and the OA attractiveness is sustained. Here we can even handle δ-

functions as long as one of the partial distribution functions has finite width: due

to the special form of Ω(ω, η, t), the OA ansatz holds for homogeneous frequencies

ωj = ω while the shear is heterogeneous and the coupling K > 0 does not vanish.

The case in which the joint distribution g(ω, η) is no longer uncorrelated, i.e. if

the first equality in (5.45) fails, demands a more careful investigation in order to

estimate the long-time evolution of ρ̂+. Although the ultimate goal is to categorize

adequate joint distributions that allow for the OA ansatz, there might appear

a variety of uncertainties for a general proof. For instance, to the best of our

knowledge it is an open problem whether and how singularities can appear in joint

distributions given smooth marginal distributions. This issue becomes even more

intricate in the case for multi-dimensional parameters η ∈ Rn, n ∈ N. However,

there are certain approaches using the OA ansatz for parameter-dependent systems

with correlated joint distributions, which we would like to briefly revise.

The introduction of shear into the oscillator system shows how an additional

parameter can be treated as a random variable and thereby changing the natural

frequency and driving field of the original Kuramoto model. A more fundamental

approach has been presented by Petkoski and co-workers303,304,308,309: Given the

Kuramoto model with heterogeneous natural frequencies, they assume the coupling

strengths to be drawn from a distribution function. That is, their model reads

θ̇j = ωj +
Kj

N

N∑
k=1

sin(θk − θj) (5.46)

with (ω,K) following a joint distribution g(ω,K). Given the strong resemblance

between their numerical simulations and the predictions via the OA ansatz, the

authors realized that the latter “formulas were derived on the assumption of at

least asymptotic validity of the OA ansatz.”303 They also investigated necessary

initial conditions with respect to their analytic continuation and applicability to

the OA ansatz. Unfortunately, they did not prove that their system dynamics

(5.46) does not belong to the class of systems considered in the proofs by Ott

and Antonsen81–83. We would like to remind that a general characterization of

correlated joint distributions g(ω,K) 6= g1(ω)g2(K) which are applicable for the

extended OA ansatz is hardly feasible. However, for three examples used in liter-

ature we can prove that the OA manifold defines the asymptotic evolution of the

whole system.

First, let g(ω,K) ∼ δ(K − k)
[
ω2 + e−ω

2
]−1

, see Fig. 1 in304. The specific form

with the δ-function in K reduces system (5.46) to the common Kuramoto model



Parameter-dependent oscillatory systems 162

with heterogeneous frequencies ω ∝ g1(ω) =
[
ω2 + e−ω

2
]−1

, which can be dealt

with along the proof of the original OA ansatz.

The other two examples are more elaborate in that the joint distribution func-

tions are given by303

g(ω,K) = (1− p)δ(K −K1)L(ω;ω0, γ1) + pδ(K −K2)L(ω;−ω0, γ2) , (5.47)

with p ∈ (0, 1], and

g(ω,K) = Γ(K)

Nq∑
n=1

qnL(ω;ωn, γn) with

Nq∑
n=1

qn(K) = 1 . (5.48)

Here, L(ω;ωn, γn) denotes a Lorentzian with width γn > 0 and centered around

ω = ωn, and Γ(K) is a multimodal-δ-function. For properly chosen q1,2 the dis-

tributions (5.48) can be regarded a generalization of (5.47) so that it suffices to

consider the former. For simplicity, let Nq = 2, i.e. g(ω,K) be a bimodal joint

distribution. Inserting g(ω,K) in the definition of the order parameter (5.38),

we can decompose the latter into z(t) = q1z1(t) + q2z2(t) with q1 + q2 = 1. Put

differently, we can view our system as two all-to-all coupled populations with

population-specific coupling strengths K1,2. Given that the frequency distribu-

tions are Lorentzians of finite width γ1,2, the results for two-population/bimodal

Kuramoto models271,280,318 can be readily applied, which confirms the attractive-

ness of the OA manifold for this kind of joint distributions. Note that we do not

require qn ∈ [0, 1] but may choose, e.g., q1 = δ/(δ−ξ) > 1 and q2 = −ξ/(δ−ξ) < 0.

Then, the bimodal distribution results from one Lorentzian being subtracted from

the other one, which, in principle allows the central minimum between the two

peaks to converge to zero318. The case of multiple Kuramoto populations with

specific coupling strengths can be approached by transforming the system into

one global system whose oscillators’ frequencies follow a multimodal distribution

consisting of weighted inhomogeneous unimodal distributions, which can mirror

the underlying coupling topology across populations285.

Admittedly, the aforementioned examples are not exhaustive, let alone complete.

They represent a concise set of a broad variety of joint distribution functions. Nev-

ertheless, we believe that our results may be a major breakthrough for the appli-

cability of the OA ansatz for systems with more intricate distribution functions.

First extensions concentrated on a multiple-population-approach and have been

presented in299,319,320. Skardal and Restrepo319 focused on hierarchical synchrony

effects in modular networks and investigated how local and global synchrony evolve

differently by allowing for different subpopulation sizes, heterogeneous intra- and
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inter-population coupling strengths as well as population-specific frequency distri-

butions. Reformulating their approach results in (5.48). This rigorously establishes

the agreement of the predictions by the OA ansatz and their numerical results. So

and co-workers, on the other hand, aimed for synchronization criteria in a network

of two coupled populations with static and time-varying coupling topologies267,320.

Their governing equations can be cast into (5.47) when additionally considering

K = K(t) to be time-dependent. Also, they numerically determined macroscopic

chaos by assuming a single network with bimodally distributed natural frequen-

cies299. Combining our results from this section together with the preceding part

where we incorporated non-autonomicity, we again corroborate the numerous nu-

merical findings by providing the ingredients to prove the implicit assumption that

the OA ansatz holds for these kinds of parameter-dependent and non-autonomous

systems.

5.4.3 Heterogeneous mean field models

While the general case of uncorrelated joint distributions has already been cov-

ered in the preceding Section 5.4.2, we would like to concentrate on the specific

derivation of the heterogeneous mean field model. Recall the standard Kuramoto

model on a given network,

θ̇j = ωj +K
N∑
k=1

ajk sin(θk − θj) , (5.49)

where K is the coupling strength and the adjacency matrix is given by A =

(aij)i,j=1,...,N . We substitute the adjacency values ajk ∈ {0, 1} by their expectation

values 〈ajk〉 ∈ [0, 1], which are given by

〈ajk〉 =
ηjηk
N 〈η〉

. (5.50)

Introducing the complex order parameter as

z =
1

N 〈η〉

N∑
k=1

ηke
iθk ,

the dynamics for all nodes with the same degree ηk read

θ̇k = ωk +KηkIm(ze−θk) .

In this special form, in which the single nodes are replaced by block-degree vari-

ables, we returned to the all-to-all coupling. For a given degree distribution P (η)
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property (5.50) also holds in the continuum limit N → ∞ where the governing

dynamics read

∂tθ(η, t) = ω + Im
[
Kηz(t)e−iθ

]
, (5.51)

with ω and η being drawn from a joint distribution g(ω, η) = P (η)g1(ω). As

above we can introduce a phase distribution function ρ(θ, ω, η, t), which fulfills

the continuity equation ∂tρ + ∂θ(vρ) = 0 with v the right-hand side of (5.51).

Note, however, that depending on the underlying network topology and its degree

distribution P (η), one has to choose the domain of η properly. In the case of a

scale-free network, the degree distribution follows P (η) ∝ η−γ with γ > 1. Hence

the normalization conditions for the distribution function ρ obey∫ ∞
1

∫ 2π

0

ρ(θ, ω, η, t) dθdη = g1(ω) and

∫ ∞
−∞

∫ 2π

0

ρ(θ, ω, η, t) dθdω = P (η) .

We can apply the OA ansatz as above. By the same reasoning as in Section 5.4.2,

we can prove the OA attractiveness for heterogeneous mean field models, rendering

also non-globally coupled oscillator networks applicable for the OA theory, which

guarantees that their mean field dynamics evolve on a low-dimensional manifold.

Before elaborating more on coupling schemes other than global coupling, we

briefly discuss further topological network effects such as nodal correlations be-

tween in and out degrees, correlations between nodal frequencies and degrees, and

degree as well as so-called frequency assortativity in the formation of links. Re-

cent numerical findings by Restrepo, Ott, and Skardal321,322 exploited assortative

networks and gave strong incentive to believe that their dimensionality reduction

techniques along the OA ansatz do capture the dynamics of the full network. An

assortativity function aµ′→µ represents the probability that a link exists from an

oscillator with target property µ′ to one with property µ. Using this one can

indicate an exact instruction on how to construct a network model of the form

(5.49). The nodal properties µ are chosen in such a way that the network displays,

e.g., a particular degree321 (µ = k), frequency322 (µ = ω0), or even a combined

(µ = {k, ω0}) assortativity. Key ingredient for relating this to the OA ansatz is

the reformulation of the order parameter. We first define

z(µ, t) =
∑
µ′

Pµ′aµ′→µ
x

ρµ′(θ, ω, t)e
iθdθdω , (5.52)

where ρµ′(θ, ω, t) = ρ(θ, ω, µ′, t) is the common phase distribution function with

target property µ′, see (5.26), Pµ′ = Pp(µ
′) is a normalized target property dis-

tribution, and aµ′→µ = a(µ′ → µ) the assortativity function; for details see321,322.

Then, we can integrate over all possible properties µ – note that we write the sum



Parameter-dependent oscillatory systems 165

over the target properties µ′ also in integral form – and we arrive at the order

parameter

z(t) =
1

〈η〉

x
Pp(µ)Pp(µ

′)a(µ′ → µ)
x

ρ(θ, ω, µ′, t)eiθdθdω dµ′dµ, (5.53)

with 〈η〉 the average degree. Given a specific degree distribution P (η) one finally

ends up with (5.51), from which we can follow the lines of argument as presented

above to complete the proof. The addition of assortativity in the network topology

enriches the existing theory further. It discloses many new qualitative effects on

the dynamics such as transitions between steady state, periodic, quasiperiodic

attractors, and even macroscopic chaos may emerge without external driving or

time-varying parameters.

5.4.4 Non-local coupling

Two months before Ott and Antonsen published their ansatz, Ko and Ermentrout

investigated the creation of partially locked states in a network of identical all-to-

all coupled oscillators due to inhomogeneous coupling323. Instead of heterogeneity

of the oscillators’ frequencies, it was the coupling heterogeneity that led to partial

synchronization. Carlo Laing analytically investigated this network of globally

coupled oscillators with coupling strengths drawn from a power-law distribution324

along the line of the OA ansatz – recall the resemblance to the heterogeneous mean

field approach for scale-free networks. Assuming “nearly” identical oscillators,

i.e. the frequencies ω were drawn from a Lorentzian with width 0 < ∆ � 1, he

could verify the earlier results that were derived via a self-consistency argument323,

and extend them by including a thorough bifurcation analysis. Our findings in

Section 5.4.2 put these results on a solid mathematical ground.

Of particular interest is Laing’s work on a ring of oscillators269,324. For a given

ring topology, the typical coupling scheme is neither local neighbor-to-neighbor,

nor global coupling. Instead, the oscillators are non-locally coupled via a coupling

kernel G. We assume that each oscillator j = 1, . . . , N has some fixed spatial

position xj ∈ [−π, π], a natural frequency ωj drawn from a continuous distribution

function g(ω) with non-zero width, and interacts with the others depending on the

distance between their sites modulo periodic boundary conditions. The governing

dynamics read

θ̇j = ωj +
2π

N

N∑
j=1

G(xk − xj) sin(θk − θj + α) , (5.54)

where α is a phase-lag parameter and G : R→ R a continuous even and 2π-periodic
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coupling function325. We retrieve global coupling, if G 6= 0 is constant. Commonly

used coupling functions G are of exponential form G(x) ∼ e−κ|x| with κ > 0, or of

trigonometric form G(x) = 1/2π(1 + A cosx + B sinx) with A > 0, B ≥ 0. The

reflection symmetry of G is lost for B 6= 0. In the continuum limit, the velocity

field (5.8) becomes

∂tθ = ω + Im
[
H(x, t)e−iθ

]
,

H(x, t)eiα =

∫ π

−π
G(x− y)

∫ ∞
−∞

∫ 2π

0

ρ(θ, y, ω, t)eiθ dθdωdy .
(5.55)

While the inner two integrals have the form of a local complex order parameter

z(y, t), measuring the synchronization degree of oscillators around y, we can in-

terpret the last integral as a convolution of the local order parameter with the

(spatial coupling) kernel G. In particular, we can regard the dynamics ∂tθ(x, t) of

an oscillator at position x as being controlled by the local mean field H(x, t). Un-

like the case of global coupling, the order parameter has become space-dependent

and thus the driving field. However, a similar “physical picture” as for global

coupling is valid: practically we deal with an assembly of independent oscilla-

tors under the control of a common forcing field325,326. We now go a step further

and interpret the space variable x as a subpopulation index327. Equivalent to the

block-degree variables in the heterogeneous mean field approach, we consider the

subpopulation index as a parameter that follows a particular, in this case a uni-

form, distribution function. Hence, (5.55) represents the governing dynamics of

a parameter-dependent system, for which we proved the OA attractiveness in the

preceding sections.

5.4.5 External forcing and time delay

Already in their original work, Ott and Antonsen proposed that their ansatz ex-

tends to external forcing and the incorporation of time delays. However, recent

results that leaned against the OA ansatz for tackling more intricate issues of

external forcing and/or time delays went beyond the reach of the original proof.

Therefore, we first revisit the existing theory and revise the proof appropriately

with the concepts introduced above.

Ott and Antonsen considered the forced Kuramoto model81,

θ̇j = ωj +
K

N

N∑
k=1

sin(θk − θj) + η sin($t− θj) . (5.56)

Rearranging terms, moving in a rotating frame, θ → θ + $t, and considering the
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thermodynamic limit, the velocity field reads

∂tθ = Ω(ω,$) + Im
[
H(ω,K, η, t)e−iθ

]
,

Ω(ω,$) = ω −$ , H(ω,K, η, t) = Kz(t) + η ,
(5.57)

with z(t) the common Kuramoto order parameter. While Ott and Antonsen pro-

vided a proof for systems with constants K,$, and η, conjoining thereby the

numerical findings and the extensive analysis by Childs and Strogatz328, we gener-

alized their proof extensively in Section 5.2.1. By this, the additional parameters

$ and η that characterize the forcing can be both random and time-dependent

variables. This adaptation renders a more detailed analysis of, for instance, the

circadian rhythm problem possible. One extension has been published very re-

cently addressing the east-west asymmetry of jet-lag329, where a discontinuous

phase quantity p is added to model the travel across time-zones. The adapted

model reads

θ̇j = ωj +
K

N

N∑
k=1

sin(θk − θj) + η sin($t− θj + p(t)) , (5.58)

where p jumps from one constant value to another depending on the corresponding

time-zone. In particular, p(t) is locally integrable, which allows for a thorough

analytic description of how the human organism may adapt after several cross-

time-zone travels. This extends the existing work where the authors solely focused

on the recovery dynamics of circadian rhythms after a single travel “shock”.

To address the presence of time delays, let us first concentrate on time-delayed

coupling, i.e. the response of oscillator j at time t depends on the state of another

oscillator k at time t−τkj. Here, τkj is some specific delay time for the interaction.

In general, the single oscillator dynamics may be given by

θ̇j(t) = ωj +
K

N

N∑
k=1

sin(θk(t− τkj)− θj(t)). (5.59)

There already exists a plethora of studies287,324,330 considering the case in which

τkj follows some given distribution function h(τ). That the OA ansatz also holds

in this case, has been proven by Ott and Antonsen82, where they generalized

their original idea of identical time delays81, τkj = τ ′ for all j, k = 1, . . . , N , i.e.

h(τ) = δ(τ − τ ′). The driving field H of the original velocity field (5.3) is replaced

by

H = K

∫
Ω

h(τ)z(t− τ)dτ ,



Parameter-dependent oscillatory systems 168

where Ω ⊂ R is the domain of the time delay distribution h and z(t) the common

Kuramoto order parameter. Slightly more elaborate and not covered by Ott and

Antonsen’s original proof is the extension to so-called coupling adaptation331. The

coupling strength is no longer constant but slowly adapts depending on the current

coupling strength and the delayed order parameter. As long as the function that

models the adaptation process is locally integrable, our extended proof guarantees

the OA attractiveness for such time-varying parameter-dependent systems. For

this reason we believe that the mainly numerical work by Skardal and co-workers331

can also be analytically substantiated. This will not only contribute to exploring

the underlying phenomena of explosive synchronization332,333, but also enhance

the modeling of information processing and memory effects, for which network

adaptation is crucial334–336.

5.5 Relaxation dynamics towards the Ott-Antonsen

manifold

As discussed, we allow time-varying parameters to affect the oscillator dynamics.

The change of parameters comes with its time scale(s). The change can be pe-

riodic. This periodicity may also influence the evolution of the mean field and

thereby the OA manifold. Therefore, the relation between this periodicity and the

characteristic time of the system to approach the manifold needs to be investigated.

If the relaxation dynamics onto the manifold is way slower than the characteristic

time scale of the time-varying manifold itself, then our findings will remain true

for the limit t→∞. They are, however, of minor interest for describing the tran-

sient behavior of the mean field. Several numerical results293,303,304,308 suggest that

the relaxation to the OA manifold is reasonably fast, in some cases even instanta-

neous. To address this analytically, we briefly recall the proof for the attractiveness

from Section 5.2.1. After having Fourier expanded the phase distribution func-

tion ρ(θ, η, t), and then decomposed the positive Fourier modes into a part that

already lies on the manifold, ρ̂′+, and a residual part ρ̂+, we showed how the latter

converged to zero in a weak sense, cf. (5.12). We can extract the relaxation time

to the OA manifold from out of the proof: From (5.13 & 5.14) we obtain a solu-

tion f+(θ, t) = ρ̂′+(θ,−iσ, t), with σ′ > σ > 0 where ρ̂′+(θ, η, t) admits an analytic

continuation into the strip S = {η ∈ C | −∞ ≤ Re(η) ≤ ∞ , 0 ≥ Im(η) ≥ −σ′};
the solution (5.16) obeys

f̃+(w, t) = f̃+(W (w, 0), 0) exp [−µ(w, t)] ,
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hence the relaxation time τ is by definition

const · exp(−t/τ) = exp [−µ(w, t)] ⇒ τ =
t

Re [µ(w, t)]
. (5.60)

Put differently, Re [µ(w, t)] scales with σt, such that τ = 1/σ. The wider the

frequency distribution becomes, the larger σ can be chosen. Thus, one may argue

that the characteristic time scale decreases with increasing heterogeneity among

the single oscillators. This relation has already been noted for a particular exam-

ple of a Lorentzian frequency distribution by Ott and Antonsen81. It has been

investigated in more detail by Petkoski and Stefanovska for the non-autonomous

Kuramoto model308. Interestingly, there is an intrinsic relation between the fre-

quency inhomogeneity and the coupling strength. Therefore, at critical coupling

strengths, which distinguish different dynamical regimes, the relaxation times tend

to infinity, which has been reported independently by Petkoski et al.308 and Yoon

et al.316 for the full Kuramoto network, its non-autonomous version and the het-

erogeneous mean field model.

For the non-autonomous case we would like to mention that the proof presented

in Section 5.2.1 entirely holds for continuous time-varying parameters. Introducing

discontinuities in either the frequency Ω and/or the driving field H, however, will

eventually lead to a non-continuous right-hand side of (5.14) – due to H itself, or

via the order parameter z, which absorbs the time-varying part of Ω and influences

H directly or indirectly. While employing the method of characteristics still can

be performed, estimating the integral in (5.17) cannot exploit the continuity as-

sumption and a proper evaluation has to be circumvented. In spite of this sinister

outlook, numerical results remain promising; for instance, the simulations in293

with a square input function (Fig.2a,c,e,g therein). A possible way to overcome

this obstacle might be to approximate the jumps by smooth sigmoid functions,

which might be valid as long as the height of the jumps is lower than their length.

Another more rigorous approach might be to find weak solutions for (5.13 & 5.14)

and estimate their long-time behavior. There, a starting point could be the very

recent results by Dietert, Fernandez and co-workers, who investigated stability

properties of different dynamical regimes of the Kuramoto model in a mathemati-

cally rigorous way, confirming the exponential decay to the manifold337–339. More

details are way beyond the scope of our paper.

Interestingly, the approach by Dietert and others is based on the idea of “Landau

damping” in plasma physics. Strogatz, Mirollo and Matthews were the first who

incorporated this concept in order to understand relaxation dynamics of the Ku-

ramoto model272,340. They showed that for frequency distributions g(ω) supported

on the whole real axis, the decay towards the incoherent state is exponentially fast
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for coupling strengths below the critical threshold, K < Kc. If g(ω) has compact

support, i.e. g is non-zero only on a compact interval [−γ, γ] ⊂ R, 0 < γ < ∞,

the rate may be considerably slower, even polynomial. In the example they used

to illustrate their result, the authors assumed the frequencies ω to be distributed

uniformly on I = [−γ, γ], i.e. g(ω) = 1/2γ if ω ∈ I, and 0 otherwise. The jump

discontinuities of g on ∂I, however, prohibited an analytic continuation of g into

a strip S in the lower complex ω-plane, contradicting the required conditions for

applying the OA ansatz83. That is why the proofs above cannot be applied here,

and our argumentation about the relaxation times remains unaffected.

Last but not least, we would like to add that decay times typically depend on

initial conditions. Pikovsky and Rosenblum pointed out that for identical macro-

scopic, i.e. mean field, initial conditions the microscopic initial states can lead to

very different transient dynamics towards the OA manifold, see Section 3.2 in178.

A more thorough investigation about this specific topic has not been undergone,

yet, but might shed light on the underlying dynamics of the microscopic variables

of large oscillatory systems in contrast to its mean field behavior.

5.6 Discussion and conclusion

The OA ansatz has proven considerably fruitful for investigating the macroscopic

behavior of systems of coupled phase oscillators in terms of a low-dimensional

system. Although parameter dependence has already been mentioned in Ott and

Antonsen’s original work, parameters were merely considered auxiliary variables

and the velocity field was required to incorporate the phase only through a sinu-

soidal coupling term.

Our main result was to prove that the η-dependence sustains the time-asymptotic

attractiveness of the OA manifold for systems of coupled oscillators. For this we

required that the driving field H does not have singularities in the complex η-

plane and that it diverges at most sub-exponentially for Im(η) → −∞, next to

the conditions in the original Ott and Antonsen formulation81,82. Furthermore, we

assumed the frequency ω(η, t) to be linear in η. We were able to depict the proof

step by step. Subsequently we loosened the restrictive assumptions and showed

that our results remain valid for a much broader class of distribution functions g(η)

as well as more complex dependencies of the driving field H(η) and the natural

frequencies ω(η) on the parameter η.

Although the main idea of introducing a common parameter η was to correlate

the driving field and the natural frequency with their specific oscillator, our proof

is identical for the case when η does only influence the mean field dynamics. By

this, we have proved the claim in83 that the OA manifold remains attractive in the
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“weak” parameter-dependent case when H depends on “other non-phase-oscillator

variables obeying auxiliary dynamical systems.”

Common choices of H and ω usually fulfill the aforementioned assumptions

as stated in Section 5.2.1. That is, our result can be immediately applied in

a variety of circumstances. Here, we highlighted an application in mathematical

neuroscience. By this, our findings strengthen the theory of coupled theta neurons:

The many recent numerical findings in293 and the references therein are finally set

in a solid mathematical framework. Moreover, the link between QIF neurons and

theta neurons has been underscored by proving the attractiveness of the Lorentzian

ansatz.

We generalized and extended existing proofs for non-autonomous systems. In

particular we addressed the Winfree model, which is biologically more realistic

than the Kuramoto model and therefore closer to applications. We also addressed

coupled oscillatory systems with an additional shear parameter, another impor-

tant tool to render the Kuramoto model more realistic. The major novelty was

our rigorous proof of the OA attractiveness for systems with uncorrelated joint

distribution functions when more parameters than only the natural frequencies

are treated as a random variable. This finding opened the way for networks with

specific underlying coupling topologies other than the restrictive global coupling.

Using the heterogeneous mean field approach, we showed how these networks can

be treated along the OA ansatz. First steps were also taken in the direction of

correlated joint distributions.

All in all, we consider the explicit dependence on an additional parameter η

of both the oscillator’s phase and the (non-sinusoidal) components an important

extension introducing an intrinsic relation between phase, frequency, and driving

field of an oscillator. The latter two are correlated with the phase so that the

η-dependence does not allow for applying the original theory.

Still, there are several open problems concerning the mean field dynamics of

an oscillatory system and its description by a low-dimensional system. A first

urgent one is the case of δ-peaked frequency distributions. Numerical simula-

tions341 and heuristic arguments hint at convergence of the OA manifold, where a

proper mathematical derivation is omitted under the pretence of “nearly identical

oscillators”269,288,342. A thorough proof would render the OA ansatz rigorously

applicable to “chimera states”, a topic that is particularly en vogue; see, e.g., the

recent review paper by Panaggio and Abrams185. Importantly, such a proof has

to circumvent the main argument of Ott and Antonsen’s original proof, where the

width ∆ > 0 of the distribution g(ω) allowed for a consequent evaluation of the

mean field dynamics. On the other hand, Pikovsky and Rosenblum343 already

showed that more complicated dynamics can emerge from the OA manifold when
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describing the system along the Watanabe-Strogatz ansatz80. Deviations from the

OA ansatz appear only if the Watanabe-Strogatz constants of motion are not uni-

formly distributed over the whole domain, but only over a compact subset. Given

(a) the direct correspondence between the constants of motion and the initial con-

ditions of phases in the OA ansatz80,178, and (b) the necessary requirements on

(analytic continuation properties of) the initial conditions, it may be worth inves-

tigating the influence of nonuniform distributions of the constants of motion and

whether this may hinder the initial conditions of phases to satisfy the requirements

of the OA ansatz.

Another intriguing open problem is whether the mean field dynamics is attracted

by a low-dimensional manifold when the parameter dependence of the frequency

and driving field is extended by an explicit dependence on the individual phases.

