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Abstract: The recent introduction of chronotaxic systems provides the means to describe1

nonautonomous systems with stable yet time-varying frequencies which are resistant to2

continuous external perturbations. This approach facilitates realistic characterization of the3

oscillations observed in living systems, including the observation of transitions in dynamics4

which were not considered previously. The novelty of this approach necessitated the5

development of a new set of methods for the inference of the dynamics and interactions6

present in chronotaxic systems. These methods, based on Bayesian inference and detrended7

fluctuation analysis, can identify chronotaxicity in phase dynamics extracted from a single8

time series. Here, they are applied to numerical examples and real experimental EEG data.9

We also review the current methods, including their assumptions and limitations, elaborate10

on their implementation, and discuss future perspectives.11

Keywords: Chronotaxic systems; Inverse approach; Nonautonomous dynamical systems;12

Bayesian inference; Detrended fluctuation analysis13
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1. Introduction14

The theory of nonautonomous dynamical systems has increasingly been recognised as necessity in the15

treatment of the inherent time-variability of biological systems [1]. Closer inspection of the dynamics16

observed in nature suggests that previous approaches to the characterization of temporal fluctuations17

in these observations may be insufficient. At first glance, biological fluctuations may appear random,18

leading to their description by stochastic models [2]. The complexity observed in biological systems has19

also led to attempts to treat them with chaos theory [3], however this does not allow for the apparent20

stability of these systems, irrespective of their initial conditions. Such characteristics of biological21

oscillators suggests underlying determinism or control of both their amplitudes and frequencies even22

with continuous perturbations. This phenomenon of biological systems resisting a natural tendency to23

disorder was discussed in terms of free energy minimization [4] and separation of internal and external24

states, but this approach is still based on random dynamics. A closely related yet more natural approach25

is to consider them as nonautonomous systems, which are explicitly time dependent. Approaches26

based on reformulation of nonautonomous systems as higher dimensional autonomous systems introduce27

unnecessary complexity whilst failing to accurately describe dynamics arising from nature, due to the28

fact that these are open systems, subject to continuous variable external perturbations. Many living29

systems may be considered as nonautonomous oscillatory systems, with such time-varying dynamics30

observed in individual mitochondria [5], the cardio-respiratory system [6,7], the brain [8] and blood flow31

[9].32

Although stability of the amplitude dynamics of an oscillator can be achieved with autonomous33

self-sustained limit cycle oscillators, the frequency of this oscillation could be easily changed by weak34

external perturbations [10]. To account for a case where this frequency of oscillation is also robust35

to perturbations, yet time dependent, a completely new approach is required. Thus, nonautonomous36

systems with stable yet time-varying frequencies were recently addressed, and formulated as chronotaxic37

systems [10–12]. Chronotaxic systems possess a time-dependent point attractor provided by an external38

drive system. This allows the frequency of oscillations to be prescribed externally through this driver39

and response system, giving rise to determinism even when faced with strong perturbations.40

Once these properties of the underlying system have been recognised, the next problem is how to41

infer these dynamics and interactions from direct observations, i.e. via the inverse approach. In a42

chronotaxic system, particularly one found in nature, whilst the underlying dynamics are defined by the43

external driver, the system will likely still be affected by other influences and noise, and these may mask44

the chronotaxic dynamics if the correct analytical approach is not applied. For example, the inherent45

time-variability of the frequency of the dynamics arising from a chronotaxic system means that it cannot46

be accurately characterized by any method based on averaging. This novel class of systems requires new47

inverse approach methods, with the focus on the extraction and identification of the dynamics of the drive48

system, and its influence on the response system. Here, we review the current state of inverse approach49

methods for the identification of chronotaxicity, from a single time series of the response system in50

which the phase and amplitude dynamics are separable. We then apply these methods to numerically51

simulated and real experimental data. Section 2 presents the mathematical formulation of chronotaxic52

systems, Section 3 describes current inverse approach methods and their application to the detection53
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Figure 1. (a) Moving point attractor, (b) simplest case of a chronotaxic system

of chronotaxicity. In Section 4, numerical examples are presented to demonstrate the methods, and54

their assumptions and limitations are discussed. The inverse approach methods are also applied to real55

experimental data. Finally, Section 5 discusses future directions of the work.56

2. Chronotaxic systems57

The crucial concept in the theory of chronotaxic systems is the ability to resist continuous external58

perturbations. In autonomous systems, such an ability is provided by a stationary steady state, allowing59

the system to always return to the vicinity of this steady state when continuously externally perturbed.60

However, only in nonautonomous (thermodynamically open) systems can the position of this steady61

state change in time, i.e. be outside of equilibrium. In such a case, not only the stationary state of62

a system, but also its time-dependent dynamics will be able to resist continuous external perturbations.63

These oscillatory nonautonomous dynamical systems with time-dependent steady states were introduced64

in Ref. [10] and named chronotaxic systems, emphasizing that their dynamics is ordered in time (chronos65

– time, taxis – order).66

Mathematically, nonautonomous dynamical systems and, consequently, chronotaxic systems, are
defined by the following system of equations,

ṗ = f(p); ẋ = g(x,p). (1)

where p ∈ Rn, x ∈ Rm, f : Rn → Rn, g : Rm × Rn → Rm, where n and m can be any positive67

integers. Importantly, the solution x(t, t0,x0) of Eqs. (1) depends on the actual time t as well as on the68

initial conditions (t0,x0), whereas the solution p(t− t0,p0) depends only on initial condition p0 and on69

the time of evolution t− t0. The subsystem x is nonautonomous in a sense that it can be described by an70

equation which depends on time explicitly, e.g. ẋ = g(x,p(t)). A chronotaxic system is described by71

x which is assumed to be observable, and p which may be inaccessible for observation, as often occurs72

when studying real systems. Rather than assuming or approximating the dynamics of p, we focus on73

the dynamics of x and use only the following simple assumption: system p is assumed to be such that it74

creates a time-dependent steady state in the dynamics of x, which is schematically shown in Fig. 1(a).75

Therefore, the whole external environment with respect to x is divided into two parts. The first part76

is given by p which is only that part which makes the system x chronotaxic (defined below), i.e. an77

unperturbed chronotaxic system. The second part contains the rest of the environment and is therefore78

considered as external perturbations.79

Firstly, we provide a mathematical formulation of unperturbed chronotaxic systems. The defining
component of an unperturbed chronotaxic system is a time-dependent steady state, also called a point
attractor, and denoted xA(t). Usually, a steady state is defined using a so-called forward limit, i.e. when
forward time approaches infinity. Assuming that the whole space Rm of x is a basin of attraction, i.e.
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that for any initial condition x0 at time t0 the solution of the system asymptotically approaches the
time-dependent steady state xA, a condition of forward attraction for xA is the following,

lim
t→+∞

|x(t, t0,x0)− xA(t)| = 0. (2)

This condition can only be satisfied when the chronotaxic system is not perturbed. However, taking
into account the time-dependence of xA(t), this condition is not satisfactory in terms of defining the
time-dependent point attractor. Any solution x̃(t, t0,x0) which satisfies (2) with given xA(t) can also
be considered as a time-dependent point attractor. Moreover, when dealing with living systems, it is
crucially important to describe stability at the current time t and not in the infinite future. This problem
is resolved by employing a condition of pullback attraction, which should also be satisfied by xA(t) in a
chronotaxic system,

lim
t0→−∞

|x(t, t0,x0)− xA(t)| = 0. (3)

