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Abstract

Exponential smoothing has been one of the most popular forecasting
methods for business and industry. Its simplicity and transparency have
made it very attractive. Nonetheless, modelling and identifying trends has
been met with mixed success, resulting in the development of different mod-
ifications of trend models. We present a new approach to time series mod-
elling, using the notion of ”information potential” and the theory of functions
of complex variables. A new exponential smoothing method that uses this
approach is proposed, the ”Complex exponential smoothing” (CES). It has
an underlying statistical model described in the paper and has several ad-
vantages in comparison with the customary exponential smoothing models,
that allow CES to model and forecast effectively both trended and level time
series, effectively overcoming the model selection problem.

Keywords: Forecasting, exponential smoothing, ETS, model selection,
information potential, complex variables

1. Introduction

Exponential smoothing is a very successful group of forecasting meth-
ods which is widely used both in theoretical research (see for example Jose
and Winkler (2008), Kolassa (2011), Maia and de A.T. de Carvalho (2011),
Wang et al. (2012), Athanasopoulos and de Silva (2012), Kourentzes et al.
(2014)) and in practise (see different forecasting competitions in Fildes et al.
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(1998), Makridakis and Hibon (2000), Gardner Jr. and Diaz-Saiz (2008),
Athanasopoulos et al. (2011)).

The exponential smoothing methods were well known and popular amongst
practising forecasters but only in the last decade Single-Source of Errors
(SSOE) state-space framework for the exponential smoothing methods (ETS)
was proposed (Ord et al. (1997) and Hyndman et al. (2002)). This framework
has been widely used since then in different modifications of the exponential
smoothing (Gould et al. (2008), De Livera et al. (2011), Koehler et al. (2012),
Taylor and Snyder (2012)).

Hyndman et al. (2008a) systematized all the existing exponential smooth-
ing methods and showed that there may exist at least one out of five types
of trends (none, additive, damped additive, multiplicative and damped mul-
tiplicative), one out of two types of errors (additive and multiplicative) and
one out of three types of seasonal components (none, additive and multi-
plicative) in a time series. The taxonomy proposed by the authors leads to
30 exponential smoothing models that can underlay the different types of
time series. Model parameters are optimized using maximum likelihood es-
timation and for the most exponential smoothing forms analytical variance
expressions have been derived. The authors proposed to use information cri-
teria for model selection which should allow choosing the most appropriate
exponential smoothing model in each case. While Hyndman et al. (2008a)
argued AICc to be the most appropriate information criterion, Billah et al.
(2006) demonstrated that there was no significant difference in the forecast-
ing accuracy when using different information criteria.

Furthermore Kolassa (2011) showed that the combination of several ex-
ponential smoothing models using Akaike weights produces more accurate
forecasts than the forecast produced by a singe model using the same infor-
mation criteria. Such a combination leads to composite forms of trend and
seasonality, which can not be described by any single exponential smoothing
form.

In addition to that Kourentzes et al. (2014) showed that the selection of an
appropriate ETS components using the standard approach from (Hyndman
et al., 2008a) may not lead to accurate forecasts in practice. Even if the
correct types of components are known it is often impossible to produce
the exponential smoothing model equivalent to the proposed by the authors
Multiple Aggregation Prediction Algorithm (MAPA) because of the lack of
the flexibility in the former.

Therefore there is a strong evidence that the model selection procedure
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in the exponential smoothing framework does not guarantee that the appro-
priate model is chosen. The possible cause of these problems is the general
idea that any time series can be decomposed into several clear components.
The focus of this article is on non-seasonal data, therefore we will limit any
further discussion on the seasonal component. The data generating process
for a very general non-seasonal case has the following form:

yt = f(lt−1, bt−1, εt), (1)

where yt is the value of the series, lt is the level component, bt is the trend
component, εt is the error term and f is some function that allows including
these components in either additive or multiplicative form.

However the composite forecasts discussed above hint to the lack of a clear
separation between level and trend components. Furthermore the decompo-
sition (1) can be considered arbitrary because depending on the chosen ETS
model and its initial values different estimates of the time series components
can be obtained. Besides, the trend component is unobservable directly in
time series - it can appear only if an appropriate decomposition is done,
and sometimes it is hard to distinguish a local-level time series from a trend
series.

Consider for example simple exponential smoothing method (SES) pro-
posed by Brown (1956) that has the following form:

ŷt = αyt−1 + (1− α)ŷt−1, (2)

where ŷt is the calculated value and α is the smoothing parameter which in
theory can lie inside the region (0, 2) (Brenner et al., 1968).

This exponential smoothing method has an underlying statistical model,
ETS(A,N,N) which due to Hyndman et al. (2002) has the following state-
space form: {

ŷt = lt−1 + εt
lt = lt−1 + αεt

. (3)

When the smoothing parameter in (3) increases the generated time series
can reveal features of a trend time series. Furthermore when the smoothing
parameter becomes greater than one, the series reveals even clearer global
trend (see example in (Hyndman et al., 2008a, p.42)). Selecting the correct
model in this situation becomes a challenging task. This is just one example
of a data generating process that produces the time series with a complicated
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structure which is hard to define using the standard approach with time series
decomposition (1).