A recent example is given by Laing344, who considered the driving field H to

follow a dynamics that explicitly depends on the phase θ. This system exhibits

partial synchronization patterns, which are also covered by the OA ansatz, but

any attempt to apply the OA ansatz has been avoided “due to the dynamics of

the extra variables.”344

When the coupling term incorporates higher harmonics see, e.g., 345,346, no low-

dimensional analytic solution for the mean field evolution has been found. This

is another open question whether further generalizations of the work of Ott and

Antonsen81 can be rigorously manifested. We believe that our current proof for

parameter-dependent networks is a good starting point for tackling these important

issues.
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Criticality in neural mass

phase oscillator models

Modeling and interpreting (partial) synchronous neural activity can be a challenge.

We illustrate this by deriving the phase dynamics of two seminal neural mass mod-

els: the Wilson-Cowan firing rate model and the voltage-based Freeman model. We

established that the phase dynamics of these models differed qualitatively due to an

attractive coupling in the first and a repulsive coupling in the latter. Using empir-

ical structural connectivity matrices, we determined that the two dynamics cover

the functional connectivity observed in resting state activity. We further searched

for two pivotal dynamical features that have been reported in many experimental

studies: (1) a partial phase synchrony with a possibility of a transition towards

either a desynchronized or a (fully) synchronized state; (2) long-term autocorrela-

tions indicative of a scale-free temporal dynamics of phase synchronization. Only

the Freeman phase model exhibited scale-free behavior. Its repulsive coupling, how-

ever, let the individual phases disperse and does not allow for a transition into

a synchronized state. The Wilson-Cowan phase model, by contrast, could switch

into a (partially) synchronized state, but it did not generate long-term correlations

although being located close to the onset of synchronization, i.e. in its critical

regime. That is, the phase-reduced models can display one of the two dynamical

features, but not both.

Adapted from: Daffertshofer A., Ton R., Pietras B., Kringelbach M.L., Deco G.

(2018). Scale-freeness or partial synchronization in neural mass phase oscillator

networks: pick one of two? NeuroImage 180 428–441.

doi: 10.1016/j.neuroimage.2018.03.070.
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6.1 Scale-freeness and partial synchronization

Characterizing the underlying dynamical structure of macroscopic brain activity

is a challenge. Models capturing this large-scale activity can become very com-

plex, incorporating multidimensional neural dynamics and complicated connec-

tivity structures347,348. Neural mass models, or networks thereof, that cover the

dynamics of neural populations offer a lower-dimensional and therefore appealing

alternative11,349,350. To further enhance analytical tractability one may consider

the (relative) phase dynamics between neural masses. We previously showed un-

der which circumstances certain neural mass models can be reduced to mere phase

oscillators42,44 – see also41,48,61 – and thus established a direct link between these

two types of models. A minimal model describing phase dynamics is the Ku-

ramoto network38,351, which in its original form consists of globally coupled phase

oscillators. Generalizations of this model by adding delays and complex coupling

structures result in a wide variety of complex dynamics40,264. Even in its original

form, however, the Kuramoto model is capable of showing non-trivial collective

dynamics. A mere change of the (global) coupling strength can yield a sponta-

neous transition from a desynchronized to a synchronized state, i.e. the dynamics

can pass through a critical regime.

Synchronization of neural activity plays a crucial role in neural functioning352.

In the human brain, synchronized activity can be found at different levels. At the

microscopic level temporal alignment in neuronal firing is a prerequisite for measur-

able cortical oscillations353. However, it also manifests itself at the macroscopic

level in the form of global resting state networks354,355. Synchronization prop-

erties are modulated under the influence of task conditions in, e.g., motor per-

formance356, visual perception19, cognition357 and information processing358–360.

Epilepsy, schizophrenia, dementia and Parkinson’s disease come with pathologi-

cal synchronization structures5,361. When aiming for a concise but encompassing

description of brain dynamics, a macroscopic network model should capture this

wide range of synchronization phenomena.

According to the so-called criticality hypothesis362, the human brain is a dynam-

ical system in the vicinity of a critical regime. Its dynamics is located at the cusp

of dynamic instability reminiscent of a non-equilibrium phase transition in ther-

modynamic systems363,364. The conceptual appeal of the critical brain lies in the

fact that networks operating in this regime show optimal performance in several

characteristics relevant to cortical functioning365. Critical dynamics often display

power laws in multiple variables366 and have been observed in, e.g., size and dura-

tion distributions of neuronal avalanches367 and EEG cascades368. Power-laws are

also manifested as scale-free autocorrelation structures of the amplitude envelopes
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of encephalographic activity369,370. Very recently, long-range temporal correla-

tions have been reported in fluctuations of the phase (synchronization) dynamics

in neural activity371,372. The nature of these power-law forms in the correlation

structure can be quantified by the Hurst exponent H 373. Its value characterizes

the correlations between successive increments of the signal, with H>0.5 marking

persistent behavior in the time series, i.e. positive, long-range correlations, and

H<0.5 anti-persistent behavior, i.e. a negative auto-correlation.

In this study we considered the phase descriptions of two classical neural mass

networks: the Wilson-Cowan firing rate and Freeman voltage model, both equipped

with neurobiologically motivated coupling and delay structures. Coupling and de-

lay structures were obtained from DTI data and the Euclidean distances between

nodes, respectively. To anticipate, the two models lead to two qualitatively differ-

ent phase synchronization dynamics.

6.2 Phase description of neural mass models

Phase reduction techniques, as have been introduced in Chapter 2 together with

some exemplary applications in Chapter 3, are key to describe the Wilson-Cowan

and Freeman neural mass models in terms of their phase dynamics. To facilitate

the comparison between the network models and the experimental MEG data,

we assumed each network to consist of N = 90 coupled nodes whose oscillatory

dynamics were described by the respective neural mass model. The resulting phase

dynamics of each node k = 1, . . . , N were found to obey the form

φ̇k = ωk +
1

N

N∑
l=1

Dkl sin (φl − φk + ∆kl) (6.1)

with ωk denoting the natural frequency of the oscillator at node k. Dkl is the phase

coupling matrix, which incorporated the particular dynamics of the underlying

neural mass model and the structural connectivity of the network. The coupling

between neural masses was scaled by a strength factor K. Moreover, we assumed

that time delays τkl between nodes k and l were of the same order of magnitude as

the period of oscillation, such that they could be captured by phase shifts ∆kl in the

phase dynamics. The model-dependent terms ωk, Dkl and ∆kl will be explicated

in the subsequent presentations of the neural mass models.

6.2.1 Wilson-Cowan model

The first neural mass model we studied is the Wilson-Cowan model that describes

the dynamics of firing rates of neuronal populations69. We always considered
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properly balanced pairs of excitatory and inhibitory populations, Ek = Ek(t)

and Ik = Ik(t), respectively. We placed such pairs at every node of a network.

Nodes were coupled to other nodes through the connections between excitatory

populations given by a DTI-derived coupling matrix Skl forming a network of

k = 1, . . . , 90 nodes. We illustrate the basic structure of this network in Fig. 6.1

and the coupling matrix in Fig. 6.2, left panel. The dynamics per node k was cast

in the form

µkĖk = −Ek +Q

[
aE

(
cEEEk − cEIIk − θE + qk +K

N∑
l=1

SklEl(t− τkl)

)]
µkİk = −Ik +Q

[
aI (cIEEk − cIIIk − θI)

]
,

(6.2)

where the coupling constants cEI , cIE, cEE, cII quantify the coupling strength

within each (E/I) pair. The function Q[x] = (1 + e−x)−1 is a sigmoid function[1]

that introduces the thresholds θE and θI that need to be exceeded by the total

input into neural mass k to elicit firing; the parameters aE and aI describe the

slopes of the sigmoids. The delays τkl were determined by conduction velocity and

the Euclidean distance between nodes k, l. In the following, delay values are given

in milliseconds. Appropriate choices of the time constants µk and external inputs

qk guaranteed self-sustained oscillations in the alpha band (8-13 Hz). By random-

izing the constant external inputs qk, µk across k we introduced heterogeneity in

oscillation frequencies.

The phase dynamics could be derived along Haken’s reduction via averaging, see

Section 2.2.7 for details. We transformed the system to its corresponding polar

coordinates around an unstable focus, and described its dynamics in terms of the

periodic function Ak cos(Ωt+φk), with Ak denoting the amplitude, φk the relative

phase, and Ω the central frequency of the oscillation. We averaged the dynamics

over one period 2π/Ω under the assumption that the characteristic time scale of the

Ak and φk dynamics significantly exceeded this period, i.e.
∣∣∣Ȧk/Ak∣∣∣ , ∣∣∣φ̇k∣∣∣ � |Ω|.

That is, the variables φk, Ak evolved slowly enough to be considered constant

within one period. In consequence, we obtained the Wilson-Cowan phase model

(6.1) with expressions (superscript WC)

ωWC
k = −Ω +

$k

µk

DWC
kl =

K

2µk
Q′
[
χ

(0)
E,k

]
aE
[
1 + Λ2

k

] 1
2 Skl

Rl

Rk

∆WC
kl = arctan (Λk)− Ωτkl

(6.3)

[1] Note the slight change of notation compared with Section 3.2.
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whereQ′ denotes the derivative ofQ resulting from a Taylor approximation around

the points χ
(0)
E,k, χ

(0)
I,k; the detailed expressions of the aforementioned unstable focus

as well as the definition of the parameters Λk and $k are given in Section 3.2.4;

see also Appendix B.1 of67. By virtue of the definition of Q, one has Q′ ≥ 0.

6.2.2 Freeman model

The Freeman model75 describes the mean membrane potentials Ek, Ik of neural

populations. In analogy to (6.2) its dynamics per node can be given by

Ëk = − (αk + βk) Ėk − αkβkEk + αkβkqk+

+ αkβkγK

N∑
l=1

SklQ
[
El (t−τkl)−θ

σ

]
− αkβkcEIγQ

[
Ik−θ
σ

]
Ïk = − (αk + βk) İk − αkβkIk + αkβkcIEγQ

[
Ek−θ
σ

]
,

(6.4)

where k = 1, . . . , N with N being the number of excitatory populations – the

corresponding schematic is again given in Fig. 6.1. The sigmoid function Q[x]

here covers the effects of pulse coupled neurons in the populations adjusted by

the scaling parameter374 γ. The parameters αk, βk represent mean rise and decay

times of the neural responses in population k, which we here varied to introduce

frequency heterogeneity in the system. Analogous to (6.2) appropriate parameter

values guaranteed self-sustained oscillations in the alpha frequency band.

Figure 6.1: Coupling structure of both neu-
ral mass networks. A proper balance be-
tween excitatory (Ek) and inhibitory (Ik)
populations leads to self-sustained oscilla-
tions in the network. Self-coupling (cEE ,
cII) is only present in the Wilson-Cowan
network and, hence, plotted in gray. Exter-
nal inputs are indicated by qk. The coupling
matrix Skl connecting the excitatory popu-
lations was based on structural DTI data.

In (6.4) we separated the excitatory and inhibitory nodes to stress the similarity

between both networks. For the sake of simplicity, however, we rather combine

both equations in (6.4) into a single one. To this end we introduce the variable

V = [E, I]T and incorporate the terms cEI , cIE, and the scaled structural coupling

matrix K · S into an ‘overall’ coupling matrix CF =
[
K · S −cEI1

cIE1 0

]
with 1 and 0
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denoting the identity and the zero matrix, respectively; see Fig. 6.2, right panel.

This abbreviation yields the form

V̈k = − (αk + βk) V̇k − αkβkVk + αkβkq + αkβkγ

2N∑
l=1

CF
klQ
[
Vl (t−τkl)−θ

σ

]
, (6.5)

with k, l= 1, . . . , 2N . In (6.5), the delays τkl between excitatory nodes are equal

to delays τkl in (6.4). Note that we assumed delays between the local pairs of

excitatory and inhibitory nodes ([k l]=[1, . . . , N ; k+N ] and [k l]=[l+N ; 1, . . . , N ])

to be negligible.

Figure 6.2: Illustration of the DTI-derived structural connectivity matrix Skl and the
matrix CF

kl in (6.6). In the latter we incorporated the inter-pair coupling cEI and cIE
together with the scaled structural connectivity K · Skl. The upper left block of CF

kl has
the same structure as Skl. The two diagonals represent the coupling strengths cEI and
cIE .

Following the same phase reduction method as above, we eventually obtained

the Freeman phase model (6.1) where the expressions (superscript F) for ωk, Dkl

and ∆kl read

ωF
k =

αkβk − Ω2

2Ω

DF
kl = −αkβk

γ

2Ω

Al
Ak
Q′
[
V

(0)
l

]
CF
kl

∆F
kl = π

2
− Ωτkl;

(6.6)

here V
(0)
l refers to the unstable focus – we refer to Appendix B.2 of 67 and44 for details.

Remarks on the phase description

The phase reduction method The inherent complexity of the underlying net-

work model of neural masses, including the heterogeneity among nodes, their struc-

tural connectivity and the occurent time delays, confines the applicability of most
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phase reduction techniques presented in Chapter 2. Nevertheless, Haken’s reduc-

tion method appears a valid compromise as long as the oscillatory dynamics of

each node remain close to the Hopf bifurcation boundary, see also Section 3.2.

The reduced phase models It is important to realize that due to the inhibitory

coupling cEI , the coupling matrix CF
kl and hence DF

kl have both positive and neg-

ative entries. In contrast, for Skl and hence for DWC
kl we have Skl, D

WC
kl ≥ 0. This

change in sign can have major consequences. For instance, the Wilson-Cowan

phase model (6.3) resembles the Kuramoto-Sakaguchi model with phase lag ∆kl;

for τkl = τ = 0 we have ∆kl ∈ (0, π/2), and otherwise ∆kl ∈ (−π/2, π/2) since

Ωτkl ∈ (0, π/2) and because of our particular choice of parameters which yields

Λk ≥ 0. That is, a transition to full synchronization can occur if the coupling

strength K exceeds a critical value Kc. However, from (6.6) it follows that the

left upper block of DF
kl contains negative entries. Together with the π/2 phase

shift, the Freeman phase dynamics is therefore more closely related to the repul-

sive cosine-variant of the Kuramoto network375,376. As will be shown below, this

qualitative difference in dynamics led to profound contrasts in model behavior.

Numeric simulations Phase time series φk(t) were obtained by integrating the

system (6.1) using either (6.3) or (6.6). We first determined the fixed points

E
(0)
k , I

(0)
k (Wilson-Cowan) or V

(0)
k (Freeman) around which we observed stable os-

cillations. For these oscillations we also determined the characteristic (central)

frequency Ω and amplitudes Ak. We followed the same numerical procedure as a

previous publication of the group44. In brief, these initial estimates were achieved

by a five second simulation of the systems (6.2)/(6.5) until they reached a steady

state and using an Euler scheme with time step ∆t = 1 ms. To compute the central

frequency Ω, we determined the power spectral density per node and considered

Ω as the lowest frequency with a coinciding peak for all nodes. The choice for

the Euler method was motivated by the implementation of delays in the coupling

terms. Testing a more elaborated predictor/corrector algorithm377 revealed little

to no difference but required far more numerical resources.

The control parameters in this study were conduction velocity v and global

coupling strength K. Conduction velocity v determined delay values τkl, by as-

suming τkl to be proportional to the Euclidean distance Dkl between nodes k, l, i.e.

τkl = Dkl/v. The range of coupling strengths amounted to K = [0, 0.1, . . . , 0.7, 0.8].

Conduction velocities were v = [1, 2, . . . 10, 12, 15, 30, 60,∞] ms−1 leading to av-

erage delay values 〈τkl〉 = [75, 39, 25, 19, 15, 13, 11, 9.4, 8.4, 7.5, 6.3, 5.0, 2.5,

1.3, 0] ms. We performed simulations of the phase dynamics (6.1) only for param-

eter values that resulted in oscillations in the underlying neural mass dynamics
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(6.2)/(6.4) because only in this case a phase reduction can be considered valid (in

consequence the range of K values displayed in Fig. 6.4 varies).

Integration of the phase systems (6.1) was performed by means of an adaptive

Runge-Kutta (4,5) algorithm with variable step size. Simulation time T = 302

seconds matched the length of the available empirical time series, where we dis-

carded the first two seconds of simulation to avoid transient effects due to the

first random initial condition. To exclude effects of a specific natural frequency

distribution of ω
(·)
k , T was split into twenty bins with random duration Tn > 14 s.

The initial condition of bin n was matched to the last sample of bin n − 1. For

each n a new set of parameter values qk, µk (Wilson-Cowan) or αk, βk (Freeman)

was chosen at random, under the constraint that the characteristic frequency Ω

fell within the alpha band in all cases. The parameters µk, qk, αk, βk, and Tn were

drawn at random but the corresponding sets were kept equal across all simulation

conditions, i.e. for all combinations of K and 〈τkl〉. We thus obtained twenty sets{
ω

(·)
k , D

(·)
kl

}
. For all parameter values we generated ten realizations by choosing

different initial conditions and permutations of the set
{
ω

(·)
k , D

(·)
kl

}
for each run.

Results were averaged over these realizations for each combination of parameter

values.

Further parameter values were chosen in such a way that the neural mass net-

works (6.2) and (6.4) displayed self-sustained alpha band oscillations. For the

Wilson-Cowan model the parameters amounted to aE = 1, aI = 1, cII = −2,

cIE = cEE = cEI = 10, θE = 2, θI = 4.5, qk ∈ [−0.15, 0.15] and µk ∈ [0.125, 0.175]

where the latter two were randomly chosen to introduce heterogeneity in oscillation

frequencies throughout the network. For the Freeman model we chose cEI =cIE =1,

cEE = cII = 0, qk = 20, θ= 15, γ = 250, αk ∈ [60, 80] and βk ∈ [165, 185]. The pa-

rameters αk, βk were chosen randomly to introduce heterogeneity in the oscillation

frequency in the network.

6.3 Comparing model behavior with experimental

MEG data

6.3.1 Power-law behavior

We measured the amount of synchronization via the phase coherence, i.e. the

modulus of the Kuramoto order parameter given as

R(t) =
1

N

∣∣∣∣∣
N∑
k=1

eiφk(t)

∣∣∣∣∣ , (6.7)
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where φk(t) followed the dynamics (6.1).

Next, we assessed the autocorrelation structure of R(t) by means of a detrended

fluctuation analysis (DFA)378. In DFA the cumulative sum of a time series y(k), i.e.

Y (t) =
∑t

k=1 y(k), is divided into non-overlapping segments Yi(t) of length Tseg.

Upon removing the linear trend Y trend
i (t) in segment i, the fluctuations Fi(Tseg)

corresponding to window length Tseg are given by

Fi(Tseg) =

√
1

Tseg

∫ Tseg

0

(
Yi(t)− Y trend

i (t)
)2
. (6.8)

When these fluctuations scale as a power law, i.e. Fi(Tseg) ∼ (Tseg)α, the fluc-

tuations, and hence the associated autocorrelations, can be considered scale-free.

The corresponding scaling exponent α resembles the Hurst exponent373 H and

characterizes the correlation structure (the resemblance is proper if y(t) stems

from a fractional Gaussian noise process). We assessed the presence of a power

law in Fi in a likelihood framework by testing this model against a set of alterna-

tives379. By applying the Bayesian information criterion (BIC) we could determine

the model that constituted the optimal compromise between goodness-of-fit and

parsimony380. More details of the DFA and model comparison are given in Ap-

pendix 6.7.1.

To determine the significance of the model results, we constructed surrogate data

sets by generating 90 phase times series φ
(surr)
k (t), which equalled the number of

excitatory nodes. The surrogate phase time-series consisted of random fluctuations

around linear trends sampled from the ωF
k distribution using the same Tn partitions

as in the model simulation conditions. We used a Wilcoxon rank-sum test to

test the results from surrogate time series against simulated time series in a non-

parametric way. For evaluation of the scaling exponents, we only incorporated

those conditions that showed power-law scaling as assessed by the BIC.

6.3.2 Functional connectivity

We compared spatial correlation structures in terms of the functional connectiv-

ity matrices generated by both models with an empirically observed functional

connectivity. For the latter we incorporated a previously published data set45,372.

We refer to45 for details concerning data acquisition and preprocessing of both

the MEG and the DTI derived anatomical coupling matrix S that was used in

the coupling matrices D
(·)
kl given in (6.3&6.6). In brief, MEG of ten subjects was

recorded in resting state conditions (eyes closed) for approximately five minutes.

These MEG signals were beamformed onto a 90 node brain parcellation381, such

that 90 time-series yk(t) were obtained with a sampling frequency of 250 Hz. The
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signals yk(t) were bandpass filtered in the frequency range 8-12 Hz and subjected

to a Hilbert transform to obtain the analytical signal, from which the Hilbert phase

could be extracted.

Using the phase time series from both MEG data, φ
(MEG)
k (t), and phase time

series generated by (6.1), φ
(sim)
k (t), we calculated the pair-wise functional connec-

tivity P (·) via the pair-wise phase synchronization in the form of the phase locking

value (PLV)29. In its continuous form its matrix elements are defined as

P
(·)
kl =

∣∣∣∣ 1

T

∫ T

0

e
i
(
φ
(·)
l (t)−φ(·)k (t)

)
dt

∣∣∣∣ . (6.9)

Note that for P (MEG) we removed all individual samples that displayed relative

phases in intervals I around 0 or ±π, as for these samples true interaction and

effects of volume conduction could not be disentangled382. The intervals I were

defined as I = ±Iw/2, Iw = Ωc · Fs where Ωc is the center frequency (in this case

10 Hz) and Fs the sampling frequency. In the simulations we calculated the PLV

matrix according to (6.9) for each partition Tn and afterwards averaged the thus

obtained twenty PLV matrices.

6.3.3 Synchronization

Although both R(t) and P
(·)
kl are synchronization measures, they measure two

qualitatively different forms of synchronization, which is the reason why they offer

resolution in either the temporal or the spatial domain, respectively. Functional

connectivity P
(·)
kl measures temporal alignment of two phase time series φ

(·)
k (t),

φ
(·)
l (t) by means of an averaging over time in (6.9), such that P

(·)
kl provides reso-

lution in the spatial domain, as indicated by the subscript kl. In contrast, from

(6.7) it follows that calculating R(t) involves an average over k, i.e. over spatial

coordinates, for each time instant t. This measure therefore provides resolution in

time. That is, P
(·)
kl measures temporal synchronization and offers spatial resolution,

whereas for R(t) the opposite holds.

To gain more insight into the mechanisms responsible for the differential effects

on synchronization behavior in the two models, we further considered the measures

〈
R(t)

〉
=

1

T

∫ T

0

R(t)dt and
〈
P (·)〉 =

1

2N(N−1)

N∑
k=1

k−1∑
l=1

P
(·)
kl , (6.10)

that is,
〈
R(t)

〉
is the temporal average[2] of the order parameter and

〈
P (·)〉 cor-

responds to the average magnitude of pair-wise phase synchronization over the

[2] In a strict sense, the time dependence of the temporal average
〈
R(t)

〉
is redundant. Still, we

keep this notation to demarcate this average from a spatial averaging over the network.
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network.

Statistics Model performance in terms of replicating spatial correlation structure

was measured by calculating the Pearson correlation coefficient ρ between the lower

triangular entries of P (sim) and P (MEG), where we excluded the main diagonal to

omit spurious correlations. Since the sampling distribution of the P (·) entries are

not normally distributed, we applied a Fisher z-transform before calculating the

correlations. Restricting ourselves to the lower-diagonal entries was sufficient due

to the symmetry in the phase coherence measure. We also excluded the diagonal

entries to avoid spurious correlations resulting from the trivial value P
(·)
kk =1.

6.4 Results

6.4.1 Power-law behavior

Only the Freeman phase dynamics generated power laws and thus long-range tem-

poral correlations in the evolution of phase synchronization for a broad range of pa-

rameter values. In Fig. 6.3a we display the results as function of coupling strength

K and mean delay τkl. Since for none of the parameter values the Wilson-Cowan

phase model yielded power laws, we do not show the corresponding results for this

model. The average value (± SD) of the scaling exponents was α = 0.56 ± 0.02

for the Freeman model, which is significantly different from the surrogate results

α = 0.501 ± 0.012 (p < 10−4). In this average we only considered those realiza-

tions that were classified as power laws. This result qualitatively agreed with the

observed value in MEG data (α = 0.62,372), as both indicate persistent behavior

and thus long-range temporal correlations.

Fig. 6.3b provides examples of the log-log fluctuation plots for a single realization

(K = 0.7, 〈τ〉 = 9.4) for both the Freeman and the Wilson-Cowan based model

(upper and lower panel, respectively). The latter clearly deviated from linearity

indicating that it did not scale as a power law. There the model selection procedure

assigned a piece-wise linear function (dashed gray in Fig. 6.3b) to the Fi results

confirming the deviation from linearity. Other parameter values yielded similar

results for this model. The Freeman phase model yielded a power law with scaling

exponent α = 0.56; Fig. 6.3b, upper panel.

6.4.2 Functional connectivity & synchronization

As said, we quantified functional connectivity as pair-wise phase synchronization

of the phase variables φ
(·)
k following either the dynamics (6.1) indicated by the su-
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perscript (sim) or (surr) or the instantaneous Hilbert phase extracted from source-

reconstructed MEG data, superscript (MEG). Model performance was quantified

by means of the Pearson correlation coefficient ρ between the P (sim) and P (MEG)

matrices. Maximal P (MEG)-P (sim) correlations were ρ = 0.56 in both models for

parameter values (K = 0.8, 〈τkl〉= 9.4) for the Freeman and (K = 0.7, 〈τkl〉= 9.4)

for the Wilson-Cowan phase model (Fig. 6.4). This value is comparable to values

reported in previous simulation studies45,383,384, but in contrast to the latter two

studies no critical coupling strength was found at which model-data correlations

collapse. The Freeman phase model appeared less sensitive to overall coupling

strength than the Wilson-Cowan phase dynamics.