One can see, that this condition defines a time-dependent point attractor at current time t. Considering
the condition (3) at all times t > −∞, it follows that the time-dependent point attractor should also
satisfy the invariance condition, i.e. the condition that xA is a solution of the system (1),

x(t, t0,x
A(t0)) = xA(t). (4)

Equations (2) and (3) determine asymptotic convergence in the infinite future or starting from the80

infinite past. Asymptotic convergence allows the dynamics of x(t, t0,x0) to deviate from xA during a81

certain finite time interval. Therefore, during this time-interval the ability to resist continuous external82

perturbations will be absent. Therefore, in order to characterize the ability of living systems to sustain83

their time-dependent dynamics at finite time intervals, chronotaxic system should satisfy the condition of84

contraction, or equivalently the attraction at all times. This means that in the phase space Rm, x ∈ Rm,85

there should be a contraction region C(t) such that for any two trajectories x1,x2 of a system inside the86

contraction region xi(t, t0,x0i) ∈ C(t), i = 1, 2, the distance between them can only decrease,87

d

dt
|x1(t, t0,x01)− x2(t, t0,x02)| < 0. (5)

However, in general the contraction region C(t) can be finite, and different trajectories can eventually88

leave this region. Therefore, in a chronotaxic system the contraction region should contain a finite area89

A′, A′ ⊂ C, such that solutions of the system starting in A′ never leave it, ∀t0 < t, ∀x0 ∈ A′(t0),90

x(t, t0,x0) ∈ A′(t). In such a case, fulfillment of these conditions guarantees that the time-dependent91

point attractor xA is located inside the area A′ inside the contraction region C.92

Alternatively, the trajectory xA(t) can be viewed as a linearly attracting uniformly hyperbolic
trajectory [13], so that the distance between a neighboring trajectory and xA(t) can only decrease in
an unperturbed chronotaxic system. For more details and for relations between chronotaxic and other
dynamical systems see Ref. [12]. A simple example of an unperturbed chronotaxic system is given by
unidirectionally coupled phase oscillators with unwrapped phase ϕx ∈ (−∞,∞) driven by a phase
ϕp ∈ (−∞,∞):

ϕ̇x = ω0(t)− ε(t) sin(ϕx − ϕp(t)), (6)
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where ϕ̇p(t) = ω(t). The point attractor will exist if the condition of chronotaxicity [11] is fulfilled,93

|ε(t)| > |ω0(t) − ω(t)|. As an example, for a particular choice ε(t) = ω(t) > 0, and ω0(t) = 0, the94

equation can be integrated, and the limit t0 → −∞ can be calculated, leading to the explicit expression95

for a time-dependent point attractor of an unperturbed chronotaxic system, ϕAx (t) = ϕp(t)−π/2 + 2πk,96

and k is any integer.97

It should be noted that the dynamics of p can be complex or stochastic, or chaotic, provided that the98

above conditions are met. Nevertheless, the dynamics of x will be determined by the dynamics of p,99

and therefore it will be deterministic, at least in unperturbed chronotaxic systems. When considering100

perturbed chronotaxic systems, for simplicity it is sufficient to consider perturbations only to the x101

component, as any perturbations to p can be included in its dynamics assuming that x does not102

influence p. In perturbed chronotaxic systems, which model real life systems, the general external103

perturbations will create complex dynamics of x with a stochastic component. Such dynamics may104

look very complex: perturbations can push trajectories away from the contraction region, therefore they105

can temporarily deviate before they converge. Despite this, due to the existence of the contraction106

region, the system will resist continuous external perturbations. The time-dependent dynamics of a107

perturbed chronotaxic system will be very close to the dynamics of the unperturbed chronotaxic system108

provided the perturbations are weak enough. In the case of very strong continuous perturbations, such109

perturbations may override the driving system p, and become effectively a new driver, causing the initial110

point attractor of the chronotaxic system to disappear. However, it may be restored once the perturbations111

again become sufficiently weak.112

Thus, when perturbations do not destroy the chronotaxic properties of a system, the stable113

deterministic component of its dynamics can be identified, as will be shown below. This reduces the114

complexity of the system, allowing us to filter out the stochastic component and focus on deterministic115

dynamics and interactions between system x and its driver p, [10,14]. For such complex systems as116

living systems, it has the potential to extract properties of the system which were previously neglected.117

3. Inverse approach for chronotaxic systems118

3.1. Inverse approaches to nonautonomous dynamical systems119

A wide range of observed properties in living systems can be explained by considering them as120

nonautonomous. Despite this, difficulties in their analysis as such have led to many unsuccessful attempts121

to apply methods more suited to autonomous systems. From a single time series arising from a dynamical122

system, inverse approach methods can be used to infer the underlying dynamics of this system, in terms123

of phase or amplitude. In deterministic systems, phase space analysis is usually the first point of call,124

i.e. reconstruction of the attractor in phase space. This can be achieved with only a single time series125

using embedding, in which the dimensions of the reconstructed attractor are composed of time-delayed126

versions of the data in the time series [15]. This approach works well for autonomous systems, but does127

not consider the possibility of time-dependent attractors [1]. Phase space methods are particularly suited128

to the treatment of the dynamics observed in chaotic systems, however, nonautonomous systems appear129
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very complex in phase space. To incorporate time-dependence into these systems, extra dimensions in130

phase space are required, introducing unnecessary complexity to the problem.131

In the case that there is only one oscillation in the time series, the Hilbert transform can be applied132

to obtain the complex analytic signal, from which the instantaneous phase can be determined directly. If133

the time series contains more than one component of interest, for example different oscillatory modes,134

it can be decomposed into its constituent parts using a method such as empirical mode decomposition135

(EMD), in which peak/trough detection is used to create upper and lower envelopes. From these, a136

trend is defined and subtracted from the signal to produce a series of intrinsic mode functions, each one137

representing an oscillatory component of the time series [15]. However, there are some limitations when138

applying EMD to nonstationary data.139

Many signal analysis methods assume stationarity of the frequency distribution of the data, but in140

nonautonomous systems this assumption is not valid. Single variable time-series, particularly those141

from living systems, must be treated as arising from nonautonomous dynamical systems, due to142

time-dependent influences of variables other than the one under study. Approaches based on windowing143

have been applied in order to attempt to treat time-variability in data, but these potentially lose crucial144

information. For example, in phase space reconstruction, the window may not be of a sufficient size145

to capture the whole of the attractor, or its variations in time. Application of the Fourier transform to146

nonstationary data will result in a blurred or misleading power spectra, severely limiting its usefulness.147

The windowing approach has been applied here with some success, in the form of the Short Time Fourier148

transform (STFT), but the use of windowing leads to limitations; the better the time resolution, the149

worse the frequency resolution (known as the Gabor limit [16]). In addition, the fixed time-frequency150

relationship at all scales in a windowed Fourier transform severely limits its usefulness for the analysis151

of low frequency oscillations. This problem can be addressed by using the continuous wavelet transform152

(CWT), which provides a logarithmic frequency scale (see Section 3.3). The CWT is based on wavelets153

rather than the sines and cosines used in Fourier based methods. The simultaneous observation of the154

time and frequency domains is extremely useful in the visualization of dynamical systems and their155

time evolution. As a result, development of wavelet-based methods specifically for the treatment of156

time-dependent dynamics is now a very active field of research [15], including wavelet phase coherence157