In this paper, we propose a different approach to time series modelling
that eliminates the arbitrary distinction between level and trend components,
and therefore the model selection procedure. Instead of decomposing the time
series into several components two characteristics can be studied: the value
of the series yt and an information potential pt. The information potential is
non-observable component of the series that characterizes the time series and
influences the final actual value yt. We define the information potential as
an additional information that potentially can be included in the predicted
values, given the observed values, thus the name of the variable.

Joining these two variables in one complex variable yt + ipt (Svetunkov,
2012) allows taking both of them into account during the modelling process.
Here i is the imaginary unit which satisfies the equation: i2 = −1. The
general data generating process using this notation will have the form:

yt + ipt = f(Q, εt + iξt), (4)

whereQ is a set of some complex variables, chosen for the prediction of yt+ipt,
εt is the error term of the real part and ξt is so called ”information gap”
which shows the difference between the information potential and information
included in the model.

An important notion that rises from the idea of the information potential
is that although the actual value yt and its prediction are the variables of the
main interest in modelling, the unobserved information potential pt contains
additional useful information about the observed series. As such, it is neces-
sary to include it in models, even though it is not the focus of the modelling
exercise.

Due to the unobservability of the information potential it should be ap-
proximated by some characteristics of the studied time series. In this article
it is proposed to approximate the information potential with an error term.
To separate it from the real unknown information potential pt we will use
the following disambiguation:

ςt = yt − ŷt = εt (5)

Using these ideas we propose the Complex Exponential Smoothing (CES)
based on the data generating process (4), in analogy to the conventional
exponential smoothing model.

4



2. Definition of CES

2.1. CES method and CES model

The complex exponential smoothing method is based on (2) and can be
represented with the formula:

ŷt+1 + ip̂t+1 = (α0 + iα1)(yt + iςt) + (1− α0 + i− iα1)(ŷt + ip̂t), (6)

where ŷt is the calculated value of series, p̂t is the calculated value of informa-
tion potential, α0+iα1 is complex smoothing parameter and (1−α0+i−iα1)
is the equivalent complex smoothing parameter.

Analyzing (6) reveals that CES method resembles well known SES method
(2): substituting all the real variables in (2) by complex variables leads to the
formula (6). Further study of the properties of CES reveals some more fea-
tures similar to SES. Thus any complex-valued function can be represented
as a system of two real-valued functions, so we can represent CES in the
following form:{

ŷt+1 = (α0yt + (1− α0)ŷt)− (α1ςt + (1− α1)p̂t)
p̂t+1 = (α1yt + (1− α1)ŷt) + (α0ςt + (1− α0)p̂t)

(7)

The system (7) allows to understand the underlying mechanism in CES
better. It can be seen that the final forecast in CES consists of two parts:
one is produced by SES method and the second, so called ”information po-
tential part” also employs the SES mechanism. It is obvious that CES is a
non-linear method in it’s nature as both first and second equations in (7)
are connected with each other and change simultaneously depending on the
complex smoothing parameter value. This complicated connection allows
forecasting a bigger variety of time series than the conventional exponential
smoothing methods, such as SES, Holt and other forecasting methods.

The underlying statistical model of CES can be derived using the idea
that any complex variable can be represented in a vector and in matrix
forms. The resulting model can be written in the following state-space form
(see Appendix Appendix A):

yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 − α1ςt + α0εt
ct = lt−1 + (1− α0)ct−1 + α0ςt + α1εt

(8)

where lt is the level component, ct is the information potential component
on observation t and εt ∼ N(0, σ2).
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The state-space form (8) is not typical for standard exponential smooth-
ing models but it has some similarities with trended ETS models. The model
(8) can be used as a general form for any type of the information potential.
It implies that dependencies in time series have a non-linear structure and no
explicit trend component is present in the time series as this model does not
need to artificially break the series into level and trend, as ETS does. This
idea still allows to rewrite (8) in a shorter, more generic way, resembling the
general SSOE state-space framework:{

yt = w′xt−1 + εt
xt = Fxt−1 + qςt + gεt

, (9)

where xt =

(
lt
ct

)
is state vector, F =

(
1 −(1− α1)
1 1− α0

)
is transition ma-

trix, g =

(
α0

α1

)
is persistence matrix, q =

(
−α1

α0

)
is information potential

persistence matrix and w =

(
1
0

)
.

The state-space form (8) permits extending the CES in a similar ways
that ETS has been extended to include additional states for seasonality or
exogenous variables. The form (9) has a main difference compared with the
conventional ETS models: it includes information potential term which in the
situation of (5) acts as an additional error term which leads to a persistence
vector having value of g+q. Furthermore the transition matrix in (9) includes
smoothing parameters which is an exceptional feature for ETS models. This
form allows understanding CES clearer as it uses notations of the generic
SSOE state-space exponential smoothing but it uses the completely different
approach in time series modelling.