We mentioned above that R(t) and P
(·)
kl measure two qualitatively different forms

of synchronization. That P
(·)
kl and R(t) indeed constitute two different aspects of

synchronization is reflected in the results. Whereas the qualitative difference in

the phase coupling matrices DWC
kl and DF

kl did affect the autocorrelation struc-

ture in R(t) (Fig. 6.3b), i.e. the Wilson-Cowan model did not resemble power-law

behavior while the Freeman model did, it had only a minor influence on func-
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Figure 6.3: (a) DFA results for the R(t) autocorrelations generated by the Freeman
phase model as a function of coupling strength K and mean delay 〈τkl〉 (in milliseconds).
Colors code the values of the scaling exponents α and are indicated by the colorbar. In all
cases we observed persistent behavior in line with our empirical findings. (b) Examples
of the fluctuation plots for the Freeman phase and Wilson-Cowan phase model (upper
and lower panel, respectively) for K= 0.7; 〈τ〉= 9.4 together with the linear fits (gray)
and the assigned model (dashed gray; f10

θ in (6.13)). The values on the x-axis are in
milliseconds on a logarithmic scale (based on segment sizes of 104 to about 106.8 ms).
On the vertical axis the expectation value of Fi is shown that was determined via the
corresponding probability densities p̃n; see also Appendix 6.7.1. The Wilson-Cowan
phase model did not result in scale-free correlations for any of the parameter values,
with typical results for the log-log fluctuation plots similar to (b, lower panel). The
DFA result for the Freeman phase model (b, upper panel) was classified as a power law
with α = 0.56 – this was significantly different from mere random noise when tested
against surrogates.
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Figure 6.4: Pearson correlation values between the Fisher-z transformed PS and
P (MEG) functional connectivity matrices for the Wilson-Cowan phase model (left) and
the Freeman phase model (right) as function of couplingK and mean delay 〈τkl〉 (millisec-
onds). The colored shading codes the correlation values and correspond to the colorbar
on the right-hand side. The non-shaded area corresponds to the case in which the cor-
relation was not significant. To respect weak coupling, the maximum coupling strength
was set to K = 0.7. Results were averaged over ten realizations for every parameter
combination.

tional connectivity in that in both cases a similar maximum correlation with the

empirical functional connectivity could be achieved (Fig. 6.4).
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Figure 6.5: Mean values 〈R(t)〉 as function of delay 〈τkl〉 in milliseconds (a) and coupling
strength (c). Black solid lines correspond to the Freeman phase model results, dashed
black lines to those for the Wilson-Cowan phase model. Empirical values are indicated
by the solid gray lines, surrogate values by dashed gray lines. (b) and (d) show averaged
functional connectivity

〈
P (·)〉 as function of delay (in milliseconds) and coupling strength

respectively. Values are averaged over coupling values K = 0.1, . . . , 0.7 when displayed
as function of delay and over 〈τkl〉 = 0, . . . , 75 as function over coupling strength.

The averaged measures
〈
R(t)

〉
and

〈
P (·)〉 served to quantify differential effects

on synchronization behavior in the two models. In Fig. 6.5 we display the results as

function of both delay and coupling together with the surrogate and MEG data val-

ues. As expected from the repulsive coupling in the Freeman phase model, phases
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were dispersed with 〈R(t)〉 values significantly below surrogate values (p< 10−4).

In contrast, the Wilson-Cowan model resulted in a partially synchronized state,

which better corresponded to empirical findings (gray solid lines). In accordance

with the results on P (sim)-P (MEG) correlations, the qualitative difference between

models in
〈
R(t)

〉
did not transfer to pair-wise synchronization magnitude

〈
P (·)〉.

That is, both models yielded significantly larger
〈
P (·)〉 values than obtained for

the surrogate data set (p<10−4). This was the case despite the spatial desynchro-

nization of the network of Freeman models.

This striking result led us to further assess the dynamics of both phase models

by supplementary simulations with considerably larger coupling strengths. These

coupling values were beyond the weak coupling assumption, rendering the va-

lidity of the phase dynamics for these parameter values questionable; see also
Appendix of 67. It did, however, provide additional insight into the dynamical prop-

erties of the phase model (6.1), especially with respect to the synchronizability of

these networks. As shown in Fig. 6.6, the Freeman phase model did not allow for

a (partially) synchronized state even for large coupling strength. In contrast, for

sufficiently small delays the Wilson-Cowan phase model entered a fully synchro-

nized state. This is consistent with the coupling structure of both models given

by (6.6) and (6.3), respectively.
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Figure 6.6: Mean values 〈R(t)〉 for large
coupling values equivalent to K = 5
(black) and K = 10 (gray) for the Free-
man (solid) and Wilson-Cowan (dashed)
phase models. The gray solid line denotes
the surrogate 〈R〉 value. While, consis-
tent with the standard Kuramoto model
strong coupling induced a synchronized
state in the Wilson-Cowan phase dynam-
ics, this was not the case for the Freeman
phase model. The delay values 〈τkl〉 are
in milliseconds.

Although the degree of phase synchronization of the Freeman phase model was

consistent with a repulsively coupled phase oscillator network, the inhibitory con-

nections in CF
kl made a direct comparison with the repulsive cosine variant of the

Kuramoto network non-trivial. Nevertheless we expected these models to show

similar behavior, since the inhibitory connections were rather sparse compared to

excitatory ones (Fig. 6.2). To test this, we also considered an alternative: a Free-

man model that only comprised the excitatory part DF
kl, i.e. the left upper block

of this matrix. Results are summarized in Appendix of 67. In a nutshell, these results

indicate that the scale-free correlation structure displayed by the Freeman phase
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model is caused by (the nature of) the coupling between the excitatory units. Its

dynamics can thus be understood by considering the phase dynamics (6.1)/(6.6)

as a repulsively coupled Kuramoto network.

6.5 Discussion

We contrasted the phase dynamics derived from two seminal neural mass mod-

els, representing the integrated contribution of large numbers of neurons within

populations. Neural mass models have been used for modelling a wide range of

neural phenomena, ranging from the origin of alpha band oscillations and evoked

potentials71,74 to the onset of pathological brain activity patterns such as epileptic

seizures385,386. The phase reduction yielded phase oscillator networks that differed

qualitatively in their coupling structure. Nevertheless, both models performed

comparably well in the spatial domain as assessed by the P (sim)-P (MEG) correla-

tions, i.e. they resulted in similar pair-wise synchronization characteristics as fea-

tured by the experimentally observed data. A related finding has been reported by

Messé and coworkers387 who showed that model performance in terms of P correla-

tions was relatively independent of nodal dynamics. Here it is important to realize

that structural connectivity has a high predictive value for (empirical) functional

connectivity44,61,388, which here could also be confirmed by correlating P
(sim)
kl and

Skl (see Fig. 6.7). That is, both models generated functional connectivity struc-

tures that were highly correlated with Skl. This same notion forms the basis for

the general finding in RSN modelling studies that optimal model performance oc-

curs near the critical point355. The critical slowing down around the bifurcation

point allows for a maximal reflection of Skl into functional connectivity383. We

showed that the reflection of structural into functional connectivity may occur in

two models generating qualitatively different dynamics. This indicates that an

inference about the dynamical regime, in particular regarding criticality, on basis

of the P correlations alone is non-trivial – at least for the phase oscillator models

considered here; see also389 for a related conclusion. Whether this extends to more

complex networks consisting of detailed neuronal models is beyond the scope of

the current study.

In contrast to the pair-wise phase synchronization (PLV), the models differed

qualitatively regarding the phase synchronization quantified by the phase coher-

ence R(t). In particular, only the Freeman phase model displayed scale-free au-

tocorrelation structures observed in data, revealing complex characteristics in its

dynamics. The values of the scaling exponents (α> 0.5) revealed the presence of

long-range temporal correlations, which qualitatively agrees with the correlation

structures reported in brain activity369–372.
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In the Kuramoto model351, critical coupling strength is the value of the coupling

parameter K for which the desynchronized state loses stability and the system

enters a (partially) synchronized regime272. Here, synchronization is quantified

by R(t), and hence measures spatial synchronization in the network. Functional

connectivity, however, is determined by the temporal alignment of, in the present

study, phase signals φl(t), φk(t) and thus reflects a fundamentally different form

of synchronization. We showed that these forms of synchronization were affected

differently by the generating dynamics: pair-wise synchronization largely agreed

between models, whereas R(t) did not. The average value and the autocorrelation

structure of R(t) were affected by the qualitative difference in coupling structure

between models.

The Wilson-Cowan phase model displayed a transition into a fully synchronized

state for sufficiently large coupling; see Fig. 6.6. Combined with the partial syn-

chronization displayed in Figs. 6.5c and 6.5a, this indicates that the Wilson-Cowan

model for K = [0.1, 0.7] is located at the onset of synchronization, i.e. in its critical

regime. Although associated with critical dynamics366, we did not observe power-

law correlation structures in this model. Similar findings have been reported390

for phase difference time series Φkl(t) = φl(t) − φk(t), not only in case of the

standard uniformly coupled Kuramoto network, but also for a more biologically

plausible model incorporating a DTI derived coupling matrix and distance-related

delays see also 43. However, long-range temporal correlations were observed in Φkl(t)

as well as R(t) in resting state brain activity in371 and372, respectively. This sug-

gests that the critical regime in Kuramoto-type networks has different properties

compared to the dynamical regime of the resting brain, be the latter critical or

not.

The desynchronized state for the repulsive coupling in the Freeman phase model

(6.6) was consistent with various analytical results91,375,376,391; cf. Fig. 6.6. A

desynchronized network, however, does not exclude complex dynamics as reflected

in the presence of scale-free autocorrelations in the Freeman model. The topology

of this model may be regarded as related to phase oscillator networks consisting

of so-called conformists and contrarians studied in376,392. The latter showed that,

even for small networks, a variety of complex dynamics including chaos may occur.

A similar finding has recently been reported by Sadilek and Thurner48, who studied

a two-layered Kuramoto network derived from the same Wilson-Cowan dynamics

as considered here. They identified a chaotic region with the largest Lyapunov

exponents arising at the boundary of synchronization, i.e. in the critical regime.

By changing the value of the delay parameter range, this model could switch

between a synchronized and desynchronized state through a bifurcation.

Despite the fact that the model in48 and the Wilson-Cowan phase model in the
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current study were derived from the same dynamics (6.2), both networks are quite

different in their topology and in their delay structure. The model in48 contained

an excitatory and inhibitory layer, whereas this was not the case in (6.1)/(6.3).

The reason for this discrepancy is that Sadilek and Thurner described the oscil-

latory trajectory solely by the phase variable, whereas we also took amplitude

into account see also 41,42. As a consequence the reduction in dimensionality in the

Wilson-Cowan phase description that we found when deriving (6.1)/(6.3) from

(6.2), did not occur in48. As a consequence, the inhibitory connections in the

neural mass dynamics were retained in the phase model in that study. A second

distinction between both models is the delay structure. In both models (6.2) and

(6.4) we regarded the delays between excitatory and inhibitory units to be negligi-

ble compared to those between excitatory units, as these connections represented

long-range connections subject to finite conduction delays. In contrast, the delay

parameter in48 quantified the delay between excitatory and inhibitory units and

excitatory-excitatory delays were assumed to be zero.

With the two models considered here we could explain two profound phenomena

observed in brain activity. The Freeman phase model generated the type of auto-

correlation structures observed in brain activity, but its coupling structure resulted

in a desynchronized network, i.e. low R(t) values, that did not agree with MEG

recordings (see Fig. 6.5). Additionally it could not account for a transition into

partially synchronized states, let alone the (pathological) fully synchronized one.

In contrast, the Wilson-Cowan phase model could cover these synchronization phe-

nomena, but it did not show the complex dynamics associated with (resting state)

brain activity. The fundamental difference in coupling structure, combined with

the analytical results discussed above, suggests that these dynamical properties

are mutually exclusive for the models considered here.

We are left with the question, whether one of these models could be modified

in such a way that it can exhibit both phenomena. First we have to admit that

our DTI-based construction of anatomy and delays is a clear simplification of the

‘real’ structural connectivity. Adjusting this may have major consequences for the

resulting phase dynamics. The aforementioned study by Sadilek and Thurner48

gives an indication for this, since they showed that a connectivity structure allow-

ing for comparatively dense inhibitory connectivity yielded complex dynamics in

the form of chaos. Interestingly, in other types of models inhibitory connections

have been shown to be determinants in generating critical states393–395 and for

information transfer365,396. However, these results reflected the dynamics within

a neural population rather than the dynamics in the global cortical network con-

sidered here. Neurophysiological findings indicate that the long-range connections

between areas are excitatory with inhibitory connections only providing local in-
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hibitory feedback349,397,398. From such a neurophysiological perspective we regard

our coupling structure to be more realistic in the context of global cortical networks

than the one in48. Thus, although incorporating inhibitory connections could po-

tentially merge the dynamical properties of the Wilson-Cowan and Freeman phase

descriptions, such a coupling structure would violate its neurophysiological plausi-

bility and thus the appeal of deriving these networks from a neural mass dynamics.

This is not to say that the network in48 is unrealistic from a neurophysiological

point-of-view, but both the connectivity and the delay structure may be more rep-

resentative of local interactions within a cortical region than of global large-scale

brain networks considered here.

As an alternative one may extend the models to the stochastic regime, e.g., by

adding noise to the firing rate or membrane dynamics. Dynamic noise is known for

its capacity to alter the correlation structure of global outcome variables like the

order parameter R(t). Dynamic noise can also influence synchronization patterns

and that not only by causing phase diffusion or shifting the critical point at which

synchronization may emerge; in the case of common noise, it may even induce

synchronization. A more detailed discussion of network dynamics under impact of

random fluctuations, however, is far beyond the scope of the current study.

Delays in networks can lead to very complex dynamics. Since we considered

the dynamics of the relative phases that were assumed to evolve slowly with re-

spect to the oscillation frequency Ω, the delays between neural masses mapped

to mere phase shifts in (6.1). Therefore a comparison of the networks in which

delays explicitly influence the phase interactions, such as in43 and the analytical

results by399–401, cannot be readily made. In the case of delayed phase interac-

tions, however, scale-free correlations could not be observed in a phase oscillator

network incorporating a similar coupling scheme to the one employed here43,390.

Taken together, our findings suggest that phase oscillator networks without dense

inhibitory coupling throughout the whole network, are not capable of showing the

entire dynamic spectrum of resting state brain activity. Whether this limitation

is posed by the phase oscillator network itself or the consequence of collapsing

population dynamics onto a low-dimensional description in the form of a neural

mass model remains to be seen.

6.6 Conclusion

We illustrated some challenges when deriving and interpreting the phase dynamics

of neural mass models. As an example we employed networks of Wilson-Cowan

firing rate models and networks of voltage-based Freeman models. The phase dy-

namics of these models differed qualitatively by means of an attractive coupling
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in the first and a repulsive coupling in the latter. While both phase dynamics did

cover the functional connectivity observed in resting state activity, they failed to

describe two pivotal dynamical features that have been reported in many exper-

imental studies: (1) a partial phase synchrony with a possibility of a transition

towards either a desynchronized or a (fully) synchronized state; (2) long-term

autocorrelations indicative of a scale-free temporal dynamics of phase synchro-

nization. The phase dynamics of the Freeman model exhibited scale-free behavior

and the Wilson-Cowan phase model could switch into a (partially) synchronized

state. However, none of the phase models allowed for describing both dynamical

features in unison.

There is a range of possibilities to modify these models, e.g., by misbalancing

excitatory and inhibitory units or by introducing delays that are biologically less

plausible than the ones we chose. Alternatively, one may consider the phase dy-

namics further away from the onset of oscillations (Hopf-bifurcation) that limits

analytic approaches. By either of these adjustments one may lose the direct link

to the structural connectivity structure. In our example, neither of the phase dy-

namics can capture the full dynamical spectrum observed in cortical activity. We

have to conclude that modeling phase synchronization and, in particular, inferring

characteristics of its underlying neural mass dynamics require great care.
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6.7 Appendix

6.7.1 Detrended fluctuation analysis with model comparison

To assess the temporal character of φ
(·)
k , we determined the Kuramoto order pa-

rameter

R(t) =
1

N

∣∣∣∣∣
N∑
k=1

eiφ
(·)
k (t)

∣∣∣∣∣ .
That is, we only used the excitatory phases to calculate R(t). In analogy with

the procedure for empirical data discussed in372, we z-scored the R(t) time series,

such that differences in scaling behavior could not be attributed to differences

in the stationary statistics of the R(t) time series. We resampled R(t) to 250

Hz to match the sampling frequency of the data as well as to obtain an equally

spaced time axis necessary for the detrended fluctuation analysis (DFA)378 used
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to characterize the R(t) autocorrelation structure. To assess the presence of scale-

free autocorrelations in R(t), we used a modified version of the conventional DFA

procedure. We shortly summarize this below; for a detailed explanation we refer

to379.

In line with the outline around (6.8), consider (the cumulative sum of) a time

series Y (t), t = 1, . . . , N that is divided into bN/nc non-overlapping segments

Yi (t) of length n with t = 1, . . . , n. Upon removing the linear trend Y trend
i (t) in

segment i, the fluctuations Fi (n) corresponding to window length n are given by

Fi (n) =

√√√√ 1

n

n∑
t=1

(
Yi (t)− Y trend

i (t)
)2

In the conventional DFA procedure one calculates the average fluctuation magni-

tudes

F̄i (n) =

√√√√ 1

bN/nc

bN/nc∑
i=1

F 2
i (n) .

We regarded {Fi} as a set of bN/nc realizations of the ‘stochastic’ variable Fi and

determined its probability density pn(Fi). When these fluctuations scale as a power

law, i.e. Fi (n · c) = nαFi(c), we find that log (Fi (n · c)) = α log (n) + log(Fi(c)).

Hence, under a transformation to logarithmic coordinates ñ = log(n), F̃i =

log (Fi), a power law appears as a linear relationship. To identify whether power-

law scaling was present we fitted a set of candidate models fθ (ñ) parametrized by

the set θ. The linear model corresponding to power-law scaling was contained in

this set, such that we could compare it against alternatives. For this comparison

we defined the log-likelihood function as

ln
(
L (θ|fθ)

)
= ln

(∏
n

p̃n (fθ)
)

=
∑
n

ln
(
p̃n (fθ)

)
. (6.11)

where p̃n denotes the probability density pn transformed to the double logarithmic

coordinate system. In (6.11) one evaluates for each n the probability density p̃ at

model value fθ(ñ) and defines the likelihood function as its product. The purpose

of calculating L was to be able to use of the Bayesian Information criterion (BIC)

defined as

BIC = −2 ln (Lmax) + k ln(M) (6.12)

to compare different models fθ. In (6.12) M denotes the number of different

interval sizes n, k the number of parameters in the model (the size of the set θ)
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and Lmax the maximized likelihood with respect to a particular model f
(·)
θ . The

model resulting in a minimal value of the BIC compared to alternative models was

considered to be the optimal model; providing the optimal compromise between

goodness-of-fit and parsimony380. The set of candidate models was given by a

combination of polynomial forms including the sought-for linear model. We further

included an alternative exponential model fit as well as the form resulting from an

Ornstein-Uhlenbeck process and, last but not least, a piece-wise linear model:

f 1
θ (x) = θ1 + θ2x f 2

θ (x) = θ1 + θ2x
2

f 3
θ (x) = θ1 + θ2x+ θ3x

2 f 4
θ (x) = θ1 + θ2x

3

f 5
θ (x) = θ1 + θ2x+ θ3x

3 f 6
θ (x) = θ1 + θ2x

2 + θ3x
3

f 7
θ (x) = θ1 + θ2x+ θ3x

2 + θ4x
3 f 8

θ (x) = θ1 + θ2e
θ3x

f 9
θ (x) = θ1 +

1

ln(10)
ln
(
θ1

(
1− e−θ2eln(10)x

))
f 10
θ (x) =

θ1 + θ2x x ≤ θ4

C + θ3x x > θ4

with C = θ1 + (θ2 − θ3)θ4 .

(6.13)

The scaling exponent α was determined as the slope of the linear relationship

fθ, i.e. α = θ2 in f 1
θ (x). When reporting mean α values, we only use those α

values obtained in realizations for which the BIC indicated power-law scaling.

We also calculated the finite-size corrected Akaike information criterion AICc =

−2 lnLmax + 2k+ 2k(k+1)
M−k−1

which led to similar results (not shown). We determined

Fi for the range of interval sizes n = [10, N/10], where N denotes the length of

the time series, here amounting to 300 · 250 = 7.5 · 104 samples.

6.7.2 Correlating functional and structural connectivity

We computed the correlation between P
(sim)
kl and Skl to show that both models

generated functional connectivity structures that were highly correlated with Skl;

see Fig. 6.7.
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Figure 6.7: Pearson correlation values between the PS and Skl matrices for (a) the
Wilson-Cowan phase model and (b) the Freeman phase model as function of coupling
strength K and mean delay 〈τkl〉 (in milliseconds). The colors code the correlation
values and correspond to the colorbar at the right. Correlation values were averaged
over ten realizations for each parameter combination. Note the similarity of this figure
with Fig. 6.4 suggesting that the reflection of Skl is an important determinant in high
functional connectivity correlations cf. 402.



195

ChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapterChapter 7
Epilogue

Synchronous, coherent interaction is key –
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Phase synchronization is a fundamental concept to assess and quantify coherent

network activity. This dissertation aimed at a thorough introduction to analyz-

ing the phase dynamics of oscillatory networks. The human brain represents an

important example of a complex oscillatory network. It therefore provides an

ideal playground for mathematical and computational neuroscientists where we

can apply ideas and tools from nonlinear dynamics and complex systems theories

to model the experimentally observed, collective dynamics that emerge from the

interplay of a multitude of neurons. In particular, I focused on populations of

neurons that exhibit rhythmic macroscopic behavior and investigated the mutual

interaction of these oscillatory neural populations, typically represented as coupled

neural masses.

In Chapter 1 I introduced the concept of synchronization in the realm of neural

dynamics, and addressed the notion of phase synchronization as a powerful means

to describe the interplay of neuronal oscillations and coherent brain network ac-

tivity. Chapter 2 presents an extensive overview of phase reduction techniques. I

explicated both numerical and analytical techniques to derive the phase dynamics

of oscillator networks. Moreover, I complemented the overview with an outline of

normal form reductions, which form an integral part of analytical phase reduction

techniques. In Chapter 3 I subsequently illustrated the different phase reductions

along two seminal examples of oscillator networks. The first part dealt with a

network of identical Brusselators, which is an exemplary chemical oscillator. The

Brusselator model displays a broad spectrum of complex dynamics and is at the

same time mathematically tractable. It was therefore perfectly suited for testing

how phase reduction techniques differ when allowing for more realistic, complex

and nonlinear coupling schemes. The second part focused on the phase reduction

of a network of identical Wilson-Cowan neural masses, which can be considered a

raw model for introducing biophysical realism in macroscopic neural dynamics. I

concluded that analytic phase reduction techniques provide a parametrization of

the phase dynamics in terms of the underlying model parameters. Close to bi-

furcation boundaries, the analytically reduced phase models perform equally well

as those derived numerically. Further away from bifurcation boundaries, numer-

ical reduction techniques outperform analytic approaches, however at the price

for computationally expensive scanning of the parameter regions in order to gain

intuition about the influence of particular parameters on the collective phase dy-

namics.

In Chapters 4 and 5 I briefly left a rigorous phase reduction aside and con-

centrated on the collective dynamics of coupled phase oscillators. In Chapter 4 I

elucidated the effects of network-network and cross-frequency interactions. I found

that the phase synchronization properties of two coupled symmetric populations of
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phase oscillators coincide with those of a single population whose oscillators follow

a bimodal frequency distribution. Following the Ott-Antonsen theory, I was able

to exactly describe the low-dimensional collective dynamics of the networks. In

Chapter 5 I extended the existing Ott-Antonsen theory to parameter-dependent

oscillatory systems. An important example of this class of oscillators is the theta

neuron, which corresponds to the quadratic integrate-and-fire model, resembling

a spiking neuron. I illustrated the proof along a network of quadratic integrate-

and-fire neurons and thus put a broader applicability of the Ott-Antonsen theory

on mathematically firm ground.

Eventually, I returned to reduced phase models in Chapter 6 and investigated

the phase dynamics of Wilson-Cowan and Freeman neural mass models. Given

experimental MEG data displaying large-scale brain activity at the edge of criti-

cality, the aim was to model two corresponding but distinct dynamical features,

namely partial phase synchronization and scale-free temporal dynamics. The Free-

man phase model exhibited scale-free behavior, whereas the Wilson-Cowan phase

model showed a transition to partial synchrony. However, neither of the reduced

phase models could capture the full dynamical spectrum of cortical oscillatory

activity.

We are left to discuss the implications of the foregoing studies, including their

implicated results as well as their relevance for neuroscience. In the following

Section 7.1 I will briefly revisit the research questions initially stated in Section 1.3.

I will address general aspects of phase reductions in Section 7.2, shed light on

the predictive power of phase models in Section 7.3, and place the previously

addressed neural mass models in context of other frequently used neural oscillators

in Section 7.4, before I conclude with a brief outlook.

7.1 Revisiting the research questions

The first part of the dissertation arguably sought for an answer to the question,

• What is the best way to distill the phase dynamics of a complex oscillatory

network?

There exist a short and a long answer. The long one follows the reasoning of

Chapter 2. The mathematical theory of different phase reduction techniques and

their comparison have been illustrated in various applications in Chapter 3. The

short answer to the research question is: there is no easy solution. Determining an

accurate phase model that captures the (phase) dynamics of a complex oscillatory

network is a challenge. Although sophisticated mathematical theory and numer-

ical analysis techniques exist, the main problem is that there is no ground truth
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of exact phase dynamics of complex oscillatory networks. Despite the seemingly

philosophical touch, the statement builds on the fact that phase (and amplitude)

variables are essentially relativistic observables and no absolute properties of (com-

plex) oscillatory behavior. Yet, within the realm of weakly coupled limit-cycle

oscillators the phase description becomes instrumental in characterizing the state

of each oscillator. From this perspective, phase reduction techniques as outlined in

Chapter 2 are crucial in that they enable us to properly derive a phase model that

corresponds to the actual phase dynamics. While both analytical and numerical

phase reduction techniques have their respective pros and cons, I suggest the fol-

lowing: The interplay between analytics and numerics is key to validate the phase

model. Analytic intuition should be combined with numerical accuracy and the

phase dynamics can be accurately distilled from the underlying network model.

