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Recent growth in the number and quality of wireless network technologies has led

to an increased interest in mobile computing. Furthermore, these technologies have

now advanced sufficiently to allow “advanced applications” to be engineered.

Applications such as these are characterised by complex patterns of distribution and

interaction, support for collaboration and multimedia data, and are typically required

to operate over heterogeneous networks and end-systems. Given these operating

requirements, it is the author’s contention that advanced applications must adapt their

behaviour in response to changes in their environment in order to operate effectively.

Such applications are termed adaptive applications.

This thesis investigates the support required by advanced applications to facilitate

operation in heterogeneous networked environments. A set of generic techniques are

presented that enable existing distributed systems platforms to provide support for

adaptive applications. These techniques are based on the provision of a QoS

framework and a supporting infrastructure comprising a new remote procedure call

package and supporting services. The QoS framework centres on the ability to

establish explicit bindings between objects. Explicit bindings enable application

requirements to be specified and provide a handle through which they can exert

control and, more significantly, be informed of violations in the requested QoS. These

QoS violations enable the applications to discover changes in their underlying

environment and offer them the opportunity to adapt.
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The proposed architecture is validated through an implementation of the

framework based on an existing distributed systems platform. The resulting

architecture is used to underpin a novel collaborative mobile application aimed at

supporting field workers within the utilities industry. The application in turn is used as

a measure to gauge the effectiveness of the support provided by the platform. In

addition, the design, implementation and evaluation of the application is used

throughout the thesis to illustrate various aspects of platform support.
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Chapter 1

Introduction

1.1 Overview

The increasing development of portable computers and the widespread

deployment of wireless networking technologies has led to the emergence of mobile

computing as a major research area. In parallel, heterogeneous networks and end-

systems have encouraged the development of open distributed processing standards

and compliant platforms. The operation of these distributed systems platforms within

a mobile context raises many important issues. This thesis examines the question of

providing distributed system support for mobile applications in open heterogeneous

systems.

This chapter discusses the emergence of distributed systems platforms and of the

open distributed processing standardisation. The chapter goes on to discuss the

primary implications of operation within a mobile environment, particularly from the

viewpoint of advanced applications. A mechanism for providing support for these

applications within a distributed systems platform is proposed. Lastly, the aims and

objectives of the thesis are enumerated.

1.2 Distributed Systems

To gain a perspective on the problems associated with using conventional open

distributed processing platforms in mobile environments, it is first necessary to review

their development and the key benefits they provide to application programmers.
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1.2.1 Emergence of Distributed Systems

The integration of computer and communication technologies has revolutionised

modern computer systems. Local computing resources are interconnected via easily

extensible networks to form highly cost effective and scalable computer networks.

Traditionally computer systems were a centralised resource with access provided

by terminals connected via serial links (e.g. RS232). Computers such as these needed

to be very powerful to provide enough CPU time for user processes and still give

satisfactory response times for interactive users. However, these systems do not scale

well: as the number of users increases there is often a small degree of expansion

possible but ultimately the system must be replaced at a considerable price. In

contrast, a network can be extended by adding supplementary computers on demand

at comparatively little cost.

In addition, computer networks enable resource sharing, improve resource

availability and, through redundancy of hardware and software, can increase fault

tolerance. Moreover, networks enable systems to be developed which more accurately

reflect the naturally distributed nature of the workplace. Building systems which are

capable of operating within networked environments such as these can be simplified

by additional software.

Layers of software can be added to a network of computers which abstract away

from details about system components and their interconnections, enabling the

network to be viewed as a single distributed system.

“... the distinction between a network and a distributed system lies with the

software (especially the operating system), rather than with the hardware.”

[Tanenbaum,88]

A number of the more important ways in which details can be hidden or forms of

transparency provided are outlined below (in the following breakdown a process,

object or system resource will be described as an item) :-

Location If the location of an item cannot be determined, the system provides

location transparency.

Access If the procedure for accessing an item is identical, regardless of

physical location, the system provides access transparency.

Migration If an item can be moved to another location without interrupting the

service it provides then the system provides migration transparency.

Migration transparency is most often applied to processes and objects,

typically physical resources do not move. However, the ability to
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access a resource can be migrated (e.g. ports in CHORUS

[Herrmann,88]).

Concurrency If access to an item by multiple parties is managed transparently (by

for example, enforcing the serialisation of each party’s actions) then

the system provides concurrency transparency.

Replication If multiple items can be kept within a system to improve availability

and fault tolerance but still appear to clients as a single item then the

system provides replication transparency. Replication transparency is

synonymous with group transparency.

Failure If the partial failure of an item (set of replicated items) is invisible then

the system provides failure transparency.

The forms of transparency outlined above, which represent a sample of the many

forms available, can be combined together to form powerful distributed systems. If all

of the forms of transparency were to be implemented within a single system

(assuming it is possible to do so) then such a system would appear to be a virtual

uniprocessor with no apparent boundaries between individual computers. However,

the complete transparency offered by such a system is, in many cases, undesirable.

For example, consider a surveillance system. Each video camera within the system

would offer a video service of the required type. The selection of the appropriate

service would depend, firstly, on knowing the location of the service which offered

the particular view that the client was interested in and, secondly, on being able to

access that service. Thus in real distributed systems what is often required is selective

transparency: the ability to choose which forms of transparency are provided by the

system to any given client.

The heterogeneous nature of wide scale integrated networks however make

engineering forms of transparency very difficult, if not impossible. For instance,

consider the implementation of migration transparency. A number of issues are raised,

including how to maintain versions of executables for each architecture, whether to

combine these versions to form a single large executable or maintain them separately,

and when to compile each version. In addition, when one of these versions is running

and needs to be migrated, the state of the process will need to be transferred despite

the potentially different data representations on each architecture. Clearly there is a

considerable overhead in maintaining these libraries of executables and providing

translators for passing execution state between versions. As an alternative, one could

employ a more general mechanism whereby computers executed a universal

interpreted language with an interchangeable data set. However, despite the ease of



4

migration, the performance overhead would be substantial. It is unsurprising

therefore, that transparencies such as these are most often employed on systems

spanning common architectures. Nevertheless, implementations of more general

distributed systems containing many of the easier realised transparencies are

available. Many of these platforms conform to open distributed processing standards

whose goal is to ensure that the platforms can interwork to provide these

transparencies in a heterogeneous environment. The main activities toward

standardisation of these platforms are outlined in the following section.

1.2.2 Open Distributed Processing (ODP)

There are three main efforts toward developing standards governing open

distributed systems platforms (an outline of each is presented below). These emerging

standards specify distributed programming paradigms which support a number of the

transparencies previously discussed. The aim of each standardisation activity is to

gain acceptance for their framework and, in some cases, implement viable platforms

to demonstrate the concepts they embody. A thorough discussion of the aims and

objectives of the following activities and their associated standards can be found in

[Adcock,94].

ISO Open Distributed Processing (ODP)

The ISO define a Reference Model for Open Distributed Processing

(RM-ODP) [ISO,92] (akin to the widely accepted ISO/RM

communications network model). The model defines a set of terms and

concepts for describing distributed processing, a generalised

distributed processing model according to the set and a general

framework for contrasting relevant open standards. The Advanced

Networked Systems Architecture (ANSA) project [APM,89] has been

a major contributor to the RM-ODP.

Open Software Foundation (OSF)†

The OSF are an industrially sponsored organisation whose aim is to

provide openness from integration of selected software technologies.

Their standards are intended to gain support by guaranteeing stability

and continuity to potential customers. Support for distributed

applications in an open environment is provided by a platform known

as the Distributed Computing Environment (DCE [OSF,91]). DCE is

† Following a merger with the X/Open organisation at the start of 1996, OSF and X/Open are now
known collectively as “The Open Group”.
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comprised of standardised components including threads, RPC,

directory, time and authentication services.

Object Management Group (OMG)

The aim of the OMG is to integrate existing standards to provide a

comprehensive distributed open systems framework. To achieve this

goal the group are explicitly applying object oriented technology.

Specified services from the architecture include a naming service, an

event service (for inter-object communication), life cycle services (for

object management), an association service and a persistence service.

OMG offer an architecture known as the common object request

broker (CORBA [OMG,91]). CORBA offers functionality similar to

DCE, providing inter-operability between machines and seamlessly

interconnecting multiple object systems. CORBA is entirely defined in

terms of interfaces to objects and is consequently not limited to any

particular implementation.

1.3 Advanced Applications

The widespread use and interconnection of networks allows us to communicate

with other individuals in institutions world-wide. Public enthusiasm for the Internet

has spawned a number of Internet service providers. The revenue which is generated

will inevitably lead to improved network infrastructure to cope with the increased

demand.

With the steady improvement in the speed and quality of networks, the ability to

spontaneously transmit large quantities of data between multiple points has led to

considerable research into multimedia information distribution (for example,

multimedia conferencing [Lantz,86] and distance learning [Mason,89]). The

transmission of multimedia data places stringent requirements on a network. For

example, a typical stream of video from a camera may be of unbounded length and

impose timeliness constraints on packet delivery to maintain continuity. Requirements

such as these are referred to as quality of service (QoS) requirements.

The need to transmit multimedia information has fuelled a long running debate

over the kind of services that a network should provide. There are a number of

approaches, which essentially range between two extremes: best effort and

guaranteed. The best effort approach [Danthine,92] is to manage with the currently

available resources and introduce mechanisms to cope with the wide variation in

network load that will inevitably arise. The opposing approach is that the network
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service provider should guarantee that the necessary resources will be reserved within

the network for each data stream based on application specified QoS.

Other proposed solutions include statistical [Campbell,93] and, latterly,

compulsory [ISO,95b] (where resources are reserved according to the average

demands of the application), predictive [Käppner,94] (where the end-system uses only

the resources that it predicts will be available based on observed resources in the past)

and adaptive [Käppner,94] (where the end-system attempts to meet the specified QoS

by modifying the source of the data stream in response to feedback about the

network).

In parallel with these developments in the transmission of multimedia

information, the ability to exchange information within a network has fostered a

considerable quantity of research into supporting group working practices; more

specifically entitled computer supported cooperative work (CSCW). This research

covers a wide range of topics from assisting groups to solve a particular task, to

helping people overcome geographical separation. A good discussion and

categorisation of CSCW can be found in [Rodden,92]. The collaborative exchange of

multimedia information requires efficient and scalable multicast and broadcast

protocols to minimise the consumption of network bandwidth (for example, the

Scalable Reliable Multicast (SRM) [Floyd,95] framework which underpins the “wb”

shared white-board tool [Jacobson,92a]). Researchers have noted that, in a given

multiparty interaction, each participant is likely to have their own particular

information requirements based on their end-system capabilities, user requirements

and, significantly, the capabilities of the networks they are connected to. Based on this

observation, filtering techniques [Yeadon,94] can be applied which reduce the overall

bandwidth demands of continuous media applications by hierarchically reducing the

content of the streams of information downstream from the information source in

response to each participant’s demands.

Applications characterised by complex patterns of interaction, incorporating

aspects of cooperation and use of multimedia, particularly over heterogeneous

networks and end-systems can be called advanced applications. Such applications, are

typified by group interaction and control, peer-to-peer information exchange and

integration of multimedia data types.

The highly complex nature of advanced applications makes them particularly

difficult to engineer. Research has shown that with the aid of a suitable distributed

systems platform the development of challenging applications can be simplified. For

example, the ISIS platform [Birman,90] is able to greatly simplify the development of

group based applications. Furthermore, the DASH distributed systems platform
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[Anderson,90] provides mechanisms to enable the construction of continuous media

based applications. It is the author’s opinion that the complexities of building future

advanced applications in heterogeneous environments will require the mediation of a

distributed systems platform.

1.4 Impact of Mobility

The availability of wide-area wireless networking technologies has led to the

development of a number of data services. Pocket sized cellular modems have

allowed standard analogue cell-phones to be used as data service carriers. Typically

these links are of poor quality with high bit error rates. However, techniques such as

MNP5 make data rates of around 2.4Kbps possible.

More recently, the deployment of digital cellular services such as GSM has

opened up the possibility of reliable communication at up to 9.6Kbps. In wide-area

wireless networking terms these links are seen as reliable. However, the bit error rates

are still two to three orders of magnitude more frequent than present in fixed

networks. In addition to the voice traffic specifications, the GSM standard

incorporates provision for data services. The data service specifications have been

followed to a greater or lesser extent by different suppliers. To date however, no

supplier has implemented group data support. The CDPD service operated in the

United States offers an alternative approach to data service provision. The CDPD

service is retrofitted to existing analogue cellular systems to offer connectionless store

and forward packet services, well suited to low bandwidth IP use. These wide-area

data services offer reasonable, if costly, connections to fixed networked resources.

The greatest potential benefit for wireless networked systems can be derived

through an integration of wireless technologies to provide seamless connectivity as a

user roams. For example, a mobile user may be able to utilise a wireless local-area

network within their office environment and, on leaving the building, seamlessly

switch to wide-area wireless service provision. However, the consequences of user

mobility has far reaching implications, particularly in terms of the assumptions made

by conventional systems. A number of the more common assumptions affected by

mobility are presented below :-

Variable connectivity

In an integrated networked environment the QoS offered at any instant

by the network is variable. In the above example the user moves from a

packet-oriented local-area network offering approximately 2Mbps to a

wide-area service offering at most 9.6Kbps. In addition, the wide-area
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service may introduce other factors such as dial-up delays and

increased bit error rates.

Resource availability

Applications are typically constructed with target environments in

mind. For example, file systems can consider that their servers are

readily available and that network partitioning is a rarity. In systems

comprising mobile components, the availability of a given resource is

far from certain. Typical wide-area wireless systems offer, at best,

intermittent connectivity and often experience drop-outs and

communication blackspots.

Resource location

The location of a resource is often taken for granted within networked

environments. For example, the Internet suite of protocols identify

each host in the network by a four byte address which hierarchically

denotes that host’s location within the network. Furthermore, the

identifier forms the basis for all routing of information to and from that

host. The changing location of a mobile host has profound implications

for the use of services on and by that host, particularly in an

environment where the host may be available via a range of

independent connecting technologies. For instance, a migrating host

using a particular service may wish to handover to a more appropriate

but equivalent service at the new location.

Cost

To many users the cost of using a networked resource can be

considered free. Furthermore, most applications pay precious little

attention to the amount of network resources they require on this basis.

In a system which integrates premium rate public services, a user can

incur considerable costs for using remote resources. Furthermore,

depending on the service in use, the cost and basis for charging will

change. For example, a GSM network will charge for connection

establishment and per unit time that the connection is held open. A

CDPD network will charge per unit of information that is sent. Clearly

users will require applications to access resources in as cost efficient a

manner as possible.

Power consumption

Within conventional networked environments power consumption is

barely a factor. To a mobile user however, the battery life of their
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system is of primary concern. Portable end-system designers have

recognised this issue and incorporate clever power saving techniques

into the system hardware to help maximise battery life (e.g. aggressive

disk spin down policies and low power CPU doze modes). However,

the integration of communications technologies presents a further drain

on battery resources: each item of data exchanged represents a

reduction in battery life.

The key characteristic that mobility in a heterogeneous networked environment

presents is change: change in service location, change in the QoS offered by the

network and change in the availability and penalties associated with the access of

services. As Katz highlighted:

“Mobility requires adaptability. By this we mean that systems must be location-

and situation-aware, and must take advantage of this information to dynamically

configure themselves in a distributed fashion.” [Katz,94].

The author believes that it is only through a process of adaptation [Davies,94]:

providing applications with managed information about changes in their supporting

infrastructure that they can hope to operate efficiently in a highly dynamic

environment. Moreover, such applications may in turn provide feedback, enabling

user expectations of the system to change and thus implicitly change their mode of

working to make better use of the available resources.

Given, as previously stated, that in order to develop advanced applications a

suitable distributed systems platform is needed, combined with the necessity for the

provision of an architecture which facilitates application adaptation, it stands to

reason that the distributed systems platform must provide this supporting architecture.

However, the provision of such an architecture within distributed systems platforms is

non-trivial: there is clearly a conflict of interest between adaptation which requires the

lower-level information to be made available and the forms of transparency

traditionally provided by platforms which are intended to hide lower-level details in

abstraction. Moreover, the provision of these fundamental forms of transparency are

impacted upon by operation within a mobile setting.

For example, consider location transparency. A client which has access to two

identical services, one via a fixed network and one mobile, may pick either service.

However, if the mobile service is chosen, the variable bandwidth and potential lack of

availability would have a significant impact on system performance. Alternatively, it

may be essential to obtain a mobile service, where it equates to a particular user for

example. In addition, considering location transparency combined with group or
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replication transparency, the performance of a system would be heavily impacted by

the inclusion of mobile group members.

The aims and objectives of the remainder of the thesis, which addresses a number

of the issues of providing mobility support within distributed systems platforms set

out above, are discussed in the following section.

1.5 Aims

This thesis investigates the issues of providing infrastructure support to advanced

applications in heterogeneous networked environments. In particular, the thesis

focuses on the role of adaptation within distributed systems platforms: the notion of

being able to partially break transparency, enabling applications to specify their

requirements and be provided with managed information in order that they may adapt

to changes in their environment. More specifically, the research has the following

goals :-

• To investigate the state of the art of mobile computing and provide an evaluation

of existing research and supporting wireless technologies.

• To study the support requirements of mobile applications which would enable

improved operation within heterogeneous networked environments.

• To develop a set of generic techniques which enable current distributed systems

platforms to support adaptive mobile applications.

• To implement a specific adaptation enabling technology within a distributed

systems platform: i.e., an enhanced remote procedure call package and

associated binding mechanism known collectively as QEX.

• To evaluate the new technique through the design, implementation and

evaluation of a collaborative mobile application†, underpinned by the enhanced

platform.

It should be noted that while the research is intended to enable applications to deal

with a number of the implications of host mobility (outlined in section 1.4), the issues

relating to power consumption have not been addressed in this thesis.

† The application was developed as part of a joint project involving Lancaster University and an
industrial end user organisation (the MOST project). See the declaration for a precise breakdown of
the research conducted by the author.
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1.6 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 contains a

discussion of current hardware and communication services available to support

mobility. In addition, the chapter explains how these technologies are being inter-

linked to offer continuous connectivity.

Chapter 3 analyses a wide range of current mobile computing research including

system and application level software. The chapter argues that the majority of this

work does not provide sufficient support for the development of advanced

applications within heterogeneous mobile environments.

Chapter 4 describes the rationale for the advanced application, developed as part

of the MOST project, which is used to help evaluate the supporting platform. The

requirements which the application addresses and the scenario which led to the

requirements are presented.

Chapter 5 describes the prototype application that was realised to address the

requirements presented in chapter 4. The design and structure of the application are

described in detail, with particular emphasis on the features which improve its

suitability for operation in heterogeneous networked environments and, more

specifically, enable it to adapt. The mobility support that the platform is required to

provide to the application is highlighted.

The components of the support platform are examined in chapter 6. The model

upon which the platform is based is explained and a range of enhancements presented

that are designed to support application adaptation. For clarity, the enhancements are

compared and contrasted with the more familiar RM-ODP model. Each component is

then described in detail, particularly in terms of how it adapts to changes in the

environment and provides feedback to other layers. The chapter concludes with a brief

discussion of a range of new lower-level support services that are required by the

platform for operation in a mobile environment and that are not currently provided by

existing transport protocols and device drivers.

Chapter 7 evaluates the platform in the light of how effectively it was found to

support the mobile application. The new computational model and engineering

implementation are evaluated, particularly in terms of suitability and convenience of

use. Performance figures are presented for the communications oriented components

of the platform. Support for some of the more important elements of the application

such as decentralised state, group management and managing multimedia information

are assessed.
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Finally, chapter 8 summarises the main points of the thesis. The most important

results are highlighted. The chapter concludes with pointers to areas where future

work is required.
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Chapter 2

Enabling Technologies for
Mobile Computing

Recent years have witnessed the emergence of the field of mobile computing as a

significant research area. Pioneering work such as the Columbia/IBM Student

Electronic Notebook (SEN) [Duchamp,91], the Berkeley InfoPad [Keeton,93] and

Xerox’s Ubiquitous Computing project [Adams,93] have demonstrated some of the

potential benefits of using local-area wireless connectivity. More recently, the

availability of cheap wireless local-area networking products has led to increased

deployment in research and industry. In addition, the availability of an extensive

range of high coverage, low bandwidth communications services is fostering

increased integration; both with end-systems and other communications technologies.

This chapter aims to provide an overview of the currently available portable end-

system and wireless communication technologies. In addition, the chapter

hypothesises that these local and wide-area technologies can be integrated to offer

continuous variable bandwidth connectivity.

2.1 End-system Technologies

End-system technologies can be loosely grouped into two independent

development tracks: portable computers (PCs) and personal digital assistants

(PDAs). These two classes represent the most common platforms for mobile

computing research and development. This section charts the development of the two

technologies and outlines their suitability as potential mobile application development

platforms.
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2.1.1 Portable Computers

Portable computers are the result of a continuing trend in miniaturising desktop

personal computer hardware for portable use. Portables offer the same set of features

as their desktop counterparts in one fully integrated package, typically comprising a

flat screen monitor (most commonly flip up), a keyboard, mouse (or replacement),

floppy and hard disks and, increasingly often, integrated speakers and microphones.

The primary limitation to further reduction in size is the physical display area of the

screen.

At the time of writing, portable computers are available with Intel Pentium

200MHz and PowerPC 166MHz CPUs. These portables represent at least a factor of

four increase in raw computing performance over the machines offered just two years

earlier. LCD technology can now offer colour SVGA resolution of 1024x768x8.

Internal peripherals such as removable 21/2" gigabyte hard disks and integral CD-

ROM drives are commonplace. In short, portables offer the research community

extremely powerful machines often, in performance terms, outstripping previous

generation low-end workstations. Significantly, these portables are now sufficiently

powerful to run research quality operating systems such as UNIX and WindowsNT.

Generally though, portable computers belie their heritage: the need to remain

compatible with their desktop counterparts forces a number of architectural

constraints upon them. Most importantly, the tie to a specific chipset (Intel or

Motorola) means that modern low power processors cannot be used. Fast but power

hungry processors coupled with high definition colour LCD screens and peripherals

such as radio modems and CD-ROM drives can bring battery life down to

inconveniently short durations. The need to support the same windowed

environments, specifically the mouse, has led to the integration of a number of

ingenious solutions such as the trackball, the touch sensitive pad and even a tiny

pressure sensitive rubber nodule located between the keys of the keyboard (similar to

a small joystick). These input devices are neither as convenient nor as intuitive as a

pen based interface, particularly if used on the move, but are again retained for

backward compatibility reasons. One exception worthy of note is the GridPad which

retro-fits a pen interface to a Microsoft Windows derivative known as PenWindows.

The GridPad also features a novel flip-over LCD screen which allows its use as an

entirely pen driven electronic pad or as a more conventional “book” style portable

with an integral keyboard.

The reduction of personal computer hardware to the approximate size of a ream of

A4 paper has placed serious restrictions on the expandability of the PC bus

architecture. In response, the solution has been to integrate more hardware onto the
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motherboard as standard, for example sound sampling hardware, serial and parallel

interfaces. Although a number of notebook machines have been designed with a

single full size PC expansion slot, a more convenient form of expansion was required.

Since June 1989 the Personal Computer Memory Card International Association (an

association of software, computer and peripheral manufacturers, more commonly

known as PCMCIA), have been developing a non-proprietary standard for credit card

sized memory modules (which now encompass a variety of hardware including

modems and LAN interface cards). Cards specified under the PCMCIA standard use a

68 pin interface and are 86.6 millimetres long by 54 millimetres wide with thicknesses

of 3.3, 5 or 10.5 millimetres (types I, II and III respectively). Notebook PCs typically

offer a single type III slot which doubles as two type II slots. Some manufacturers

support a type IV slot larger than type III (Toshiba is one example), however this is

not an official PCMCIA designation. Recently, interface cards which comply to the

PCMCIA standard have begun to be referred to as PC card compliant.

Portable computers have been developed that are physically smaller than the

typical A4 notebook sized PC. These portables are often referred to as sub-notebook

or palmtop PCs. One example is the 100LX and 200LX range of palmtops from

Hewlett Packard. Although capable of running the same software as other portable

computers (with a reduced capacity display), their small physical size allows them to

compete in the same market as personal digital assistants (see below).

A further derivative of the portable computer is the “electronic notebook”. An

electronic notebook is a fully bespoke system intended to replace conventional paper

notebooks. For example, the SEN project at Columbia University set out to develop

an electronic notebook which would be able to download course notes and exercises

automatically on entering a classroom and allow students to make notes and complete

the exercises using a paper-like pen driven interface. These electronic notebooks

should not be confused with the term notebook which is colloquially applied to

conventional portable computers.

2.1.2 Personal Digital Assistants (PDAs)

Personal digital assistants are computers whose development is driven by

completely different objectives to those of PCs. PDA design is based on a similar

premise to the calculator: the provision of a set of useful tools (typically

organisational) with no requirement to support any specific hardware architecture.

New tools can be written at a variety of levels of hardware abstraction such as

assembly language or C. In addition, most PDAs support a portable high level

scripting language (one example is NewtonScript on the Apple Newton [Bey,93]).
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The goal of the PDA designer is to produce a computer which can be comfortably

held in the palm of one hand with a “natural” user interface, typically touch sensitive

or stylus driven. PDAs provide integrated environments with tools such as a diary,

notebook, address book, calculator and usually a small database.

For a PDA to become accepted as a viable alternative to existing personal

organisation tools, it must be equally convenient and reliable. Consequently, PDAs

must be very portable, rugged and exhibit long battery life. To address this last

concern, PDAs use sophisticated power saving architectures combined with low

power grey scale reflective LCD screens (which are lighter in terms of weight and

power consumption than the colour LCD screens popular with portables).

Two common PDAs, the Apple Newton and Casio Zoomer, both use handwriting

recognition as their user interface. Both products aim to translate printed and cursive

writing into ASCII text, typically recognising up to 70% of user input (this is largely

dependent on how much time is spent training the recognition software and how many

of the words are stored in the dictionary). Handwriting recognition is a very complex

problem and, although the ability of these PDAs improve with each generation, they

are still are a long way from being natural to use. However, these PDAs excel at data

entry applications where fixed format forms can be used that require simpler

responses such as ticks and menu selections.

Some PDAs avoid the issue of handwriting recognition altogether. The Sony

MagicLink and Sharp Zaurus are typical examples. Although employing a similar set

of integrated tools to those previous mentioned, the pen interface is used to provide a

point and click style of operation similar to a mouse or trackball. More sophisticated

data entry is provided by an on-screen keyboard tool.

The Psion series 3 organisers use neither a touch screen nor a pen interface.

Instead, a miniaturised QWERTY keyboard is provided. Rather than attempting to

provide a paper-like interface, this approach does at least provide a familiar one. In

addition to the conventional set of tools, the keyboard allows the series 3 to offer a

powerful document editor (a tool which is not yet practical using handwriting

recognition).

PDAs do have their limitations; their small physical size and requirement for long

battery life constrains both processor power and expansion possibilities. PDAs

typically contain a serial port and a single type II PC card slot. To help overcome the

connectivity limitations most PDAs have a built-in infra-red (IR) transceiver which

can beam information to other PDAs or fixed resources over a short distance

(typically no more than a metre). This connectivity allows PDAs to provide
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communication tools such as E-mail and Fax facilities and, more recently, world wide

web browsers.

Some manufacturers have begun to integrate wide-area wireless communications

into their hardware. Two examples, both from Motorola, are the Envoy and Marco

wireless communicator products [Motorola,95]. In addition to a 38.4Kbps IR

transceiver, the Marco incorporates a 4.8Kbps packet radio modem with 9.6Kbps fax

capability. The Envoy includes a wireless packet data modem which operates using

one of two protocols, MDC4800 giving 4.8Kbps or RDLAP at 19.2Kbps.

2.1.3 Analysis

Both portable PCs and PDAs provide facilities for mobile computing, although the

two technologies lend themselves to different applications. The small monochrome

displays and limited memory of PDAs make writing complex applications very

difficult but long battery life and unobtrusive size make genuine use on the move

possible. Portables offer remarkable processing power and local storage but the

consequent short battery life places severe constraints on their use away from a fixed

power source. All but the most expensive colour LCD technology is unusable in direct

sunlight and in most cases the sheer size and weight make one handed operation

unpleasant. Portables are best suited to applications where the user is mobile but does

not need to use the machine in transit.

Both technologies utilise the highly pervasive PC card standard interface for

expansion. The acceptance of this standard has prompted a large number of

manufacturers to develop conformant versions of their products. Of particular interest

in terms of mobile computing are PC card conformant wireless communications

products. The remainder of this chapter considers a broad range of communications

technologies and, where applicable, highlights specific products available on PC card

format.

2.2 Communication Technologies

The previous section has considered the characteristics of portable end-systems.

This section discusses wireless communication technologies which can be used to

enable mobile applications to exchange information and make use of remote

resources. The technologies have been grouped into two domains: wide-area and

local-area. The former category pertains to systems which provide coverage over

geographically large areas. In contrast, local-area technologies are designed primarily

for in-building use, but typically offer far higher bandwidths. Standards and products

relating to the technologies are considered where appropriate.
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2.2.1 Wide-Area Communication Technologies

This section presents a summary of the more common wide-area wireless

communications technologies. To aid understanding, the section commences with a

discussion of some of the more important wireless networking concepts. The

remainder of the section is concerned with discussing the technologies themselves.

Each technology has been grouped into one of two domains: private services and

subscriber services.

2.2.1.1 Basic Concepts

Wireless systems make use of a number of different techniques to provide wide-

area coverage. One of the simplest approaches is to set up a single base station

transceiver which serves a number of less powerful mobile transceivers. Each mobile

is typically either hand-held or vehicle mounted for convenience. The coverage of the

system is a function of visibility to the base station transmitter, interference from

surrounding buildings and machinery, and the power of the base station and mobiles’

transmitters.

A common extension to this approach is to divide the available communications

bandwidth into a number of individual channels to increase the number of users which

have access to a given portion of radio spectrum. This process, called trunking,

requires a protocol to be established between the base station and the mobiles to

determine which mobile is allocated to which channel and at what time. Each channel

is made up of a combination of units of frequency, time or access pattern (frequency,

time and code division multiplexing respectively). Typically, the channels are

organised into a control channel and one or more data channels. The control channel

carries instructions and requests to and from the mobiles to establish and clear down

calls on each of the data channels. A non-trunked system does not layer a connection

or call oriented structure over the network. Instead protocols can be used to control

access to a shared channel “on-demand”.

Another simple approach is the “open channel” scheme. Each mobile operates on

the same frequency or channel and may listen to any transmission within range.

Typically a social protocol is operated implicitly by the users of the system to dictate

who may speak at any given time. The strongest transmitter (usually the nearest)

wins. An extension of this approach is the “ad hoc” network. The ad hoc network has

no formalised structure and makes use of the same “within range” peer-to-peer

metaphor. Instead of voice traffic, data messages are routed across, and retransmitted

by, each host to extend the coverage of the system. Ad hoc networks are only

effective in sufficiently densely populated user communities. Moreover, each host
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must be very cooperative and not mind using their battery resources to route other

users’ traffic for the good of the community.

The range of a single base station is limited by the transmitter power of the

mobiles which is in turn a function of the required battery life of the unit (from

elementary physics, to double the transmitter power requires a four fold increase in

current from the battery). In addition, studies have shown that holding transmitters of

any power close to the head increases the likelihood of brain tumours.

Each base station has a limited number of frequencies at its disposal. As

mentioned previously, these frequencies may be multiplexed to increase the number

of mobiles supported by the base station. However, for a given range of frequencies

there is a finite limit to the number of the mobiles which can be supported by a given

base station.

A common way of circumventing the power and capacity limitations is to operate

multiple base stations (or cells) which are organised to cover adjoining geographical

areas. The base stations are networked together which allows messages from one

mobile to be routed via the base stations to a host in another cell thereby extending the

effective coverage of the system. Cell sizes and locations can be chosen to reflect the

density of the users. For example, high density areas would be covered by more

numerous but smaller cells to increase the effective number of channels available.

Each neighbouring cell transmits on a different set of frequencies to allow for a

margin of overlap between one cell and another without interference. The signal

strength of the transmissions of the base station are used to work out when the

transmission from one base station to a neighbouring one should be made. In addition,

to set-up and clear down calls, the trunking protocol in a cellular system needs to

manage the switching or handover of a mobile from one cell to the next.

Base stations typically power antennas mounted on terrestrial vantage points such

as hilltops and the roofs of buildings. An alternative approach is to mount antennas on

orbiting satellites. Generally these satellites are in a geostationary orbit, i.e. orbit at

the same rate as the Earth and from the surface appear to maintain a fixed position in

the sky. From a terrestrial perspective and, in contrast to a ground mounted antenna,

the cells operated by non-geostationary orbiting satellites are seen to move with

respect to the users (the velocity of the satellite is orders of magnitude faster than that

of the mobiles). In addition to conventional power and interference concerns, satellite

systems are affected by the incident angle between the Earth’s surface and the

satellites orbit, and also by atmospheric conditions.
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2.2.1.2 Private Services

The following sections discuss the most commonly available private wide-area

communications services. That is, the users of the system purchase all of the

transceiver components including the mobiles and base stations. Once the system is

installed the user is licensed to use the relevant frequencies of radio spectrum and it is

their responsibility to operate and maintain the equipment thereafter. Privately owned

radio services are most commonly referred to as private mobile radio or PMR

systems. PMR systems can be separated into two distinct technologies: analogue and,

the more recent, digital services. The following sections describe both types,

beginning with analogue services and their associated standards.

Analogue Private Mobile Radio Technologies

Analogue trunked PMR systems generally conform to either MPT 1327/43 or

PAA 2424 data signalling standards. These standards, defined in the U.K. and France

respectively, are very similar, differing only in highly technical concerns. For the

level of detail required in this chapter both standards will be considered equivalent

and all discussion will focus on the U.K. standard (for a more technical analysis see

[Wong,95]).

A MPT 1327 PMR system consists of a control channel and one or more data

channels. The control channel is used to establish and clear down calls on the data

channels. Additionally, Multi-site PMRs require the control channel to perform

handover. A particular feature of the standard is the ability to send additional data on

the control channel without establishing a call. The additional data may be either

status codes (0 to 31) or free format data up to four concatenated codewords in length

(25 ASCII characters). Later additions to the standard permit extended data messaging

of up to 100 ASCII characters. The short message and extended message services are

now referred to as single segment transactions (SST) and multiple segment

transactions (MST) respectively.

The standard data rate supported is 1.2Kbps, although the MPT 1343 (superset of

MPT 1327 applying particularly to trunked systems) standard allows nonprescribed

data at rates up to 4.8Kbps.

Non-trunked analogue PMR standardisation has followed MPT 1317 (predecessor

to MPT 1327) and PAA 1382 standardisation to form the BIIS 1200 (binary

interchange of information and signalling [ETSI,93]) standard. The ETSI (European

Telecommunications Standards Institute) approved BIIS standard supports reliable

transfer in point-to-point and multidrop modes and an unreliable non-acknowledged
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service. The data protocol is based on HDLC (ISO 4335 [ISO,87]) operating at

1.2Kbps.

Further standardisation has led to the drafting of an interface conformant to RS

232 and CCITT recommendation V.28 known as MAP 27 (Mobile Access Protocol

for MPT 1327 [UADG,93]). MAP 27 operates nominally at 9.6Kbps, although

1.2Kbps is still the preferred option.

Digital Private Mobile Radio Technologies

In 1988 work the ETSI started work on the trans-european trunked radio standard

(TETRA). Manufacturers were requested to make formal proposals to the STC-

RES 06 subtechnical committee for a system which must offer both improved

performance and more efficient use of available spectrum than existing protocols.

The TETRA standard, as it emerged, supports up to four channels in 25KHz of

bandwidth (with an option that in the future it must be possible to support two

channels per 12.5KHz of bandwidth). TETRA operates a TDMA structure based

around a unit time slot of 14ms (chosen to be compatible with existing voice coding

technology). Although this moderately long slot time could cause long end-to-end

speech delays, TETRA is oriented toward simplex working and hence this delay is not

a consideration. An interesting feature of TETRA is that inter-cell handover is

initiated by the client equipment: the client can listen for stronger base stations and

inform its current server to handover its connection to the new server; alternatively the

mobile can manage the whole process by contacting the server itself (in this latter case

a small discontinuity will be detected). While this approach leads to more complex

clients, the technique is inherently more scalable than a centrally managed

architecture and has potential for more flexible cell layout patterns.

The protocol has been designed to support voice, voice plus data or data only

services. As with voice traffic, these other services are connection-oriented. One of

the requirements of the TETRA standard was to have rapid connection establishment:

the protocol can make use of successive free time slots in a lightly loaded system for

control traffic bringing call set-up times under 100ms. In voice plus data mode, voice

timeslots which contain no speech are “stolen” for data transfer (leading to high jitter

and variable data rates). The protocol also supports a packet data optimised (PDO)

mode in which all traffic time slots are monopolised in one bulk transfer. In PDO

mode corrected data rates of 19.2Kbps are possible, although implementation of this

mode is currently left at the manufacturers discretion.
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Related Products

There are numerous companies selling PMR services, one of the more successful,

particular in the U.S., is ARDIS. Initially an amalgamation of two PMRs owned by

IBM and Motorola, ARDIS was designed to give links to mobile staff while inside the

customer’s building. ARDIS now has 1,300 base stations covering 80% of the

population of the U.S. and approximately 90% of the prime business locations.

ARDIS is now available as a public service, although focusing primarily on vertical

applications for business subscribers. The service is being upgraded from 4.8Kbps to

19.2Kbps in the U.S. and 9.6Kbps in Europe (due to channel bandwidth allocation).

IBM and Motorola both make radio modems for the ARDIS service, implemented on

type II PC cards.

2.2.1.3 Subscriber Services

Subscriber services, in contrast to private mobile radio systems, are wholly owned

by companies which specialise in offering communications services to others. These

communications services may include the leasing of mobile terminal equipment and a

multiplicity of charging and subscription arrangements for the accounting of user

network traffic. This section describes two forms of subscriber service: proprietary

data services and mobile cellular telephony.

Proprietary data services, generally speaking, have evolved to serve particular

niche markets. This section describes two such proprietary technologies: Paknet and

Mobitex. These technologies were chosen as being both representative and widely

deployed. The Mobitex system in particular underpins the RAM mobile data system

which has been used in a significant number of bespoke data in the field projects for

public services and utility companies.

The section continues with a brief overview of the data services available through

cellular mobile telephone networks: firstly, the data services available by using

existing analogue voice networks (which were designed with no data service

provision) and, secondly, the more recent digital services.

Paknet

Paknet is a proprietary mobile data network now wholly owned by Vodafone.

Originally conceived as a replacement for fixed telephone links to electronic funds

transfer from the point of sale (EFTPOS) machines, it has been expanded to include

mobile users. The need to validate credit card transactions in a timely cost effective

manner has strongly influenced the design of the system.
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The Paknet network is underpinned by a specially developed protocol optimised

for bursty packet-oriented use (each packet contains approximately 125 bytes). The

protocol is based on the ALOHA protocol [Schoute,80] called dynamic slotted

reservation aloha (DSRA). In DSRA, a channel is divided into slots of 27ms, mobiles

synchronise with this by monitoring control information from the base station. When

a mobile has data to send, it randomly picks a slot allocated for reservation requests

(gleaned from the control information) and transmits its request. The request contains

the amount of data that is waiting for transmission. From this information the base

station can inform the mobile when it can allocate sufficient slots for the data. The

random access slots can be dynamically varied based on observed packet statistics.

For example, if packet sizes are short then more slots need to be provided and vice

versa.

Each packet transmitted includes a 12 bit cyclic redundancy checking (CRC) and

forward error correction (FEC) information. The protocol can send automatic repeat

requests (ARQs) if uncorrectable errors are found in the packet. The gross channel bit

rate is 8Kbps and the net data rate is dependent on the number of mobiles using the

channel. The protocol supports allocation of an address to a group of mobiles which

can then efficiently receive broadcast information. The mobile terminal offers a

V24/28 RS-232 interface to an X.25 PAD which can be easily interfaced to fixed

resources.

Paknet radio modems are generally integrated into other products to target

particular applications such as Tote betting, credit card verification and alarm

signalling.

Mobitex

From the outset Mobitex was designed as a proprietary mobile data network.

Mobitex uses a carrier sense multiple access (CSMA) technique (commonly also

employed in mobile telephone networks). Periodically, each base station sends a

sweep message containing its identification and network parameter information.

When a mobile wishes to transmit it must wait for a free signal message indicating

that the next few slots are available for random access attempts. Each mobile who

wishes to transmit must then pick a random slot from these in which to make its

attempt. The first mobile that gains access will be acknowledged. The

acknowledgement also informs other waiting mobiles that they must wait until the

next free signal. Should two mobiles transmit at the same time, the resulting collision

will destroy both messages. The base station will not send an acknowledgement, so

mobiles that picked a later slot will have the opportunity to ask for the channel.
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Once a mobile has received an acknowledgement from the base station, it may

transmit a message up to 512 bytes in length (subject to the network parameters sent

in the sweep). If the base station recognises that a long message is being sent it may

send a silence message to keep other mobiles from transmitting. The silence is

cancelled by the next free signal. Mobiles needing to transmit a sequence of long

messages can request a dedicated channel by sending a long message request to the

base station.

Parameters such as maximum packet size, traffic priority and the number of free

signal messages can be varied by the base station to cope with demand. For example,

when the number of mobiles increases, more random slots will be required to avoid

possible collisions.

Each message is comprised of a header followed by one or more blocks. Each

block contains 18 bytes (shorter messages are padded with zeros) and a 16 bit CRC.

These blocks are then encoded to give FEC capable of correcting burst errors up to 20

bits in length. In the unlikely event that errors cannot be corrected, the corrupted

blocks within the message can be individually retransmitted using an ARQ. Each

block is sent at a gross data rate of 8Kbps, the overhead of the error detection,

correction and header information bring the effective data rate down to 4.6Kbps.

The Mobitex infrastructure is organised hierarchically, a number of base stations

are connected to a local exchange which is in turn connected to a higher level

exchange and so on. Each level is capable of performing routing functions so only

communications that do not involve units under a routers’ jurisdiction have to be

passed up to the next level.

Mobitex operates a connectionless store and forward architecture. When a mobile

roams from one base station to another and fails to acknowledge a packet, the network

will examine its neighbouring base stations and forward the message on. The mobile,

rather than the network, is responsible for deciding when to handover to another base

station. Each mobile must maintain a list of neighbouring base sites together with

signal strength and error rates to allow it to decide when to change.

Mobitex radio modems are available from IBM on type III PC card format or

integrated on the motherboard of high-end IBM ThinkPad portables.
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Analogue Mobile Telephones (AMPS/TACS†)

Public cellular mobile telephone networks have long been regarded as extensions

to the public switched telephone network (PSTN). It is common practice to connect

modems to the PSTN to effect data transfer. Indeed, as PSTN quality has increased,

advances in modem technology have enabled impressively high data rates. The

cellular telephone network, on the other hand, is still primarily a voice oriented

medium. While it is possible to connect standard PSTN modems to cellular channels,

the significantly increased bit error rates and in-band signalling (used to control issues

such as power management and cell handover) create a number of problems.

In the U.K. the two most significant cellular network providers, Cellnet and

Vodafone, have adopted different strategies for handling mobile data. The Cellnet

approach is that access to and from the PSTN to the mobile should be transparent. It is

therefore up to the user to chose a suitable landline standard which operates a protocol

sufficient to deal with the errors introduced by the mobile link. Cellnet argue that

although these standards are not “cellular aware” the protocols should still be

effective as the majority of data transfers are made while the mobile is stationary

(reducing the data loss caused by fading and network control functions that are

induced by movement).

The data arm of Vodafone, Vodata, has opted for a non-transparent solution. In

particular, they have encouraged the development of a public domain protocol called

the cellular data link control (CDLC [Frazer,87]). CDLC is a block based protocol

based on concepts from HDLC which incorporates CRC for error detection, and both

FEC and ARQ for error recovery. CDLC is based on CCITT recommendation V26bis,

allowing 2.4Kbps full duplex operation (assuming no ARQs due to error conditions).

Rather than forcing every user to adopt CDLC over the PSTN, Vodafone operate a

gateway service known as the Vodafone Mobile Data Conversion Service (VMACS).

The gateway automatically adapts between CDLC from the mobile and the landline

standard of the other party (V21, V22, V22bis, V23 and V42 are supported). VMACS

supports flow control to cope with the speed differential between the landline and

mobile protocols.

One example of a data product for use with cellular phones is the Motorola

“Power Class 14.4 Cellular Modem”. Available in type II PC card form, the modem

can be plugged into the data socket of MC2 style flip phones. The modem allows fax

and conventional data operation at a variety of data rates, theoretically up to 57Kbps

† North American Advanced Mobile Phone Systems standard (AMPS) and Total Access
Communications System (TACS) respectively
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using V.42bis compression (realistically, channel conditions will limit this to 2.4-

4.8Kbps over a cellular link).

Cellular Digital Packet Data (CDPD)

Recent initiatives in the U.S. are leading toward widespread packet data services

that are overlaid on the existing analogue cellular telephone infrastructure. The

incremental cost of upgrading the existing base stations is far less expensive than

deploying a new independent infrastructure to support data services.

The most successful of these initiatives, CDPD [McCaw,93] is supported by a

number of significant cellular operators. However, the network is restricted by the

geographical scope of the service provider, giving each domain effective control over

interfaces between the mobiles and the network, interdomain communication and the

external interface to the PSTN and other fixed networks.

Mobiles communicate with the network using 378 bit blocks which can be

concatenated to form a maximum usable block size of 116 user bytes. Allowing for a

synchronisation and management overhead with acceptable ARQs due to bit errors,

this yields a realistic data rate of 9.6Kbps. The system is based on an access channel

and a number of traffic channels, although under light loading the access channel can

be used for data. Data is transferred within the supporting network using protocols

that support TCP/IP, allowing easy interconnection to IP based wired services.

CDPD modems are available from IBM in type II PC card format, or can be

directly integrated on the motherboard of high-end portable machines.

Global System for Mobile Communications (GSM)

GSM is a digital mobile telephone standard, initially formulated as a standard for

Europe, that has also been taken up in a number of non-European countries. GSM is

based on ISDN technology adapted to work in a mobile context (and consequently at

a lower data rate; the basic rate of ISDN is 64Kbps).