2.2. Properties of CES

CES as a forecasting method has some interesting properties that should
be studied. Substituting the calculated values in the right side of equation
(6) gives the following recursive form of CES:

ŷt+1 + ip̂t+1 = (α0 + iα1)(yt + iςt)+
(α0 + iα1)(1− α0 + i− iα1)(yt−1 + iςt−1)+
(1− α0 + i− iα1)

2(ŷt−1 + ip̂t−1)
(10)

Repeating this procedure and assuming that time series has infinite length
the following recursive form of CES can be obtained:
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ŷt+1 + ip̂t+1 = (α0 + iα1)
T∑
j=0

(1− α0 + i− iα1)
j(yt−j + iςt−j), (11)

where T →∞.
The right part of (11) contains all the observations weighed with complex

weights forming geometric progression with complex common ratio:

(1− α0 + i− iα1) (12)

Using this finding the bounds of complex smoothing parameter can be
derived: the series of geometric progression in (11) will converge to some
complex number only if the absolute value of (12) is less than one:

v =
√

(1− α0)2 + (1− α1)2 < 1 (13)

The condition (13) is crucial for the preservation of the main exponential
smoothing principle: the older observations should have smaller weights in
the final forecast compared to the newer observaions. If this condition is
violated the older observation would influence the forecast more than the
newer observations. This condition is called stability condition (Hyndman
et al., 2008b) and in the case of CES can be represented graphically on the
plane as a circle with a centre with coordinates (1, 1); see Figure 1.

It is well known that any complex variable can be represented in alge-
braic, exponential and trigonometric forms. Using this property of complex
variables the weights distribution in time can be studied in more details.
The recursive form of CES (11) can be rewritten in trigonometric form the
following way:

ŷt+1 + ip̂t+1 = R
T∑
j=0

vj(cos(ϕ+ jγ) + i sin(ϕ+ jγ))(yt−j + iςt−j) (14)

Where R =
√
α2
0 + α2

1, v is taken from (13), ϕ = arctan α1

α0
+ 2πk and

γ = arctan 1−α1

1−α0
+ 2πk, k ∈ Z. As there is no use in having k 6= 0 we will

make an assumption that k = 0 in the calculation of all the polar angles in
this research.
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Figure 1: Bounds of complex smoothing parameter.

Multiplying complex variables in the sum of (14) will show how the real
and imaginary parts of the forecast are calculated which in its turn can be
presented in the following system:

{
ŷt+1 = R

∑T
j=0 v

j cos(ϕ+ jγ)yt−j −R
∑T

j=0 v
j sin(ϕ+ jγ)ςt−j

p̂t+1 = R
∑T

j=0 v
j sin(ϕ+ jγ)yt−j +R

∑T
j=0 v

j cos(ϕ+ jγ)ςt−j
(15)

It can already be seen in (15) that the forecast in CES depends on the pre-
vious values of the series and the information potential, which are weighted
in time using trigonometric functions. This means that weights in (15) can
be distributed differently depending on the value of complex smoothing pa-
rameter. For example when α0 + iα1 = 1.9 + 0.6i weights are distributed as
shown on Figures 2a and 2b: they oscillate and diverge to zero slowly but
nevertheless the absolute value of these weights decreases in time due to (13).
This weights distribution should result in forecasts based on the long term
time series characteristics. The other, more classical, example is shown on
Figures 2c and 2d. The complex smoothing parameter used on these graphs
is equal to 0.5+1.1i which results in the rapid exponential decline of weights
in time. This weights distribution should result in forecasts using short-term
characteristics of time series.

Plots 2a and 2b, showing the decrease of weights on complex plane,
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demonstrate what is happening with the equivalent complex smoothing pa-
rameter when it is exponentiated in the power j with j = 1, ..., T : the original
vector is rotated on the complex plane. The direction and the degree of this
rotation depends on the values of arguments γ and ϕ, which in their turns
depend on the value of complex smoothing parameter α0 + iα1.

It is obvious that weights distribution depends on the complex smoothing
parameter value and in its turn the speed of divergence of these weights also
depends on this value. It can be shown that if the absolute value of equivalent
complex smoothing parameter v in (13) becomes close to one, the speed of
convergence becomes very low which results in flatter weights distribution
between the observations and a higher complex weight of the initial value.
Vice versa when v becomes close to zero the speed of convergence becomes
very high which results in the steep exponential form of weights distribution.
As a result only several last observations are used in the final forecast.

Plots on the Figure 2 also demonstrate that due to the complex nature of
the weights their sum should be a complex number. For the comparison the
sum of weights of ETS(A,N,N) is always equal to one. So to calculate the
sum of weights of CES the infinite geometric progression of weights in (11)
should be assumed. The sum of this series will be:

S = (α0 + iα1)
∞∑
j=0

(1− α0 + i− iα1)
j =

α2
0 − α1 + α2

1 + iα0

α2
0 + (1− α1)2

(16)

Analysing (16) it can be seen that the sum of weights depends on the
value of the complex smoothing parameter and is usually represented by
the complex number. In theory the sum of series can become real number
only when α0 = 0 which contradicts with the condition (13). It can also be
concluded that the real part of S can be any real number while the imaginary
part of S is restricted with positive real numbers only. The value S indicates
that CES is not an averaging model in comparison with SES which sometimes
is also called ”exponentially weighted moving average”. S can also be used
in the analysis of complex weights distribution in CES and allows comparing
different CES estimated for different time series.