• Under which circumstances can a low-dimensional description capture the

collective dynamics of complex phase oscillator networks?

Here, I refer to Chapters 4 and 5 for all mathematical details. Network-inherent

properties, such as an underlying connectivity structure or distributed parameters

across the nodes, specify the complexity of a network, and thus shape the col-

lective dynamics. The Ott-Antonsen ansatz had been successfully introduced to

capture the exact low-dimensional macroscopic dynamics of phase oscillator net-

works, whose major complexity was confined to a smooth distribution of natural

frequencies81. A first more complex situation arose by allowing for multiple peaks

in the frequency distribution function271. The low-dimensional description of the

corresponding collective dynamics capitalized on introducing local (Kuramoto)

order parameters around the peaks of the distribution. These local quantities sug-

gested to disentangle the full network into interacting but separate populations of

phase oscillators. In Chapters 4 I rigorously proved that this view can indeed be

justified, at least for a particularly symmetric case. Seen from another perspective,

my proof points at a way how network-network interactions can be summarized

within a single (bigger) network that allows for casting the collective dynamics

onto the low-dimensional Ott-Antonsen manifold.

Further examples of complex phase oscillator networks whose collective dynam-

ics are low-dimensional and that can be retrieved along the Ott-Antonsen ansatz,

were addressed in Chapter 5. Buzzword here is “parameter-dependent oscillatory

systems”. Upon a reformulation into a particular phase model whose phase interac-

tion function is dominated by first harmonics only, I simplified the nodal dynamics

of the network by introducing appropriate parameter distributions or by identify-

ing additional dynamics as time-varying parameters. In this way, I could set the

applicability of the Ott-Antonsen theory on firm ground and use low-dimensional
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systems of differential equations to describe the exact collective dynamics of net-

works of quadratic integrate-and-fire (aka theta) neurons, of pulse-coupled Winfree

oscillators, of limit-cycle oscillators with shear, as well as of networks with partic-

ular connectivity structures, external forcing, and time delay.

• Do phase oscillator networks cover seminal characteristics of experimental

data from the cortex?

In order to find a satisfying and comprehensive answer, the utility of phase models

has to be judged critically and for their predictive power, which will be addressed

in more detail in Section 7.3. Chapter 6 provided a suitable scenario to test

whether neurophysiologically sophisticated phase models can capture the complex

dynamical notions of experimental data. In short, the phase time series of resting

state MEG data under investigation featured a dynamical spectrum that could

not be reflected in phase models reduced from seminal neural mass descriptions.

The reasons for the apparent gap between the recorded data and the simulated

phase dynamics can only be hypothesized. Considering the nature of the available

data, one possible reason comprises frequency and amplitude modulations that are

inherent in the experimental data but ignored in the phase model. Allowing for

time variability in the phase model can be a first step to bridge the gap to data.

7.2 Networks of complex neural oscillators and

phase reductions

Phase reduction is a powerful method to simplify the analysis of a network of inter-

acting oscillatory systems. While the systems’ dynamics are governed by nonlinear

and often high-dimensional differential equations, a phase reduction generally al-

lows for a dynamical description of the network’s nodes in terms of one-dimensional

phase variables only. Unfortunately, a unique phase reduction does not exist and

there is no straightforward recipe, either, along which the phase dynamics should

be reduced. Instead, one has to choose from a variety of different phase reduction

techniques, all of which have their advantages and disadvantages. This renders the

notion of phase dynamics somewhat ambiguous. As has been shown in Section 2,

for any chosen technique, the reduced phase dynamics have to be considered with

care. With the present inventory of phase reduction techniques we pointed out sim-

ilarities and differences between techniques. A common basis that all techniques

share is the theory of weakly coupled oscillators. The system has to exhibit stable

limit-cycle oscillations without the (external) influence or perturbation through

coupling or noise. And, the coupling strength has to be sufficiently weak so that
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the full dynamics remain close to the unperturbed limit cycles, and amplitude ef-

fects can be neglected. Under these assumptions, a comparison between reduction

techniques is possible, which can generally be grouped in analytic, and numerical

approaches.

While numerical approaches can be used to reduce phase dynamics for almost

every kind of oscillatory dynamics, analytic approaches heavily rely on emerg-

ing oscillations via a supercritical Hopf bifurcation. In this case the analytic phase

reduction splits into a two-step reduction: a normal form reduction brings the orig-

inal dynamics in Hopf normal form and, subsequently, phase reduction extracts the

corresponding phase dynamics. Once a system has been brought into Hopf normal

form, all phase reduction techniques, including numerical approaches, result in the

same reduced phase model, at least, in leading order. Differences between analytic

approaches do occur, though, due to different normal form reductions. Their ac-

curacy depends on the distance to the Hopf bifurcation point. Very close to this

point, the reduced phase models coincide almost perfectly for different analytic

and numerical reduction techniques.

Analytic techniques have the advantage that they allow for a parametrization

of the reduced phase model in terms of the original model parameters. Numerical

reduction techniques, by contrast, remain “black boxes”, at least to some degree,

and the link between phase model parameters and original parameters may re-

main opaque. For larger distances from the bifurcation point, however, numerical

techniques clearly outperform the analytic ones. A combination of both analytic

and numerical reduction techniques hence appears unavoidable when looking for

a thorough picture of the emerging collective dynamics of interacting oscillators.

A brief comment is at place about the Haken approach, also coined ad-hoc av-

eraging in Chapter 3, and upon which the phase descriptions in Chapter 6 dwell.

This method clearly stands out for its pragmatic applicability. In a straightfor-

ward way, it allows to express the phase model parameters in terms of the original

dynamics. Moreover, it avoids the assumptions of the theory for weakly cou-

pled oscillators. As long as small-amplitude oscillatory dynamics are of (or can

be transformed into) circular shape, it is possible to (semi-) analytically reduce

the corresponding phase dynamics – no matter whether these oscillations have

emerged through a supercritical Hopf, any other or no bifurcation at all, whether

they are induced by coupling strength or coupling direction, or induced by noise

or delay. This approach may lack mathematical rigor, and the reduced phase dy-

namics have to be compared to the actual evolution of the phases. However, it can

hint at the role of particular model parameters on the network dynamics, which

numerical techniques can only achieve by a computationally expensive scanning of

the parameter space.
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Last but not least, a thorough comparison between different methodological ap-

proaches usually implies a quantitative account to what extent these techniques

generate qualitatively equivalent results, which, in our case, are the resulting phase

models. It would be desirable to present particular error estimates for each tech-

nique. When based on the original model parameters, it might be possible to set

upper bounds beyond which a reduction technique can no longer be applied to de-

termine the corresponding phase dynamics at a given (small) error. Such estimates

are, however, few and far between. We hope that our inventory in Chapter 3 will

serve to establish this long-needed error estimation.

7.3 The predictive power and limitations of

(reduced) phase models

The reduction of a network of interacting oscillatory systems into a network of

coupled phase oscillators serves to facilitate the analysis of the collective, network

dynamics. In general, the oscillatory dynamics per node can be quite complex and

their evolution may be governed by a high-dimensional system of coupled nonlinear

differential equations. Phase reduction techniques allow to express the state of each

node in terms of a single, one-dimensional phase variable. The resulting phase

model thus reduces the dimensionality of the network dynamics to great extent.

But, how powerful is such a phase model? Obviously, this question is connected

to the first research question above. Yet, a satisfying answer must also address

the predictive power of phase models in general, and of reduced phase models in

particular. Whether a comprehensive observable of the collective dynamics can be

expressed in terms of the phase dynamics will be challenged in sub-section 7.3.1.

And whether phase models can be used to describe experimental data is in the

focus of sub-section 7.3.2.

Is a phase model a good model? A phase model, like any other model, is

neither good nor bad. A model cannot be good, or bad. It is either descriptive,

or it is not. A model can be more descriptive, or less. That is, it is more or less

accurate in a particular parameter region. And, it may uphold this accuracy over

a larger or smaller parameter region. Phase models capture the phase dynamics

of oscillatory systems. Not more, and not less. They gain their predictive power

by allowing for an accurate description of the phase dynamics of the underlying

system, and thus by predicting possible collective behavior of coupled oscillators

based on the dynamics of the phase relationships between them.
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Predictive power of phase models Usefulness and strength of a model is, in

general, judged by its predictive power. In view of this dissertation, the question

arises whether a simplified phase model can still provide an accurate description

of the oscillatory system under investigation. Quantifying the accuracy, and thus

the predictive power, of a phase model can be a challenge. It becomes particularly

difficult if such an assessment is supposed to be both quantitative and qualita-

tive. Qualitatively, an accurate phase model has to correctly describe the different

dynamical regimes of the underlying model as well as the transitions from one

regime to another. Quantitatively, an accurate phase model reflects the various

qualitative features of the underlying model, and, at the same time, numerical

differences between the respective observables of the original and the approximate

models converge to zero. A qualitative and quantitative assessment of the phase

model is especially important to determine a certain (parameter) range of validity

and applicability. Within this range, the model can be applied and is accurate up

to some error bounds. Beyond this range, however, it may lose its validity in a

strict sense and the actual dynamics diverge from predictions by the reduced or

simplified model.

As an example, I consider the case of a finite network of slightly heterogeneous,

nonlinear but smooth oscillators that are coupled with respect to an adjacency

matrix C. If these oscillations emerged through a supercritical Hopf bifurcation,

then for parameter values close to the Hopf point it seems reasonable to approxi-

mate the network by coupled Kuramoto phase oscillators as long as the coupling

is sufficiently weak. There are, however, three main concerns that have to be con-

sidered in order to predict network behavior by relying on the extensive literature

about the Kuramoto model.

1) How important is structural connectivity? If the adjacency matrix C is suffi-

ciently dense, one may approximate it with an all-to-all coupling scheme without

losing too much accuracy. Obviously, sufficiently and too much are always rela-

tive and can only be quantified from case to case. The matrix C, however, can

also entail more complex connectivity structures, such as network modularity or

small-worldness. In the former case, it may be possible to extract modular struc-

tures and define interacting subpopulations that have similar internal properties.

We investigated a special, symmetric case of interacting subpopulations in Chap-

ter 4. For small-world and more realistic brain connectivity structures, simplifying

assumptions have to be made with care. The underlying network topology may

obscure other properties of the phase model and lead to false conclusions, see also

the Discussion of Chapter 3. In either case, the qualitative predictions of the phase

model may diverge from the actual network dynamics.

2) How important is heterogeneity? As has been briefly addressed in Section 3.3,



Epilogue 203

there exist powerful techniques that allow for an exact low-dimensional descrip-

tion of the collective dynamics of a network, such as the Watanabe-Strogatz the-

ory80 or the Ott-Antonsen theory81, see also 178. Both theories rely on a particular

distribution of the heterogeneity (up to the limit of identical oscillators). The

heterogeneity is usually expressed in the natural frequency terms of the coupled

oscillators, but can also emerge through other parameters, see Chapter 5. If the

heterogeneity can be approximated by a distribution function admissible to either

of the theories, then explicit equations for the evolution of the network’s observ-

ables can be derived. This makes not only a qualitative prediction of the network

behavior possible, but also a quantitative comparison to the actual dynamics. Let

me remark that also multimodal distributions are admissible. Given the results

on the interchangeability of a bimodal network formulation vis-à-vis a network-

network formulation from Chapter 4, the theories above apply also to interacting

populations of oscillators.

3) How important is network size? Next to the assumptions on network hetero-

geneity, a rigorous application of the Ott-Antonsen theory dwells on a fairly large

network. In fact, the theory is valid in the continuum limit when the network size

tends to infinity. This assumption is far from realistic for any biological network,

and even though the number of neurons in the human brain is reasonably large,

it still is finite. The literature suggest various approaches to determine so-called

finite size fluctuations around the exact macroscopic dynamics whose evolution

is governed by a few differential equations that are, strictly speaking, only valid

for inifinitely many oscillators180–184. These fluctuations introduce a seemingly

stochastic character into the phase dynamics, which may clash with the determin-

istic nature of the actual network dynamics. A way out can be to apply some

temporal averaging. But then averages may remove important transient behavior.

In consequence, a compromise between a quantitative and a qualitative fit of the

macroscopic dynamics has to be found.

In summary, phase models provide the opportunity to express the collective net-

work dynamics in a low-dimensional system of differential equations. Some basic

assumptions on the structural connectivity and the heterogeneity of the underlying

oscillatory network model have to be fulfilled, however, to allow for an approxima-

tion of the network by such a phase model. The predictions of the phase models

can then be tested against the actual network dynamics and the dynamics of the

respective observables can be compared both qualitatively and quantitatively. In

this way, an assessment of the phase model’s predictive power becomes feasible.

Predictive power of reduced phase models The reduction of a meaningful

phase model along the reduction techniques presented in Chapter 2 builds on a
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handful of assumptions. As mentioned above, most reduction techniques rely on

the theory of weakly coupled oscillators78. Recently, phase reduction techniques

have been refined and extended so that the assumptions inherent to the theory

of weakly coupled oscillators can be loosened to a certain degree, see Section 3.3.

Still, the closeness (in parameter space) to a particular bifurcation boundary is

a key ingredient for an accurate analytic phase reduction. In fact, bifurcation

boundaries explicitly delimit the range of applicability of a mathematically sound

phase reduction. Analytic phase reductions also provide the possibility to quan-

tify the accuracy of the phase dynamics at each node. This allows for a more

detailed assessment of macroscopic observables, and it becomes possible to trace

back whether particular parameters of the underlying network model are respon-

sible for a possible discrepancy between macroscopic observables.

7.3.1 Observables

Closely linked to the question of predictive power of a phase model is that of the

kind of predictions a (reduced) phase model is capable of. There are some observ-

ables of the network that can be quantified with the phase model, but for other

observables the full network dynamics have to be exploited. In most cases, reduced

phase dynamics are used to infer (the stability of) stationary collective network

states. As we have seen in Chapter 3, phase reductions provide a useful means to

predict whether one-, two-, or m-cluster states of the network are stable. These

predictions are based on the form of the reduced phase interaction function. In

principle, also complex and non-stationary network states can be foreseen through

the phase reduction, e.g., self-consistent partial synchrony or slow switching be-

havior, see Section 2.1.5.2. However, the transient and time-varying behavior of

non-stationary solutions requires rather a qualitative than a quantitative analysis

of the observable.

Throughout the dissertation I considered the degree of phase synchronization as

the main observable, which we measured in terms of the Kuramoto order param-

eter. For each point in time, the Kuramoto order parameter quantifies to what

extent the phases of the oscillators are mutually synchronized. Again one may ask

whether this order parameter is a good observable? And again, the answer has to

be that an observable is neither good nor bad. An observable has to be chosen

such that it can describe the aspects under investigation. Or rather the other way

round, the available observables define which aspects can be investigated. Consid-

ering the (network’s average) degree of synchronization, a simple value between 0

(full asynchrony) and 1 (full synchrony) may hint at some coherent behavior. But

it does not reveal any implicit structure of the oscillators, such as phase cluster-
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ing. In Section 3.1, I resorted to a phase clustering algorithm that determined the

number of clusters at a particular point in time. Unfortunately, such a snapshot

does not indicate whether these clusters persist over a longer period of time, that

is, whether the cluster states are stable. To investigate their stability, we labeled

the oscillators with respect to their (initial) cluster membership, and traced the

Kuramoto order parameter of only those oscillators within the same initial cluster.

If the Kuramoto order parameter stayed above some threshold value over some

time and its variance was negligible, we concluded that the corresponding cluster

was indeed stable. This example already shows the intricacy of observables: while

a qualitative inspection by eye, say, of the oscillators’ evolution in phase space, im-

mediately shows that, e.g., two clusters are stable and remain at a constant (phase)

difference from each other, the quantitative validation requires several subsequent

analysis steps.

As has been addressed in Chapter 6 in detail, the Kuramoto order parameter

provides a time-resolved spatial measure of phase synchronization, but it does not

indicate any temporal alignment of the phase time series of two oscillators. For

the latter, a temporal average of pair-wise phase synchronization in the form of

the phase locking value may hint at functional connectivity structures within a

network.

There are further important observables that help to quantify collective behav-

ior. To name but another two, valuable information about the collective dynamics

of finite-sized networks of coupled (phase) oscillators can be extracted, for in-

stance, from the generalized (Daido) order parameters169,403. Another important

concept may be that of susceptability404,405 when investigating the effect of exter-

nal (stochastic) perturbations on oscillatory networks.

At the end of the day, the predictive power of (reduced) phase models is in-

tricately linked with quantifiable observables. For this reason, it is important to

clearly state the object of investigation and how this can be observed and quan-

tified with macroscopic variables. Predicting the behavior of these observables by

using the (reduced) phase model can cut an extensive analysis of the full underly-

ing system short. In this way, the collective dynamics can be described correctly

as long as the parameter region falls within the previously determined range of use

of the phase model.

7.3.2 Modeling experimental data

Revisiting the results of Chapter 6, the reduced phase models of Wilson-Cowan

and Freeman neural masses were not able to simultaneously describe two impor-

tant features of the experimental resting state data. Despite realistic connectivity
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and time-delay structures, the neural mass phase models either described (spa-

tial) partial phase synchrony or detected (temporal) scale-freeness, but none of

the phase models captured both features of the experimental phase time series

that were extracted from recorded MEG data after beamforming onto a 90-node

brain parcellation, filtering in the alpha band (8-12 Hz), and constructing the an-

alytic signal using the Hilbert transform. One may speculate about the origin

why the phase models cannot capture both dynamical features of the phase dy-

namics of resting state networks. Points of departure comprise both data analysis

and model reduction. Stepping over the model-inherent assumptions of the sem-

inal Wilson-Cowan and Freeman neural mass models dating back to Wilson and

Cowan69 and Freeman75, as well as over our assumptions on the subsequent phase

reductions, see Section 6.2, I would like to focus on the nature of the filtered data.

Although the data is confined to a 4 Hz-narrow frequency range, the oscillatory

dynamics exhibit both frequency and amplitude modulations, which cannot be

disentangled easilysee, e.g., Fig. 1 in 372. It goes without saying that explanations for

these modulations (and emerging brain rhythms, in general) are vague and still

being sought for. Nonetheless, the structural connectivity of the brain as obtained

from DTI data together with parcellation schemes, either in the form of func-

tional neuroimaging406 or neuroanatomical and cytoarchitectonic approaches407,

allows for a coarse-grained description of interconnected areas in terms of neural

masses or neuronal populations. As demonstrated in Chapter 6, it is apparently

not sufficient to approximate the oscillatory dynamics in each such brain area by

a reduced neural mass phase oscillator in order to retain the full picture of critical

brain dynamics expressed in terms of phase synchronization measures. Formu-

lated in a more positive way, our results still reveal that neural mass phase models

were, in fact, able to describe at least one aspect of criticality, which supports the

use of phase models for large-scale brain networks – as long as these neural mass

phase models were properly derived and applied within reasonable model-specific

boundaries.

More accurate models should take frequency and amplitude modulations into

account. These modulations may or may not be due to strong coupling effects

through other brain areas. If so, unfortunately, a mathematically rigorous phase re-

duction, as outlined in Chapter 2, would not be feasible. A different starting point

for a more adequate neural mass description requires time-varying parameters in

the neural mass models, and/or may introduce additional dynamics. Again, a sub-

sequent phase reduction is beyond the realm of mathematically thorough reduction

techniques. An exit strategy can involve phase-amplitude models. The recent de-

velopments within the Koopman operator framework260,261 appear promising for

a meaningful and simplified phase-amplitude description of neural mass models.
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Whether the dynamical notions of criticality manifest in those models is, however,

beyond the scope of this dissertation.

7.4 Coupled neural masses and other neural

oscillator models

The main neuronal population model that has recurrently been used in this disser-

tation is the Wilson-Cowan neural mass model. Its rich dynamic behavior and the

various bifurcations it may undergo renders the dynamics representative for neu-

ral oscillator models. Naturally, the representativeness of the model is not alone

justified in the correct types of bifurcation through which oscillations emerge, as,

e.g., the FitzHugh-Nagumo408 or Morris-Lecar409 models are generic neural oscil-

lators close to Hopf and homoclinic (and SNIC) bifurcations, respectively. But

the dynamics of the Wilson-Cowan model also resembles the qualitative behavior

of the other neural oscillator models away from the bifurcation boundaries. At

the bifurcation points, the respective normal forms enforce a particular dynamic

behavior and a reduced network model of coupled oscillators can be established.

Further away from the bifurcation, however, the shape of the particular limit cycle

changes. This has an immediate effect on the coupling term, on the phase sensitiv-

ity function Z and thus on the phase interaction function H of the corresponding

phase model. In Section 7.4.1, I briefly comment on how higher harmonics in

the phase interaction function emerge, which are crucial for non-trivial collective

behavior, and we show that the underlying mechanisms are similar across neural

oscillator models. As we refer again to normal forms, the quadratic integrate-and-

fire neuron deserves a closer inspection, too. It is the canonical model for a SNIC

bifurcation, which defines together with the Hopf bifurcation the most prominent

transitions to oscillatory behavior. I will comment further on the emergence of

collective dynamics of coupled spiking neurons, as is the integrate-and-fire model,

in Section 7.4.2.

7.4.1 Emergence of higher harmonics in the phase interaction

function

The phase sensitivity function Z and the coupling term evaluated on the respective

limit cycles, are the main contributors to the phase interaction function H of the

reduced phase model, and thus influence the (predictions on the) collective network

dynamics. A biophysically realistic description of the coupling dynamics between

oscillators plays a pivotal role in the corresponding phase dynamics and can lead
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to higher harmonics in the phase interaction function H. This is in particular true

when the underlying dynamics has to be transformed in Hopf normal form in an

intermediate step. In fact for Hopf normal forms, the shape of the phase sensitivity

function Z remains always sinusoidal, even for normal forms of higher order, see

Section 2.2.5. Therefore, it is crucial to compute the transformed and nonlinear

coupling terms in normal form so that higher harmonics in H and non-trivial

(phase) network behavior can occur.

In view of numerical phase reduction methods, the intermediate normal form

reduction, including a careful transformation of the nonlinear coupling terms, be-

comes obsolete. Still, higher harmonics may emerge for rather simple yet nonlinear

coupling between neural oscillators. In this case, it is of paramount importance

to accurately assess the properties of the limit cycle dynamics, which become evi-

dent in the phase sensitivity function Z. I would like to remark that the correct

determination of higher harmonics in the latter has a twofold influence: not only

may it lead to higher harmonics in the reduced phase model, but it also gives

crucial information about a (numerical) phase extraction from the neural dynam-

ics in terms of time-series analysis. If higher harmonics become dominant and

in the extreme case, the limit cycle trajectory exhibits self-crossings in the phase

plane, a straightforward phase extraction using the Hilbert transform will not be

sufficient to define a meaningful phase. For this reason, I investigated the emer-

gence of higher harmonics in the phase sensitivity function when moving through

parameter space.

To anticipate my main finding, in very close vicinity to the Hopf and SNIC

bifurcation boundaries, the phase sensitivity function is well described by the an-

alytically predicted form, that is, it consists of first harmonics only. However,

moving away from the bifurcation point but still staying in close proximity, higher

harmonics in the phase sensitivity function become dominant. This phenomenon

is not a peculiar feature of the Wilson-Cowan neural mass model, but appears

generic across neural oscillator models see, e.g., also Figure 4 in 102. I numerically deter-

mined the adjoint solution for the phase sensitivity function of the Wilson-Cowan

dynamics and investigated how its shape changed along the parameter space. Ex-

tending the analysis in Fig. 3.7, I further increased the input parameter Pk up to

the point where limit-cycle oscillations ceased via another bifurcation, see Fig. 7.1.

Although the first harmonic is the dominant one throughout the parameter space,

the analysis is quite insightful. When considering the fixed parameter values from

Section 3.2.1, oscillations emerge via a Hopf and cease through a homoclinic bi-

furcation. Directly on the Hopf bifurcation at Pk ≈ −0.3663, the first harmonics

is not only dominant, but also exclusive: the amplitudes of the second and higher

harmonics converge to zero faster than exponentially. This is perfectly in line with
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the analytically predicted purely sinusoidal shape of the phase sensitivity function.

On the other side, the nature of the homoclinic bifurcation becomes also apparent.

All harmonics tend to a non-vanishing constant amplitude, giving rise to the expo-

nential character of the bifurcation, see also102 for theoretical arguments. Between

these oscillation boundaries, higher harmonics have a non-negligible effect on the

phase sensitivity function and must not be discarded. This becomes even more

striking when investigating the phase sensitivity function near SNIC bifurcations.

While higher harmonics vanish directly on the bifurcation points and thereby allow

the phase sensitivity function to take the known (co-)sinusoidal shape 1− cos(θ),

off these bifurcation points but in their immediate vicinity the amplitudes of the

higher harmonics contribute to the shape beyond merely higher-order corrections.

This sensitivity of the phase sensitivity function to even small parameter changes

parameter Pk

po
w

er
 [d

B]

-0.366 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.365

-30

-25

-20

-15

-10

-5

0

5

-0.317 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.325

1st

2nd

3rd

4th

5th

#
 

harmonics

-25

-20

-15

-10

-5

0

5

parameter Pk

a) ΘI = 3.5 b) ΘI = 4.2

Figure 7.1: Higher harmonics in the phase sensitivity function of the Wilson-Cowan
neural mass model for varying input Pk.

is not a model-specific phenomenon, but it is inherent in most generic oscilla-

tor models. Brown and co-workers102 already reported changing phase sensitivity

functions, but did not explicitly point to this sensitivity. More rigorously, I com-

pared the numerically computed phase sensitivity function as the solutions to the

adjoint problem near and away the typical bifurcation boundaries. The generic

bifurcations (Hopf, homoclinic and SNIC) appear for different parameter values

in the Wilson-Cowan model. On the other hand, the FitzHugh-Nagumo model

displays oscillatory behavior near a Hopf bifurcation, and the Morris-Lecar model

can be tuned such that its dynamics are either close to a homoclinic or a SNIC

bifurcation. In Fig. 7.2 I illustrate how quickly the shape of the phase sensitivity

function changes and higher harmonics occur for increasing distances d from the

respective bifurcation points in parameter space from d = 1/10000 to d = 1/10.