A GSM base station operates a number of carriers each with the potential to

support 8 channels (via time division multiplexing). Each of these channels covers a

frequency range of 200kHz and supports a user data rate of 9.6Kbps. The standard

incorporates mechanisms for splitting each channel into two half capacity channels,

subject to specification of a half rate CODEC, each providing 4.8Kbps capacity. Each

carrier uses the same slot structure for both voice and data which allows them to be

intermixed.
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Being a digital standard, modems are not required on GSM. However, it is

necessary to provide data gateways to fixed networks such as PSTN. These gateways,

known as interworking functions, provide conversion services analogous to the

VMACS used in the Vodata network.

The GSM standard offers both transparent† and non-transparent data services. The

transparent service, as the name implies, does not guarantee data integrity, although

bit error rates are maintained at around 10-3 (if conditions deteriorate then handover to

a better channel will occur, when none are available the connection is dropped).

Lower bit error rates are possible with a corresponding reduction in data rate. Due to

the TDM nature of the carrier, a fixed delay in the order of 100ms can be expected.

The reliable service makes use of a radio-link protocol (RLP) based on HDLC.

The RLP provides error detection using at 24 bit checksum with FEC and ARQs. The

gross data rate of a GSM channel is 22.8Kbps, allowing for synchronisation and other

overheads this brings the uncorrected rate to 12Kbps. An additional 10% of capacity

is reserved for ARQs, leaving a user data rate of 9.6Kbps in the presence of typical bit

error rates. Both the transparent and non-transparent data services are connection-

oriented, however connectionless services are under development (see below).

In addition to voice and data services, GSM offers a short message service (SMS).

The SMS allows bi-directional data messages of up to 160 characters to be

transmitted over the control channel. In contrast to the other services, the SMS is

connectionless and provides store and forward capabilities. In addition to the point-to-

point SMS, a message can be broadcast to all mobiles within a cell. This last service

lends itself well to supporting information services such as paging or road traffic

information.

Work is currently ongoing in extending the GSM standard to provide two new

services: High Speed Circuit Switched Data (HSCSD) and General Packet Radio

Services (GPRS). The HSCSD makes use of the TDMA structure of GSM to allocate

more time slots to a single connection, effectively increasing the data rate. Since each

voice or data connection occupies a single timeslot (data rate 9.6Kbps), the HSCSD

service should offer a potential maximum of 76.8Kbps by using all 8 timeslots (the

current specification will offer 64Kbps to bring it in line with ISDN). The HSCSD

service will incorporate an on-demand timeslot allocation strategy to avoid a single

user monopolising all the available timeslots on a carrier.

† Note that this use of the word transparent should not be confused with the forms of transparency
provided by distributed systems platforms. In the data service context, a transparent service is one
that provides no error correction. In contrast, a non-transparent service is fully error corrected.
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The GPRS service will offer packet-oriented data services ranging from 14Kbps

up to 115Kbps (1-8 timeslots, gross rate) by employing the same time slot grabbing

techniques as HSCSD. The system is being designed to integrate with X.25 and

TCP/IP networks through new interworking functions. In addition, the GPRS data

services will be available at the same time as voice calls to the same handset. The first

GPRS service is expected to be publicly available in late 1998.

The current GSM data service requires an interface card to enable portables to be

able to access the service. One such card, made by Nokia (called the “DTP-2 Cellular

Data Card”), is available on PC card type II format. The card supports the Hayes ‘AT’

command set which presents a modem-like interface compatible with most

communications software.

2.2.1.4 Other Services

This section outlines some of the other wide-area technologies not previously

presented. These include very wide-area coverage services such as message paging

and satellite based communications services.

Paging Services

Paging systems attempt to provide communications over a very wide-area,

supporting hundreds of thousands of subscribers, regardless of their location. Such

systems are based on a number of simplifying assumptions: messages are

unidirectional (being transmitted to the subscriber only), each message consists of a

small number of alphanumeric characters and outright throughput performance is not

an issue. However, performance in terms of the timely delivery of messages, low lost

call rate and low probabilities of a false calls are all necessary to make the system

acceptable to the users.

In the U.K. in 1975 the Post Office Code Standardisation Advisory Group

(POCSAG) was formed to develop digital paging standards that would be acceptable

Europe-wide. The POCSAG paging service [Telecom,78] operates at 512bps which,

in paging terms, translates to 15 calls per second. Numeric pages can be sent using 4

bit codes which define 16 symbols including numerals and parenthesis. Pages can be

tagged with an identifier which indicates that the message is comprised of 7 bit ASCII

codes.

The POCSAG paging service is made up of a number of cells. Cells are grouped

into major and minor cells according to population density. Areas of higher density

are allotted more time slots than low density cells to cope with paging demand. When
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a user is paged the message is transmitted to all the cells (neighbouring cells transmit

the message in an alternate time slot to avoid interference).

British Telecom Mobile Communications (BTMC) operate a satellite based

paging service which utilises a POCSAG code at 1200bps. The satellite service covers

most of the European Community. On motorways and open road the service has been

shown to deliver close to 100% of messages, although in urban and heavily wooded

areas, delivery can be as low as 35%. Losses are due to attenuation of the signal

caused by the low angle from geostationary satellites. A simple retransmission

scheme in conjunction with a parity bit and error correcting codes help ensure

message delivery. The system is well suited to use by long distance hauliers and

professional travellers.

One of a new generation of satellite based paging systems is operated by PageSat

called PCSAT 100. Using similar technology, the system offers a one-way data link

of up to a theoretical maximum data rate of 57.6Kbps. The unidirectionality of the

system strongly limits its applicability in general purpose mobile computing, though

the system is well suited to broadcast information services such as news bulletins or

stock market information.

Recently, a new generation of pagers have been developed which offer bi-

directional communications services. This technology is currently offered by SkyTel

[SkyTel,96] and Motorola [Motorola,96]. Users of the service can respond to pages

via a number of pre-programmed responses. In addition, the pagers can connect to the

serial interface of a portable computer, enabling general purpose messages of up to

500 bytes to be sent. A conventional pager that plugs directly into a type II PC card

slot and also offers a standard LCD display for stand-alone use, is offered by Socket

Communications [Socket,96].

Satellite Based Services

Since 1988 an American company (QUALCOMM) has offered a satellite based

message system known as OmniTRACS. Unlike the voice oriented private mobile

radio and telephone services, the OmniTRACS system is designed to provide two-

way data communication. As a value added service OmniTRACS can provide

location information for each subscriber (similar to the Global Positioning System

(GPS) [GPS,92]). A typical application is to allow haulage firm dispatchers to be able

to monitor fleets of lorries in transit and provide their drivers with up-to-date

information. In return the dispatcher can receive diagnostic information from the

lorries (for example reports of engine faults or telemetry from special equipment).
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A more ambitious system, known as Iridium, is being developed by Motorola.

Iridium is designed to be a digital personal communications system offering world-

wide coverage. Rather than replacing conventional PSTNs, Iridium is aimed at low

traffic density areas such as the ocean, sparsely populated areas and areas where

personal communications are now emerging (such as developing countries). The

system comprises a constellation of 77 smart satellites in a low Earth orbit which give

line of sight to one or more satellites from any point on the globe. Each satellite

covers 37 cells of 360 nautical miles in diameter, organised in a hexagonal pattern of

concentric rings. Since each satellite travels at 7,400 metres per second, the users of

the system appear static and the cells move, leading to a more deterministic handover

procedure where handoffs are largely in one direction and probably to one of two cells

(in a conventional cellular telephone system the user could potentially handoff to any

adjacent cell).

Each Iridium channel uses 8KHz of frequency bandwidth into which voice is

encoded using a voice encoder/decoder (vocoder) running at 4.8Kbps. Alternatively,

each channel can run a data link at 2.4Kbps. In addition to these services the network

will provide a time (GMT) and location (GPS) service to subscribers. The Iridium

system is currently still under development, and consequently no products are yet

available.

2.2.2 Metropolitan-Area Communication Technologies

Metricom are a company that specialise in proprietary micro-cellular packet

switched networks that are designed to cover metropolitan-areas (typically the size of

a large University campus). Although coverage is restricted when compared with

wide-area cellular networks, the micro-cells can offer higher throughput.

Metricom’s most widely accepted product to date, called Ricochet, is based on

spread spectrum frequency hopping technology in the 902-928MHz band (which is

unlicensed in the U.S.). The 26MHz of bandwidth is split into 160 non-overlapping

channels of 160KHz each. Each micro-cell contains a pole-top repeater unit that

covers a radius of approximately 1/4 of a mile. Repeaters are typically mounted on

street lighting poles, giving a convenient source of power and line of sight to

neighbouring repeaters.

Repeater units are wirelessly connected to form a mesh network. Repeaters

connected to the wired resources are known as wired access points (WAP). There is

clearly a tradeoff between the infrastructure cost of wiring more repeaters and the

number of hops between WAPs. Data is transmitted at a gross bit rate of 100Kbps,

though real performance is governed by protocol overhead, the number of hops
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between WAPs, the coverage at the mobile’s location (which is influenced by altitude

and surroundings), the number of mobiles in the same cell and, if the mobile is

indoors, the structure of the building.

The Ricochet radio modems are approximately pocket size and connect to the

computer via a standard RS-232 serial interface. The modems are driven using a

standard Hayes ‘AT’ command set. Two fundamental modes of operation are

possible: using the Ricochet network, in which case data rates of 9.6Kbps to 28.8Kbps

can be expected, and peer-to-peer mode where two modems can communicate directly

at up to 40Kbps (in favourable conditions).

Subscribers to the Metricom service are charged flat fees for connection and

access to additional services like the Internet and PSTN, there are no per packet

charges.

2.2.3 Local-Area Communication Technologies

Wireless local-area networks offer high bandwidth communications services at the

expense of area covered. In addition, the technologies are by necessity based on a

wide range of robust coding techniques that enable them to operate in

electromagnetically “busy” environments such as the typical office and industrial

complexes. This section commences with a study of the motivations for wireless

LANs, before considering the pervading standards that govern the area.

2.2.3.1 Motivation

Wireless local-area networking technologies are designed to provide network

access to users inside buildings and within the immediately surrounding area.

Wireless LANs have arisen from three independent development paths: cordless

systems, cable replacement systems and network access technologies.

The first of these, cordless systems, are a generalisation of cordless telephone

technology, which permits the user freedom of movement whilst retaining access to

some fixed resource such as a PSTN line. The demand for further developments in the

technology are in part due to work practice studies that have shown that sales people

will often use their mobile telephones while seated at their desk in preference to their

conventional phones for the added freedom of movement.

Cable replacement systems have been designed to permit office reorganisation

without costly rewiring. In addition, computers can be networked in buildings where a

wired network would be prohibitively expensive or not possible, such as in historic or

listed buildings. Cable replacement systems are generally static and involve a non-
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trivial re-alignment process if components of the system move. The essentially static

nature is exploited to provide good quality high bandwidth connections with data rates

comparable with fixed LANs. These technologies are generally unsuitable as a

support technology for mobile computing.

The remaining category, network access systems, provide a wireless hop to a fixed

backbone network such as a token ring or Ethernet. These products are designed to

permit portable users who need to plug into network resources without “docking”

facilities. In addition to wireless network access, a number of companies offer

wireless interconnect products to form wireless bridges between wired network

segments. Wireless bridges often offer very high bandwidths but like cable

replacement systems allow no freedom of movement making them unsuitable for

mobile computing. They are not considered further in this section.

Wireless local-area networks typically consist of base units connected to a fixed

network backbone and one or more mobile units. The base units can be arranged to

provide the optimum coverage in a given area. However, to give improved bandwidth

utilisation and coverage, techniques often found in wide-area networks such as

trunking and federation into cells are also employed in the local-area.

This section begins with a discussion of the DECT cordless access standard then

moves on to a more general discussion of available wireless LAN technologies,

including emerging standards and a synopsis of next generation wireless LANs.

2.2.3.2 Digital European Cordless Telecommunications (DECT)

In 1988 the ETSI started work on DECT, the European cordless communication

standard. A DECT network is comprised of a common control fixed part (CCFP) to

which are connected one or more base stations. CCFPs can be interconnected to form

private networks spanning larger areas (multiple buildings). The mobiles in the

system are responsible for initiating inter-cell handover and intra-cell channel

swapping based on channel congestion, received signal strength and error criteria. The

on-demand assignment of channels to mobiles is known as dynamic channel

allocation (DCA). DCA makes good use of channel resources and eliminates the need

for advance frequency planning. When mobiles migrate between cells the new

connection is established before the existing one is relinquished, giving effectively

seamless handover (particularly important for highly synchronous traffic such as

voice).

The CCFP maintains databases of the location of local and foreign mobiles within

its domain. Voice and data traffic are routed via the CCFP where a PBX can connect
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it to external networks such as ISDN. The CCFP can also act as a gateway to data

traffic on to a LAN.

DECT has been designed to provide multibearer connections: i.e. a range of

services which support different applications. Each DECT channel is split using

TDMA into 24 slots. Slots may be further divided into half slots or grouped into

double slots. Each slot (or derivative) may be allocated to either uplink or downlink

data, and may operate in either protected (with error detection) or non-protected

mode. Slot allocation can be tailored to give varying amounts of bandwidth

appropriate to each service. For example, a voice call might require full-duplex

operation (equal numbers of slots in each direction), whereas a fax transmission

(largely asymmetric) would require simplex operation. Services defined for DECT

include PSTN, ISDN, fax, video, X.25, LAN and interworking with GSM. A

summary of slot allocations to services is presented in table 2.1 (based on information

presented in [Wong,95]).

Service Synch
(•)

Protected
(•)

Slot Type Slots
Up/Down

Total
Slots

Usable Bit
Rate

32Kbps voice • 1 full duplex 1/1 2 32Kbps
9.6Kbps fax • • 1 full duplex 1/1 2 25.6Kbps
64Kbps fax • 1 full duplex

1 full double
simplex

3/1 4 76.8Kbps

64Kbps video • • 3 full duplex 3/3 6 76.8Kbps
256Kbps LAN • 1 full duplex

5 full double
simplex

11/1 12 281.6Kbps

2B + D ISDN
114Kbps

• • 6 full duplex 6/6 12 153.6Kbps

1B + D ISDN
80Kbps

• • 4 full duplex 4/4 8 102.4Kbps

Table 2.1 - Slot allocations for DECT services

Continuing developments in video compression (such as H.261 and subsequently

MPEG) permit videophone and video conferencing applications to be implemented

over DECT wireless networks [Vaisey,92], [Heron,92].

Ericsson Telecom manufacture large scale business cordless telephone systems

conforming to the DECT standard. They call their technology FreeSet.

2.2.3.3 Wireless Local-area Networks

The IEEE have established a working group to standardise the media access

control (MAC) functions of wireless LANs. The standard, designated “IEEE 802.11

for wireless LANs”, wishes to promote interoperability between the network products

supported by the various manufacturers. In addition, they aim to allow different

networks that share the same physical location to operate without the need for
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coordination (as might be found in an office building shared by a number of

independent businesses).

The IEEE 802.11 MAC layer has specified a variant of the CSMA/CD protocol

used in fixed Ethernet LANs. The protocol has been extended with ‘ready to send’

and ‘clear to send’ messages which are used for collision avoidance. These messages

are transmitted by the base units to inform mobiles and base stations within range

when data is about to be sent.

Following DECT, the ETSI have set up working groups to look at future Europe-

wide radio LANs. One of these groups, the Radio Equipment and System subtechnical

committee (RES-10) is drafting a standard for the High Performance European radio

LAN (HIPERLAN). HIPERLAN is intended to provide data rates of between 15 and

20Mbps to the user.

Wireless LAN enabling technology can be placed into two fundamental

groupings: infra-red (IR) and radio frequency (RF). IR technology can take one of

three forms :-

Diffuse IR

Uses optical transceivers which are aimed at a common diffuser

mounted conspicuously in a room (for example on the ceiling).

Incident IR rays are diffused to bathe the surrounding area upon

striking the diffuser.

Reflective IR

Rely on the optical properties of their surroundings to bounce IR rays

between transceivers.

Line of sight (LOS) IR

Require transceivers to be carefully aligned and rely on a clear path

being maintained between them.

Of the three, diffuse and reflective systems offer the greatest flexibility in terms of

movement, LOS systems are essentially static (ideally suited for cable replacement).

Directed LOS systems, such as the InfraLAN, can currently provide up to 16Mbps

throughput. Diffuse and reflective systems, such as the Infralink, attain a far lower

throughput typically around 40Kbps.

All IR technologies are subject to the same constraints: transceivers are only

effective for distances up to approximately 25m and suffer from interference by

incandescent lighting and sunlight. In its favour, IR radiation is easily contained by

glass and office partitions giving easy cellular division and preventing snooping by
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eavesdroppers. Use of IR technologies is currently unregulated and hence does not

require a licence.

Radio frequency wireless LANs most commonly employ spread spectrum

technology, though Motorola make a product called Altair II Plus which provides

high bandwidth (5.7Mbps) over a range of up to 30m using microwave frequencies in

the 18GHz band. However, using such a high frequency carrier, Altair has to cope

with high levels of reflection and signal fading, resulting in a highly complex antenna

system. The microwave technology employed is currently bulky and heavy which,

coupled with the limited range, renders it unsuitable for supporting mobility.

Spread spectrum techniques are generally used in a portion of the frequency range

allocated to industrial, scientific and medical use, known as the ISM band. The ISM

band resides at 902-908MHz, 2.4-2.4835GHz and 4.725-5.85GHz in the U.S. and

2.445-2.475GHz in the U.K. Use of the ISM band is currently unlicensed. Spread

spectrum techniques fall into two categories, frequency hopping (FHSS) and direct

sequence (DSSS).

FHSS

Frequency hopping systems follow a pseudo-random frequency pattern

which must be agreed by the transmitter and receiver before

transmission. FHSS has the advantage that it is almost impossible to

eavesdrop without knowledge of the frequency pattern and the

intervals at which each hop occurs. In addition, FHSS systems are

resilient to multipath fading effects which are largely dependent on

frequency. However, synchronising to a new frequency each hop

requires fast frequency synthesisers and hence high implementation

costs.

DSSS

Direct sequence systems modulate the carrier with a pseudo-random

sequence of binary bits, spreading the spectrum of the waveform. By

utilising different sequences, a large number of signals can share the

same frequency bandwidth. Each receiver de-spreads the signal

corresponding to the binary sequence it is interested in. Other signals

overlaid on the same spectrum with different codes appear as noise and

are filtered out automatically. Each transmitter is allocated a unique

binary sequence or code to spread and de-spread its data on the

channel. Channel sharing by code (binary sequence) is sometimes

known as Code Division Multiple Access (CDMA).
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There are numerous examples of wireless LAN products that are based on these

forms of spread spectrum technique, such as the Xircom [Xircom,96] and RangeLAN

II [Proxim,96] systems. Both systems are available on type II PC card and support

multicell roaming with a throughput comparable to low-end wired LANs (1Mbps and

1.6Mbps respectively).

2.3 Towards Continuous Connectivity

The preceding sections have presented a representative sample of the currently

available wireless networking technologies (summarised in table 2.2). Each network

type presents a unique set of communications characteristics (QoS) to end-systems.

For example, the available bandwidth, latency, bit error rates, error handling

characteristics and coverage offered will vary considerably from system to system.

Technology Available
throughput

Range

Disconnected 0bps not applicable

Pager 0-512bps huge

Satellite 2.4-4.8Kbps huge

TACS/AMPS 1.2-4.8Kbps wide

CDPD/GSM 2.4-9.6Kbps European

PMR (MPT1327) 1.2-9.6Kbps wide

TETRA 9.6-19.2Kbps wide

CDPD 4.8-9.6Kbps wide

Metricom 9.6-28.8Kbps metropolitan

DECT 32-256Kbps local

Wireless LANs 256Kbps - 10Mbps local

Ethernet 1-10Mbps local

ATM 25-150Mbps local and wide

Table 2.2 - Typical throughput ranges for selected technologies

In general, two of these characteristics, available throughput (bandwidth) and

range, share an inversely proportional relationship (see figure 2.1).
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Throughput of Channel

Freedom of Movement

Wide Area Radio Local Area Radio Local IR Modems Static Networks

Disconnected

Weakly Connected

Fully Connected

No Support

Figure 2.1 - The throughput/coverage tradeoff

Given the wide range of networking possibilities, a mobile host could utilise a

range of wireless technologies to obtain continuous wireless connectivity. Indeed, a

recent MosquitoNet paper [Baker,96] claimed:-

“We believe continuous connectivity is not only feasible but also crucial to

make the most out of portable computers”.

On the surface, the selection of the appropriate network technology for a given

situation seems straightforward, i.e. simply pick the service which offers the highest

available bandwidth and the required coverage. For instance, when the mobile is

indoors the most likely choice would be a wireless LAN. As the mobile moves

outside, a metropolitan network such as the Metricom system may be available.

Finally, upon leaving this domain, a wide-area technology such as GSM or CDPD

could then be selected. Proponents of this approach include the Walkstation project

[Hager,93] and BARWAN project (detailed in section 3.6.4). Walkstation aimed to

develop an intelligent interface which interacts with the host through a standard

Ethernet interface. The interface is designed to support a number of different

communications interfaces, including SCSI, Ethernet, serial, parallel, infrared and

microwave-radio technologies, which are seamlessly managed by the interface itself.

In contrast, BARWAN supports the notion of multiple air interfaces and provides a

support framework for software selection between these technologies (or overlays).

However, the choice of which of the possible networks to employ is complicated

by two factors. Firstly, the entire quality of service offered by the network will

influence the choice, not just the bandwidth. In a recent paper [Katz,96b], Katz

highlighted that an important measure for comparing networks was the bandwidth per

unit of coverage (specifically, bandwidth per cubic foot). By this measure an IR LAN

offering room coverage of 1Mbps would offer higher bandwidth per user for five

users than a 10Mbps RF LAN offering greater coverage, with fifty users. Secondly,

the requirements of the application are of paramount importance. For instance, an

application transmitting periodic timely messages outdoors may choose the

connectionless CDPD service in preference to GSM. However, another application
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may find a guaranteed GSM connection offers more predictable delay bounds for its

continuous media stream.

Clearly, the applications running on a mobile within a heterogeneous networked

environment will experience sudden and dramatic changes in the quality of service

offered by the underlying network as the mobile roams between supporting

technologies. These changes in the QoS offered by the network are of profound

significance to communicating applications. Moreover, it is only by involving the

application and enabling the process of adaptation that such applications will be able

to continue to operate effectively. The role of application adaptation and platform

support for adaptation are discussed in more detail in chapters 5 and 6 respectively.

2.4 Summary

This chapter has presented an overview of current end-system and wireless

communication technologies. The significant computing power offered by these

systems, integrated with widely available communications services has enabled the

emergence of the mobile computing field as a major area of new research.

Furthermore, this chapter postulates that through utilisation of a range of networking

technologies seamless wireless connectivity can be attained.

The next chapter examines how the computer communications technologies

discussed in this chapter have been utilised by the research community. In particular,

the chapter focuses on system support for mobility.
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Chapter 3

System Support for
Mobile Applications

As highlighted in chapter 1, a mobile environment presents a number of

challenges to system and application software developers, namely: variable, low and

intermittent communications bandwidth, connection to and migration within, a largely

fixed network and power consumption considerations given the limited battery life of

most portable end-systems. This chapter presents a survey of current research and

highlights two fundamental approaches to mobility: transparent and non-transparent.

The chapter argues that the transparent approach is not sufficient to support advanced

applications.

The research has been gathered into categories of related work. The chapter begins

with analysis of network protocols (particularly within the Internet domain) and

moves on to consider a range of system and application level work including RPC

packages and file systems.

3.1 Network Protocols for Mobile Hosts

The main role of a network protocol is to provide end-to-end delivery of a

datagram from source to destination over an interconnected system of networks.

Current research is remaining true to this goal by aiming to provide transparent

support for mobile hosts (MHs). The following sections summarise some of the more

significant of these research efforts.
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3.1.1 Focus on Internet

The majority of the research aiming to tackle the issues relating to host mobility

have been within the Internet community. For this reason, the majority of the work

presented in this section is also Internet based. An alternative, non-Internet based

approach is highlighted in section 3.1.8.

Each host throughout the Internet is currently assigned an Internet Protocol (IP)

address. In addition to uniquely identifying the host, the address also denotes its

physical location within the network (which domain, network, sub-network etc. the

host is physically connected to). Thus IP addresses are used not only as identifiers but

to route all data destined for that host across the network. Therefore, when a host

migrates, the IP address cannot change to reflect its new location without dramatic

implications for higher level software. The solution is to separate out the

identification and routing features of the IP address and manage actual host location

information within the network.

There have been a number of distinct efforts to find solutions to the problems

mobility introduces to the Internet. The mechanisms differ from each other in terms of

how optimal packet routing is to and from MHs, how efficiently host migration is

handled, how easily the mechanisms are deployed and how they affect existing hosts

(backward compatibility). These mechanisms are each considered in turn below. The

following sections begin with a discussion of the earliest research in to supporting

mobility in the current Internet protocol (IPv4), highlighting some of the key

differences between the protocols to gain a perspective on the issues involved (a more

detailed discussion can be found in [Myles,93a]). The section then goes on to examine

how these protocols are being fed into standardisation work to define the next

generation of the Internet protocol (IPv6 [Deering,95]).

3.1.2 Sony Virtual IP (VIP)

The Sony VIP protocol allocates two addresses to each MH: a virtual and a

physical IP address. The virtual address is analogous to the conventional IP address: it

is configured into the host and remains constant throughout the host’s lifetime and is

used to uniquely identify that host. The virtual address is the only address the host is

aware of; the physical IP is allocated to the host transparently. The physical address is

managed by the transport layer and changes to reflect the actual location of the host.

When a MH connects to a new location, the protocol requests a temporary

physical address from a local address server. The mapping between the host’s

permanent virtual address and newly allocated physical address is sent to the host’s
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home gateway. Therefore, it should always be possible to reach a host via its home

gateway.

Indirecting all the host’s traffic via its home gateway, regardless of where the host

is physically located, can be slow and inefficient. To address this problem, Sony

introduce a mechanism called the propagating cache method [Teraoka,93]. Each

packet sent by a MH contains source and destination addresses and additional address

management information including mappings from virtual to physical addresses and

time stamps on each mapping. At any stage, if a Sony gateway detects that the

mapping it holds is more recent than the one contained within the packet, then it

updates the mapping accordingly, and vice versa. Thus, as a packet travels through

gateways, the mapping of virtual to physical addresses are updated along the way.

Subsequent packets are more likely to discover the mapping earlier in their journey

through the gateways and optimise the route to the mobile host. Cache mappings are

aged to avoid stale information being retained in the gateways. The propagating cache

method is recognised as offering the most efficient packet routing to mobile hosts of

any of the mechanisms presented here (assuming good Sony gateway density).

A small number of considerations have been identified by researchers for future

versions. The protocol requires data link layer support to detect host migration (which

is often unavailable in many systems). Once migration has been detected gateways

will attempt to delete stale cached address mappings throughout the network from

sibling hosts’ caches. This procedure requires routers to support the Sony protocol

and, as defined, does not allow for errors that can partition hosts during the process.

Inevitably inconsistent mappings will be present throughout the gateways, relying on

the time-outs to clear out the stale mappings. Determining the correct interval for

detecting outdated mappings is difficult: too long and long breaks in communication

can occur, too short and many packets will be routed sub-optimally via the home

gateway.

There are a number of problems with the Sony protocol. Firstly, the protocol is not

backwardly compatible; multicast is not supported and many hosts (especially those

with minimal IP support, such as often found on PCs) will drop packets containing IP

option fields [Myles,93b]. In addition, the processing of the options fields introduces

additional processing overheads at each router encountered (estimated to be as much

as 29% of the processing per packet [Teraoka,92]). Secondly, to perform optimal

routing, the majority of gateways need to be updated to support the propagating cache

mechanism. To support a reasonable number of migrating hosts, a large number of

temporary IP addresses need to be allocated throughout the network for use by the

protocol. Given the shortage of addresses in the current IP implementation, this
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currently seems an unreasonable requirement. Revised versions of the Sony protocol

are being considered for adoption into the next generation of IP (see section 3.1.6) as

deployment of a new IP version would obviate the majority of these criticisms.

3.1.3 Columbia Mobile IP

The Columbia protocol, developed at the Mobile Computing Lab of Columbia

University, deploys a small number of mobile subnet routers (MSRs) which conspire

to create a virtual mobile subnet [Ioannidis,93]. From a network perspective the

virtual mobile subnet appears as a real sub-network that is reached via MSRs acting as

routers.

MSRs periodically multicast a beacon packet which informs any MHs of their

existence, allowing them to register. Consequently, MHs can easily discover their

migration upon network reconnection without data link layer support (although at the

expense of the network bandwidth used in sending the beacon packets). On migration,

it is the responsibility of the MH to inform its previous MSR of its nearest MSR. The

previous MSR can then cache the new address for the host and forward any packets to

the new MSR. Packets en route between MSRs are tunnelled through an encapsulated

IP protocol known as IPIP. These messages appear like conventional IP packets and

so can be routed through conventional gateways with no additional processing.

When a host wishes to message a MH, it contacts the local MSR. If the MSR does

not know the location of the required host, it multicasts a location request to all other

MSRs, caching the response for future use. Periodically the cached information is

purged to remove stale mappings to hosts. When incorrect or out of date mappings are

discovered, the MSRs communicate to help reduce the amount of unnecessary

forwarding traffic.

The Columbia technique is well suited to operation over a small area or at a small

number of selected sites as only a single MSR is needed at each point at which a MH

may connect. However, if the system were widely deployed, the number of MSRs

would soon become unmanageable. To address this concern, Columbia have

developed a wide-area mode of operation called pop-up mode. When the MH

discovers its migration (in pop-up mode this has to be from the data link layer), it

aquires a temporary address and registers this with its home MSR. The home MSR

can then tunnel packets directly to the temporary address. A MH capable of pop-up

operation thus has to be capable of the IPIP packet decapsulation normally provided

by MSRs. Although more scalable than conventional operation, optimal packet

routing will only occur in pop-up mode if two communicating MHs are in the same

cell, otherwise all the traffic needs to be tunnelled via the home MSR. In addition,
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pop-up mode shares the same requirement as the Sony protocol for available

temporary IP addresses at each connection point.

3.1.4 IBM Mobile IP

Like the Columbia system, the protocol developed by IBM requires the MH to

detect and register with a special router which must be present at any point at which it

may connect. This router is known as the base station (BAS). Each MH is allocated a

home mobile router (MR) which must be informed once the client has registered with

the BAS.

However, unlike the protocols discussed previously, the IBM protocol makes use

of an existing IP protocol option called loose source routing to forward packets

between the home and local BAS [Perkins,92]. Loose source routing enables a host to

specify a list of addresses by which the packet must be routed. When a destination

host receives a loose source routed packet, the IP protocol definition requires it to use

the reverse route back to the source for any traffic to that destination. Thus, when a

MH sends a packet to a host, if it specifies first the address of its BAS then the

destination address, any replies will also be indirected via the BAS.

As with the Columbia model, the home MR is always informed of the MH’s

migration, enabling remote BASs to reach the host via indirection. Eventually the

loose source route within a return packet will update the location information in the

sending host, ensuring that the route will tend to become optimal once the MH’s

location settles. However, the IBM scheme currently provides no mechanism for

invalidating stale routes at communicating hosts.

By making use of the loose source routing options of IPv4, the IBM scheme

theoretically is both the easiest to implement and the most backwardly compatible.

However, there are a number of problems associated with using loose source routing

options. First and most importantly, loose source routing is rarely supported in current

IPv4 implementations. As a consequence, the majority of traffic would have to be

indirected via the home MR with little prospect of route optimisation. Secondly, in the

event of BAS failure, the protocol allows MHs registered with that station to migrate

to other BAS stations. However, responses following reversed loose source routes

will attempt to establish contact with the failed BAS which will lead to a connection

time-out at higher protocol layers (since the packet must be routed via all points in the

loose source route).

In addition, the IP protocol requires that loose source routed packets are passed up

to applications to generate the reverse route (no known applications currently support
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this). In the case of UDP in particular, the communications application programmers

interface (API) does not allow for this operation, so all UDP traffic will have to use

the non-optimal route via the home MR. This version of the IBM protocol is unlikely

to be deployed since it would require widespread support for loose source routing and

additional extensions to the IP protocol to support reverse route time-outs.

IBM have subsequently attempted to address some of these problems in a

modified scheme where packet encapsulation is used in preference to loose source

routing. Although the new protocol avoids the problems associated with loose source

routing, it requires all hosts to be modified to support efficient wide-area routing to

MHs. In addition, the protocol does not contain mechanisms for optimising routes to

MHs. However, some of the IBM protocol concepts have endured through

collaborative efforts with Columbia to produce new schemes for mobility support in

both IPv4 and the standardisation of IPv6.

3.1.5 Internet Mobile Host Protocol (IMHP)

IMHP [Perkins,94] has been developed by the authors of the Columbia and IBM

protocols and, not surprisingly, owes many concepts to this earlier work. Each MH is

allocated a home agent which maintains a home list of all the MHs it serves together

with a mapping to their locations (if known). When a MH migrates, it registers with a

local foreign agent (the address of the foreign agent is known as the host’s care-of

address) and informs its home agent and previous foreign agent (if applicable) of its

new location. The foreign agent maintains a visitor list of hosts it is serving.

The mappings between care-of addresses and hosts are stored in a location cache

by a cache agent (which may be part of any host or agent). Each time a host registers

with a foreign agent a time stamp is associated with the location mapping to allow

stale mapping detection. Each mapping has an associated lifetime which is negotiated

with the agent on registration; it is the responsibility of the MH to confirm valid

mappings. The IMHP management protocol allows for lazy updates and

confirmations of mappings without host intervention.

The notification to the previous foreign agent is sent repeatedly until either an

acknowledgement is received or the agent’s mapping lifetime has been exceeded,

preventing stale non-optimal routes. Optionally, the MH may simply inform the

previous foreign agent that it has moved and it should be removed from the visitor

list. This lack of forward pointer helps to preserve security, however sub-optimal

routing to the MH will then be more likely. In addition, the MH may inform the home

agent that its location should not be made publicly available to other caching agents to

assist in route optimisation.
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In common with the Columbia protocol, messages sent to an agent are tunnelled to

the care-of address for dissemination by the foreign agent. A form of pop-up mode is

defined to allow hosts to migrate to domains which do not support the IMHP protocol,

although temporary IP addresses and a mechanism for allocating them to visiting

hosts are then required. To help reduce communication overhead of IMHP when a

host is connected to its home domain, the protocol allows hosts to switch to using

standard IP protocols, providing it satisfies some simple preconditions.

Unlike the protocols mentioned so far, IMHP aims to provide some authentication

of protocol messages to avoid malicious redirection of packets intended for a MH.

Although strong authentication of messages would be ideal, due to overhead

considerations IMHP attempts to add some security without adding any additional

vulnerabilities over those already present in the current Internet protocols. The MH

and home agent share a secret password which can be used to authenticate

notifications of new care-of addresses for its clients. The IMHP protocol assumes that

the routers on the path between the agent and the MH are trusted, so does not use any

end-to-end encryption. Mapping updates are tagged with a random identifier which

must be returned on the responses to be considered valid.

3.1.6 Internet Protocol Version 6

Work is currently underway in specifying the next generation Internet protocol

(version 6, often known as IPv6 or IPng) to replace that currently deployed (version

4). The current Internet draft documents are attempting to address many of the issues

which were not considered in the earlier releases such as multicast, improved security

and authentication and, of particular relevance, host mobility.

Draft proposals for mobility support in IPv6 have been submitted by the

proponents of the mobile IP extensions discussed so far, namely, VIP [Teraoka,95],

IMHP [Perkins,95b] and the IBM protocol [Perkins,95a]. The protocols suggested in

the proposals are strongly influenced by the earlier work outlined in the previous

sections. However, some of the problems affecting the earlier protocols such as

backward compatibility, the requirement for deployment at a majority of sites and

non-implementation of options no longer apply. Consequently, these protocols have

less reliance on encapsulation protocols such as IPIP for avoiding problems at routers

and gateways. Additionally, more attention has been focused on issues such as

broadcast, multicast, privacy and security.
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The current drafts propose that mapping information between permanent and

temporary IP addresses (called a binding†) of a mobile node can be cached at each

network host (avoiding the intercession of a routing agent and thereby improving

efficiency and scalability). At any point a mobile node may send a packet containing a

binding update option which informs the correspondent node of a new mapping.

Binding update messages are only intended for the correspondent node (unlike

propagating cache updates in VIP) and so the message does not need any special

interpretation at gateways (no additional processing overhead is incurred). Like

previous schemes, an agent is always present in the home domain to receive binding

updates and provide an initial contact point for packets destined for the mobile host.

Unlike previous schemes, the draft specifies that more than one binding can be

associated with a given mobile node to facilitate the transition process necessary to

achieve smooth connection handover to a migrating host.

Packets are routed between mobile nodes using IPv6 routing type 0 which is

analogous to loose source routing in IPv4 with two important caveats: firstly, the

reverse route does not require intervention from the application layer and, secondly,

the failure of intermediate routing points does not cause the collapse of the end-to-end

connection. Packets routed via the home agent (before the correspondent node is

aware of the binding to the mobile node) require the use of an encapsulation protocol

called IPv6-within-IPv6 (like the Columbia IPIP protocol). The level of encapsulation

is needed as the anti-tampering measures within IPv6 do not allow the home agent to

adjust the headers of the incoming packets to reference the mobile node’s location.

One of the key extensions proposed in the IPv6 draft standard is the inclusion of a

flow identifier in the header of each message. Data packets tagged with a particular

flow identifier can leave state information during their journey across the network;

successive packets with the same identifier can be switched or routed depending on

this deposited state. Flow identifier support is expected to allow for fast forwarding

and “flow protocols” which support the end-to-end resource guarantees necessary to

develop Quality of Service protocols desired for multimedia traffic.

3.1.7 MosquitoNet

The goal of the MosquitoNet project at Stanford [Baker,96] is to provide

continuous Internet connectivity to mobile hosts via a variety of network

technologies. The project aims to develop an architecture which supports seamless

and transparent handoffs between network types. One of the preliminary

† Not to be confused with a service binding in a distributed systems platform.
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developments in the project is a mobile IP protocol based on the IETF IP Mobility

Support draft standard [Perkins,95a].

In common with the approaches previously described, in the MosquitoNet

protocol the mobile host is always reachable via a home IP address. When the mobile

host attaches to the fixed network it communicates via a correspondent host (CH),

which could itself be a mobile host. A home agent receives packets addressed to the

mobile host and forwards them to the current point of attachment. Forwarded packets

are tunnelled inside IP packets to avoid router complications.

Unlike previous approaches, the overriding goal of the MosquitoNet protocol is to

assume no mobility support in the visited network. Rather than some form of foreign

agent, the host itself is responsible for unpacking encapsulated packets that have been

tunnelled from the home agent. The foreign network is required to be able to

dynamically provide a temporary IP address for the visiting mobile host. An

automatic process for assigning these addresses such as DHCP [Droms,93] or those

used by PPP or SLIP is required.

The MosquitoNet approach allows for mobile host support with a minimum level

of modification to the existing IP network. However, the protocol provides no

mechanisms for optimising routes to corresponding hosts, or dealing with the

resulting congestion. In general the mobile host will tunnel its own responses through

the home agent to make the correspondent believe it is still resident there. One

possible optimisation is to make the mobile host send to the correspondent directly,

forming a “triangle route”. However, these packets may require additional

encapsulation as some routers will detect and drop these non-locally sourced packets

as a security precaution.

Following some experimentation with implementations of the protocol, it has been

observed that complete transparency is not always appropriate. For example, routing

tables in a foreign network need to relate to the hosts real location for the host to

respond correctly to probes from network management tools. In addition, some

exposure of the network interface is required on the mobile host to allow it to

determine when to switch to a different network technology.

3.1.8 Non-IP Based Solutions

The Crosspoint project [Comer,95] aims to demonstrate the feasibility of

providing continuous Internet connectivity to a large community of users. The target

environment for the initial prototype is a university campus with up to 50,000 mobile

hosts. One of the major concerns in Crosspoint is how to deal with the vast number of
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routing updates that will occur at the end of each seminar as the students move to their

next lecture theatre.

The Crosspoint architecture consists of a wireless infrastructure of base stations

coupled with an Asynchronous Transfer Mode (ATM) switched backbone network.

Each mobile host is allocated a permanent unique IP address. The base stations are

collectively responsible for tracking the migration of the mobile hosts. Viewed as a

whole, the mobile hosts appear to be members of a large seamless LAN consisting of

a single sub-network. Mobile hosts are connected to wired network resources through

the base stations. As a consequence, host mobility is handled entirely by routing in the

ATM backbone; the fixed campus network is totally unaware of host migration. A

single IP address is chosen to identify the wireless interface of all the base stations in

the network. This IP address is the default router for all mobile hosts.

Each base station maintains two virtual circuits to every other station; a high

priority control traffic channel for routing update information and a lower priority

data channel. A single routing update fits within one ATM cell which allows for

efficient delivery and effectively confines the cell to the ATM network. The actual

routing of packets is handled by a dedicated interface connected to every router and

base station on the ATM. The interface is responsible for maintaining a host address

to ATM virtual circuit binding mapping and transparently handling switching between

circuits.

Unlike Mobile IP based approaches, each mobile host is unaware of the existence

of multiple base stations. The host is detected by one or more base stations (if cells

overlap) when it transmits a packet to the network. The base stations collude to ensure

only one takes responsibility for the detected host. Radio signal strength is used to

determine when to handover between base stations. No hardware support for

monitoring signal strength is assumed; instead the strength is implied by monitoring

the reception of packets from the mobile. For example, if the current base station

misses a packet that a new base station receives, the implication is that the new station

is receiving the mobile better (with greater signal strength) than the current one and so

handoff should occur.

The current experimental prototype consists of three base stations, one router and

an ATM switch. Each base station is a PC with both wireless LAN and wired Ethernet

interfaces. The base stations act as a gateway to SparcStations with ATM switches.

The SparcStations run the ATM driver and Crosspoint protocol software. Parts of the

protocol execute on the PCs running the Xinu operating system. All the wireless

interfaces are AIRLAN adapters made by the Solectek Corporation. Portable

computers running Windows 3.1 with TCP/IP support need only have an IP address
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and default router address configured to access the wireless facility. Portables have

been demonstrated to maintain connectivity to the Internet and each other while

roaming between base stations.

3.1.9 Analysis

The preceding sections have presented a range of protocols for managing mobile

hosts within large scale networks. In particular, three early extensions to IPv4 were

considered, namely, Sony’s VIP, Columbia’s Mobile IP and IBM’s Mobile IP

protocols. These protocols contain important and enduring concepts which form the

basis of the IPv6 standardisation process. More specifically, the current draft standard

includes an address mapping and caching strategy similar to that of VIP, the home

agent, and packet tunnelling concepts from Columbia’s protocol and the use of

routing options similar to the IBM protocol. Therefore, although these early protocols

are unlikely to be deployed outside research testbeds, their concepts will enable the

next generation of Internet protocol to support mobile hosts from the outset.

The Crosspoint project is aimed specifically at providing mobility support within

a proprietary metropolitan-area network. Crosspoint uses a high speed ATM

backbone to manage routing information for Internet clients transparently. The

MosquitoNet project, like Crosspoint, developed a protocol for supporting mobility

with as little modification to the existing Internet protocol as possible. Interestingly,

the MosquitoNet project identified that the transparency provided by current network

protocols hindered them in their objective of providing seamless handoff between

networking technologies.

3.2 Higher Layer Protocols

The approaches discussed so far attempt to provide support for mobility at the IP

protocol level, enabling hosts to run existing UDP/TCP implementations potentially

without modification. The following section discusses approaches which handle

mobility higher in the protocol stack.

3.2.1 Indirect TCP (I-TCP)

Bakre’s protocol, I-TCP [Bakre,95a], is based upon the premise that it is more

efficient to handle connection-oriented (TCP) data at the transport layer in preference

to conventional TCP over Mobile IP. The I-TCP protocol is built upon the Columbia

Mobile IP protocol and assumes the deployment of a number of Mobile Support

Routers (MSRs).
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The protocol partitions the transport layer connection between hosts into mobile

and fixed hops. Different protocols can then be chosen for each hop of the connection

as appropriate for the channel conditions. This discussion focuses on the simple case

of a mobile host talking to a fixed host, that is: two hops, one over the mobile network

and one of the fixed network.

The API for I-TCP is designed to look similar to the familiar TCP socket

interface. The I-TCP library essentially provides wrapper functions which interpose

the MSR in connections to or from mobile hosts. Semantics are kept as similar to TCP

as possible. However, end-to-end acknowledgements only apply to each hop rather

than through to each host as intended.

As the mobile host migrates, the sockets at its MSR have to be migrated to the

new MSR transparently. The I-TCP protocol requires kernel support to perform the

following functions :-

• freeze a connected socket and capture its state,

• create a connected socket without any cooperation from the peer, establish the

state of the socket and restart the connection, and

• delete (without closing) a socket.

While the migration is in progress, TCP segments in transit to the new MSR are

buffered for processing once the transfer is complete. I-TCP has been shown to offer

increased throughput over conventional TCP over a local-area wireless link. However,

the I-TCP protocol breaks the end-to-end delivery semantics of TCP and requires that

applications are re-compiled to use the wrapper library.

3.2.2 Snoop TCP

In contrast to I-TCP, the protocol proposed by Amir at Berkeley [Amir,95a],

addresses the same TCP performance problems, but without compromising the end-

to-end semantics. The router code at the base station is modified to cache data that is

intended for the mobile client and to include a set of simple policies for dealing with

acknowledgements and retransmissions. No other modifications are necessary to

either the fixed hosts, mobile hosts or applications.

The base station routing code incorporates some additional functionality (referred

to as the snoop layer) which monitors every packet that passes through the base

station in either direction. Packets destined for the mobile host that have not yet

received an acknowledgement are cached. If packet loss is detected, for example via

detection of a duplicate acknowledgement packet, then the base station retransmits the



51

cached packet without passing the acknowledgement back down to the fixed host. The

fixed host is therefore kept unaware of the lossy nature of the wireless link, which

prevents unnecessary congestion control mechanisms from coming into play (which

has been identified as the primary factor affecting unmodified TCP performance over

a wireless link [Cáceres,94]).