3. Connection with other forecasting models

3.1. Underlying ARIMA
The majority of exponential smoothing models have equivalent underlying

ARIMA models. For example, ETS(A,N,N) has underlying ARIMA(0,1,1)
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Figure 2: CES weights distribution. 2b and 2d: blue solid lines - real parts of complex
weights, green dashed lines - the imaginary parts of complex weights.
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model which was shown for example in (Gardner, 1985). CES also has an
underlying ARIMA model but it is much more complicated than ARIMA
models for the other exponential smoothing models. The analysis of the
system (15) shows that the real and the imaginary parts of the forecasted
complex variable are independent when they are represented as an infinite
series of weighted actual values and information potential. Thus the real part
can be analysed separately:

ŷt = R

T∑
j=1

vj−1 cos(ϕ+ (j − 1)γ)yt−j −R
T∑
j=1

vj−1 sin(ϕ+ (j − 1)γ)ςt−j (17)

The information potential ςt can be substituted in (17) by εt due to (5).
After other several simple substitutions the following formula of CES can be
obtained:

yt−R
T∑
j=1

vj−1 cos(ϕ+(j−1)γ)yt−j = εt−R
T∑
j=1

vj−1 sin(ϕ+(j−1)γ)εt−j (18)

Which in it’s turn can be rewritten using the backshift operator B:

(
1−R

T∑
j=1

vj−1 cos(ϕ+ (j − 1)γ)Bj

)
yt =

(
1−R

T∑
j=1

vj−1 sin(ϕ+ (j − 1)γ)Bj

)
εt

Substituting terms Rvj−1 cos(ϕ + (j − 1)γ) = φj and Rvj−1 sin(ϕ + (j −
1)γ) = θj before the backshift operator the following model can be obtained:(

1−
T∑
j=1

φjB
j

)
yt =

(
1−

T∑
j=1

θjB
j

)
εt (19)

It is obvious that (19) is an ARMA(T,T) model and the order of this
model depends on the complex smoothing parameter value. We have already
discussed earlier in this paper that the convergence of weights in (19) depends
on the complex smoothing parameter value: if it is close to the centre of the
circle in Figure 1 the weights will converge to zero rapidly; if it is close to
the bounds, the weights will converge slowly. In terms of (19) this means
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that the order of ARMA model underlying CES will be very high when the
absolute value of the equivalent smoothing parameter (13) is close to 1. And
per contra when (13) is close to 0 the order of an underlying ARMA model
becomes very low as many coefficients for j > 1 in (19) become close to zero.

The equation (19) also allows to derive the general stationarity condi-
tions of CES. To determine if CES is stationary with the selected complex
smoothing parameter the following characteristic equation for B should be
solved:

1−
T∑
j=1

φjB
j = 0 (20)

This characteristic equation will in general have T roots, and if all of them
lie outside the unit circle, the model can be considered stationary. When the
complex smoothing parameter lies near the centre of the circle (13) the other
characteristic equation, with the smaller number of polynomial terms, can be
solved instead of (20) but the choice of the order of this smaller equation is
subjective. For example when α0 + iα1 = 0.8 + i the characteristic equation
can be limited with the polynomial of order 4 because the complex weight
for j = 5 is already very small and is equal to 0.00128 + 0.0016i. As the
result the characteristic equation will have the following form:

1− 0.8B − 0.16B2 − 0.032B3 − 0.0064B4 = 0 (21)

Solving it will result in the following roots: 1.001;−5.512;−0.245−5.315i;−0.245+
5.315i Each of these roots lie outside the unit circle. This means that CES
has an underlying stationary ARMA process when α0 + iα1 = 0.8 + i.

Unfortunately solving characteristic equations when the complex smooth-
ing parameter lies near its bounds (when v → 1) is almost impossible due
the high order of underlying ARMA, so this method of stationarity check is
not universal for CES.

It should also be noted that when the complex smoothing parameter lies
near its bounds the order of underlying ARMA(T,T) becomes so high that
the corresponding ARMA can not be estimated directly. Using CES allows
to do this estimation in a compact form, where the complex variable ŷt + ip̂t
holds the information about all the previous values of yt + iςt weighted over
time using complex weights.
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3.2. Comparison of CES with SES and ETS(A,N,N)

The other interesting feature of CES is that it can be perceived as a more
general method for SES and as a more general model for ETS(A,N,N). When
ςt = 0 and α1 = 1 the system (7) becomes:{

ŷt+1 = α0yt + (1− α0)ŷt
p̂t+1 = yt + (1− α0)p̂t

(22)

It is obvious that the first equation in (22) is SES method. It is remarkable
that both equations in (22) become independent from each other in these
conditions and the second equation in (22) is not needed for the purpose of
forecasting.

In our framework the condition ςt = 0 means that the information poten-
tial is assumed to be equal to zero, implying that no additional information is
used in the time series generation. This condition along with α1 = 1 results
in the different CES model derived from (8) which takes form (see Appendix
Appendix B): 

yt = lt−1 + εt
lt = lt−1 + α0εt
ct = lt−1

α0
+ εt

α0

(23)

Now the series is generated only using the level component and no infor-
mation potential is produced by the model. Furthermore the level and infor-
mation potential components become independent in the transition equation
in (23). As the result the level component is generated the same way as
in ETS(A,N,N), so CES model becomes almost equivalent to ETS(A,N,N)
model (3), with the only difference in the presence of non-observable infor-
mation potential component that does not interact with yt.

When the discussed condition is met the weights in CES are distributed
similarly to SES and converge to the complex number (16) which becomes
equal to:

S =
α2
0 + iα0

α2
0

= 1 + i
1

α0

(24)

The value of S in (24) resembles the sum of weights in SES which is well
known to be equal to 1.

