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Abstract  7 

This article documents textures within Katla 1918 pyroclasts, where particle-filled fractures and 8 

bubbles have been observed. These features are analogous to tuffisite veins; particle-filled fractures 9 

which represent the preserved remains of transient degassing pathways in shallow conduits.  10 

Such fractures have long been considered restricted to high viscosity silicic melts. However, through 11 

BSE images and compositional maps, we have identified similar tuffisite-like features in crystal-poor 12 

basalt pyroclasts from the 1918 A.D. subglacial eruption of Katla, Iceland (K1918). Clast textures record 13 

transient mobility of juvenile/lithic particles, melt droplets and gas through magmatic fractures and 14 

connected vesicles. Key evidence includes (1) the presence of variably sintered fine-ash particles 15 

within variably healed fractures and vesicles (present in >80% of clasts analysed), (2) compositional 16 

maps that reveal the presence of foreign particles within preserved and healed permeable pathways, 17 

and (3) lower vesicularities immediately surrounding ‘fracture’ walls, suggestive of diffusive volatile 18 

loss into a permeable network.  19 

The 1918 A.D. eruption of Katla occurred under a thick glacier, however the ice was quickly breached, 20 

owing partly to the explosive nature of the eruption. We propose that the formation and preservation 21 

of these transient permeable networks have been facilitated by rapid decompression of a relatively 22 

volatile-rich magma, in a confined subglacial environment, with combined magmatic and 23 

phreatomagmatic fragmentation, followed by rapid quenching by meltwater. 24 

Tuffisite veins in rhyolite demonstrate repeated fracture-healing cycles, which drive incremental 25 

release of overpressured gas and help to defuse explosive eruptions. Interestingly, the permeable 26 

network at Katla failed to defuse the 1918 A.D. eruption, which involved a particularly violent 27 

subglacial eruptive phase. It is unclear whether this demonstrates an inability of mafic tuffisite-like 28 

features to efficiently degas magma (perhaps owing to the especially transient nature of permeable 29 

pathways in low viscosity magmas) or an ability to enhance fragmentation by providing infiltration 30 

pathways for external water. The latter scenario may explain the rapid melting of the overlying glacier 31 

as the large surface area-to-volume ratio of fractured magma would allow rapid heat transfer.  32 

Nevertheless, we document a previously undescribed texture in basaltic magmas. It is intriguing why 33 

it has not, to the best of our knowledge, been documented elsewhere. Have these permeable 34 

pathways been over-looked in the past (e.g. mistaken for bad sample preparation or not noticed 35 

without high magnification BSE images) and are in fact a widespread phenomenon in subglacial (and 36 

other?) basalts; or do our samples in fact represent a rarely preserved texture? Either way, they offer 37 

a new insight into the degassing and fragmentation of subglacial basalt. 38 

mailto:*j.owen2@lancaster.ac.uk


 39 

Keywords: degassing; vesicles; open-system degassing; phreatomagmatic; tuffisite veins; Katla 40 

 41 

Introduction 42 

Due to the ability of volcanic gases to rapidly expand at low pressure, volatiles are often considered 43 

the driving force for explosive volcanism (Sparks, 1978; Moore et al., 1998; Blundy et al., 2006), with 44 

violent fragmentation typically fuelled by high volatile contents and closed system degassing (i.e. 45 

where the volatiles remain trapped within the magma) (Anderson and Fink, 1989; Hoblitt and Harmon, 46 

1993; Anderson et al., 1995; Martel et al., 1998; Villemant and Boudon, 1998; Villemant and Boudon, 47 

1999; Villemant et al., 2003; Adams et al., 2006; Villemant et al., 2008; Humphreys et al., 2009; Owen 48 

et al., 2013a). Transitions to effusive volcanism are often characterized by a shift towards open system 49 

degassing behaviour, where volatiles are able to efficiently outgas from the magma (Jaupart and 50 