Simulation has shown that this approach can handle a bit-error rate an order of

magnitude higher than unmodified TCP over the wireless link. Currently, work on

implementing the protocol over a test bed of laptops and PCs using NCR’s WaveLAN

is underway.

3.2.3 Mobile RPC (M-RPC)

M-RPC [Bakre,95b] is based on a similar principle to that introduced in I-TCP

(see section 3.2.1), specifically the concept of an indirect protocol, i.e. one that uses

an intermediary to split connections to mobile hosts into fixed and mobile

connections. M-RPC has been designed to provide a standard interface based on

SunRPC [Sun,88], although additional support for dynamic binding to servers and

disconnected operation has been suggested.

Each M-RPC binding is split into two parts, utilising UDP for the wired hop and

RDP (Reliable Data Protocol) to cope with the higher error rates associated with the

wireless hop. Like I-TCP, M-RPC relies on mobility support routers (MSRs) to be

running on a node on the fixed network within each cell.

Before beginning an RPC, the M-RPC client must obtain a client handle, which

may map on to either a particular server or a service name. Service names can be

bound dynamically by the MSR to a local server providing the required service.

Service name connections are re-evaluated during each migration to ensure

continuation of service where possible. The MSR is also responsible for

retransmission of failed RPCs which have successfully navigated the wireless hop but

failed to reach their ultimate destination on the fixed network. This mechanism should

help to avoid costly retries over the unreliable hop.

Migration between cells is handled by swapping MSRs; client handle state is

transferred from the new MSR to the previous MSR to effect the change. The transfer

of the socket state requires the same mechanism as employed by I-TCP. When a MH

disconnects, for either coverage or power saving reasons, M-RPC can either store

results of ongoing RPCs at the MSR and forward upon reconnection or alternatively

inform the client that it may no longer use the RPC mechanism, optionally invoking

an application specific handler.
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3.2.4 MOWGLI

MOWGLI [Kojo,94] is a communications architecture which is designed to

support mobile hosts using a public wireless data network (such as GSM, see section

2.2.1.3). The architecture, in common with I-TCP and M-RPC, is based on the

concept of indirect interaction between software on fixed and mobile hosts. All data

traffic between an application on the mobile host and its counterpart on the fixed

network is tunnelled via an agent on the mobile host and a proxy on the fixed host

gateway (known as a Mobile-Connection Host or MCH).

The MCH may act as a gateway to one or more mobile hosts. For each host a

virtual network interface is created with the same IP address as the mobile node. The

MCH uses this interface to act as an agent on behalf of a mobile client. Once the

mobile host has connected to the network, a Mobile IP implementation is used to

manage the connection. Further host mobility is taken care of transparently by the

chosen data service.

The MOWGLI architecture supports a traditional BSD socket interface, allowing

mobile unaware applications that use UDP or TCP to execute without modification. In

addition, MOWGLI offers an API called the Mowgli Socket Interface to applications

on the mobile node. The API defines some new socket attributes and operations such

as prioritisation and the specification of disconnection failure semantics. Customised

agent processes can be associated with the socket on the mobile node and at the MCH

to introduce application specific channel optimisation.

In addition to the socket interface, MOWGLI provides two additional services.

The first, the Data Channel Service, offers a reliable data transfer service between the

mobile node and the MCH. Reliable stream and sequenced datagram channels are

provided to underpin TCP and UDP respectively. The service also offers an API for

establishing parameters such as priority, failure semantics and assigning channels into

related groups. The second service, called the Data Transfer Service, manages the

spooling, queuing and transfer of Data Transfer Objects. Objects can be prioritised

and deferred until specified conditions are met before transmission. Attributes such as

reliability, persistence, related operations (such as agent mediation or compression)

and notification of successful transfer can also be assigned to the objects.

MOWGLI has been used to implement a wireless WWW browser which, through

agent mediation, has been shown to achieve a 25% increase in responsiveness over

the non-modified browser using a GSM telephone link. The implementation has been

conducted largely on Linux, although a Windows library is also supported.
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3.2.5 Loss Profiles and Probability of Seamless Communications

The work at the University of South Carolina [Seal,96] identifies two new QoS

parameters designed to describe host communication requirements. The first, called a

loss profile, is designed for applications operating in a mobile environment. This

parameter allows those applications which can tolerate loss to specify at connection

set-up time a preferred mechanism for reducing the bandwidth requirements of a

particular data stream. This mechanism enables the bandwidth requirements for hosts

in a given cell to be adjusted as users migrate in and out, enabling the available

bandwidth to be redistributed.

Support for mobile hosts is assumed to be provided by mobility support stations as

offered by the majority of mobile IP protocols (the need for which is highlighted by

Imielinski in the overview paper [Imielinski,94a]). A contrasting approach for

providing communication support for connection-oriented continuous media

(particularly audio and video streams) is offered by the work of Keeton et al.

[Keeton,93].

Support for loss profiles is provided by a new element in the protocol stack known

as the Loss Profile Transport Sub-Layer (LPTSL). The LPTSL views the data stream

as being composed of logical segments, the bounds being defined by the application

generating the stream itself. Each segment is separated by the insertion of flags within

the stream. It is undesirable to implement the segment filtering within the transport

layer as application specific knowledge is required. Thus the LPTSL sits just above

the transport layer.

The architecture describes an additional agent known as a supervisor host (SH)

which controls MSSs on the fixed network. The SH is responsible for handling the

majority of routing, protocol details and QoS management for the mobile hosts. It is

the SH that needs to be made aware of how to discard information with regard to the

specified loss profile. A library of “discarding functions” is provided to the source

station from which it can choose the most appropriate. The discarding function is then

executed by the SH when it needs to reduce the bandwidth of the communication

from the source host. Typical discarding functions are clustered loss and random

uniform loss, both of which are applicable to multimedia traffic such as a video

stream encoded using MPEG-2 [ISO,93].

The second QoS parameter is the probability of seamless communication. In this

context, seamless communication refers to the process whereby a host’s connections

handover to a neighbouring cell without a break in service. The probability of

seamless communication is thought of as the requirement of the application for

seamless communication. The duration of the break in service (experienced as jitter
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on the channel) is reduced by “predictive buffering” which actually means

multicasting packets to neighbouring cells in case the mobile host migrates. The

overhead of predictive buffering can be quite high, especially where the multicast

group consists of all possible neighbours (to predict all possible movements). This

parameter represents how sensitive an application is to failure to predict its

movement. So, for example, if the application was relatively insensitive to jitter

during handover then fewer cells need to be members of the multicast group (these are

typically chosen based on some prediction extrapolated from past movements of the

mobile host).

The proposed architecture for evaluating these QoS parameters consists of mobile

hosts, mobility support stations and supervisor hosts running within a pico-cellular

LAN [Singh,96]. The VIP protocol (see section 3.1.2) is used to support host mobility

(the protocol has been modified to obtain local addresses from supervisor hosts upon

migration to a cell). A single supervisor host may manage multiple cells to facilitate

QoS renegotiation during migration. Packets destined for mobile hosts are cached at

mobility support stations which are then responsible for ensuring reliable delivery (if

required). Packets contain sequence numbers and connection identifiers to enable

duplicates to be detected.

End-to-end QoS between mobile hosts is split into separate hops (mobile to fixed

supervisor host). Each stage of the connection has independently negotiated QoS

parameters, thus the link from the service provider can be negotiated as if there were a

dedicated link between the MH and the SH, which minimises the complexity of QoS

renegotiation during migration. South Carolina are also engaged in an investigation

into support for reliable multicast in a mobile environment [Brown,95].

3.2.6 Cost Efficient Adaptive Protocol

The work of Lai at Monash [Lai,95] is concerned with developing a protocol to

support “advanced mobile database applications”. The protocol aims to compensate

for low bandwidth links and, additionally, reduce the total volume of traffic while

maintaining adequate response time to applications.

The Adaptive Queuing Protocol (AQP) is targeted solely at communication from

mobile hosts to stationary hosts; routes in the reverse direction are not considered.

The protocol sits above the transport layer and requires a reliable transport service

such as TCP. AQP batches groups of transactions sent in rapid succession into one

packet to save on the header information (although it is not clear how these larger

packets are affected by the high error rates typically experienced in mobile

environments, particularly where ARQs are employed).
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In addition, AQP operates priority based multi-level queues. The queues are

drained according to two parameters: the time interval between queue processing and

the time transactions are kept in the highest priority queue before transmission. When

transmission occurs, the queued transactions are sent in the smallest possible number

of packets (which is network dependent).

The performance of AQP is highly sensitive to choice of priority for transactions

and the choice of the time interval parameters. Generally, priority is chosen based on

the response time required by the transaction. The protocol adjusts the queue

parameters based on observed behaviour. For example, the interval between queue

processes should be reduced if the average time a packet spends in the queues exceeds

a predefined threshold.

3.2.7 Rover Queued-RPC (Q-RPC)

Rover [Joseph,95] is a toolkit developed at MIT which is designed to support the

development of mobile applications, or rather applications which execute on “roving”

computers. The toolkit provides a mechanism called queued remote procedure calls

(Q-RPC) to applications.

Q-RPC allow applications to continue making RPCs asynchronously even while

physically disconnected from the network. The RPCs are written to a stable log to

await reconnection or for the cost of communication to fall below some threshold

before being played out. Q-RPC supports at-most-once delivery semantics, whereby

RPCs are only considered delivered once the response has been received (it is then

removed from the log). In contrast to traditional RPCs, sender or receiver failure or

link unavailability do not cause RPCs to fail. The network scheduler is responsible for

draining the log. In addition, the scheduler batches related RPCs to improve

transmission efficiency and accepts application supplied priorities to enable RPC

reordering.

Rover services are offered by relocatable data objects with well-defined

interfaces that can be dynamically migrated between clients and servers. Information

is shared between clients and servers using a check-in/check-out methodology; a

RDO is checked out from a server, the client performs operations on the interface and

checks it back to the server. During disconnections shared objects held by the client

may be modified. Consistency is maintained on a per object basis using either a

locking strategy or object specific conflict resolution on reconnection.

Each client machine runs an access manager which is responsible for handling all

interactions between clients and servers. Additionally, the access manager maintains a
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persistent cache of imported objects. The object cache operates a number of policies

for maintaining an object’s consistency with its primary copy, including uncachable,

immutable, verify-before-use, verify-if-service-accessible, expires-after-date and

service-call-back. Lists of required objects can be built up by individual applications

to allow the access manager to prefetch working sets of objects.

Rover is currently implemented on IBM Thinkpads running Linux, DECstation

5000 workstations running Ultrix and SparcStations running SunOS. The Rover

server can run as either a TCP/IP application or through the NCSA HTTPd server.

The applications are written using Tcl/Tk scripts and binaries. Network connectivity

is via a 10Mbps Ethernet, 2Mbps WaveLAN or dial-up lines. Example applications

written using Rover include a wireless E-mail tool, a calendar application and a

WWW browser.

3.2.8 Analysis

The preceding sections present a range of approaches for handling mobility above

the IP layer. These techniques provide transparent mobility support which is required

to enable mobility unaware applications to run in mobile environments. A number of

the techniques employ indirection: that is, splitting connections between mobile and

fixed hosts into wireless and wired component parts (I-TCP and M-RPC are good

examples). However, these techniques suffer from the disadvantage that end-to-end

transport semantics are lost by interposing intermediaries, potentially leading to

transparent failures.

In contrast, the MOWGLI and Rover architectures provide APIs which enable

applications to play an active role in the transmission of data and, in particular, take

specific actions in the case of communications failure (although transparent operation

is also supported). Importantly, these approaches recognise that complete

transparency is not always desirable in mobile environments.

3.3 Application Level Approaches

The previous sections have presented a wide range of system software aimed at

providing low level support for host mobility. In general, these approaches focus on

support for handling the change in locality typically exhibited by mobile hosts. The

work presented in the following sections concentrate on services designed to improve

application performance over mobile channels (which are typically characterised by

limited bandwidth and high connection set-up times). The work presented here is

based on two fundamental premises, firstly, that through additional processing at the

host, the volume of information that is transmitted can be reduced and, secondly, that
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communication can be avoided in the first place by off-loading processing to remote

sites that have improved network connectivity. These two approaches are discussed in

more detail in the following sections.

3.3.1 Intelligent Communication Filtering

In low bandwidth mobile connections, particularly in a pay-per-use environment,

it is important to reduce the use of the communications link to a minimum. Columbia

propose an architecture which interposes an agent between a client and server to delay

or filter information, thereby reducing bandwidth requirements [Zenel,95]. The

architecture focuses on easy installation and management of application specific

filtering mechanisms within the agent.

There are four basic types of action the agent may take :-

• Run an optimised protocol such as low bandwidth X.

• Omit unnecessary data; for example, dropping the packets generated by statistics

gatherers such as rstat.

• Delay transmission of data to force the client to demand fetch it. For example,

an editor may only require prompt delivery of the first page of a document

(successive pages can wait until required).

• Use compression techniques to tradeoff processing against bandwidth.

It is likely that only a small number of packets are sufficiently self contained to

allow a quick forward/drop decision to made. More commonly, a considerable level

of application specific knowledge will be required to sensibly make these decisions.

The architecture consists of a number of proxy servers constructed upon

Columbia’s Mobile IP implementation (see section 3.1.3). The Mobile Support

Routers (MSRs) used by Mobile IP are a natural place to perform filtering since all

packets to and from the mobile host are forwarded via the MSR.

Non-filtered data is sent via the proxy server by constructing a virtual interface

(which looks like a standard network interface to tools such as ifconfig). Filtered

data is identified by a combination of IP address and port number.

Currently an API to install filters into the proxy server has not been developed;

instead the mechanism has been hard-coded into the server. Work is underway to

develop a generic filtering language which would be interpreted at the server and thus

allow dynamic installation. The filtering language is expected to contain primitives

such as forward, discard and so on.
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3.3.2 Mobile Agents

In addition to the filtering techniques already described, further bandwidth

reductions can be achieved by using migrating or mobile agents. The basic premise is

that, rather than accessing data over a low bandwidth link and then applying some

selection criteria upon it, the processing technique itself can be migrated to the remote

site, applying the selection criteria and returning only the relevant data. Agent based

techniques are similar to deploying a proxy server between a client and server which

uses algorithms and filters to sift the data on behalf of the client. However, unlike

proxies which often reside at a fixed site, agents are more mobile and often form a

more general architecture which allows agents to dispatch and interact with further

agents to accomplish their task.

3.3.2.1 TACOMA

TACOMA [Johansen,95] is a collaborative project between the Universities of

Tromsø and Cornell, which aims to use agents to tackle problems traditionally the

domain of distributed operating systems, such as process management and scheduling,

messaging, file transfer and fault-tolerance. These agents are required to be portable

across hardware platforms and hence are written in an interpreted scripting language.

The architecture is generic, enabling any script with its own interpreter to be

integrated (current development work has focused on Tcl/tk). The agents themselves

are communicated using a distributed systems platform known as Horus [van

Renesse,94]. Horus, like its predecessor ISIS, provides guaranteed group

communication semantics in a fixed network environment. It is plausible however,

that by modifying or replacing Horus with a suitable platform, the concepts that have

been developed could be employed in a mobile environment (see section 3.6.3).

In order for an agent to perform an action based on some previous action, it must

carry some associated data with it as it migrates. In TACOMA, where agent migration

is expected to be frequent, the associated data is maintained as a list of uninterpreted

sequences of bits. Thus no elaborate index structures need to be encoded and

transferred. To facilitate efficient access to the data, local data that is non-migrating

can be associated with the migrate-able state.

To allow agents to collaborate in TACOMA, they may exchange information by

meeting each other. The meet operation is analogous to a remote procedure call in a

traditional distributed programming model. The agent abstraction and meet operation

are sufficient to construct more sophisticated computational operations such as inter-

agent communication and synchronisation. Additional issues such as using the agents

to procure services with electronic cash, scheduling the agents in autonomous

domains and implementing fault tolerance, are also being considered.
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3.3.2.2 Agents for Remote Actions (Ara)

Kaiserslautern’s Ara project [Peine,96] has set out to achieve a portable and

secure infrastructure for executing mobile agents within heterogeneous networks.

More specifically, Ara aims to focus on system support for agents operating on

mobile computer systems with wireless connectivity.

Mobile Agent

Interpreter A Interpreter B

System Agent 
(compiled)

ARA core

Host Operating System

Mobile Agent
Ara processes

Figure 3.1 - The Ara architecture

The Ara architecture is illustrated in figure 3.1. Agents are executed by an

appropriate interpreter; an agent and interpreter collectively form an Ara process. Ara

processes are concurrently executed in their own independent address space by a

lightweight threads package controlled by the core. The Ara core runs as a single

native process on the supporting host. New interpreters need only support a set of up-

call operations (for example, initialise, checkpoint etc.) and stubs to access core API

functions (such as parameter checking and conversion, agent authentication and so

on) in order to be integrated into the system. Currently, agents and interpreters for

Tcl/tk and MACE (an interpretable byte-code translation from C++) have been

integrated.

The Ara core provides agents with a set of generic services including local and

remote agent directory services, named interactions with other local agents and

migration control. Higher level services may be developed through the addition of

system agents which are addressable through the core (system agents are compiled

into architecture dependent code on each platform for performance reasons). All agent

service access is via the core, enabling secure access to resources to be maintained.

The current implementation runs on networked SparcStations running SunOS 4.1

and portable PCs running Linux 1.2. The portables have local-area wireless

communication via a 19.2Kbps radio modem. Future developments are expected to

include improved graphical user interface access, core mediated file access, agent
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persistence for improved fault tolerance, on-the-fly compilation to improve

performance, and the integration of the Java interpreter [Sun,95].

3.3.2.3 Telescript

General Magic’s Telescript [White,96] is an object-oriented remote programming

language that has been designed for writing commercial distributed network

applications comprising one or more agents. Telescript embodies three concepts:

agents, places and the “go” metaphor. Places run a telescript interpreter which

provides a safe controlled environment for executing agents.

Telescript is an interpreted, dynamic, object-oriented programming language.

Each Telescript program (or script) is made up of one or more classes. Each class

supports a number of features which are publicly visible operations and attributes.

Classes may be organised hierarchically using sub-classing and mix-ins (a form of

multiple inheritance). Features or whole classes may be sealed to prevent them from

being overridden in descendent classes.

A number of pre-defined classes are provided in a standard library, these must be

supported by every telescript interpreter. The library includes the following three

classes :-

Object The Object class is always at the top of an object hierarchy.

Process Process classes provide multitasking functionality, such as multi-

threading and process creation.

Agent The agent class supports the “go” operation which migrates an agent to

another host.

An agent can perform the go operation self referentially. The agent must supply a

ticket which locates the host it wishes to transfer to. If the operation is successful, the

agent continues executing the next line of code at the new destination. Alternatively,

if the destination host refused the agent’s ticket, a trip exception is generated.

To effect an agent transfer, the sending engine must encode the agent state for

decoding at the recipient engine. The agent state includes the run time state, all

objects owned by the agent and all referenced classes (unless a class is built-in or

known to already be supported at the destination). Consequently, an agent is

completely self-contained.

Telescript engines can be interconnected to form a “telescript network”. A

telescript network is conceptually technology independent. Current engines support

agent transfer using TCP/IP and UDP over PPP for dial-up links.
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3.3.3 Analysis

The preceding sections have presented an array of complementary techniques

which can be employed to aid application performance, particularly within low

bandwidth environments. These techniques may be essential for improving the

performance of both legacy and mobility-aware applications in mobile contexts.

Significantly, both the Columbia filtering architecture and the agent based approaches

recognise the role of application specific knowledge in the handling of bandwidth

minimisation techniques. In the first case, through a dedicated API and, in the second,

through the factoring out of application specific code into the agents themselves.

3.4 File Systems for a Mobile Environment

This section reviews work on mobile file systems, i.e. file systems designed to

provide a standard file system interface which allow mobility unaware applications to

run without modification in a mobile environment.

3.4.1 CODA

The CODA file system [Satyanarayanan,90] is a highly available replicated file

system developed from earlier work at Carnegie Mellon on the Andrew File System

(AFS) [Satyanarayanan,85]. AFS is made up of stateful servers and one or more

untrusted clients. The servers are physically secure, only run trusted software and are

maintained by professional staff. The clients locally cache whole files from the

servers; the consistency of cached files is maintained by the servers who call-back the

client whenever a cached file becomes outdated (these notifications are referred to as

call-back breaks).
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Figure 3.2 - The CODA state transition diagram
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In CODA, availability is increased by replicating volumes (portions of the file

space) over a volume server group. While the client is connected to the servers (in the

hoarding state, as shown in figure 3.2) the local cache is loaded with files that are

prefetched from the user’s working set either periodically or at the user’s request

(typically before manual disconnection). The files prefetched are determined by the

user’s hoard database file which contains file and directory paths together with

associated priorities. The database is constructed using file access traces and explicit

hints from the user.

If the client cannot reach any of the volume server group or disconnects from the

network altogether, the client temporarily becomes a replica site. The file system

moves in to the emulating state where it optimistically allows operations on the files

in the cache to continue as if the servers were still available [Kistler,91] (providing the

file is not already known to be inconsistent). All the file operations are logged to a

local update log.

When a server becomes available the client moves into the write disconnected

state [Mummert,95]. Operations are still logged as when “emulating”. However, the

update log is reintegrated to bring the server replicas up-to-date. Only when all of the

logged changes have been replayed and the connection to the servers is of a suitably

high bandwidth will the client move back into the hoarding state. If the connection is

via a low bandwidth connection (often called “partial connection”) the client can use

the link to receive server consistency guarantee call-backs, begin to reintegrate the

update log in the background (known as trickle reintegration), service cache misses in

selected cases and write back files to make room in the cache if it has become

exhausted.

Before a cache miss is serviced, user intervention is sometimes required. For

example, servicing a cache miss on a 1Mb file will take over 20 minutes at 9.6Kbps,

so giving the user a choice about whether to fetch it or not is clearly important.

CODA defines a term known as the patience threshold, which is a logarithmic

measure based on the user assigned priority of the file in the hoard database. User

intervention on cache misses is only sought if the estimated time to service the request

exceeds the patience threshold.

Over prolonged disconnected periods the update log can get very large. Research

has shown that a large proportion of the files are transient, existing only for a short

period of time. Logged accesses to transient files such as these can be optimised from

the log. For instance, the updates to a file which is subsequently removed before

reintegration can be removed from the log. The benefits of log optimisation need to be

balanced against the speed of update propagation in write disconnected mode.
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Specifically, if the update is propagated too quickly, the optimisation routine may not

have enough time to discover that the update was made unnecessarily. CODA

operates an ageing window policy which delays write-backs long enough for

optimisation to take proper effect (traces have indicated the current value of 600

seconds to be a suitable compromise).

During the reintegration process inconsistencies may be discovered. To help

preserve transparency, application specific conflict resolvers can be employed to

automatically reintegrate these conflicting copies (in practice roughly 80% of

conflicts are handled without user intervention). If a conflict cannot be automatically

resolved, a fake directory is created that has the same name as the file and contains the

conflicting file replicas. The user must resolve the conflict between the replicas

manually. Dependencies between file types and specific resolvers are defined in a

hierarchical system of rule files, akin to UNIX Makefiles. The resolver code is

executed on the client machine, as CODA servers must only ever run trusted software.

To avoid a number of potential security attacks possible with the resolver mechanism,

some simple defences have been employed including process permissions, trusted

resolver directories and forcing manual resolution. To limit the effects of badly coded

resolvers which tie up system resources, each resolver is only permitted to execute for

a certain amount of time (which is user configurable).

3.4.2 Odyssey

When mobile clients access remote data in a wireless network they can expect to

experience a wide of variation in network quality. Odyssey [Noble,95] is a set of

extensions to UNIX to provide support for mobility. These extensions are largely at

the system call level and internal to the operating system. Odyssey presents

applications with an API that allows it to retrieve and present data with varying

degrees of fidelity. This is termed application-aware adaptation.

The Odyssey platform is a generalisation of previous work on the CODA file

system (described above). Odyssey, like CODA, subscribes to the view that resource

poverty, physical vulnerability and scalability concerns of mobile hosts require a

client-server architecture where fixed servers maintain repositories of data and mobile

clients are merely caching sites.

In the Odyssey model, the operating systems’ role is to sense external events and

monitor and allocate resources. Applications should then take responsibility for using

the information and resources to adapt to changes. For example, an application

accessing video data may degrade the quality of the image if network bandwidth is

reduced.
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Data is stored in tomes, which are conceptually similar to volumes in AFS and

CODA. In addition to normal volume contents, each tome is allocated a type or codex.

Each codex identifies a unique combination of characteristics and policies such as

naming, consistency, degradation policies to reduce bandwidth consumption and

caching strategies. Like CODA volumes, tomes are the unit of replication and must be

stored entirely at each replica site. Although tomes are attached at mount points, a

tome need not be organised hierarchically. For example, a tome containing SQL

might be named associatively. Data of a particular type must be stored in the correct

tome, i.e. video data must be stored in the video tome.

The Odyssey API allows an application to negotiate for resources and receive

notification when these go outside a “window of tolerance”. Resources may be

generic to all tomes (such as disk space, network bandwidth or battery power) or

codex specific. Once an application receives a notification from the platform, it must

take corrective measures and negotiate a new window of tolerance. The interface is

similar to the signal interface of UNIX. The upper and lower bounds of the window

are passed to the API with a resource identifier and a call-back function to invoke,

should the resource transgress these bounds.

The viceroy is an agent within Odyssey which is responsible for monitoring the

generic events and resources. In addition, the viceroy handles functions common to all

tomes such as authentication, location and administration.

Type-specific monitoring is provided by codex specific wardens. Each warden

maintains its own cache, naming scheme and resource management specific to its

type. Ultimate resource control rests with the viceroy which acts as a coordinating

entity between wardens. The architecture is extensible allowing new wardens to be

added to manage new storage types. Implementation of the architecture is currently

underway.

3.4.3 LittleWork

The aim of the LittleWork project [Honeyman,91] is to develop a mobile

computing environment identical to that of the office, using only ‘off the shelf’

components. Consequently, to maintain compatibility with existing file servers,

LittleWork’s file system has been implemented on top of vanilla AFS with no

modifications made to the file servers.

Unlike CODA, the LittleWork file system is not based on a replication paradigm.

The project team have observed that replication does not generally improve

availability in current mobile environments since typical mobile computers
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communicate with a fixed network via a single mobile air interface and thus fixed

resources are either available or unavailable depending on the wireless link.

The AFS client software on each mobile host has been modified. The first set of

modifications involved the addition of congestion control into the AFS RPC

mechanism (called RX). These modifications have been sent back to the implementer

of AFS to remain faithful to the goal that components should be off the shelf.

Connection and disconnection is currently controlled by the command line

instructions disconnect and reconnect. In common with CODA, operations in

disconnected mode are allowed to continue optimistically on locally cached files.

Each operation is logged to allow reintegration and conflict resolution when

connection is re-established. Whole file caching (the mechanism initially used by

AFS) simplifies cache management and conflict detection and resolution

considerably. However, the most recent version of AFS caches files in blocks of 64K.

The LittleWork file system has upped the block size to 1Mb, since the majority of

important files are expected to fall below this threshold and will thus be entirely

cached.

The cache is “pre-heated” by tracing operations while in connected mode. No

explicit user intervention, such as hoarding, is required. Although it can be argued that

a single trace of program execution will not yield all the files that may be used, over

time the minimal working set will be constructed. In contrast, CODA’s hoard

database can lead to large apparent working sets containing unused data. For example,

a user might specify in the hoard database that they require the X windows system.

The hoarding process may then cache all the associated X libraries and binaries

including a considerable number that are rarely used. There is also the danger that the

cache will be “overheated”, filled with so much information that some has to be

discarded before a cache miss can be serviced.

Logged operations can be classified into those that will and will not cause file

conflicts (described as mutable and non-mutable operations respectively). Non-

mutable operations are still logged to allow detection of operations which have been

conducted on stale information. As with CODA, a considerable amount of log

optimisation is possible. In contrast however, the LittleWork optimisation process is

user triggered, rather than running as an ongoing background process.

When the client reconnects to the network, a background process begins

propagating updates to the server files. Directory conflicts can be resolved

automatically. In the case where a directory has been deleted at the server that used to

house a cached file, the file is placed in the orphanage for user intervention. All file
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conflicts are detected and flagged for user resolution (there are currently no automatic

resolution techniques).

In addition to fully connected and fully disconnected modes, LittleWork supports

a partially connected, fetch-only mode for low bandwidth environments. In this mode,

operations are conducted upon cached files as when disconnected. The main

difference is that in fetch-only mode, cache misses can be serviced to a limited degree

using the link. Additionally the server can offer improved cache consistency by using

the link to offer AFS style call-backs. It is worth noting that the client may not always

want the most recent version of a file. For example, should the X window library files

be updated, the current cached versions will probably suffice until full connection is

re-established.

The partially connected mode is supported by a version of Jacobson’s compressed

SLIP [Jacobson,90] (CSLIP) called Lottery SLIP [Huston,95] designed to improve

response times for interactive traffic in the presence of file system activity. Lottery

SLIP operates three independent priority queues (one more than CSLIP),

corresponding to interactive, mid-priority traffic and file system traffic respectively

(in high to low priority order). Messages are assigned to a queue on a per message

basis depending on the destination port in the message header. Messages are drawn

from each queue using a lottery scheduling algorithm which offers probabilistic

guarantees of fairness and service [Waldspurger,94]. Lottery scheduling works by

allocating a number of tickets to each item that desires access to a given resource. The

higher the priority, the greater the number of tickets the item is allocated. When it is

time to schedule the access to the resource a draw is held, the holder of the winning

ticket is allowed to use the resource. Thus, the exact number of tickets chosen

determines the rates at which messages are drawn from each queue.

3.4.4 SEER

SEER is a predictive cache whose aim is to automatically identify (and predict)

the working sets of a particular user and hoard them prior to disconnection

[Kuenning,94]. SEER is implemented over FICUS [Guy,90] (or RUMOR, a user

space version of FICUS) which is a file replication platform layered on top of NFS.

SEER, FICUS and RUMOR have all been developed at the University of California,

Los Angeles.

FICUS has been designed to be a very large scale, highly available file system. As

a consequence, the file system has been designed to minimise global state and to

avoid assumptions about availability (as any large scale network will suffer from

partitioning due to failure). Like CODA, FICUS achieves availability through
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replication. In contrast to CODA, files are shared in a peer-to-peer hierarchy rather

than a client-server structure.

Unlike most file systems, FICUS permits volumes from remote servers to be

mounted at arbitrary graft points in each host’s namespace. Remote volumes can be

mounted automatically (known as auto-grafting) when a graft point is encountered

while traversing the file hierarchy. Unlike traditional tree structures, a volume may be

grafted on in multiple places in the namespace forming an acyclic directed graph.

FICUS itself is comprised of a stack of layered modules, each supporting identical

symmetrical interfaces (in and out). Although the project team have sometimes found

these interfaces constraining, the modular architecture allows a high degree of

configurability as layers can be added or removed simply and efficiently.

Semantically, the file system supports one-copy availability which allows any

copy of file data to be updated without requiring access to a particular copy, or

number of copies. Although permitting a high degree of availability, one-copy

availability offers weaker consistency than alternative schemes such as primary copy,

voting, weighted voting or quorum consensus.

Each file has an associated version vector which enables the reconciliation service

to discover update conflicts. FICUS must preserve no lost update semantics.

Directory conflicts are automatically resolved and, as with LittleWork, an orphanage

metaphor is used when remove/update conflicts are detected. Updates to files and

directories are propagated to all available replica sites to maintain consistency. Like

CODA, application specific resolvers are used to resolve write conflicts (the

resolution problem is more general than that found with CODA due to the peer-to-

peer architecture and version vectors).

The aim of SEER is to automatically determine the working file sets

corresponding to user tasks based solely on observations of user behaviour. These sets

are used to stock the cache to lower the probability of catastrophic cache misses and,

in the event of a miss, to have sufficient alternative working sets cached to allow the

user to change to a secondary or tertiary task. SEER relies on the assumption that a

given working set is both predictable and sufficiently small to fit in the mobile

machine’s cache.

SEER defines a term called an attention shift to describe the process of a user

turning from one task to another (one working set to another). The process of

determining the working set is further complicated by issues such as process

concurrency and attention shifting between sets which share common members.
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To attempt to establish relationships between files (and hence their membership to

a given working set), SEER calculates a measure known as semantic distance. The

distance between two files a and b is defined as 0 if the files are open simultaneously,

otherwise it is the number of files opened between a closing and b opening. The file

distances are further clarified by removing accesses to common utilities and libraries

such as cc and libld.a. Since distances could potentially be calculated between

every pair of files, the predictive cache could quickly become too expensive in both

computational and storage terms. Statistics are kept on the 10 semantically nearest

files to the last 100 most recently accessed.

SEER is implemented in three parts: the cache manager, correlator and observer

processes. The cache manager is implemented as a FICUS module. The module gains

predictions by talking to each users’ correlator process which in turn gathers semantic

information from observer processes on each host. Initial implementation results

indicate that the SEER system is quite effective for minimal system overhead. Further

work is expected to examine the impact on SEER of introducing mobility support into

FICUS.

3.4.5 Jetfile

The Swedish Institute of Computer Science (SICS) are developing Jetfile

[Grönvall,96]: a highly scalable distributed file system designed specifically for

operation in wide scale heterogeneous networks (such as the Internet). The majority of

current distributed file systems rely primarily on unicast communication which places

inherent limits on scalability. In contrast, Jetfile makes extensive use of the multicast

communication paradigm (provided by either network hardware or, in the Internet

domain, SRM).

The inherent location transparency afforded by multicast enables clients to obtain

files without necessarily knowing the location or identity of the provider. A client

requiring a particular file (or portion of a file) joins a multicast group hashed from the

file identifier and multicasts a repair message. Any client or server within the group is

capable of multicasting the file in response to the request (clients thus contain

traditional server functionality and are referred to in Jetfile as file managers). By

snoop ing  on activity within the multicast group, file managers avoid

acknowledgement implosion and, in addition, may be able to intercept relevant

updates or meta-information.

To maintain consistency, each file has an associated version number which is

updated each time it is modified. When a file is opened for writing, the appropriate

versioning server for the file must be contacted. The update to the file can continue
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optimistically while waiting for the new version number. The versioning server acts

as a serialisation point, ensuring that the same version number is never assigned more

than once and, additionally, enabling write-write conflicts to be detected (application

specific resolvers may be then be used). File managers snooping the multicast group

will detected the version request and corresponding repair message and realise their

current cached versions have been invalidated (the version messages can be thought

of as multicast versions of the call-back breaks in AFS). In addition, managers

periodically ask versioning servers for version tables to verify their cache contents

(these are of course multicast and will be intercepted by other interested parties).

Version tables are equipped with time-to-live fields to enable invalidation of stale

information.

For reliability, a master copy of every file is kept on a storage server. Jetfile

operates equivalent sequential write sharing semantics to the popular NFS and AFS

file systems, i.e. operations are made on the version of the file that was opened (it is

not patched with updates as they occur), and writes are flushed back to the server once

the file is closed. Changes to the file must be propagated back to the server before the

manager leaves the relevant multicast group, otherwise the new version of the file will

have no server. The Jetfile namespace is organised into a hierarchy of organisations,

volumes, directories and files (directories are simply tables in ordinary files).

Versioning and storage servers are associated at volume granularity.

To cope with the vast dynamic range of network QoS present in modern and

emerging wide-area networks (optic fibre to wireless links), the file system features a

range of adaptive prefetch and write-back policies. For example, in high bandwidth

networks, large portions of a user’s working set are prefetched to minimise the round-

trip times of accessing the files. Furthermore, other members of the multicast group

will be able to snoop the working set without incurring the propagation delay. The

prefetching process operates as a background process. Once a file has been fetched,

associated files are scheduled for prefetching. Working sets are stored as meta-data

with each file and are predicted based on observed file access patterns. The most

passive form of prefetching is simply to join the appropriate multicast group in case

the information can be snooped.

In contrast, in a low bandwidth network, particularly where costs are associated

with data transfer, the antithesis is true. The minimum amount of data the user

requires to begin work would be prefetched. For instance, prefetching the first page of

a document in case the remainder is never required. In addition, all files might be

written-back at the end of an editing session to enable the updates to be batched and

reduce the time spent connected to the network.
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The mapping between files and multicast groups is not necessarily one-to-one.

This property may be exploited to provide a range of services at different bandwidths,

enabling clients to join the group that is most appropriate to their network capability.

For example, a server could provide a file to low bandwidth (9.6Kbps), intermediate

(10Mbps) and high bandwidth (100Mbps) groups at different levels of detail.

The Jetfile prototype runs on a the JetStream gigabit local-area network and on the

Internet multicast backbone (MBone). In addition, Jetfile is designed to take

advantage of the multicast facilities that will be available in IPv6.

3.4.6 Disconnected Operation Cache (DOC)

DOC [Huizinga,94] is a cache based architecture which supports optimistic whole

file replication and emulates continuous server access whilst disconnected. Although

based largely on concepts from the CODA and LittleWork file systems, the target

domain for DOC is MS-DOS/Windows (although the intention is to support

heterogeneous networks and servers). DOC is under development as part of a wider

DOC project at California State University, Fullerton.

The designers identified the following requirements :-

i) The server should be unaware of the modifications required to support DOC,

implying a client only solution.

ii) Communication to servers must be possible by any available interface, be it

serial, parallel or via PC card.

iii) Disk accesses must be reduced to maximise battery life.

iv) The file system API must not be changed on the client, enabling DOC to

remain transparent (although an extended cache API may be required).

One of the primary goals for DOC is to offer the additional partial and full

disconnection functionality without introducing additional user perceived latency

while the user is connected. Existing file servers make extensive use of caching

techniques to improve response times, hence DOC caches to RAM in preference to

local disk. Hooks have been placed to trap System Management Interrupts (SMIs) that

are triggered on power cycles to checkpoint the cache to disk.

To reduce overhead, DOC uses a three layer hierarchy of caches: a primary cache

in 64K of base memory, a secondary cache in 31Mb of extended memory (XMS) and

lastly the local disk (if necessary). Only the primary level is used to communicate
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between the cache, server and application which reduces the overhead of accessing

XMS. The cache is maintained according to a least recently used strategy.

When the client is in connected mode, all modifications to a file are written back

to the server when the file is closed. Once the client is disconnected, the connection to

the server is emulated; allowing operations on the cached files to continue. Like

CODA and LittleWork, file updates are logged to the local disk while the client is in

disconnected mode. The validation of the current cache contents is performed by the

client (there are no AFS style call-back guarantees).

DOC supports the same file access semantics as the Novell file system, which

simplifies disconnected file access. Normal files (non-shared) are only permitted to be

opened for reading or writing by one client at a time. Files tagged as shared may be

opened by multiple readers but only one writer, providing any modifications are made

immediately available to all of the readers. DOC caches only non-shared files, which

forces shared file access to be conducted only whilst fully connected. Write/write

conflicts are still possible as non-shared files can be updated by both a disconnected

client and a client connected to the server simultaneously. Conflicts are detected

during cache validation using time stamps which are written to the update log. The

user must choose how to resolve update conflicts by selecting between the client

version, server version or generating a new file. Currently no automatic conflict

resolution techniques are employed.

3.4.7 Intelligent File Hoarding

Intelligent file hoarding [Tait,95] is an attempt to improve on the existing cache

hoarding approaches of CODA, SEER and DOC. In addition, the new hoarding

strategy builds upon earlier work on developing a file system for mobile computing

[Tait,93]. Prior hoarding approaches use some combination of spying (user traces) and

hoard profiles to determine which files should be prefetched into the cache before

disconnection. Intelligent file hoarding uses a technique called transparent analytical

spying to determine users’ working sets.

The aims of this technique are :-

• to automatically detect working sets,

• to provide the concept of generalised bookends (which delimit independent user

defined tasks),

• to present working sets to the user using a convenient graphical user interface,

and
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• allow the user to manually trigger the hoarding process.

The first aim, detecting the working sets, is based on traces of the user’s file

accesses observed by the IBM OS/2 ‘Mobile File Sync’ installable file system (which

is functionally very similar to DOC). At hoard time, trees representing the inter-file

relationships are constructed from process identifier information in the user activity

log. The trees can be expanded over multiple program executions to get a more

informed picture of the libraries and sub-programs which may be used.

The trees can contain references both to application and data files, which would

lead to unnecessary caching of data files that were used during the last traced

executions of the applications. The hoarding process uses a heuristic to distinguish

between the two file types. The first step relies on the fact that OS/2, like DOS,

enforces the use of file extensions to determine content type. For example, the

extension .EXE implies an executable file. The next step is an inference based on the

file’s location. If a suspected data file is located under a different parent directory to

the application then it is more likely to be data than another file under the same parent

(as applications and components are typically co-located). The final factor in the

heuristic is based on the modification time stamps of the files; data files are more

likely to have been more recently modified than application files, so if a parent and a

child file have not been modified for m months and their modification times are

within u months, then they are considered part of the same application. Currently, m

and u are set to 3 months and 1 month respectively.

The generalised bookends allow the user to specify the beginning and ending of a

period of activity; this effectively assigns a name to a portion of the file access log

with which to distinguish distinct working sets for different tasks.

3.4.8 Bayou

Bayou [Demers,94] is a replicated weakly consistent storage system, developed at

Xerox Parc, which provides high availability by allowing users to read and write any

data replica. Rather than providing transparent support for an existing file system,

Bayou focuses on supporting applications which are aware that they are reading

weakly consistent data and that their write operations are likely to conflict with others

at some point. Furthermore, application specific conflict resolution techniques are

supported whose eventual aim is to achieve replica consistency. Bayou has been

designed to support a plethora of non-real time collaborative applications, such as

shared calendars, E-mail and document editing.
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Each set of data (known as a data collection) can be replicated at multiple servers

for availability, a client needs access to only one server to access the collection (a

server and its clients may co-reside on the same host). Client applications may interact

with any server through a programming interface supporting the operations read and

write. The client may read or write to the data without waiting for it to propagate to

any other replica site. Session guarantees can be provided to reduce client observed

inconsistencies when accessing different servers. Upon writing, a server maintains an

ordered log of each write and a unique write identifier. Local conflicts are detected

and resolved immediately and any resulting changes to the data are made immediately

available. Periodically, a pair of servers exchange write information in anti-entropy

sessions. Eventually, assuming that servers are not permanently partitioned, all writes

will propagate to all servers. As conflicts often occur at a site remote from the

application, resolution must be possible automatically.

Bayou supports two mechanisms for detecting and resolving write conflicts,

dependency checks and merge procedures. The dependency check, which consists of

an application specific query and expected result, is supplied as part of the write

operation. If the dependency check does not yield the expected result, then a conflict

has occurred and the application supplied merge procedure is followed to perform the

resolution. If a merge procedure cannot resolve the conflict, it is flagged for user

intervention using a merging tool. Merge procedures can be considered more general

than application specific file resolvers as they can accompany, and take specific action

for, a single write operation.

Eventual consistency over the replica sites is achieved by guaranteeing two

properties: writes are performed in the same well defined order at all servers; and

conflict detection and resolution is a deterministic process. When a write is received

by a server it is assigned a logical time stamp and initially labelled as tentative, which

persists until it can be committed. A write can be considered stable at a particular

server once all writes that should be executed before it have been played at the server.

Non-stable writes can potentially be committed then unrolled during the anti-entropy

process if causally earlier writes are discovered.

To speed the rate at which all writes become stable, an explicit primary commit

scheme can be employed. Explicitly committed writes take precedence over any

tentative writes and are propagated during the anti-entropy process to the other replica

sites. Using primary commit avoids the expense of accumulating the quorum of

servers required by more elaborate schemes, which lends itself to an environment

which experiences frequent periods of disconnection.
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The current implementation of Bayou is written in ANSI C on SparcStations and

Linux PCs. The merge procedures are written in Tcl. Communication between clients

and servers is via ILU, a platform independent RPC package also developed at Xerox

Parc.

3.4.9 Analysis

Mobile file systems, such as those described above, play an important role in

supporting legacy applications in mobile environments. By weakening file

consistency and offering optimistic access to cached files, the approaches offer

demonstrably effective file systems in the face of disconnection. The more recent

approaches such as Jetfile and Bayou, which have been designed with mobility in

mind, also use this optimistic premise (although Bayou is specifically designed to

make potential inconsistency visible to applications). Interestingly, in generalising the

concepts of CODA, the Odyssey team have found that an API is required to determine

when and how bandwidth minimisation techniques should be applied (moving toward

a less transparent approach).

3.5 Mobility in Open Distributed Platforms

There has been a limited amount of work investigating the impact of mobility on

open distributed platforms. In this section two are considered: mobile DCE and

mobility within the NOTUS architecture.

3.5.1 Mobility Support for DCE

The work of Schill et al. [Schill,95] at the Technical University of Dresden, aims

to develop a supporting architecture within DCE which enables applications to

operate in a mobile environment. In the mobile DCE model, a system is described in

terms of a set of logical domains. Each domain comprises one or more sub-networks,

which in turn contain mobile or fixed hosts (or stations). A domain manager in each

domain accounts for all member stations within the domain, provides brokerage

services for the stations’ services and resources, contains an abstract network

representation of the domain and keeps a potentially changing list of peer domains.

Each station must be a member of a single domain only. Domain managers

periodically exchange hints about the services and resources offered by remote

domains. A mobile station must register (or deregister) information on the services

and resources provided on the mobile on joining (or leaving) the domain.

Resources in the system are classified according to the following criteria :-
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State Resources are qualified either as possessing state (stateful) or not

(stateless).

Access If a stateful resource may be modified by a single application only it is

designated stateful-static. Alternatively, if the resource can be

modified concurrently it is called stateful-dynamic.

Emulation A stateful resource is termed emulatable if it can be synthesised

(perhaps with a subset of the functionality) from cached data.

Volume Resources have an associated course grained measure of data size.

Applications access the station manager through subsystems which encapsulate

normal DCE and OS functions, such as RPCs and file access primitives (a direct API

is also available). The wrapper libraries pass operations to the station manager for

service via local procedure calls. The station manager mediates access to resources

and, if the service becomes unavailable, may transparently employ one of the

following mechanisms :-

Full caching Allow the application to continue working from cached data.

Remote domain Access an equivalent service from the remote domain.

Remote access Access the required resource in the home domain.

Emulation Supplement cached data with (typically a subset of) application

functionality through emulation.