It thus becomes crucial to properly define the parameters in all neural oscillator

models in order to not be ‘surprised’ by emerging nonlinear and complex coupling

effects. Consequently, an ad-hoc approximation of bio-physiologically accurate

nonlinear oscillator models, realistic coupling dynamics included, with a simpler

generic oscillator model, or even with its normal form, has to be regarded with

greatest care, and moreover may only be sound in an embryonically small parame-

ter region around the respective bifurcation boundary. Emerging higher harmonics
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Figure 7.2: Phase sensitivity functions (numerically computed via the adjoint method)
quickly diverge from the analytically predicted shape in the Wilson-Cowan neural mass
model (left) and in generic neural oscillator models (right) close to Hopf (FitzHugh-
Nagumo model) as well as to homoclinic and SNIC bifurcations (Morris-Lecar model for
different parameter values). The normal forms predict sinusoidal (Hopf), exponential
(homoclinic) and cosinusoidal/non-negative (SNIC) adjoint solutions near the respective
bifurcation points. Non-negligible higher harmonics emerge for increasing distance d
from the bifurcations. Colors represent this distance in parameter space: d = 1/10000
(blue), d = 1/1000 (red), d = 1/100 (yellow), d = 1/10 (violet). Insets for the homoclinic
bifurcations show the first two graphs in log-scale and display exponential decay. Phase
sensitivity functions are normalized in amplitude.

of the phase sensitivity function away from bifurcation boundaries and nonlinear

coupling terms will mutually interact and catalyze, thus generate rich and highly

non-trivial network effects. A careful investigation of particular parameter regions

and the corresponding dynamical regimes as well as their respective bifurcation

boundaries has to precede the appropriate choice of reduction technique, such that

meaningful and representative phase dynamics can be extracted.

7.4.2 A note on integrate-and-fire neurons

The normal form for the SNIC (saddle-node on a limit cycle, also SNIPER) bi-

furcation is given by the quadratic integrate-and-fire (QIF) neuron model, which

was introduced in more detail in Section 5.3. If a model exhibits dynamics close

to a SNIC bifurcation, it can be reduced to the QIF model in a straightforward

way307,410,411. The QIF model, like any other integrate-and-fire model, is strictly

speaking a pure phase model due to the absence of amplitude effects412. It can

be readily transformed into the theta neuron model307, which underlines the QIF
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neuron’s ‘phase’ character. The reduction of high(er)-dimensional neural oscilla-

tor models into integrate-and-fire models has thus to be considered with care. In

general, the oscillatory dynamics of higher-dimensional neural oscillators close to

a SNIC bifurcation describe a smooth closed limit cycle in phase space. Along

this limit cycle, the dynamics can be well described to be of integrate-and-fire

type. This description holds approximately also in the immediate vicinity of the

limit cycle. If, however, perturbations kick the dynamics off the limit cycle, am-

plitude dynamics towards the limit cycle have to be taken into account. The

amplitude effects, even if the rate towards the limit cycle is sufficiently high, are

crucial to analytically determine the phase response to the (finite) perturbation.

Weak coupling allows to approximate the phase response linearly and by using the

phase sensitivity function, which directly follows from the normal form. However,

the so-obtained phase model is only valid on the limit cycle and lacks a rigor-

ous justification for stronger coupling strengths. Moreover, this approach does

not allow to establish the (often informative) isochrons, much less a meaningful

phase-amplitude model. The global character of the SNIC bifurcation, opposed to

the local Hopf bifurcation, presents an insurmountable obstacle for a mathemat-

ically thorough, step-by-step reduction of the original dynamics. For this reason,

I chose to focus solely on dynamics close to a Hopf bifurcation in Chapters 2 and

3. This choice was not meant to undermine the importance of other bifurcations,

but served perfectly our purposes to present an inventory of different reduction

techniques.

Network dynamics of spiking neurons The SNIC bifurcation, and the QIF

neuron model itself, proved to be of fundamental importance for extending the

Ott-Antonsen theory to parameter-dependent systems in Chapter 5. The trans-

formation into a theta neuron revealed a phase dynamics that depended on an

additional parameter, thus requiring a more sophisticated treatment than avail-

able in the literature. The corresponding proof that networks of QIF neurons

fall in the category of phase models applicable to the Ott-Antonsen theory, auto-

matically captured further extensions, one of which addressed so-called heteroge-

neous mean field models, see Section 5.4.3. This in particular allowed for applying

the Ott-Antonsen theory to coupled phase oscillators given a specific connectivity

structure. Recently, the group around Ott and Antonsen treated in the same man-

ner QIF networks with non-trivial connectivity413. This extension opens the way

to further expand the range of applicability of spiking and pulse-coupled neurons,

as is the QIF model, to more realistic neural network topologies.
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7.5 Concluding remarks and outlook

Not only interaction but synchronized and coherent interaction is key for the func-

tioning of the brain. This dissertation addressed how phase synchronization phe-

nomena emerge and can be measured in coupled neuronal population models. Even

though phase synchronization is but one measure of neural synchrony and coherent

brain activity, the underlying concept is fundamental and captivates with its sim-

plicity and tractability. Investigating the collective dynamics of complex systems

by means of phase synchronization, however, bears some intricacies when applied

in a mathematically rigorous way. The first part of this dissertation provides an

inventory of phase reduction techniques and highlights some sensitive issues in the

reduction. Taking them in mind, allows to set the modeling of phase synchroniza-

tion on a firm ground. The second part of the dissertation dealt with applications

of (reduced) phase models, and pointed at possible extensions of mathematically

sound approaches to simplify the collective network dynamics. In the end, phase

synchronization can be used in many oscillatory networks as a well-descriptive

observable to quantify collective behavior.

Looking both back- and forward, there remain many questions that have de-

veloped during my PhD research project “Frequency-doubling bifurcations in neu-

ronal networks – a means of cross-frequency interactions”, and that await answers.

The nature of such questions concerns both mathematical as well as neuroscientific

aspects. Importantly, satisfactory answers will require a healthy balance between

these two disciplines, and analytic insights have to be combined with experimental

evidence and intuition. The emergence and function of brain rhythms still needs

to be elucidated, and how the interplay between distinct cortical and subcortical

rhythms shapes collective brain dynamics, thus leading to coherent behavior and

cognition, is widely unclear. We believe that changes on the micro-scale affect the

macroscopic dynamics. For this reason we investigated how tuning the parameters

of coupled (neural) oscillators induced different (brain) network behavior, and thus

generated macroscopic rhythms.

Asymmetry and time variability A straightforward example for cross-frequency

interactions between neuronal populations presented a network of two coupled,

symmetric populations of Kuramoto oscillators, as analyzed in Chapter 4. The os-

cillators’ natural frequencies of either population were distributed around a mean,

which was different for each population. Thereby I modeled the interplay of differ-

ent frequency bands in neural networks. Depending on the width of the frequency

distributions, on the distance between their respective means and on the overall

coupling strength, the collective dynamics indeed showed macroscopic oscillations
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and even a frequency-doubling bifurcation occurred (which is typically masked as

a Hopf bifurcation in the rotating frame formulation). While I considered a highly

symmetric setup, it can be interesting to include more realistic asymmetries: Neu-

ral populations featuring cortical low-frequency rhythms (delta, theta, or alpha)

usually show a frequency distribution in a fairly narrow frequency band, whereas

higher-frequency rhythms (beta, or gamma) cover wider frequency bands. More-

over, the lower the frequency of cortical oscillations, the higher their amplitude.

‘Translated’ into a mathematical phase oscillator model, these amplitude effects

can be expressed in a coupling strength asymmetry. Whether these asymmetries

allow for a similar topological equivalence between coupled and multimodal net-

works as in Chapter 4, will be shown in future studies.

As mentioned above, experimental data suggest (beamformed) cortical dynam-

ics that have a certain frequency variability. This can be modeled in terms of

time-varying natural frequency terms, see also the pioneering work by Petkoski

and Stefanovska308 on a Kuramoto model with time-varying parameters. The

interaction of such parameter-dependent oscillatory systems and their collective

dynamics was the central issue in Chapter 5. Whether and how the adaptation

of phase models to include variable frequencies indeed results into exhibiting all

dynamical features of criticality as addressed in Chapter 6, remains another open

problem.

Collective dynamics of spiking neurons and cortical models Emergent rhyth-

mic behavior of networks of spiking neurons is an important topic in the field.

The mathematical proof in Chapter 5 captures the dynamics of spiking, quadratic

integrate-and-fire neurons due to their transformation into parameter-dependent

phase oscillators, aka theta neurons (this nomenclature is not to be confused with

the cortical theta rhythms). A rigorous application of the theory requires global

coupling of all neurons. The coupling between neurons can, in general, occur

through chemical or electrical synapses. Coupling effects at chemical synapses

are induced through the firing rates of the adjacent neurons. The global cou-

pling assumption, however, lets each neuron ‘see’ only the mean firing rate of

the population, which in turn facilitates the network analysis in terms of the

macroscopic observables – mean firing rate and mean membrane potential. In

the quadratic integrate-and-fire model, chemical coupling alone does not lead to

rhythmic macroscopic behavior[1], which would manifest in oscillatory firing rates

and membrane potential fluctuations. Following the discussion about oscillations

[1] We here refer to instantaneous chemical coupling as in293. If, however, we incorporate synap-
tic dynamics as in414, or change the form of synaptic activation290,291,415,416, macroscopic
oscillations do emerge.
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and synchronization in the Introduction, this may indicate that chemical synapses

are not sufficient to synchronize a network. One way to induce oscillations is to

couple two populations of spiking neurons representing the excitatory (E) part

and inhibitory (I) part of a neural network, very similar to the assumptions of

the Wilson-Cowan model. Dumont and co-workers considered such a spiking E-I

network model417 and determined the stability and robustness of collective oscil-

lations in terms of the (macroscopic) phase sensitivity function. Not only does

this work combine the different aspects of the dissertation at hand, it also points

at a possible way to underpin the oscillatory nature of phenomenological neural

mass models, such as the Wilson-Cowan model. Similar in nature, Rodrigues

and co-workers proposed mappings between a leaky integrate-and-fire model and

the Freeman model418. A rigorous derivation of (low-dimensional) cortical mod-

els of spiking neurons certainly presents a possibly critical endeavor to overcome

the frequent criticism of heuristic neural mass model. To provide a neuroscien-

tifically satisfactory cortical model, neural plasticity should be incorporated. But

including the corresponding concepts into mathematical tractable model equations

requires a great deal of effort. Although synaptic and homeostatic plasticity are

conceptually well-understood, low-dimensional descriptions of network behavior

that respect plasticity rules at the microscopic level are long being sought for.
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Throughout Chapter 2 and the Supplementary Material we use:

x, x, y Real-valued state variable (non bold-face = scalar)

z Complex-valued state variable

X ⊂ Rn State space

n ∈ N Dimension of state space

F Vector field

φ Flow

f , f Nonlinear function prescribing the internal dynamics (non bold-face = scalar)

g, g Nonlinear coupling function (non bold-face = scalar)

L Jacobian matrix

J Diagonalized Jacobian

λ = %+ iω Eigenvalues of the Jacobian

µ Bifurcation parameter

κ Coupling strength

p Perturbation

t Time

τ Slow time

C Limit cycle

xc, xc, yc State variable on the limit cycle

θc Phase on the limit cycle

Rk Amplitude of oscillation (radius of the limit cycle)

ρk, rk Amplitude (distance to the limit cycle)

B Basin of attraction

I Isochron

Θ: X → S1 (Asymptotic) phase map
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θ Phase

ψ Phase difference

ω Natural frequency

g(ω) Natural frequency distribution

T Period

Q : S1 → R Infinitesimal phase response curve

G : S1 × Rn → R Phase response function

Z : S1 → Rn Phase sensitivity function in n real dimensions

Z : S1 → C Phase sensitivity function in one complex dimension

H Phase interaction function

an, bn Amplitudes of phase interaction function

C = {Cjk}j,k Adjacency matrix, where j, k = 1, . . . , N

N ∈ N Network size

τjk Time delay between nodes j and k

R Kuramoto order parameter (real-valued)

Ψ Mean phase

w ∈ C Normal form variable

M ∈ N Order of normal form

σm = um + ivm Coefficients of Hopf normal form

α, β, γ, δ ∈ C Coefficients of the Hopf normal form of an oscillator network

λintra Eigenvalue associated with intracluster perturbations

λinter Eigenvalue associated with intercluster perturbations

I, In Identity matrix in Rn×n

·̄ Complex conjugation

〈·〉 Temporal average (over one period)

〈·, ·〉 Inner product on Rn, also used in dot-notation

[·, ·] Lie bracket

S1 Rotation group on CN

SN Permutation group on CN

L Linear operator

S.1 Kuramoto’s reductive perturbation

Let us consider two coupled systems x,x′ ∈ Rn, whose dynamics are described by

ẋ = f(x, t;µ) + κg(x,x′, t;µ) (S.1)

and an equivalent expression for x′, with f : Rn → Rn, the coupling function g : Rn ×
Rn → Rn with coupling strength κ ∈ R and a bifurcation parameter µ ∈ R. We assume

x0(µ) a steady solution for κ = 0, i.e., f(x0(µ);µ) = 0 for all µ. We set

x̃ = x− x0 and x̃′ = x′ − x0 ,
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and expand f around x = x0, or around x̃ = 0, respectively. By omitting the tilde, we

have

f(x;µ) = n1(x;µ) + n2(x,x;µ) + n3(x,x,x;µ) +O(|x|4) ,

where the nk’s are given by

nk(u
(1),u(2), . . . ,u(k);µ) =

n∑
i1,...,ik=1

1

k!

(
∂kF (x;µ)

∂xi1∂xi2 . . . ∂xik

)
x=0

u
(1)
i1
u

(2)
i2
. . . u

(k)
ik

(S.2)

with u(j) =
(
u

(j)
1 , . . . , u

(j)
n

)
∈ Rn. Note that the nk are symmetric in their arguments

u(1), . . . ,u(k). We further expand nk with respect to µ, e.g., n1(x;µ) = L̂0x+µL̂1x+. . . ,

and obtain

f(x; ε2) = L̂0x+ µL̂1x+M0xx+N0xxx+O(|x|4) , (S.3)

where M0uv = n2(u,v;µ = 0) and N0uvw = n3(u,v,w;µ = 0). We thus discarded

all O(µ) terms in n2 and n3 in (S.3). Furthermore, we Taylor-expand g as

g(x,x′) = G0 +G10x+G01x
′ +G20x

2 +G11xx
′ +G02x

′2 + . . . . (S.4)

The underlying assumption of the derivation is that the system undergoes a supercriti-

cal Hopf bifurcation at µ = 0 (and κ = 0). Then, the operator L̂0 has a set of eigenvalues

σ(L̂0) = {λα | α = 1, . . . , n}, each of which can be expanded as λα = λα0 + µλα1 + . . . .

The Hopf bifurcation condition requires that λ1
0 = −λ2

0 = iω0 are purely imaginary and

that Re(λα0 ) > 0 for all α > 2. For convenience, we set u = u1 as the right eigenvector

of L̂0 corresponding to the eigenvalue λ1
0 = λ0, that is

L̂0u = λ0u and L̂0ū = λ̄0ū

where λ2
0 = λ̄0. Likewise, we denote by v = v1 the left eigenvector of L̂0 corresponding to

the eigenvalue λ1
0 = λ0: vL̂0 = λ0v. The left and right eigenvectors fulfill vū = v̄u = 0.

Besides, we normalize them such that vu = v̄ū = 1. In particular, we have

λ0 = σ0 + iω0 = vL̂0u

λ1 = σ1 + iω1 = vL̂1u .

From this, we see that the solution to the linearized unperturbed system, ẋ = L̂0x, is

given by

x0(t) = weiω0tu+ w̄e−iω0tū , (S.5)

where w is an arbitrary complex number, which we will refer to as the complex amplitude.

Taking the full dynamics (S.1) including the perturbations into account, x(t) generally

deviates from x0(t). In order to describe the asymptotic evolution of x(t), we consider

the complex amplitude w to be time dependent. In the following, we will derive the
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dynamics of w in the form

ẇ = g(w, w̄) + ε2κg(w, w̄, w′, w̄′) , (S.6)

where the prime ′ indicates the coupled oscillator.

To begin with, we define ε =
√
|µ| and χ = sgn µ. We can consider x = x1 +x2 + . . .

where xl = O(εl) and abbreviating n1(x) = Lx, we have L = L̂0 + χε2L̂1 +O(ε4). We

further introduce a scaled time τ = ε2t such that x = x(t, τ) depends both on t and τ ,

which should be treated as mutually independent. Then, the time derivative becomes

d

dt
→ ∂

∂t
+ ε2 ∂

∂τ
.

Taken together, (S.3) reads(
∂

∂t
+ ε2 ∂

∂τ
− L̂0 − ε2χL̂1 − . . .

)
(x1 + x2 + . . . ) =

M0x1x1 + (2M0x1x2 +N0x1x1x1) +O(ε4)

+ κ
[
G0 + ε

(
G10x1 +G01x

′
1

)
+ ε2

(
G20x1x1 +G11x1x

′
1 +G02x

′
1x
′
1

)
+O(ε3)

]
.

(S.7)

As we consider merely weak coupling, that is, 0 < κ � µ � 1, it is appropriate to

assume κ 7→ ε2κ. The right-hand side of (S.7) becomes

(M0x1x1 + κG0) +
(
2M0x1x2 +N0x1x1x1 + ε2κ

[
G10x1 +G01x

′
1

])
+O(ε4) . (S.8)

The term in the first parentheses is of order O(ε2) and the term in the second of order

O(ε3). Note further that for this particular choice of coupling parameter η = ε2κ, the

coupling function reduces to at most linear coupling terms. If, e.g., η = O(ε), then also

quadratic terms have to be taken into account. Here, however, we constrain ourselves

to mere linear coupling.

Equating the coefficients of different powers of ε in (S.7), we get a set of equations of

the form (
∂

∂t
− L̂0

)
xν = Bν , ν = 1, 2, . . . , (S.9)

where Bν = O(εν) and the first Bν ’s are given by

B1 = 0 ,

B2 = M0x1x1 + ε2κG0 ,

B3 = −
(
ε2 ∂

∂τ
− ε2χL̂1

)
x1 + 2M0x1x2 +N0x1x1x1 + ε2κ

[
G10x1 +G01x

′
1

]
.

(S.10)

Note that, in general, the Bν ’s are depending on xν′ with ν ′ < ν. Therefore, we can

solve the system (S.9) of linear inhomogeneous differential equations subsequently. In

order to ease the computation, we can make use of the following solvability condition.
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Lemma S.1. The solvability condition for system (S.9) reads

vB(1)
ν (τ) = 0 , (S.11)

where B
(1)
ν is the first Fourier coefficient of the expansion

Bν(t, τ) =

∞∑
l=−∞

B(l)
ν (τ)eilω0t . (S.12)

Proof. First of all, we use the fact that∫ 2π/ω0

0
vBνe−iω0t dt =

∫ 2π/ω0

0
vᵀ ·Bνe−iω0t dt = 0 , (S.13)

which we prove via∫ 2π/ω0

0
vᵀ ·Bνe−iω0t dt

(S.9)
=

∫ 2π/ω0

0

[
vᵀ ·

(
∂

∂t
− L̂0

)
xν

]
e−iω0t dt (note that λ0 = iω0)

=

∫ 2π/ω0

0

[
v (λ0xν)−

(
vL̂0

)
xν

]
e−iω0t dt = 0 ,

where the second equality is due to partial integration and the last due to v being the

left eigenvector of L̂0 corresponding to the eigenvalue λ0.

Having a closer look at system (S.9), the homogeneous part suggests that the xν ’s are

2π-periodic functions of ω0t. Hence, also Bν = Bν(t, τ) has to be 2π-periodic, which

admits the Fourier expansion (S.12). Substituting the latter into (S.13), we have

∫ 2π/ω0

0
vBνe−iω0t dt =

∞∑
l=−∞

∫ 2π/ω0

0
vB(l)

ν (τ)ei(l−1)ω0t dt = 0 .

Evaluating all the integrals on the right-hand side, we see that all but the one where

l = 1 vanish, which leaves the solvability condition (S.11).

Now, one can solve system (S.9) iteratively. For ν = 1, we have(
∂

∂t
− L̂0

)
x1 = 0 ,

which provides the “neutral solution”

x1(t, τ) = w(τ)ueiω0t + c.c. (S.14)

where w(τ) is the complex amplitude and c.c. stands for the complex conjugate of the

foregoing part. In particular, we have |w(τ)| = O(ε). As to ν = 2, we would like to

mention first that since x1 ∝ eiω0t, the term M0x1x1 ∝ e2iω0t. Due to the solvability

condition (S.13), we know that (i) B2 has to be periodic and that (ii) the constant

coupling term G0 has to vanish as it will be averaged out. In the case that the coupling
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function g in (S.1) is explicitly time-dependent, in particular, all terms Gjk in (S.4)

have to be time-dependent, we can likewise Fourier expand G0 and see that the first two

coefficients G
(0)
0 = G

(1)
0 = 0 have to vanish. Moreover, we can argue in the same manner

that all even Fourier coefficients G
(2n)
jk , n = 0, 1, 2, . . . , of any coupling term Gjk, j, k ∈ N,

must be zero. In any case, B2 only contains zeroth and ≥ 2nd harmonics, and the same

holds for x2(t, τ). Therefore, we can write

x2(t, τ) = V +w(τ)2e2iω0t + V −w̄(τ)2e−2iω0t + V 0|w(τ)|2 + h.h. (S.15)

where h.h. stands for higher harmonics that will not be further defined. Substituting x2

into (S.9) and equating coefficients of different harmonics, we can solve the equation for

the constants V ±,0 and find

V + = V − = −
(
L̂0 − 2iω0

)−1
M0uu and V 0 = −2L̂

−1
0 M0uū . (S.16)

For ν = 3, we first substitute in x1 and x2 into B3 as given in (S.10), and subsequently

solve for the first Fourier coefficient

B
(1)
3 (τ) =−

(
ε2 ∂

∂τ
− ε2χL̂1

)
w(τ)u+

(
2M0uV 0 + 2M0ūV + + 3N0uuū

)
|w(τ)|2w(τ)

+ ε2κ
(
G10uw(τ) +G01uw

′(τ)
)
,

(S.17)

where we assumed no explicit dependence of g on time. Using the solvability condition

(S.11), i.e., vB
(1)
3 = 0, and that vwu = w, we finally arrive at the amplitude equation

ẇ = αw − β|w|2w + ε2κ
(
γ1w + γ2w

′) (S.18)

with complex constants

α = vε2χL̂1u,

β = − (2vM0uV 0 + 2vM0ūV + + 3vN0uuū) ,

γ1 = vG10u,

γ2 = vG01u .

(S.19)

Going back to the original notation with the nk’s and noting that the latter are linear

in each of their arguments, we find

β = −2vn3

(
u,u, ū

)
+ 4vn2

(
ū, L̂

−1
0 n2 (u, ū)

)
+ 2vn2

(
u,
(
L̂0 − 2iω0

)−1
n2 (u,u)

)
.

(S.20)

As a final remark about the dot-notation in the amplitude equation (S.18), we replaced

ε2∂/∂τ by ∂/∂t, such that the derivative is now taken with respect to the original time

t, although w = w(ε2t) changes only slowly.

Coming back to the initial dynamics (S.1), we seek for the phase dynamics of the
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perturbed solution x(t) from the linearized solution x0(t). We can write x(t) as

x(t) = w(t)eiω0tu+ w̄(t)e−iω0tū+ h.h. (S.21)

Differentiating with respect to time t and inserting (S.18) gives ẋ(t) = W eiω0tu+ c.c.+

h.h., where W = ẇ + iω0w describes the full amplitude dynamics

ẇ = (α+ iω0)w − β|w|2w + ε2κ(γ1w + γ2w
′) (S.22)

on the slower time scale, where the natural frequency ω0 is added to the dynamics of

mere amplitude deviations (S.18).

Following the theory of weakly coupled oscillators, the crucial assumption for the

coupling constant is that

η = ε2κ with 0 < κ < ε� 1 . (S.23)

This allows the linear coupling term to be correct of order O(ε). Higher-order corrections

of the coupling term up to order O(ε3) have been presented by Kori and co-workers95 and

we will elaborate on them further in Section S.2. If we drop the assumption (S.23), we

may consider nonlinear coupling terms in the phase-space dynamics (S.1). Furthermore,

the inhomogeneities Bν in the reduced system (S.9) take more intricate forms and the

derivation leading to the amplitude equation (S.18) has to be revised accordingly.

Remark. The here presented Reductive Perturbation Method as one possible phase

reduction technique has been established by Kuramoto38. Another technique closely

linked is the so-called Renormalization Group Method of Goldenfeld, Oono and co-

coworkers419,420. Kunihiro demonstrates the intricate link between the two methods421:

Kuramoto’s solvability condition (S.11) is circumvented by introducing an appropriately

chosen constant δ such that unwanted secular terms vanish.

S.2 Higher-order corrections and nonlinear coupling

We here follow the theory established in the preceding section. Not only do we want to

establish higher-order corrections of the coupling term up to order O(ε3) as presented

by Kori and co-workers95, but also we refrain from the direct, linear coupling. Note that

the results (S.19) for the parameters α, β, γ1,2 remain the same for nonlinear coupling.

Yet, if we allow for higher-order corrections in the amplitude equation (S.18), that is, in

ẇ = αw − β|w|2w + ε2κ(γw′ + δw̄w′2) , (S.24)

the additional parameter δ will incorporate the nonlinear effects of the underlying cou-

pling nonlinearity in the original dynamics.