Allègre, 1991; Jaupart, 1998; Namiki and Manga, 2008; Owen et al., 2013b).  51 

Magma outgassing occurs according to different mechanisms that strongly depend on melt 52 

composition (Vergniolle and Jaupart, 1986; Houghton and Gonnermann, 2008). The low viscosity of 53 

basalt, coupled with high volatile diffusivities in basaltic melts, enables bubbles to rapidly grow and 54 

buoyantly rise through the magma column, allowing efficient magma-gas separation and open-system 55 

degassing (Wilson, 1980; Vergniolle and Jaupart, 1986; Edmonds and Gerlach, 2007; Menand and 56 

Phillips, 2007; Houghton and Gonnermann, 2008). In contrast, the high viscosity and lower volatile 57 

diffusivities in silicic melts hinder both bubble growth (Proussevitch and Sahagian, 1996) and melt-58 

bubble decoupling (Sparks, 1978). However, high-Si magmas can still experience open system 59 

degassing by becoming permeable, either with connected bubbles acting as a pathway for gas to flow 60 

(Eichelberger et al., 1986; Westrich and Eichelberger, 1994; Klug and Cashman, 1996; Namiki and 61 

Manga, 2008), and/or by the creation of tuffisite veins, permeable gas and ash filled fracture networks 62 

that temporarily exist within the magma conduit (Sparks, 1997; Tuffen et al., 2003; Saubin et al., 2016; 63 

Farquharson et al., 2017). 64 

Magma fracturing and tuffisite vein formation are currently thought to be limited to high viscosity 65 

magmas such as rhyolites (Tuffen et al., 2003; Castro et al., 2012; Saubin et al., 2016), crystal-rich 66 

andesites (Kolzenburg et al., 2012; Plail et al., 2014; Kendrick et al., 2016) and dacites (Nakada et al., 67 

2005; Noguchi et al., 2008; Gaunt et al., 2014). Tuffisite veins within conduits, are proposed to form 68 

when highly viscous magma experiences failure either due to gas overpressure or shear fracture within 69 

the glass transition (Tg) interval. These fractures then act as a pathway for gas and fragmented 70 

particles that eventually obstruct the vein. Subsequent welding of these particles results in vein 71 

healing and permeable pathway occlusion, leading to re-pressurisation (Tuffen et al., 2003). Slow 72 

crystallisation rates in rhyolite allow prolonged magma residence in the glass transition interval (hours 73 

or days), providing sufficient time for repeated fracture-healing episodes within crystal-poor melt, and 74 

creating superimposed generations of tuffisite veins within flow-banded glass (Tuffen et al., 2003; 75 

Gonnermann and Manga, 2005). 76 

In contrast, the low viscosity of basalt means that repeated episodes of fracturing and healing within 77 

the conduit are unlikely. Inherently, it is much harder to fragment/fracture basaltic magma at eruptive 78 



temperatures (Papale, 1999; Giordano and Dingwell, 2003) without decreasing temperature, 79 

increasing crystallinity (Giordano and Dingwell, 2003; Houghton and Gonnermann, 2008; Namiki and 80 

Manga, 2008) and/or by invoking rapid decompression and/or magma-water interaction (Giordano 81 

and Dingwell, 2003). These processes will all hinder subsequent sintering, as rapid cooling would serve 82 

to quench the magma and high crystallinities lower the available melt fraction. Therefore, even if 83 

fracturing were able to occur in a crystal-free basaltic melt, rapid crystallisation will limit its residence 84 

time in the Tg interval, allowing little time for sintering, vein healing or repeated fragmentation cycles 85 