A semi-transparent mode is also provided, in which the station manager presents the

recommended alternatives to the application for selection.

The station manager makes the decision on which of these mechanisms to employ

according to information stored on the application behaviour, resource and service

requirements. Table 3.1 illustrates the basic decision policies for resource access over

a range of networks.
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Kind of resource

Connectivity Stateless Stateful-static Stateful-dynamic Emulatable

Disconnection Remote domain Full caching Full caching
(manual

reintegration)

Full caching
with emulation

Wide-area
Wireless

Remote domain Full caching Remote access Full caching
with emulation

Medium
bandwidth

Remote
domain/access

Full caching Remote access Remote access

LAN Remote access Remote access Remote access Remote access

Table 3.1 - Resource management decisions

Each application’s behaviour is described by a hierarchical state machine which

enables the station manager to select equivalent services. The state machine may be in

multiple states at the same time to represent concurrency and, additionally, may

comprise multiple disjoint automata to represent non-deterministic state transitions.

The station manager includes a modified form of DCE/RPC which may rebind

ongoing RPCs to alternative services. In addition, the RPC operations may be logged

for later reintegration. If the substitute service does not provide the full range of

operations, the RPC enables emulated services to make up the remainder (if

available).

The basic domain architecture and interchange protocols of mobile DCE have

been implemented under OSF/1 on DEC Alpha workstations. Work is underway to

port these components to Windows NT. Early results indicate that, even with small

example programs, complete distribution transparency was neither possible nor

desirable in mobile environments. In addition, high level descriptions of the network

and application behaviour were necessary to support semi-automatic resource

management under this scheme.

3.5.2 Mobility in a Trading Environment

The NOTUS architecture [Pope,95] is based on the premise that performing a

traditional connection handoff as found in IP based mobility solutions will cause all

the existing IP connections between the migrating host and the original fixed host to

be reconstructed. However, in a mobile environment, which may make extensive use

of replication, it may be possible to find the same service from a local server in the

new cell. A handoff which is reconstructed to a local service rather than the original

one is considered a traded handoff.
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In order to provide traded handoffs, more abstract information is required than the

network level address. Applications are structured in terms of modules. Each module

may support an interface which is an instantiation of an abstract data type. A traded

handoff is achieved by renegotiating each service the client uses at the new site using

properties of the interfaces.

In addition to service migration, a checkpointing package is provided which

allows applications to migrate in response to network QoS changes. Application

migration reduces RPC latency between a client and server or can provide a new

service to a base station to avoid a client having to rebind to the original server. The

checkpointing package can be used to facilitate application migration across host

architectures.

When an application migrates, the initiating module checkpoints itself then

informs its local name service or trader. The trader informs the other modules of the

application which have advertised themselves as checkpointable to save their state.

The trader then accepts responsibility to start a remote version of the application and

transfer the checkpointed state to it. The remote trader triggers the modules to restart

using the transferred state.

The architecture is underpinned by support for traditional or flat handoffs. A

virtual network layer provides a mapping between a virtual and physical Berkeley

socket interface. When migration occurs during an RPC, the physical connection is re-

established to a new physical socket; the client will not receive the reply to its request

which will cause a retransmission (the time-out interval can be avoided at the expense

of migration transparency). Similarly, the server may receive a duplicate request from

the client once the new connection is established. These problems are typical of those

experienced in a distributed system. The additional expense of implementing a full

mobile IP protocol is not thought to outweigh the benefits of full transparency in the

case of the NOTUS environment.

NOTUS is currently implemented on top of the Nemesis Distributed Operating

System which has been designed to support multimedia applications and provides

support for addressable modular units of code. In the test environment, which consists

of DEC Alpha workstations on a 10Mbps Ethernet, the cost of an RPC is found to be

of the same order of magnitude as a server migration.

3.5.3 Analysis

To the author’s knowledge there has been little work examining mobility support

within open distributed platforms. Given the importance of open systems technology,
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particularly within industry, this lack of interest is perhaps surprising. The majority of

the work carried out in this field attempts to handle mobility as another form of

distribution transparency. The author believes that this is the wrong approach. The

role of transparency and adaptation in distributed systems platforms is discussed

further in section 3.7.

3.6 Other Related Research

This section aims to cover some of the other related research in the field of mobile

computing. Much of the work presented here relies on one or more of the concepts or

technologies presented in the previous sections.

3.6.1 Wit

The Wit programming paradigm [Watson,94] developed at Washington, requires

applications to be custom written to work in a mobile environment. Each application

is split into two halves (a process described as application partitioning): a mobile

portion (typically the user interface) which is resident on the mobile host, and a static

portion (often retaining the data parsing functionality) which remains on the fixed

network. Each portion contains data objects which may encapsulate multimedia data

and program functions. Objects (known as hyperobjects) may be migrated, replicated

and linked hierarchically in response to resource management decisions.

The mobility of the host is hidden from the application. Indeed, all efficiency and

system resource concerns such as caching, prefetching and filtering of hyperobjects

are handled transparently by the architecture. To aid Wit in the resource management

process, relationships between objects are specified as a graph by each application.

Nodes in the graph correspond to data objects, with edges expressing inter-object

relationships. Graphs of objects, written in the Tcl scripting language, are

communicated with the Wit architecture using an API. This approach contrasts with

those typically employed by the mobile file system community, where user access

patterns are used to pick out data relationships.

This approach is currently being investigated using a network of PCs and

SparcStations attached to a high speed wireless LAN. Evaluation applications

including World Wide Web browsers and CAD tools are under development.

3.6.2 Adaptive Wireless Information Systems

The work of Rutgers University has concentrated on the design of an architecture

to support wide-scale provision and dissemination of information to large number of
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mobile consumers [Imielinski,94b]. Rutgers subscribe to the view that networks are

largely fixed with mobile support stations providing connectivity to mobile hosts on

the fringes of the network. Each mobile support station will support two basic

information delivery paradigms: on-demand and broadcast (publishing mode). On-

demand information must be explicitly requested by consumers. Broadcast

information is transmitted to all hosts within a cell. Pages of information from a

particular service are allocated based on the frequency of request to either of the two

“channels”. In this manner it is hoped that the most efficient power and packet

efficiency can be achieved.

In this model, future information services are expected to be classifiable in terms

of geographic scope. For example, at the finest granularity, pico-cells may transmit

information about parking space availability, building layout or advertisements in a

shopping centre. At the largest granularity, general information is expected such as

stock market information or news bulletins.

The published information channel is expected to have a number of advantages.

For example, information flow is uni-directional from the MSSs to the clients, which

avoids use of the clients’ transmitter to save battery life. In addition, protocols can be

developed to allow a client to doze while waiting for information to be broadcast,

which would make further power savings. To facilitate this mode, a network interface

which is capable of filtering information based on a particular multicast address is

required. Such an interface would only wake the client when information on a

particular address was received.

Currently none of the architecture has been implemented, although changes to the

world wide web protocol (HTTP) have been proposed.

3.6.3 MobileChannel

MobileChannel [Cho,94] is a tool constructed on top of the ISIS [Birman,89]

distributed systems platform which aims to support host migration through group

communication. ISIS provides two fundamental functions: group management and

group communication. Two communications primitives are supported for group

communication: CBCAST and ABCAST. CBCAST implements reliable causal

ordering delivery to each group member. ABCAST, implemented on top of CBCAST,

gives total ordering semantics, i.e. every group member observes events in the same

order. Moreover, these primitives are used to attain virtual synchrony, which is the

illusion that every event happens synchronously in the system, despite processes

receiving event messages at different physical times.
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The MobileChannel tool is a lightweight agent which is responsible for converting

mobile client messages into ISIS events which may then be transmitted to the host’s

primary server on the fixed network. The primary server uses ISIS to propagate

updates to its replicas using multicast. In MobileChannel, migration is handled as an

intentional “primary switch”, i.e. the transition between using one primary server to

another (this normally only occurs on server failure in a fixed network).

The virtual synchrony model allows handoff (and consequent change of primary

server) to occur without the normal handshaking process between the new server, old

server and mobile client since state information is already propagated to all possible

servers.

The current implementation is on SparcStations with PC mobile clients. A 2Mbps

WaveLAN wireless LAN has been used to evaluate the MobileChannel performance.

The test environment is not able to locate mobile clients nor are the WaveLAN

devices capable of roaming and handoff. Therefore handover has to be software

triggered and emulated.

In order to scale the architecture, a hierarchical approach is suggested where the

server group membership changes with host location. For example, as the client host

migrates, servers near the host join the group replacing more distant hosts in the

group. In this fashion the servers surrounding the host (termed a flock) are consistent

enough to take over a primary server. The ISIS distributed systems platform and

MobileChannel tool were originally conceived at Cornell.

3.6.4 Bay Area Research Wireless Access Network (BARWAN)

The BARWAN project at Berkeley [Katz,96b] aims to develop a scalable

architecture to support the integration of wireless access technologies which “overlay”

one another to offer seamless connectivity to mobile hosts. Furthermore, a testbed,

employing a range of services from indoor infrared and wireless LANs to broadcast

satellite services, is being constructed to validate the architecture (shown in figure

3.3).
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Figure 3.3 - Overlay network testbed

Wireless technologies are seen as either being black pipes or cooperative

networks. A black pipe (most commonly a wide-area subscriber service) provides

communications services with little control over routing, priority or network QoS. In

contrast, a cooperative network makes low level information available and may

support a control interface. The BARWAN architecture is designed to layer over these

technologies to provide seamless integration with vertical handoff between

technologies. For example, if a group of hosts are using an IR LAN within a room and

a further user joins them, the architecture may choose to handover some of the

connections to an overlapping RF LAN to balance the load.

Support services are provided to enable applications to initiate handover between

overlays, enquire about the QoS provided by the network and gracefully adapt to the

changing characteristics of the network. More specifically, transmissions from mobile

hosts are strongly typed (the type system is dynamically extensible). Thus based on

media type and network information, the support services can employ bandwidth

minimisation techniques on the applications behalf. For example, bitmaps may be sent

in raw, compressed, or highly compressed (lossy) forms depending on link quality. In

addition, the project has developed a video transcoder [Amir,95b] which can translate

motion-JPEG at 1Mbps to 256Kbps H.261 for wireless transmission at between 21

and 30 frames per second (depending on the quantity of motion in the video stream).
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Figure 3.4 - BARWAN layered architecture

Figure 3.4 illustrates the conceptual architecture for the wireless overlay

internetworking and mobile applications support services. The architecture consists of

a number of layers, the lowest of which is the interface to the overlay sub-networks

themselves. Each network type has its own IP address which is managed by a new

protocol called Overlay IP. Overlay IP provides the functionality of a conventional

mobile IP protocol (see section 3.1) with additional policy driven mechanisms for

determining which sub-network to choose for a given packet.

The Overlay Network Management Layer handles the routing of packets across

heterogeneous networks. More specifically, this layer is responsible for choosing the

most appropriate sub-network to provide end-to-end connectivity given an

application’s QoS requirements. In addition, low latency vertical handoff support is

provided within this layer [Seshan,95]. The handoff algorithm makes use of IP

multicast and base station location information to reduce the latency of connection

handoff. Essentially, as a host migrates, a multicast group is formed containing the

current base station and those that the host is likely to encounter given its current

speed and trajectory. Packets destined for the host are multicast to the base station

group. Each base station is therefore prepared with the most recent messages for the

host when handover occurs. The Overlay Network Management Layer additionally

supports the mobile TCP connection-oriented communications service (described in

section 3.2.2).

The BARWAN architecture is being designed, deployed and evaluated with the

following wireless technologies: a WaveLAN local-area network, a Metricom
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wireless packet relay network (both on campus at Berkeley and in the East Bay area),

CDPD from GTE Mobilenet and DirectPC Direct Broadcast Satellite services from

Hughes. The low latency handoff, reliable wireless transport and video transcoding

mechanisms are all implemented. In addition, a low bandwidth web browser has been

developed which utilises an image proxy service (to adjust bitmap quality as outlined

earlier). User initiated vertical handoff between multiple wireless LANs and the

Metricom service is operational. Network initiated handoff between local and wide-

area networks is currently under development. One of the first applications which will

be developed over the architecture is to provide medical personnel in the Bay Area

with a tool for consulting specialists about diagnoses at emergency incidents.

3.7 Adaptation and Transparency

The work presented in this chapter demonstrates the wide ranging impact that

wireless communication has had on system and application level software. Note that,

a significant number of projects have taken the approach that mobility should be

handled transparently. Indeed, it is worth noting that mobility transparency is required

to support legacy applications. However, mobility transparency presents a number of

problems.

Consider the Walkstation project, first mentioned in section 2.3, an application

using a Walkstation interface will not be aware which networking technology is

carrying its data. The application has no way of knowing the implications of

transferring a large amount of data and, in addition, can perform no optimisation (for

example, attempting to save bandwidth or match its packet sizes to those of the

network). Furthermore, the application has no control over which network is used for

any given interaction, or of specifying how the information should be treated (for

example, based on urgency or network QoS requirements). Although representing an

extreme case, the argument applies to any scenario where an application is kept

uninformed of changes in its supporting infrastructure.

Significantly, a number of independent research efforts (namely MosquitoNet,

Odyssey and BARWAN), have each highlighted that even legacy applications will

perform poorly in scenarios such as these. Indeed, Baker observed in a recent paper :-

“Bandwidth, latency, bit error rates, security, and cost can all differ

significantly from one type of network to another. We believe it may be

advantageous to inform upper-layer network protocols and some applications

of these changes so they can adjust their behaviours accordingly” [Baker,96].
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Examining the research presented throughout this chapter: efficient mobile IP,

wireless TCP and mobile RPCs provide valuable technologies for mobile

environments, if packets are to be efficiently routed to mobile hosts and bandwidth is

to be utilised efficiently. Mobile file systems, such as CODA and Jetfile, are essential

for supporting legacy applications such as document editing or software development.

However, these protocols and services will be required to provide information to

higher layers, if applications are to adapt.

Therefore, with this additional information, services and applications can apply

any of the vast array of techniques to adjust their communications requirements to the

available resources. For example, data fidelity or CPU time may be traded against

bandwidth by using media specific techniques such as those in the Odyssey Wardens,

mobile DCE Resource Manager or the BARWAN Application Support Services.

Intelligent filtering techniques or agent based technologies such as TACOMA or Ara

may help to reduce bandwidth requirements. Services may be migrated or alternatives

found as with Rover, Traded handoffs and Mobile DCE. Furthermore, the application,

either itself or by providing feedback to the user, might avoid many communications

related problems simply by changing the expectations of the system (for example,

postponing a particular task until later).

The need for application level adaptation is intensified by the introduction of

heterogeneous networked environments (proposed in chapter 2 and constituting the

BARWAN testbed) and the demands of advanced applications. As highlighted in

chapter 1, experience suggests that suitable distributed systems platforms can greatly

simplify the development of advanced applications. Furthermore, environments

comprising heterogeneous integrated architectures will require open distributed

processing platforms. Accepting that this is the case, it is clear that these platforms

must also provide facilities to enable application level adaptation.

Currently, only the Mobile DCE platform attempts to handle mobility within a

heterogeneous network. Mobile DCE classifies the use of resources and describes the

functionality of applications using finite automata. Thus, it is suggested that by

providing generic bandwidth minimisation mechanisms and high level abstractions of

the network and domain services, host mobility may be handled transparently using a

set of simple selection policies. Moreover, more complex policy decisions may be

handled by the bandwidth and cost management subsystem and through an API

enabling the application to select from the supported mechanisms.

In the author’s opinion, it is both burdensome on the application developer and not

necessarily practicable to classify all resources and applications in this way.

Furthermore, it is unlikely that generic components are able to supply a broad enough
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range of translation and decision making mechanisms to cope with the requirements

of advanced applications in heterogeneous networked environments. A more

realisable approach would offer a streamlined platform which provides a framework

for managing the network and application QoS. Then, through a process of feedback

to and control by the application, enable it to adapt by applying task and data specific

knowledge offset against the currently available resources.

3.8 Summary

This chapter has presented a comprehensive survey of system services and

application level architectures to support mobile computing. Current research is

largely providing abstraction over changes in the supporting infrastructure and

yielding complete transparency to user applications.

Based on these surveys it has been argued that transparency does not allow

applications to make the best use of the available communications link. Furthermore,

applications will require information about changes in the network QoS to be made

available so they may respond by adapting their behaviour.

The remainder of this thesis focuses on the development of an open distributed

platform which provides a QoS based architecture for monitoring and feedback of

network QoS to support adaptive mobile applications in heterogeneous networked

environments.
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Chapter 4

Advanced Mobile
Applications in the
Utilities Industries

4.1 Introduction

This chapter introduces some background information that is necessary to aid

understanding of the application and platform presented in the next two chapters. The

work was carried out within the context of the MOST project [MOST,92]. The project

aimed to develop an advanced mobile application to support field workers in the

electricity industry (although the concepts demonstrated are intended to be equally

applicable to other complex distributed utilities such as gas or water). As part of this

work, an extensive requirements capture exercise was undertaken which had a direct

influence on the design of the application and supporting platform.

This chapter describes the results from this study. More specifically, the structure

and function of a typical electricity utility company is discussed. An example scenario

is presented which demonstrates a number of shortcomings in the current working

practices of the industry and illustrates how a collaborative application could assist in

overcoming these problems. Lastly, a set of requirements for the application detailed

in the next chapter are highlighted.
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4.2 The Power Distribution Industry

The U.K power industry is divided up into fourteen divisions, each on average

responsible for 16,000 square kilometres of geographical area. Each division must

provide electricity to approximately 1.8 million customers, which requires around

54,000 kilometres of distribution network. The following sections describe how this

vast power distribution infrastructure is organised and maintained.

4.2.1 The Power Distribution Networks

Each division’s network is structured hierarchically into a number of constituent

sub-networks each operating at a different voltage, typically 132kV, 33kV and 11kV

(see figure 4.1). These sub-networks are referred to as high-voltage or HV networks.

Below 11kV, the network is considered low-voltage or LV.

Figure 4.1 - Power distribution network operating voltages

The voltage level and network density/complexity are inversely proportional. The

national grid (which supplies each division) operates at the highest voltages, but

additionally covers the greatest area and has the fewest interconnections. At the other

end of the scale, the 11kV network supplies substations within residential and

commercial developments. Consequently, the 11kV network spans less area but is far

more densely interconnected. Below 11kV, the LV network is fragmented into 4kV,

480V and 240V for supply to individual customers (the higher voltages being for

factories and light industrial complexes).

The 132kV network is made up of a small number of substations interconnected

by multiple supply paths to allow the maximum configurability. The network is

dynamically configured to cope with fluctuations in demand and any emergency

supply interruptions that occur. The 132kV network is simple enough to be
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represented on an electronic wall chart which, in addition, monitors and controls

remote actuators. The actuators supply voltage and current telemetry to the control

centre and enable switching of power between substations. Generally, it is not cost

effective to deploy remote sensors and actuators in the lower voltage HV and LV

networks.

The 33kV network consists of many more substations than at the 132kV level.

However, the number of interconnections between these substations is considerably

reduced: a typical substation has two incoming feeders which are in turn routed to a

number of smaller substations which transform the voltage to 11kV. The 33kV

network is too complex for conventional electronic representation and so is typically

represented diagrammatically on a series of wall charts. Pins or magnetic markers are

used to indicate the state of switches within the network. Several systems are under

development which aim to represent these complex charts on a computer without

losing the meta-information that experienced control room engineers draw from the

conventional wall mounted diagrams.

Figure 4.2 - Layout of LV power supply
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The 11kV network is the voltage which supplies the substations in individual

residential and commercial areas (see figure 4.2). Generally, the type of power

transmission technology corresponds to the requirements of the geographical area

they supply. For example, in rural areas overhead lines are most commonly used,

whereas in towns and cities cables are frequently buried underground. In both cases,

the cables are laid out to mirror the layout of roads and houses to ease location and

maintenance. Below 11kV, the LV network is too large and complex to be laid out on

a wall chart. Instead, the network is represented on a large number of individual

sheets which are kept and updated at a central location.

4.2.2 Operational Issues

Repair work on the power distribution network is largely event driven. The work

events are scheduled according to some measure of urgency: external (fault driven)

events are considered more significant than internal events. External events are

scheduled “on-demand” in response to power outages. The urgency of an external

event is driven by how quickly power can be restored. Thus, if power can be restored

to the affected area by some alternate supply, the remainder of the repair work on the

faulty section will become an internal event (unless the repair is trivial). Internal

events are scheduled in advance according to criticality. For example, repairing a

redundant feed to a substation in case the primary feed fails would be considered

more urgent than the ceaseless programme of cable renovation (in a large division, 50

year old wiring that is still in service is not uncommon).

The system which controls the work activity can be grouped into the three

domains shown in figure 4.3 (some overlap of tasks is inevitable in the real system).

Control centre

Trouble call 
centre

Operations 
section

Figure 4.3 - Components of the work scheduling and maintenance system

The trouble call centre is the utility’s interface to the general public. Significantly,

the centre is also the primary mechanism through which faults in the distribution

network are discovered. In the event of an abnormality or malfunction, telephone calls

from people suffering from outages (power cuts) allow the company to gauge the
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location and the size of the fault, i.e. calls coming in over a widely dispersed

geographical area would signal a fault at a higher voltage level than calls from

customers located along a single road. The trouble call system incorporates a voice

processor to enable the automatic filtering of reports relating to faults which are

already under repair. In many instances the outage is caused by third party damage

such as the laying of cable television networks. In these scenarios, the third party

contractor may report the damage directly, pinpointing the fault without the need for

detailed diagnosis.

The control centre is responsible for coordinating all operations which affect the

state of the network in order to preserve both integrity and safety. Their remit

includes :-

i) Managing disjoint teams of engineers that are physically distributed in largely

fixed but separate locations,

ii) coordinating and maintaining the view of current network state, and

iii) talking the teams sequentially through operations on the network.

The network state is maintained on a number of paper or electronic wall charts

(many utilities are digitising their network diagrams for inclusion in a computerised

representation system). In addition, the control centre gathers tele-control information

from sensors in the HV network which can sometimes highlight faults. For example,

if a primary substation detects a sudden drop of 100 Amps which corresponds to the

load of a particular sub-network then it is likely that the lower level substation has

tripped on detection of a local fault.

The operations centre schedules work for the maintenance engineers as well as

serving as a base for the field staff and a reference library containing permanent

copies of the division’s maps and schematic records. When the trouble call centre

reports a new fault, the operations centre is responsible for allocating manpower to

carry out the first line investigation. If the fault is on the LV network then, in a high

percentage of cases, all that may be required is for an emergency engineer to replace

the fuse at the substation. If replacing the fuse does not fix the problem, then the

emergency engineer will report back to the operations centre to call out a fault

engineer to diagnose the problem. If the fault is on the HV network then a fault

engineer will be required with appropriate information on the geography and network

configuration. Once the fault has been diagnosed, any switching of the HV network

must be done under consultation with the control centre in order to maintain network

integrity.
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If power restoration can be fully achieved by reconfiguration, then emergency

switching restores the supply and the repair becomes a scheduled work item. Only

where full supply is not possible will an emergency work item be scheduled. An

emergency work item may take staff from planned work depending on a balance of

who may respond the most rapidly against the urgency of the fault and the deferability

of the work already undertaken by that person. Such a balance requires a high degree

of accountability and coordination between members of staff at the operations centre

and the field workers themselves. Should a field engineer be transferred to a different

item of work then they will require access to the relevant maps and schematics for that

area: either an engineer must be limited to the area that he can carry information on,

or must detour via the operations centre to collect new information.

The field workers themselves are organised into a number of specialisations

depending on experience, expertise and seniority. There is a requirement for

cooperation between field workers, particularly where some have specialist

knowledge or experience which is needed before making decisions. For example,

portions of the LV network can be ‘checked out’ to fault engineers who will supervise

all the repair operations on that section of network until it is ready to be ‘checked in’

(in each case by talking through a sequence of switching steps with the control

centre). This deferring of responsibility helps amortise the cost of a central point of

control by using experienced field staff. However, subordinate field workers will

often need to contact more experienced field staff regardless of where they might be

located. In addition, further maintenance to the section of network administered by a

particular field engineer will call for a degree of collaboration before work can begin.

Once the engineers have completed the repair work, the fault is documented by

annotating the composite mains record (CMR) for that region to indicate switching

changes or new wiring (the CMR details the geographical layout of the region,

overlaid with LV schematic information). The margins of the CMR are often used for

comments such as the particular grade of cable used or to describe the depth and

location of the repair in relation to another cable or feature. This highlighted record is

submitted to the operations centre who disseminate it to the draftsmen for inclusion in

the permanent record, and to the control centre to update the picture of the network

state.

Typically, field engineers will experience different latencies on updates sent to the

control centre depending on the nature of the repair: HV network changes will be

updated quickly (typically within 24 hours), whereas LV changes could take a week

or more to be accurately reflected. To operate in such an environment there is a

requirement for rigorous safety procedures to allow an engineer to discover
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inconsistencies between the perceived network state at the control centre and the real

state at a point in time.

4.2.3 Physical Security

Work on a electricity distribution network is by necessity safety critical. In the

absence of technological solutions, strict physical mechanisms have been developed

to enforce safe operation. To give some examples, when field engineers take

responsibility for a section of LV network they are required to physically travel to the

operations centre and obtain the linen for a particular region before they can negotiate

for control with the control centre. The linen is literally a piece of linen cloth with a

copy of the region’s CMR. Any other engineer who is interested in that particular

section of network must either negotiate with the engineer possessing the linen or,

more frequently, wait for the engineer to finish with the section.

A further example is the pervasive use of physical locks and keys, particularly

within substations. Each fault engineer will carry a number of unique padlocks and

keys which can be locked on to physical switches to prevent any other engineer

changing the state of the switch (activating or earthing for example) without prior

contact with the engineer. When the fault engineer has to coordinate teams of people

on the same section of network, a lockout box is often used. The lockout box is

literally a metal box with four locks, three with unique keys and a fourth with a

common key that is allocated to all fault engineers (therefore a fault engineer has to be

present to open the box which preserves the chain of authority). Before work can

begin on the section of network it must first be isolated then earthed by throwing

switches at the substations at either end of the section. To ensure the section remains

isolated, the switches are padlocked into position and the keys locked in the lockout

box (to cope with larger groups, lockout boxes may be ‘chained together’ by placing

one of the unique keys in another lockout box). Thereby only with the consent of all

key holders can the section of network be re-energised which ensures the safety of the

workmen.

4.3 Information Technology Support

The following sections examine the current role of information technology within

the electricity utilities. More specifically, the communications infrastructure and a

range of supporting computer systems are described. In addition, a number of

limitations with the current system are highlighted.
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4.3.1 Communications Infrastructure

Most of the utilities companies in the U.K operate their own analogue PMR

systems (section 2.2.1.2 described PMR systems in more detail) within a dedicated

band of frequencies. The PMR systems are based on the MPT 1327 trunking standard

which allows analogue point-to-point voice calls to be established and limited status

code messages (numbers 0-31) to be sent using the control channel. The status codes

are used extensively to operate a call-back queuing system at the control centre. The

system is half-duplex and makes use of vehicle mounted transceiver units with push-

to-talk hand held microphones.

Anecdotal evidence gathered during the requirements capture suggests three

primary criticisms of the current system: coverage, lack of prioritisation and lack of a

group channel. These issues are considered in more detail below.

Common channel

The current PMR replaced an earlier system of handheld push-to-talk

walkie-talkie style radios. Although the PMR systems are far more

sophisticated and offer greater capacity and coverage than the previous

system, the connection-oriented communication style has changed the

way engineers work. With the original system all traffic was shared

with any receivers that were in range. This shared channel had two

advantages: firstly, in a real emergency, engineers could hear which

messages were truly urgent (for example, an injury) and secondly, by

hearing all the communication going on around them, engineers were

able to implicitly balance the load of repairs, knowing where

colleagues requiring help were located and whether or not they could

assist. The MPT 1327 standard does allow for group calls to be

established. However, the group establishment procedure is too

complicated for everyday use and requires all the parties in the group

to be known beforehand (new members cannot be added dynamically

to an ongoing call).

Traffic prioritisation

The PMR systems used in the divisions are heavily over subscribed,

particularly when engineers have to access the control centre (which is

often seen as a bottleneck). Engineers commonly wait for over half an

hour before the control centre is able to call them back. Furthermore,

the calls are not priority based, therefore an urgent or significant

communiqué has to wait on the call queue as long as any other

message.
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Coverage 

The coverage of the system can be very poor; engineers can experience

coverage blackspots where they must drive for up to thirty minutes

before regaining sufficient coverage to contact colleagues. Indeed,

engineers have begun to unofficially carry cellular telephones just for

cases such as this. The PMR system represents such a huge investment

to the utilities companies that it is difficult to justify the expense of

improvements to increase the quality or coverage of the system: the

current PMR systems have not been upgraded to use more recent

technology. Furthermore, under cases of extreme stress such as

emergency situations caused by severe electrical storms, the PMR

system can suffer from both insufficient capacity and interference

problems from the storm.

There are initiatives within most utility companies to move to newer technology.

The most likely candidate is digital PMR technology based on the TETRA standard,

although some are conducting trials using public telephone systems such as GSM to

examine their acceptability and cost effectiveness.

4.3.2 Computer Systems Support

Historically, the utilities industries have made extensive use of computer

technology throughout their companies. A significant number of independent systems

have become established for dealing with particular facets of the company’s interests.

System Purpose Location Hardware
Capital investment
management

Costing extensions and repairs to
the distribution network

Centralised Mainframe

Project records
management

Recording and monitoring work
project progress

Centralised Mainframe

Trouble call Collates faults and customer calls Centralised Mainframe
Plant records and
maintenance

Tracking the quantities and
location of plant

Centralised
and depots

Mainframe

Tele-control load
data analysis

Network load analysis and
prediction suite

Centralised Mainframe

Work instruction
management

Job dispatching and completion
records

Centralised Mainframe

Geographical
information (GIS)

Recording digitised schematic
and geographic records

Centralised Networked
workstations

Switching schedule
production assistant

Expert system for switching
schedule production

Centralised Mainframe or stand-
alone workstation

Network
representation

Replacement for electronic wall
charts

Control
centre

Workstations

Data in the field Trial of CD-ROM based CMR
records in the field

Mobile Portable computers

Table 4.1 - Overview of divisional computer resources

Table 4.1 illustrates the wide range of systems that are being used within a typical

utility company. These systems have been developed over many years, largely as a
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result of periodic and massive infrastructure investment. The value of the systems,

both financially and in terms of the information now contained within them, prohibits

them from being replaced. Hence, the typical utility will have a range of legacy

systems which must be integrated with newer systems in order to be viewed as a

cohesive unified resource. As a direct result of this incremental development, these

systems are based on a wide range of hardware and software technologies. In

particular, the mainframe systems are based on wholly proprietary technologies which

makes interworking particularly difficult (and hence many utilities are interested in

open systems technologies).

In addition to internal system integration, there is often a need to work

collaboratively with adjacent divisions. Currently, the utilities industry supports a

limited form of inter-divisional cooperation through the adoption of a common PMR

system. Subject to authorisation, a field engineer can work under the domain of an

adjacent division to conduct ‘out-of-area’ work. While working in the foreign domain,

the engineer has access to his home domain through the PMR system. Such a facility

is often essential for dealing with HV faults with the national grid since switching

operations may affect multiple divisions and thus require coordination. It is

anticipated that, in addition to providing support for communication while in the

foreign domain, future systems will ensure out-of-area engineers can access their

home data services also.

The recent establishment of the common street-works register (CSWR) has led to

an external requirement for the electricity utilities to interwork with other utilities

such as gas or water. The role of the CSWR is two fold: firstly, it will enable utilities

to be aware of each others’ infrastructure to reduce the amount of third party damage

and, secondly, it will permit the utilities to loosely cooperate so that jobs on a

common area of network are scheduled concurrently. In order to support the CSWR

the companies are initially only required to be able to exchange textual messages

relating to scheduled work. However, it is anticipated that more complex interchanges

will arise as fully computerised public views of the distribution networks are

developed. Due to the mix of deployed technologies and the separation of

administrative control over each division’s computer systems, it seems clear that open

systems technology would be able to assist in the foundation of the CSWR.

4.4 Need for Collaboration

This section discusses how the communication and computer support aspects

already outlined are used, based on information gathered during the requirements

capture phase of the MOST project. More specifically, a hypothetical scenario is
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presented which highlights the collaborative nature of many distribution network

repairs.

4.4.1 Requirements Capture Process

To gain insight into the working practices of a typical division, the project team

conducted a series of interviews as part of the requirements capture process. The team

interviewed seven field engineers with a range of responsibilities and experience

chosen from a specific U.K. division†. More specifically, the interviewees were

responsible for the following jobs :-

• new business engineer,

• general construction engineer,

• under eaves wiring maintenance,

• fault engineer,

• trouble call,

• operations centre engineer, and

• overhead line engineer.

These interviews afforded the project with invaluable background information

concerning the structure and operation of a typical utility and, significantly, identified

a range of limitations with their current working practices. Based on this information,

a number of example distribution fault and repair scenarios were identified.

The following scenario was selected as being representative of the studied

working practices. The scenario is used in this thesis to highlight specific problems

experienced by field engineers (and also illustrates the uses and interaction of the

various IT components).

† A non-disclosure agreement covering all work conducted under the MOST project ensures that the
company must remain anonymous.
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4.4.2 A Generic Scenario

Substation A

Substation B

Substation C

Control Centre

Area of network to be repaired

Figure 4.4 - Maintenance of the power distribution network

Figure 4.4 represents a section of the LV power distribution network. The figure

shows the control centre and three substations, labelled A, B and C. The fault,

indicated by the shaded circle, can be considered to be on the HV feed to substation

B. It is most likely that a fault such as this would be detected as a result of customers

whose supply is fed from substation B calling in to report outages. The trouble call

system would log the reports and highlight the fault on a list of pending jobs. An

emergency engineer will pick up the task from the pending list upon returning to the

operations centre.
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Figure 4.5 - Basic fault finding and repair procedure
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The basic sequence of steps to effect a repair is outlined in figure 4.5. The

emergency engineer would analyse the fault report generated by the trouble call centre

and, from the list of attached customer reports, estimate the most likely point for the

fault to occur (substation B). At substation B, the engineer examines the state of the

trip switches and fuses in the substation to determine which part of the LV network

contains the fault. In this scenario, none of the switches would have activated and the

engineer could deduce that the fault was on the feed to the substation itself. The

emergency engineer is responsible for restoring supply to the affected customers as

quickly as possible. If supply cannot be restored simply by replacing a blown fuse, the

engineer must request a fault engineer to conduct a longer term diagnosis. The

emergency engineer must return back the operations centre to schedule the work using

both the project records and work instruction management systems.

The fault engineer would begin investigation at substation B, based on the

emergency engineer’s report, then work up the supply hierarchy until a substation was

found that had detected the fault (in this case the engineer would examine substations

A and C). The engineer would require the CMR for the affected region and would

consult the 11kV wall chart at the operations centre to obtain an overview of the

connectivity of substation B. The search area would be narrowed down to the section

of cable between the pair of substations A and C and the junction supplying the

primary feed to substation B.

Once the fault has been specifically located and analysed, the engineer can judge

whether supply can be restored temporarily to the affected customers from another

substation or whether the repair constitutes an emergency work item. If supply can be

restored, the engineer will consult the control centre using the PMR and, if

permissible, conduct the emergency switching. The remainder of the repair work will

then become a scheduled work item. Upon returning to the operations centre, the fault

engineer would need to update the wall chart to reflect the new state of the network

for other field engineers.

Figure 4.6 - A sample switching schedule

Before further work can be carried out on the fault (whether as an emergency or

scheduled item) the fault engineer must submit a switching schedule (see figure 4.6)



99

to the control centre using the internal mail system. The schedule describes in detail

the stages involved in carrying out the work and, in particular, the sequence of

switching which must be carried out to ensure that the work can be conducted safely

(i.e. the section of network being operated on is isolated and earthed) and with the

minimum of disruption to customer supply. The control centre checks the switching

schedule against the electronic wall chart illustrating the network state (this may be

held on its computer system) and approves or rejects the schedule accordingly. Expert

systems may be used by both the control centre and the field engineer in the

development of the switching schedule [Cross,93] although at present these systems

are not integrated with the centre’s representation of the global network state.

The fault engineer will use the plant records and maintenance system (either from

the operations centre or nearest depot) to requisition and locate plant for completing

the repair. When the repair work is to be carried out, additional field engineers will be

required at the appropriate switching points (substations A, B and C). The control

centre then acts as a central coordinator, using the PMR system to instigate sequences

of switching at each substation. The central coordinator serialises the switching

activities of the engineers to maintain the correct ordering to ensure the work is

conducted safely. In addition, using the PMR enables the engineers to reconcile any

differences between the notion of state at the control centre and the actual network

state. Thus, during the process the centre will gain a more up-to-date picture of the

current state of the network.

Once the switching has been completed, the section of network will be isolated

and repairs can begin. The repairs themselves will require the fault engineer to

collaborate with a jointing crew to dig up and patch the damaged section of cable. The

work instruction management system will be used to issue the jointing crew with the

necessary work instructions and, additionally, will allow the fault engineer to find out

when the work has been completed. Before the repaired section of network can be

switched back in to service, the fault engineer must ‘pressure test’ the repair. Pressure

testing ensures that the repaired section will handle the necessary load and, in

addition, that no other faults are present within the repaired section that were masked

by the primary fault.

When the repair has successfully passed inspection, the control centre is again

involved to return the network to its nominal operating state (the process is very

similar to the switching out process). When the entire repair has been completed the

engineer must return to the office to complete the necessary administration using the

project records management system.
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4.4.3 Analysis

There are clearly a number of disadvantages with the current system which impair

the efficiency and scalability of the architecture. Some of the more significant

restrictions placed on the system are outlined below :-

Available network state

The long latencies in updating network state information forces field

workers to adopt a wide variety of physical safety mechanisms to

ensure their own safety (a selection of these are discussed in section

4.2.3). In addition, all network state modifications require the direct

intervention of the central point of control. Field engineers often

experience long delays while in contention for access to the control

centre (which would increase if the network were to be expanded).

Serialisation

Serialising all collaborative activity through the control centre

rigorously enforces safety. However, once again, forcing each engineer

to repeatedly establish contact with the central point of control greatly

impairs the pace of the collaboration.

Centralised computational resources

Field engineers require access to a wide variety of systems in order to

obtain information and requisition resources for working on the power

distribution network. The vast majority of systems are only available in

the operations centre which imposes a significant number of time

consuming journeys, again reducing efficiency.

Locality information

The open channel PMR system first used by field engineers enabled

them to assist each other and balance repair load implicitly. For

instance, a field engineer requiring a jointing team would know the

location of the nearest team and allocate the task to them. In addition,

an engineer requiring temporary assistance or a piece of common plant

equipment would not be able to borrow from another engineer; instead,

the resource would have to be requisitioned. The current system does

not allow an engineer to know the location of their colleagues.

The problems with the control centre are further exacerbated during multiple

emergency situations where a number of unscheduled work items are generated (such

as the outages caused by a major electrical storm). In such a situation the control

centre tends to become inundated by messages from field engineers requesting
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information about, or permission to start work on, various parts of the electricity

distribution network.

A number of these disadvantages could be overcome by providing field engineers

with a computer based support tool to promote peer-to-peer collaboration. More

specifically :-

• Network state information could be checked out to mobile hosts to reduce the

load on the control centre and improve the availability of up-to-date information

(and thus promote safety). The engineers could collaborate without serialisation

through the control centre and check in the repaired network upon completion

(reducing the update latency).

• Collaborative information sharing tools would enable engineers to coordinate

their activities with co-workers and enhance conversational dialogues with

multimedia information such as diagrams and annotations, thus reducing some

of the ambiguity inherent in a voice only collaboration. For example, an

engineer could highlight the particular switch they are about to activate.

Furthermore, such a system would simplify the discussion of alternative

strategies and enable consultation with remote expertise.

• Providing remote access to operations centre systems such as project record

management, plant records and maintenance and work instruction management,

would enable engineers to drastically reduce the number of times they have to

return to the operations centre to access resources and coordinate with

colleagues. In addition, on-line information such as safety reference manuals

and CMR records would minimise the amount of travelling still further.

• Semi-automatic job dispatching and report completion at the location of the

repair would reduce the time taken to initiate and document changes within the

network and additionally reduce inaccuracies sometimes introduced during the

transcription process.

The benefits outlined above can be broken down in to a series of requirements

which must be met by a system aiming to provide field workers with information

technology support. The next section considers these requirements in more detail.

4.5 Requirements

Based on the information gathered during the interviews, meetings and workshops

which formed the requirements capture process, the following requirements were

identified for a system aiming to support field workers in the utilities :-
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Mobility

Field engineers are inherently mobile, so the application must run in a

mobile environment. However, most engineers travel in cars and vans

to enable them to carry sufficient information, tools and equipment to

effect a repair. Therefore, the hardware platform does not have to be

hand portable.

Multimedia

Field engineers manipulate information in a wide variety of media

types including scanned bitmap (or raster) images, line (particularly

hand drawn) vector images and text. In addition, support for voice

quality audio is essential for effective collaboration as data only

information exchange is too restrictive given current safety practices.

Spatially referenced data

Spatially referenced information pervades almost all activities within

the utilities. Supporting tools must provide mechanisms for accessing

and browsing maps, schematic diagrams and engineering drawings

within specified coordinates. In addition, this information must be

individually addressable and versioned to ensure that up-to-date

information is used as the basis for interactions and network state

updates.

Synchronous collaboration

The application should support peer-to-peer interaction of real time

multimedia information. The tools would allow field engineers who are

not physically co-located to interact using voice and a shared set of

maps and schematics which they can view and manipulate using a

number of highlighting tools. For example, engineers might use the

tools to coordinate a shared switching task or consult someone with

specific expertise.

Asynchronous collaboration

In addition to synchronous collaboration, the application should allow

looser (asynchronous) collaboration to permit information updates to

propagate in a non-time critical way. For example, a store and forward

(E-mail style) mode of working would allow field engineers to create

messages requesting the current state of a network subsection and have

the system forward the message to the control centre at an appropriate

time. In a multimedia system, the reply might include an image

showing the current state of the network subsection and an
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accompanying voice message. This reply could then be processed at a

time convenient to the engineer. By removing the synchronisation at

the control centre and decentralising control into the field, the control

bottleneck would be reduced and the architecture made more scalable.

Interoperability

The application must allow access to centralised resources of one or

more utilities (for example, through the CSWR). In addition,

collaboration with co-workers must be offered, regardless of an

engineer’s physical location and the type of system they are currently

using. The operations centre operates a heterogeneous hardware and

software infrastructure consisting of a variety of large networked

mainframes running a number of operating systems including UNIX

and VMS. A field engineer, on the other hand, would use a small

portable machine running Windows (for example) and need to use a

PMR or mobile telephone to dial-in to the fixed infrastructure.

As previously mentioned, the requirements identified in this section form the basis

for an application developed to demonstrate the feasibility of providing collaborative

tools to field workers over a heterogeneous networked infrastructure. The

requirements presented here are brought out in more detail throughout the analysis of

the design and implementation of the application prototype in the next chapter.

There are a number of additional requirements which are particularly important in

the development of a real system for deployment in the utilities industry. However,

these are not addressed in the remainder of this thesis. The most significant of these is

safety criticality: field engineers operate in an environment where incorrect or out of

date information could cause fatalities. Thus, if the real time network state

information were to be distributed into the field, the application would need to support

rigorous safety mechanisms to ensure reliable delivery of information and provide

guarantees that the state being viewed is either consistent or inconsistent (and make

the difference between the two clearly visible). Furthermore, all the voice and data

operations on each host would need to be logged; if an injury occurred, the health and

safety inspectorate would require a complete transcript of the events leading up to the

accident.

Additional requirements not addressed by this thesis include: ruggedising the

hardware technology to cope with weather and the wear and tear of everyday use,

employing encryption and authentication techniques to avoid sensitive information

such as customer records from being intercepted (either by scanning the
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communication or physically stealing the computers), and providing trusted access to

centralised systems to prevent malicious intervention.

4.6 Summary

This chapter has provided a variety of background information which is an

essential basis for discussing the application in the next chapter. More specifically, the

chapter introduces the hierarchical nature of the electricity distribution network and

discusses how this network is operated and maintained. The current information

technology support for field workers within the electricity industry has been outlined.

A scenario has been developed which illustrates how a fault is diagnosed and repaired

using the existing information technology systems and current working practices. A

number of shortcomings have been highlighted.

A set of requirements are outlined which specify an advanced mobile application

that addresses the shortcomings in current working practices. A prototype of this

application was developed both to address these requirements and act as an

experimental testbed for developing a supporting platform. The prototype application

is examined in some detail in chapter 5.
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Chapter 5

Application Support for
Field Workers

5.1 Introduction

This chapter details the design and implementation of an advanced mobile

application aimed at providing the necessary IT support to assist field workers in the

utilities industries. In research terms, the application had two purposes: firstly, it acted

as a testbed for establishing the support requirements of mobile applications and,

secondly, it provided a basis for evaluating the supporting platform (described in

more detail in chapter 6). Chapter 4 identified a set of requirements that must be met

by the application, these are outlined below :-

• mobility,

• multimedia,

• spatially referenced information,

• synchronous and asynchronous collaboration, and

• interoperability within heterogeneous networks and end-systems.

In project terms, the resulting application prototype acted as a proof of concept

demonstrator which facilitated discussion during the ongoing requirements capture

process. As a result, the design and evolution of the application was influenced

significantly by the wishes of real utility companies. The demonstrations culminated

in a limited field trial. The field trial consisted of a sanctioned emergency scenario
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that was enacted outdoors in which the prototype application was used to assist field

engineers in finding a solution.

The project partners hoped that the prototype would act as a catalyst to enable

changes in the current working practices of the field engineers that will allow them to

work more effectively. This was indeed proved to be the case and EA Technology

Limited are currently developing a reduced functionality product based on the

concepts trialled in the prototype.

The remainder of this chapter is broken down into three major areas. Firstly, the

design of application and the group conferencing architecture is discussed. Next, the

main functional components of the application are highlighted. Lastly, a number of

implementation constraints and choices are presented.

5.2 Application Architecture

The application prototype was engineered in accordance with a set of fundamental

design decisions which guided the development process. This section commences

with a discussion of these decisions before proceeding with an in-depth analysis of

application functionality itself.