Lastly the stability region of CES in this situation become equivalent to
the stability region of SES:
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v =
√

(1− α0)2 + (1− 1)2 < 1

v = |1− α0| < 1 (25)

Which is equivalent to the region (0, 2) for the smoothing parameter dis-
cussed earlier.

An additional study of (7) reveals an important information about the
complex smoothing parameter and its connection to SES smoothing param-
eter. If the substitution ςt = εt is made in (7) then after the regrouping of
elements the following system will be obtained:{

ŷt+1 = ŷt + (α0 − α1)εt − (1− α1)p̂t
p̂t+1 = ŷt + (α0 + α1)εt + (1− α0)p̂t

(26)

When α1 is close to one the influence of p̂t on ŷt+1 becomes minimal
and the second smoothing parameter α0 in (26) starts acting similar to the
smoothing parameter in SES with a small difference: α0−1 in CES becomes
close to α in SES. For example the value α0 = 1.2 in CES will correspond
to α = 0.2 in SES. This also means that when the series is stationary and
optimal smoothing parameter in SES should be close to zero the optimal α0

in CES should be close to one.

3.3. Comparison of CES with ETS(A,A,N)

Another exponential smoothing model that is close in its form to CES is
ETS(A,A,N). The general state-space form of ETS(A,A,N) is:

yt = lt−1 + bt−1 + εt
lt = lt−1 + bt−1 + αεt
bt = bt−1 + βεt

(27)

Where lt is level component, bt is trend component of time series, α and
β are smoothing parameters.

To see the similarity with this model, CES state-space model (8) can be
split into two systems, where the first system represents the real and the
second represents the imaginary part of (8):

yt = l0,t−1 − c0,t−1 + εt
l0,t = l0,t−1 − c0,t−1 + α0εt
c0,t = (1− α1)l1,t−1 + (1− α1)c1,t−1 + α1ςt

(28)

14




p̂t = l1,t−1 + c1,t−1
l1,t = l0,t−1 − c0,t−1 + α1εt
c1,t = (1− α0)l1,t−1 + (1− α0)c1,t−1 + α0ςt

(29)

Where l0,t and l1,t are level estimates, c0,t and c1,t are non-linear trend
estimates used in real and imaginary parts of CES respectively.

Comparing first two equations in (27) with first two equations in (28)
shows some similarities: both ETS(A,A,N) and CES contain level estimates
(lt and l0,t respectively) and some components that correspond to trend com-
ponent (bt and − c0,t respectively). Both these models are based on the level
component smoothing using the error term εt. The differences in the mod-
els appear in the third equations in (27) and (28): the trend component is
smoothed directly in ETS(A,A,N) while CES smooths it non-linearly, using
the second equation (29).

4. Statistical properties

4.1. State-space CES with the specific information potential

Due to the used substitute of the information potential (5) some of the
elements in the (8) can be substituted which will lead to the different state-
space model underlying CES:

yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 + (α0 − α1)εt
ct = lt−1 + (1− α0)ct−1 + (α0 + α1)εt

(30)

The main difference between the general state-space CES (8) and the
state-space CES (30) is that due to the information potential substitute (5)
the smoothing parameter changes in both equations of the transition equation
(30) which leads to additional non-linearity in the model. The new persis-
tence vector allows to easily estimate the conditional variance of the model
while the transition matrix can be used in the conditional mean estimation.

4.2. Likelihood function

The state-space form of CES (30) shows that the error term is included in
the models additively. As the result the likelihood function for CES is trivial
and is similar to the likelihood function of additive exponential smoothing
models (Hyndman et al., 2008a, p.68):
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L(g, x0, σ
2|y) =

(
1

σ
√

2π

)T
exp

(
−1

2

T∑
t=1

(εt
σ

)2)
(31)

It was shown in (Hyndman et al., 2008a, p.68) that maximizing the like-
lihood function (31) is equivalent to minimizing the sum of squared errors:

SSE =
t∑
t=1

ε2t (32)

This finding can be used in CES parameters estimation. Obtaining likeli-
hood function (31) for CES also allows calculating information criteria which
are based on double negative concentrated log-likelihood function value:

−2 log(L(g, x0|y)) = T

(
log

(
2πe

T

)
+ log

(
T∑
t=1

ε2t

))
(33)

Using (33) CES can be compared with its potential modifications by the
means of the information criteria calculation.

4.3. Conditional mean and variance of CES

The conditional mean of CES for h steps ahead with known lt and ct can
easily be calculated using the state-space (30):

E (zt+h|xt) = F h−1E(xt) (34)

where E(zt+h|xt) = ŷt+h + ix̂t+h.
Depending on the complex smoothing parameter value forecasting tra-

jectories can be obtained using (34) and (30). The trajectories will differ
depending on the values of lt and ct but the complex smoothing parameter
has the main importance.

Analysing (34) it can be explicitly stated that when α1 = 1 all the values
of the forecast will be equal to the last obtained forecast, which produces the
flat line, equivalent to the forecast produced by level ETS. This trajectory is
shown on the Figure 3a.

The simulation study done with different values of complex smoothing
parameter and with non-negative values of lt and ct showed that when α1 > 1
CES produces the trajectory with growth which is shown on Figure 3b. When
α1 < 1 and α0 < 1 CES produces the harmonic trajectory and when in
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Figure 3: Forecasting trajectories.

addition to that α0 + α1 > 1 the forecasting trajectory will converge to zero
(see Figure 3d). When α1 < 1 and α0 > 1 CES produces the exponential
decline as shown on Figure 3c.