Therefore, let us consider in the notation of the preceding section, the coupling func-
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tion
g(x,x′) = G10x+G01x

′ +G20(x) +G11(x,x′) +G02(x′)

+G30(x) +G21(x,x′) +G12(x,x′) +G03(x′) + . . . ,
(S.25)

where the functions

Gjk(x,x
′) = Gjk(x , . . . ,x︸ ︷︷ ︸

j times

,x′, . . . ,x′︸ ︷︷ ︸
k times

) (S.26)

are of order for Gjk = O(εj+k) for x,x′ = O(ε). For instance, we are interested in the

effect of nonlinear coupling terms xx′, yx′, x2x′, xyx′, y2x′ when x = (x, y),x′ = (x′, y′)

are two-dimensional. Possible examples for Gjk are G11(x,x′) = a · xx′ + b · yx′ or

G21(x,x′) = c · x2x′ + d · xyx′ + e · y2x′ with parameters a, . . . , e. More general, if we

write all possible products of (x, y), (x′, y′) of order j + k as a vector

(x, y)j ∗ (x′, y′)k :=

(
xjx′k, xj−1yx′k, . . . , yjx′k, xjx′k−1y′, . . . , . . . , yjy′k

xjx′k, xj−1yx′k, . . . , yjx′k, xjx′k−1y′, . . . , . . . , yjy′k

)ᵀ

,

we can rewrite the coupling terms Gjk as

Gjk
(
(x, y), (x′, y′)

)
= Gjk

[
(x, y)j ∗ (x′, y′)k

]
(S.27)

with Gjk a 2× (j + 1)(k + 1)-matrix. In particular, G10 and G01 are quadratic, 2× 2-

matrices.

As before, we denote by x0(t) the solution to the linearized unperturbed system

ẋ = L̂0x. The general solution, though, will be of the form

x = x0(w, w̄, θ) + ρ(w, w̄, w′, w̄′, θ) ∈ Rn , (S.28)

with w ∈ C following the dynamics (S.6). For convenience, we rewrite the dynamics as

ẋ = L̂0x+ ε2L̂1x+ n2(x,x) + n3(x,x,x) + ε2κ g(x,x′) , (S.29)

ẇ =W(w, w̄, w′, w̄′) . (S.30)

The functionsW and ρ have to be determined perturbatively, as outlined in the preceding

section. Note also thatW is free from θ = θ(t). If we insert the ansatz (S.28) into (S.29)

and use (S.30), we find

L0ρ =W exp(iθ)u+ W̄ exp(−iθ)ū+ b(w, w̄, w′, w̄′, θ) , (S.31)

with the operator L0 =
(
L̂0 − ω0

∂
∂θ

)
, the right eigenvector u of L̂0 corresponding to

the eigenvalue iω0, and where

b = −ε2L̂1x− n2(x,x)− n3(x,x,x)

− ε2κ G(x,x′) +W ∂ρ

∂w
+ W̄ ∂ρ

∂w̄
+W ′ ∂ρ

∂w′
+ W̄ ′ ∂ρ

∂w̄′
.

(S.32)
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Regarding (S.31) formally as an inhomogeneous linear differential equation for ρ(θ)

where the right-hand side is the inhomogeneous part, we solve it by first expanding ρ(θ)

and b(θ) as

ρ(θ) =
∞∑

l=−∞
ρ(l) exp(ilθ) , b(θ) =

∞∑
l=−∞

b(l) exp(ilθ) . (S.33)

Then, we use that exp(iθ)u and its complex conjugate are by construction the zero

eigenvectors of the operator L0, i.e. L0(exp(iθ)u) = L0(exp(−iθ)ū) = 0. Since the

left-hand side of (S.31) does not contain any of these zero-eigenvector components due

to the action of L0, we require that these components are canceled also in the right-hand

side – this is the solvability condition corresponding to (S.11) in the preceding section.

Inserting the expansions (S.33) into (S.31) and comparing the first coefficients in the

basis {exp(ilθ) | l ∈ Z}, the solvability condition reads

W = −vb(1) , (S.34)

where v is the left eigenvector of L̂0 corresponding to the eigenvector iω0. For complete-

ness, we find for the other coefficients

ρ(l) =
(
L̂0 − ilω0

)−1
b(l) , (l 6= ±1) , (S.35)

ρ(1) =
(
L̂0 − iω0

)−1 (
b(1) +Wu

)
, (S.36)

ρ(−1) =
(
L̂0 + iω0

)−1 (
b(−1) + W̄ū

)
. (S.37)

Furthermore, we expand ρ(l) and b(l) in powers of ε:

ρ(l) =

∞∑
ν=2

εν ρ̃(l)
ν =

∞∑
ν=2

ρ(l)
ν , b(l) =

∞∑
ν=2

εν b̃
(l)
ν =

∞∑
ν=2

b(l)
ν , (S.38)

or, correspondingly, we have

ρ =
∞∑
ν=2

εν ρ̃ν =
∞∑
ν=2

ρν , b =
∞∑
ν=2

εν b̃ν =
∞∑
ν=2

bν . (S.39)

Likewise, we want to expandW. As we are close to a Hopf bifurcation, the only resonant

terms in w, w̄ are of the form |w|nw with n = 0, 1, 2, . . . ; see main text Section 2.2.2.1

and112,122. Since w,w′ = O(ε) and based on our previous reasoning, the only mixed

terms with non-negligible effect on the amplitude dynamics (S.6) are of odd powers in

ε. This justifies an expansion of the form

W =
∞∑
ν=1

ε2ν+1W̃2ν+1 =
∞∑
ν=1

W2ν+1 . (S.40)

In total, we have Wν = O(εν)(ν ≥ 3), bν ,ρν = O(εν)(ν ≥ 2), and x0 = O(ε). In order
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to calculate Wν , we need expressions for bµ with 1 ≤ µ ≤ ν. After substituting all

the expansions above into (S.32), we compare terms of same order in ε. Respecting the

symmetry of the nk’s in their arguments, we find

b2 = −n2(x0,x0) , (S.41)

b3 = −ε2L̂1x0 − 2n2(x0,ρ2)− n3(x0,x0,x0)− κε2
(
G10x0 +G01x

′
0

)
, (S.42)

b4 = −ε2L̂1ρ2 − 2n2(x0,ρ3)− n2(ρ2,ρ2)− 3n3(x0,x0,ρ2)

− κε2
[
G10ρ2 +G01ρ

′
2 +G20(x0,x0) +G11(x0,x

′
0) +G02(x′0,x

′
0)
]
, (S.43)

b5 = −ε2L̂1ρ3 − 2n2(x0,ρ4)− 2n2(ρ2,ρ3)− 3n3(x0,x0,ρ3)− 3n3(x0,ρ2,ρ2)

+W3
∂ρ2

∂w
+ W̄3

∂ρ2

∂w̄
+W ′3

∂ρ2

∂w′
+ W̄ ′3

∂ρ2

∂w̄′

− κε2
[
G10ρ3 +G01ρ

′
3 + 2G20(x0,ρ2) +G11(x0,ρ

′
2) +G11(ρ2,x

′
0) + 2G02(x′0,ρ

′
2)
]

− κε2
[
G30(x0,x0,x0) +G21(x0,x0,x

′
0) +G12(x0,x

′
0,x
′
0) +G03(x′0,x

′
0,x
′
0)
]
.

(S.44)

Using the solvability condition (S.34), we can calculate W3 = −vb(1)
3 via

b
(1)
3 = −ε2L̂1x

(1)
0 − 2n2(x0,ρ2)(1) − n3(x0,x0,x0)(1) − κε2

(
G10x

(1)
0 +G01x

′(1)
0

)
(S.45)

= −ε2L̂1x
(1)
0 − 2n2(x

(1)
0 ,ρ

(0)
2 )− 2n2(x

(−1)
0 ,ρ

(2)
2 )

− n3(x
(1)
0 ,x

(1)
0 ,x

(−1)
0 )− κε2

(
G10x

(1)
0 +G01x

′(1)
0

)
.

Combining (S.35) and (S.41), we have

ρ
(0)
2 = L̂

−1
0 b

(0)
2 = −2L̂

−1
0 n2

(
x

(1)
0 ,x

(−1)
0

)
, (S.46)

ρ
(2)
2 =

(
L̂0 − 2iω0

)−1
b

(2)
2 =

(
L̂0 − 2iω0

)−1
n2

(
x

(1)
0 ,x

(1)
0

)
. (S.47)

Finally, noting that x
(1)
0 = wu and x

(−1)
0 = wū, we retrieve from (S.46)

W3 = ε2α− β|w|2w + ε2κ
[
γ10w + γ01w

′] , (S.48)

with

α = vL̂1u , (S.49)

β = −3vn3 (u,u, ū) + 4vn
(
u, L̂

−1
0 n2(u, ū)

)
+ 2vn2

(
ū, (L̂0 − 2iω0)−1n2(u,u)

)
,

(S.50)

γ10 = vG10u , γ01 = vG01u . (S.51)
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Analogously, we calculate W5 = −vb(1)
5 :

b
(1)
5 = −ε2L̂1ρ

(1)
3 − 2n2(x0,ρ4)(1) − 2n2(ρ2,ρ3)(1)

− 3n3(x0,x0,ρ3)(1) − 3n3(x0,ρ2,ρ2)(1)

+W3
∂ρ

(1)
2

∂w
+ W̄3

∂ρ
(1)
2

∂w̄
+W ′3

∂ρ
(1)
2

∂w′
+ W̄ ′3

∂ρ
(1)
2

∂w̄′
− κε2

[
G10ρ

(1)
3 +G01ρ

′(1)
3

]
− κε2

[
2G20(x0,ρ2)(1) +G11(x0,ρ

′
2)(1) +G11(ρ2,x

′
0)(1) + 2G02(x′0,ρ

′
2)(1)

]
− κε2

[
G30(x0,x0,x0)(1) +G21(x0,x0,x

′
0)(1)

+G12(x0,x
′
0,x
′
0)(1) +G03(x′0,x

′
0,x
′
0)(1)

]
(S.52)

Again, we have to expand the terms as before, which we show here for only the first line

of (S.52), the other terms follow equivalently,

n2(x0,ρ4)(1) = n2(x
(1)
0 ,ρ

(0)
4 ) + n2(x

(−1)
0 ,ρ

(2)
4 ) ,

n2(ρ2,ρ3)(1) = n2(ρ
(2)
2 ,ρ

(−1)
3 ) + n2(ρ

(1)
2 ,ρ

(0)
3 ) + n2(ρ

(0)
2 ,ρ

(1)
3 )

+ n2(ρ
(−1)
2 ,ρ

(2)
3 ) + n2(ρ

(−2)
2 ,ρ

(3)
3 ) ,

n3(x0,x0,ρ3)(1) = n3(x
(1)
0 ,x

(1)
0 ,ρ

(−1)
3 ) + 2n3(x

(1)
0 ,x

(−1)
0 ,ρ

(1)
3 ) + n3(x

(−1)
0 ,x

(−1)
0 ,ρ

(3)
3 ) ,

n3(x0,ρ2,ρ2)(1) = 2n3(x
(1)
0 ,ρ

(2)
2 ,ρ

(−2)
2 ) + 2n3(x

(1)
0 ,ρ

(1)
2 ,ρ

(−1)
2 ) + 2n3(x

(1)
0 ,ρ

(0)
2 ,ρ

(0)
2 )

+ 2n3(x
(−1)
0 ,ρ

(2)
2 ,ρ

(0)
2 ) + n3(x

(−1)
0 ,ρ

(1)
2 ,ρ

(1)
2 ) .

We aim for those terms that contribute to κε2w̄w′2. Following Kori et al.95, we can

exclude all terms that (a) include ρ2, (b) include x
(1)
0 , and (c) include x

(−1)
0 twice. We

find the remaining terms

−ε2L̂1ρ
(1)
3 − 2n2

(
x

(−1)
0 ,ρ

(2)
4

)
−κε2

[
G10ρ

(1)
3 +G01ρ

′(1)
3 +G11

(
x

(−1)
0 ,ρ′

(2)
2

)
+G12

(
x

(−1)
0 ,x′(1)

0 ,x′(1)
0

) ]
.

(S.53)

The first term can be dropped because the coupling term included there is linear. Fur-

thermore, the first two terms in brackets can be dropped, too, as each yields exclusively

either w, w̄ or w′, w̄′. Hence, the only relevant terms in b
(1)
5 are the two last terms in

brackets and the κ-dependent term in

− n2

(
x

(−1)
0 ,ρ

(2)
4

)
. (S.54)

As to the latter, according to (S.35) and (S.43) the κ-dependent terms in ρ
(2)
4 are(

L̂0 − 2iω0

)−1(
− κε2

[
G10ρ

(2)
2 +G01ρ

′(2)
2

+G20(x
(1)
0 ,x

(1)
0 ) +G11(x

(1)
0 ,x′(1)

0 ) +G02(x′(1)
0 ,x′(1)

0 )
])

.

For the same reasons as above, all but the second and the last term in brackets can be
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dropped. Using (S.41), we have

ρ′
(2)
2 =

(
L̂0 − 2iω0

)−1 (
− n2

(
x′(1)

0 ,x′(1)
0

))
= −w′2

(
L̂0 − 2iω0

)−1
n2(u,u) . (S.55)

Hence, (S.54) reduces to the κ-dependent terms

− 2κε2w̄w′2n2

(
ū,
(
L̂0 − 2iω0

)−1 [
G01

(
L̂0 − 2iω0

)−1
n2(u,u)−G02(u,u)

])
. (S.56)

In addition to this term, we find additionally

+ κε2w̄w′2
[
G11

(
ū,
(
L̂0 − 2iω0

)−1
n2(u,u)

)
−G12(ū,u,u)

]
. (S.57)

Taken (S.56) and (S.57) together, we find the following expression for δ in (S.24):

δ = 2vn2

(
ū,
(
L̂0 − 2iω0

)−1 [
G01

(
L̂0 − 2iω0

)−1
n2(u,u)−G02(u,u)

])
−vG11

(
ū,
(
L̂0 − 2iω0

)−1
n2(u,u)

)
+ vG12(ū,u,u) .

(S.58)

Note that in the case of linear coupling, all Gjk vanish but G01, in which case we confirm

the results by Kori et al.95.

S.3 Poincaré’s reduction via nonlinear transforms

We consider two weakly coupled two-dimensional oscillators x = (x, y),x′ = (x′, y′) ∈ R2

near a supercritical Hopf bifurcation, whose general dynamics is given by

ẋ = f(x, t;µ) + κ g(x,x′, t;µ) (S.59)

and which we seek to transform into a generic normal form

ẇ = αw − β|w|2w + κ h(w,w′) , (S.60)

where the complex parameters α = α(µ), β = β(µ) and the coupling function[2] h have

to be determined subsequently. For the sake of legibility, we drop the explicit time-

dependence of f and g, and note that the theory also holds when allowing for time

variations.

By definition and without loss of generality, the dynamics of an uncoupled unit

ẋ = f(x;µ) (S.61)

[2] In this section we denote the coupling function of the resulting Hopf normal form by h and
thereby deviate from the general notation g.
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has for all sufficiently small |µ| � 1 the equilibrium (0, 0) with eigenvalues

λ1,2(µ) = %(µ)± iω(µ) , (S.62)

where %(0) = 0 and ω(0) = ω0 > 0. The first Lyapunov coefficient l1(0) = −Re β(0)/ω(0),

which depends on the properties of the function f , does not vanish and %′(0) 6= 0. In

particular, we can rewrite (S.61) as

d

dt

(
x

y

)
= L(µ)

(
x

y

)
+ F

((
x

y

)
;µ

)
with L(µ) =

(
a11(µ) a12(µ)

a21(µ) a22(µ)

)
, (S.63)

where we further set σ(µ) = tr L(µ) and ∆(µ) = det L(µ), such that

λ1,2(µ) = 1
2

[
σ(µ)±

√
σ(µ)2 − 4∆(µ)

]
. (S.64)

The Hopf bifurcation assumption translates into σ(0) = 0 and ∆(0) = ω2
0 > 0. For small

|µ|, we can introduce

%(µ) = 1
2σ(µ), ω(µ) = 1

2

√
4∆(µ)− σ(µ)2 (S.65)

and set λ1 = λ, λ2 = λ̄. As can already be anticipated, the parameter α in (S.60) is

exactly the eigenvalue λ.

Let us now couple this unit, x = (x, y), to another identical unit, x′ = (x′, y′), that

is, f = f ′, via the coupling function g(x,x′) and with coupling strength κ ∈ R. In

general, g depends on both the control parameter µ and the coupling κ. Since |κ| � 1

is sufficiently small, we will assume that the coupling function depends on κ only up to

first order, so that the system of interest reads

ẋ = f(x;µ) + κg̃(x,x′;µ) +O(κ2) , (S.66)

where g̃ = g + O(κ). In the following we omit the tilde. While common normal form

transforms merely consider single units, the following lemmata along the line of Chapter

3, Lemmata 3.3 − 3.6, in122 are adapted to take the full, coupled system (S.66) into

account. By subsequently applying the theory outlined in this section, we can derive

the transformed equations in Hopf normal form and thereby allow for a reduction of

the dynamics onto the center manifold where we provide also the exact transformations

of the nonlinear terms in the coupling function g. To start with, we first rewrite the

dynamics in complex form.

Lemma S.2. By introducing a complex variable z ∈ C, system (S.66) can be written for

sufficiently small |µ| as a single equation:

ż = λ(µ)z + f̃(z, z̄;µ) + κg̃(z, z̄, z′, z̄′;µ) +O(κ2) , (S.67)

where f̃ , g̃ = O(|z|2) are smooth functions of (z, z̄;µ), and (z, z̄, z′, z̄′;µ), respectively.
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Note that z refers to unit x and z′ represents x′.

Proof. As we assume x and x′ being identical in the uncoupled case, κ = 0, the following

reasoning applies to both x and x′. Let u(µ) = (u1(µ), u2(µ))ᵀ ∈ C2 be a right eigenvec-

tor of L(µ) corresponding to the eigenvalue λ(µ): L(µ)u(µ) = λ(µ)u(µ), and let v(µ) =

(v1(µ), v2(µ)) ∈ C1×2 be the corresponding left eigenvector: v(µ)L(µ) = λ(µ)v(µ). We

assume u,v are normalized such that v(µ)u(µ) = v1(µ)u1(µ) + v2(µ)u2(µ) = 1. Every

vector x ∈ R2 can be uniquely represented for any small |µ| as

x = zu(µ) + z̄ū(µ) (S.68)

for some complex z and provided the eigenvectors are specified. Then, z = v(µ)x. A

rigorous justification can be found in Lemma 3.3, 122. By vector calculus we find that

ż = v(µ)ẋ = v(µ)
[
L(µ)x+ F (x;µ) + κg(x,x′;µ) +O(κ2)

]
= v(µ)L(µ)x+ v(µ)F (zu(µ) + z̄ū(µ);µ)

+ κv(µ)g
(
zu(µ) + z̄ū(µ), z′u(µ) + z̄′ū(µ);µ

)
+O(κ2)

= λ(µ)z + f̃(z, z̄;µ) + κg̃(z, z̄, z′, z̄′;µ) +O(κ2) , (S.69)

where F denotes the nonlinear part of the function f(x;µ) = L(µ)x+ F (x;µ).

It is favorable to write f̃ as a formal Taylor series in the two complex variables z and

z̄:

f̃(z, z̄;µ) =
∑
k+l≥2

1

k!l!
fkl(µ)zkz̄l , (S.70)

where

fkl(µ) =
∂k+l

(∂z)k(∂z̄)l
v(µ)f (zu(µ) + z̄ū(µ);µ)

∣∣∣∣
z=0

for k + l ≥ 2, k, l = 0, 1, . . . .

Remark. Suppose at µ = 0 the function f(x, 0) in (S.66) is represented as

f(x, 0) = 1
2B(x,x) +

1

6
C(x,x,x) +O(‖x‖4) ,

where B(p, q) and C(p, q, r) are symmetric multilinear vector functions of p, q, r ∈ R2.

In coordinates, we have

Bi(p, q) =

2∑
j,k=1

∂2fi(ξ, 0)

∂ξj∂ξk

∣∣∣∣
ξ=0

pjqk , i = 1, 2,

and

Ci(p, q, r) =
2∑

j,k,l=1

∂3fi(ξ, 0)

∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

pjqkrl , i = 1, 2 .
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Then,

B(zu+ z̄ū, zu+ z̄ū) = z2B(u,u) + 2zz̄B(u, ū) + z̄2B(ū, ū) , (S.71)

where u = u(0),v = v(0). Hence, the Taylor coefficients fkl of the quadratic terms in

f̃(z, z̄, 0), i.e. k + l = 2, can be expressed by

f20 = vB(u,u), f11 = vB(u, ū), f02 = vB(ū, ū) . (S.72)

Similar calculations with C give

f21 = vC(u,u, ū) . (S.73)

The following two lemmata are the key to transform system (S.66) into Hopf normal

form. In fact, both are polynomial coordinate transformations whose coefficients depend

smoothly on µ. The proofs of the respective lemma use their inverse transformations,

which are again smoothly dependent on µ but not necessarily polynomial. However, we

will not provide the proofs here but refer to Chapter 3.5 in 122. It is worth mentioning that

in some neighborhood of the origin x = (0, 0), these transformations are near-identical

due to their linear parts.

The first lemma transforms the equation into one without any quadratic terms:

Lemma S.3 (Lemma 3.4122). The equation

ż = λz +
f20

2
z2 + f11zz̄ +

f02

2
z̄2 +O(|z|3) , (S.74)

where λ = λ(µ) = %(µ) + iω(µ), %(0) = 0, ω(0) = ω0 > 0, and fkl = fkl(µ), can be

transformed by an invertible parameter-dependent change of complex coordinate

z = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2

for all sufficiently small |µ|, into an equation without quadratic terms:

ẇ = λw +O(|w|3).

The second lemma transforms the quadratic-free equation into an equation with only

one cubic term left:

Lemma S.4 (Lemma 3.5122). The equation

ż = λz +
f30

6
z3 +

f21

2
z2z̄ +

f12

2
zz̄2 +

f03

6
z̄3 +O(|z|4) , (S.75)

where λ = λ(µ) = %(µ) + iω(µ), %(0) = 0, ω(0) = ω0 > 0, and fkl = fkl(µ), can be

transformed by an invertible parameter-dependent change of complex coordinate

z = w +
h30

6
w3 +

h21

2
w2w̄ +

h12

2
ww̄2 +

h03

6
w̄6
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for all sufficiently small |µ|, into an equation with only one cubic term:

ẇ = λw + c1w
2w̄ +O(|w|4),

where c1 = c1(µ) = f21/2.

Combining the previous two lemmata, we can achieve the Poincaré normal form for

the Hopf bifurcation cf. also Lemma 3.6 in 122.

Lemma S.5. The equation

ż = λz +
∑

2≤k+l≤3

1

k!l!
fklz

kz̄l + κ˜̃g(z, z̄, z′, z̄′;µ) +O(|Z|4, κ2) , (S.76)

with Z = (z, z′), and where λ = λ(µ) = %(µ) + iω(µ), %(0) = 0, ω(0) = ω0 > 0, and

fkl = fkl(µ), and where ˜̃g denotes g̃ truncated after cubic terms, can be transformed by

an invertible parameter-dependent change of complex coordinate, smoothly depending on

the parameter,

z = ψ(w) = w +
h20

2
w2 + h11ww̄ +

h02

2
w̄2 +

h30

6
w3 +

h12

2
ww̄2 +

h03

6
w̄3 , (S.77)

for all sufficiently small |µ|, into an equation with only one cubic term:

ẇ = λw − βw2w̄ + κh(w, w̄, w′, w̄′) +O(|W |4, κ2), (S.78)

with W = (w,w′), and where β = β(µ) = −c1(µ) is given by

c1 =
f20f11(2λ+ λ̄)

2|λ|2
+
|f11|2

λ
+

|f02|2

2(2λ− λ̄)
+
f21

2
, (S.79)

and h has only polynomial components of degree lower or equal than 3, i.e. h is of the

form

h(w, w̄, w′, w̄′) =
∑

0≤k+l+m+n≤3

hklmnw
kw̄lw′mw̄′n , (S.80)

where for k + l + m + n = 0 we have hklmn = g̃klmn with the latter being the Taylor

coefficients of g̃, and if g̃ has no constant term, i.e. g̃0000 = 0, then hklmn = g̃klmn holds

also for k + l +m+ n = 1.

Proof. The first part of the proof is a combination of the previous two lemmata. We

apply the first lemma to (S.76) in order to get rid of the quadratic terms. Then, we can

apply the second lemma and arrive at the amplitude equation as wanted. Note that by

the first transformation the coefficients of the cubic and higher order terms may have

changed. Therefore, the coefficients of the inverse transforms as given in the proofs for

the two lemmata as in122 are no longer valid in our scenario. Once the two subsequent

near-identity transforms have been established, we can also apply them to the coupling

term. Indeed, the near-identity character leaves the linear terms unchanged such that

hklmn = gklmn at order O(|Z|, |W |).
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Practically, the idea of finding the coefficients in (S.78) breaks down to identifying the

coefficients ajk of a local inverse transform up to order O(|w|4):

w = ψ−1(z) = z+a20z
2 +a11zz̄+ z02z̄

2 +a30z
3 +a21z

2z̄+a12zz̄
2 +a03z̄

3 + . . . . (S.81)

Inserting the forward transform (S.77) into (S.81) and evaluating the right- and left-hand

sides coefficient-wise, provides the inverse coefficients ajk:

a20 = −h20

2
, a11 = −h11, a02 = −h02

2
,

a30 = −h30

6
+
h2

20

2
+
h11h̄02

2
,

a21 =
3h20h11

2
+ |h11|2 +

|h02|2

2
,

a12 = −h12

2
+
h20h02

2
+ h2

11 +
h11h̄20

2
+
h̄11h02

2
,

a03 = −h03

6
+
h11h02

2
+
h̄20h20

2
.

By differentiating the inverse transform (S.81) with respect to t and by using the ab-

breviations f(z) =
∑

k,l 1/(k!l!)fklz
kz̄l, g(z, z′) = g̃(z, z̄, z′, z̄′), and f(w) = f (ψ(w)),

g(w,w′) = g (ψ(w), ψ(w′)), we have

ẇ = d
dtψ
−1(z) = ż + 2a20zż + a11żz̄ + a11z ˙̄z + . . .