It was decided that each instance of the application should represent a single user

or field worker. Therefore, the one application provides a common interface through

which that user interacts and communicates with other users. For convenience it is

implied that each engineer (application instance) is run on a dedicated portable

computer which can be customised to suit the user’s individual job structure and

personal preferences. Each engineer’s portable computer is able to make (intermittent)

use of a range of networking technologies including, wide-area connection-oriented

technologies such as a PMR or cellular telephone.

The application has been designed to avoid reliance on central services for

assisting in the management of group or application state. The nature of the

communications infrastructure and the mobility of the field engineers means that

intermittent connectivity between the hosts is inevitable. Providing the application as

a distributed set of components, one per host, decentralises the conference state to

maximise fault tolerance. Furthermore, reliability is increased by using distributed

algorithms to maintain inter-application interactions avoiding a central point of failure

(a central point might be unavailable over such a network, despite other hosts

remaining available). Note however, that in some PMR systems software can be run

on base stations providing a convenient point for establishing group state. The
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adoption of such an approach would impair the portability of the application to other

technologies.

The application is required to perform the following functions for the engineer :-

• Allow the retrieval and display of maps and schematics relating to the power

network.

• Establish and maintain multimedia conferences between field engineers

(communication of voice plus data).

• Enable engineers to prepare information both off-line (stand-alone mode) or

interactively through collaborative discussion within the conference.

• Provide auxiliary tools which allow fewer synchronous interactions, such as E-

mail, queries to remote databases, and automated job dispatching and report

completion.

• Supply tools for accessing and interacting with remote legacy systems such as

project records, work instruction management and plant records and

maintenance.

The requirement to support such a diverse range of functions, together with easily

predicted impediments of the target platform, such as small physical screen size and

the difficulty of using a keyboard in the field, led to the design of the prototype as a

“tool-box” of component modules. In particular, the user can activate any subset of

the available application modules to tailor their application to the task in hand. The

architecture is extensible, allowing new modules and functionality to be added

trivially (significant as the MOST project requirements analysis process ran for the

duration of the project).

Each component module has an independent graphical interface which may be

individually rearranged, iconised and sized to enable the current working set of

modules to best fit the limited display size. A virtual window manager is used on each

portable to enable a larger effective display area. The interfaces themselves make

extensive use of colour icons to reduce the physical size of the interface without an

attendant loss of information.

At the time the prototype was written there had been no work exploring

collaborative interface design for mobile environments. The interface was developed

by extrapolating from experience gained in fixed environments into a mobile context

[Greenberg,91]. Recently, researchers have begun to address the particular problems

posed by the communications delays inherent in mobile environments [Dix,95] but, as

yet, no firm results have emerged.
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The factoring of the application into separate interface components on the surface

is mirrored underneath in the application itself. The application is built on top of a

distributed object oriented architecture provided by a distributed systems platform

(with semantics similar to those provided by ANSAware [APM,89]). The actual

platform used and its relationship to ANSAware is discussed in detail in chapter 6.

Briefly however, the architecture provides a uniform computational model consisting

of objects which provide services through well defined interfaces (see section 6.2.3).

Such an architecture greatly simplifies the challenges of writing applications for

distributed environments by providing distribution transparencies (such as those

highlighted in chapter 1) which enable services to be located and accessed regardless

of physical location. In addition, the architecture provides a uniform set of system

services and mechanisms for intercommunication which permit interoperability of

applications within heterogeneous networks and end-systems (satisfying the

requirement highlighted in chapter 4).

The application tools are implemented as a set of RM-ODP compatible objects

which offer specific services via interfaces. All intercommunication is provided by the

platform through an RPC or invocation mechanism. Each instance of the application

accesses the modules of every other instance through invoking operations on the

service interfaces. Thus, by converting the platform to run on a new architecture, the

application can be ported with only minor changes. Furthermore, as all interactions

are via service interfaces and the invocation mechanism, an application module need

only support the specified interface to interwork with other application instances. So,

for example, one module could be replaced by an equivalent without affecting the

remaining components (for instance, replacing a particular GIS with a faster one)

providing it is capable of supporting the same interface. Section 5.3 considers the

application components in more detail.

Legacy applications also require RM-ODP compatible interfaces to be able to

interwork with the application. These interfaces could notionally be integrated into the

legacy applications themselves. However, since the majority of these applications are

no longer under development, a gateway application is normally required to ‘wrap’

the application and offer its functionality through a service interface. Attaching well

defined service interfaces to these applications has an additional benefit: once the

interface has been defined, new applications can be developed by the organisation

which are then able to interwork with the existing range of legacy applications using a

simple common mechanism, despite the heterogeneous networks and end-systems in

use.
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An alternative, and much explored, strategy for implementing collaborative

applications is through the use of a common windowing system, such as X, with a

multiplexer to share graphical information between hosts [Abdel-Wahab,91].

However, research has shown little positive experience of using standard applications

in a collaborative context [Lauwers,90]. Moreover, using such a protocol in a mobile

environment raises a number of problems [Kantarjiev,93]. For instance, users are

constrained to view shared information at exactly the same level of detail, resolution,

size and position on their displays (violating the premise of a configurable toolkit

approach). Moreover, such an approach would impair interactions between mobile

field workers and office based colleagues that are using more powerful fixed

workstations with larger higher resolution displays (particularly in the case of control

centre staff who are required to deal with multiple field engineers simultaneously). In

addition, windowing systems such as X generate a significant volume of high-rate

latency sensitive protocol traffic which is poorly suited to mobile communications

(although researchers are attempting to improve the performance of the X protocol

over reduced capacity fixed links [Fulton,93]). Lastly, tying all hosts within the

conference to a single windowing system implies firstly, that all hosts will be capable

of running the system (which infers a range of hardware and software limitations)

and, secondly, that the tools being used collaboratively will also run under the

windowing system.

5.3 Application Components

The complete set of computational objects that make up each instance of the

application prototype are illustrated in figure 5.1.
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Figure 5.1 - Object structure of the application prototype

The following sections consider the design and implementation of each functional

module in turn. The group coordinator module is considered first due to its central
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role in supporting the group conferencing and state management needs of the other

modules.

5.3.1 Group Coordinator Module

5.3.1.1 Overview

The group coordinator module is responsible for maintaining the decentralised

group membership. The module also manages operations common to all group

interactions, such as establishing the conference and dealing with dynamic changes in

group state as members join and leave. In addition, the group coordinator module

provides a stable, if pessimistic, fault recovery strategy where failed members are

removed from the group by default, but may be reinstated by any user at any time.

Mechanisms for bringing a user ‘up-to-state’ after a temporary disconnection from the

group are provided. However, no automatic mechanism currently exists to bring a

user’s module specific views up-to-state (for example, synchronising the users GIS

operations with that of the group), although this may be accomplished trivially with

user intervention.
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Figure 5.2 - Algorithm for starting a conference
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The group control messages themselves are propagated via platform invocations.

The algorithm for establishing a new conference is summarised in figure 5.2 (it should

be noted that this is just a summary; the full algorithm contains additional complexity

for dealing with establishing conferences with members who are already participating

in conferences and so on).

The flowchart illustrates some of the complexity introduced by the possibility of

failure during each communication phase. In essence, the algorithm consists of two

passes. The first pass asks each prospective conference member whether or not they

wish to join the conference. There are two possible outcomes: if they decline then

they are removed from all further dealings with the group; if they accept then they

may optionally inform the conference initiator of any further parties that should be

included in the conference. The second pass is to inform all the users who assented to

joining the conference.

The following sections examine the structure of the group coordinator in more

detail. More specifically, the computational structure of the module, the RM-ODP

compatible interfaces it provides to other modules and the module’s graphical user

interface are each examined in turn.

5.3.1.2 Computational Structure

The computational object structure of the group coordinator is represented in

figure 5.3 [Davies,95b]. In the figure, interactions between objects are shown as

numbered arrows.
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Figure 5.3 - Group coordinator object structure

The group coordinator maintains a pair of interfaces which offer private and

public services to other application modules and to the applications running on remote

hosts. The public interface is used by remote group coordinators to perform generic

conference management operations such as connecting and disconnecting a user,

adding users to an existing conference, and starting and stopping remote modules (via
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interaction 1). The signatures of the public operations supported by the group

coordinator are specified below (the examples throughout this thesis use the interface

definition language specified by the platform, see section 6.2.5.1).

GroupCoordinator : INTERFACE =
BEGIN
ConnectRequest :  OPERATION [ user : User ]

   RETURNS [ User; GC_Status ];
AddUser :   OPERATION [ user : User ]

   RETURNS [ GC_Status ];
RemoveUser :  OPERATION [ user : User ]

   RETURNS [ GC_Status ];
DisconnectRequest: OPERATION [ user : User ]

   RETURNS [ GC_Status ];
StartRequest :  OPERATION [ userid : INTEGER; module : Module ]

  RETURNS [ Module; GC_Status ];
AddModule :  OPERATION [ userid : INTEGER; module : Module ]

   RETURNS [ GC_Status ];
RemoveModule :  OPERATION [ userid : INTEGER; module : Module ]

  RETURNS [ GC_Status ];
StopRequest :  OPERATION [ userid : INTEGER; module : Module ]

  RETURNS [ GC_Status ];
END.

Figure 5.4 - Group coordinator public interface

A private interface supported by each application module (interaction 2 in figure

5.3) allows the group coordinator to instruct the module to perform initialisation,

terminate itself and show or hide its graphical interface. Modules are individually

responsible for managing application specific communications between itself and its

opposite number on the other hosts participating in the conference. So, for example,

the communications module is responsible for establishing an audio conference

between the participants. A private interface to the group coordinator (whose

operations are specified in figure 5.5) provides a number of supporting functions.

These functions include tests on the group state and a call-back interface for

informing modules of changes in group membership.

GroupFunctions : INTERFACE =
BEGIN
TestGroupMode : OPERATION [ ]

 RETURNS [ BOOLEAN ];
InstigatorQuery : OPERATION [ ]

RETURNS [ BOOLEAN ];
SetGroupMode : OPERATION [ GroupOn : BOOLEAN ]

 RETURNS [ BOOLEAN ];
RegisterJoin : OPERATION [ Module : STRING; Callback : Interface ]

 RETURNS [ Status ];
DeRegisterJoin : OPERATION [ Module : STRING ]

 RETURNS [ Status ];
RegisterLeave : OPERATION [ Module : STRING; Callback : Interface ]

 RETURNS [ Status ];
DeRegisterLeave : OPERATION [ Module : STRING ]

 RETURNS [ Status ];
ReportFailure : OPERATION [ Module : STRING; Suspect : Interface ]

 RETURNS [ Status ];
GetModuleId : OPERATION [ Module : STRING ]

 RETURNS [ Id ];
Fallback : OPERATION [ UserId : CARDINAL ]

RETURNS [ ];
END.

Figure 5.5 - Group coordinator private interface
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The application employs a straightforward mechanism for dealing with failure

within the group. Individual modules can inform the group coordinator that a module

they are in communication with cannot be contacted. Following a failure notification,

the group coordinator will purge the specified module’s interfaces based on the

assumption that the remote component has failed (and consequently, its interfaces will

have been invalidated, i.e. are now stale). At a later time the group coordinator will

renegotiate with the remote group coordinator to obtain an up-to-date interface for the

server once it has recovered. If catastrophic failure occurs, such as a remote node

powering down or a detectable system error, then the fallback operation provides an

expedient mechanism for removing that member from the group. More usually, group

operations would not be propagated to that member until such time as they can re-

establish communication.

5.3.1.3 User Interface

The group coordinator supports a graphical user interface which is shown in figure

5.6.

Figure 5.6 - Group coordinator graphical interface

The interface is pictured during a conference (in stand-alone mode the central

display and right hand buttons are not displayed). On the left hand side is a scrollable

list of icons which represent the modules that are currently available (the two shown

are the conference manager and geographical information system (GIS), illustrated by

a group photograph and a globe respectively). Underneath the list of modules are a set

of module action buttons. These actions include: starting, stopping, quitting the entire

application and, importantly, the cancel operation. The interface is underpinned by a

state machine which guides the user through operations by highlighting and greying-

out icons that are available and unavailable respectively according to the given state.

For example, if the user is attempting to start a module running, they would click the
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‘go’ button and the modules which are available and not already running would be

highlighted. At any point the user may cancel and drop back to the ready state of the

interface.

The right hand side of the interface has a scrollable list of potential conference

participants. In the trial prototype the number of users was sufficiently low to make

this form of scrolling list viable. However, in a real scenario it is expected that a more

scalable solution would be required, such as a searchable index or browser. Below the

scrollable list are the conference operation buttons: these allow the establishment and

clearing down of conferences and the addition and removal of participants. Operations

which affect other users require their consent before they may proceed. For example,

clicking the remove button and then selecting a conference participant from the

central panel will ask that member if they wish to leave, rather than removing them

from the conference immediately. The one exception is ‘disconnect’: the disconnect

button removes the user who presses the button from the conference; the act of

pressing the button is taken as consent from that user to leave.

The central panel to the interface displays all the information relating to the state

of the current conference. From left to right at the top of the window are the

participants of the conference excluding the user whose display is shown (the central

panel in figure 5.6 shows two other participants, implying that a three-way conference

is in progress). In a list below each participant are icons representing the modules that

are running on that participant’s machine (these are miniaturised versions of the

module icons on the left hand side). The lists of modules are arranged such that

corresponding modules on each host line up horizontally. In this case, the GIS module

is running on the first participant’s machine but not on that of the second participant.

These lists serve two purposes: firstly, the user can see at a glance the modules that

the other conference members are using and hence which tools can be used for

collaboration and, secondly, the module icons can be selected to toggle the

propagation of module operations to that particular user. This permits the user to

dynamically configure subsets of the group participants to receive operations from

each of their modules. For example, an audio conference could be established

between all the participants whereas GIS operations are exchanged by only two of the

members. At any stage, the user may select globally whether operations on local

modules are private or public to the conference (via the centrally positioned ‘group

operation’ button).

The user icons at the top of the central window also allow the user to direct

module operations to other users. For example, in the same way that the user would

start their GIS by clicking first on the ‘go’ button and then on the GIS module, the
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user might ask the other users for a GIS collaboration by clicking ‘go’ then one or

more of the user icons and then the GIS module. The users who assented to the

request would have their GIS modules automatically started and brought together in

the conference providing the local GIS module is already running or can be started

successfully.

5.3.2 Geographic Information System (GIS) Module

One of the central themes of the prototype is the sharing of spatially referenced

data such as maps, schematic diagrams and engineering drawings provided by a GIS.

Discussions during the requirements capture process identified a basic set of functions

that the GIS module was to provide. In particular, the GIS module should support a

shared workspace in which users can point, annotate or draw in a similar fashion to

shared sketchpads or blackboard tools [Greenberg,91]. However, unlike these tools,

the GIS module does not permit the transfer of images to limit bandwidth

consumption. Instead, drawing operations are overlaid on a common base of locally

cached images. All GIS module operations are propagated using platform invocations

to satisfy the interoperability requirements outlined earlier.

The highlighting and map rendering operations are provided by a public domain

GIS called the Geographic Resources Analysis Support System (GRASS

[Westervelt,91]). The GIS has been modified to support two public interfaces: the first

provides drawing operations (the IDL specification of a subset of these are shown in

figure 5.7) and, the second, a number of operations for managing sets of figures.

DisFun : INTERFACE =
BEGIN
GetBox : OPERATION [ ]

  RETURNS [ Coord; Coord; Coord; Coord; Status ];
DrawBox : OPERATION [ BoxColour : Colour; x1 : Coord; y1 : Coord;

x2 : Coord; y2 : Coord ]
 RETURNS [ Status ];

DZoom : OPERATION [ ]
 RETURNS [ Status ];

StartMon : OPERATION [ Monitor : MonitorName; MonitorTitle : TitleText ]
RETURNS [ Status ];

DRast OPERATION [ RasterToShow : MapName ]
 RETURNS [ Status ];

DVect : OPERATION [ VectorToShow : MapName; LineColour : Colour ]
 RETURNS [ Status ];

END.

Figure 5.7 - Subset of identified GIS operations

The public operations include operations for drawing raster and vectorised figures

and for zooming in on particular areas identified by a standard ‘north-east’

geographical coordinate system (that can be easily converted to and from longitude-

latitude coordinates). In addition, these operations have been chosen because they

seem to have functionally equivalent operations in a variety of GIS systems (for
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example, ArcInfo or SmallWorld), allowing different systems to be used at the

implementers’ discretion.

Figure 5.8 - The GIS user interface

The GIS operations are activated via the user interface to the GIS module shown

in figure 5.8. The GIS supports two GRASS windows or monitors: a private monitor

and a public monitor. The private monitor, as the name implies, can perform local

GIS operations which are not propagated to other group members. The public monitor

will perform the same operations collaboratively subject to ‘group operation mode’

being selected and members of the conference having their GIS modules functioning

and selected. The two views give a clear distinction between information that is local

to the machine and information that is globally accessible.

Figure 5.8 shows the private monitor together with the main set of operation

buttons on the left hand side. On the right hand side are ancillary menus brought up

from the main menu with buttons for selecting the current highlighting tool and the

colour used for successive drawing operations. Each interface is an independent

window object which may be scaled, moved or iconised to make the most of the

limited display area. In addition to these tools, operations may be saved to a clipboard

which can then be manipulated or replayed in either of the monitors. The clipboards

allow the user to complete a set of operations ‘off-line’ in the private monitor and then
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replay them en-masse in the public monitor to other group members. Additionally,

clipboards may be attached to messages and sent asynchronously via the E-mail and

job dispatch modules (see sections 5.3.4.2 and 5.3.4.3).

While the group coordinator module is responsible for generic conference

maintenance functionality, the application specific knowledge of the GIS module is

required to propagate public operations to the GIS modules of other users. Consider

the scenario where a user wishes to focus the regions viewed by the other conference

participants to highlight a particular section of schematic. The zoom operation on the

local display causes a ‘rubber-band’ style box to appear on the relevant monitor to

allow the user to drag and select the region to focus upon. Multicasting the operation

to other group members would cause the same selection box to appear on the other

conference participants displays which is not the intended function. Instead, the GIS

module knows that, once the local zoom function is complete, the other group

members’ GIS modules should be told to select a particular map region via another

interface operation. Such intervention requires application specific knowledge and

hence collaboration aware group applications.

5.3.3 Audio Communications Module

5.3.3.1 Motivation

As highlighted in chapter 4, field engineers require audio communication facilities

in order to be able to interact with the control centre and coordinate activities with

their colleagues. In addition, audio communication support within the application

prototype is essential for two further reasons :-

Conference management

In applications which provide data only interfaces between cooperating

parties, the system is responsible for providing “floor-control”

protocols for governing how a user’s operations affect the state of the

group. For instance, one user might be designated the “speaker”, their

operations will take precedence until they yield the floor by

nominating another user. The tasks undertaken by field engineers are

highly diverse, varying in response to the demands of a given scenario.

The application is based on the premise that providing a data-only

interface to engineers faced with a wide range of non-deterministic

tasks would be too constraining. Instead, by providing audio

communication facilities a social protocol between the engineers can

determine the most appropriate form of dialogue and coordinate group

interactions.
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Safety criticality

Field engineers, by their very nature, are required to work with voltage

distribution networks which pose a threat to their safety. Currently, it is

only through physical security mechanisms (such as those described in

section 4.2.3) and verbal dialogues with the control centre, that

potentially hazardous inconsistencies in network state are discovered.

Audio dialogues contain a wealth of implicit safety and state

information and are essential for providing context to collaborative

data operations. Furthermore, experience within the utilities industries

regards audio communication as inherently safer (and of course, more

familiar) than data communication.

The remainder of this section describes the supporting components of the audio

communications module in more detail.

5.3.3.2 Base Services

The audio conferencing module is responsible for establishing group audio

communication between selected conference participants. The module relies on a set

of multimedia transport services to provide the underlying management and

transmission of the audio information. These services, known as the Base Services are

based on earlier work at Lancaster University on developing a set of RM-ODP

compatible services for managing the transmission of continuous multimedia data

[Coulson,92] .

Source

Source

Source

Sink

Sink

Sink

Source
Group

Sink
Group

Stream

Figure 5.9 - Conceptual overview of the Base Services

Conceptually, the Base Services consist of three components: devices, groups and

streams (illustrated in figure 5.9). Devices provide uniform abstractions for providers

(sources) and consumers (sinks) of multimedia data, for example, sound capturing or

video digitising hardware. Source and sink drivers are collected together to form

source and sink groups respectively, each of which is controlled by a group manager
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object. The group managers provide a level of abstraction over the underlying

multicast and multidrop functionality. A computational object known as a stream

object is responsible for organising the actual transport of information from sources to

sinks and, in addition, is responsible for the selection and interposition of translators

to provide filtering and mixing of the appropriate media type as necessary.

Continuous media has certain common characteristics. In particular, a given media

type consists of discrete components or packets (a unit of audio or frame of video)

which, when presented in a particular order within certain time constraints, represent a

flow of information. This common or generic functionality has been singled out in the

base services: each flow of information is regarded as a chain of media links.

Operations common to all media types (and therefore all chains) include starting and

stopping the flow of links and, in the case of finite length sequences, locating one’s

position within the chain and seeking to a new position. These operations are

supported by RM-ODP compatible chain interfaces which are exported by device

objects. The interconnection of device objects is accomplished using endpoint

interfaces which provide common interconnection functions for underlying transport

management by the stream object.

 /* Connect source and sink groups to stream */

! {s_status} <- streamIf$ConnectSource(sourceGrpIf)
! {s_status} <- streamIf$ConnectSink(sinkGrpIf)

 /* Set QoS Parameters */

! {QoS, s_status} <- streamIf$GetQoS()
 QoS.LinkSize = LinkSize;
! {oldQoS, s_status} <- streamIf$SetQoS(QoS)

 /* Prepare and commit stream object with QoS */

! {s_status} <- streamIf$Prepare()

 /* Prepare, commit QoS at source and start... */

 if (s_status == s_okay) {
!   {s_status} <- streamIf$Commit()

    if (s_status == s_okay) {
!      {c_status} <- sourceChainIf$Prepare()

      if (c_status == c_okay) {
!        {c_status} <- sourceChainIf$Commit()

        if (c_status == c_okay)
!          {c_status} <- sourceChainIf$Start(0, c_asynch)
     }
   }
 }

Figure 5.10 - Initiating a stream of media in the Base Services

The stream object provides an abstraction over the actual connection set-up and

management. The stream management interface provides operations to allow groups

of sources and sinks to be interconnected and supports a two-phase commit process

which allows the communication to be aborted if the requested combination of drivers

is unworkable (for either compatibility or connectivity reasons). A segment of code
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illustrating basic connection establishment using a stream is shown in figure 5.10 (the

platform’s distributed programming language is described in more detail in section

6.2.5.1). The abstraction provided by the stream object would enable alternative

media transport protocols to be selected transparently. For example, the current

implementation does not make use of multicast (due to operating system compatibility

issues within the chosen platform). Multicast IP could be slotted in to the stream

object without affecting the remainder of the audio conferencing architecture.

Conference membership can change dynamically through the group management

interfaces. Membership changes are propagated to the stream object via a call-back

interface which allows it to re-configure. For more details on the complete Base

Services architecture see [Coulson,92].

A subset of the original Base Services has been reimplemented by the author. The

reimplemented services use the new platform and provide audio transport services for

the communications module. More specifically, these services include: the stream

object, group manager, and audio chain source and sink drivers (both for transient and

persistent chains). In addition, the services have been extended to include support for

multiple audio stream formats (see section 5.4.4).

5.3.3.3 Audio Conference Management

Each host within an audio conference requires an identical set of base service

objects. Viewed as a whole, the object configuration is identical and symmetrical

across all participating hosts.

Stream
Audio 
Sink

Log 
Sink

Sink 
Group

1. Log joins sink group
2. Group informs Stream
3. Stream reconfigures audio delivery

Audio

1

2

3

Figure 5.11 - Reconfiguring audio to add a persistent log

The objects are by default: a microphone driver, a speaker driver, a source group

manager, a sink group manager and a stream manager. The driver objects simply

provide two interfaces on to the audio sampling hardware of the host. The group

objects allow dynamic reconfiguration of the conference (see figure 5.11), for

example adding a logging device to record all outgoing or incoming audio traffic by
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simply joining it to the appropriate endpoint group. The stream manager looks after

the actual distribution of the audio packets.

The communications module makes use of the fact that the application, and hence

the communications module itself, is replicated on each host within a conference.

Since all membership changes are propagated to all reachable members by the group

coordinator, the reconfiguration process is also distributed across all members, each

taking an identical role. For example, adding a new member requires each

communications coordinator to obtain the endpoint of the speaker driver of the new

member and the inclusion of this endpoint within their local sink group. Since this

process is executed by all conference participants in unison, the new member’s

speaker driver simultaneously joins the sink group of all of the initial participants. The

removal of a member is an almost identical process where the member’s endpoint is

simply removed from the sink groups.

5.3.4 Additional Modules

The modules described in the previous sections have covered the most important

collaborative tools within the application prototype. The remaining modules offer less

significant tools such as remote access to legacy applications and asynchronous

communication facilities (e.g. E-mail and job dispatching).

5.3.4.1 Remote Database Access Module

The remote database access module is a more traditional client-server tool which

provides access to a simple database server which may be running on some remote

host. The module was designed to demonstrate that applications running on mobile

machines can interwork with existing database engines running on legacy systems

within the established infrastructure, thereby proving the feasibility of access in the

field to customer and resource databases (and further demonstrating the

interoperability aspects of the work).

The remote database access module is a non-collaborative tool. While multiple

users may be running the module simultaneously and each effecting queries to the

remote database server, there are no facilities for sharing the query results between

group members. However, it would not be difficult to allow the results of the query to

be transferred to one of the other tools such as the E-mail module (see below) for

dissemination to other engineers.
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5.3.4.2 E-mail Module

The E-mail module permits the sharing of multimedia MIME messages

[Borenstein,93] between users of the prototype application. The E-mail module is the

only part of the application which has not been engineered as an RM-ODP compatible

object in its own right (i.e. no interface is offered to applications running on the local

or remote hosts). The lack of integration is purely due to time constraints within the

MOST project: it was recognised as being more important to be able to demonstrate

the mobile E-mail concept rather than spend additional time on an integral solution.

In essence, the system consists of an elm mail browser front-end which is

supported by an RM-ODP compatible module in place of the SMTP daemon. The

new module uses platform invocations to provide the mail transport mechanism rather

than SMTP. This strategy avoids the need to use a mobile IP implementation or make

any modifications to the mailer. The E-mail system could be extended to include a

gateway object within the fixed infrastructure which transferred platform invocations

containing E-mail messages to the standard mail daemon (and vice versa). Such an

object would permit the global Internet E-mail system to interwork with the

prototype’s E-mail tool.

5.3.4.3 Job Dispatch System

The job dispatch module is designed to provide field engineers with a convenient

mechanism for receiving work instructions and reporting job completion to the job

issuer. The module is designed to provide functionality analogous to the paper based

record system currently in use within the utilities companies. The job dispatch

module, like the remote database module, is non-collaborative. Jobs are destined for a

particular field engineer who may then, at their discretion, share information with

their colleagues. However, the original engineer to whom the job was sent remains

accountable for the completion of the job.

In addition to detailed instructions on the nature and location of a job, the system

allows map and schematic references to be included with the instruction. The

references can be imported into the GIS module so that the field engineer can view the

job location in precise detail. An annotated instruction is inherently more precise than

verbally delivered instructions from the control centre via the PMR system.

The job dispatch module relies on the same ODP transport service as the E-mail

system for the reliable transmission of the job dispatch records.
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5.3.4.4 Lightning Warning Service

The final module to consider in this chapter is the lightning warning service

module. Lightning location is of vital importance to field workers in the electricity

utility companies for a number of reasons. Firstly, since a large quantity of repair

work is as a direct result of storm damage (in general) and lightning (in particular),

knowing of the impending approach of a storm can allow the utility company to make

strategic decisions about power routing and manpower in advance of a potential

power outage. Secondly, where a field engineer is required to repair or service

equipment, particularly if it is overhead or pylon mounted, knowing of the impending

approach of lightning could potentially avoid life threatening situations.

The lightning warning service module is essentially a client front-end to a central

service known as the National Lightning Flash Location System [Morgan,91]

developed by the MOST project partners, EA Technology Limited. The service is a

collation point for information from a number of listening posts established all over

the U.K. By tuning in to the 800MHz frequency band, each listening post is able to

detect the electromagnetic pulses generated by lightning strikes. The information is

collated from a number of sites and triangulated to precisely locate each strike (the

more sites involved, the more precise the location fix). The resulting lightning strike

information (position and time of strike) is coordinated at a central site where it can be

used to supply interested clients. Service subscribers receive strike reports at a rate of

up to 5 strikes per second (40 strikes per second can be recorded centrally for later

analysis). Subscribers normally run client software which overlays the strike

information on a map of the British isles (see figure 5.12).

Figure 5.12 - Lightning flash location service
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The lightning warning service module allows engineers to enter their location (a

postcode is sufficiently accurate); the module registers with a remote server on the

fixed network. The remote server parses the lightning strike information looking for

incidences of lightning within a specified bound of its client engineers. Should

lightning encroach within the threshold the engineer’s module is called-back (via the

registered interface) to inform the engineer of the approaching danger.

5.4 Implementation Issues

This section highlights a range of issues that emerged during the implementation

and development of the application prototype. The hardware and software

technologies chosen to underpin the application, associated constraints, and

justification for these choices are outlined.

5.4.1 Hardware and Software Support

Phase one of the application and platform development work was conducted using

an infrastructure of Sun workstations networked with 10Mbps Ethernet. These

machines were chosen primarily because of the development team’s familiarity with

the UNIX operating system and the availability of an ANSAware distribution for

SunOS 4.1. However, typical utilities use a wide variety of computer hardware,

among which UNIX workstations are prevalent.

For phase two of the development, which was designated for migrating the office

based software to the field, an Intel 486 PC workstation and a number of 486

notebook machines were used. The Novell UnixWare operating system was chosen

for the PC development work because of familiarity with the UNIX System V Release

4 API. In addition, UnixWare was one of the first versions of UNIX available for the

Intel chipset that supported an emulator capable of running Windows software. The

emulator allowed the development team to retain the familiar UNIX API and meet the

end-user’s wish that Windows based applications (such as that used in their own

mobile data project) should run.

The operating systems of the two platforms differed in an important respect:

SunOS is Berkeley (BSD) UNIX, whereas UnixWare provides a System V Release 4

API. The two systems are largely compatible, though differ in innumerable small but

significant ways. The project team were therefore required to maintain two versions of

all software developed, compiled for both the architectures and supporting the API of

each of the operating systems (the amount of common code was maximised through

the use of conditional compilation).
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Mobile communications support for the second phase was provided by cellular

telephones. Initially, analogue voice channels were used with a cellular aware modem

(conventional modems are prone to dropping connections due to the periodic delays

caused by cell management procedures, particularly handover). Later in the project

the GSM data service became available. The GSM service offered superior data rates

and reduced connection times when compared with the analogue service, benefiting

application performance. Early versions of the data service did not support mobile

terminated data (i.e. mobiles could establish data calls, but not receive them), which

was profoundly limiting.

The graphical interface for the application was written using the MIT X/Windows

system Version 11 Release 6. The Athena widget set which accompanies X/Windows

provided the basic facilities such as icons, buttons, scrollbars and so on. The public

domain pixmap library was used to extend the widget set to allow colour pictures and

icons to be created. The distributed systems platform used is considered in detail in

chapter 6.

5.4.2 Group Working Issues

The prototype application is constructed independently of the underlying

communications technology by using the generic platform invocation mechanism to

perform all communication with remote objects. In the current implementation, group

interactions are entirely specified in terms of these unicast platform invocations. In the

fixed networking environment, few constraints are placed on the platform; each host

is reachable without the need to consider the implications of the supporting

communications medium.

In a mobile environment and, more specifically, if a connection-oriented

technology such as GSM is used, the application programmer must consider the

implications of high level actions on lower layers. In order to deliver invocations, the

infrastructure will be required to establish and drop connections to remote hosts

(either transparently or with the assistance of mobility-aware applications). Therefore,

the number of conference participants and the order in which invocations occur can

seriously affect the application performance.

To illustrate the point, consider the scenario in which an application is interacting

with two applications on remote hosts A and B respectively (a three party

conference). If the application is structured so that service invocations are interleaved

(ABAB), lower layer connections are being dropped and established to deliver each

invocation in turn (incurring the maximum possible latency for each invocation). If

the application programmer is aware of the communications technology, the structure
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can be changed to help improve performance. For instance, if there are no

interdependencies between the invocations, then the invocations may be performed to

each host consecutively (AABB), offering considerable performance benefits. In

addition, if the system is capable of optimising the dialling strategy (by for example,

batching invocations destined for the same host), then the application might use

asynchronous invocations or perform both pairs of invocations concurrently to

achieve the same performance gain.

Currently, no wide-area communications technologies support group data

services, although emerging services such as CDPD, TETRA and GPRS may offer

such facilities in the future. Group data service support is a requirement for effective

group working with conferences consisting of more than two participants. In the

MOST trial demonstrations this problem was circumvented by using a machine with

multiple dial-up connections as an exchange. The exchange accepted multiple

connections simultaneously and routed platform RPCs over the appropriate point-to-

point connection according to the specified destination. This solution is limiting in

terms of scalability and has a detrimental impact on the performance of the system.

5.4.3 Audio Conferencing Issues

As previously discussed in section 5.3.3, the audio conferencing module relies on

audio transport services provided by the Base Services. The Base Services use the

UDP protocol to transmit the packets of audio over the fixed networked environment.

In fixed environments, such as an Ethernet, it is acceptable to transmit audio packets

without compression. A single stream of audio traffic comprised of 8 bit samples,

sampled at a rate of 8KHz will take 64Kbps of network bandwidth. Clearly, in a wide-

area mobile context (which currently is likely to offer an absolute maximum

throughput of 19.2Kbps) this volume of information is impractical.

One possibility for reducing the bandwidth requirements of a multimedia stream is

through application specific encoding techniques. For instance, the peculiarities of

spoken language allow the voice traffic to be low-rate encoded which reduces the

bandwidth consumption by providing varying degrees of fidelity. The data rate can be

reduced substantially over normal audio traffic due to the human brain’s ability to

reconstruct damaged information into intelligible speech. Generally such techniques

are highly CPU intensive, requiring dedicated coding hardware. In particular, digital

telephone systems such as GSM employ voice encoders which operate nominally at

13Kbps. Research quality systems exist which can transmit recognisable, if slightly

impaired, speech at 1.2Kbps. It should be noted that the rate at which a voice can be

encoded depends very much on the source stream. For example, male voices generally
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stand a higher rate of coding than female voices, and tonal languages such as Korean

are particularly difficult to encode successfully.

For the purposes of the MOST project, the issue of how to transmit audio over low

bandwidth channels was considered the responsibility of other fields of research. In

actuality, cost and size implications of using a prototype low-rate encoder dictated

that an alternative solution was found. Therefore, during the end-user field trials, two

telephone handsets were used for each portable: one for data and one for audio traffic.

Once the encoder hardware becomes viable, there are clearly a number of issues

which require resolution. In particular, how voice and data traffic should be

multiplexed onto a single channel whilst preserving the continuity of the audio, giving

sufficient responsiveness to interactive traffic and avoiding starvation of lower

priority traffic. These issues are not addressed in this thesis.

5.4.4 Audio Mixing and Format Conversion

The requirement that the application should promote interoperability in a

heterogeneous environment has obvious implications for the platform and the

transmission of platform invocations. However, heterogeneity of hardware has an

additional impact on the transmission of multimedia information and, in particular,

audio. More specifically, each hardware platform chosen for the project uses different

audio sampling and encoding technology. The Sun workstations have on-board

sampling hardware which produces a stream of samples in µlaw encoded format. The

µlaw encoding technique was designed to encode audio for transmission over

analogue telephony systems. Each 8 bit encoded sample is equivalent to a 13 bit linear

sample through a non-linear translation (some detail is lost at lower volume where

human hearing is not as sensitive). The PC workstation has additional hardware which

can support a number of encoding formats including 16-bit pulse code modulation

(PCM) and µlaw encoding in mono and stereo. The portable PCs have different on-

board encoding hardware again which provide a subset of the workstation PCs

functionality. These on-board encoders can produce 8-bit PCM samples (chosen as

the standard format for PCs as there are likely to be more portable PCs than

workstations in any given configuration). A single mono channel sampled at a rate of

8KHz was chosen as the default for all configurations.

In a conference situation, i.e. where more than two parties are involved, it is often

necessary to mix packets of audio sent from the microphone drivers of more than one

host. In the current implementation, this mixing may take place at any of the stream

managers or speaker drivers within the interaction. Mixing is automatically triggered

at an object by the arrival of packets from multiple sources. Each audio packet is
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tagged with header information which identifies, among other things, the format of

the audio data. In a one-to-one interaction, the audio packets will be sent directly from

the source to the sink with no additional mixing stages (a format conversion will be

applied only if the ends have different native formats).

To allow the base service drivers to interwork in such an environment it was

necessary to provide a number of format conversion routines. The driver objects and

stream manager are capable of providing a number of format conversion services. In

the cases of the speaker driver and stream manager objects in particular, the

conversion services are integrated with the mixing functionality to allow multiple

formats of source information to be mixed into a desired destination format.

The stream manager attempts to determine the optimal number of mixing stages

within a given set of source and destination endpoints to reduce the overall

complexity of the conversion processes. The stream manager can make three

optimisations :-

• If there is a single source and multiple destinations where the source has a

different format to the sinks, then the source is told to send in the destination

format.

• If all destinations and the majority of sources are of PCM format then the stream

can tell all µlaw sources to send in PCM format (which allows an optimised

mixing algorithm to be used downstream).

• The stream object works out which format among its sinks is most prevalent and

then ensures the mixed output is in the more common format.

5.5 Summary

In this chapter the prototype application which addressed the requirements set out

in chapter 4 has been discussed. The prototype consists of a number of application

modules providing, among other things, a collaborative GIS for sharing geographic

and schematic information, an E-mail system, remote database access and audio

conferencing facilities. The application is built upon a mobility-aware distributed

systems platform developed by the author and which is presented in detail in chapter

6. The application makes use of particular aspects of the platform to gain information

about the underlying environment. With this information the application is able to

adapt its behaviour in response to changes in its environment. The implications of

mobility and application adaptation are considered further in chapter 7.
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Chapter 6

Mobile Infrastructure

6.1 Introduction

This chapter explores the issues of providing infrastructure support for advanced

mobile applications, particularly within heterogeneous networked environments. A

specific distributed systems platform† which provides this support is discussed in

detail. The mobility support within the platform is based on a number of

computational model extensions, aligned with the RM-ODP framework [ISO,95a].

The RM-ODP is used as the basis for discussing the mobility enhancements to the

platform.

Section 6.2 describes the basic architecture upon which the new platform is based.

A number of shortcomings are identified within this architecture which prevent its

operation in a heterogeneous mobile environment. Section 6.3 highlights the role of

QoS in the support of advanced mobile applications and presents a set of extensions

designed to address these shortcomings. In particular, support for explicit bindings

have been added to the platform to enable QoS management, which in turn, allows

application level adaptation. The computational binding architecture is discussed in

section 6.4. Engineering level support for the QoS extensions, including a new RPC

protocol called QEX, is detailed in section 6.5.

† Sometimes called a middleware platform, in recognition of its mediating role between the
application and system software.
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6.2 Choice of ANSAware

6.2.1 Rationale

To meet the requirement for interoperability within heterogeneous networked

environments, the application prototype requires support from a distributed systems

platform. The platform is based on an earlier distributed systems platform, known as

ANSAware [APM,92]. The ANSAware platform is a partial implementation of the

Advanced Networked Systems Architecture (ANSA) [APM,89], which in turn, was

profoundly influential in the specification of RM-ODP.

An RM-ODP based platform was chosen over the competing OSF/DCE and

CORBA models, for the following reasons :-

i) Both the ANSAware platform and the RM-ODP are well established and

offer elegant object-oriented paradigms which facilitate well structured,

modular design. In addition, the frameworks provide traditional object-

oriented programming benefits such as encapsulation, type hierarchies and

code reusability.

ii) DCE provides a less flexible client/server based architecture which enforces

particular technological choices on developers. For instance, client/server

interaction is through a specific RPC mechanism (based on Digital’s Network

Computing System).

iii) The source code to implementations of the CORBA platform were not

available for experimentation.

It is important to note that while a particular platform was chosen as the starting

point for development, the concepts highlighted in this thesis are intended to be

generally applicable to other platforms.

ANSA and its engineering realisation, ANSAware, are described in more detail in

the following sections. A number of the differences between the RM-ODP and ANSA

frameworks are emphasised.

6.2.2 The ANSA Project

ANSA is the result of research conducted by a large industrial consortium under

the auspices of the U.K. Alvey research initiative. The architecture comprises five

projections, which are termed enterprise, information, computation, engineering and

technology. Different facets of a given distributed system are revealed by viewing the

system using any of these projections (a particular view of a system is termed a
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model). For example, the resulting technology model would explain how the system

maps on to computers, networks and software systems.

The computational and engineering projections are of particular relevance to this

discussion. The computational projection describes how a system’s software

architecture is designed and structured. The engineering projection describes how the

theoretical architecture specified by the computational model is realised in

implementation terms. These two models are each considered in turn† .

6.2.3 Computational Model

The ANSA Computational Model describes a system as being comprised of one or

more component objects. All data is encapsulated within objects and accessed

indirectly using the object’s interface. An object may provide or make use of multiple

interfaces. Each interface is defined in terms of a set of named operations and a

property specification. Each operation has an associated list of typed arguments which

specify the parameters passed with each request and reply and a set of attached

properties. The properties specify what transparencies and constraints are associated

with an action or with the whole interface.

Operations are invoked via references to their enclosing interface (to maintain

access transparency). Two forms of invocation are defined :-

Synchronous

The client blocks until the server has performed the requested

operation and delivered the results. The two objects are synchronised

by the interaction.

Asynchronous

The client does not block. Furthermore, there is no confirmation that

the operation has terminated (or even begun). Asynchronous

operations minimise latency and maximise concurrency where

immediate results are not required (or no results are required at all).

An operation may be able to return one of a number of named responses or

terminations (each potentially with multiple arguments). A termination may be raised

to indicate failure and change the sequence of actions taken after the invocation. The

one exception is the unnamed termination which can be thought of as the normal

response from the operation. Partial failure could result in inconsistent state and

orphans (operations which execute after the invocation is terminated). Therefore,

† The details presented in the following sections are as found in [APM,89].
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ANSA defines invocations as being atomic (to the client, invocations either succeed

or fail; the server must manage any inconsistencies due to partial failure itself). The

success of asynchronous operations can only be determined through serialisation with

synchronous operations.

In order that a client can stress the urgency with which it requires a server to have

completed an operation, a deadline may be set. There are two forms of deadline: soft

deadlines and hard deadlines. Soft deadlines only affect the scheduling of an

operation. Hard deadlines will also prematurely terminate the operation once the

deadline has been reached.

Objects may freely exchange interface references. Possession of an interface

reference is sufficient to enable that object to access the operations described by the

referred interface. Objects may publish interface references to their services with a

system directory or name-service known as the trader (references so published are

referred to as offers). The trader itself may be a computational object whose location

is well known, or alternatively, may be a decentralised architectural service which is

maintained by broadcast algorithms. Client objects can obtain the use of services by

querying the database maintained by the trader and obtaining an offer (see figure 6.1).

Trader

Export Import

Binding
Server Client

Figure 6.1 - Service location using the trader

An implicit binding is established when the service is first invoked. Thereafter the

client can be referred to as being bound to the interface.

6.2.4 Engineering Model

The engineering model (see figure 6.2) describes the realisation of a system over

multiple technology models. Conceptually, objects at the computational level are

mapped onto engineering level objects to provide application and architectural

services. Computational objects together with a nucleus object, transparency
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mechanism objects and an interpreter (which enables interactions between

computational objects) are known collectively as a capsule.

Computational 
objects

Transparency 
mechanisms

Nucleus objects

Resources ResourcesNetwork

Figure 6.2 - ANSA Engineering Model

The nucleus is an engineering object which encapsulates the heterogeneity of

processor and memory architectures. In addition, the nucleus provides a set of

functions for providing concurrency control and enabling access transparent

interactions between computational objects. The nucleus comprises a number of

factory objects which embody aspects of functionality, for example, thread scheduling

or capsule management (e.g. the instantiation of a new capsule from an object

template). These factory objects are designed to be single threaded and interact using

standard procedure call semantics.

All parallelism within the nucleus is handled by the scheduler. Parallelism is

described in terms of threads, tasks and evaluators. An evaluator object represents a

CPU within a given system. Evaluators each run a thread associated with an ongoing

task (tasks represent the context of an ongoing computation and are created at the first

context switch). The thread factory includes provision for the pushing and popping of

deadlines for controlling the scheduling of the current thread. Soft deadlines are

purely advisory and no action is taken on expiry. However, expiry of hard deadlines

should cause the scheduler to notify the task associated with the thread and cancel

ongoing remote interactions. In effect, a termination corresponding to a deadline

expiry will be generated.

Concurrency constraints on interface invocation are maintained by a prologue and

epilogue that bracket the execution of an operation. Mutual exclusion is ensured by

eventcounts and sequencers [Reed,79]. In addition, these synchronisation primitives

are made available for general application use.
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Remote interface invocations are transmitted using an RPC based model. The

RPC paradigm was chosen based on the assumption that bursts of simple interactions

will be more common than sustained bulk data transfer. The protocol is designed to

consume a minimum of local resources (buffers and timers etc.) and multiplex

interactions over end-to-end network connections to maximise the potential

concurrency of the system. To maximise protocol independence, the network aspects

of the engineering model are split into three layers :-

Message passing services

The message passing services (MPS) manage connection,

disconnection, sending and receipt of messages. All message passing

services offer the same interface.

Execution protocols

The execution protocols map computational invocations onto message

exchanges which are transferred using the message passing services.

All execution protocols conform to the same interface.

Session layer

The session layer coordinates execution protocol and thread

interactions. Any local state concerning remote interactions is stored

within this layer.

Remote interactions require a plug and a socket to be established at the local and

remote ends respectively. The combination of execution protocol and message

passing service can be specified for each plug/socket pair. The local plug interface

offers the operations shown in table 6.1.