(Tuffen et al., 2003). It is perhaps not surprising that, to our knowledge, there is no documented 86 

evidence of tuffisite-like features within basaltic magma. 87 

In this paper we present some of the first observations supporting transient particle transport and 88 

sintering within permeable pathways (fractures, connected vesicles and inter-clast void spaces) in a 89 

high-temperature, crystal-poor basalt. This process likely preceded powerful hydromagmatic 90 

fragmentation, emphasising a need to better understand the influence of open-system degassing and 91 

clast recycling in basaltic eruptions. 92 

2. Materials and methods 93 

2.1 Geological background and sampling 94 

Samples were collected within deposits from the 1918 A.D. VEI 4 (Smithsonian, 2016) subglacial 95 

basaltic eruption of Katla (K1918) in South Iceland (Fig. 1a). The eruption took just two hours to melt 96 

through ~400 m of overlying ice (Mýrdalsjökull glacier), after which both an ash plume and a 97 

jökulhlaup (glacial flood) were observed (Tómasson, 1996; Sturkell et al., 2010). The plume was 14 km 98 

high, and deposited ash over 50,000 km2 of land (Larsen, 2010). The jökulhlaup  transported 0.7-1.6 99 

km3 of tephra (Larsen, 2000), with an inferred peak discharge rate of >300,000 m3 s-1 (Tómasson, 100 

1996), making it the 14th most powerful flood of the Quaternary (last 2.6 million years) (O'Connor and 101 

Costa, 2004). Both the jökulhlaup and the extreme melting rate of the glacier were exceptional and 102 

cannot be readily explained by existing models of convective magma-ice heat transfer (Gudmundsson 103 

et al., 1997; Hoskuldsson and Sparks, 1997; Wilson and Head, 2002; Gudmundsson, 2013; Woodcock 104 

et al., 2014; Woodcock et al., 2015; Woodcock et al., 2016). 105 

Samples characterised in this study were collected from both the air-fall and the jökulhlaup deposit. 106 

Wind blew ash from the eruption plume in many directions but predominantly to the NE (Larsen, 2010; 107 

Larsen et al., 2014), with ~300 g m-2 reaching North Iceland (Larsen et al., 2014). However, the ash was 108 

poorly preserved following the eruption. Nevertheless, K1918 ash can be found in select soil horizons 109 

around Katla (Óladóttir et al., 2005; Óladóttir et al., 2008), and the thickest deposit is observed as a 110 

layer in the Mýrdalsjökull ice, which is now being exhumed (Gudmundsson, 2013, pers. comm).  111 

The K1918 jökulhlaup deposit has been well characterised by a variety of studies (e.g. Maizels, 1992; 112 

Maizels, 1993; Tómasson, 1996; Duller et al., 2008; Russell et al., 2010). Maizels (1992) identified four 113 

units; 1: a basal unit of massive gravels and imbricated clast-supported gravels that represents rising 114 

flow, overlain by 2: massive pumice granules interpreted to be part of a flow surge, overlain by 3: 115 

trough cross-bedded pumice granules, and finally 4: horizontally bedded pumice granules and pumice 116 

sands, with the top two units representing more fluid waning stages of the jökulhlaup. The deposit is 117 

~12 m thick in proximal regions, decreasing to 4 m thick at the coast, some 18 km away (Maizels, 118 

1992). 119 



Air-fall tephra was collected from Sólheimajökull glacier (Fig. 1a) where a ~40-cm thick layer of 120 

typically sub-cm clasts are preserved in the ice (Fig. 1b). These samples are prefixed “Sol”. Jökulhlaup 121 

samples (prefixed “Mul”) were collected from the banks of the Múlakvísl river, where river 122 

downcutting has exposed a clear vertical cross-section through the deposit (Fig. 1c). In both settings 123 

multiple locations were sampled, which is denoted by the second part of the sample name. At 124 

Múlakvísl we focussed on a 3 m high exposure (Figs. 1a, 1c). In both locations, there were multiple 125 

layers, each of which was sampled. The layer makes up the third part of the sample name. For the air-126 

fall tephra six layers were documented and labelled A-F (Fig. 1b). The observed stratigraphy at the 127 

jökulhlaup deposit matches the units described in Maizels (1992), Duller et al. (2008) and Russell et al. 128 