[17], the synchrosqueezed transform [18,19] and wavelet bispectrum .158

In addition to determining the characteristics of the underlying dynamics of single nonautonomous159

oscillatory modes, inverse approach methods are also used to decompose their interactions. One160

of the most well known characteristics of interacting systems is synchronization between oscillatory161

components, i.e. a fixed relationship between their phases or amplitudes. Once the phases of162

oscillations have been extracted from a time series, a measure of phase synchronization can be163

calculated using synchronization indices or phase coherence [15]. However, these methods do not164

account for time-varying synchronization. Dynamical Bayesian inference is able to detect time-varying165

synchronization in a system, whilst simultaneously inferring the direction of coupling and time-evolving166

coupling functions [20,21]. In the time-frequency domain, wavelet phase coherence can be used to167

monitor phase relationships over time and frequency by utilising the phase information obtained from168

the continuous wavelet transform [15,17]. In a similar way, couplings between oscillators can be detected169



Version June 11, 2015 submitted to Entropy 7 of 26

and quantified using wavelet bispectrum [22]. The ability of these methods to directly take into account170

the time-varying characteristics of data makes them ideal for application to nonautonomous systems.171

3.2. Detecting chronotaxicity172

Here we present two distinct inverse approach methods which may be utilised in the detection173

of chronotaxicity: phase fluctuation analysis (PFA) and dynamical Bayesian inference. It should be174

noted that the current methods are only applicable to phase dynamics in the context of the detection of175

chronotaxicity, i.e. we focus on the ability of the time-varying frequency to resist continuous external176

perturbations. The two methods rely on a different inferring basis. Phase fluctuation analysis provides a177

measure of statistical effects observed in a signal, whilst the dynamical Bayesian inference method infers178

a model of differential equations and gives a measure of dynamical mechanisms, i.e. the evaluation179

of chronotaxicity relies on the inferred parameters of the model. PFA is said to infer a functional180

connectivity, while the dynamical Bayesian inference method infers effective connectivity [23]. The181

optimal method to use depends on the characteristics of the data, as detailed below.182

It is possible to detect whether a system is chronotaxic or not by observing the distribution of
the fluctuations in the system relative to its unperturbed trajectory. This comes from the fact that if
the original distribution of the perturbations is known, then the stability of the system relative to the
unperturbed trajectory (which by definition follows the time-dependent point attractor in a chronotaxic
system) can be determined from how these perturbations grow or decay over time. For example, take the
non-chronotaxic phase oscillator [24]

ϕ̇x = ω0(t) + η(t), (7)

where ω0(t) is the time-dependent natural frequency and the observed phase ϕx is perturbed by noise
fluctuations η(t). Integrating we find,

ϕx =

∫
ω0(t)dt+

∫
η(t)dt. (8)

Assuming that ω0(t) > 0 and η(t) is an uncorrelated Gaussian process, this means that the dynamics
of ϕx will consist of a monotonically increasing phase perturbed by a random walk noise (Brownian
motion). However, the situation is different for a chronotaxic phase oscillator, e.g.

ϕ̇p = ω0(t), (9)

ϕ̇x = εω0(t) sin(ϕp − ϕx) + η(t),

where ϕp is an external phase and |ε| > 1. In this case the stability provided by the point attractor183

causes each noise perturbation to decay over time, preventing η(t) from being integrated over to the184

same extent. The perturbations still do not decay instantly as the system takes time to return to the point185

attractor, meaning that some integration of the noise still takes place. However, the size of the observed186

perturbations over longer timescales is greatly reduced, causing a change in the overall distribution from187

that expected for Brownian motion.188
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3.3. Extracting the perturbed and unperturbed phases189

The first problem of generating a method based on the above principle is how to extract both the190

perturbed and unperturbed phases of the system from an observed time series. This usually requires191

the separation of the amplitude and phase for an oscillation in the time series, which is possible using192

time-frequency domain analysis [15]. The analytic signal generated by the Hilbert transform can also193

be used but this requires corrections for nonlinear oscillations and cannot be used when more than one194

oscillation is present in the time series [14,25,26]. Additionally, the use of the Hilbert transform requires195

the use of protophase-to-phase conversion [26].196

A time-frequency representation with an optimal frequency resolution of the time series f(t) of length
L is provided by the continuous wavelet transform [27],

WT (s, t) =

∫ L

0

Ψ(s, u− t)f(u)du, (10)

where Ψ(s, t) is the mother wavelet, which is scaled according to the parameter s to change its frequency
distribution and time-shifted according to t. The Morlet wavelet is a commonly used mother wavelet and
is defined as [28],

Ψ(s, t) =
1
4
√
π

(
e

2πif0t
s − e−

2πf20
2

)
e−

t2

2s2 , (11)

where the corresponding frequency is given by 1/s and f0 is a parameter known as central frequency197

which defines the time / frequency resolution [27].198

Oscillations can be traced in WT (s, t) using either a ridge-extraction method [29,30] or the199

synchrosqueezed wavelet transform (SWT) [18]. These extraction methods can be used to estimate200

the instantaneous frequencies of the oscillatory components in a time series, allowing identification of201

harmonics which can be used to determine the intra-cycle dynamics. The phase ϕx of the observed202

system is then arg(WT (s, t)), where s and t denote the positions of the oscillation in the s− t plane.203

With the estimated perturbed phase ϕ∗x extracted, further work is needed to obtain the unperturbed204

phase ϕA∗x . In particular, it is difficult to separate the dynamics corresponding to ϕAx from the effect of205

the noise perturbations η(t). This task is simplified by assuming that the dynamics of ϕAx are confined206

to timescales larger than a single cycle and that the noise is either weak or comparable in magnitude to207

these dynamics.208

With these assumptions, an estimate of ϕAx can be found by filtering out high-frequency components209

of ϕ∗x. However, such a filter should not smooth over the dynamics of ϕAx . An optimal way of removing210

these high-frequency noise fluctuations without affecting the unperturbed dynamics is to instead smooth211

over the frequency extracted from the wavelet transform [15]. This provides the estimated angular212

velocity ϕ̇Ax , which can in turn be integrated over time to give the estimated phase of the driver ϕA∗x .213

For further methodological details on phase extraction see Section 4.2.214

3.4. Dynamical Bayesian inference215

One approach to the detection of chronotaxicity is the application of dynamical Bayesian inference to216

the extracted perturbed (ϕ∗x) and unperturbed (ϕA∗x ) phase estimates in order to model their interactions.217
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In dynamical systems Bayesian inference can simultaneously detect time-varying synchronization,218

directionality of coupling and time-evolving coupling functions [20,21]. The characteristics of these219

coupling functions between ϕ∗x and ϕA∗x may reveal the dynamic mechanisms of the system in terms of220

chronotaxicity. Bayesian inference is able to track time-dependent system parameters, meaning that it is221

particularly useful for the detection of chronotaxicity in systems which move in and out of a chronotaxic222

state.223

Following extraction of phases from the continuous wavelet transform, as described in Section 3.3,224

we assume their dynamics is described by [14,20,21]225

ϕ̇i = ωi + fi(ϕi) + gj(ϕi, ϕj) + ξ(t), (12)

where ωi is the natural frequency of the oscillation, fi(ϕi) are the self-dynamics of the phase, gi(ϕi, ϕj)226

are the cross couplings, and ξ(t) is a two-dimensional white Gaussian noise 〈ξi(t)ξj(τ)〉 = δ(t− τ)Eij .227

