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The clockwork mechanism can explain interactions which are dimensionally very weak without the need
for very large mass scales. We present a model in which the clockwork mechanism generates the very small
Higgs portal coupling and dark matter particle mass necessary to explain cold dark matter via the freeze-in
mechanism. We introduce a TeV-scale scalar clockwork sector which couples to the Standard Model via the
Higgs portal. The dark matter particle is the lightest scalar of the clockwork sector. We show that the freeze-
in mechanism is dominated by decay of the heavy clockwork scalars to light dark matter scalars and Higgs
bosons. In the model considered, we find that freeze-in dark matter is consistent with the clockwork
mechanism for global charge q in the range 2≲ q≲ 4 when the number of massive scalars is in the range
10 ≤ N ≤ 20. The dark matter scalar mass and portal coupling are independent of q and N. For a typical
TeV-scale clockwork sector, the dark matter scalar mass is predicted to be of the order of a MeV.
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I. INTRODUCTION

The clockwork mechanism [1–3] is a way to explain the
existence of interactions which are much weaker than those
dimensionally expected in a theorywith a characteristicmass
scale. Such interactions are usually created by integrating out
particles which have masses much larger than the mass scale
of the low-energy effective theory. Various aspects of particle
theory and cosmology are conventionally explained via
interactions characterized by a large mass scale, such as
neutrino masses, the axion solution to the strong CP
problem, and suppressed baryon number violation. In clock-
work models, the generation of very weak interactions
without the need for very large mass particles may allow
particle physics and cosmology to be explained entirely in
terms of a TeV-scale theory. It may also allow the naturalness
of the weak scale to be understood by eliminating large
quantum corrections due to heavy particles [4]. There have
been efforts to generalize the clockwork mechanism, for
example to go beyond nearest-neighbor interactions in [5]
and to formulate a gauged Uð1Þ clockwork in [6]. The
clockwork mechanism has also been used in a number of
specific applications, including neutrino masses through the
seesaw mechanism [7,8], muon g − 2 [9], axions [10], dark

matter [7], compositeHiggs [11], theweakgravity conjecture
[12], and inflation [13]. A critical discussion of the clock-
work mechanism is given in [14]; see also [15].
In the case of a scalar clockwork model [2,3], very weak

interactions can be achieved by introducing a sector
consisting of a chain of N þ 1 fundamental fields πj which
transform as the Goldstone bosons of a spontaneously
broken global Uð1ÞNþ1 symmetry. This symmetry is also
broken explicitly to a residual spontaneously broken Uð1Þ
symmetry, which leaves a single massless eigenstate, a0.
The a0 field has a very small mixing angle in the expansion
of the field at the end of the chain, πN , in terms of mass
eigenstates. A fundamental assumption of the clockwork
model is that only the πN field couples to the Standard
Model (SM) sector. In this case, the a0 field will have
highly suppressed couplings to the SM fields and will
also obtain a mass much smaller than the mass scale of the
clockwork sector. It is also possible to obtain the clockwork
sector from discrete extra dimensions [2,3].1 The clock-
work sector can therefore be viewed as the implementation
of a phenomenological mechanism which explains the
existence of very small couplings via the sector’s structure,
where by structure we mean the mass terms and couplings
of the scalars, which have either a naturally large value or
are equal to zero.
A specific example of a model which requires a very

small mass and coupling is the freeze-in model of cold dark
matter [16,17]. In this model, a feebly interacting massive

*kimjinsu@kias.re.kr
†j.mcdonald@lancaster.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The assumption that only πN couples to the SM sector is
conceptually similar to the assumption that SM fields exist at a
particular point in extra dimensions in brane models.
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particle (FIMP) is produced by the decay of particles which
are in thermal equilibrium.2 For example, dark matter can
be produced by the decay of thermal bath Higgs bosons
interacting with dark matter scalars via the Higgs portal
[16].3 The freeze-in mechanism requires that the dark
matter particles are out of equilibrium, which in turn
requires that the Higgs portal coupling is very small.
The mass of the dark matter particle is also typically much
smaller than a GeV. The clockwork mechanism is particu-
larly well motivated as an explanation for very small
couplings to H†H, as these cannot be explained by a
conventional symmetry. In this paper we will present a
scalar clockwork version of the Higgs portal freeze-in
model which can account for the small portal coupling and
dark matter particle mass.
The paper is organized as follows. In Sec. II we introduce

the scalar clockwork Higgs portal model, in Sec. III we
calculate the dark matter density from freeze-in, in Sec. IV
we present our results, and in Sec. V we discuss our
conclusions.