= λz + f(z) + κg(z, z′) + 2a20

[
λz2 + f(z)z + κg(z, z′)z

]
+ a11

[
(λ+ λ̄)zz̄ + f(z)z + f(z)z̄ + κ(g(z, z′)z + g(z, z′)z̄)

]
+ . . .

= λψ(w) + f(w) + 2a20

[
λψ(w)2 + f(w)ψ(w)

]
+ a11

[
(λ+ λ̄)ψ(w)ψ(w̄) + f(w)ψ(w) + f(w)ψ(w̄)

]
+ . . .

+ κ
[
g(w,w′) + 2a20g(w,w′)ψ(w) + a11

(
g(w,w′)ψ(w) + g(w,w′)ψ(w̄)

)
+ . . .

]
!

= λw − βw2w̄ + κh(w, w̄, w′, w̄′) +O(|w|4) ,

where we inserted the dynamics (S.76) in the second equality and used the forward

transform (S.77) in the third equality. Note that we assumed that z and z′ coincide

in the uncoupled case κ = 0. That is why the coordinate transforms z = ψ(w) and

z′ = ψ′(w′) take the same form, that is, ψ = ψ′. Now, by collecting terms of the same

order and requiring that all quadratic and cubic terms except for the ww̄2-coefficient β

are zero, we can solve the last equality and find β = −c1 as (S.79) and the resulting

coefficients hjk of the forward transform (S.77) as

h20 =
f20

λ
, h11 =

f11

λ̄
, h02 =

f02

2λ̄− λ
,
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and

h30 =
f30

2λ
+

3f2
20

2λ2
+

3f11f̄02

2|λ|2
λ̄− λ
2λ− λ̄

,

h21 =
f21

2λ̄
+

f20f02

2λ̄(2λ̄− λ)
+
f2

11

λ̄2
+
f11f̄20

2λ̄3
(3λ̄− 2λ) +

f̄11f02

2|λ|2
2λ̄− 3λ

2λ̄− λ
,

h03 =
f03

3λ̄− λ
+

3f̄20f02

λ̄(3λ̄− λ)
+

3f11f02

(3λ̄− λ)(2λ̄− λ)
.

The next step is to evaluate all terms of order κ, that is, to find the hklmn’s from

h(w, w̄, w′, w̄′) = g(w,w′)+2a20g(w,w′)ψ(w)+a11

(
g(w,w′)ψ(w) + g(w,w′)ψ(w̄)

)
+. . . .

(S.82)

Since ψ(w) = O(w), we have that h(w, w̄, w′, w̄′) = g(w,w′) at order O(1). Moreover,

if g(0, 0) = 0, i.e. g has no constant term, then h(w, w̄, w′, w̄′) = g(w,w′) holds up to

order O(w,w′). We expand g̃ into a formal Taylor series as has been done before for f̃ ,

g̃(z, z̄, z,′ z̄′;µ) =
∑

0≤k+l+m+n

1

k!l!m!n!
g̃klmn(µ)zkz̄lz′mz̄′n . (S.83)

Then, g(w,w′) = g̃(ψ(w), ψ(w̄), ψ(w′), ψ(w̄′);µ) and since ψ(w) = w+O(|w|2), we have

that h0000 = g̃0000, and if g̃0000 = 0, then

hklmn = g̃klmn for k + l +m+ n = 1, k, l,m, n ≥ 0.

Remark. The coefficient β reduces at the bifurcation parameter value µ = 0 to

β(0) =
−i
2ω0

(
f20f11 − 2|f11|2 −

1

3
|f02|2

)
− f21

2
. (S.84)

Note that, together with the foregoing remark, the normal form resembles to great ex-

tent the formula derived in the reductive perturbation method, see the main text’s Sec-

tion 2.2.2.1, although the latter pursues an alternative way to arrive at the amplitude

equation.

In the following, we will briefly state the relationship between the original coupling

function g(x,x′;µ) in (S.66) and the coupling coefficients hklmn of the dynamics in Hopf

normal form as in Lemma S.5. Recall from Lemma S.2 that we can write g(x,x′;µ) in

complex form as

g̃(z, z̄, z′, z̄′;µ) = v(µ)g(zv(µ) + z̄v̄(µ), z′v(µ) + z̄′v̄(µ);µ) . (S.85)

Given a Taylor expansion of g = (g1, g2)ᵀ with x = (x, y)ᵀ,x′ = (x′, y′)ᵀ,

gi(x,x
′, a) =

∑
0≤k+l+m+n

1

k!l!m!n!
g

(i)
klmn(a)xkylx′my′n, for i = 1, 2 , (S.86)
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there exists a mapping {(
g

(1)
klmn, g

(2)
klmn

)}
7→ {g̃klmn}

from the coupling coefficients g
(i)
klmn of the original dynamics (S.66) to those of the

complex-valued coupling function (S.83). To be precise, substituting x = (zu1(µ) +

z̄ū1(µ), zu2(µ) + z̄ū2(µ))ᵀ and an equivalent expression for x′ into (S.86), we have

g̃(z, z′, z̄, z̄′;µ) =
2∑
i=1

vi(µ)gi(zu(µ) + z̄ū(µ), z′u(µ) + z̄′ū(µ);µ)

=

2∑
i=1

∑
0≤k+l+m+n

1

k!l!m!n!
vi(µ)g

(i)
klmn(µ)

{
[zu1(µ) + z̄ū1(µ)]k [zu2(µ) + z̄ū2(µ)]l

·
[
z′u1(µ) + z̄′ū1(µ)

]m [
z′u2(µ) + z̄′ū2(µ)

]n}
Using the binomial theorem, (a + b)n =

∑n
k=0

(
n
k

)
akbn−k, we can simplify the equation

to

g̃(z, z′, z̄, z̄′;µ) =∑
0≤k+l+m+n

{ 1

k!l!m!n!

(
2∑
i=1

vi(µ)g
(i)
klmn(µ)

)
·
[ k∑
a=0

l∑
b=0

m∑
c=0

n∑
d=0

(
k

a

)(
l

b

)(
m

c

)(
n

d

)
·
(
ua+c

1 ūk+m−a−c
1 ub+d2 ūl+n−b−d2

)
za+bz̄k+l−a−bz′c+dz̄′m+n−c−d

]}
!

=
∑

0≤k+l+m+n

1

k!l!m!n!
g̃klmn(µ)zkz̄lz′mz̄′n .

Note that u = u(µ) still depends on the parameter µ, which we omitted for the sake

of simplicity. Equating the sums in the first equation and collecting coefficients of the

same order leads directly to the correct expressions for g̃klmn of the second equation.

Once we have the coefficients g̃klmn, we can apply the forward transform (S.77) to the

coupling function (S.83) as has been done at the end of Lemma S.5, and express g̃ in

terms of w,w′ as the formal power series

g(w,w′) = g̃
(
ψ(w), ψ(w̄), ψ(w′), ψ(w̄′)

)
=

∑
k+l+m+n≥0

1

k!l!m!n!
g̃klmnψ(w)kψ(w̄)lψ(w′)mψ(w̄′)n

=:
∑

k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n . (S.87)

Due to the near-identity character of the transform ψ(w), the terms g̃klmn and gklmn
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coincide for k + l +m+ n ∈ {0, 1}. Yet, for higher-order terms we have

g2000 = 1
2 g̃2000 +

h20

2
g̃1000 +

h̄02

2
g̃0100, g1010 = g̃1010, g1001 = g̃1001,

g0200 = 1
2 g̃0200 +

h02

2
g̃1000 +

h̄20

2
g̃0100, g0110 = g̃0110, g0101 = g̃0101,

g0020 = 1
2 g̃0020 +

h20

2
g̃0010 +

h̄02

2
g̃0001, g1100 = g̃1100 + h11g̃1000 + h̄11g̃0100,

g0002 = 1
2 g̃0002 +

h02

2
g̃0010 +

h̄20

2
g̃0001, g0011 = g̃0011 + h11g̃0010 + h̄11g̃0001,

and some particular terms of third order

g2100 = 1
2 g̃2100 +

(
h20

2
+ h̄11

)
g̃1100 +

h̄12

2
g̃0100

g2001 = 1
2 g̃2001 +

h20

2
g̃1001 +

h̄02

2
g̃0101

g0120 = 1
2 g̃0120 +

h20

2
g̃0110 +

h̄02

2
g̃0101

g0021 = 1
2 g̃0021 +

(
h20

2
+ h̄11

)
g̃0011 +

h̄12

2
g̃0001

g1110 = g̃1110 + h11g̃1010 + h̄11g̃0110

g1011 = g̃1011 + h11g̃1010 + h̄11g̃0101 .

We can insert (S.87) into (S.82)

h(w, w̄, w′, w̄′) =
∑

k+l+m+n≥0

hklmnw
kw̄lw′mw̄′n

=

 ∑
k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n


+ 2a20

 ∑
k+l+m+n≥0

gklmnw
kw̄lw′mw̄′n

 · ψ(w) + . . . ,

(S.88)

and solve for the hklmn’s. As has been shown in the main text’s Section 2.2.1.2∗, we

only need a particular choice of coupling coefficients, which are

h0000 = g0000,

h0010 = g0010 + 2a20g0000 + a11ḡ0000,

h0001 = g0001 + a11g0000 + 2a02ḡ0000,
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h2100 = g2100 + a20 [2g1100 + h20g0100 + 2h11g1000]

+ a02

[
2ḡ0200 + 2h̄11ḡ0100 + h̄02ḡ1000 + h̄12ḡ0000

]
+ a11

[
g2000 + ḡ1100 + h̄11g1000 +

h̄02

2
g0100 +

h20

2
ḡ1000 + h11ḡ0100 +

h̄12

2
g0000

]
+ 3a30 [g0100 + 2h11g0000] + a21

[
2g1000 + ḡ1000 +

(
h20 + 2h̄11

)
g0000 + 2h11ḡ0000

]
+ a12

[
2ḡ0100 + h̄02g0000 +

(
h20 + 2h̄11

)
ḡ0000

]
+ 3a03h̄02ḡ0000,

h2001 = g2001 + 2a20

[
g1001 +

h20

2
g0001

]
+ a11

[
h̄02

2
g0001 + ḡ0110 +

h20

2
ḡ0010

]
+ 2a02

h̄02

2
ḡ0010 + 3a30g0001 + a21ḡ0010,

h0120 = g0120 + a11g0020 + 2a02ḡ0002,

h0021 = g0021,

h1110 = g1110 + 2a20 [g0110 + h11g0010] + a11

[
g1010 + h̄11g0010 + ḡ1001 + h11ḡ0001

]
+ 2a02

[
ḡ0101 + h̄11ḡ0001

]
+ 2a21g0010 + 2a12ḡ0001,

h1011 = g1011 + 2a20g0011 + a11ḡ0011 .

In comparison with the reductive perturbation approach presented in the main text’s

Section 2.2.2.1, we thus find the coefficients

h0010 = g0010 = g̃0010 = v1(µ)g
(1)
0010u1(µ) + v2(µ)g

(2)
0010u2(µ) , (S.89)

h0120 = g0120 − h11g0020 − h02ḡ0002 (S.90)

= 1
2

(
g̃0120 − h11 g̃0020 − h02 g̃0002 + h20 g̃0110 + h̄02 g̃0101

− h11h20 g̃0010 − h11h̄02 g̃0001 − |h02|2 g̃0010 − h20h02 g̃0001

)
.

Note that the first term in parentheses, g̃0120, can be ascribed to the coupling function

G12, the second and third to G02, the fourth and fifth to G11, and the latter four to G01,

as they are used in Section S.1. In particular, in case of linear coupling in the original

dynamics, only the terms corresponding to G01 survive and (S.90) reduces to

h0120 = −1
2

(
h11h20 g̃0010 + h11h̄02 g̃0001 + |h02|2 g̃0010 + h20h02 g̃0001

)
. (S.91)

Last but not least, we consider a network of N > 2 coupled oscillators xk = (xk, yk) ∈
R2, k = 1, . . . , N , following the equivalent dynamics to (S.66),

ẋk = f(xk;µ) + κgk(x1, . . . ,xN ;µ) +O(κ2) . (S.92)

In principle, the reasoning above naturally extends to the full system dynamics (S.92).

Especially the type of coupling between oscillators fully translates into the correspond-

ing coupling function hk in the reduced normal form dynamics ẇk = αwk − βw2
kw̄k +
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κhk(w1, . . . , wN ). In fact, we can prove the following

Lemma S.6. As before, we consider system (S.92), where each uncoupled unit xk is

close to a supercritical Hopf bifurcation with |µ| � 1 and that the coupling between units

is sufficiently weak, 0 < κ� |µ| � 1. If the coupling function

gk(x1, . . . ,xN ;µ) = ĝk(x1, . . . ,xN ) :=

N∑
j=1

gkj(xj ,xk)

can be decomposed into the sum of pairwise coupling functions gkj, then also the coupling

function hk in the reduced Hopf normal form decomposes into pairwise interactions,

hk(w1, . . . , wN ) =
N∑
j=1

hkj(wj , wk) .

Proof. The demonstration of the lemma is constructive and follows closely the proof of

Lemma S.5. The main assumption lies within the theory of weak coupling can be justified

in following way, see also the reasoning and proof around Theorem 5.8, 78: A mathematically

rigorous normal form reduction of the full network may consider coordinate transforms

of the form Z = Ψ(W ) where Z = (z1, . . . , zN ), W = (w1, . . . , wN ) and Ψ = (ψ1, . . . , ψN )

with ψj = ψj(w1, . . . , wN ). This general transformation can presumably lead to mixed

coupling terms in the normal form beyond pairwise interactions; see Section S.5 for the

full Hopf normal form of a network with SN × S1-equivariance. For weak coupling,

however, we may consider ψj(w1, . . . , wN ) ≈ ψ0
j (wj) + κψ1

j (w1, . . . , wN ) and for κ → 0

we have ψj(w1, . . . , wN ) = ψ0
j (wj). Given that the uncoupled systems are all identical,

the local coordinate transforms ψ0
j = ψ coincide with (S.77), which results in Ψ(W ) ≈(

ψ(w1), . . . , ψ(wN )
)
. Then, the proof of the Lemma follows immediately.

For the sake of completeness, we here provide the details of the proof: Recall that we

identified both the normal form and coupling parameters β, hklmn by inserting the local

coordinate transform ψ(w), see (S.77), into the derivative of the local inverse transform

(S.81) and by a subsequent comparison of coefficients. Focusing on the terms of order

O(κ), we have

ẇk = f(wk) + κ
[
gk(w1, . . . , wN ) + 2a20gk(w1, . . . , wN )ψ(wk)

+ a11

(
gk(w1, . . . , wN )ψ(wk) + gk(w1, . . . , wN )ψ(w̄k)

)
+ . . .

] (S.93)

with f(w) consisting of terms that eventually become αw−βw2w̄+O(|w|4). Recall also

that the coupling function gk(w1, . . . , wN ) is determined from the original coupling ĝk

via the transformations

ĝk(x1, . . . ,xN ) 7−→ g̃k(z1, . . . , zN ) 7−→ gk(w1, . . . , wN ) .
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Each of these transformations respects the form of coupling. In particular, for

ĝk(x1, . . . ,xN ) =
∑
j

gkj(xj ,xk),

then g̃k and eventually also gk can be decomposed exactly into

gk(w1, . . . , wN ) =
∑
j

gkj(wj , wk).

Inserting this into (S.93) and given that ψ(wk) is a polynomial only in wk, the right-hand

side of (S.93) can be written in the form f(wk) + κ
∑

j hkj(wj , wk) with

hkj(wj , wk) := gkj(wj , wk) + 2a20gkj(wj , wk)ψ(wk)

+ a11

(
gkj(wj , wk)ψ(wk) + gkj(wj , wk)ψ(w̄k)

)
+ · · ·+O(|w|4) .

S.4 Takens’ reduction via Lie brackets

We consider a two-dimensional system x = (x, y) ∈ R2 near a Hopf bifurcation. For

a small perturbation parameter µ > 0 and an equilibrium solution with eigenvalues

±iω0 6= 0 at µ = 0, we can shift the origin appropriately such that x = 0 is the

equilibrium solution undergoing a supercritical Hopf bifurcation. Furthermore, we can

bring the system into Jordan real form so that the dynamics expanded as a Taylor series

around x = 0 reads

ẋ = Lx+ F 2(x) + F 3(x) + · · ·+ F r(x) +O(|z|r+1) , (S.94)

with

L = L0 + µL1 +O(µ2) =

(
0 −ω0

ω0 0

)
+ µ

(
β −α
α β

)
+O(µ2) ,

F 2(x) =

(
F21(x)

F22(x)

)
=

(
a20 a11 a02

b20 b11 b02

)x
2

xy

y2

 .

Note that for µ > 0 we can introduce µ = ε2 with 0 < ε � 1 and that the common

asymptotic scaling O(zi) = ε is used in (S.94) and all subsequent series approximations.

Note further that we can also extend the (n = 2)-dimensional system ẋ = f(x;µ) to the

larger, n+ 1-dimensional system

ẋ = f(x;µ) ,

µ̇ = 0 .
(S.95)
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We can perform the normal form calculations in a likewise manner, requiring the coordi-

nate transforms P (x;µ) to be of the form P (x;µ) = (P (x;µ);µ). Apparently, they will

leave the equation µ̇ = 0 invariant, but transform ẋ = f(x;µ) in a µ-dependent way.

Practically, the normal form calculations remain the same, yet the n-dimensional nor-

mal form system remains in normal form as µ is varied to drive the system through the

bifurcation. While the normal form transformation following Poincaré in the main text’s

Section 2.2.2.2 takes the parameter dependence into account, the reductive perturbation

approach in the main text’s Section 2.2.2.1 does not consider the extended system. As

the deviations between these two approaches are hardly noticeable, we will stick to the

non-extended system also in this section – given that the higher order normal form is

meant for illustration purposes only.[3]

Now, for w = (w1, w2)ᵀ and Pk denoting the set of homogeneous polynomials of order

k, we find the Lie bracket for system (S.94) with L = L0x and pk = (pk1, pk2)ᵀ ∈ Pk as

ad L(pk)(w) =

(
0 −ω0

ω0 0

)(
pk1(w)

pk2(w)

)
−

(
∂pk1/∂x ∂pk1/∂y

∂pk2/∂x ∂pk2/∂y

)(
0 −ω0

ω0 0

)(
w1

w2

)
.

(S.96)

For second-order normal forms, we are looking for a transformation p2 of the form

x = w + p2(w), where

p2(w) =

(
p21(w)

p22(w)

)
=

(∑2
j=0 cijw

i
1w

j
2∑2

j=0 dijw
i
1w

j
2

)
, i = 2− j . (S.97)

We shall perform the Lie bracket operation (S.96) on each basis element of P2, which is

given by

P2 = span

{(
w2

1

0

)
,

(
w1w2

0

)
,

(
w2

2

0

)
,

(
0

w2
1

)
,

(
0

w1w2

)
,

(
0

w2
2

)}
. (S.98)

We find

ad L(P2) = span

{(
w2

1 w1w2 w2
2 0 0 0

0 0 0 w2
1 w1w2 w2

2

)
·A2

L

}
= P2 ·A2

L , (S.99)

with

A2
L = ω0



0 −1 0 −1 0 0

2 0 −2 0 −1 0

0 1 0 0 0 −1

1 0 0 0 −1 0

0 1 0 2 0 −2

0 0 1 0 1 0


.

[3] In this particular section the order of the normal form is indicated by the index k of the
subsequent transformations pk. Compared to the notation in all other parts of the thesis,
k = 3 corresponds to second-order normal forms, k = 5 to third-order, etc.
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We can compute det
(
A2
L

)
= 8ω0 > 0 for ω0 > 0, that is, A2

L is non-singular and has

full rank. This implies that the image of P2 under ad L is the whole subspace P2,

and therefore all second order terms can be removed by a suitable change of variables.

Indeed, substituting (S.97) into (2.53) of the main text and using that

(Dp(w))−1 = (I +Dpk(w))−1 = I −Dpk(w) +O(|w|2) , (S.100)

we have

ẇ =
∞∑
N=0

(−1)N [Dp2(w)]N
{
Lw +Lp2(w) +

∞∑
n=2

n∑
m=0

DmF n(w)

m!
[p2(w)]m

}
(S.101)

= Lw +

Ñ∑
n=2

F (1)
n (w) (S.102)

where we truncated the Taylor series at order Ñ and with

F (1)
n (w) =

(
F

(1)
n1 (w)

F
(1)
n2 (w)

)
=

(∑2
j=0 a

(1)
ij w

i
1w

j
2∑2

j=0 b
(1)
ij w

i
1w

j
2

)
, n = 2, . . . , Ñ , i = 2− j ; (S.103)

the number in the superscript parentheses refers to the index of coordinate transforma-

tions. Since the complement H2 of im (ad L(P2)) in P2 is H2 = {0}, we have

F
(1)
2 (w) = F 2(w) + Lp2(w)−Dp2(w) · L(w) = 0 , (S.104)

that is, a
(1)
ij = b

(1)
ij = 0 for all i+ j = 2. Note that in order to derive F

(1)
2 at order O(ε2),

we again used that µ = ε2 and that F
(l)
n = O(εn) in the series representation (S.103).

Solving now the linear algebraic equation (S.104) for p2 in the space P2, we find the

coefficients cij , dij in (S.97) as

c20

c11

c02

d20

d11

d02


= −

(
A2
L

)−1



a20

a11

a02

b20

b11

b02


=
−1

3ω0



b20 + a11 + 2b02

−2a20 − b11 + 2a02

2b20 − a11 + b02

a20 + b11 − 2a02

−2b20 + a11 + 2b02

−2a20 − b11 − a02


. (S.105)

As said, the higher order normal form computations build upon each other iteratively.

Hence, for the third-order normal form we are looking for a transformation x = w+p3(w)

with

p3(w) =

(
P31(w)

P32(w)

)
=

(∑3
j=0 cijw

i
1w

j
2∑3

j=0 dijw
i
1w

j
2

)
, i = 3− j . (S.106)
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P3 is eight-dimensional and given by

P3 = span

{(
w3

1

0

)
,

(
w2

1w2

0

)
,

(
w1w

2
2

0

)
,

(
w3

2

0

)
,

(
0

w3
1

)
,

(
0

w2
1w2

)
,

(
0

w1w2
2

)
,

(
0

w3
2

)}
.

(S.107)

Similar to (S.99), we find now

ad L(P3) = P3 ·A3
L (S.108)

with

A3
L = ω0



0 −1 0 0 −1 0 0 0

3 0 −2 0 0 −1 0 0

0 2 0 −3 0 0 −1 0

0 0 1 0 0 0 0 −1

1 0 0 0 0 −1 0 0

0 1 0 0 3 0 −2 0

0 0 1 0 0 2 0 −3

0 0 0 1 0 0 1 0


.

We can calculate that the vectors

e1 = (1, 0, 1, 0, 0, 1, 0, 1)ᵀ

e2 = (0,−1, 0,−1, 1, 0, 1, 0)ᵀ

are two eigenvectors corresponding to the zero eigenvalue of A3
L. Therefore, A3

L induces

a non-vanishing complementary space H3 given by

H3 = P3 ·
(
e1 e2

)
= span

{(
w1(w2

1 + w2
2)

w2(w2
1 + w2

2)

)
,

(
−w2(w2

1 + w2
2)

w1(w2
1 + w2

2)

)}
. (S.109)

The resulting third-order normal form takes the following form

ẇ1 = βµw1 − (αµ+ ω0)w2 + a1w1(w2
1 + w2

2)− b1w2(w2
1 + w2

2) +O(|w1|5, |w2|5) ,

ẇ2 = (αµ− ω0)w1 + βµw2 + a1w2(w2
1 + w2

2) + b1w1(w2
1 + w2

2) +O(|w1|5, |w2|5) ,

(S.110)

where a1, b1 are to be determined. In the same manner as before, we have

ẇ =

Ñ∑
N=0

(−1)N [Dp3(w)]N

Lw +Lp3(w) +

Ñ∑
n=2

n∑
m=0

DmF n(w)

m!
[p3(w)]m


= Lw + F

(1)
2 (w) +

Ñ∑
n=3

F (2)
n (w) (S.111)
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where

F (2)
n (w) =

(
F

(2)
n1 (w)

F
(2)
n2 (w)

)
=

(∑2
j=0 a

(2)
ij w

i
1w

j
2∑2

j=0 b
(2)
ij w

i
1w

j
2

)
, n = 3, . . . , Ñ , i = 3− j . (S.112)

Thus, we have to solve

F
(2)
3 (w) = F

(1)
3 (w) + Lp3(w)−Dp3(w) · L(w) = H3(w) (S.113)

for p3, which we can rewrite in terms of the basis functions of P3 as

A3
L · ξ = F

(1)
3 −H3 =: κ (S.114)

where we used (S.109) to get

ξ = {c30, c21, c12, c03, d30, d21, d12, d03}ᵀ ,

κ = {a(1)
30 − a1, a

(1)
21 + b1, a

(1)
12 − a1, a

(1)
03 + b1, b

(1)
30 − b1, b

(1)
21 − a1, b

(1)
12 − b1, b

(1)
03 − a1}ᵀ .

Following the procedure outlined in138,139, we find the resulting coefficients as

(
a1

b1

)
=

1

8

(
a

(1)
12 + 3a

(1)
03 + b

(1)
21 + 3b

(1)
03

−a(1)
21 − 3a

(1)
03 + b

(1)
12 + 3b

(1)
30

)
,

c30

c21

c12

c03

 =
1

8ω0


0

3a
(1)
30 − 3a

(1)
12 + b

(1)
21 − b

(1)
03

3a
(1)
21 − 3a

(1)
03 + b

(1)
30 + b

(1)
12

0

 ,


d30

d21

d12

d03

 =
1

4ω0


a

(1)
30 + a

(1)
12 − b

(1)
21 − b

(1)
03

a
(1)
21 + 3a

(1)
03 + 5b

(1)
30 − b

(1)
12

3a
(1)
30 + a

(1)
12 + b

(1)
21 + 5b

(1)
03

a
(1)
21 + a

(1)
03 + b

(1)
30 + b

(1)
12

 .