The conditional mean estimated using (34) consists of two parts: the
conditional mean of the series yt and the conditional mean of the information
potential substitute wt.

The state-space form of CES (30) also allows calculating the conditional
variance of CES for h steps ahead with known lt and ct which can also be
calculated using the general state-space form (9) similar to (Hyndman et al.,
2008a, p.96):

V (zt+h|xt) =

{
σ2
ε

(
J2 +

∑h
j=1 F

j−1gg′(F ′)j−1
)

when h > 1

σ2
ε when h=1

, (35)

where J2 =

(
1 1
1 1

)
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The conditional variance estimated using the formula (35) is in fact a
variance-covariance matrix that contains the variance of the series yt, the
variance of the information potential substitute wt and the covariance be-
tween these two variables. However the variance of the actual series is of the
main interest, so all the other values can in general be ignored.

4.4. Stationarity and stability conditions for CES

Due to (Hyndman et al., 2008a, p.38) the stationarity condition for the
general exponential smoothing in the state-space form (9) is that all the
eigenvalues of F should lie inside the unit circle. The majority of ETS mod-
els are non-stationary but calculating eigenvalues for F of CES gives the
following roots:

λ =
2− α0 ±

√
α2
0 + 4α1 − 4

2
(36)

If the absolute values of both roots in (36) is less than 1 then the estimated
CES is stationary. The corresponding statinarity region for CES is shown on
the Figure 4a. The most important part of this region can be described by
two inequalities: {

α1 ≤ 1
α0 + α1 ≥ 1

(37)

Having (37) allows to conclude whether the forecasting trajectory of CES
will be stationary or not by analysing the estimated complex smoothing
parameter.

The other important thing that arises from (30) is stability condition for
CES: the general stability condition for CES has already been derived in (13)
but due to the differences in state-space forms it should be reestimated. To
derive it we firstly need to insert εt = yt− lt−1 in the transitional equation in
(30). After several manipulations the following system of equations can be
obtained:


yt = lt−1 + εt(
lt
ct

)
=

(
1− α0 + α1 −(1− α1)
1− α0 − α1 1− α0

)(
lt−1
ct−1

)
+

(
α0 − α1

α1 + α0

)
yt

(38)
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Figure 4: Stability and stationarity regions of CES, derived from state-space form (30).
Circle represents the stability condition (13).

The matrix D =

(
1− α0 + α1 −(1− α1)
1− α0 − α1 1− α0

)
is called discount matrix and

can be estimated in the general form:

D = F − gw′ (39)

The statistical model is stable if all the eigenvalues of (39) lie inside the
unit circle. The eigenvalues can be calculated using the following formula:

λ =
2− 2α0 + α1 ±

√
8α1 + 4α0 − 4α0α1 − 4− 3α2

1

2
(40)

The stability condition (40) corresponds to the region showed on the
Figure 4b. It can be noted that the stability region of CES in the state-space
form (30) has some common areas with the region for the general CES (13)
though it also has some unique areas which should be taken into account
during the parameters estimation.

5. Examples

5.1. Real life time series

We will estimate CES on two time series to see how it works in real life:
level series and trend series from M3-Competition. The first series (number
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Figure 5: Stationary and trended time series. Red line divides the in-sample with the
holdout-sample.

1664) is shown on the Figure 5a and the second series (number 2721) is shown
on the Figure 5b.

Graphical analysis of the Figure 5a shows that the series is stationary.
ADF test for the series 1664 gives the p-value of less than 0.01 (thus the null
hypothesis of a unit root is rejected on 0.05 level) while KPSS test results in
the p-value of greater than 0.1 (the null hypothesis of level stationarity can
not be rejected on 0.05 level). All of these indicate that the series is indeed
stationary.

The second time series (Figure 5b) is not stationary. In fact it has a clear
trend. ADF test gives the p-value of more than 0.8 while KPSS test shows
p-value of less than 0.01. Comparing these values with the critical value of
0.05 allows to conclude that the series is indeed not stationary.

Estimation of CES on the first time series results in the complex smooth-
ing parameter α0+iα1 = 0.99999+0.99996i. All the roots of the characteristic
equation for such a complex smoothing parameter lie outside the unit circle
and inequality (37) is satisfied which means that the model produces the sta-
tionary trajectory. Furthermore the fact that both real and imaginary parts
of the complex smoothing parameter are close to each other means that the
error variance will weakly influence the variance of the level component.

Fitted values and both point and 95% interval forecasts produced by this
CES are shown on the Figure 5a. The fitted line of CES is a flat line that
lies in the middle of the series, the forecast has almost no decline. This
indicates that CES was able to identify that the series is stationary. All the
observations in the holdout sample lie in the 95% forecasting interval.

CES estimated on the second time series has complex smoothing param-
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eter α0 + iα1 = 1.48187 + 1.00352i. This means that the forecast of CES
on the second time series is influenced by the larger number of observations
compared with the CES on the first time series. There are several roots of
characteristic equation lying inside the unit circle and the imaginary part of
the complex smoothing parameter is greater than one. All of this indicates
that the model is non-stationary.