Operation Function

call perform blocking request-response interaction
(synchronous invocation)

cast initiate announcement (asynchronous invocation, no
response)

request initiate non-blocking invocation (guaranteed
delivery of service invocation)

collect complete non-blocking invocation (collect or block
for results of previous operation)

rebind enable the service to be mapped to a new host (for
service migration)

Table 6.1 - Operations for initiating invocations

The operations shown above map onto the synchronous and asynchronous

invocation primitives specified by the computational model. The plug/socket
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interaction together with the session layer state can be thought of as an implicit

computational binding.

6.2.5 ANSAware

The ANSAware distributed systems platform is an instantiation of the ANSA

model with specific technology choices for each component. This section describes

the ANSAware platform from computational and engineering aspects. Lastly, the

section gives a brief overview of the architectural services supplied with the platform

for object management.

6.2.5.1 Computational Aspects

The ANSAware platform supports the object-oriented architecture described

above; services are encapsulated within objects which are accessed via interfaces.

Object interfaces and service invocation require two new languages: the Interface

Definition Language (IDL) and Distributed Programming Language (DPL).

The IDL language provides a platform independent method of describing the

operational interfaces to application level services. The resulting interfaces maintain

portability across heterogeneous platforms by describing each operation in terms of

well defined ANSA types which map on to equivalent representations on each

platform. A generic IDL example is shown in figure 6.3 (further examples of actual

IDL code can be found throughout chapter 5).

IFTypeName1 : INTERFACE =
[IMPLEMENTATION] IS COMPATIBLE WITH IFTypeName2 [FROM File];
NEEDS IFTypeName3 [FROM File];
BEGIN
  -- Interface-specific data types

  Status : TYPE = {if_okay, if_notOkay};

  -- Operations

  OpName : OPERATION [ arg1 : type1; ... ; argM : typeM ]
             RETURNS [ rtype1; ... ; rtypeN ];

  AnName : OPERATION ANNOUNCEMENT [ arg1 : type1; ...; argM : typeM]
                          RETURNS [ ];
END.

Figure 6.3 - A generic IDL interface

As the example specification above illustrates, an IDL can be defined as being

“COMPATIBLE WITH” another interface, allowing type hierarchies to be

constructed. In addition, defining an interface as having a compatible implementation

enables the actual service code to be inherited (enabling code-reuse). Specifying an

interaction action as an OPERATION, or more correctly as an interrogation operation,

implies that synchronous service invocations are permitted on that operation. The



136

keyword “ANNOUNCEMENT” specifies that the operation accepts only

asynchronous casts (see section 6.2.3).

The ANSAware interfaces do not provide support for action or interface properties

as defined by the computational model. Consequently, ANSAware supports both

access and location transparency, but provides no mechanism for selectively adding or

removing transparency functions.

The IDL language is compiled into a set of engineering level transparency

services known as stubs. The stubs convert the ANSA typed arguments into hardware

dependent representations and provide the marshalling and unmarshalling facilities for

RPC arguments so that they may be transported by the MPS functions.

The DPL language provides a common mechanism for embedding the invocation

of object services within a given host language (see figure 6.4). Currently, bindings

for the C, C++, Modula-3 and Ada host languages are available. The embedded DPL

statements are translated into the host language using a pre-processor.

! {rarg1, ..., rargN} <- ServiceIR$OpName(arg1, ..., argM)

Pre-processor 
symbol

Return 
arguments

Actual  
parameters

Service interface 
reference

Operation

Figure 6.4 - A generic embedded DPL service invocation

Simple pre-processor directives allow the compiler to attribute interface types to

program variables and allow the program to dynamically create and destroy interface

references. The pre-processor is subsequently able to provide rudimentary type

checking such as validating the number and type of arguments passed in invocations.

The pre-processor does not have any knowledge of the host language and as a

consequence does not obey the variable or type scope rules that are normally imposed.

The remainder of the pre-processor directives are shown in table 6.2. A full

explanation of the IDL and DPL languages can be found in [APM,93].
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Directive Function

! USE TypeName Source depends on IDL TypeName

! DECLARE {vars} : TypeName CLIENT | SERVER Attribute vars as interface reference
to service TypeName (CLIENT or
SERVER, but not both)

! {var} :: TypeName$Create(concurrency) Create interface reference which
will service concurrency number of
concurrent invocations

! {} :: TypeName$Destroy(var) Destroy the interface reference
associated with var

! {v} := ServiceIR$OpName(args) Initiate a non-blocking invocation
(returns voucher v)

! {results} <- ServiceIR$Redeem(v) Complete non-blocking invocation
(associated with voucher v)

! {ref} <- traderRef$Import(type, context,
constraints)

Query name-service for offer

! {ref} <- traderRef$Export(type, context,
properties)

Export service offer to name-service
(with associated properties)

! traderRef$Withdraw(ref) Remove offer from trader

Table 6.2 - Summary of DPL pre-processor commands

ANSAware supports both blocking and non-blocking service invocations

(implementing synchronous and asynchronous invocations respectively). Non-

blocking invocations are often referred to as vouchered invocations (a voucher is

returned from the initiation which is required for result redemption). Support for soft

and hard deadlines, as defined by the computational and engineering models, are not

supported in ANSAware (some support for these forms of deadline have been

incorporated into the new platform, see section 6.4.3).

6.2.5.2 Engineering Aspects

The application (DPL code) together with the IDL generated stubs are linked with

a supporting library which provides the remainder of the distributed systems

functionality. The combined package is analogous to the engineering level capsule (in

the UNIX domain a capsule corresponds exactly to a single executable process). The

library and marshalling functions together provide the functionality of the nucleus.
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Figure 6.5 - An ANSAware capsule

An ANSAware capsule is illustrated in figure 6.5. The figure illustrates the

layering of the primary nucleus functions, the execution protocols and the message

passing services. The nucleus layer provides an architecture independent set of

facilities (as previously outlined in section 6.2.4) including threads, stubs for

marshalling and unmarshalling datatypes for the RPC mechanisms and functions

which implement the distribution transparencies. The execution protocol layer

includes two protocols: the remote execution protocol (REX) and, layered upon REX,

the group execution protocol (GEX). These RPC mechanisms provide all inter-

capsule invocation transport services (invocations to objects which are co-resident

within a capsule are transparently converted to local procedure calls). The RPC

protocols make use of transport services provided by the MPS layer. The MPS layer

consists of a number of operating system independent interfaces to well known

transport protocols such as UDP, TCP and IPC (named pipes). The interfaces between

the nucleus, RPC and MPS layers are designed to be as generic as possible to enable

support for new RPC protocols or MPS interfaces to be added without affecting

higher layers (for example, a message passing service based on shared memory).

6.2.5.3 Architectural Services

The ANSAware suite of programs is supplied with four architectural services :-

Trader The trader provides the system directory service described in section

6.2.2. The trader is a centralised service which offers a service

interface at a well-known address. Offers exported to the trader may
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be placed within a hierarchical named context and may have a set of

associated properties (name, value pairs). Traders may be federated

to form a simple one layer hierarchy comprising a single master

trader and a number of slaves.

Factory The factory object supports mechanisms which enable the dynamic

instantiation and termination of service objects on a particular node.

The factory requires a stored template (capsule executable) of the

object it is required to instantiate.

Node Manager The node manager offers a range of services for automating the

factory creation, monitoring and destruction of services on a single

node. An alias for a service and an associated attribute can be logged

with the node manager. The attribute specifies how that service is to

be managed. For example, it may specify that the service is to be

restarted on termination, or, dynamically instantiated when a client

attempts to import the service’s alias from the trader.

Storage The storage facilities enable services to be made persistent: that is,

seamlessly moved to and from backing store (passivated and

activated respectively) on demand. The storage system consists of

two components: a snapshot database and a storage database. The

former component stores object state while the object remains

passivated. The latter component records a database of interface

reference to service mappings, enabling a request for a passivated

object to be recognised and mapped to the new interface reference on

activation. Furthermore, service migration between nodes is

supported (essentially a passivation on the source node followed by

an activation on the destination node).

6.2.6 ANSA and RM-ODP Reference Models

The ANSA model lent many concepts to the formation of the RM-ODP. However,

the RM-ODP model differs from ANSA in a number of important respects; including

the number and types of object interface supported, how interfaces are specified, the

causality of interfaces, support for QoS and forms of object binding. These variations

are each examined in more detail below.

Firstly, the ANSA model supports only one type of interface which specifies the

services that can be provided by an object. In contrast, the RM-ODP defines three
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forms of interface: operation, stream and signal. Each operation type is outlined

below :-

Operations An operation may be either an invocation or an invocation followed by

a termination (corresponding to an ANSA announcement and

interrogation respectively).

Streams A stream defines named flows which abstract over sets of interactions.

These interactions are hidden below the interface level and are

designed primarily for handling continuous media (e.g. audio and

video).

Signals A signal corresponds to the occurrence of an event and is primarily

designed to provide low level support to facilitate real time

synchronisation and QoS management. For example, a signal can be

generated on emission or reception of an invocation or flow.

The operational interface has the most similarity to the interfaces specified in ANSA.

Secondly, the ANSA computational model specifies that properties may be

associated with operations and interfaces to govern the transparencies and invocation

constraints enforced by the architecture. This concept is extended in RM-ODP

through environmental contracts. Each interface type is defined by an interface

signature which, in addition to named actions of the above kinds, specifies the

causality of the actions and, potentially, an environmental contract (which includes

QoS annotations). Interface signatures together with a behavioural specification and

an environmental contract form an object template (which defines how an object may

be instantiated by a factory). The environmental contract (either on a per interface or

per object template granularity) enables the designer to impose constraints on the

service usage. For example, the contract may specify forms of transparency that are to

be enabled or disabled, or place recommendations for the final distribution of an

application’s objects.

ANSA interfaces always denote services that can be provided (operations

accepted) by an object, and thus, all the operations defined by an interface have

consumer causality†. As stated above, the RM-ODP interface signature allows the

specification of the causality of each operation individually. This causality

specification determines whether an action is produced or consumed (but not both).

Note that, in order to implicitly (or explicitly) bind a pair of interfaces, it is necessary

† However, it is worth noting that the causality of an interface reference is determined by context.
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that they have complementary causalities (an implicit binding to a server operation

interface may cause a complementary interface to be generated automatically).

The ANSA model does not provide any mechanisms to enable the specification of

the QoS produced or required by operations on an interface. In contrast, as mentioned

above, RM-ODP environmental contracts can include QoS annotations. The QoS

annotations consist of two clauses: the QoS provided to the environment and the QoS

required from other services and the environment. Contractually, an object will be

able to meet its provided level of service if and only if it receives the required QoS

from its supporting objects (both computational and architectural).

Finally, the RM-ODP model offers a more comprehensive binding architecture

than ANSA. In ANSA, an implicit binding is established to a service on first access,

after obtaining an offer to the service from a trader directory service. RM-ODP also

offers implicit bindings with the same semantics. Note that the trader service defined

by RM-ODP offers a more flexible federation hierarchy, whereby traders may be

contractually linked on a peer-to-peer basis. As well as implicit bindings, the RM-

ODP also offers explicit bindings† for operation, stream and signal interfaces. In

addition, there are two forms of explicit binding action defined: primitive and

compound.

Primitive binding actions

A primitive binding action binds two computational objects directly,

subject to the preconditions that both objects are of the same kind (i.e.

operation, stream or signal) and have complementary causalities.

Compound binding actions

Compound binding actions may be formed by linking two or more

objects via a binding object with primitive binding actions. The

binding object is essentially an ordinary computational object with an

additional set of formal role parameters in its object template (defined

in terms of the interfaces to be bound). The binding object may apply

object specific admission control techniques, such as QoS negotiation,

during binding establishment. Furthermore, during bind time a set of

control interfaces are generated which enable the monitoring of the

binding, changes in the bound group membership and changes in the

specified QoS.

† Real-Time ANSAware [Li,94] offers a mechanism called an explicit binding. However, this
mechanism is designed to enable the selection of a real-time thread scheduling policy at the client
endpoint and should not be confused with the explicit bindings mentioned throughout this chapter.
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An explicit binding action may be invoked by any object, including third party

objects. In addition, a binding action may incorporate point-to-point or multipoint-to-

multipoint object bindings. Implicit multipoint-to-multipoint binding actions are

possible in the ANSA model using the group transparency afforded by the GEX

protocol.

6.3 Impact of Mobility on ANSAware

Chapter 2 presented the notion of integrated heterogeneous networked

environments in which a user roams seamlessly between overlapping network

technologies. Quintessential to such an environment are sudden and dramatic changes

in network QoS. This section considers the impact of a dynamic supporting

infrastructure on the ANSAware platform. In addition, a set of extensions are

introduced which ameliorate the platform; enabling it both to operate in a changing

environment and provide mechanisms which enable applications to adapt.

6.3.1 The Issue of QoS

ANSAware is a traditional distributed systems platform which exploits

distribution transparencies to provide benefits to distributed application developers.

However, as previously argued in chapter 3, the provision of distribution

transparencies is not necessarily feasible or desirable in a mobile context. Moreover,

the problems inherent in transparent mobility management are further exacerbated

when operating in an environment which offers variable connectivity.

Platform

Operating System

Application

Network

ControlQoS

Handle

Figure 6.6 - QoS Architecture

In such cases, what is required is a framework which permits the flow of

information from the supporting architecture up to the application and, in addition,

offers a handle to applications in order that control can be exerted on lower layers

(illustrated in figure 6.6). For instance, an application can communicate its

requirements to the infrastructure and in turn receive information on the actual service
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it is experiencing. Furthermore, if the expectations of the application can no longer be

met (perhaps due to migration to a new wireless service), the application can be

notified, enabling application specific knowledge to be applied (such as adjusting the

requirements of the application, or the selection of an alternative communications

service).

The necessity for a framework such as this, is a requirement for a QoS based

architecture. There has been a considerable body of work in developing QoS

architectures for controlling the flow and specifying the infrastructure requirements of

multimedia streams. The next section considers the applicability of these established

architectures within the context of mobile distributed systems platforms.

6.3.2 Aspects of QoS for Mobility

6.3.2.1 Rationale

Most of the existing work on QoS has concentrated on producing parameters

which describe the characteristics of fixed networks. More specifically, QoS based

protocols have been developed for transporting flows of continuous media,

particularly within the high speed networking community [Delgrossi,93],

[Campbell,93], [García,96]. A number of core QoS parameters have emerged as being

useful descriptors for continuous media: typically these include throughput, latency,

jitter and bit error rate. These features of the communications channel are of particular

significance for dealing with the regular and timely delivery of the large quantities of

information required by continuous media applications. For example, in the case of

continuous video, the throughput must be sufficiently high to transport the frames of

video, the jitter (variation in latency) low enough to ensure the frames are delivered

within time bounds and the bit error rate below the threshold at which any video

encoding technique employed on the media (such as MPEG compression) breaks

down. With these QoS parameters, it is possible to reserve sufficient network and

end-system resources to ensure the correct and timely delivery of the flow of

information. Should the availability of the resources change, the parameters are

sufficient to enable a QoS violation to be generated and the required QoS to be

renegotiated.

In addition to continuous media transport requirements, distributed applications

are often based on an invocation or RPC paradigm. Bounded delay is recognised as

being the only QoS parameter that has been identified for enabling these applications

to describe their requirements. It is the author’s contention that new QoS parameters

are required to deal with the characteristics of mobile environments, more
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specifically, intermittent and changeable connectivity. Note however, that there may

be an overlap between QoS parameters designed for fixed and mobile environments.

The remainder of this section focuses on defining a set of proposed QoS

parameters which are aimed to support distributed applications in a mobile

environment (additional work is required to establish whether new QoS parameters

are required to provide mobility support to continuous media applications, see section

8.4.1). The proposed set of QoS parameters are as follows :-

• available throughput,

• propagation delay,

• idle time, and

• reachability.

Each of these parameters are considered in more detail below through a series of

simple examples. The implementation of the new platform’s QoS architecture, which

underpins these parameters, is described in detail in section 6.4.

6.3.2.2 Available Throughput

The available channel throughput QoS parameter represents the volume of

information that can be transferred per unit time (currently in bytes per second) over

the current communications medium. To illustrate how this parameter might be used

consider the remote database access application described in chapter 5.

Client Server

High bandwidth

Low bandwidth

Query

Figure 6.7 - A database interaction

Figure 6.7 illustrates a database access application consisting of two objects: a

client who wishes to access the database and a server that provides a public interface

on to the database engine itself. The client interrogates the database by sending its

query to the server via the platform’s invocation mechanism. The server evaluates the

query and constructs a found set of database records matching the query. During the

client’s initial interrogation, the platform is able to calculate the QoS of the

communications channel over which the query is taking place. Before the server

returns the results to the client, it is able to interrogate the binding between the objects
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and obtain an approximation of the throughput. Depending on this approximation, the

server can then adjust the quantity of information to return to the client. If the estimate

of the throughput falls below some specified threshold, the server could limit the

found set to contain only certain key fields, thus enabling the client to further refine

its query or request full records of significant keys. If the estimate is in excess of a

given threshold, the server could return the entire found set (based on the premise that

the performance limit in high speed networks is propagation delay [Grönvall,96]).

6.3.2.3 Propagation Delay

The channel propagation delay QoS parameter provides a measure of the time

taken to transmit the first bit of a packet from one end-system to another (in

milliseconds). This parameter is particularly significant in conjunction with the

available throughput for characterising a given network.

For example, consider the heterogeneous networked environment proposed by the

BARWAN project (discussed in section 3.6.4). Their network consists of multiple

overlays, from in-building wireless LANs and wide-area packet switched data, to

regional area Direct Broadcast Satellite (DBS) and Very Small Aperture Terminal

(VSAT) services. This broad range of wireless services will each provide unique

service characteristics, both in terms of bandwidth and latency. However, the satellite

based services in particular will offer high data rate down-links with especially high

propagation delays due to geosynchronous orbit transit times [Katz,96a].

The combination of available throughput and propagation delay parameters would

allow an application to apply prefetching and caching tradeoffs. For instance, a file

system would be able to prefetch entire file directories to minimise latency in a high

bandwidth network. In addition, an application detecting a network with a high

bandwidth delay product (such as a satellite based system) would attempt to minimise

the fragmentation of its transmission (e.g. by batching messages as much as possible)

and use the volume of traffic to amortise the delays incurred.

6.3.2.4 Idle Time

The idle time QoS parameter describes the length of time that is allowed to elapse

at an interface without a contact (invocation) from another object before the owner of

the interface is notified. The idle time parameter may apply to contact from a specific

object or be generalised to detect any contact. The notification (QoS violation) is via a

local invocation to a client supplied call-back interface (whose parameters determine

the binding which generated the QoS violation and why). The monitoring of idle time

may be automatically re-enabled following a notification or cancelled (in which case
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the idle time is effectively a one-shot timer). The idle time parameter can be useful in

the following generic situations.

Call-back style interactions 

An object may request a service from a remote object and supply a

call-back interface to receive the results on completion. The idle time

parameter would enable the object to detect when results are not

forthcoming and take some reparative action (such as trying again, or

notifying the user).

Periodic information bulletins

An object may receive periodic information bulletins, perhaps at timely

intervals. For instance, the object may monitor fluctuations in the state

of the financial markets or collate stock control information to

determine purchasing trends. The idle time parameter provides a

simple mechanism for discovering breaks in the information supply.

Detecting communications failure

An object may be interacting with a remote object via an unreliable

communications link (common in mobile environments). The idle time

parameter would allow the object to detect the absence of expected

responses, such as replies or service requests, perhaps due to

communications failure. For example, typical wide-area

communications technologies offer services without guarantees of

coverage. In cellular systems there are often coverage blackspots

(where no coverage exists), and also, cells may become heavily

congested leading to unavailability of service.

A further example of the use of the idle time parameter is provided by the

following example (figure 6.8).

File 
Server

Client 
A

Client 
B

Client 
C

A
B
C

Figure 6.8 - File server object with multiple client objects
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Consider a fictitious file system that is constructed using objects. The file server

object maintains a service interface to allow clients to request copies of a file. The

server would construct a list of clients that were interested in a particular file and

endeavour to provide notifications when a client’s cached copy was invalidated

(similar to call-back breaks in AFS). Each client may periodically ping the server with

a ‘keep alive’ message to inform it that a particular file was still of interest. Using the

idle time QoS parameter on its service interface, the file server could easily detect

when the keep alive messages stopped being received from a particular client and

would consequently be able to remove that client from the notification list for the file.

6.3.2.5 Reachability

The last QoS parameter considered in this section, reachability, is related to idle

time, but offers stronger guarantees. Reachability is designed to assert that the

absence of a communication from a client within a given threshold is not due to

communications failure. The parameter is of particular significance to call-back

structured applications. To illustrate why this might be necessary consider the file

system example from the preceding section (figure 6.9).

Client Server

Failure

Register

Figure 6.9 - Call-back application structure

As previously stated, a client retrieves some information (a file) from the server

and the server warrants to inform the client of any changes thereafter. Therefore, the

server is required to keep state concerning which clients it has supplied with which

information, together with a call-back interface for invalidation notifications.

Structuring an application in this fashion means the client does not have to continually

ask the server whether or not the information it holds is still valid (i.e. polling the

server). Furthermore, considerable network bandwidth may be saved over the polling

strategy; the more files cached by clients, the greater the effective reduction in polling

traffic.

Structuring the application in this manner has one significant flaw. Specifically,

the absence of change notifications from the server could be for one of two reasons:

either the information the client holds is still valid or, alternatively, the

communication link is no longer available and so the server has been unable to reach
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the client. Optimistically, the client would be using out of date information. However,

if the information was of a safety critical nature, the lack of current information is

potentially dangerous.

The reachability QoS parameter aims to address this problem by monitoring the

availability of the server on the client’s behalf, allowing the application to retain its

call-back structure. At the lowest level, this maps on to a polling strategy which is

controlled by the platform. The main advantage over application level polling, apart

from not requiring application restructuring, is that multiple application objects that

communicate between the same pairs of hosts can delegate all their polling

requirements to the platform. The platform may in turn optimise the actual polling to

meet the most stringent polling requirement (by definition meeting less stringent

ones) thereby reducing the amount of actual polling traffic required. The platform is

also able to use lower level messaging techniques (e.g. the message passing services)

that are not available to the application level and incur less communication overhead.

Moreover, the platform can obtain information unavailable to an application object to

further reduce the necessity for polling, for instance, monitoring interactions between

other objects to infer host availability.

6.3.3 QoS Support in ANSAware

The preceding sections have discussed the need for a QoS based architecture and

highlighted a set of QoS parameters designed specifically for operation in a

heterogeneous networked environment. The ANSAware platform requires extensive

modifications, both at the computational and engineering levels, to support the new

architecture. More specifically, the following enhancements are required :-

Computational model

The ANSAware platform does not include support for explicit bindings

between objects. A new binding architecture is required to enable

objects to be bound with an explicit QoS and provide a handle that

enables applications to monitor and control the binding.

Engineering model

The current set of ANSAware execution protocols are unsuitable for

operation in a heterogeneous networked environment. Moreover, these

protocols do not incorporate support for QoS management. A new

protocol is required which can operate over multiple network

technologies and provide managed QoS information to the binding

architecture. In addition, the computational bindings need support from
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an engineering infrastructure which enables bindings to be established,

controlled and policed.

The following sections consider the computational and engineering QoS support

in the new platform in more detail.

6.4 Computational Model

6.4.1 Overall Approach

This section describes the computational features of the new platform for

supporting the QoS architecture mentioned throughout the previous section. The

extensions to the original ANSAware computational model focus in two main areas :-

i) Explicit QoS bindings

The architecture allows applications to abstractly identify interactions

between pairs of objects using a QoS managed explicit binding. The binding

can be used to establish QoS requirements in terms of the parameters

identified in section 6.3 and receive QoS violation notification events,

enabling the application to adapt to changes in the QoS provided by the

network.

ii) QoS annotations

The architecture permits the specification of QoS annotations that can be

attributed to specific platform service invocations. Through this mechanism,

invocations can have an associated urgency and completion deadline.

These two forms of extension are considered in the remainder of this section. Both

extensions required modifications to the platform’s DPL language (introduced in

section 6.2.5.1). The enhanced compiler grammar describing DPL is presented in

appendix A. Finally, the explicit bindings are contrasted with those specified in the

RM-ODP.

6.4.2 Explicit QoS Bindings

An explicit QoS binding allows an application object to define an association

between a pair of objects. The creator of this binding association receives a handle

through which the interactions described by the binding can be monitored and

potentially controlled. Information describing the interactions between the bound

objects and specifying application requirements are quantified in terms of QoS

parameters. In the new platform model, an interface belonging to each party to be

associated is required. In addition, one of the interfaces must belong to the object
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performing the binding; thus, the owner of the binding is always one of the bound

participants. The object instantiating the binding may take the role of either a client or

a server, i.e. the binding might describe invocations from the creator of the binding to

some remote interface or from a remote client to the creator of the binding. This

model is compared with the more familiar RM-ODP model in section 6.4.4.

The creation of an explicit binding can be thought of as comprising of two steps :-

i) The first phase of binding creation is where the binding is initially

constructed between a pair of objects (subject to preconditions, such as

meeting the appropriate QoS specification). This is the establishment phase.

A successful establishment phase will yield a handle onto the binding,

enabling the second phase.

ii) The second phase, once the initial binding has been established, is the

maintenance phase. During this phase, the binding is being monitored and

will report violations in the specified QoS. Furthermore, the handle may be

used by the application to interrogate and amend the binding.

Each of these phases is examined more closely in the following sections.

6.4.2.1 Establishing a Binding

A binding is established using a pre-processor directive similar to a trader import

or invocation (see table 6.2). Notionally, an object called the binder is responsible for

checking the establishment preconditions, creating the binding and returning the

binding handle (analogous to a binding factory). The binding is effectively a first class

object that is responsible for monitoring the binding and may be invoked using the

handle (which is simply an interface reference).

In more detail, the binding syntax is expressed as follows :-

! {Handle} <- binder$Bind(ClientIR, ServerIR, QoS)

A binding may be established by a client or a server object (or both). First, the

binder checks to see whether the binding has already been established by another

object. If the binding does not exist, one is created with the specified QoS. Once the

binding has been created, a local monitoring object is instantiated and an interface

reference to the monitoring object returned as the handle to the binding. Consider the

example shown in figure 6.10.
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Figure 6.10 - An explicit binding monitored by both parties

The client object executes the binding instructions, indirectly causing the creation

of the binding and the instantiation of the local monitoring object. Later, the server

executes its binding instructions; the binding has already been established by the

client and so only the local monitoring object is established. It is evident that the two

objects, the client and server, both have local monitoring objects. Therefore, it is

possible that the client and server will obtain different QoS readings for the same

binding, according to the perspective of their own monitoring object. This feature, and

other differences from more traditional explicit binding approaches, are considered in

section 6.4.4. Note that, as previously mentioned, a binding must be established by

one of the bound parties; a third party may not establish a binding between two

further objects (although, third parties may obtain the binding handle and thereby

monitor and control an established binding).

A special case syntax is permitted at server-end bindings, i.e. where ServerIR is a

service interface reference that is local to the object creating the binding :-

! {Handle} <- binder$Bind(*, ServerIR, QoS)

A binding created using this syntax is effectively between any client and the

server interface referenced (multipoint-to-point). The QoS parameters supported by

these bindings are affected. In particular, the throughput and propagation delay figures

will only apply to the first client who contacts the server. In addition, the reachability

QoS parameter is not supported for unspecified clients. This mechanism corresponds

to a late binding, in which the binding is partially established until contacted by a

client. The partial binding can still support the idle time QoS parameter, enabling a

server to assert ‘no contact by any client within time t’.
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The binding control interface that is accessed via the binding handle is considered

in more detail in the next section.

6.4.2.2 Feedback and Control

The binding control interface provides the sole mechanism through which a

binding is accessed. The binding control interface supports the operations shown in

figure 6.11.

BindingControl : INTERFACE =
  Unbind : OPERATION [] RETURNS [ Status ];
  GetQoS : OPERATION [] RETURNS [ QoS; Status ];
  SetQoS : OPERATION [ Quality : QoS ] RETURNS [ Status ];
  EstimateTime : OPERATION [ Size : CARDINAL ]
                   RETURNS [ REAL; Status];
  RegisterForEvent : OPERATION [ Event : EventType;
                                 Callback : InterfaceRef ]
                       RETURNS [ Status ];
  DeregisterForEvent : OPERATION [ Event : EventType ]
                         RETURNS [ Status ];
END.

Figure 6.11 - IDL specification for binding management

The Unbind operation provides a convenient mechanism for closing a binding and

at the same time deregistering for all QoS events that have been registered on that

binding. The GetQoS operation enables the application to query the state of the

binding and obtain the current estimates for throughput and delay parameters

described earlier. In addition, the information retrieved by the GetQoS operation

contains lower layer information about the communications service. This information

is supplied by a mobile link manager, called S-UDP (explained further in section

6.5.3.5).

The SetQoS operation provides a mechanism through which applications can

specify their QoS requirements to the architecture. In the current implementation, the

application may adjust a number of execution protocol specific QoS parameters (for

example, influencing the RPC retransmission strategies). However, the underlying

message passing services do not include QoS reservation transport protocols.

Therefore, changes to parameters such as the desired throughput or delay are

ineffectual. However, the mechanism could be easily extended to pass this QoS

information down to lower layers should QoS reservation support be added at a later

date.

The RegisterForEvent operation allows an application to register an interest in the

occurrence of a particular QoS based event. The QoS events correspond to the set of

parameters identified in section 6.3.2. For instance, the application may request to be

informed when the available channel throughput exceeds a specified threshold. In this

case the corresponding event (tooFast) and threshold would be supplied as arguments
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to the RegisterForEvent operation. Events corresponding to the throughput, delay, idle

time and reachability QoS parameters are defined.

Once an object has registered for a particular event, the underlying protocol takes

responsibility for monitoring for the occurrence of that event. Should the event occur,

the supplied call-back interface is invoked with an EventOccurred operation. The call-

back informs the application of the type of event which occurred (separate interfaces

could be supplied, in which case the selection of the interface is sufficient to denote

the event type). The call-back handler may choose to acknowledge the event and re-

trigger the event monitor for a further occurrence of the event or alternatively cause

the event be deregistered (in which case the event handler can be considered one-

shot). Since the binding control interface is a true first class interface, the object may

pass duplicates of the interface to remote objects, allowing them to interrogate the

channel QoS or register for events on that binding.

The DeregisterForEvent operation informs the binding that the application is no

longer interested in events of a specific type. Invoking the deregister operation on a

given event is equivalent to the call-back handler requesting deregistration once the

event has occurred.

The EstimateTime operation provides a convenient mechanism for applications to

obtain an estimated total transfer time (in seconds) based on a given quantity of

information and the current throughput estimator. The operation relies on a heuristic

which calculates the time based on the number of packets the data will require and the

amount of protocol overhead predicted. The prediction is effective only as a rough

guideline to applications.

6.4.3 QoS Annotations

The extended computational model includes mechanisms for attributing

invocations with QoS annotations. The annotations apply only to the single invocation

to which they are attributed (maxima or blanket annotations that apply to all

invocations on a binding can be specified in the usual way through the binding control

interface). Currently two QoS annotations are defined: deadlines and time constraints.

The deadline† QoS annotation specifies a time within which the invocation should

reach the destination service. The deadline affects how the invocation is handled at

lower layers (see section 6.5.3.5). An example of the syntax is shown in figure 6.12.

† The platform does not attempt to ensure deadlines are explicitly met by, for example, using real
time scheduling algorithms. However, the deadlines do allow invocations to be given relative
ordering.
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! {rarg1, ..., rargN} <- ServiceIR$OpName(arg1, ..., argM) < deadline

Figure 6.12 - Deadline specification syntax

The deadline may be specified either as an explicit time in seconds (following the

UNIX convention of being the number of seconds since 1 January 1970) or a relative

time (specified by the ‘+’ symbol followed by an amount in seconds).

Deadlines are typically used to distinguish invocation traffic of different levels of

urgency, for example, giving interactive invocations more significance than periodic

background update traffic. One advantage of the deadline scheme, when compared

with priority based methods, is the ease with which relative ordering is visualised.

However, deadline based mechanisms do have a disadvantage; the closer one is to the

expiry of a deadline the more important it seems (short deadlines are associated with

urgent invocations). Thus, more recent invocations with high urgency may be passed

over in favour of a less urgent one with a deadline that is just about to expire. This

dilemma is currently being addressed by the process scheduling community who are

aiming to solve the problem by using composite schemes comprising both priorities

and deadlines [Nieh,95].

The second QoS annotation gives the ability to place a time constraint on an

invocation’s execution. If the invocation does not complete (the results have not been

received from the server) then a notWithinTime exception is generated and the

invocation is terminated. The time constraint is set using the within keyword and a

time in seconds (as shown in figure 6.13).

! {rarg1, ..., rargN} <- ServiceIR$OpName(arg1, ..., argM) within time

Figure 6.13 - Time constraint specification syntax

A typical example of this parameter in use might be where an object propagates

information to a client which is only valid for a certain period. The programmer may

put a limit on the time within which the remote object must reply acknowledging

receipt of the information. After the specified time, if the information has not been

acknowledged, an exception warning the application is generated and the invocation

terminated. The application may then take action depending on the implications of the

client being in possession of invalid information. The time constraint may be set as a

binding parameter in which case it will apply to all invocations over that particular

binding.

Both QoS annotations may be used in conjunction, for instance :-

! {Result} <- ServerIR$Fetch(Criteria) < +5 within 10
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This invocation would therefore have a deadline for reaching the server (denoted

by ServerIR) in five seconds hence and will terminate and generate an exception if the

result has not been forthcoming within ten seconds.

Deadlines and time constraints, as provided by the new platform, are analogous to

the soft and hard deadlines specified by the ANSA computational model. However,

the QoS annotations in the new platform do not affect the scheduling of application

threads in order to satisfy the deadlines or attempt to provide real time guarantees.

The implementation of real time constraints has been investigated more thoroughly in

real time ANSAware [Li,94].

6.4.4 Analysis

The explicit binding mechanism in the new platform differs from the explicit

bindings of the RM-ODP in several important respects.

Binding structure

In RM-ODP, the binding object in a compound binding action provides

a central point for monitoring and controlling the binding. In the new

platform model, a local monitoring object is instantiated within each

capsule that requests to be bound, and this object is responsible for

monitoring the binding. To illustrate the point, if two bound RM-ODP

objects request the current QoS, both objects are invoking the same

binding object and would receive the same answer. In addition, any

changes to the binding made by one of the objects will affect the QoS

perceived by the other object. In the new model, a binding can be

thought of as one object’s perspective on the interaction between the

pair. This structure is analogous to replicating the binding object

locally within each object’s capsule, without providing guaranteed

consistency. Thus, the QoS requirements at one object are seen as

independent from those of the other object.

Third party involvement

A binding object, established by a compound binding action in RM-

ODP, is an object which can be instantiated and utilised by a third

party. In contrast, the explicit bindings offered by the platform require

that a binding is established only by participants in the binding (the

binding is internal to these objects). The binding control interface to an

established binding may be used by third parties.
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Interface causality

In RM-ODP, an explicit binding is made between a pair of interfaces

with complementary causalities (ignoring cases involving more than

two participants). In the ANSA model, upon which the new platform is

based, interfaces are implicitly created with server (consumer)

causality. Furthermore, there is no mechanism for creating a client

interface with complementary causality (which produces or emits the

appropriate operations). As a consequence, a binding must be

established between a pair of interfaces with server causality, one from

each party.

The first point breaks from the traditional view of an explicit binding, and requires

some additional justification. There are three reasons for not supporting the full RM-

ODP binding model. Firstly, bindings must be transient over communications failure,

as a network incorporating mobile components will have a frequency of disconnection

significantly higher than in any fixed network. Secondly, the level of binding

management traffic between binding objects required to maintain consistency is

undesirable when, for example, a low bandwidth link is being used. Such traffic

would be expensive in terms of both cost and time, may require explicit connection

establishment and would further consume the scarce network bandwidth. Lastly, not

all of the new QoS parameters are orthogonal to both the client and the server ends of

the binding. For example, the reachability QoS parameter applies only to service

provider interfaces.

6.5 Engineering Model

The computational model described in the preceding section requires a number of

supporting components within the engineering framework of the platform. More

specifically, these components consist of :-

i) A new RPC protocol, called QEX, which provides all the QoS monitoring

functionality required by the computational level binding architecture.

ii) A mobile link manager which multiplexes data across low bandwidth links

(i.e. serial and dial-up connections).

iii) Extensions to the UDP message passing service to enable capsule RPC traffic

to be indirected via the appropriate transport service.

The relationship between these components and the rest of the platform

architecture is illustrated by figure 6.14.
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Figure 6.14 - QoS support at the engineering level

As the figure shows, the QEX protocol is a direct replacement for REX. QEX

makes use of the modified UDP message passing service to direct traffic via either the

network interface (wired connectivity) or the mobile link manager (S-UDP) when

mobile.

The remainder of this section discusses the QoS support in the QEX protocol and

the mobile link manager in more detail. First, it is necessary to examine REX to

establish why it is unsuitable for mobile environments. In addition, detailed

knowledge of REX is desirable as a basis for discussing the new protocol, QEX. The

section moves on to investigate the backward compatibility issues of QEX and REX.

6.5.1 REX

REX is the execution protocol which underpins the ANSAware invocation

mechanism. REX provides remote procedure call semantics [Birrell,84] with

streaming extensions to support bulk data delivery [Gifford,88]. The REX protocol

has been designed to provide low response times and high reliability for synchronous

interactions (interrogations) and high throughput for asynchronous transfers

(announcements). End-to-end overheads such as connection management, buffer

copying and process scheduling have been minimised. Essentially, the synchronous

and asynchronous forms map onto CALLs and CASTs respectively at the protocol

level. To summarise the two forms: the CALL (the more commonly used mechanism)

is a traditional remote procedure call, i.e. a message invoking a (potentially) remote

procedure with a number of typed arguments, followed by the reply containing the

response data. A CALL may be either synchronous or asynchronous. In the
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synchronous case, the client thread blocks until the invocation reaches a termination.

The termination is either the expected reply or an exception indicating failure. In the

asynchronous case, the client does not block. Instead, a voucher is returned which

may be redeemed at a later date to obtain or block for the termination. The CAST is

unidirectional and unreliable: delivery is not guaranteed and no reply is expected.

A REX packet comprises a header portion and a variable amount of payload. The

payload component includes sufficient platform information to allow the correct

selection of a specified operation on a given interface and a set of marshalled

arguments to that operation. A response packet need only contain the marshalled

response from the server. In this section we are concerned primarily with the

workings of the RPC package and can effectively ignore the payload contents.

The REX protocol makes use of five packet types: CALL, CALLACK, REPLY,

REPLYACK and FRAGNACK. All these packet types have a common header

structure (shown in figure 6.15).

Version Type Sequence No.

Total Size Frag. Offset

Nonce (20 bytes)

To Session

To Channel From Session

From Channel Data Length

0

8

16

40

48

0 2 4 6

24

32

Figure 6.15 - REX packet header

The header is 56 bytes in length and includes fields denoting the protocol version,

packet type, sequence number and a unique service identifier (known as the nonce).

The remote procedure call mechanism is capable of passing an arbitrary sized

payload between a client and server. Since the majority of protocols place bounds on

the maximum size of the packets they may transport, REX operates its own rate-based

fragmentation and reassembly strategy. The CAST, CALL and REPLY messages may

all be fragmented and reassembled. The exact threshold over which a message

becomes fragmented is determined by the underlying transport protocol that REX is

using. For example, in the case of UDP this threshold is 1200 bytes, whereas in the
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case of TCP, which performs its own fragmentation and places no upper bound on

payload size, REX delegates all fragmentation.

The ways in which the various packets interact is illustrated by the following

protocol state diagrams (figures 6.16 and 6.17).
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Figure 6.16 - Client protocol states

Figure 6.16 shows the state machine at the client end of an invocation. Initially the

client is in the IDLE state. If the client performs an announcement then the protocol

transmits the CAST (or fragment thereof) and moves to the CASTING state. The

client remains in this state until all fragments of the CAST have been sent before

moving back to IDLE. If the client performs a conventional invocation, or CALL, it

sends the CALL message (or a CALL fragment) and moves into the CALLING state.

After a fixed retry interval, the client will re-transmit the CALL message. This

interval increases exponentially unless the client hears from the server or the

maximum number of retransmissions has been reached. The client will remain in the

CALLING state until either a REPLY message has been received from the server or

the interaction times-out. If the server acknowledges the CALL (with a CALLACK),

the client moves into a sub-state known as PROBING: instead of full retransmissions

it sends only the CALL message headers. These probes occur less often than normal

retries and, if not acknowledged, provide an additional method for detecting server

failure. Once the REPLY has been received the protocol may move into the

FINISHING state. While in this state the protocol will acknowledge (REPLYACK)
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any successive retries of the REPLY. Fragmented interactions behave identically with

the augmentation that a fixed rate interval timer is used to determine when to send

each batch of message fragments.
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Figure 6.17 - Server protocol states

Figure 6.17 shows the state machine for the corresponding server end of the

protocol. As with the client, the server is initially in the IDLE state. Once a message is

received it moves into the TOLD or ASKED state depending on whether the message

was a CAST or a CALL respectively. The protocol remains in this state until all the

fragments (if further are required) are received. If in the TOLD state, once the

message is complete the announcement is passed up and the protocol can return to the

IDLE state. In the more usual case (from the ASKED state), when the message is

complete, the invocation is passed up to the server code. If any successive retries are

intercepted the protocol acknowledges them with a CALLACK message. Once the

server has composed its response, it moves into the REPLYING state and transmits

the REPLY. After a period of time the protocol will drop back to the IDLE state.

However, should a CAST or a CALL be received, the protocol will move directly to

the appropriate state (TOLD or ASKED) without needing to move through IDLE.

There are some noteworthy features of the REX protocol. Firstly, the protocol

makes use of two types of acknowledgement scheme depending on whether or not
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invocations fragment. In the non-fragmented case, the first duplicate detected at either

end (CALL or REPLY retransmission) is positively acknowledged. In contrast, if the

message is fragmented, groups of message fragments (normally 3) are transmitted

periodically at fixed intervals. A further fixed interval timer governs when a negative

acknowledgement (FRAGNACK) is sent in response. The negative acknowledgement

contains a map of fragments the receiving end has yet to see. The map is used by the

transmitting end to adjust its map of which fragments to transmit (or re-transmit).

Once the completed message is received (all fragments assembled), the entire

message is treated as in the non-fragmented case, i.e. if the whole message is a

duplicate it is positively acknowledged; if it is a CALL, a REPLY is sent and if a

REPLY the next CALL can be sent (if there is one).

Secondly, positive acknowledgements are only sent when a retransmission of a

message is detected. A REPLY message implicitly acknowledges a CALL and vice

versa, which leads to a special case in which the number of messages to complete an

interaction is optimised. In more detail, consider the following example: a client

interrogates a server (sends a CALL). If the time taken to service the invocation is

sufficiently low and the network fast enough, the REPLY will be received by the

client before the client’s retransmission threshold is reached and a duplicate CALL is

dispatched. The REPLY acknowledges the CALL implicitly and the client may

proceed with the next CALL to the server. The symmetrical case also applies. If the

duration between the transmission of the REPLY at the server and the reception of the

next CALL is less than the server’s retransmission threshold then again the

acknowledgement message and retry is saved. Thus, during high paced intensive

interactions between a client and a server, an invocation requires only two messages

(the CALL and REPLY), providing the channel is reliable and none of the messages

are lost.

6.5.2 Analysis of REX

The REX protocol has been designed to operate over a particular target network (a

moderately loaded wired LAN such as Ethernet). Not surprisingly, when the

environment changes, the protocol has not been designed to adapt and consequently

ceases to work effectively. There are two specific reasons why REX does not perform

well :-

Interval timers

The interval timers in REX, which govern various features such as

retransmissions, fragment transmission and negative

acknowledgements, have been configured in at compile time. In fact
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the three timers mentioned in the previous section, are by default set to

100, 10 and 50 milliseconds respectively. Thus, when REX is

introduced to a low bandwidth communications channel (such as those

offered by wide-area mobile networks), the fixed interval retry timers

are set for too short an interval and the channel becomes highly

congested with retransmission traffic.

Congestion control

In order to cope with congestion, the REX protocol makes use of a

simple exponential backoff strategy whereby the interval timers are

multiplied by a factor based on the number of retries. This strategy is

not as effective as a proper congestion control mechanism and recent

research suggests that exponential backoff strategies may be

inappropriate due to high error rates in mobile environments. This

issue is covered in more depth in section 6.5.3.2.

One possible solution, of course, would be to change the default timer settings at

compile time and build the protocol to suit the low bandwidth network. While clearly

possible, this approach has a number of failings. Firstly, when the channel is used by

multiple parties, the effective bandwidth available to the protocol is reduced and the

protocol will not adjust satisfactorily to the congestion. As previously mentioned,

congestion control is via an exponential backoff strategy. However, backoff strategies

cannot replace proper rate control and will inevitably lead to poor and sporadic

bandwidth utilisation (the underlying assumption is that congestion is transient,

caused by overloading at routers). Secondly, if an alternative network becomes

available (such as an Ethernet), the newly tuned protocol will make poor use of the

extra bandwidth. Moreover, these problems are further exacerbated if more advanced

scenarios are considered (such as those proposed in chapter 2) where a host may be

able to make use of seamlessly integrated network technologies with dynamic handoff

between different network types.

A further approach would be to use multiple platforms, each tuned for a different

network and re-link application code to the appropriate platform when the network

characteristics change. However, this approach is clearly inconvenient (and often not

possible).

Therefore, a new protocol is required which is designed to adapt to changes in the

available network bandwidth. Essentially, the replacement for REX is required to

fulfil three major functions :-

i) Underpin the explicit QoS bindings (as described in section 6.4.2).
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ii) Adjust to changes in network characteristics as a result of congestion and,

significantly, as different network technologies are utilised.

iii) Remain backwardly compatible with legacy ANSAware applications (which

may be executing on the local host or made available while connected to the

fixed network infrastructure).

In order to remain backwardly compatible, the new protocol is an evolution of

REX, retaining many similar mechanisms and using common states, message types

and general forms of interaction. The initial engineering problems with QEX were

consequently how to adjust the protocol so that it could incorporate congestion

control, monitor channel QoS and yet at the same time remain undetectable to existing

applications.