Based on the periodic nature of the system, the basis functions are modeled using the Fourier bases228

fi(ϕi) =
∞∑

k=−∞

ãi,2k sin(kϕi) + ãi,2k+1 cos(kϕi), (13)

and229

gi(ϕi, ϕj) =
∞∑

s=−∞

∞∑
r=−∞

b̃i,r,se
2πirϕie2πisϕj , (14)

where k, r, s 6= 0. In practice, it is reasonable to assume that the dynamics will be well described by a230

finite number of Fourier terms, denoted Ai,k(ϕi, ϕj). The corresponding parameters from ãi and b̃i then231

form the parameter vector c(i)k . The inference of these parameters utilises Bayes’ theorem,232

pX (M|X ) =
`(X|M)pprior(M)∫
`(X|M)pprior(M)dM

, (15)

where pX (M|X ) is the posterior probability distribution and `(X|M) is the likelihood function for the233

values of the model parametersM given the data X , and pprior(M) is a prior distribution. The negative234

log-likelihood function is235

S =
N

2
ln |E|+ h

2

N−1∑
n=0

(
c
(l)
k

∂Al,k(ϕ.,n)

∂ϕl
+ [ϕ̇i,n − c(i)k Ai,k(ϕ.

∗
,n)](E−1)i,j[ϕ̇j,n − c(j)k Aj,k(ϕ.

∗
,n)]

)
,

(16)

with implicit summation over repeated indices k, l, i, j. The log-likelihood is a function of the Fourier236

coefficients of the phases [20].237

Assuming a multivariate normal distribution as the prior for parameters c
(i)
k with means c̄ and238

covariances Σ = Ξ−1, the stationary point of S can be calculated recursively from239
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Ei,j =
h

N
[ϕ̇i,n − c(i)k Ai,k(ϕ.

∗
,n)][ϕ̇j,n − c(j)k Aj,k(ϕ.

∗
,n)], (17)

c
(i)
k = (Ξ−1)i,lkwr

(l)
w ,

r(l)w = (Ξprior)
(i,l)
kw c

(l)
w + hAi,k(ϕ.

∗
,n)(E−1)ijϕ̇j,n −

h

2

∂Al,k(ϕ.,n)

∂ϕl
,

Ξi,j
kw = Ξi,j

priorkw + hAi,k(ϕ.
∗
,n)(E−1)ijAj,w(ϕ.∗,n).

These are calculated within a moving time window, with the posterior of each window becoming240

the prior of the next. The inferred parameters of the basis functions can be used to determine241

whether synchronization results. The presence of synchronization provides evidence that the system242

is chronotaxic, however it remains unclear from which coupling function the stability arises without243

calculating the direction of coupling [31],244

D =
ε12 − ε21
ε12 + ε21

, (18)

where245

ε12 =
√
c22 + c24 + ..., (19)

ε21 =
√
c21 + c23 + ...,

are the Euclidean norms of the parameters. The odd parameters correspond to the coupling terms inferred246

for ϕ1 in the direction 2→ 1, and the even parameters correspond to the coupling terms inferred for ϕ2 in247

the direction 1→ 2. See [32] for further details and an in depth tutorial on dynamical Bayesian inference248

and its implementation.249

In summary, Bayesian inference is applied to ϕ∗x and ϕA∗x , following their extraction from the time250

series (see Section 3.3). The time-evolution of the coupling parameters for each phase is inferred and251

these are used to determine the synchronization state of the system, and the direction of coupling between252

the phases. In a chronotaxic system we require the driver and response systems to be almost or fully253

synchronized, and also that the direction of coupling is only from the driver ϕAx to ϕx.254

The basis of this method is the calculation of the synchronization and direction of coupling of the255

system in order to determine chronotaxicity. However, the more synchronized the driver is with the256

response system, the less information flow between the two. With less information from which to infer257

parameters, most directionality methods, including Bayesian inference, become less reliable, and whilst258

synchronization may still be accurately detected, the direction of coupling will become less accurate the259

closer the system gets to synchronization. With frequent external perturbations, intermittent transitions,260

and moderate dynamical noise, there is greater information flow, and thus the inference is more precise,261

but this cannot be assumed in chronotaxic systems. In real systems, the synchronization state is not262

known beforehand, thus a more robust method is required, which can identify chronotaxicity even in263

systems close to synchronization.264
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3.5. Phase fluctuation analysis265

Phase fluctuation analysis is effective even when ϕx and ϕp are almost synchronized. Given the266

estimates of ϕx and ϕAx , the next step is to analyse ∆ϕx = ϕ∗x−ϕA∗x to find the distribution of fluctuations267

in the system relative to the unperturbed trajectory.268

In order to quantify the distribution of fluctuations, detrended fluctuation analysis (DFA) can be269

performed on ∆ϕx [6,33]. Following from the observations of Section 3.2, this method tries to estimate270

the fractal self-similarity of fluctuations at different timescales in order to distinguish the random walk271

fluctuations of non-chronotaxic systems from the less-integrated fluctuations of chronotaxic systems.272

The scaling of these fluctuations is determined by the self-similarity parameter α, where fluctuations at273

timescales equal to t/a can be made similar to those at the larger timescale t by multiplying with the274

factor aα.275

In order to calculate α the time series ∆ϕx is integrated in time and divided into sections of length
n. For each section the local trend is removed by subtracting a fitted polynomial – usually a first order
linear fit [6,33]. The root mean square fluctuation for the scale equal to n is then given by

F (n) =

√√√√ 1

N

N∑
i=1

Yn(ti)2, (20)

where Y (t) is the integrated and detrended time series and N is its length. The fluctuation amplitude276

F (n) follow a scaling law if the time series is fractal. By plotting logF (n) against log n, the value of α277

is simply the gradient of the line. For completely uncorrelated white Gaussian noise (the noise assumed278

to perturb the system) the parameter for α has a value of 0.5, while integrated white Gaussian noise279

(expected in non-chronotaxic systems) returns a value of 1.5. Note that this assumes the noise does not280

cause phase slips in ϕx. This would cause perturbations over large timescales (i.e. greater than one281

cycle) to not decay even if the system was chronotaxic. In these cases another approach should be used282

instead [14].283

If there are large perturbations which cause the system to move far enough forward or behind the284

current cycle to be attracted instead by an adjacent cycle, known as a phase slip, this will result in285

an increased DFA exponent. This can result from large jumps in the extracted phase fluctuations. To286

distinguish between this case, a chronotaxic system with phase slips, and a non-chronotaxic system, we287

consider the fact that in the latter, perturbations may cause ∆ϕx to change by 2π, but these are part of288

a continuous probability distribution, in contrast to the chronotaxic case. Phase slips can be detected by289

calculating the distribution of the difference between the phase fluctuations ∆ϕx(t) and these fluctuations290

delayed by a timescale τ . d∆ϕτx(t) = ∆ϕx(t + τ) − ∆ϕx(t) therefore gives information about the291

perturbations of the system over that timescale. When phase slips are present, the distribution of |d∆ϕτx|292

changes with respect to τ [14]. An example of this difference is shown in Fig. 2 (g) & (h), and can also293

be seen in real biological systems, as previously demonstrated in the heart rate variability [14].294
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Figure 2. (a)–(c) 5 second time series of sin(ϕx) (red line) in 3 cases: chronotaxic,
non-chronotaxic, and chronotaxic with phase slips, from Eq. 21. The grey line shows ϕp

(chronotaxic), and ωxt (non-chronotaxic). (d)–(f) ∆ϕx for the whole time series, detrended
with a moving average of 200s. In all cases ωx,p = 2π, h = 0.001, L = 1000 seconds and σ =
0.3. ε = 5 and 0 in the chronotaxic and non-chronotaxic cases, respectively. DFA exponents,
α, are shown. The DFA exponent of (f) incorrectly suggests the system is non-chronotaxic.
To distinguish between a non-chronotaxic system and a chronotaxic system with phase slips,
the delayed distributions were calculated (see Section 3.5) in the non-chronotaxic (g) and
chronotaxic (h) case.