II. A SCALAR CLOCKWORK HIGGS
PORTAL MODEL

A. The scalar clockwork sector

The scalar clockwork sector is a sector of real scalar
fields with a particular pattern of mass mixing. It can be
derived as the effective theory of a spontaneously and
explicitly broken global symmetry or as the low-energy
limit of a theory of discrete extra dimensions [2,3]. We will
follow the approach based on a broken global symmetry.
The scalar clockwork sector can be constructed by

considering a set of N þ 1 scalars, πj (j ¼ 0;…; N), which
are the Goldstone bosons of a G ¼ Uð1ÞNþ1 ¼ Uð1Þ0 ×
Uð1Þ1 × � � � ×Uð1ÞN global symmetry acting on complex
fieldsϕj. The symmetry is spontaneously broken at a scale f,
such that ϕj ¼ fUj whereUj ¼ expðiπj=fÞ. The symmetry
is also explicitly broken. In the clockwork model of [2], the
explicit symmetry-breaking term is a dimensionless product
of ϕj fields parametrized by a coupling ϵ, while in [3] the
symmetry breaking is considered to be due to spurion mass
squared parameters. We will use the latter method in our
construction. In this case there is a natural symmetry of the
interaction terms, πj ↔ −πj, which keeps the lightest clock-
work scalar stable. The charges of the spurion mass squared
terms m2

j (j ¼ 0;…; N − 1) under the Uð1Þi factors of G
are [3]

Qi½m2
j � ¼ δi;j − qδi;jþ1: ð1Þ

The resulting Lagrangian of the πj is then

L ¼ f2

2

XN
j¼0

∂μU
†
j∂μUj þ

m2f2

2

XN−1

j¼0

ðU†
jU

q
jþ1 þ H:c:Þ: ð2Þ

For simplicity, the values of m2
j are assumed to all equal a

common symmetry-breaking spurion mass squared term,
m2

j ¼ m2. On expanding in πj=f, Eq. (2) becomes

L ¼ 1

2
∂μπj∂μπj − VðπÞ; ð3Þ

where

VðπÞ ¼ m2

2

XN−1

j¼0

ðπj − qπjþ1Þ2

−
m2

24f2
XN−1

j¼0

ðπj − qπjþ1Þ4 þOðπ6Þ: ð4Þ

This potential explicitly breaks G to a single residual
spontaneously broken global Uð1Þ. On diagonalizing the
resulting mass matrix, the mass eigenstate scalars aj are
related to the πj via [3]

πj ¼ Ojiai; ð5Þ

where

Oj0 ¼
Ñ0

qj
;

Ojk ¼ Ñk

�
q sin

�
jkπ

N þ 1

�
− sin

�ðjþ 1Þkπ
N þ 1

��
: ð6Þ

Here i; j ¼ 0;…; N and k ¼ 1;…; N. Ñ0 and Ñk are
given by

Ñ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 1

q2 − q−2N

s
; Ñk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðN þ 1Þλk

s
; ð7Þ

where

λk ¼ q2 þ 1 − 2q cos

�
kπ

N þ 1

�
: ð8Þ

The masses of the mass eigenstate scalars are

m2
a0 ¼ 0; m2

ak ¼ λkm2: ð9Þ

In particular, for large N values we have ma1 ¼ ðq − 1Þm
and maN ¼ ðqþ 1Þm.

2A review of the freeze-in mechanism and FIMP models is
given in [18].

3For a recent Higgs portal vector dark matter model via freeze-
in mechanism, see [19].
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The important feature is the massless scalar a0, which is
the Goldstone boson associated with the residual sponta-
neously broken Uð1Þ. Since a0 is a Goldstone boson,
it does not appear in the potential (4) due to the shift
symmetry of a0. The clockwork mechanism is based on the
fundamental assumption that only the πN field interacts
with SM fields. In this case the a0 scalar will have highly
suppressed couplings to the SM sector due to the q−N factor
in ON0 if q > 1 and N is sufficiently large compared to 1.
In the clockwork Higgs portal model, the coupling of πN

to the SM is assumed to be via the Higgs portal. For
example, this can be achieved4 by introducing a further
spurion mass term m2