Fitted values and both point and 95% interval forecasts produced by CES
on the second time series are shown on the Figure 5b. The fitted line is not
as smooth as for the first time series but still goes through the series. All the
observations still lie inside the interval which may indicate that the variance
was estimated correctly.

These two examples show that CES is capable of identifying if the series
is stationary or not and producing the appropriate forecast without the need
for the model selection procedure.

5.2. M3 competition results

We have conducted the experiment to see if the forecasting performance
of CES is significantly better than the performance of other forecasting meth-
ods. All non-seasonal monthly time series from M3-Competition (Makridakis
and Hibon, 2000) have been included in the experiment resulting in 814 time
series. The following competing forecasting methods have been included in
the experiment:

• Naive - Random walk model with Naive method;

• SES - ETS(A,N,N) which corresponds to Simple Exponential Smooth-
ing method;

• AAN - ETS(A,A,N) which corresponds to Holt’s method (Holt, 2004);

• MMN - ETS(M,M,N) which underlies Pegel’s method (Pegels, 1969);

• AAdN - ETS(A,Ad,N) which underlies additive damped trend method
(Gardner and McKenzie, 1985);

• MMdN - ETS(M,Md,N) which corresponds to multiplicative damped
trend method (Taylor, 2003);

• ZZN - ETS(Z,Z,N) - the general exponential smoothing model with the
model selection procedure proposed by (Hyndman et al., 2002);
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Forecasting Method Mean MASE Median MASE

Naive 3.216 1.927
SES 3.098 1.681
AAN 2.755 1.602
MMN 3.323 1.703
AAdN 2.726 1.467
MMdN 2.700 1.490
ZZN 2.716 1.466
CES 2.496 1.387

Table 1: MASE values for different forecasting methods

• CES - Complex Exponential Smoothing.

The size of the holdout sample for monthly data in M3-Competition is 18
observations, so we produced forecasts 18 observations ahead using each of
the models and calculated MASEs as proposed in (Hyndman and Koehler,
2006) to compare the forecasting accuracies of the models.

Mean and median MASEs over all the horizons are shown in the Table
1 (with CES values in bold). It can be noted that CES has a lowest mean
and median MASE compared to all the other models used on this set of
data. Remarkable that it managed not only to outperform ETS(A,N,N)
and ETS(A,A,N) models but also ETS(Z,Z,N) with the implemented model
selection procedure.

To see why CES is more accurate than the other models mean and median
MASEs were also calculated for each of the horizons. It appeared that the
difference in accuracies between CES and other models increases with the
increase of the forecasting horizon. For example, CES was significantly more
accurate than the second best method MMdN for horizon h = 14, . . . , 18 but
it was not the very best method for the shorter horizon of h = 1, . . . , 3. This
indicates that CES was able to capture the long-term dependencies in time
series compared to the other exponential smoothing models that managed
capturing the short-term dependencies.

Conclusions

We presented a new approach to time series analysis in this paper. In-
stead of taking into account only one real variable, the actual value of series,
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and decomposing it into several components, we introduced the information
potential variable and combined it with the actual series value in one complex
variable. Using this approach instead of using the arbitrary decomposition of
time series into several components (level, trend, seasonality, error) leads to
a new class of models, one of which is the Complex Exponential Smoothing
that was studied in this paper.

The proposed CES is a flexible model that is able to distribute weights
between different observations in time either exponentially or harmonically.
This feature allows CES to capture long-term dependencies and non-linear
relations in time series.

It was shown that CES has an underlying ARMA model, the order of
which varies depending on the value of complex smoothing parameter. When
complex smoothing parameter lies near its bounds, the underlying ARMA
becomes of a high order and when the parameter lies near the centre of
the bounds, ARMA has a small order. Using this finding the characteristic
equation for the corresponding ARMA can be solved for the stationarity
condition check for the original CES.

Furthermore the state-space form using Single Source of Error was pre-
sented in the paper, which allowed to derive stability and stationarity condi-
tions of CES and the mean and variance of the model. The proposed state-
space form also allows including exogenous variables and makes possible the
calculation of likelihood function.

The comparison of CES with ETS(A,N,N) showed that the real part
of complex smoothing variable is connected to the smoothing parameter of
ETS(A,N,N) while the imaginary part of complex smoothing parameter reg-
ulates the direction of the forecast trajectory: if it is greater than one, CES
will produce growth, when it it less than one, CES will produce decline. An
additional comparison with ETS(A,A,N) shows that CES is a new forecast-
ing model that is based on non-linear trend while ETS(A,A,N) uses linear
trend.

We also showed that CES is a flexible model that can produce different
types of trajectories in time series and is capable of capturing trends. Using
CES makes model selection procedure obsolete as it encompasses both level
and multiplicative trend series and also approximates additive trend very
well.

Finally, the evaluation that we conducted showed that CES is more ac-
curate than all the included methods, especially ETS(A,N,N), ETS(A,A,N)
and automated ETS. This provides evidence that CES can be used instead
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of these models, capturing both level and trend time series cases. Therefore,
we argue that CES effectively overcomes the model selection problem that
conventional exponential smoothing and similar models face, that is to dis-
tinguish between level and trend series, as well as the nature of the trend of
the time series. Evidence from our evaluation suggests that for univariate ex-
trapolative forecasting CES can effectively replace the multiple forms of level
and trend exponential smoothing, thus simplifying the forecasting problem.
Furthermore, our analysis indicates that a key advantage of CES in compar-
ison to the other models is that it is able to capture long-term dependencies
which results in more accurate forecasts for the longer horizons.