4. Application of inverse approach methods295

4.1. Numerical simulations296

The basis of the phase fluctuation analysis (PFA) method is the quantification of the fundamental297

difference between phase fluctuation distributions in oscillatory systems, depending on their298

chronotaxicity. Here, we illustrate this characteristic using the simplest realisation of a chronotaxic299

system, two unidirectionally coupled oscillators (see Fig. 1(b)):300

ϕ̇p = ωp

ϕ̇x = ωx − ε sin(ϕx − ϕp) + η(t), (21)

where ϕp and ϕx are the instantaneous phases of the driving and the driven oscillators, respectively,301

ωp > 0 and ωx > 0 are the natural frequencies of the oscillators, ε > 0 is the strength of the coupling and302

η is white Gaussian noise with standard deviation σ =
√

2E where 〈η(t)〉 = 0, 〈η(t)η(τ)〉 = δ(t− τ)E.303

Note that when ε = 0 the system is reduced to ϕ̇x = ωx + η(t) and becomes non-chronotaxic; when304

η = 0 and ε > |ωx − ωp| the system becomes chronotaxic with ϕAx (t) = ϕp(t) + arcsin((ωp − ωx)/ε).305

The system was integrated using the Heun scheme [15], with an integration step of 0.001 and noise306
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3. Identifying chronotaxicity in signals with more than one oscillatory mode. (a) First
250 seconds of a time series of a simulated signal containing two distinct oscillations, with
coupling strengths ε = 2 for mode A (chronotaxic) and ε = 0 for mode B (non-chronotaxic).
(b) The continuous wavelet transform of the signal in (a). (c) The instantaneous frequency
(light grey) of both components is extracted from the wavelet transform, with central
frequency f0 = 0.5, and smoothed (red), using a polynomial fit. The smoothed frequency
is then integrated in time to obtain an estimate of the unperturbed phase, ϕA∗x , which is then
subtracted from the perturbed phase ϕ∗x as extracted directly from the wavelet transform. (d)
& (e) show ∆ϕx = ϕ∗x − ϕA∗x for each mode. (f) & (g) show the results of DFA analysis
on ∆ϕx, with DFA exponents α correctly identifying mode A as chronotaxic and mode B as
not chronotaxic.

strength σ = 0.3. ∆ϕx, shown in Fig. 2, was obtained by subtracting the unperturbed phase (ϕAx (t)307

and ωxt in the chronotaxic and non-chronotaxic cases, respectively) from the perturbed phase ϕx, as308

obtained numerically. DFA analysis was then performed on ∆ϕx, with exponents shown in Fig. 2.309

The values of the exponents demonstrate the differences in the noise distributions between chronotaxic310

and non-chronotaxic systems. In the chronotaxic case, the noise is closer to white, whereas in the311

non-chronotaxic case it is closer to a random walk. It is this difference which is exploited in the PFA312

method.313

In many systems, particularly those originating from nature, there will be more than one oscillation314

present in a signal, with different chronotaxicity characteristics. To test the PFA method in the case of315

multiple modes a signal containing two distinct oscillations was simulated, with dynamics described by316

Eq. 21, with time varying angular frequencies,317

ω̇var(t) = Acos(2πfmt) + η(t)

ωx,p(t) = 2πfp,x + ωvar, (22)
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Figure 4. Identifying chronotaxicity using phase fluctuation analysis in a system of
bidirectionally coupled oscillators. The system presented in Eq. 23 was simulated in two
different states of chronotaxicity. (a) phase trajectories for the system when ε1 = 0.1, ε2 = 20,
ε3 = 0.1 and ε4 = 10. (b) phase trajectories of the system with ε1 = 0.5, ε2 = 0.1, ε3 = 0.1 and
ε4 = 15. (c) 5 seconds of the time series of both drivers and oscillators for parameters shown
in (a). (d) 5 seconds time series for parameters shown in (b). (e) & (g) phase fluctuations
from PFA on sin(ϕx1) and sin(ϕx2), respectively. (f) & (h) phase fluctuations extracted with
PFA on sin(ϕx1) and sin(ϕx2), respectively.

where fp and fx are the average frequencies of oscillation in Hz of the chronotaxic and non-chronotaxic318

case, respectively, and fm is the frequency of variation. Frequencies of oscillation were chosen to vary319

around 1 and 0.25 Hz in the non-chronotaxic and chronotaxic cases, respectively, with fm = 0.003. Both320

systems were perturbed with white Gaussian noise with strength σ = 0.5. The logarithmic frequency scale321

of the wavelet transform is very useful for identifying and separating the presence of oscillatory modes,322

which may otherwise appear as merged in other time-frequency representations, such as the windowed323

Fourier transform. Fig. 3 shows the results of PFA analysis on the signal. It correctly identifies mode A324

(around 0.25 Hz) as chronotaxic, and mode B (around 1 Hz) as non-chronotaxic.325

In single variable time series obtained from real dynamical systems, it is highly unlikely that the326

observed dynamics will result from a simple, unidirectional constant coupling as described above.327

Rather, the system may be influenced by continuous perturbations, couplings to other oscillators, and328

temporal fluctuations in chronotaxicity. Here, we demonstrate the applicability of the described inverse329

approach methods to these more complex cases. We model a system of two bidirectionally coupled330

oscillators331
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ϕ̇p1 = ωp1 (23)

ϕ̇p2 = ωp2

ϕ̇x1 = ωx1 + ε1 sin(ϕx1 − ϕx2)− ε4 sin(ϕx1 − ϕp1) + η(t)

ϕ̇x2 = ωx2 + ε2 sin(ϕx2 − ϕx1)− ε3 sin(ϕx2 − ϕp2) + η(t),

with drivers ϕp1 and ϕp2, and ωp1(t) = 2π− 0.5 sin(2π0.005(t)) and ωp2(t) = π− 0.5 cos(2π0.005(t)).332

First, we consider the case of strong influence of the driver ϕp1 on the system, resulting in chronotaxicity333

of both oscillators. Phase fluctuation analysis was applied to the system, and successfully identified both334

ϕx1 and ϕx2 as chronotaxic (see Fig. 4(a)).335

Second, we consider the case in which ϕx1 is chronotaxic but ϕx2 is not, and demonstrate that336

despite continuous influences from multiple drivers and other oscillators, single variable time series337

arising from the same system can be distinguished in terms of their chronotaxic dynamics. Again, PFA338

correctly distinguishes between the two oscillators. This could be of great importance when investigating339

composite parts of a larger dynamical system, and seeking to identify causal relationships between340

observed oscillations. For example, recent advances in cellular imaging are providing the means to341

observe the dynamics of individual cellular processes in different cellular compartments [34]. Applying342

inverse approach methods for the detection of chronotaxicity to these dynamics could provide valuable343

information on the current state of the cell.344

So far, we have only considered scenarios in which a system constantly remains as either chronotaxic345

or non-chronotaxic. Real dynamical systems may exhibit time variation in their coupling strengths,346

allowing the system to fluctuate between chronotaxic states. In these cases, it is possible to use dynamical347