Nð1þ jHj2=Λ2Þ, which transforms as
QN ½m2

Nð1þ jHj2=Λ2Þ� ¼ qN , Qj½m2
Nð1þ jHj2=Λ2Þ� ¼ 0,

j ¼ 0;…; N − 1. We then introduce an additional term
given by

L ⊃
m2

Nf
2

2

�
1þ jHj2

Λ2

�
ðUqN†

N þ H:c:Þ; ð10Þ

where H is the SM Higgs doublet. (For simplicity we will
set qN ¼ 1.) In addition to coupling πN to the SM Higgs
boson, this term also explicitly breaks the residual Uð1Þ
symmetry, which allows a0 to couple to the other clock-
work scalars in the potential. Since the only mass scale in
the theory prior to explicit symmetry breaking is f, we will
consider Λ ≈ f in the following, although in general Λ
could be different from f.
Expanding UN in terms of πN then gives

L ⊃
m2

Nf
2

2

�
1þ jHj2

Λ2

��
2−

π2N
f2

þ 1

12

π4N
f4

þ � � �
�

¼ m2
Nf

2 þm2
Nf

2

Λ2
jHj2 −m2

N

2
π2N −

m2
N

2Λ2
jHj2π2N þ m2

N

24f2
π4N

þ m2
N

24f2Λ2
jHj2π4N þ � � � : ð11Þ

We will work in the unitary gauge and write jHj2 ¼
ðhþ vÞ2=2, with v ¼ 246 GeV being the vacuum expect-
ation value of the SM Higgs. Then from Eq. (11) we obtain

L ⊃ −
m2

N

2

�
1þ v2

2Λ2

�
π2N −

m2
Nv

2Λ2
hπ2N −

m2
N

4Λ2
h2π2N

þ m2
N

24f2

�
1þ v2

2Λ2

�
π4N þ � � � ; ð12Þ

where the center dots contain terms coming from higher-
order interactions such as jHj2π4N .
The symmetry-breaking approach results in a scalar

clockwork sector which includes higher-order nonrenor-
malizable interactions in the potential. There will also be
derivative interactions between the πj fields, of the form
ð∂μπj∂μπjÞ2=f4, from integrating out the radial fields ηj of
the complex scalars ϕj ≡ ðηj þ fÞeiπj=f= ffiffiffi

2
p

. However, in
order to explain small masses and couplings, the clockwork
mechanism requires only the lowest-order terms of the
effective theory. Therefore, we can also consider a minimal
clockwork model based on a renormalizable sector which
has only canonical kinetic terms and a renormalizable
potential. In the renormalizable limit, the model becomes

L ¼ 1

2
∂μπj∂μπj − Vren; ð13Þ

where

Vren ¼ m2

2

XN−1

j¼0

ðπj − qπjþ1Þ2 þ g1
XN−1

j¼0

ðπj − qπjþ1Þ4

þm2
πN

2
π2N þ g2hπ2N þ g3h2π2N þ g4π4N: ð14Þ

In the case of the symmetry-breaking model, the renorma-
lizable mass and coupling terms are given by

g1 ¼ −
m2

24f2
; g2 ¼

m2
Nv

2Λ2
; g3 ¼

m2
N

4Λ2
;

g4 ¼ −
m2

N

24f2

�
1þ v2

2Λ2

�
; m2

πN ¼ m2
N

�
1þ v2

2Λ2

�
:

ð15Þ

In general, a renormalizable sector could arise from a
fundamental theory in the same way as the renormalizable
SM itself, with an UV completion at a common scale (such
as the Planck scale). In this case the Uð1Þ symmetries are
replaced by the corresponding shift symmetries of the πj
fields. The first two terms in Eq. (14) explicitly break the N
shift symmetries to a single residual shift symmetry. The
remaining terms introduce interactions between πN and the
SM Higgs and break the residual shift symmetry. In the
following wewill consider both the full symmetry-breaking
model clockwork sector and the renormalizable limit of the
clockwork sector.

B. Mass eigenstates and Higgs portal interactions

The π2N [≡ðPN
j¼0ONjajÞ2] term in Eq. (13) will cause a

mass mixing between a0 and ak (k ¼ 1;…; N) which is
proportional to ON0ONk. (In the following we will assume
that v2=2Λ2 ≪ 1 and so set the π2N term to −m2

Nπ
2
N=2 for

simplicity.) In general, it is difficult to diagonalize the mass

4Here we are choosing to construct the Higgs portal interaction
by using an jHj2 dependent spurion mass term and the UN factor.
Alternatively, we could simply construct the interaction directly
by coupling π2N to jHj2, similar to the construction of the axion
portal interaction given by Eq. (2.21) of [3].
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matrix to obtain the mass eigenvalues and eigenvectors. To
obtain a useful expressionwhichwill allowus to calculate the
freeze-in dark matter density, we adopt the following
approach. Once them2

N term is introduced, the mass mixing
termbetweena0 andak is given by 2m2

NON0a0
P

N
k¼1ONkak.