Note that, QEX is designed to operate using UDP as the transport protocol. UDP

was chosen due to the need to minimise the overhead of the RPC mechanism: the

typical RPC carries little data and occurs sporadically, making the overhead of

connection-oriented protocols such as TCP undesirable. However, where message size

is large and the overhead of datagram headers is significant, TCP may be a more

suitable alternative. Clearly, if QEX were to be run over TCP there would be a

duplication of functionality. In particular, the congestion control, duplicate detection

and packet fragmentation and reassembly mechanisms would all be superfluous. To

remove this duplicate functionality, many of the QoS support concepts could be

moved into TCP, resulting in a simplification of the RPC mechanism itself. However,

following this approach would require changes to the operating system. Currently, no

work has been undertaken by the author in implementing QoS support within TCP.

6.5.3 Design of QEX

QEX is the execution protocol which supports the QoS architecture of the new

platform. The QEX protocol provides the same semantics as REX. However, the new

protocol calculates the QoS of the communications channels using statistics based on

packet size and associated round-trip times. The protocol, QoS measurement strategy

and backward compatibility issues are described in the following sections. In addition,

the facilities provided by the mobile link manager (first mentioned in section 6.4.2.2)

are presented.

6.5.3.1 Overview

The approach taken by QEX is to measure the round-trip time (RTT) of pairs of

messages sent during interactions to obtain an approximation of the channel
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characteristics. This approximation is then used to adjust the protocol (provide

congestion control) and underpin the QoS binding architecture.

The QEX state machine was developed using the REX state machine as a starting

point (for backward compatibility reasons). To most accurately measure RTT, it is

necessary to identify messages that generate immediate responses without incurring

additional application delay. For example, if the CALL/REPLY pair were to be used

then, once a CALL has been received, there would be an arbitrary delay while the

server object services the request (which may potentially involve user interaction),

before generating the REPLY message. A complex mechanism would be required to

factor out this additional and essentially random component of the RTT estimates.

The most appropriate REX messages, those that are generated without application

intervention, are the acknowledgement messages that are transmitted when duplicate

messages are received (i.e. the CALL/CALLACK and REPLY/REPLYACK pairs).

However, these interactions do not occur sufficiently often (particularly if the REX

optimised behaviour occurs) to allow the channel to be continuously monitored.

Consequently, the new protocol generates a positive acknowledgement whenever

a CALL or REPLY message is received to enable the RTT to be more easily

measured. Additional information (called a tag) is hidden in the header of each

outgoing message (the tag structure is described in more detail in section 6.5.3.4).

When an incoming CALL or REPLY is received, the tag field is transferred to the

corresponding outgoing CALLACK or REPLYACK so that the remote object can

easily match pairs of messages.

The QEX RTT mechanism is analogous to the RTT extensions made to TCP for

improved performance in high bandwidth networks [Jacobson,92b]. In TCP, a time

stamp option field may be added which is echoed back by recipients to enable the

sender to calculate the RTT using a single subtraction (additionally, avoiding the

aliasing problems identified with earlier TCP window based schemes). In QEX, the

time stamps for unacknowledged packets are kept at the sender and indexed using the

tag field. On receipt of a positive acknowledgement, the receipt time and tag echoed

in the acknowledgement header enables QEX to calculate the round-trip time for that

interaction. Tag fields contain an increasing modulo counter which enables packet

loss to be detected. QEX is able to perform the calculation using less transmitted

information than TCP (the TCP option field is 10 bytes) at the expense of additional

processing overhead at the sender.

The tag field is essential for distinguishing retries of individual packets. To

explain why this is necessary, consider the scenario illustrated by figure 6.18.
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Client

Retry 5 Retry 4 Retry 3

Ack 3Ack 2Ack 1

Server

CALL retries

CALLACKs

Figure 6.18 - The retry identification problem

The figure shows a pair of objects during an interrogation. The client has begun an

invocation to the server and is just about to receive the acknowledgement to the first

CALL packet it sent. The client is tuned for a channel which, either through network

choice or absence of congestion, was operating faster than the channel it is currently

using. Therefore, the client is re-transmitting duplicate CALL packets under the

assumption that the prior packets have been lost due to errors, when in fact the first

packet has not had time to complete the journey to the server and elicit the response

(i.e. the retransmission interval is too short). The server is receiving the CALL

packets, transferring the tag from each one to the corresponding acknowledgement

CALLACK packet and transmitting it. When the client receives the CALLACK it is

able (using the tag) to identify the corresponding CALL and calculate the RTT. The

RTT can help the protocol adjust the retransmission timer to avoid unnecessary retries

for future invocations.

However, if the tag system is not used, the retransmissions made by the client and

their corresponding acknowledgements are all identical. The client is unable to tell

which CALL matches which CALLACK. As a consequence the client must assume

the acknowledgement it receives partners the retransmission it just made. In the figure

this would mean that Ack 1 (the response to the first CALL packet) was paired with

Retry 5 (the last CALL retry sent). The effective RTT would make the channel appear

to be significantly faster and the protocol would stabilise at this incorrect

retransmission rate.

The discussion so far has focused on calculating RTTs for non-fragmented

interactions, i.e. where the size of the payload is less than the fragmentation threshold

of the transport protocol. In the fragmented case, where the payload is split over a

number of messages (fragments) a different mechanism is required. A message

pairing is required to allow the RTT to be calculated. By default, the REX protocol

transmits bursts of fragments, updating its view of which fragments to transmit in

response to received FRAGNACK packets. Each FRAGNACK is generated

periodically by a fixed interval timer. Thus, there is no message pairing.
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In QEX, it was necessary to make FRAGNACK messages correspond to specific

fragments. Contrary to the original scheme which uses a timer to trigger negative

acknowledgements at the receiving end, a bit in the flags field of each outgoing

fragment triggers the transmission of the FRAGNACK on reception. Negative

acknowledgements are therefore driven by the sender in the new scheme. The

remainder of the flags field is used as a tag to match acknowledgements to fragments

at the sending end (as with the non-fragmented case). The FRAGNACK packets

themselves are otherwise identical to their REX counterparts and perform the same

function (updating the map of outstanding fragments).

On the surface this scheme seems to advocate a synchronous mechanism where

one packet is generated for every one received, which is analogous to a positive

acknowledgement strategy. However, QEX contains a slow-start mechanism: in

addition to the RTT calculation, QEX calculates the variance of the RTT estimates.

The variance is used to determine how stable the current channel estimate is. When

the estimate is considered stable (variance lower than a configurable threshold), QEX

spaces out the packets which have their negative acknowledgement bit set to reduce

the number of FRAGNACKs required. Only when the estimate becomes unstable is

the gap between acknowledged packets reduced.

The RTT mechanism, as the basis for adjusting the protocol and gathering QoS

information, relies on the underlying assumption that the communications channel is

symmetric (offering the same QoS in each direction). In a network where asymmetric

channels are possible (e.g. TETRA) this mechanism will be less suitable. In order to

work over asymmetric channels, QEX would require a mechanism which calculated

the latency. Such a mechanism would require that packets were time stamped and the

clocks at each end of the link synchronised (necessitating additional protocol

overhead).

6.5.3.2 Backoff Strategies

Each time the retry transmission interval timers are set by the REX protocol, the

time interval is increased exponentially. The assumption made by the protocol is that

the interval timers are correctly adjusted for the channel conditions and, if no response

is forthcoming to a given message, the packet must have been dropped en-route due to

overloading at the network routers. The use of exponential backoffs within fixed

networked environment is well established and exemplified by TCP [Jacobson,92b].

However, Cáceres [Cáceres,94] identified that in a wireless network (in this particular

case a WaveLAN wireless LAN) packets are more frequently lost due to the increased

bit error rate and control traffic (such as cell handoff). Cáceres postulates that an

aggressive retransmission strategy is more appropriate for such a network (it should
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be noted that aggressive retransmission is only applicable once the channel is in a

steady state).

In QEX, the RTT variance calculation is used in conjunction with network

supplier information to determine the appropriate backoff strategy. Where the

bandwidth of the network is sufficiently low and the channel approximation stable,

the protocol switches to a linear backoff strategy. The linear strategy leads to more

aggressive retransmissions and, ideally, improved performance over error prone links.

An exponential strategy is always used in higher bandwidth networks and where a

steady RTT has not yet been attained.

However, where a packet must be routed over multiple hops consisting of both

fixed and wireless network components, a single backoff strategy may not be

appropriate. The most suitable mechanism for the fixed hops would be the

exponential strategy, whereas the linear strategy is most likely the best choice for the

wireless hops. A possible solution would require RPC agents to be interposed to vary

the backoff strategy en-route (an approach endorsed by M-RPC [Bakre,95b]). There is

no provision for the insertion of agents in the current QEX protocol. The investigation

of improved backoff strategies is the subject of future work (described further in

section 8.4.3).

6.5.3.3 Throughput and Delay Estimation

For every remote object, QEX maintains independent channel calculations. These

calculations are used to tune the protocol for each interaction. In addition, the

calculations support the QoS interface at the binding level (the QoS parameters are

outlined earlier in this chapter). Two of the most significant parameters available are

channel throughput and propagation delay. Ideally, the throughput and delay

components provide an accurate measure of the available channel resources to a given

interaction. However, in practice it proves to be far from trivial to convert the

available information, such as RTT and packet size, into more meaningful parameters

such as these.

QEX currently uses one of two approaches: for want of better names, these are

called the simple and complex algorithms (the choice of algorithms is made at

compile time to reduce execution overhead). Both algorithms are intended to factor

out the two components of channel latency: the bandwidth related component (due to

the size of the data) and the delay component (incurred before the data is transmitted).

The latter of these two, delay, is the time incurred by the operating system, protocol

stack and network interface itself. Traditional approaches rely on measuring

sequences of fixed sized packets such as the MTUs in transport protocols (such as
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TCP) or the frame sizes of continuous media flows. Since in an RPC the packet size

continually varies, these approaches cannot be used.

The simplistic approach is based on the premise that the time taken to send a

particular message is directly proportional to the size of the message. Essentially, the

delay component is ignored and the throughput must be the size of the packet divided

by the RTT. To minimise the affect of variations in the delay component (jitter) the

RTT is averaged using a three sample moving average calculation. The number of

samples is configurable; the more samples, the smoother the resulting values but the

slower the protocol adapts to genuine changes in QoS. In addition to providing a

throughput estimator, the smoothed RTT is used to make guesses about the expected

transmission time of a packet that is to be sent. The more accurate the guess, the less

likely the protocol is to send an unnecessary retransmission. However, if the guess is

too large the protocol will be slow to discover lost packets and as a consequence

reduce the overall throughput of the RPC.

The complex approach is intended to take into account both the bandwidth and

delay related components and, in addition, any sub-packet fragmentation which may

occur at the transport layer. Instead of a single calculation, the RTT for each packet

size is plotted against the size of the packet (within a certain granularity) (see figure

6.19). Calculating the expected transmission time for a given packet size is achieved

by looking up the packet size in the graph and reading off the expected RTT (some

interpolation between packet sizes may be necessary if the RTT for that particular

packet size is not yet known). Determining the throughput of the channel becomes

finding the gradient of the line of best fit over the graph. Finding the delay is then the

intersection on the time scale of the line of best fit where the packet size is 0. Like the

simple approach, individual values of RTTs are smoothed using a moving average

calculation.
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Figure 6.19 - Plot of packet size against round-trip time

This complex approach is computationally far more expensive than the simplistic

one. In a bid to decrease the overhead of computation, the information for each

interaction is stored in a form of binary search tree known as a red-black tree

[Cormen,90]. The red-black tree is approximately balanced: searching and insertion

are never more than O(log2 n). Searching may be fractionally slower than with a fully

balanced tree (red-black trees guarantee that one search path is no more than twice the

length of any other), but insertion is considerably less time consuming.

The more complex algorithm has been designed to provide more accurate

estimates of RTT by taking into account both the bandwidth and delay components of

packet transmission. However, the algorithm has an inherent problem due to way in

which RTTs are measured. RTTs are calculated against packet size, so changes in the

available bandwidth may be detected by examining how the RTT changes for a given

size of packet. Consequently, if the packet sizes vary, it is difficult to determine

whether the throughput of the channel has changed. In addition, it is unclear how a

detected change for any given sized packet should affect the estimated RTTs for other

packet sizes (if indeed it should). To elucidate, if a packet takes time t1 and a further

(but smaller) packet takes time t2, where t2 < t1, it is unclear whether t2 is smaller

because the amount of data sent was less or due to a reduced level of network

congestion when the smaller packet was transmitted. In the current implementation,

same size packets are used to detect changes in the network. The results for other

packet sizes are changed proportionally in an attempt to keep RTT approximations

more accurate. Observation has shown that in actuality a limited number of different

packet sizes are used in most interactions due to the small number of interfaces and

operations that are typically used by most applications.

In practice, the simpler algorithm was found to be most effective. This is for two

reasons. Firstly, in low bandwidth networks (such as serial lines and dial-up

connections), the bulk of the transmission latency is due to packet size, which

matches the naive approach. Secondly, in faster networks the variance in RTT caused

by factors such as network packet collision and process scheduling delays incurred by

the UNIX kernel tend to allow a significant margin of error in the protocol timers.

Furthermore, an additional error margin is introduced by the timer granularity (varies

between implementations, often in the order of 10ms) and servicing times taken by

the UNIX kernel. Clearly, the approach would not fare well in a network which

experiences long delays but has plentiful bandwidth (such as a satellite link).

The complex approach, in general, produces more accurate RTT estimates once

the channel has reached a stable state. However, up until that point, the protocol is far
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slower to adjust in the face of congestion or changes in network (and highly

dependent on the type of interactions and sizes of messages used). Furthermore,

variance in the RTT experienced by the protocol seriously affects the throughput and

delay calculations (the delay is particularly inaccurate). Additional unexpected jitter in

wide-area networks can be attributed to transparent lower layer ARQ error recovery

strategies.

6.5.3.4 Backward Compatibility

In order to maintain backward compatibility with REX, the QEX protocol has

been designed to use packets of an almost identical format. QEX packets can be

received by REX objects without being discarded as corrupt (all fields are validated

by REX upon reception). The QEX packets contain additional information within the

version field (the first two bytes of header). The version field is comprised of two

components: a version byte and a flags byte. The version field must remain constant

(the incarnation of REX in use with ANSAware version 4.1 is protocol version 3)

otherwise REX will again drop the packet. However, the flags field in a QEX packet

now contains two new components, collectively called a tag.

Version0 2Flags Type

03

1

REX

Version0 2Flags Type

3

1

QEX

128 64 32 16 8 4 2 1

FRAGNACK 
required

7-bit modulo 
counter

tag

Figure 6.20 - Flag field layout

Figure 6.20 illustrates the first three bytes of the REX and QEX packet headers.

The most significant bit of the tag stored in the flags field of the QEX packet holds

the negative acknowledgement required bit (which is discussed in section 6.5.3.1).

The remaining seven bits hold an increasing non-zero modulo counter. The counter

serves two purposes. As the field is non-zero the packet can immediately be identified

as a QEX packet (the entire flags byte is always zero in REX). In addition, the counter

is incremented and updated in every CALL and REPLY packet that is transmitted by

a QEX object. Since the value increases for every message, it is possible to
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distinguish between the individual retries of a packet which would otherwise be

identical.

A REX capsule intercepting a QEX packet will ignore the contents of the flags

field and respond to the packet as if it were a normal REX packet. The REX response

will not echo the counter from the received tag, and hence, the QEX capsule will be

unable to make RTT calculations (QEX will detect the REX response and move into a

backward compatibility mode which is semantically identical to REX).

6.5.3.5 Serial-UDP

Overview

Serial-UDP (S-UDP) is a user level agent process responsible for providing packet

transport services over serial line and dial-up connections. S-UDP is analogous to a

SLIP or PPP driver. The agent provides UDP-like point-to-point packet transport

semantics, i.e. packets are only passed up to the application layer if they are free from

corruption and are silently dropped otherwise. In addition, S-UDP provides

lightweight support for QoS through which applications or (more usually) platform

capsules can receive information about the communications link and exert control

over the agent’s policies.

The new distributed systems platform requires this additional driver level support

for two main reasons. Firstly, the conventional communications API available to

applications does not provide sufficient information about, and control of, the

underlying communications technologies so that applications can adapt. S-UDP

provides a convenient and lightweight method of experimenting with new APIs. A

more pragmatic, though equally valid reason, is that bugs within the USL SVR4

kernel of the development platform prevented conventional SLIP/PPP drivers from

functioning correctly. Moreover, the lack of available kernel and protocol source code

prevented modifications to the existing drivers.

More specifically, the current S-UDP API provides facilities for :-

• Transmission of packets with UDP semantics in deadline order,

• intelligent dialling and hang-up support,

• support for optimising application level QoS parameters and,

• provision of QoS information, such as supplier, charging strategy and

monitoring of the delays associated with connection management.

These features of S-UDP are discussed in more detail in the remainder of this section.
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Deadline Ordering

S-UDP frames packets with start and end markers, appends a 16-bit checksum and

performs any byte stuffing necessary for transmission. The markers enable the remote

S-UDP agent to delimit the packets and perform the checksum calculations. The

checksum mechanism is based around the CCITT recommended X.25 polynomial

x16+x12+x5+x0 that is also used by some implementations of PPP and is able to detect

burst errors of up to 16 bits.

Packets to be sent can have an associated deadline which is passed down from

client application capsules. Each deadline has a one second granularity and is

specified in terms of the standard UNIX measure of time (the number of seconds

since the start of 1970). Packets without specific deadlines are assigned a nominal

deadline. The packets are placed in a heap to allow fast deadline ordering and

correctly ordered removal. The packets are framed ready for transmission on demand

and during idle periods, rather than upon insertion, to help amortise the framing costs

(which are linear with packet size). The packets are removed in earliest deadline first

(EDF) order and the number of waiting packets and the earliest deadline may be used

to implement various connection dial-up policies.

Control Interface

S-UDP supports an interface which client capsules may use to control certain

operations and gain information about the network type from the agent. In particular,

clients may cause the agent to dial or hang-up the line, register and deregister for

events and cause waiting packets to be discarded. The latter option allows capsules to

discard buffered RPC interactions to minimise the impact when an RPC is cancelled.

A typical use might be to implement an application level cancel operation which

requires an RPC to be stopped as quickly as possible (see 5.3.1.3).

Client capsules may register for events such as changes in line state, the absence

of a host contact for a specified period of time or the number of messages (and

urgency of deadline) waiting in the heap. The line state and heap information events

allow for external dial-up and hang-up policies. By default, the S-UDP agent will start

dialling as soon as it has information waiting to be transmitted and will hang-up again

after a configurable amount of inactivity (by default this is 30 seconds). In a

heterogeneous networked environment, the use of multiple wide-area wireless

technologies requires that the exact policy will depend on what the user is billed for

(per unit data or unit time and so on), the urgency of the traffic and what the user is

prepared to pay. The number of options are sufficiently diverse to require either user

intervention or that of a sophisticated knowledge base on the user’s behalf. Therefore

S-UDP provides support for external decision making policies rather than trying to
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engineer a sufficiently general policy into the agent itself. The sequence of messages

which enable an application to operate its own dialling policy are shown in

figure 6.21.

registerForEvent

msgsWaiting

<callback address>

<header>

msgsWaiting

<earliest deadline>

<header>

<number waiting>

dialRequest

<header>

Capsule to S-UDP Response (messages waiting) Instruction to dial

Figure 6.21 - Packet sequence for implementing a dialling policy

The first message registers that the application wishes to be informed when

messages are waiting to be transmitted and the line state is down. The response from

S-UDP is transmitted when framed packets are ready and waiting and additional

packets arrive for transmission (the message includes the deadline of the most urgent

message). Based on the deadline, the number of packets waiting and QoS based

information (requested separately) the application instructs S-UDP to dial with the

last message in the sequence. Messages between the capsule and S-UDP are passed

using UDP (the capsule and S-UDP are typically co-located on the same host).

In addition to the msgsWaiting event described above, there are a number of

additional events. The hostContact event has been designed to support the reachability

QoS parameter more efficiently across all capsules on a given host. If a client

application registers an interest in whether or not a particular host can be reached, the

capsule informs the S-UDP agent also. If that particular host communicates with any

capsule on the host via S-UDP, all other capsules who register an interest are

automatically informed. This saves unnecessary duplication of polling traffic to

determine whether or not the host is reachable. This mechanism is transparent to the

user.

QoS Support

The control interface allows the client capsules to request the current device QoS

(this is done automatically as part of the higher level GetQoS operation on a binding).

The QoS parameters retrieved include the network supplier identifier, the dial-up and

hang-up delays incurred, the connection and disconnection charges, the charge unit

(per byte or per unit time), the cost per unit of information and the current line state.

This information is treated as read-only at the application level. All but the dial-up

and hang-up delays are currently supplied from a simple database if a particular
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supplier identifier is specified on start-up. The dial-up and hang-up times are

initialised with defaults from the supplier database but are also monitored over time to

improve the accuracy of the estimates.

This QoS information enables applications to employ bandwidth and cost

optimisation techniques based on the communications technology being used. Clearly

different technologies will require applications to adopt different strategies,

particularly where public wide-area technologies are concerned, in order to minimise

the cost and delays associated with using the application. For example, a CDPD

network would require the application to minimise the information sent by the

application, as the charges are accrued according to the quantity of information sent.

In addition, CDPD is connectionless and does not require batching strategies to

minimise the amount of idle time and amortise the cost and time penalty of

connection set-up. In contrast, a connection-oriented service such as GSM incurs

charges for connection set-up and for each unit of time the connection is held open. In

this case, a strategy would be adopted which made sure enough information was

collated before incurring the overhead of setting up the connection. Once the

connection was established, however, quiet periods could be used to prefetch

information since this additional information incurs no extra cost. Most services apply

charges at discrete intervals, per minute for example. Knowing the charge boundary

would enable an application to optimise for this threshold, holding open a connection

until the next charge boundary to maximise responsiveness without incurring any

extra cost.

By supplying applications with managed QoS information the application may be

able to adapt and make better use of the supporting technologies, both in terms of

performance and increasingly run-time cost effectiveness. It is the author’s hope that,

as the concepts of application adaptation are validated, future communications devices

and network protocols will provide QoS interfaces to allow each layer of software to

best exploit supporting layers.

6.6 Summary

This chapter has proposed that, in order to support complex applications in a

heterogeneous networked environment, a greater level of information and control has

to be revealed by distributed systems platforms. A new platform, based on

ANSAware, has been described in detail. A number of extensions to this platform

have been presented which support a QoS architecture based on explicit object

bindings. This architecture has throughout been compared and contrasted to the more

familiar RM-ODP model.
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Current QoS work focuses primarily on support for multimedia data, particularly

within the high speed fixed networking community. This chapter has identified a

simple set of QoS parameters that are designed to support conventional RPC based

applications in a mobile environment. Furthermore, to validate these parameters, they

have been implemented in the new platform’s QoS architecture. The platform is

underpinned by an RPC package called QEX which is essential, both to enable

operation in a mobile environment and to gather QoS information to support the

binding architecture.

The platform, QoS architecture and QEX protocol are evaluated in the next

chapter. In addition, this chapter examines the effectiveness of the platform as a whole

in supporting the application prototype described in chapter 5.
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Chapter 7

Evaluation

7.1 Introduction

Chapter 5 described an advanced mobile application designed to assist field

workers in the utilities industries. The application addresses a number of requirements

derived from an analysis of current working practices within the utilities (the industry

and working practices are described at length in chapter 4). The application was built

on top of a new distributed systems platform based on ANSAware which has been

explained in some depth throughout the preceding chapter.

The platform is intended to provide an environment for constructing adaptive

mobile applications: that is, applications that are aware of their mobility and are able

to adapt their behaviour in response to changes in their environments. It is the role of

the platform to provide a QoS architecture which allows managed information from

lower layers to reach interested applications and offer them a greater degree of control

over their supporting infrastructure.

In this chapter the application and platform are evaluated. More specifically,

section 7.2 discusses the application in terms of how well it was perceived to meet the

end-user requirements established by the MOST project. Section 7.3 considers the

platform’s role in supporting this application in a mobile environment. Section 7.4

focuses on adaptation within the application and the platform itself. Finally, a

performance evaluation of the QEX protocol is presented in section 7.5.
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7.2 Evaluating the Application

7.2.1 Involvement of End-users

The application prototype has benefited from the involvement of an end-user

organisation† from the earliest inception of the project. The ongoing requirements

capture process, and particularly the initial field study, was conducted within their

organisation. Subsequently, during the design and implementation of the application

prototype, the end-users were involved in an evolutionary process of meetings,

demonstrations and critical feedback. This process enabled the application to more

accurately reflect the wishes and needs of the industry.

The process culminated in an evaluation of the concepts embodied by the

application through a limited field trial. Selected members of the end-user

organisation enacted a specially designed scenario using the application prototype.

The scenario was chosen to as accurately as possible reflect the real life situations

faced by the utilities, within the constraints of the non-disclosure agreement in force.

All information exchanged during the scenario was fabricated and any real schematic

or geographic information was suitably sanitised for publication. The scenario was

chosen carefully so that these constraints did not affect the evaluation process.

However, as a consequence the scenario did not exercise the full range of the

application’s functionality.

The feedback from the end-user organisation as a result of this liaison and, in

particular, following on from the field trial are presented in the next section. The field

trial scenario is discussed in more detail below.

Scenario: The trial scenario consisted of an emergency unscheduled work item

caused as the result of a road traffic accident. The accident and the

potential damage caused by the car is reported to the fault report line

of the utility company by a police officer who attended the scene of the

accident. The utility company representatives were required to perform

the necessary operations to effect a repair using the prototype system.

The steps taken are laid out in the following dialogue.

Office Perform a database query to locate the information pertaining to the

damaged network section. The resulting information consists of two

records: a geographic record containing a map which fixes the position

† As previously stated, the name of the company cannot be revealed for confidentiality reasons.
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of the fault to a specific wiring pit and a schematic record which

details the network switching and connectivity of the wiring in the pit.

Establish an audio and GIS dialogue with a field engineer (audio was

via a separate mobile phone).

Use the GIS module to remotely display the geographic record

retrieved from the database and mark the location of the pit using the

highlighting (or red-lining) tools. Answer any queries about the pit

location collaboratively.

Fill out an electronic job instruction instructing the field engineer about

the nature of the problem in order to be able to officially turn over

control of the damaged section of network. Forward copies of the

instruction to both the field engineer and the local records office to

issue a permanent record. The field engineer is then cleared to proceed

with the investigation of the scene of the accident in more detail.

Field Travel to the scene of the accident and analyse the damage.

One of the vehicles has been partially pushed into the pit. The fuel tank

has been ruptured and there is a risk of explosion.

Report the status of the situation back to the office and request the

necessary assistance to expedite the job.

Office From the pit schematic record, determine the most suitable feeders that

must be isolated in order to repair the damaged pit whilst maintaining

the maximum amount of connectivity to other sections of the network.

Use the collaborative GIS to coordinate the switching of three

substations in order to complete the necessary isolation of the damaged

pit.

Formulate a repair strategy which includes the necessary switching,

supply restoration and earthing procedures. During the switching

procedure an up-to-date picture of the current network state is

disseminated to all parties and updated as switching operations occur

using the highlighting tools of the GIS module.

Field Fill out electronic job completion forms and attach the pit schematics

that have been updated during the repair. Send the record to the office

for inclusion in the site safety document.
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7.2.2 Feedback from End-users

The end-user organisation, both during the development process and following the

field trial, identified a number of interesting issues which could form the basis of

future work on the application. These comments were of particular interest to the

project partners, EA Technology, who intended to take elements of the application

forward into product quality software.

7.2.2.1 Group Representation and Selection

The central panel of the group coordinator user interface (see figure 5.6) illustrates

the users currently in collaboration by representing each participant with a digitised

photograph. Arranged in a column under each participant is a list of icons

representing the modules currently in use by that user. Each column of modules is

arranged so that the same module for each user aligns to form rows. Group operations

from a particular module are only propagated to those modules in the display which

have been selected (this process was previously described in section 5.3.1.3).

This mechanism was judged to be an effective and powerful method for

controlling the interactions within a collaborating group. However, the interface is

somewhat overwhelming for inexperienced users. Consequently, extensions would be

required to provide novice and expert modes to the interface: the novice mode would

propagate all group operations to all member modules, and the expert mode would use

the current interface.

7.2.2.2 Look and Feel

As detailed in chapter 5, the application was structured as a toolbox of sub-

components or modules. Each module conformed to a simple and flexible modular

design which permitted the application to be extended to include new functionality as

easily as possible. This structuring technique proved to be effective both from an

implementer and a users’ point of view, allowing user requirements to be quickly

reflected in the application. However, two recommendations were put forward for

future development following the end-user’s use of the prototype.

i) The first suggestion was for a consistent look and feel across all the

application modules. For example, if input is required from the user the same

mechanism should be used to commit the entered text (pressing return or

clicking a button). In a collaborative project such as MOST, implementation

of this recommendation would have required adherence to a well defined user

interface style guide. A style guide was not developed due to time constraints
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placed on the development process and the evolutionary nature of the

prototype.

ii) The second suggestion was to enforce a more prescriptive mechanism for

moving the user from module to module. For example, on receiving a job

instruction, the job dispatch module should be started automatically. If a

diagram is received with the job instruction, the GIS module should start up

displaying the attached information, and so on.

7.2.2.3 GIS Requirements

Initial versions of the prototype allowed for dynamic creation and destruction of

GIS monitors or views. Users could create a view of a particular map or schematic,

capture the operations and paste them into other views. In addition, the user could

designate which of the available views were to propagate operations to other group

members.

This mechanism was abandoned in favour of a more structured interface

consisting of a single public and a single private monitor. The new mechanism was

found to be far simpler to use due to the clear distinction between propagated and

non-propagated operations.

Once the system was in use for any period of time, it became clear that the

highlighting mechanisms needed two further extensions to maintain usability. The

first was the requirement for additional labels to highlighting marks. When a number

of similar highlighting marks were in use on the same monitor it became quite

difficult to distinguish which of the marks were the significant ones without a frame

of reference. This requirement was partially satisfied by allowing the colour of each

highlight to be selected. Further extensions to highlight significant marks or pop-up

labels would enhance the usability of the system.

The second highlighting tool extension required was for supporting transient

highlights or gestures. These new highlighting marks would not be permanently

attributed to a particular map or monitor, but simply attract the users attention to a

particular area. Supported gestures would include pointing to a particular location,

circling a location and tracing a specified route on the display.

7.2.2.4 Reflection of Mobility

In a mobile environment, particularly where low bandwidth networks are

employed, remote operations or operations which propagate to remote users often

introduce delays into the application. Conventional user interface design is largely

based on the premise that an application is local to the user and so the response time
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to any given operation is small. This assumption reflects on the type of components

available to the application designer. For example, having clicked upon a button on

the user interface, the user is given very little feedback about how the operation is

progressing which often leads to frustration; often causing the user to click on the

button multiple times (analogous to pushing a lift call button repeatedly because the

lift has not yet arrived). More informative displays are required which provide

feedback about the ongoing state of the operation. One such example might be a

button which has ‘idle’, ‘operation underway’ and ‘operation completed’ states

(though additional states such as ‘contacting host’, ‘trying again’ and so on may also

be useful).

7.3 Qualitative Platform Analysis

In project terms, that is with respect to the user requirements, the platform can be

deemed successful. In particular, it enabled the application prototype to operate in a

variety of networked environments and, significantly, underpinned the field trial

discussed in the preceding section. This section examines the computational and

engineering models of the platform and comments on the appropriateness of the

abstractions and supporting mechanisms it provides. This section is based primarily

on the experiences, problems and enhancements highlighted during the development

of the prototype and, as such, contains no quantitative results (these are considered in

section 7.5).

7.3.1 Computational Model

The explicit binding extensions provided by the new platform enabled the

development team to construct a variety of applications. Of these, a number make use

of the new facilities to adapt their behaviour in response to changes detected by the

supporting infrastructure (these are covered in more detail in section 7.4). The binding

syntax was found to be a familiar and natural extension to use, primarily because of

its similarity to the existing invocation syntax. Moreover, using the binding control

interface was no different to using any other object within the environment. However,

there were a few observations worthy of note :-

i) Forming a binding between a local client and a remote server object was quite

straightforward, since a server interface must be obtained by the client object

anyway before invocations can begin. However, the explicit binding

operation requires interfaces to identify both parties (see section 6.4.2). The

client typically uses its own management interface (from which all interfaces

descend) to identify itself in these binding actions. Obtaining this interface
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reference was found to be non-trivial, requiring a client to create a service

interface and invoke a management operation. A more convenient mechanism

was required. The binder was extended to support the

Bind_GetLocalMgmt function to simplify this process.

ii) The establishment of a binding between a local server and a remote client

object was found to be less natural, as the programming paradigm does not

usually involve managing interfaces which relate to clients. In practice, this

was rarely a problem; in situations where a server was interested in the QoS

between itself and the client, an interface reference was already known (for

either call-back or the provision of reciprocal services). In addition, in some

cases, the server could avoid contacting the client for an address by using the

special case binding syntax (any client to single server).

iii) The binding operation takes a QoS structure as the last parameter which

specifies application QoS requirements to the binder. This could be tedious as

the programmer must provide default values for each field within the

structure. To assist the programmer, an additional binder function

Bind_InitialiseQoS was provided. This function initialises the structure

passed to it with a suitable set of default values. Using this function, the

programmer need only adjust the fields that are of interest before creating the

binding.

iv) The throughput and delay QoS parameters are useful for making decisions

concerning the volume of information to transport. However, it is often

difficult to realise how these parameters map on to a transmission time

because of the lower level issues, such as fragmentation and protocol

overhead. Since the application level is unaware of the exact transmission

scheme used (and this level of detail should remain abstracted) a new

operation was created to help. The EstimateTime operation (see section

6.4.2.2) makes an approximation based on the channel characteristics and

lower level protocol knowledge about the time taken to transfer a specified

volume of information. The resulting estimate is approximate and does not

explicitly take into account retransmissions due to errors.

7.3.2 Engineering Model

As previously discussed, the platform’s QoS architecture consists of two

engineering components: the binder and the QEX protocol. This proved to be a

successful paradigm; meeting the requirement for interoperability and enabling both

conventional and mobility-aware applications to operate in a range of networking
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environments. This section examines the outstanding issues that were raised during

the development and use of the existing platform implementation. The performance

aspects of QEX protocol are considered in section 7.5.

i) The QEX protocol has been designed to use the UDP message passing service

(see section 6.5.2). Conventionally, the UDP protocol operations (e.g.

sendto) will block during underlying dial-up connection management.

However, in the current platform architecture, the capsule sends to the S-UDP

agent (section 6.5.3.5) which queues the packets and transmits them when the

link is available. This process has the unfortunate side-effect that the S-UDP

process is always available and thus, while the link is down, the capsule may

continue sending packets to S-UDP. These packets are most commonly

retransmissions of earlier packets (as no response has been forthcoming) and

hence represent unnecessary or redundant traffic. Furthermore, where dial-up

delay is long (perhaps due to connection failure), higher level invocations

may time-out before connection is established, but the queued packets will

still be transmitted. The current solution to this problem is for each capsule to

be a registered client to the S-UDP QoS interface. The S-UDP agent informs

these clients as to the state of the interface (link up or down etc.) when a

change occurs, enabling capsules to adjust retransmission timers to include or

exclude dial-up delays (as necessary). This solution has the additional

advantage that the application is not blocked while the communications link

is down.

ii) Protocol interfaces which buffer packets before transmission (in particular S-

UDP) suffer from an additional problem which is emphasised by connection-

oriented links. If at a higher level the operation generating the traffic (for

instance, an interrogation) is invalidated, either through a time-out, failure to

meet timeliness QoS or a user cancel action, the packets relating to that

operation are still queued for transmission. Once the link has been

established, these redundant queued packets will waste valuable bandwidth

(and time) unnecessarily. The current, rather inelegant but expedient solution,

is for the capsule to inform the S-UDP agent that the packets are invalidated

and S-UDP to apply platform specific knowledge to identify the packets to

discard. Clearly, platform level knowledge should not be required at the S-

UDP level. An alternative solution would involve tagging packets of a

common interaction with a channel identifier and supplying this identifier to

S-UDP with the cancel instruction.



184

iii) Currently, the architecture does not provide applications with a convenient

mechanism for controlling the selection of a networking technology on a per

interaction basis. Ideally, an application would be able to select which bearer

technology was used based on requirements such as the urgency of the

interaction, associated cost and network criteria discussed earlier. The logical

choice for interfacing to this functionality would be through the QoS

parameters passed to the Bind operation. However, the current system makes

use of a low level function call which controls the destination of all the traffic

from the capsule.

iv) The accuracy of the channel characteristics approximations that are calculated

within each capsule (see section 6.5.3.3) are affected by their operating

environment. More specifically, running within user space on non-real time

operating systems such as UNIX, introduces random jitter due to lower level

scheduling functions. A more accurate approximation could be obtained by

moving the monitoring functionality closer to the network (ideally into the

network protocols themselves) where knowledge about the total traffic to and

from a host can be applied. This information could then be supplied to the

capsule as QoS information.

v) The current architecture does not provide a mobile-aware group RPC

mechanism. The platform does, however, inherit the ANSAware group RPC

mechanism known as GEX. GEX was not used to support the application

prototype for three reasons. Firstly, the protocol employs a highly

synchronous token passing algorithm which requires rapid communication of

intensive peer-to-peer messages, impracticable within most mobile

environments. Secondly, the protocol is layered on top of the unicast RPC

protocol and would, assuming a suitable network, represent little advantage in

terms of performance over using the RPC directly. Lastly, the protocol offers

a fully transparent transactional service in which a group invocation either

succeeds upon reception by all participants or fails atomically. Considering

this last point in more detail. In a failure prone environment, it may be

desirable to weaken the transactional semantics to allow successful delivery

to subsets of the multicast group. A QoS framework for tackling this issue is

being developed [Cheverst,96]. More specifically, the framework will

provide mechanisms for discussing application data consistency, timeliness

and cost requirements within a group, enabling protocols to apply tradeoffs

and optimisation techniques to maximise useful work under such conditions.

In addition, the QoS feedback concerning group member consistency is

expected to enable applications to adapt to cope with the semantic change.
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Moreover, through adaptation and lower level optimisations (such as use of

multicast protocols and network multicast support) the framework is

anticipated to increase group performance in mobile environments.

The next section looks in more detail at the role of adaptation within the

application prototype and the supporting platform itself.

7.4 Analysis of Adaptation

The central argument in this thesis is that applications are required to adapt to

changes in their underlying supporting infrastructure in order to operate effectively in

heterogeneous environments. Specifically, since applications are responsible for

generating the bulk of communications traffic, application specific knowledge is

required in order that intelligent action may be taken in response to environmental

changes. Furthermore, lower level support for adaptation is necessary to enable the

monitoring of the environment, collation of information and provision of managed

information up to the application. In the following sections, the ways in which the

application prototype and the supporting distributed systems platform are able to

adapt is evaluated. A range of techniques which can be applied in adaptive systems

are also highlighted.

7.4.1 Application Level

The prototype application has been designed to operate in a heterogeneous

networked environment. More specifically, the prototype is able to make use of a

range of networking technologies including fixed networks (Ethernet) as well as

analogue (AMPS/TACS) and digital cellular telephones (GSM). The prototype is

required to interact with remote users via this diverse infrastructure and cope with the

range of QoS offered by these technologies. In the following sections the modules

within the application that are most affected by the need to adapt to these changes in

QoS are presented.

7.4.1.1 Remote Database Access

The remote database access module, introduced in section 5.3.4.1, was required to

demonstrate that a mobile field worker could access a remote database server running

within the fixed office based infrastructure. The requirements analysis process

identified that the application should permit the field worker to be able to obtain a list

of search topics, search based on record type, retrieve result lists of matching records

and create, edit and delete records (subject to access permissions) based on these

results [Worship,94].
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In the utilities industries, a large number of independent database systems are

employed during everyday operations, these include: customer records systems, plant

location and stock control, fault report and analysis systems, job management systems

and, increasingly, on-line geographic and schematic databases. For the purposes of the

field trial, access to a mock-up system containing dummy customer records was

sufficient to demonstrate that the prototype was capable of interworking with remote

systems. The mock-up database contained no sensitive information.

The content of the customer database chosen for the field trial was based on

analysis of an actual customer database subsystem. The customer records were

required to store a range of information including the following fields (those fields

that should be indexed by the database to permit searching are marked with an

asterisk (*)) :-

• customer surname (*)

• customer initials

• customer title

• customer supply address

• customer supply postcode (*)

• customer telephone number at supply address

• billing address and telephone number (if different from supply address)

• tariff code

• billing frequency

• meter type (prepayment or credit) (*)

• peak rate meter number

• off-peak rate meter number

• last two peak rate meter readings

• last two meter readings (estimated or actual)

• number of appliances on maintenance contract with company

• details of each appliance serviced by the utility (including manufacturer (*),

model (*), year of manufacture, start date of maintenance agreement and

duration of the agreement)

• presence of other fuels (such as gas, LPG, oil etc.)
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In a real system this information would be cross referenced against the composite

mains record system to enable the location of the particular customer and schematic

details of their supply.

The volume of information returned by a database depends on the generality of

the query (how many matches are found) and the size of the records to be retrieved.

The implications of the size of this ‘found set’ depends on the underlying

communications technology in use. For example, fetching 1K of information at

9.6Kbps would take approximately 1.2 seconds to transfer the data (including the

protocol header but excluding connection set-up time, the time taken to transfer the

query and process it at the server). A found set of 1Mb under the same conditions

would take over 20 minutes. Using a wired 10Mbps Ethernet the same 1Mb of data

would take just 1.08 seconds (under ideal conditions).

Clearly the volume of information must be minimised when using low bandwidth

communications links in order to maintain usability. The amount of reduction

necessary is dependent on the volume of information and the data rate of the link. The

remote database access tool is the only point at which there is sufficient application

specific knowledge to intelligently make such a tradeoff. For instance, reducing the

quantity of information to essential fields (such as the searchable fields) over a low

bandwidth network. In the prototype application this decision is simplified by the

limited amount of information stored in the mock-up database. The tradeoff is made

based on the platform’s approximation of the current throughput and the number of

records matching the query. The information is made available by using the

EstimateTime operation of the binding interface described in section 6.4.2.2.

In terms of the field trial scenario, the field engineer was required to perform

database accesses to determine the location of the damaged pit and retrieve

appropriate geographic and schematic information. If, for argument’s sake, the

database record had a more up-to-date schematic state diagram attached (schematics

range from a few thousand bytes to several mega-bytes depending on the size of area

covered and whether the image is vector or raster based), the implications of pulling

the entire record would have a serious impact on the system performance. Instead,

when the engineer is browsing the database, the system is able to apply the bandwidth

tradeoffs and over a low bandwidth link return a subset of the information to enable

the engineer to refine the query or request the remaining information. Over a high

bandwidth link there is often little point in optimising the amount of data returned as

the biggest performance bottleneck is in terms of the latency of performing the

requests. In the prototype application the record number, customer name, initials, title,

meter type and address fields represent the minimal amount of information returned.
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This cut down record form takes only a few seconds over a typical low bandwidth

link but provides sufficient information to help refine the query to determine if more

information is required.

7.4.1.2 Lightning Warning Service

The lightning warning service, first introduced in section 5.3.4.4, provides a value

added service enabling clients to access a centralised lightning information repository

and receive early warning of an impending electrical storm. The lightning warning

system is structured as an event based architecture. The client registers the user’s

location (a postcode is sufficiently accurate) with the central authority which will then

call-back the user in the event that lightning strikes are detected in neighbouring

areas. However, operation in a mobile environment raises an interesting issue,

illustrated by figure 7.1.

Client Server

Failure

Register

Figure 7.1 - Lightning warning service call-back structure

As discussed in section 6.3.2.5, wide-area wireless technologies are often

characterised by intermittent connectivity due to interference, communication

blackspots (where no coverage exists) and oversubscription within the cell. The

lightning warning service is consequently unable to determine whether the absence of

information from the repository is due to the lack of danger or the server’s inability to

contact the client. To address this issue the service uses the platform’s explicit binding

mechanism to establish a binding between itself and the repository. The service is

then able to request a suitable reachability QoS parameter, delegating the

responsibility to the platform for ensuring the repository is reachable and therefore

able to deliver suitable warning messages. If the service is found to be unavailable,

the QoS violation call-back from the platform enables the application to warn the user

that the lightning service is unavailable and that appropriate action should be taken.

The platform allows the application to maintain a natural event based

programming model without resorting to application level polling. Furthermore, the

platform polling necessary to maintain the assertion is undertaken and optimised
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transparently, in many cases being obviated by observing low level traffic between

objects or by the characteristics of the communications technology being employed.

7.4.1.3 Mode of Working

Interestingly, the group configuration tool influences the working patterns of field

engineers (the group coordinator module is discussed in section 5.3.1.3). In particular,

the user may implicitly change between synchronous and asynchronous working to

increase the performance of collaborations. As previously discussed, the application

prototype supports facilities for synchronous collaboration between field engineers

using spatially referenced data. The engineer is able to browse locally stored maps

and schematics and perform a number of highlighting operations upon them either

locally or in a shared workspace. Shared operations are propagated synchronously to

selected group members.

In addition to this synchronous mode of working, operations can be packaged up

into clipboards which may be attached to structured E-mail messages for

asynchronous propagation. The engineer is consequently able to choose between

synchronous and asynchronous message interactions with colleagues based on a

variety of requirements such as message urgency, cost and so on.

A given instance of the application may be interacting with other application

instances via a variety of bearer technologies. Since each technology will have a

particular QoS, the time taken to propagate each operation will vary depending on the

particular technology used to communicate with each party. Consider an end-user of

the application interacting with an office based colleague via a fixed network. If the

user should add a mobile field engineer to the conference they will notice that the

pace of the collaboration drops considerably. The operations which are propagated to

the mobile field engineer will suffer from the additional delays associated with the

communications technology, typically low data rates, increased error rates and dial-up

delays.