In conclusion, the Complex Exponential Smoothing model proposed in
this paper has unique and desirable properties for time series forecasting.
Using the ideas of complex variables and information potential, CES builds
on the established and widely used exponential smoothing ideas to overcome
several limitations and modelling challenges of the latter. The current work
focused on non-seasonal time series that are important for a wide variety of
forecasting applications and needs. However, it did not consider seasonal time
series or incorporating exogenous variables in the forecasts, as it was out of
the scope of this analysis. However future works should explore extensions of
CES in those directions, investigating how the information potential interacts
with seasonality and exogenous variables and how to best incorporate these
into CES models.

Appendix A. State-space form of CES

First of all any complex variable can be represented as a vector and as a
matrix:

a+ ib =

(
a
b

)
=

(
a −b
b a

)
(A.1)

The general CES model (6) can be split into two parts: measurement and
transitional equations using (A.1):


(
ŷt
x̂t

)
=

(
lt−1
ct−1

)
(
lt
ct

)
=

(
α0 −α1

α1 α0

)(
yt
ςt

)
+

((
1 −1
1 1

)
−
(
α0 −α1

α1 α0

))(
lt−1
ct−1

) (A.2)
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Regrouping the elements of transitional equation in (A.2) the following
system of equations can be obtained:

(
lt
ct

)
=

(
α0 −α1

α1 α0

)(
0
ςt

)
+

(
α0 −α1

α1 α0

)(
yt
0

)
+(

1 −1
1 1

)(
lt−1
ct−1

)
−
(
α0 −α1

α1 α0

)(
0
ct−1

)
−
(
α0 −α1

α1 α0

)(
lt−1
0

) (A.3)

Grouping vectors actual value and level component with complex smooth-
ing parameter and then the level and information potential components leads
to: (

lt
ct

)
=

(
1 −1
1 1

)(
lt−1
ct−1

)
−
(

0 −α1

0 α0

)(
lt−1
ct−1

)
+(

α0 −α1

α1 α0

)(
0
ςt

)
+

(
α0 −α1

α1 α0

)(
yt − lt−1

0

) (A.4)

The difference between the actual value and the level in (A.4) is the error
term: yt−lt−1 = εt. Using this and after several transformations the following
state-space model will be obtained:


(
ŷt
x̂t

)
=

(
lt−1
ct−1

)
(
lt
ct

)
=

(
1 −(1− α1)
1 (1− α0)

)(
lt−1
ct−1

)
+

(
−α1

α0

)
ςt +

(
α0

α1

)
εt

(A.5)

Now if CES should be represented in the state-space form with the SSOE
then the measurement equation should also contain the same error term as
the transitional equation. Alas imaginary part of the measurement equation
in (A.5) is unobservable, independent from the real part and does not contain
any information useful for the forecasting. This is why it can be excluded
from the final state-space model:


yt = lt−1 + εt(
lt
ct

)
=

(
1 −(1− α1)
1 (1− α0)

)(
lt−1
ct−1

)
+

(
−α1

α0

)
ςt +

(
α0

α1

)
εt

(A.6)

The other way of writing down this state-space model is by splitting the
level and information potential components into two equations:
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
yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 − α1ςt + α0εt
ct = lt−1 + (1− α0)ct−1 + α0ςt + α1εt

(A.7)

Appendix B. The connection of CES and ETS(A,N,N)

When ςt = 0 and α1 = 1 the information gap will be equal to the negative
information potential component ξt = ςt − ct = −ct and based on (8) the
following state-space model can be obtained:

(
yt
0

)
=

(
lt−1
ct−1

)
+

(
εt
−ct

)
(
lt
ct

)
=

(
1 −1
1 1

)(
lt−1
ct−1

)
+

(
α0 −1
1 α0

)(
εt
−ct

) (B.1)

The information potential component in the measurement equation in
(B.1) now becomes constant: ct = ct−1 - which allows to substitute the
component ct−1 in the right hand side of the second equation:

(
yt
ct

)
=

(
lt−1
ct−1

)
+

(
εt
0

)
(
lt
ct

)
=

(
1 1
1 1

)(
lt−1
ct

)
+

(
α0 −1
1 α0

)(
εt
−ct

) (B.2)

And after several substitutions and cancelling outs the following state-
space model will be obtained:

(
yt
ct

)
=

(
lt−1
ct−1

)
+

(
εt
0

)
(
lt
ct

)
=

(
1 0
1 1

)(
lt−1
ct

)
+

(
α0 0
1 α0

)(
εt
−ct

) (B.3)

The measurement equation in (B.3) can be substituted by the simpler,
univariate equation, due to the constancy of the information potential com-
ponent and the absence of the information potential. Besides dividing level
and information potential components into two equations in the transition
equation of (B.3) leads to the following state-space model:
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
yt = lt−1 + εt

lt = lt−1 + α0εt
ct = (1− α0)ct + lt−1 + εt

(B.4)

Which after simple substitutions finally leads to the following model:
yt = lt−1 + εt

lt = lt−1 + α0εt
ct = lt−1

α0
+ εt

α0

(B.5)
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