Therefore, only the linear combination proportional toP
N
k¼1 ONkak will couple to a0. Prior to introducing m2

N
term, we will assume that the mass terms are close to
degenerate for k ¼ 1;…; N, i.e., m2

a1 ≈m2
a2 ≈ � � � ≈m2

aN .
(Wewill refer to this as the degenerate mass approximation.)
In this case we will set all the diagonal terms to m2

a1 . In
practice the masses mak will be spread over a relatively
small rangeΔm, wheremaN ≈ma1 þ Δm andΔm ¼ 2ma1=
ðq − 1Þ≲ma1 . Therefore, we expect the degenerate mass
approximation to provide a good estimate of the contribution
of the heavy mass eigenstate scalars to the freeze-in dark
matter density.
In the degenerate mass approximation, the mass matrix

for the ak scalars prior to introducing the π2N mass term is
simply m2

a1 times the identity matrix. Therefore, we can
make an arbitrary orthogonal transformation of the ak fields
to a new mass eigenstate basis a�k. Thus we can choose a
new basis such that a�1 ¼ K

P
N
k¼1ONkak, where K is a

normalization factor which satisfies K2
P

N
k¼1O

2
Nk ¼ 1.

Since O2
N0 þ

P
N
k¼1O

2
Nk ¼ 1, the normalization factor K

is given by K2 ¼ 1=ð1 −O2
N0Þ. Since O2

N0 ≪ 1 [see
Eq. (6)], it follows that K ≈ 1. In this basis the πN field
is given by πN ¼ ON0a0 þ

P
N
k¼1 ONkak ≈ON0a0 þ a�1.

Thus the Higgs portal interaction of the heavy clockwork
scalars in the degenerate mass approximation reduces to a
system of two scalars, a0 and a�1, with a�2 to a�N decoupled
from the Higgs portal. Once the π2N mass term is intro-
duced, the mass terms of the (a0, a�1) system become

−
1

2
m̄2

a0a
2
0 − m̄2

a0a�1
a0a�1 −

1

2
m̄2

a�
1
a�21 ; ð16Þ

where we have defined m̄2
a0 ¼ m2

NO
2
N0, m̄

2
a0a�1

¼ m2
NON0

and m̄2
a�
1
¼ m2

N þm2
a1 . Diagonalizing the mass matrix

results in mass eigenstates â0 and â1, which are related
to a0 and a�1 by

a0 ¼ â0 cos αþ â1 sin α; a�1 ¼ −â0 sin αþ â1 cos α;

ð17Þ

where the mixing angle α is given by

tanð2αÞ ¼
2m̄2

a0a�1

m̄2
a�
1
− m̄2

a0

: ð18Þ

Since ON0 ≪ 1, we can assume that m̄2
a0 ≪ m̄2

a0a�1
≪ m̄2

a�
1
.

In this limit α is given by

α ≈
m̄2

a0a�1

m̄2
a�
1

¼ ON0m2
N

m2
N þm2

a1

; ð19Þ

where α ≪ 1 sinceON0 ≪ 1. The mass eigenstates are then

â0 ≈ a0 − αa�1; â1 ≈ a�1 þ αa0: ð20Þ

The corresponding mass eigenvalues are, using α ≪ 1,

mâ0 ≈ γ1=20 ON0mN; mâ1 ≈ m̄a�
1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þm2
a1

q
; ð21Þ

where γ0 ¼ m2
a1=ðm2

N þm2
a1Þ. In terms of the mass eigen-

states, the πN expansion is

πN ≈ON0a0 þ a�1 ≈ γ0ON0â0 þ â1: ð22Þ

The leading order interaction terms between â0, â1, and the
Higgs boson h are then given by

V int ¼ m2
N

2Λ2

�
vhþ h2

2

�
π2N ≡ λ1hâ20 þ λ2h2â20 þ λ3hâ0â1

þ λ4h2â0â1 þ λ5hâ21 þ λ6h2â21; ð23Þ

where

λ1 ¼
m2

N

2Λ2
vγ20O

2
N0; λ2 ¼

m2
N

4Λ2
γ20O

2
N0;

λ3 ¼
m2

N

Λ2
vγ0ON0; λ4 ¼

m2
N

2Λ2
γ0ON0;