However, if the user is made aware of the implications of communicating

information to the various conference participants, they can choose between

synchronous and asynchronous interaction styles. Indeed, as the quality and cost of

the communication varies, users respond by adjusting their behaviour between

synchronous and asynchronous working [Cheverst,96]. In the example scenario

above, the user might choose to continue the interaction collaboratively with the

office based colleague and then periodically send updates asynchronously to the field

based engineer.
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To facilitate this behaviour, the current prototype provides feedback on the

underlying communications through the central panel of the group coordinator

module. During collaborative interactions the central panel displays a horizontal row

of icons representing the other participants of the conference. Explicit bindings are

used to enable the monitoring of the network QoS to each party. Based on QoS

information, the group coordinator changes the background colour of each user icon

to represent the relative connectivity of the group members. A green background to a

user’s icon implies a healthy connection to that user, whereas a red background

implies a relatively poor one (analogous to the status lights of many PMR radio

handsets). So, in the example scenario, the office based colleague would be shown on

a green background and the field based colleague on a red background representing

that the bandwidth available to the office based user was higher than that to the

mobile user.

7.4.2 System level

The preceding sections have highlighted the role of adaptation within the modules

of the application prototype. These adaptive modules enable the application to operate

in a heterogeneous networked environment. Adaptation is also a requirement within

the supporting platform in order to cope with the variety of network QoS offered by

the different communications technologies. This section discusses how adaptation

within the application and platform itself is enabled by the supporting infrastructure.

The discussion considers three aspects of adaptation in turn: monitoring, protocol

adaptation and feedback.

Monitoring It is essential that the characteristics of, and significantly the changes

in, network QoS are monitored. The accuracy of the channel

measurements are paramount, since the remainder of the architecture,

both in performance and adaptation terms, rely upon them. However,

measurement of the channel characteristics are non-trivial. This issue is

covered in more detail in section 6.5.3.3.

Adaptation The primary use of the channel information is in enabling protocol

adaptation. This level of adaptation is critical to maximise the system

performance given the available network resources. The current

protocol adapts in two ways. Firstly, the retransmission strategies are

tuned to minimise the amount of bandwidth wasted by unnecessarily

retransmitted packets. The reduction in wasted bandwidth decreases

the time taken to complete an interaction. More specifically, it

minimises the number of packets required, reduces the delays caused
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by the queuing of valid packets behind unnecessary ones onto the

network and, in addition, speeds error recovery as lost packets are

detected more quickly. Furthermore, the increase in available

bandwidth permits a higher degree of channel sharing (more

concurrent interactions) given the same maximum available

bandwidth. The second adaptation technique concerns the backoff

strategy, which is adjusted to aid the performance in error prone

channels. Essentially, a linear strategy can be adopted which aims to

avoid the misinterpretation of bit errors as network congestion. There

are however a range of associated issues which have already been

highlighted as requiring future work. The real time performance of the

protocol’s adaptation is considered further in section 7.5.1.

Feedback The feedback of channel information to higher layers is at least as

crucial as protocol adaptation. Feedback is the critical process that

enables application adaptation. However, the interface and form of the

information is also highly significant. For instance, if the information

collated by the protocol were supplied in raw form to the application,

the frequency of the interactions would severely impact on the system

performance. More importantly however, the type of information

(packet round-trip times) would be almost meaningless to the

application without the additional contextual information that is

available at the protocol. Therefore, the platform is required to present

the information in a form that is intelligible to the application and, in

addition, does not in itself impact extensively on the system’s

performance. The current strategy addresses these requirements in two

ways. Firstly, the application chooses the information that is

appropriate through the binding control interface. This means that the

information is both relevant to the application and managed by the

platform to achieve the desired form. Secondly, the feedback from the

platform is in response to changes in the observed behaviour of only

the specified fields and, additionally, only if the fields transgress the

bounds of acceptability chosen by the application. The change event

call-back system requires far less interaction with the application than

an approach based on polling (which enables the application to observe

the changes for itself).

There are a number of additional lower-level forms of adaptation which can

improve both the system performance and, potentially, the cost effectiveness of the

whole application. For instance, there are a wide range of optimisations that can be



192

implemented based on the type of communications technology in use. By adapting the

system when a change of technology occurs, to optimise to the characteristics of a

given technology, performance can be improved. In the current system, the S-UDP

connection manager and MPS services implement a batching strategy for connection-

oriented links to reduce the number of explicit connections that must be established.

Furthermore, packets waiting for transmission may have an associated deadline.

Packets are transmitted in earliest deadline first (EDF) order. These strategies can be

controlled via a QoS interface to the connection manager which enables more

complex optimisation techniques to be implemented. In addition, QoS information

denoting the characteristics of the communications technology is integrated with the

QoS interface provided by the platform to enable higher level operating decisions to

be made.

7.4.3 General Discussion

The work of this thesis has shown the importance of adaptivity and how it applies

at all levels of a system. A number of useful adaptive techniques have also been

highlighted. Some of these techniques have been adopted by the application and

platform (as presented in the preceding sections). Table 7.1 summarises the most

significant techniques for adaptation highlighted by this thesis. The table is for

illustration purposes and is not intended to present an exhaustive summary.
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Level Technique Description

User Change of working
practices

The user can alleviate demands on the network, e.g. change task, swap
from synchronous to asynchronous collaboration or specify which
tasks are most important to them.

Application Restructure using
agents or delegation
of processing

Processing/network intensive tasks can be offloaded to remote sites or
pre-processing or filtering applied to remote data (reducing bandwidth
requirements and freeing host for other tasks/dozing to save power).

Use proxy services The application can use local substitute services based on cached
information (often with reduced functionality) while disconnected.

Change model of
interaction

Interactions can be adjusted from polling to event based structures or
from RPC to an alternative (perhaps asynchronous) paradigm.

Reorganise
application
structure

One example of application restructuring is to change from using
distributed state to a centralised architecture to simplify consistency
management in unreliable conditions.

Re-bind to new
services

The application may be able to rebind to equivalent services which are
easier/cheaper to access. Alternatively, it may be possible to migrate
the service or application component.

Change application
demands

New QoS requirements can be negotiated or non-essential bindings
dropped. Alternatives may be possible, e.g. lossy encoding.

Adjust consistency
requirements

Groups may be able to tolerate weaker consistency or adjust operations
to achieve quorum, yet avoid hard to reach members.

Middleware On-demand cache
management

Information can be fetched only when needed, instead of speculatively,
e.g. opening the first page of a document and transferring successive
pages later, or retrieving e-mail headers before message bodies.

Prefetching into the
cache

The application can fetch information while the link is good, in case it
is required when the link degrades or becomes expensive.

Apply filtering and
compression

The volume of information to transfer can be reduced by compression
or filtering non-essential frames from hierarchically encoded data.

Efficient protocol
utilisation of the
channel

The transport mechanisms can be adjusted to match channel
characteristics, e.g. retransmission/backoff strategies, header
compression, error control and handling of asymmetric channels.

Transport and
below

Change or introduce
new protocols

New protocols can be selected which suit the characteristics of a
particular network or appropriate protocols can be introduced (e.g.
injecting a reliable data link layer).

Optimise data for
the network

Protocols can adjust their packet sizes to suit different networks. The
operating system can adjust the queue sizes onto the network interfaces
which impacts on latency, particularly of multimedia streams.

Optimisation of
multicast

Multicasts can be mapped onto the network technology, particularly
those with partial or full hardware multicast support.

Optimise for the
characteristics of
the network

There are a number of cost and network structure optimisations. For
instance, batching data to spread the dialling delays, or transferring
additional information while the time is already paid for.

Reordering of data The priority or urgency of data may require that it is handled
preferentially in scarce bandwidth situations.

Demultiplexing to
multiple networks

If multiple technologies are available simultaneously, it may be
advantageous to use several at once.

Table 7.1 - Summary of common adaptation techniques

Note that, although an attempt has been made to categorise these techniques into

various system layers, a number of techniques are applicable throughout a system’s
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architecture. For instance, caching can clearly be applied at a variety of levels;

obvious examples include world wide web browsers which cache at the application

level, whereas the caching performed by a file system would be at a lower level. In

addition, efficient channel utilisation is as much an issue within platform level

protocols (such as RPC mechanisms) as it is within lower level transport protocols

(such as TCP). The range of adaptive techniques which are applied within a system

will depend as much on the requirements of the application and the types of data it

uses, as the performance characteristics of the networks that are available.

7.5 Quantitative Platform Analysis

The distributed systems platform is required to provide mechanisms by which

applications can specify their requirements in terms of desired QoS and receive

violation notifications should these requirements be unattainable. In order to provide

such mechanisms, the platform must gather and manage the QoS which, in turn,

places a certain performance and communication overhead on the platform’s layers

and, more specifically, the QEX protocol.

In the following sections, the overhead of gathering the QoS information is

examined in performance terms by comparing the QEX protocol used in the new

platform with the original protocol used by ANSAware, REX. As previously stated,

the QoS information is also used to enable the protocol to adapt to the characteristics

of a given channel. The performance of this protocol adaptation process is considered

in the following section, before looking at the wider implications on protocol

performance.

7.5.1 Rate of Adaptation

The QEX protocol (see section 6.5.3 for a full description) is required to adapt to

changes in network QoS in order to avoid causing, and be able to react to, congestion.

Importantly, in a heterogeneous networked environment, the protocol is also required

to detect and adapt to the dramatic changes in QoS caused by a switch in supporting

network technology. More specifically, the QEX protocol, must adjust its interval

timers to avoid wasting bandwidth with unnecessary retransmissions. Furthermore,

this transition must occur as quickly as possible to maintain the accuracy of the RTT

calculations which supply QoS information to the binder (spurious QoS information

may induce bogus QoS violations, causing the application to adapt unnecessarily).

However, this requirement for fast adaptation must be balanced against the need to

remain as impervious as possible to fluctuations caused by jitter.
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The rate of adaptation of the current QEX implementation is illustrated by the

following figures. Figure 7.2 illustrates the number of unnecessary retransmissions

that are sent before the protocol adapts to the new bandwidth. The rate change axis of

the graph depicts the fractional change in bandwidth (for example, a fractional change

of 1/2 implies that the bandwidth has dropped to half its original value). The figure is

calculated by averaging over different bandwidth ranges (i.e. 9.6-4.8Kbits/sec, 4.8-

2.4Kbits/sec, etc.). The largest drop in rate shown is where QEX adapts from the

default interval values coded into REX to a 300bps channel.
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Figure 7.2 - Unnecessary retransmissions per invocation until adaptation completed

In the absence of a suitable heterogeneous network test bed, the results shown in

the graph were taken using a software network emulator developed at Lancaster

University [Davies,95a]. The network emulator offers an approximation of the QoS

experienced by applications over a variety of channel characteristics including shared

channels. Furthermore, the emulator can switch between network configurations

instantaneously under user direction to simulate the transition between seamlessly

interconnected network technologies. The change in rate is instantaneous (in a real

system some handover latency may be experienced, this issue is being addressed by

the BARWAN project, see section 3.6.4). No bit errors or packet losses were

emulated during the tests performed on the protocol.

The results were collated from a simple client and server, the client messaging the

server using non-fragmenting invocations. The size of the outgoing CALL packet

(including platform headers but excluding UDP and IP headers) was 215 bytes. The

corresponding REPLY packet totalled 140 bytes. Test statistics were averaged over

three independent test runs for each bandwidth transition. Once a network transition is

triggered, the protocol will continue transmitting at the stabilised rate until a change in
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round-trip time is detected. As soon as the protocol is aware of the change in channel

characteristics, it begins to adapt to the new rate and so fewer unnecessary packets

will be transmitted for the next invocation, and so on.

The horizontal bars in the graph illustrate the total number of unnecessary retries

that were sent while QEX is adapting. This total is composed of the unnecessary

retries sent during the first two invocations following the change in rate (for the

changes tested, no more than two invocations are needed before the protocol has fully

adapted). In particular, where bandwidth halves, no unnecessary retries occur in

adapting to the new rate. Where the bandwidth drops to an eighth of the former rate,

on average one unnecessary retry is sent during the first invocation. Over the

maximum drop in bandwidth no more than 8 unnecessary retries are sent with

approximately six of those occurring in the first invocation.
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Figure 7.3 - Unnecessary fragments transmitted per invocation until adaptation completed

Figure 7.3 portrays the same testing process with fragmented invocations. The

payload carried in each invocation is 2048 bytes, which fragments into two CALL

packets of 1378 and 1026 bytes respectively. As with non-fragmented adaptation, the

protocol continues to transmit at the stabilised rate until a change in round-trip time is

detected. However, in the fragmented case, on discovery of the rate change the

protocol requests explicit negative acknowledgements after every fragment until it has

sufficient round-trip times to adapt such that no redundant fragments are transmitted.

Upon stabilisation, the tight fragment/negative acknowledgement coupling is relaxed

over time.

In the non-fragmented case, unnecessary retries are completely redundant and

constitute a waste of valuable network bandwidth. In the fragmented case however,

extra fragments transmitted while the protocol is adapting are only redundant if they
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are retransmissions of fragments that the remote object has already received. If the

change in bandwidth occurs during a long invocation (with many fragments) then

these fragments would have to be transmitted anyway and can be treated as

congestion with the usual backoff strategy. As with non-fragmented invocations, the

protocol needs no more than two invocations to complete adaptation in all the test

cases.

The QEX protocol always starts off with the same set of defaults as the REX

protocol. To minimise adaptation at start-up time, every capsule updates a common

file on each host referred to as an experiences file. The experiences file contains the

stabilised protocol parameters keyed from the QoS information presented to it from S-

UDP. Therefore, for every independent technology (or supplier) reported by S-UDP,

defaults are available which are likely to more closely match the channel

characteristics than the protocol defaults. S-UDP is not used during the testing

sequence and so the experiences file will not influence the test results presented

throughout this chapter.

7.5.2 Evaluation of General Protocol Performance

The preceding section dealt with one specific feature of the QEX protocol, i.e.

how it adapts. The following sections turn to analysing more general aspects of the

protocol’s performance. The analysis is broken down into three test cases, dealing

with non-fragmented interactions, non-fragmented interactions in error prone channels

and fragmented interactions separately. The results presented throughout the

following sections were captured using the network emulator mentioned earlier.

As previously discussed in section 6.5.3.1, QEX calculates message round-trip

times by positively acknowledging CALL and REPLY messages with CALLACK

and REPLYACK messages respectively. These acknowledgements are sent

immediately upon reception of the generating message before the data is passed up to

the application to avoid introducing unpredictable application delays into the RTT

calculations. The overhead of calculating these round-trip times is analysed in the

following sections.

7.5.2.1 Test Case 1 : Non-fragmenting Invocations

The first set of results presented (figure 7.4), compare the number of invocations

per second attained for the QEX and REX protocols over a range of emulated network

bandwidths. The figures were taken using the same client and server test pair

mentioned in section 7.5.1. A test run consists of ten non-fragmenting invocations,

each corresponding to an outgoing CALL message size of 215 bytes and
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corresponding REPLY of 140 bytes. The figures presented are averaged over three

independent test runs for each bandwidth considered.
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Figure 7.4 - Comparison of the number of invocations per second attained against bandwidth

As can be seen from figure 7.4, below an emulated bandwidth of around 9.6Kbps

the QEX protocol permits a higher number of invocations per second. Beyond this

threshold the REX protocol is faster. This behaviour can be explained by examining

the test scenario in detail (the REX protocol and this optimised behaviour is described

more thoroughly in section 6.5.1) :-

• The test client issues an invocation to the test server (a CALL message) which

upon reception at the server illicits some computationally inexpensive service.

• The response from the server (a REPLY) is dispatched following completion of

this request.

• Once the test client is in receipt of this response it may begin the successive

invocation (the REPLY acts as an implicit acknowledgement for a CALL and

vice versa).

• If this REPLY has been received before the retransmission interval of the client,

then a retry of the CALL has been saved. The converse case, where the

successive CALL implicitly acknowledges receipt of the REPLY, also applies.

Therefore in the test case, where the test server is performing a simple service and

the network bandwidth is sufficiently high (from around 9.6Kbps) the REX optimised

behaviour is occurring and hence fewer messages per invocation are being sent (note

that QEX is unable to use this optimised behaviour because of the positive
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acknowledgements; it must send at least the four CALL, CALLACK, REPLY and

REPLYACK messages in order to work out the channel RTTs).

Despite the overhead of RTT calculation, the QEX protocol does have a number

of benefits, particularly at low bandwidths (see figure 7.5).
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Figure 7.5 - Comparison of the number of seconds taken per invocation against bandwidth

Figure 7.5 shows an alternative plot of the same measurements presented in figure

7.4. This new plot illustrates that at an emulated bandwidth of 1.2Kbps a QEX

invocation is approximately four times faster than using REX. Furthermore, at 300bps

(not shown in this graph) a QEX invocation takes approximately 15 seconds, against

over 80 seconds with REX. However, as the bandwidth increases to over 9.6Kbps, the

optimised behaviour of REX starts becoming more apparent and eventually REX

surpasses QEX in terms of performance. The reason behind these figures is more

clearly illustrated by examining the number of packets that are sent in order to

complete each invocation (figure 7.6).
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Figure 7.6 - Comparison of the number of packets sent during a test run against bandwidth

The figure shows the number of packets used to complete a test run of ten

invocations. The congestion problems introduced by using REX at low bandwidths,

despite the in-built backoff strategy, can be clearly seen. The number of packets used

by QEX to transmit the required information is fairly constant across the range of

bandwidths (as one would expect). The amount of unnecessary retries translates to a

lower percentage of user data being passed by the protocol in each invocation (as

illustrated by figure 7.7).
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Figure 7.7 - Comparison of the percentage of user data transferred per invocation

against bandwidth

The figure confirms the expectation that, the more unnecessary packets are used,

the lower the percentage of user data that is transferred. The graph implies that REX
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follows an exponential curve, transmitting more and more user data with respect to

bandwidth. However, figures indicate that both QEX and REX stabilise at their

respective number of packets minima and, although invocations are faster at higher

bandwidths, the percentage of user data transferred remains constant (since REX will

transmit fewer packets in the optimised case the percentage of user data is constantly

around 10% higher than with QEX).

Overall, the percentage of user data transmitted is never more than around 40%

due to the overheads introduced by the protocol packet and ANSAware headers

(clearly this figure is dependent on the ratio of packet payload against header size).

The REX (and QEX) header is currently 56 bytes with an additional nucleus overhead

of 44 bytes (this last factor varies depending on the interface operation used). Thus,

excluding overhead of the protocol stack underpinning ANSAware, the minimum

header size is 100 bytes. To address this issue, additional work has been carried out to

produce a version of QEX which incorporates header compression along the lines of

that proposed by Jacobson [Jacobson,90]. The revised protocol is known as CQEX

[Hirschmann,96].

7.5.2.2 Test Case 2 : Non-fragmented Interactions with Emulated Packet Loss

The second test case illustrates the effect of jitter and packet loss on the protocols.

The client and server test pair, as presented above, were both configured to introduce

random processing delays of up to three seconds before the start of each invocation

and during request servicing at the client and server end respectively. The effects due

to the delays introduced at the client were removed from the invocation timing

statistics. The random delays introduce jitter into the RTT calculations as the platform

does not have a pre-emptive thread scheduler and so cannot interrupt the processing

during delay periods to service packets that are waiting for attention. The number of

invocations in a test run and the sizes of the packets used are identical to those used in

the previous test cases.

In addition, the emulator was configured to provide a channel between the object

pair which corresponds to a wireless bus, that is, a single common channel.

Contention to transmit on the channel was emulated, which results in packet loss if

both objects transmit at the same time. The channel supported by the emulator is

analogous to an open channel PMR system. However, packet loss due to bit error

rates caused by channel effects was not emulated.
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Figure 7.8 - Comparison of the effect of errors and delays on the protocols

Figure 7.8 shows the net effect of the jitter and packet loss on the protocols with

respect to the test case one scenario. The additional delay in servicing the invocations

can be clearly seen. Indeed, the delay becomes the dominating factor from data rates

of 4.8Kbps upwards. However, packet loss will account for a percentage of the

additional delay seen for each invocation. The impact upon the protocol can be more

clearly seen by considering figure 7.9.
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Figure 7.9 - Comparison of the protocol overhead in error channels

This figure highlights the percentage of data lost in protocol overhead against

communications bandwidth. The graph clearly shows that QEX maintains a lower

protocol overhead for the given payload size over the full range of data rates. The

presented figures are calculated with respect to the optimal REX behaviour with no

unnecessary retransmissions (that is, sufficient retransmissions to combat packet loss
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but no more). At rates below 2.4Kbps, QEX achieves its minima (the least number of

packets it could possibly achieve the transmission of the data within). Thus, the

overhead of calculating RTTs within QEX can never be less than 28.6% of this

payload size. Furthermore, QEX achieves the transmission in the worst case (at

19.2Kbps) with 23.4% overhead above optimal, against 72.9% for REX.

7.5.2.3 Test Case 3 : Fragmented Interactions

The third test case is designed to compare the relative performance of the two

protocols for fragmented payloads. The test pair is configured with the same settings

as used for the fragmented invocation adaptation testing in section 7.5.1: an

invocation with a payload of 2048 bytes is sent (fragmenting into two parts of 1378

and 1026 bytes inclusive of platform headers). A test run consists of 10 invocations.

Figure 7.10 illustrates the average time taken for an invocation to complete (averaged

over three test runs).
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Figure 7.10 - Comparison of time taken to complete one fragmented invocation

The data graphed in the figure shows that QEX consistently outperforms REX for

fragmented invocations across the entire range of emulated bandwidths. The REX

protocol does not operate any form of congestion control for fragmented invocations.

This is catastrophic in the face of reduced bandwidth or network congestion. A single

invocation at 2.4Kbps caused over 590 fragments to be queued for transmission. A

second invocation would time-out because of the resulting congestion. At lower data

rates, the first invocation times out before a single request/reply can get through,

leaving over 6,000 fragments queued for transmission. In contrast, once QEX has

adapted to the channel, it maintains a consistent rate of two fragments (i.e. the

minimum possible) over all the data rates tested.
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7.5.2.4 Protocol Analysis

The test cases presented in the preceding sections emphasise different behaviours

within QEX. The first test case represents the worst case behaviour of QEX, i.e. REX

is performing optimally and the number of messages being used is less than that of

QEX. In the more general case, where clients invoke services which take time to

complete or the bandwidth is reduced, the optimal behaviour of REX will not be

evident. In this case the REX protocol will send a minimum of six messages: CALL, a

retry of the CALL, on receipt of the retry the server end will send a CALLACK, a

REPLY once the service is complete, a retry of the REPLY if the server has not

received a further CALL from the client and a REPLYACK from the client on receipt

of the retry of the REPLY. QEX, on the other hand, will still use the same four

messages outlined earlier. While the server is processing, both protocols will

periodically send a probe message to ensure the operation is continuing. The probe

interaction consists of a message header with no data payload which is acknowledged

with an appropriate ACK upon reception. Probe messages are sent significantly less

often than retries of CALLs or REPLYs and have little impact on the presented

figures.

In the more general case, QEX sends less messages than REX, maintaining a

higher percentage of user data transferred and using the available network resources

more efficiently. However, the additional REX overhead is not reflected in the

measured performance of the protocols. This anomaly is primarily due to the result

taking mechanism and the multi-threaded nature of ANSAware capsules.
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Figure 7.11 - Protocol measurements in detail

Figure 7.11 shows the measurement process for a client and server pair of objects.

The client starts the timer to measure the invocation at point A. The client thread

becomes blocked and hands over control to the main protocol thread which performs

the client part of the invocation. Once the reply is received from the server, the client

thread is no longer blocked and therefore able to continue running client code (in this

case stopping the timer at point B). As far as the client is concerned, the invocation is
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complete. However, the protocol thread will continue after the results are delivered to

the client thread, receiving and acknowledging any duplicate REPLYs. This

additional messaging continues while the client is effectively busy elsewhere and so

does not consciously affect the client or the client side measurements. The additional

messages do of course use additional bandwidth and would therefore be expected to

be taking resources which could be used by other parties or additional protocol

interactions.

On balance, the QEX protocol is faster and more efficient at low bandwidths than

REX. Furthermore, QEX is able to adjust to changes in available bandwidth to

minimise the number of messages necessary for any given interaction. It would be

possible to make QEX compete with REX at higher bandwidths: the variance

calculations which are used to detect changes in bandwidth and determine the

appropriate backoff strategy could also be used to trigger a “REX mode” which

temporarily stopped calculating RTTs to save messages. However, there would

clearly be a tradeoff between the minimisation of messages and the speed with which

changes in network QoS were determined (see section 6.5.3.1).

The second test case illustrates that further tuning work is required to make QEX

more robust to channel errors. At low bandwidths the protocol is seen to use an

optimal number of messages which implies the protocol timers are being tuned too

conservatively. In contrast, at higher rates the protocol is over compensating for the

packet loss and retransmitting unnecessarily (albeit to a far lesser extent than REX).

Lastly, the third test case demonstrates that once QEX has attained a stable state

the protocol thoroughly outperforms REX. Moreover, the absence of congestion

control within the REX fragmentation mechanism renders it highly unsuitable for

bulk data transfers over anything other than lightly loaded high bandwidth networks

(i.e. wired WANs or any wireless network).

7.6 Summary

In this chapter the prototype application has been evaluated in terms of feedback

gathered subsequent to the limited field trial scenario conducted at the end of the

MOST project. The prototype was judged successful in meeting a significant number

of the requirements set out in chapter 4. More importantly, the prototype achieved its

overall design goal, that is, to provoke interest in developing the concepts further into

a product quality system and to further provide a framework for describing the

requirements for this new system which will doubtless have a profound effect on the

working practices of future field workers.
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From a research perspective, the prototype has demonstrated that the concepts of

application level adaptation are essential for operation in a heterogeneous networked

environment and contributed significantly to the usability of the prototype within the

limited context of the test environment. In addition, the computational and

engineering perspectives of the supporting platform were evaluated. A number of

significant issues have been raised, some of which form the basis of future work

discussed in the next chapter.

Finally, the performance of the QEX RPC protocol has been evaluated with

respect to the REX protocol. In low bandwidth networks, QEX is found to outperform

REX (as expected). Under certain conditions in a fast network, QEX is found to be

more expensive than REX. However, the benefits provided by the QoS bindings in

allowing the application to adapt are found to outweigh this extra overhead. Chapter 8

presents a series of conclusions and recommends areas of research that require further

work.
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Chapter 8

Conclusions

8.1 Introduction

This thesis has introduced an infrastructure for supporting advanced applications

within the context of a heterogeneous networked environment. More specifically, a

new distributed systems platform based on ANSAware has been described which

provides a QoS architecture at the computational level and engineering support for

this architecture in the form of the QEX protocol. The QoS architecture enables

applications to create explicit bindings between platform objects which embody their

requirements in terms of a set of new QoS parameters. Moreover, the explicit

bindings provide a mechanism through which applications can control and monitor

the QoS of platform interactions, facilitating the process of application adaptation. It

is argued that, through the process of adaptation, advanced applications are able to

operate over a range of networking technologies and still maintain usability. In more

detail, the arguments in this thesis are as follows:

Chapter 1 introduced the reasoning behind the development of distributed systems

platforms and summarised the most common forms of distribution transparency that

are typically supplied by such platforms. A brief introduction was then given to the

three main efforts toward the standardisation of open distributed processing systems.

The remainder of the chapter discussed the impact of operation within a mobile

environment on a typical distributed systems platform and briefly outlined some of

the shortcomings with current approaches.

Chapter 2 surveyed the end-system hardware and software architectures and

communication technologies that have made the emergence of mobile computing
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possible. Based on this survey, the chapter noted the continued improvement in end-

system performance and highlighted the emergent trend toward closer integration of

end-system and communication technology. Furthermore, given the range of

communication technologies now available, it was argued that networks will

increasingly be united to provide seamless coverage with dynamic handover between

network services (heterogeneous networking).

Chapter 3 provided an in-depth analysis of current research in the field of mobile

computing. The chapter highlighted that one of the key characteristics of mobile

environments is change. It was noted that the majority of current work seeks to

provide abstraction over this change to facilitate mobile working transparently.

However, the chapter indicated a number of independent research efforts which have

identified that transparency precludes efficient working in all but the simplest

applications. The need for facilities to support mobility-aware applications,

particularly through adaptation, was highlighted. The chapter concluded by

identifying the lack of work on supporting open distributed systems in a mobile

context.

Chapter 4 presented background information on the MOST project which provides

essential context for discussing the research in this thesis. More specifically, the

chapter discusses the organisation, working practices and constraints placed upon a

typical utility company. A hypothetical scenario was introduced which was then used

to highlight a number of shortcomings that were identified in the working practices of

a particular utility company. Subsequently, a short-list was presented of the primary

requirements for a prototype system which would help address these shortcomings.

An advanced mobile application was developed that has been designed to satisfy a

number of the requirements set out in chapter 4. The application provides a set of

tools that enables field workers to collaborate using a variety of forms of information

including spatially referenced data such as geographic maps, schematics and technical

drawings. The application prototype was discussed at length in chapter 5, with

particular emphasis on its group architecture and modular toolbox structure. The

chapter also highlighted the most significant design and operational features of the

application (including its user interface). The prototype is intended to be capable of

operating in a heterogeneous networked environment and the need for support from a

suitable distributed systems platform was highlighted.

Chapter 6 studied the new platform infrastructure that was designed to support

advanced mobile applications within heterogeneous networked environments. The

new platform is based on the ANSAware distributed systems platform. A number of

shortcomings with the basic platform were identified. A set of QoS based extensions
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were discussed which extend the platform and bring it into closer alignment with the

RM-ODP (the RM-ODP and ANSA models are used throughout the chapter as a

reference for discussing the new platform). The platform incorporates extensions at

the computational and engineering levels to support QoS based explicit bindings. The

chapter discussed the binding architecture, QoS parameters and underlying

management infrastructure in detail. In addition, a new set of QoS parameters were

identified that have been designed specifically for describing platform interactions in

these environments. A detailed explanation was given of the QEX protocol which

maintains these parameters at the engineering level.

The prototype application and underlying distributed systems platform were

evaluated in chapter 7. The evaluation of the application concentrated on how

effectively it was perceived to meet the requirements discussed in chapter 4. A limited

end-user trial was conducted as part of the MOST project and the feedback from the

partner organisation was used to highlight specific limitations within the current

prototype. The platform was evaluated qualitatively in terms of the suitability of the

paradigm and effectiveness of the execution. Importantly, the chapter also focused on

the role of adaptation within the platform and in enabling a number of the prototype’s

component modules to adapt to changes in the underlying environment. Finally, an

analysis of the QEX protocol was presented and the overhead of gathering and

managing the QoS information identified through a comparison with the original

ANSAware RPC protocol, REX.

This final chapter examines the work presented throughout this thesis and

highlights the main results. A number of issues are identified as suitable subjects for

future research. Lastly, some concluding remarks are presented.

8.2 Major Results

The major results of the research presented in this thesis are identified in this

section. The order in which the results are listed does not imply any relative

importance.

8.2.1 Study of Adaptivity

This thesis has highlighted the availability of increasingly diverse and potentially

integrated communications infrastructures, and noted the marked expansion in

research which aims to exploit this potential. The importance of adaptation is stressed

as a key technique for enabling complex applications to operate effectively in

changing environments such as these (emphasised by the demands of advanced

applications over heterogeneous networked infrastructures). Furthermore, adaptation



210

is found to be essential at all levels of a system, including the application,

middleware, transport and network protocols and, significantly, the user level (e.g.

change of work pattern). A number of adaptive techniques which may be applied

throughout a system have been identified, including QoS renegotiation, adaptive

cache management policies and filtering.

As a basis for investigating adaptation as an approach, an adaptive application and

supporting platform which facilitates adaptation has been developed. The platform

features a QoS based framework, aligned to the RM-ODP, which allows applications

to monitor and control their environment. More importantly, the framework provides

an appropriate abstraction for expressing the requirements of the application in terms

of QoS. The platform informs the application when changes have occurred in the form

of QoS violation up-calls if application specified bounds are exceeded, permitting

adaptation. The benefits of the adaptive architecture, with respect to existing non-

adaptive approaches, have been clearly demonstrated.

8.2.2 An Explicit QoS Binding Model

The mobile platform infrastructure described throughout this thesis incorporates a

number of QoS based extensions which enable it to support adaptive applications.

These extensions, modelled as the ability to partially break distribution transparencies,

provide mobility support for conventional and mobility-aware applications through

the use of implicit and explicit bindings respectively. The thesis uses the platform as a

medium for investigating the suitability of the explicit binding mechanism as an

architectural tool for creating adaptive applications.

The explicit binding extensions enable computational objects to bind pairs of

objects and obtain a handle on to the binding. The handle allows applications to set,

query and register for change events in the QoS of the channel specified by the

binding. The platform infrastructure is responsible for mapping the binding on to an

RPC dialogue and continuously monitoring the activity on the binding. The explicit

binding extensions bring the platform into closer alignment with RM-ODP. However,

there are a number of significant differences from the RM-ODP model (see section

6.4.2 for a detailed explanation). More specifically :-

• A binding is transient over communication failure, requiring that binding state is

managed in locally instantiated monitoring objects. Thus, the two ends of the

binding can register independent QoS requirements and present different

perspectives on the binding.
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• The new model does not allow third parties to establish bindings between

objects. However, the binding handle is a reference to a first class interface that

may be used by a third party.

• The platform does not support operational causality specifications within

interfaces, requiring that a binding is established between a pair of identifying

server interfaces (which implicitly offer consumer causality).

The new model was found to be an effective and largely natural way for

developing applications which adapt to cope with the problems introduced by mobile

environments.

8.2.3 Quality-of-Service Execution Protocol (QEX)

The platform presented in this thesis features a new QoS based RPC protocol

called QEX. QEX has been designed to adapt to changes within the supporting

network to enable transparent working in a heterogeneous networked environment.

More importantly however, QEX incorporates a mechanism for gathering network

QoS information which is essential to underpin the remainder of the QoS architecture.

Essentially, QEX performs three independent tasks :-

i) Monitoring of packet round-trip times to calculate the channel characteristics.

ii) Adaptation of the protocol retry and backoff strategies in response to changes

in network resources.

iii) Feedback to the binder, enabling the policing of application QoS

requirements and the generation of violations if QoS bounds are transgressed.

It is the author’s intention that the concepts demonstrated by QEX are generic and

of general value to the distributed systems community as a whole. It would be of

interest to attempt porting elements of the architecture to other distributed systems

platforms. For instance, QoS support could be added to implementations of CORBA

or DCE. This support would require that equivalent QoS based mechanisms were

introduced into the platforms’ RPC protocols. Note however that ORBIX

[Newman,93], an existing CORBA implementation, uses an RPC mechanism based

on TCP and would therefore require QoS monitoring functionality to be added at the

transport level.
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8.3 Other Significant Results

8.3.1 Investigation of Mobile Collaborative Application Design

This thesis has proposed a set of guidelines for future developers of collaborative

mobile applications. In more detail, these guidelines are as follows :-

• Decentralised design for improved availability, fault tolerance and portability

across network architectures.

• Modular toolkit design based on a well defined object model to enhance

extensibility and ease collaborative development.

• Support for collaboration through application level invocations (as opposed to a

generic windowing system approach such as X) for improved interoperability

and reduced communications bandwidth.

• Mobility-aware adaptation enabling the same application to run over a dynamic

network infrastructure.

These guidelines are the result of developing an advanced application to support

field workers within the utilities industries. The application has been used as a

framework for evaluating the QoS architecture. In addition, the prototype has

demonstrated, through the novel use of colour to reflect changes in the underlying

network, that by providing feedback to the user, who is after-all the person

responsible for generating the majority of the network traffic, users can implicitly

adapt to minimise demands placed on the network.

8.3.2 Establishment of Novel QoS Parameters

This thesis has identified that established QoS parameters, which have been

developed for fixed environments, are not sufficient for describing platform

invocations in a mobile context. As a starting point for finding a solution, this thesis

proposes a basic set of QoS parameters designed to address the problems commonly

faced during operation in a mobile environment. This set includes the available

throughput and propagation delay, together with novel parameters such as idle time

and reachability.

Idle time The idle time enables an object to detect when an invocation has not

arrived at an interface within a specified threshold.

Reachability Reachability, strengthens the idle time semantics, by asserting that the

absence of contact within the time threshold was not due to

unavailability or failure of communications.
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Additional work is needed to identify whether further parameters are required for

discussing the requirements of continuous media in a mobile environment.

8.3.3 Enhanced Communications Protocol API

This thesis argues that the communications APIs offered by existing protocols and

the underlying drivers are too restrictive to enable applications to exploit features of

the supporting communications technologies. For instance, preventing applications

from optimising for packet-oriented versus connection-oriented services. An extended

API is presented which incorporates some additional features :-

QoS interface

Applications are able to interrogate the device to discover the style of

the service being provided and a set of QoS parameters describing the

tariff structure (if applicable).

Dialling policy support

Applications may register policies to control the dialling and hang-up

of connection-oriented services. This enables applications to optimise

the link depending on the charging structure in force and the

application’s requirements.

Deadline driven

The API offers a simple method based on deadlines for multiplexing

the different types of information that are typically used by advanced

applications.

The new API has been implemented as part of the platform support architecture. It

is hoped that as the demands of adaptive advanced applications are recognised, future

protocols will offer new facilities to permit adaptation and the efficient multiplexing

of multimedia data.

8.4 Future Work

While building the platform infrastructure described in this thesis several issues

have come to light which merit further investigation. A number of the more

significant points are outlined below.

8.4.1 Integrating Continuous Media

One of the original requirements identified in chapter 4 was to provide audio

conferencing facilities between engineers in the field. Due to the physical size of the
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then current low-rate vocoder technology, the constraints imposed by the size of the

end-systems and the budget of the project, this requirement was not met by MOST.

Integrating continuous media such as audio into the platform would require some

important extensions :-

Stream bindings and QoS

The current platform provides support for invocation of operation

interfaces (in RM-ODP terminology). Some work has been presented

which describes RM-ODP compatible services for the transmission of

continuous media. However, more work is clearly required to integrate

continuous media into the distributed systems platform and identify a

set of QoS parameters for inclusion in the overall QoS framework. In

terms of RM-ODP, this would require the provision of stream

interfaces and QoS signatures to describe the streams called flow

specifications.

Efficient transport and multiplexing

The transport of continuous media information places a considerable

number of constraints on the protocols and transport services. In

particular, packets must be delivered in a timely fashion and in the

correct sequence in order to be played intelligibly without noticeable

jitter. Such constraints require intelligent scheduling algorithms, both

within the platform itself and in the protocol stack and operating

system. In addition, the media must be delivered without

catastrophically affecting the performance of the rest of the system.

Typical protocols will be required to multiplex between different types

of traffic with individual requirements, such as streams of continuous

media, interactive application traffic and background transfer traffic.

In addition, the integration of continuous media will benefit from a consideration

of results from the multimedia community. For example, work on real time

scheduling [Steinmetz,95].

8.4.2 New QoS Parameters

This thesis has identified a set of QoS parameters which are used to facilitate

adaptation. However, these parameters are not complete. For example, the author

envisions that cost and power will place an ever increasing role in future systems.

These issues are considered in more detail below.
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Cost

Portable machines will be required to interact with an ever wider range

of wireless network technologies, particularly as applications become

more advanced. It seems most likely that future wide-area wireless

technologies, like current cellular systems, will charge for their

services. However, with the increased commercial interest in the

Internet, it is feasible that wide-area networking in general will become

a commercial enterprise. More than ever before, applications will be

required to be competitive not just in terms of initial purchase price but

also in terms of running cost. In order to become cost effective,

applications will be driven to make cost efficient decisions of how to

use network resources. To achieve these cost optimisations,

information about the services in use must be made available to

applications. S-UDP incorporates rudimentary support for describing

the cost associated with dial-up channels. However, there is a need to

identify a more comprehensive set of QoS parameters which describe

the wide range of possible charging strategies used by different

services. Furthermore, as networks become more integrated, the

charges for each stage of the journey must be accumulated and the QoS

parameters will have to reflect how the application may best optimise

for the range of technologies.

Power

Current portable machines offer power saving architectures (discussed

briefly in chapter 2). These architectures typically provide information

on the status of the internal batteries in order to warn when charging is

needed. Power saving architectures and improved battery technologies

will to some extent reduce the battery consumption problems

experienced by high-end portables. However, by providing

applications and system software with information about the power

consumption of system components, considerable savings could be

made. For example, an application might cache information to avoid

spinning up the disk, batch information to reduce the power drain of

radio transmitters and, potentially, tradeoff different network

technologies with different rates of power consumption.

There is considerable scope for investigating how best to represent cost and

power, particularly within heterogeneous networked environments, and how

applications should adapt when provided with this information.
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8.4.3 Improving the RPC Mechanism

The QEX RPC protocol described in chapter 6 is essential for operation of the

platform in a mobile environment. The protocol is responsible for gathering round-trip

time data and extrapolating the QoS of the channel. The accuracy of the current

algorithms is sufficient for the needs of the application prototype. However, the

estimations are far from perfect. Further work is required to develop more

sophisticated algorithms which are able to filter out the jitter introduced by running

over a non-real time operating system and protocol stack.

In addition, the current algorithms assume a symmetric communications channel

(equal capacity in both directions) which is not necessarily the case. Modern TDMA

systems allow flexible allocation of time slots in each direction. Furthermore, cable

television networks offer highly asymmetric channels with extremely high bandwidth

down-links and comparatively meagre up-links. New algorithms would be required to

cope with asymmetric channels such as these.

RPC and transport protocols commonly deal with network congestion by using

exponential backoff strategies in conjunction with rate control mechanisms. However,

exponential strategies lead to poor performance in wireless networks as the packets

dropped as a result of the increased level of bit error rates are interpreted as

congestion. As previously discussed, the strategy within QEX selects between an

exponential and a linear strategy depending on the characteristics of the network.

Future work is required to find a suitable backoff mechanism to deal with multi-hop

networks which have both wired and wireless components.

8.4.4 Investigation of New Communications Primitives

A number of problems have been identified with using synchronous

communications primitives, such as RPC, in mobile environments. The problems are

concerned primarily with performance, bandwidth efficiency and failure transparency.

A number of solutions have been proposed to cope with the frequent connection

failure that is often experienced. For example, one approach logs RPCs to persistent

storage and replays them upon reconnection (M-RPC advocates this method). Other

researchers have postulated that synchronous RPC mechanisms are not well suited to

operation in a mobile environment and have proposed more asynchronous styles of

interaction. The queued RPC mechanism of the Rover toolkit (essentially

asynchronous messaging) is one such approach. The author believes that there is still

a need to find a paradigm which offers the required benefits while retaining semantic

simplicity. Recent work at Lancaster is beginning to examine a novel communications

paradigm based on a Tuple Space model [Gelernter,85].
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8.4.5 Group RPC Mechanisms

Current group RPC mechanisms provide transparent point-to-multipoint

invocation mechanisms to applications. These mechanisms often rely on highly

synchronous token passing algorithms that are unsuitable for most mobile

environments. In an integrated heterogeneous networked environment, members of

the group may be available via a range of technologies, with consequently, a range of

independent qualities-of-service. In many cases only a subset of the group will be

available at any one time.

New mechanisms are required which adapt to make the most effective use of the

technologies in operation, for instance, exploiting lower level multicast mechanisms.

In addition, there is a requirement for a selectively transparent mechanism that

provides information back to applications allowing them to adapt. For instance, an

application might tradeoff consistency to increase the performance of the group

interaction. These mechanisms will be required to provide a suitable set of QoS

parameters for describing application requirements such as quorum, timeliness,

consistency, ordering and cost. In addition, within such a weakened consistency

model, new synchronisation models will also be required. Work is currently underway

in developing a selectively transparent group management service [Cheverst,96].

8.5 Concluding Remarks

Future environments will offer a seamless integration of heterogeneous

networking technologies providing connectivity regardless of physical location.

Whether computers maintain their status as personal computation devices or fulfil

Mark Weiser’s vision of ubiquitous computing [Weiser,93], it seems clear that the

applications running on these machines will experience a rich network infrastructure

offering a wide range of services and therefore qualities of service.

This thesis has sought to demonstrate that only through the process of adaptation

can applications make the best use of their supporting environment. The platform

described herein provides the necessary support for building adaptive applications.

Furthermore, it is hoped that the concepts advocated throughout this thesis will, in the

long term, lead to the development of adaptive platforms for future environments.
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Appendix A

The Enhanced DPL
Language

The DPL language, first introduced in section 6.2.5.1, has been modified to

incorporate the new binding and QoS extensions. The DPL language syntax is

described by the compiler grammar presented below. The enhancements to the

language are highlighted in bold.

statement ::= resultlist handle $ operation argumentlist
exceptionlist qos deadline within
| { rlist } INITIATES handle $ operation
  argumentlist qos deadline within
| { rlist } INSTANTIATES handle $
  instantiateop argumentlist
| USE TOKEN from
| DECLARE declarationlist TOKEN decltype
| MEMBERSTATE IS statelist IN TOKEN
| STORAGE decltype TOKEN state
| SNAPSHOT OF statelist IN TOKEN OF TOKEN
| MANAGED alist
| GROUPMEMBER TOKEN
| resultlist BINDERTOKEN $ handle bindlist

deadline ::= /* empty */ | DEADLINE TOKEN

bindlist ::= ( TOKEN , TOKEN , TOKEN )

within ::= /* empty */ | WITHIN TOKEN

qos ::= /* empty */ | { TOKEN }

from ::= /* empty */ | FROM TOKEN

decltype ::= CLIENT | SERVER

declarationlist ::= /* empty */ | DECLARATION
| { rlist } DECLARATION

state ::= /* empty */ | STATE statelist

statelist ::= { VTlist }
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VTlist ::= /* empty */ | vtlist

vtlist ::= pair | vtlist , pair

pair ::= TOKEN TOKEN

resultlist ::= /* empty */ | BECOMES | { rlist } BECOMES

rlist ::= /* empty */ | results

results ::= result | results , result

result ::= TOKEN

handle ::= TOKEN

operation ::= TOKEN | CREATE | RECREATE | DESTROY
| CREATEMEMBER | DESTROYMEMBER

instantiateop ::= CREATE | RECREATE | DESTROY
| CREATEMEMBER | DESTROYMEMBER

argumentlist ::= /* empty */ | ( alist )

alist ::= /* empty */ | arguments

arguments ::= argument | arguments , argument

argument ::= stoken

stoken ::= TOKEN | QUOTED_STRING

exceptionlist ::= /* empty */ | exceptionlist continuelist
| exceptionlist signallist
| exceptionlist abortlist

continuelist ::= CONTINUE statuslist

statuslist ::= TOKEN | statuslist , TOKEN

signallist ::= SIGNAL statuslist

abortlist ::= ABORT statuslist