Bayesian inference to track variations in chronotaxicity in time. To demonstrate this, ε3 was allowed to348

vary in time in Eq. 23, whilst ε1 = ε2 = 0.1 and ε4 = 0, resulting in intermittent chronotaxicity of the349

oscillator ϕx2. ϕA∗x2 and ϕ∗x2 were extracted from the synchrosqueezed wavelet transform of sin(ϕx2).350

Results of the application of dynamical Bayesian inference are shown in Fig. 5. This method is able351

to track the intermittent changes in chronotaxicity, through changes in synchronization and direction352

of coupling, demonstrating its usefulness for the detection of chronotaxicity in systems where the353

interactions between oscillators are time-varying.354

4.2. Practical considerations355

Both presented methods, phase fluctuation analysis and dynamical Bayesian inference, rely on precise356

phase extraction of the estimated attractor ϕA∗x and the perturbed dynamics ϕ∗x. Therefore, the parameters357

in the respective methods must be carefully selected depending on the characteristics of the given data.358

The continuous wavelet transform provides an optimal compromise between time and frequency359

resolution. In the majority of examples used in this paper, f0 = 1 has been used. However, the wavelet360

central frequency, f0, can be altered to suit specific needs. For example, in a case where there are361

many phase slips, it may be necessary to extract the estimate of the attractor, ϕA∗x , with a higher f0 to362

obtain a better frequency resolution and smoother dynamics, whilst the perturbed phase ϕ∗x is extracted363

using a lower f0, leading to an increased time resolution for the purpose of locating each phase slip. The364
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Figure 5. Identifying intermittent chronotaxicity using dynamical Bayesian inference.
Bayesian inference was performed on ϕ∗x2 and ϕA∗x2 extracted from sin(ϕx2) (Eqs. 23) with
ε3 varying as shown in (d). (a) the CWT of sin(ϕx2). (b) Instantaneous frequencies extracted
from the wavelet transform. ϕA∗x2 was extracted with f0 = 2 and smoothed using a polynomial
fit (red line), whilst ϕ∗x2 was extracted from the wavelet transform with f0 = 0.5 (grey line).
Bayesian inference was applied, using a time window of 90 seconds. The inferred direction
of coupling can be seen in (c). Positive values show coupling from the driver to the oscillator
only. (d) Isync was calculated and shows excellent agreement with changes in ε3. Ichrono was
also calculated, and was slightly less accurate due to the direction of coupling becoming
negative very briefly, due to reduced information flow between systems to accurately infer
parameters during synchronization.

parameter f0 may also be increased to provide greater distinction between oscillatory modes, but this will365

be at the expense of time resolution. It should be noted that modes must be separable in time-frequency366

representations in order for these inverse approach methods to be applicable.367

One fundamental assumption of chronotaxicity is that the system under consideration is oscillatory.368

Although the presented methods can be applied to any extracted phases, one should take great care to369

ensure that these phases correspond to a true oscillatory mode, otherwise all results will be meaningless.370

In the numerical simulations presented here, we predetermine the characteristics of the oscillations which371

are present, and ensure that they are not concealed by noise, allowing their successful extraction directly372

from the wavelet transform. These extracted phases can be verified using the specified parameters as a373

reference signal, and thus we can be confident with the final results. On the contrary, in real experimental374

data, the first question must be whether the signal contains any significant oscillations at all. To determine375

whether this is the case, the recently developed method of nonlinear mode decomposition (NMD) may be376

used. NMD is an adaptive, time-frequency representation based decomposition tool, which decomposes377

any given signal into a set of physically meaningful oscillations (if present) and residual noise. In the378

detection of chronotaxicity, the crucial advantage of NMD over other decomposition methods, such as379
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empirical mode decomposition (EMD) or bandpass filtering, is its use of surrogate data testing in order380

to distinguish between deterministic and random activity [35]. The success of surrogate testing for381

the identification of nonlinear oscillatory modes in neural data has also been demonstrated previously382

[36], and more generally in [37]. By verifying the presence of oscillations, and their underlying nature,383

e.g. whether they are nonlinear, these methods reliably inform the user which analysis approach to384

take. In this way, we can ensure that any oscillatory modes extracted from real experimental data385

are physically meaningful, and their characteristics, including their instantaneous phase, are accurately386

determined. Once a significant oscillatory mode has been located and extracted using NMD, its smoothed387

instantaneous frequency provides ϕA∗x for use in phase fluctuation analysis. ϕ∗x can then be extracted from388

the wavelet transform as before, with the parameter f0 chosen to give sufficient time resolution to follow389

the noise fluctuations which are removed by NMD. An example of the use of NMD in PFA is provided390

in Fig. 7, and explained further in Section 4.3.391

The reliability of the presented inverse approach methods increases with data availability, i.e. a longer392

time series will give a more reliable result. However, when recording data from biological systems, it is393

not often feasible to collect hundreds of cycles of oscillation. When recording data from live subjects, for394

example blood flow recordings, the time of recording must be a compromise between long time series395

and subject comfort. In the case of cellular recordings, such as cell membrane recordings via the patch396

clamp technique, the health of the cell can rapidly deteriorate, and thus affect the reliability of results.397

Therefore, it is useful to determine the lowest possible number of recorded oscillations for which we398

may still reliably test for chronotaxicity.399

In order to address this question, two unidirectionally coupled phase oscillators (Eq. 21) were400

simulated for 1000 cycles with frequencies 1 and 0.1 Hz, with h = 0.01 and σ = 0.07. With coupling ε =401

2, the system is chronotaxic. The important parameters to consider in DFA are nmin and nmax, the lower402

and upper values for the range of the first order polynomial fits performed in order to calculate ∆ϕx. The403

lower value, nmin, is set to be 2 cycles of the slowest oscillation, to ensure observation of the dynamics404

over a longer range than one cycle. The smallest nmax required to still obtain a reliable DFA exponent405

was observed to be nmax = 3 cycles of oscillation (see Fig. 6), provided that the time series is sufficiently406

long. The second test seeks to identify the required length of the whole time series when using these407

values of nmin and nmax in DFA. The DFA exponent was calculated from varying lengths of the same408

noise signals, from 3 to 10 times nmax, to identify the point where the result is no longer reliable. It was409

found that the time series should be at least 8 times nmax in order to obtain a reliable result, therefore410

at least 24 cycles of the slowest oscillation are required to test for chronotaxicity. However, if possible,411

the time series should be at least 10 times nmax [38], to reduce noise by providing more data windows.412

Overlapping within DFA is also possible, and will go some way toward reducing noise, and improve413

reliability. The results shown in Fig. 6 were obtained with an overlap of 0.8.414

Whilst we expect the value of the DFA exponent α to be around 0.5 in a chronotaxic system, and415

1.5 in a non-chronotaxic system, it is unlikely to be so definitive in reality. In fact, the value of α will416

depend on a number of factors. The type of noise in a real system is not necessarily white, however the417

point of phase fluctuation analysis is to identify changes in its distribution. α will also vary depending418

on how strong the chronotaxicity is in the system, i.e., how strongly driven the observed oscillator is.419