λ5 ¼
m2

N

2Λ2
v; λ6 ¼

m2
N

4Λ2
: ð24Þ

Note that the â1 scalars will be kept in thermal equilibrium
via the interactions λ5 and λ6, which have no large suppres-
sion factor. Similarly, the other heavy scalars a�2;…; a�N
will be kept in thermal equilibrium due to their interaction
with â1 via the quartic terms in Eq. (4).
We note that since the shift symmetry of the Goldstone

boson field a0 is broken only by the portal interaction (10),
the couplings of â0ð≈a0Þ will always have a factor of ON0

for each â0. Therefore, quantum corrections to the portal
couplings in Eq. (23), which are logarithmic with cutoff f,
will be proportional to the same ON0 factors as the tree-
level couplings and so will be small compared to the tree-
level portal couplings. The portal couplings of the heavy
clockwork scalars a1, …; aN are not strongly suppressed,
since the mixing angles ONj in πN are not very small for
j ¼ 1;…; N. The logarithmic quantum corrections to these
couplings are necessarily proportional to the tree-level
portal couplings, since in their absence the clockwork sector
would be completely decoupled from the SM sector.
Therefore, quantumcorrections to theHiggs portal couplings
of a1, …; aN will also be small compared to the tree-level

JINSU KIM and JOHN MCDONALD PHYS. REV. D 98, 023533 (2018)

023533-4



portal couplings.5 Thus the freeze-in mechanism is generally
stable with respect to quantum corrections.
We next apply the interaction (23) to calculate the relic

density of â0 dark matter and to determine the conditions
on the clockwork model necessary to account for the
observed density of dark matter.

III. FREEZE-IN DENSITY OF â0 DARK MATTER

The freeze-in mechanism for the production of out-of-
equilibrium dark matter [16,17] is based on the accumu-
lation of dark matter particles produced by the decay of a
particle which is in thermal equilibrium. This was first
considered for the case of Higgs boson decay to dark matter
scalars in [16] and later generalized in [17]. For the case of
a scalar particle B1 decaying to a pair of scalars B2 and X,
where X is the FIMP dark matter particle, the yield of X
particles from freeze-in is [17]

YX ¼ 405
ffiffiffiffiffi
10

p

8π4
gB1

ΓB1
MP

m2
B1
g�S

ffiffiffiffiffi
g�

p ; ð25Þ

where MP is the reduced Planck mass, mB1
is the B1 scalar

particle mass, ΓB1
is the partial decay width of B1 → B2X.

gB1
, g�S, and g� are respectively internal degrees of freedom

(d.o.f.) of B1, the effective d.o.f. in the thermal bath for the
entropy, and the effective d.o.f. for the energy density. We
will consider g� ¼ g�S in the following. Most of the X
production occurs at T ∼mB1

, so we consider g� to be equal
to its value at T ≈mB1

. In practice g� ¼ 106.75, corre-
sponding to the fields of the SM. We will also consider the
decaying particle to be a real scalar, so that gB1

¼ 1. Then
the present X dark matter density is

ΩX;0h2 ≈ 1.1 × 1027
1

g3=2�

mXΓB1

m2
B1

: ð26Þ

In the analysis in this paper we will consider mâ1 > mh.
In this case freeze-in via the Higgs portal interaction is due
to the process â1 → hâ0. The â1 decay rate is given by

Γâ1 ¼
λ23

16πmâ1

: ð27Þ

Therefore, from Eq. (26) and with X ≡ â0 and B1 ≡ â1, we
find

Ωâ0h
2 ≈ 1.1 × 1027

1

g3=2�

mâ0λ
2
3

16πm3
â1

: ð28Þ

Thus the condition for â0 from freeze-in to be able to
account for the observed dark matter density is

λ3 ≈ 2.1 × 10−13ðΩâ0h
2Þ1=2g3=4�

m3=2
â1

m1=2
â0

: ð29Þ

Replacing λ3, mâ1 ½¼ mNð1 − γ0Þ−1=2�, and mâ0 by their
expressions in terms of model parameters and mixing
angles [Eqs. (24) and (21)], this condition becomes

mNv
Λ2

γ5=40 ð1 − γ0Þ3=4O3=2
N0

≈ 2.4 × 10−12
�
Ωâ0h

2

0.12

�
1=2� g�

106.75

�
3=4

: ð30Þ

Using the definition of γ0 ≡m2
a1=ðm2

N þm2
a1Þ, we find

γ5=40 ð1 − γ0Þ3=4 ¼
m5=2

a1 m3=2
N

ðm2
N þm2

a1Þ2
: ð31Þ

We also assume that q is large compared to 1 and N is
significantly larger than 1, which will be true for realistic
clockwork sectors. In this case Ñ0 ≈ 1 [see Eq. (7)]. From
Eqs. (30), (31), and (6), we then obtain