(S.115)

Applying the same procedure, we can continue these calculations and derive the coef-

ficients of the normal forms of order 5 and higher. Generalizing system (S.110), the

normal form of order (2M − 1) can be written as

d

dt

(
w1

w2

)
=

(
βµ −(αµ+ ω0)

(αµ+ ω0) βµ

)(
w1

w2

)

+

M−1∑
j=1

(w2
1 + w2

2)j

(
aj −bj
bj aj

)(
w1

w2

)
+O(|w|2M+3) ,

(S.116)

or in complex form for w ∈ C as

ẇ = [(β + iα)µ+ iω0]w +

M−1∑
j=1

(aj + ibj)|w|2jw +O(|w|2M+3) . (S.117)
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For fifth order, the next coefficients can be found as

(
a2

b2

)
=

1

16

(
5a

(3)
50 + a

(3)
32 + a

(3)
14 + b

(3)
41 + b

(3)
23 + 5b

(3)
05

−a(3)
41 − a

(3)
23 − a

(3)
14 − a

(3)
05 + 5b

(3)
50 + b

(3)
32 + b

(3)
14

)
. (S.118)

The corresponding coefficients cij , dij with i + j = 5 for the transform p5(w) are listed

in138. The complexity of computing the coefficients for higher order normal forms in-

creases rapidly – determining a
(3)
ij , b

(3)
ij builds recursively on a

(2)
ij , b

(2)
ij and the lower order

near-identity transformations pk, k ≤ 4. It becomes necessary to implement efficient al-

gorithms in symbolic computation software without running in danger of overflow errors

due to memory storage. An arithmetic algorithm including the computation of normal

forms up to order 11 has been presented in139.

Once higher-order normal forms and their corresponding series of transformations pk

have been established, the latter can be applied to the coupling term κg(x,x′) of (2.51).

For our purposes, however, it is sufficient to consider the transformed coupling up to

third order. As we have illustrated the derivation of the coupling term using nonlinear

transforms in great detail in the main text’s Section 2.2.2.1, we refrain here from further

cumbersome calculations.

S.5 Ashwin & Rodrigues’ reduction via

SN × S1-symmetry

Ashwin and Rodrigues consider in141 coupled oscillators wk ∈ C, k = 1, . . . , N > 4,

which follow the dynamics

ẇk = f(wk;µ) + κg(wk, w1, . . . , wk−1, wk+1, . . . , wN ;µ) +O(κ2) , (S.119)

and where the whole network respects full permutation symmetry SN and rotational

invariance S1. Using equivariant theory, they prove their main result in terms of the

following phase reduction.

Theorem S.7 (Theorem 3.2.141). Consider system (S.119) with SN -symmetry (for fixed

N > 4) such that the N uncoupled systems (κ = 0) undergo a generic supercritical Hopf

bifurcation on µ passing through µ = 0. There exists µ0 > 0 and κ0 = κ0(µ) such

that for any µ ∈ (0;µ0) and |κ| < κ0(µ) the system (S.119) has an attracting Cr-smooth

invariant N -dimensional torus for arbitrarily large r. On this invariant torus, the phases
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θk of the flow can be expressed as a coupled oscillator system

θ̇k = Ω̃(θ, κ) + κ
(
H

(2)
k (θ) +H

(3)
k (θ) +H

(4)
k (θ)

)
(S.120)

H
(2)
k (θ) =

1

N

N∑
j=1

g2(θj − θk)

H
(3)
k (θ) =

1

N2

N∑
j,l=1

g3(θj + θl − 2θk) +
1

N2

N∑
j,l=1

g4(2θj − θl − θk)

H
(4)
k (θ) =

1

N3

N∑
j,l,m=1

g5(θj + θl − θm − θk)

(S.121)

for fixed 0 < µ < µ0 in the limit κ→ 0, where Ω̃(θ, κ) is independent of k and

g2(ϕ) = ξ0
1 cos(ϕ+ χ0

1) + µξ1
1 cos(ϕ+ χ1

1) + µξ1
2 cos(2ϕ+ χ1

2)

g3(ϕ) = µξ1
3 cos(ϕ+ χ1

3)

g4(ϕ) = µξ1
4 cos(ϕ+ χ1

4)

g5(ϕ) = µξ1
5 cos(ϕ+ χ1

5) .

(S.122)

The constants ξji and χji are generically non-zero. The natural frequency Ω̃ of each

oscillator in the reduced phase dynamics (S.120) is given by

Ω̃(θ, κ) = Ω + κµ

−ϑ4

βR
cos(ψ4)− ϑ5

βRN2

N∑
j,k=1

cos(ψ5 + θj − θk)

 (S.123)

with Ω = αI−µ(βI/βR)+O(µ2). The error term truncated in (S.120) satisfies g̃ = O(µ2)

uniformly in the phases θk. This truncation by removing g̃ and O(κ2) terms is valid over

time intervals 0 < t < t̃ where t̃ = O(κ−1µ−2) in the limit 0 < κ� µ� 1. In particular,

for any N , this approximation involves up to four interacting phases.

Before we go into detail of the proof, we first state an immediate corollary for large

oscillator systems of the form (S.119) with SN ×S1-equivariance, where each uncoupled

system is close to a supercritical Hopf bifurcation.

Corollary S.8. In the limit of weak coupling 0 < κ� µ� 1 and for a reasonably large

network size N � 4, the coupled oscillator system (S.120) reduces to

θ̇k = Ω + κ̂ε2

 1

N

N∑
j=1

[
ξ0

1 cos
(
θj − θk + χ0

1

)
+ ε2ξ1

2 cos
(
2(θj − θk) + χ1

2

)]
+O(ε3)


(S.124)

with Ω = αI−ε2(βI/βR)+O(ε4) and ε2 = µ as well as κ̂ = κε2 with ε > 0. In particular,

the phase interaction function of (S.124) consists of first and second harmonics with

merely pairwise interactions.

Proof. For large N � 4, we can assume that 1/N = O(ε) where ε > 0 is such that
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ε2 = µ. In the weak coupling limit, we set κ̂ = κε2. The natural frequency Ω coincides

with Ω̃ at order O(ε4, κ̂ε4), see also (S.123). The terms H
(3)
k (θ), H

(4)
k (θ) in Theorem S.7

are of order O(κ̂ε5). Moreover, the term µξ1
1 cos(ϕ + χ1

1) in g2(θ) is only some higher-

order correction to the first harmonics, and can thus be discarded. The remaining terms

finally constitute (S.124).

The proof of Theorem S.7 can be found in141 where the authors use Theorem 3.1, which

is proven in Theorem 4.2, 422. It is noteworthy that this Theorem 3.1 provides a thorough

decomposition of the coupling function g(w1, . . . , wN ;µ) when given as a polynomial of

degree lower or equal than 3. In fact, any polynomial function h : CN → CN of degree

lower or equal than 3 with N ≥ 4 and which respects the SN × S1-equivariance can be

written as h = (h1, . . . , hN ) where

h1(w1, w2, . . . , wN ) =
11∑

i=−1

aiĥi(w1, w2, . . . , wN )

h2(w1, w2, . . . , wN ) = h1(w2, w1, . . . , wN )

...

hN (w1, w2, . . . , wN ) = h1(wN , w2, . . . , w1)

(S.125)

and ĥ0(w) = w1, ĥ1(w) = |w1|2w1, as well as

ĥ−1(w) =
1

N

N∑
j=1

wj , ĥ2(w) = w2
1

1

N

N∑
j=1

w̄j , ĥ3(w) = |w1|2
1

N

N∑
j=1

wj ,

ĥ4(w) = w1
1

N

N∑
j=1

|wj |2, ĥ5(w) = w1
1

N2

N∑
j,k=1

wjw̄k, ĥ6(w) = w̄1
1

N

N∑
j=1

w2
j ,

ĥ7(w) = w̄1
1

N2

N∑
j,k=1

wjwk, ĥ8(w) =
1

N

N∑
j=1

|wj |2wj , ĥ9(w) =
1

N2

N∑
j,k=1

w2
j w̄k,

ĥ10(w) =
1

N2

N∑
j,k=1

wj |wk|2, ĥ11(w) =
1

N3

N∑
j,k,l=1

wjwkw̄l,

(S.126)

for constants ai ∈ C, i = −1, . . . , 11. Note that in order to respect the rotational

invariance, no constant terms can appear. Moreover, the symmetries make all polynomial

terms of degree two vanish. Now, assuming that the linear term a0w1 and the first cubic

term a1|w1|2w1 are contained in f(w1) = αw1 − β|w1|2w1 as in (2.23) in the main text,

we are left with in total 11 coupling terms aiĥi that will determine the phase interaction

function of the reduced phase dynamics (S.120). Writing the complex constants as

aj = ρje
iφj ,

Ashwin and Rodrigues141 indicate instructions how to derive the desired constants ξji
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and χji in (S.122). First one determines ϑj and ψj , j = −1, 1, . . . , 11, by

ϑj cos(ψj + φ) := ρj sin(φj + φ)− βI
βR

ρj cos(φj + φ) ,

where βI/βR = C(0)/A(0) with C(0) = −2βI/βR and A(0) = −2 with β = βR + iβI .

Using Eq.(4.30) of141 and abbreviating

δ =
C ′(0)A(0)− C(0)A′(0)

A(0)2
= lim

λ→0

d

dλ

C(λ)

A(λ)
, (S.127)

one can deduce

ξ0
1 = ϑ−1, χ0

1 = ψ−1,

ξ1
1 = − 1

βR

√
[ϑ2 cos(ψ2) + ϑ3 cos(ψ3) + ϑ8 cos(ψ8) + ϑ10 cos(ψ10) + δβRρ−1 cos(φ−1)]2 +

+ [−ϑ2 sin(ψ2) + ϑ3 sin(ψ3) + ϑ8 sin(ψ8) + ϑ10 sin(ψ10) + δβRρ−1 sin(φ−1)]2 +O(µ),

χ1
1 = arctan

(
−ϑ2 sin(ψ2) + ϑ3 sin(ψ3) + ϑ8 sin(ψ8) + ϑ10 sin(ψ10) + δβRρ−1 sin(φ−1)

ϑ2 cos(ψ2) + ϑ3 cos(ψ3) + ϑ8 cos(ψ8) + ϑ10 cos(ψ10) + δβRρ−1 cos(φ−1)

)
,

ξ1
2 = −ϑ6/βR +O(µ), χ1

2 = ψ6,

ξ1
3 = −ϑ7/βR +O(µ), χ1

3 = ψ7,

ξ1
4 = −ϑ9/βR +O(µ), χ1

4 = ψ9,

ξ1
5 = −ϑ11/βR +O(µ), χ1

5 = ψ11 .

(S.128)

In particular, we can determine an explicit value for δ as presented in the following

lemma.

Lemma S.9. For the dynamics

ż = αz − β|z|2z + τ(z), where τ(z) = κz4 +O(z5),

we get an explicit value for δ as defined in (S.127), which reads

δ = −2
κI
α2
R

+
5

2

κRαI
α3
R

.

Moreover, if κ = 0, then also δ = 0.

Proof. In the following, we will use that λ ∈ R and that we can write τ(z) = τR(z)+iτI(z)

with τR/I real-valued functions. For x ∈ R, we have

τR(x) = κRx4 +O(x5) and τI(x) = κIx4 +O(x5) .
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As has been defined in141, A(λ) and C(λ) are given by

A(λ) =
U ′R(R∗)

λ
with U ′R(z) = λ+ 3αz2 + τ ′R(z)z + τR(z)

C(λ) =
R∗(λ)B(λ)√

λ
with B(λ) =

2αIR∗ + τ ′I(R∗)√
λ

and R∗ = R∗(λ) is the solution of

0 = λ+ αRR
2
∗ + τR(R2

∗) =⇒ R2
∗(λ) =

λ

−αR
+O(λ) .

That is,

C(λ)

A(λ)
=

2αIR
2
∗ + τ ′I(R∗)R∗

λ+ 3αRR2
∗ + τ ′R(R∗) + τR(R∗)

.

Dividing by R2
∗ and substituting in the leading order of R2

∗, we find

C(λ)

A(λ)
=

2αI − 4κI
αR
λ+O(λ2)

2αR − 5κR
αR

λ+O(λ2)
.

Hence, it follows

δ =
d

dλ

∣∣∣∣
λ=0

C(λ)

A(λ)
=
−8κI + 10κR αI

αR

4α2
R

,

which gives the desired result. Additionally, if τ(z) = O(z5), or even τ ≡ 0, we have

κ = 0, and therefore also δ = 0.

We close this section of the Supplementary material with a few brief comments on the

coupling functions gk in the (Hopf) normal form description (S.119) of the full network

of coupled identical systems close to a supercritical Hopf bifurcation.

Remark. If the coupling function gk in the Hopf normal form description can be fully

decomposed into the sum of pairwise interactions between oscillators, the following cou-

pling parameters as introduced in (S.125) all vanish,

a5 = a7 = a9 = a10 = a11 = 0 .

The only non-vanishing coefficients of the Hopf normal form description are

a−1 = h0010, a2 = h2001, a3 = h1110, a4 = h1011, a6 = h0120, a8 = h0021 .

This means that the constants

ξ0
1 , ξ

1
1 , ξ

1
2 and χ0

1, χ
1
1, χ

1
2
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are non-zero, which leads to the reduced phase dynamics

θ̇k = Ω + κε2−ϑ4

βR
cos(ψ4)

+
κ

N

N∑
j=1

[
ξ0

1 cos(θj − θk + χ0
1) + ε2

(
ξ1

1 cos(θj − θk + χ1
1) + ξ1

2 cos(2(θj − θk) + χ1
2)
)]
.

(S.129)

Note that the coupling term in (S.129) consists again of the first two harmonics only:

the terms ξ0
1 cos(ϕ+χ0

1)+εξ1
1 cos(ϕ+χ1

1) can be comprised by trigonometric identities to

ξ1 cos(ϕ+χ1). Yet, the contribution of the second term to the (collected) first harmonic

is only minor due to the magnitude being of order O(ε2), and hence can be neglected.

Moreover, the amplitude of the second harmonic cos(2ϕ + χ1
2) is O(ε2), that is, of one

order higher than the first harmonic. In total, the only constants that represent major

contributions to the phase dynamics are ξ0
1 and ξ1

2, which correspond by (S.128) to a−1 =

h0010 and a6 = h0120, respectively – these are also the main contributors to the phase

dynamics considered in Section S.2. Besides, disregarding the minor corrections of order

O(ε2), the natural frequency term Ω = αI −αRβI/βR (note that αR = ε2 = µ) coincides

with the one derived in the main text’s Section 2.2.2.

In general, the coupling functions gk in the Hopf normal form description of the full

network are not restricted to pairwise interactions, but they are linear combinations of

the 11 terms given in (S.126). Deducing the respective factors in this linear combination

from the underlying dynamics ẋk = f(xk) + κgk(x1, . . . ,xN ) with N ≥ 4 in a general

way is beyond the scope of this dissertation. Such a general normal form reduction

would probably distort the ostensive link between the original coupling functions gk and

the normal form coupling functions gk: The structure of pairwise interactions in the

underlying dynamics, gk(x1, . . . ,xN ) =
∑

j gkj(xk,xj), may not be respected in the

reduced Hopf normal form description gk(w1, . . . , wN ) 6=
∑

j gkj(wk, wj).

Still, given our goal to provide a phase reduction of the underlying dynamics, it ap-

pears sufficient to concentrate on those coupling terms in the Hopf normal form that have

significant contributions to the reduced phase dynamics. The independent considerations

and derivations in Section 2.2.1.2 and Corollary S.8 suggest that for large networks in the

limit of weak coupling the dominant coupling terms are indeed those stated in the pre-

vious remark. As a consequence, we only need to find these coupling parameters. While

a mathematically thorough normal form reduction for large N becomes rather lengthy

and hence unpractical, the approaches in the main text’s Section 2.2.2 seem to provide

decent approximations for the sought-for coupling parameters, as demonstrated by the

numerical simulations throughout Chapter 3. Nonetheless, both are approximations for

the following distinct reasons: Following Kuramoto’s reductive perturbation approach,

in particular cf. Section S.2, the derivation is based on mere pairwise interactions of

the underlying dynamics and the subsequent reduction steps only respect the bifurca-

tion parameter-dependence up to first order. On the other hand, following Poincaré’s

nonlinear transform approach the parameter-dependence is preserved throughout the
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reduction but the transformation steps are solely targeted at the Hopf normal form of

a single oscillator but not at the Hopf normal form of the full network, see Section S.3.

This latter assumption may be justified in the limit of weak coupling see also 78, but a

rigorous proof, or an error estimate, respectively, are missing.

S.6 Malkin’s adjoint method

The phase sensitivity function, or infinitesimal phase response function, is defined as

Z(θ) = ∇Θ(x)|x=xc(θ), which is the gradient of the (asymptotic) phase map Θ(x)

evaluated on the limit cycle C = {xc(t) : t ∈ R}. In general, it is not easy to find

analytic expressions for the phase map so that it becomes cumbersome to compute Z

and g in the direct way. However, as it turns out, the function Z(θ) is the solution to

the adjoint problem associated with the dynamics

ẋk = f(xk) + κ gk(x1, . . . ,xN ) , xk ∈ Rn, k = 1, . . . , N, (S.130)

when linearized about the uncoupled limit-cycle. Indeed, and thereby following the

theory of weakly coupled oscillators, in the uncoupled case (κ = 0), the equation ẋ =

f(x) has a T -periodic asymptotically stable limit cycle C. xc(t) denotes such a T -periodic

limit cycle solution, whose frequency is ω = 2π/T . After an infinitesimal perturbation

p the perturbed trajectory x(t) = xc(t) + u(t) can be considered arbitrarily close to

the limit cycle, such that the dynamics of u(t) can be assumed linear. By linearizing

ẋ = f(x) around the limit cycle, we define the matrix L(t) ∈ Rn×n as

L(t) = ∇f(x)|x=xc(t) . (S.131)

Solutions to the linearized equation satisfy(
d

dt
−L(t)

)
y(t) =: (Ly) (t) = 0 , (S.132)

where L is a linear operator on the space of Rn-valued T -periodic functions. We define

the standard inner product 〈·, ·〉 on T -periodic functions in Rn as

〈u(t),v(t)〉 =

∫ T

0
u(t) · v(t)dt . (S.133)

Then, the adjoint linear operator L∗ satisfies 〈u,Lv〉 = 〈L∗u,v〉. In particular, we find

that

(L∗y(t)) (t) = −ẏ(t)−L(t)ᵀy(t) . (S.134)

When determining the phase shift between the asymptotic phase θp = Θ(xc+p) after

an infinitesimal perturbation p = u(t) at time t0 and the unperturbed phase θc = Θ(xc),
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we note that for the phase shift ∆θ = θp − θc we have

∆θ =
〈
Z(t),xc(t) + u(t)− xc(t)

〉
+O(|u|2) . (S.135)

Moreover, the phase shift ∆θ is independent of time after the perturbation at t = t0.

Hence,

0 =
d

dt

〈
Z(t),u(t)

〉
=
〈dZ(t)

dt
,u(t)

〉
+
〈
Z(t),

du(t)

dt

〉
=
〈dZ(t)

dt
,u(t)

〉
+
〈
Z(t),L(t)u(t)

〉
=
〈dZ(t)

dt
,u(t)

〉
+
〈
L(t)ᵀZ(t),u(t)

〉
=
〈dZ(t)

dt
+L(t)ᵀZ(t),u(t)

〉
=
〈
− (L∗Z) (t),u(t)

〉
.

As the perturbation u(t) was assumed arbitrary, it follows that

L∗Z(t) = 0 . (S.136)

Furthermore, by definition we have Θ(xc(θ)) = θ. Differentiating both sides with respect

to t, we find with θ̇ = ω that

Θ̇
(
xc(θ)

)
= Z(t) · dx

c(θ)

dt
= ω . (S.137)

This normalization uniquely defines Z(t) as the solution of L∗Z = 0 and Z ·dxc/dt = ω.

S.7 Limit of infinite attraction method

We derive the phase interaction function H for two coupled oscillators k 6= j with

strongly attracting limit cycles, as has been considered by Ermentrout and Kopell147.

The dynamics, where possible inhomogeneities among the oscillators have been subsumed

in the respective coupling terms, are given by

ẋk = f(xk) + κ gk(xk,xj) , xk ∈ Rn. (S.138)

We search for solutions of the form

xk(t) = x0(t) + εuk(t) , (S.139)

where x0(t) denotes a T -period limit cycle solution of ẋ = f(x) with frequency ω =

2π/T , and uk is such that it converges to zero for solutions on the limit cycle x(t) = xc(t).

Note that we can parametrize the limit cycle solution via the phase θk = θk(t) ∈ S1,

such that effectively we search for a transformation Tk = Tk (θk(t),ρk) with ρk ∈ Rn−1

that maps a solution xk ∈ Rn of (S.138) in an equivalent form to (S.139), given as

xk(t) = x0 (θk(t)) +M (θk(t))ρk(t) +O(|ρk|2) (S.140)
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with the n× (n− 1)-matrix M that satisfies

M(θ)ᵀM(θ) = I(n−1)×(n−1) and x′0(θ)ᵀM(θ) = 0

for all θ ∈ S1; the prime ′ denotes the derivative with respect to θ. The corresponding

dynamics of the normal coordinates phase θk and ρk can be derived153 as

θ̇k = ω + hk(θk, θj) +O(|ρk,ρj |) ,

ρ̇k = a(θk)ρk + dk(θk, θj) +O(|ρj |) + o(|ρk|) .
(S.141)

Introducing the Jacobian L(θ) = ∇f(x)
∣∣
x=x0(θ)

of f evaluated at the limit cycle x0,

and denoting ρ = |x′0|2, the functions hk,a and dk can be found as

hk(θk, θj) = ω
x′0(θk)

ᵀ

ρ(θk)
[(L(θk) +L(θk)

ᵀ)M(θk)ρk + κgk (x0(θk),x0(θj))]

a(θk) = ω
[
M(θk)

ᵀL(θk)M(θk) +M ′(θk)
ᵀM(θk)

]
dk(θk, θj) = ωκM(θk)

ᵀgk (x0(θk),x0(θj)) .

(S.142)

For a two-dimensional system xk ∈ R2 with the limit cycle solution x0(t) = (u0(t), v0(t)),

we have ρ = |x′0(t)|2 = u′0(t)2 + v′0(t) and can set M(t) = (v′0(t),−u′0(t)) /
√
ρ(t), which

fulfills the required conditions above.

Note furthermore that the equations (S.141) with (S.142) are general and hold for

any coupling strength κ ∈ R. In the case of weak coupling, 0 ≤ κ � 1, and in the

limit of strong attraction, ρk → 0, we can average hk over one period and find the phase

interaction function

Hk(θk − θj) =
1

2π

∫ 2π

0
ωρ(t+ θk)

−1x′0(t+ θk)
ᵀgk (x0(t+ θk),x0(t+ θj)) dt . (S.143)

In a more rigorous way, we now allow finite attraction to the limit cycle, but further-

more assume weak coupling 0 ≤ κ = ε� 1 and that the normal coordinate ρk is ε-close

to the limit cycle. We can thus introduce ρk = εsk, and (S.141) becomes

θ̇k = ω + ε
[
b(θk)sk + ρ(θk)

−1x′0(θk)
ᵀgk(x0(θk),x0(θj)

]
+O(ε2) ,

ṡk = a(θk)sk +M(θk)
ᵀgk (x0(θk),x0(θj)) +O(ε) ,

(S.144)

with b(θk) = ωρ(θk)
−1x′0(θk)

ᵀ [L(θk) +L(θk)
ᵀ]M(θk). Additionally, we set ω = 1 with-

out loss of generality. In order to determine the phase interaction function Hk for finite

ρk, we have to take the additional term b(θk)sk into account when applying averaging

as in (S.143).

Before deriving the averaged solution, we first recall that we are looking for solutions

of the form (S.139), in which uk now additionally evolves on a slower time scale τ = εt,

that is, we seek for solutions

xk(t) = x0 (t+ θk(τ)) + εuk(t, τ, ε). (S.145)
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We substitute this ansatz in (S.138) and find at first order in ε

L(t+ θk)uk(t, τ, 0) ≡
[
d

dt
−L(t+ θk)

]
uk(t, τ, 0)

= −x′0(t+ θk)
∂θk
∂τ

+ gk (x0(t+ θk),x0(t+ θj)) .

(S.146)

To solve (S.146) for periodic solutions uk, we rely on the Fredholm alternativesee, e.g., 423

according to which

L(t)ξ(t) = g(t) (S.147)

has a 2π-periodic solution ξ(t) if and only if∫ 2π

0
χ(t)g(t) = 0 , (S.148)

where χ(t) solves the corresponding homogeneous adjoint problem

L∗(t)χ(t) ≡
[
d

dt
−L(t)ᵀ

]
χ(t) = 0 . (S.149)

We achieve uniqueness of the solution by requiring the normalization condition

1

2π

∫ 2π

0
χ(t)x′0(t) = 1 . (S.150)

Hence, in order to find a solution of (S.146), we combine (S.148) and (S.150) to obtain

∂θk
∂τ

= H̃k(θk − θj) ≡
1

2π

∫ 2π

0
χ(t)gk (x0(t),x0(t+ θk − θj)) dt . (S.151)

The function χ(t) turns out to be

χ(t) =
[
ρ(t)−1x′0(t)%(t)

]ᵀ
(S.152)

with

%(t)ᵀ =
[
Q(2π)

[
I(n−1)×(n−1) −E(2π)

]−1 −Q(t)
]
E(t)−1M(t)ᵀ ,

where E(t) is the solution to dE/dt = a(t)E with initial condition E(0) = I(n−1)×(n−1)

and Q(t) satisfies Q(t) =
∫ t

0 b(s)E(s)ds. Indeed, inserting the ansatz

χ(t) = x′0(t)ξ(t) +M(t)z(t) (S.153)

into the adjoint problem (S.149) with normalization (S.150), we find that ξ(t) = ρ(t)−1

and z satisfies z′ = −a(t)ᵀz − b(t)ᵀ, which eventually leads to the unique solution

(S.152). For more mathematical details, we refer to147.
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