In our models, this can be represented by varying the coupling strength ε; weaker coupling will result420
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Figure 6. In order to test the reliability of the DFA exponent when reducing nmax, the
maximum number of cycles of oscillation used in its calculation was varied. (a) chronotaxic
oscillation of 1 Hz. (b) chronotaxic oscillation of 0.1 Hz. (c) non-chronotaxic oscillation of
1 Hz. (d) non-chronotaxic oscillation of 0.1 Hz. The same noise signals were then tested
with nmax = 3 for different lengths of the time series from 10 to 3 times nmax. Based on
these results, the time series should be at least 8 times nmax, thus, there should be at least
24 oscillations in the time series. However, to ensure universal applicability, the length of
the time series should be at least 10 times nmax, the generally accepted value in DFA [38],
resulting in the requirement of 30 cycles.

in a higher DFA exponent as the noise is partially integrated. The ratio of the natural frequency of the421

chronotaxic oscillator to the frequency of the external driver, or detuning, may also affect the value of α.422

4.3. Application to experimental data423

Chronotaxicity will manifest in nature as a result of a driving system which is strong enough such that424

the oscillatory response system maintains stability in its frequency and amplitude, even when subject425

to continuous external perturbations. Chronotaxicity was previously demonstrated in the heart rate426

variability (HRV) [14], when influenced by paced breathing. It has been shown that the main direction427

of coupling between the cardiac and respiratory oscillators is the influence of the respiration on the heart428

rate, known as respiratory sinus arrhythmia (RSA), and this was clearly demonstrated. Here, we provide429

an example of the application of phase fluctuation analysis to real experimental data, in the form of an430

electroencephalogram (EEG) recording from an anaesthetised human subject.431

Distinct oscillations have long been observed in the brain since the invention of EEG by Hans Berger432

in 1924. Briefly, from lowest to highest frequency, there are at least 5 frequency bands which have been433

identified in approximately the following frequency intervals: delta (0.8–4 Hz), theta (4–7.5 Hz), alpha434

(7.5–14 Hz), beta (14–22 Hz) and gamma (22–80 Hz). Different frequencies of oscillation have been435

attributed to distinct states of the brain. For example, the alpha and theta bands have been shown to reflect436

cognitive and memory performance [39]. One active area of research utilising the information provided437



Version June 11, 2015 submitted to Entropy 19 of 26

by these oscillations is in attempts to quantify the depth of anaesthesia based on their temporal evolution438

in different states of consciousness. Despite the worldwide use of general anaesthesia (GA) daily, the439

mechanisms leading to this state are still poorly understood in terms of how it truly affects the brain.440

Thus, brain-state monitoring is still not an accepted practice in GA, due to the lack of reliable markers441

[40]. However, recent studies in which the spectral power of the oscillations in different frequency bands442

has been tracked both temporally and spatially during anaesthesia with propofol have shown promising443

results. For example it was shown that during consciousness, alpha oscillations are concentrated in444

occipital channels, whilst during propofol induced anaesthesia, these oscillations are concentrated in445

frontal channels [40]. An increase in power in the frequency interval 0.1–1 Hz (delta) was also observed446

in this study during anaesthesia. Understanding the mechanisms underlying these changes in brain447

function could not only lead to new approaches to anaesthesia monitoring but may be widely applicable448

in many areas of neuroscience, including in the study of various neurological disorders.449

It has been clearly demonstrated that phase interactions are highly important for healthy brain450

functioning, with by far the most widely reported observations revolving around phase synchronization,451

which can, as an example, be used to infer information about short and long range behaviours [41].452

Brain waves arise from networks of synchronized neurons, and the detected phase of these oscillations453

determines the degree of excitability of the neurons, and influences precise discharge times of the cells454

in the network, therefore affecting relative timing of action potential in different brain regions [42].455

Before any conclusions may be drawn about the phase dynamics of a system, the phase must be456

accurately extracted from the time series. The problem of the extraction of phase from EEG data has457

been approached from many directions, some more physically meaningful than others. Early approaches458

to the investigation of phase interactions between brain waves used spectral coherence, but this does459

not separate phase and amplitude components, thus amplitude effects may influence coherence values460

when only phase locking information is required [43]. A widely used phase extraction approach is the461

use of the Hilbert transform to obtain the analytic signal [44], usually preceded by band-pass filtering462

in the frequency interval of interest, highlighting the necessity of the separation of the oscillation of463

interest from background brain activity, either other oscillations or noise. Lachaux et al. recognised464

the necessity of the separation of amplitude and phase when seeking to detect synchrony between465

brain waves, introducing phase-locking statistics (PLS) [43] to measure the phase covariance between466

two signals, verified by surrogate testing. This method also allows for non-stationarity in the signal.467

However, based on very narrow band-pass filtering, this method does not allow for time-variability in468

the frequency of oscillation, but did highlight the usefulness of complex wavelets in the extraction of469

phase dynamics. The Hilbert transform and wavelet convolution methods were compared in the analysis470

of neural synchrony, and found not to differ substantially [45], but both these methods relied on narrow471

band-pass filtering beforehand. However, the use of band-pass filtering to extract an oscillatory EEG472

component with a time-varying frequency has limited usefulness. An instantaneous frequency defined473

from the analytic signal obtained from band-passing in a particular frequency range in a real signal474

containing multiple spectral components and noise may be ambiguous and meaningless [41]. To address475

this problem, ridge extraction methods [29] applied to the complex wavelet transform were used to476

track the instantaneous frequency of a single oscillatory mode [41], providing a much higher precision477

of phase extraction, and importantly allowing the phase dynamics of nonautonomous systems to be478
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Figure 7. Example of the application of phase fluctuation analysis to an EEG signal obtained
from the forehead of an anaesthetised patient, shown in (a). (b) The continuous wavelet
transform of the EEG signal in (a). (c) Using nonlinear mode decomposition (NMD)(see
text), a significant oscillatory mode in the alpha frequency band was identified and extracted
(dark grey line). (d) The instantaneous frequency extracted using NMD (grey line), and
smoothed using a moving average of 4 seconds (red line). (e) The extracted phases of the
mode from NMD (grey), smoothed NMD (red), and from the CWT (black) with f0 = 1.5.
(f) ∆ϕx was calculated as ϕ∗x − ϕA∗x . The DFA exponent was calculated and was 1.57,
suggesting that the system is not chronotaxic. Checking for phase slips in (g) shows no
change in distribution.

accurately traced in time. Another, rarely considered, issue when tracing instantaneous frequencies in479

time is the presence of high harmonics in the signal. Narrow restriction of the frequency range will480

remove these harmonics, and thus remove valuable intra-cycle phase information. This issue has been481

addressed directly by the introduction of nonlinear mode decomposition [35]. The inverse approach482

methods applied here take into account all these issues in order to accurately extract the instantaneous483

phase of brain oscillations.484

In order to demonstrate the method and search for evidence of chronotaxicity in the phase dynamics485

of brain waves we applied phase fluctuation analysis to a real EEG signal. The EEG of an anaesthetised486

subject was recorded for 20 minutes at 1200 Hz (Fig.7(a)). The signal was resampled to 100 Hz by487

splitting the time series into windows, and setting their mid-point to their mean. As expected, strong488

oscillations were observed in the alpha and delta frequency bands. Nonlinear mode decomposition (see489