q−3N=2 ≈ 9.8 × 10−15
�
Ωâ0h

2

0.12

�
1=2� g�

106.75

�
3=4

×
�
246 GeV

v

�
Λ2ðm2

N þm2
a1Þ2

m5=2
N m5=2

a1

GeV−1: ð32Þ

Thus the condition for freeze-in via the clockwork Higgs
portal to account for the observed density of dark matter is

ln q ≈
2

3N

�
20.7 − ln β − 2 ln

�
Λ

10 TeV

�
þ ln

�
ma1

1 TeV

�

− ln

�ð1þm2
N=m

2
a1Þ2

ðmN=ma1Þ5=2
��

; ð33Þ

where

β≡
�
Ωâ0h

2

0.12

�
1=2� g�

106.75

�
3=4

�
246 GeV

v

�
: ð34Þ

(We will set β ¼ 1 in the following.)
The â1 scalars will freeze out of chemical equilibrium

once their annihilation to Higgs bosons freezes out. We
should therefore check that the relic â1 scalars can decay to
â0 þ h before nucleosynthesis. This requires that Γâ1 ≳
HðTÞ at Tnuc. This is satisfied if

5The absence of large quantum corrections to the portal
couplings of a0, …; aN is equivalent to the effect of the Higgs
portal couplings of πj (j ¼ 0;…; N) generated by quantum
corrections being small.
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λ3 ≳
�
16πmâ1

MP

�
1=2

�
Tnuc

v

�
v ≈ 6.1 × 10−12

�
mâ1

1 TeV

�
1=2

×

�
Tnuc

10 MeV

�
v: ð35Þ

We will see that this is easily satisfied by the values of λ3
necessary to account for the observed dark matter density.
In the limit where the dark matter scalars are exactly

degenerate in mass prior to mixing, the scalars â2;…; âN
are decoupled from the Higgs portal and so would not be
able to decay to h plus â0. However, this is simply an
artifact of the degenerate mass approximation, which is
simply a way to estimate the total freeze-in production of
dark matter scalars from the decay of the heavy clockwork
scalars. We can allow a small breaking of the degeneracy
which is sufficient to allow the heavy scalars to decay
harmlessly via the Higgs portal without significantly
altering the results of the degenerate mass approximation.
In this case the decay of â2;…; âN to h plus â0 also
contributes to the total freeze-in density, but with a much
smaller contribution than that from â1 decay.

IV. RESULTS

In Fig. 1 we show values of q versus N for the case
ma1 ¼ mN ¼ 1 TeV and Λ ¼ 10 TeV. In this case mâ1 ¼
1.4 TeV. We find that q ¼ 3.62 for a clockwork sector
with 10 massive scalars, and q ¼ 1.90 for a clockwork
sector with 20 massive scalars.6 [The corresponding values
of mð¼ma1=ðq − 1ÞÞ are 0.38 and 1.1 TeV, respectively.]
These values of q appear to be quite reasonable and show
that the clockwork mechanism can naturally generate the
necessary light dark matter particle mass and very small
coupling required by the freeze-in mechanism.
An interesting feature of clockwork Higgs portal freeze-

in is that a unique value of mâ0 and λ3 is predicted for a
given Λ, ma1 , and mN , which is independent of q and N.
This is because in this case mâ0 and λ3 are both determined
by the value of ON0. Once ON0 is fixed by the relic dark
matter density, the values of mâ0 and λ3 are also fixed,
independently of q and N. This is quite different from a
general freeze-in model, where larger values of the dark
matter particle mass can be accommodated by simply
reducing the Higgs portal coupling and so the number
density of produced dark matter particles. Using Eqs. (30),
(21), and (24), the values of ON0, mâ0 , and λ3 necessary to
account for dark matter are

ON0 ≈
9.8 × 10−7

γ4=30

�
Λ

10 TeV

�
4=3

�
1 TeV
mN

�
5=3

�
ma1

1 TeV

�
;

ð36Þ

mâ0 ≈
0.98 MeV

γ5=60

�
Λ

10 TeV

�
4=3

�
1 TeV
mN

�
2=3

�
ma1

1 TeV

�
;

ð37Þ

and

λ3 ≈
9.8 × 10−9

γ1=30

v

�
10 TeV

Λ

�
2=3

�
mN

1 TeV

�
1=3

�
ma1

1 TeV

�
:

ð38Þ

Thus the model predicts FIMP dark matter with a mass
which is typically close to 1 MeV.
Our calculation assumes that the range of heavy scalar

masses is not large, so that treating them as degenerate is a
reasonable approximation for determining the â0 density
due to the decay of the heavy clockwork scalars. (In
general, the freeze-in density is the sum of the contributions
of the decay of each heavy scalar mass eigenstate âk and so
is effectively a sum of independent freeze-in processes.)
The range of mass over which the N heavy scalars are
spread corresponds to Δm ¼ maN −ma1 ≈ 2ma1=ðq − 1Þ.
For N ¼ 10, q ¼ 3.62, and ma1 ¼ mN ¼ 1 TeV, we find
that Δm ¼ 0.76 TeV. Therefore, Δm=mak < 1 in this case
and we expect the degenerate mass approximation to be
accurate up to Oð1Þ correction factors in the â0 mass and
portal coupling. This can be seen from Eqs. (37) and (38),
which show that mâ0 and λ3 are both linear in ma1 .
Therefore, if we replace ma1 by ma1 þ Δm≡maN, we will
obtain upper limits on mâ0 and λ3, with the true values
expected to lie between those with mak ¼ ma1 and mak ¼
maN for all values of k. Similarly, for N ¼ 20 and q ¼ 1.90,
we obtainΔm ¼ 2.21 TeV. Therefore,Δm=mak ∼ 1 and so
we would again expect the degenerate mass approximation
to give a reasonable estimate of the â0 mass and portal

5 10 15 20 25 30

2

4

6

8

10

N

q

ma1
= mN = 1 TeV, = 10 TeV

FIG. 1. Values of q versus N for the case ma1 ¼ mN ¼ 1 TeV
and Λ ¼ 10 TeV. The solid line represents the values of q and N
satisfying Eq. (33).

6Values of qmay most naturally be an integer or fractional. For
a given integer N, q can be adjusted to an integer or simple
fraction by varying mN=Λ appropriately.
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coupling. The degenerate mass approximation has the great
advantage of producing analytical results. To achieve
greater accuracy, we would need to perform a full numeri-
cal diagonalization of the mass matrix for each set of model
parameters.
In general, in models where the clockwork sector arises

as the effective theory of an UV completion, nonrenorma-
lizable interactions would also be expected. Of these, the
most important for the freeze-in model are higher-order
derivative interactions of the generic form

1

Λ4
UV

∂μπi∂μπj∂νπk∂νπl; ð39Þ

whereΛUV is the scale of the UV completion (withΛUV ∼ f
for the symmetry-breaking model). These result in inter-
actions between a0 and ak which have no large suppression
from ON0 factors. For example,

1

Λ4
UV

ð∂μπ1∂μπ1Þ2 →
1

Λ4
UV

O10O3
1jð∂μa0∂μajÞð∂νaj∂νajÞ;

ð40Þ

where the product O10O3
1j gives the smallest suppression of

this class of operatorwhen j ¼ N=2. Since the â0ð≈a0Þmust
be out of thermal equilibrium for freeze-in towork, it follows
that higher-order derivative interactions must be sufficiently
suppressed in order for a clockwork sector to explain freeze-
in dark matter. The minimum condition for â0 to be out of
equilibrium is that Γ≲H at the reheating temperature TR,
where Γ is the scattering rate of â0 from thermal bath
particles. This also assumes that TR is the highest temper-
ature of the thermal bath, which is true if reheating is
instantaneous. For interaction (40), we can dimensionally
estimate the scattering rate to be Γ ∼ ðO10O3

1jÞ2T9=Λ8
UV,

where we are assuming ΛUV > T. Therefore, with
H ∼ T2=MP, and including a factor kn to take into account
the contribution of other scattering processes when comput-
ing the total thermalization rate, Γtotal ¼ knΓ (where we
expect that kn ≲ 100), the condition to evade thermalization
becomes