Section 4.2) extracted the oscillatory mode around 10 Hz in the alpha frequency band and identified it490

as physically meaningful through surrogate testing (Fig.7(c)). The instantaneous frequency of this mode491

was then smoothed using a moving average of 4 seconds. This value was chosen to provide the best492
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match between the instantaneous phase of the extracted nonlinear mode ϕx and its smoothed version493

ϕA∗x . As NMD by nature removes the noise from the modes which it extracts, ϕ∗x must then be extracted494

from the continuous wavelet transform with a time resolution which will allow the noise fluctuations to be495

included in the extracted mode. Here, it is very important to check that the extracted phase corresponds496

to that extracted using NMD (see Fig. 7(e)). Once the viability of the extracted fluctuations is confirmed,497

∆ϕx can be calculated as ϕ∗x−ϕA∗x . The DFA exponent of ∆ϕx was then calculated, and was 1.57. The498

distribution |d∆ϕτx| was calculated to check for phase slips in the extracted phase fluctuations, but the499

distribution did not change over any timescale, τ .500

The analysis suggests that the alpha oscillation as extracted is not chronotaxic. However, the current501

inverse approach methods are based on a single point attractor and single response system. As discussed502

by Sheppard et al. [46], the spectral peaks observed in the EEG, including those observed in the alpha503

band, result from frequency synchronization between thousands of neurons. In this sense, the observed504

phase is in fact only a statistical measure, highlighting the preferred phase of the underlying ensemble505

of neurons. A method to quantify this was provided by the mean-field variability index, κ, which506

changes depending on the interactions in the observed network of oscillators [46]. For a non-interacting507

network, with purely random phasors, κ will converge to 0.215, whereas in a state of complete phase508

synchronization, κ will tend to zero. Based on the current assumptions of the inverse approach methods,509

if the detection of chronotaxicity relied only on phase dynamics, we would expect the value of κ to510

tend to zero in a chronotaxic system. However, when applied to real EEG data, κ was actually greater511

than 0.215 in most cases, suggesting amplitude synchrony (possibly intermittent), intermittent phase512

coherence, or both. Therefore, it is apparent that in the case of brain dynamics, to truly characterise513

chronotaxicity, it must be reconsidered within a network of many oscillators, as known to be present in514

the brain. Here, the driving system may be a subnetwork of synchronized oscillators or the mean-field515

or mean-phase of ensembles of neurons, influencing other areas of the brain in complex ways, with both516

temporal and spatial dynamics to take into account.517

The presented methods are restricted by the fact that they are currently only applicable to determining518

chronotaxicity in phase dynamics. Traditionally, in brain dynamics, it is the amplitude of the oscillations519

observed in the distinct frequency bands which receives the most attention, although phase dynamics520

is now gaining considerable recognition [47]. In addition to the dynamics within individual frequency521

bands, there are also interactions between frequency bands [48], known as cross frequency coupling522

(CFC). The importance of phase information in oscillatory brain activity has been clearly demonstrated,523

for example phase synchronization between frequencies has been shown to be correlated with certain524

cognitive processes [49]. Phase measures also provide the advantage of high temporal precision [49].525

However, the nature of CFCs have not only been observed as phase-phase interactions [50], but also as526

amplitude-phase [51] and amplitude-amplitude interactions [52]. Whilst some efforts have been made527

to isolate phase information in neural oscillations [53], the importance of amplitude-phase interactions528

cannot be ignored, for example the observed modulation of gamma amplitude by the phase of theta529

oscillations has been identified as a code utilised in multi-item formation in the brain [54]. Other530

functional roles of amplitude-phase coupling have also been highlighted [55], thus it is clear that both531

amplitude and phase must be considered simultaneously to accurately characterise brain dynamics.532
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Indeed, phase-amplitude coupling has been demonstrated during anaesthesia [56], meaning that the533

current inverse approach methods may be insufficient to determine chronotaxicity in this system.534

5. Discussion535

The recent formulation of chronotaxic systems provides a completely novel approach to the536

characterisation of time-varying dynamics in real data. Crucially, they provide a framework in which537

systems may be time-varying, both in terms of their amplitude and phase dynamics, continuously538

perturbed, and yet still exhibit determinism. Whilst the apparent complexity of some real time-varying539

oscillatory systems previously led to their consideration as stochastic or chaotic, chronotaxicity540

facilitates a much more natural approach to the description of their dynamics. The introduction of this541

approach required the development of new inverse approach methods for the detection of chronotaxicity542

in time series arising from dynamical systems. Here, we reviewed the currently available methods for the543

identification of chronotaxicity from a single time series, and also expanded on various issues regarding544

their implementation, in order to facilitate the application of the methods to any data set containing at545

least one oscillatory component. This ability to characterise oscillations in terms of their chronotaxicity,546

i.e. to determine whether the observed dynamics arise as a result of influence from an external driver,547

provides the potential to unlock new information about dynamical systems and their interactions with548

their environment.549

As they currently stand, the inverse approach methods for the detection of chronotaxicity are only550

applicable in systems in which the amplitude and phase dynamics are separable, as they are applied551

directly to the extracted phases of the system, and all amplitude information is discarded. This552

assumption is valid if considering that the amplitude dynamics of a chronotaxic system corresponds553

to the convergence of the system to the limit cycle, influenced only by a negative Lyapunov exponent554

and external perturbations, whilst the phase dynamics corresponds to convergence to the time-dependent555

point attractor, which is also characterized by a negative Lyapunov exponent and external perturbations,556

but also the motion of the point attractor itself [14]. As it is this point attractor in phase dynamics557

which we are interested in, separation of amplitude and phase follows naturally. Using this approach,558

an example of chronotaxic dynamics was succesfully demonstrated in a real system, in the case559

of heart rate variability [14]. However, in generalized chronotaxic systems [12], the amplitude560

and phase are not required to be separable, providing even greater applicability to real systems,561

allowing amplitude-amplitude and amplitude-phase interactions, in addition to the phase-phase dynamics562

considered in [10,11]. Therefore, the incorporation of the ability to identify these new possibilities for563

chronotaxicity is crucial in the further development of these inverse approach methods. This will then564

provide the means to detect chronotaxicity in systems where amplitude and phase are not separable,565

as previously discussed in the case of brain dynamics (see Section 4.3). The current definition of566

chronotaxicity is based on a time-varying point attractor, exerting influence over a system such that it can567

remain stable despite continuous external perturbations. Numerical results presented here assume that568

this point attractor results from a single oscillatory drive system, acting on a maximum of two coupled569

oscillators. However, as highlighted in the brain dynamics example, in reality we must consider that this570



Version June 11, 2015 submitted to Entropy 23 of 26

point attractor could result from multiple interacting influences, for example a network of oscillators,571

perhaps acting as one synchronized drive system.572

Regardless of the mechanisms of the underlying oscillations, if they manifest as a point attractor,573

characterisation of their chronotaxicity necessitates the application of methods which can extract both574

their phase and amplitude dynamics with utmost accuracy. Methods reliant on averaging will not provide575

the required precision. Both amplitude and phase information can be extracted from the continuous576

wavelet transform, a fact which may be utilised in the further development of inverse approach methods577

for the detection of chronotaxicity. Extending these methods to simultaneously take into account both578

phase and amplitude dynamics, whilst incorporating the effects of their couplings, may lead to a method579

based on an optimal combination of time-frequency representations and effective connectivity methods580

such as dynamical Bayesian inference. This will then provide even wider applicability to real oscillatory581

systems such as those observed in brain dynamics.582
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