TR ≲ Λ8=7
UV

k1=7n ðO10O3
1jÞ2=7M1=7

P

≈ 1 TeV ×

�
100

kn

�
1=7

×

�
0.3

ðO10O3
1jÞ2=7

��
ΛUV

50 TeV

�
8=7

: ð41Þ

ForN and q large compared to 1 we find thatO10 ≈ 1=q and
O1j ≈

ffiffiffiffiffiffiffiffiffi
2=N

p
for j ¼ N=2. ForN ¼ 10 and q ¼ 4 these give

ðO10O3
15Þ2=7 ≈ 0.3. The reheating temperaturemust be larger

than the OðTeVÞ scale of the clockwork sector, since the
heavy clockwork scalars are assumed to be close to relativistic
during freeze-in. Therefore, it follows that ΛUV ≳ 50 TeV

is necessary to allow a window with TR ≳ 1 TeV. The lower
end of this range, which is possible if TR ∼ 1 TeV and if
reheating is instantaneous, is consistent with ΛUV being
similar to f ∼ Λ ∼ 10 TeV in the symmetry-breakingmodel.
However, ifTR ≫ 1 TeV, or if reheating is not instantaneous,
then higher-order derivative interactions must be highly
suppressed in order for a clockwork sector to explain
freeze-in dark matter. This is a strong constraint on the UV
origin of the clockwork sector in freeze-in models and
suggests that the TeV-scale clockwork sector is effectively
renormalizable.

V. CONCLUSIONS

We have introduced a TeV-scale clockwork Higgs portal
model for scalar dark matter from freeze-in. We have found
that freeze-in occurs via the decay of the heavy scalars of
the clockwork sector to the Higgs boson and the dark
matter scalar, which is the lightest scalar of the clockwork
sector. The necessary small portal coupling and dark matter
scalar mass can be generated for reasonable values of the
global clockwork charge, q, and the number of heavy
scalars of the clockwork sector, N. An interesting feature of
the model is that the mass of the dark matter scalar and the
strength of the portal coupling are independent of q and N
for a given set of model parameters. For a typical TeV-scale
clockwork sector, we find that the dark matter scalar has a
mass of around 1 MeV.
The clockwork model allows us to understand the very

small Higgs portal coupling required for freeze-in purely in
terms of the structure of the theory, without the need for any
large mass scales. In general, there is no simple symmetry
which can eliminate or suppress a coupling between the
Higgs boson and a scalar ϕ of the form jHj2ϕ2, and one
would dimensionally expect the coupling to be on the order
of 1. Therefore, if we wish to avoid simply introducing a
very small coupling, a structural explanation such as the
clockwork model may be necessary. The model has the
added advantage of explaining why the dark matter scalar
mass is much less than the scale of electroweak symmetry
breaking.
We note that the clockwork Higgs portal model we have

introduced may also be used to generate metastable scalar
clockwork weakly interacting massive particle (WIMP)
dark matter, along the lines of the fermionic clockwork
WIMP dark matter model of [7]. This is possible if the dark
matter WIMP is â1, which has an unsuppressed Higgs
portal interaction and so a conventional WIMP-like freeze-
out density, and if its decay to â0 þ h is made extremely
slow, by choosing sufficiently large values for q and/or N.
For freeze-in to be possible, higher-order derivative

interactions between the clockwork scalars must in most
cases be highly suppressed in order to prevent thermal-
ization of the dark matter scalars. (An exception to this is
the case where the reheating temperature is very low,
TR ∼ 1 TeV, and reheating is instantaneous.) This is a
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strong constraint on the UVorigin of the clockwork sector.
It suggests that the clockwork sector in freeze-in models
should be renormalizable below a high UV completion
scale. For example, the clockwork sector and the renor-
malizable Standard Model sector could both originate
from a single UV completion at a high energy scale.
A renormalizable clockwork sector would also serve as a
minimal implementation of the clockwork mechanism.
Finally, we comment on the possibility of experimentally

testing this class of model at colliders. The phenomenology
of the heavy clockwork scalars will have features in
common with the phenomenology of gauge singlet scalars
with a Z2 symmetry, which also couple to the SM via
the Higgs portal. These are difficult to detect when they can
be produced only via off-shell Higgs boson decay. It may
be possible to detect their existence at the high-luminosity
14 TeV LHC via their one-loop contribution to the process
pp → h� → ZZ if the scalar mass is less than around
200 GeV [20]; we anticipate that a similar contribution
could arise from heavy clockwork scalars if their mass

were not too large compared to the Higgs mass. At future
eþe− colliders producing large numbers of Higgs bosons,
for example CLIC at 3 TeV, it may be possible to directly
produce heavy clockwork scalar pairs via off-shell Higgs
decay. The heavy clockwork scalars have a distinctive
decay process, where they decay to a lighter clockwork
scalar plus either a Higgs boson or, if the mass splitting
between the heavy clockwork scalars is less than the Higgs
boson mass, a quark or lepton pair via Higgs exchange,
with subsequent decay of the lighter clockwork scalars via
the same process, ending with missing energy in the form
of long-lived next-to-lightest clockwork scalars. This may
allow their production to be detected, even if it is at a
low rate.
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