(2010) but with only units 2-4 exposed (Fig. 1c). The lower and upper half of unit 3 appeared more 129 

lithic- and juvenile-rich respectively and was separated by a vein. As a result, we collected two samples 130 

from unit 3 and labelled them 3a and 3b respectively (Fig. 1c).  131 

Grain size distributions revealed that for the samples collected, the largest clast sizes typically fell 132 

within the -3 to -4 φ category (8-16 mm) and had a peak at the -1 to -2 φ category (2-4 mm). Typical 133 

air fall samples had a second modal group with a high proportion < 125 μm (>3 φ). However, it should 134 

be noted that, in both settings, the grain size distribution is probably a reflection of the transportation, 135 

and potentially the re-mobilisation, history and not thought to represent the true volcanic deposition. 136 

This is especially true of the jökulhlaup deposit where it is thought that the majority of the fines and 137 

most of the early material was washed out to sea (Duller et al., 2008). Nevertheless, for each key 138 

sample, four representative 8-16 mm and nine 2-4 mm clasts were chosen, numbered and made into 139 

thin sections. The clast size and number make up the fourth and fifth (final) parts of the sample name, 140 

respectively. In total 100 clasts of this size were thin sectioned and of these, 26 representative clasts 141 

(9 air-fall and 17 jökulhlaup samples) were chosen for backscatter imaging.  Thin sections were also 142 

made of the 250-500 μm clast size to supplement the geochemistry data. 143 

Each sample name, therefore, has the following format 1) environmental setting 2) location number, 144 

3) layer/unit reference, 4) clast size, 5) clast number. 145 

 146 



 147 

Figure 1: (a) Map of the Katla area showing the sampling locations with the inlet showing the 148 

position in South Iceland; (b) Cross-section through the air-fall deposit on Sólheimajökull glacier 149 

showing units A-F; (c) Cross-section of the jökulhlaup deposit at Múlakvísl showing the different 150 

units sampled (units 2 to 4 from Duller et al. (2008)) with a meter rule for scale. 151 

2.2 Geochemistry and imaging (EPMA) 152 

A Field-emission JEOL Hyperprobe JXA-8500F Electron Probe Micro-Analyser (EPMA) at the 153 

University of Hawaii was used to acquire (a) back-scattered electron (BSE) images, (b) compositional 154 

(X-ray distribution) maps and (c) spot analyses. Accelerating voltages of 15, 20 and 20 keV and beam 155 

currents of 10, 30-50, and 10 nA were used for (a), (b) and (c) respectively. Spot sizes of 1 μm, 2 μm 156 



and 10 μm were used for Fe-Ti oxides, K-rich particles and matrix glass, respectively. On-peak count 157 

times of 30 s were used for Si, Al, Fe, Mn, Na, K, P, and 65-70 s for Al, Mg, Ca, and Cl. Time-dependent 158 

intensity corrections were used for glass analyses when significant Na loss or Si gains were detected  159 

(e.g. Shea et al., 2014).  160 

To assess compositional heterogeneity and relative element abundances in select samples, 161 

compositional maps of Fe, Ca and K were obtained using three of the five spectrometers and dwell 162 

times of 40-45 msec/pixel. Raw data was used to make single 2D intensity matrices, which were then 163 

combined as individual channels into a single RGB composite image. The other two spectrometers 164 

measured S and either F or Na. Intensity matrices for all measured elements are provided in Appendix 165 

1 (Figs. A1-A3). 166 

Spot analyses were mainly performed on magnetite and ilmenite crystals for geothermometry (see 167 

section 2.3). A limited number of glass analyses were also acquired and compared to EPMA data 168 

collected from the University of Edinburgh. There, > 200 glass measurements were made on more 169 

than 50 different air-fall and jökulhlaup clasts. All analyses were carried out at 15 kV with a 5 μm spot 170 

size. Beam currents of 2 and 80 nA were used for major and minor/trace elements respectively as per 171 

Hayward (2011). Analyses with totals < 97 wt.% and those with a clear influence of crystals were 172 

rejected. 173 

2.3 Estimating eruption temperature (geothermometry) 174 

To better constrain the physical parameters of the melt (e.g. viscosity, diffusion rates, sintering rates 175 

etc.) oxide geothermometry was used to estimate the magma eruptive temperature. Using the 176 

method described in section 2.2, 61 measurements were made of magnetite and ilmenite crystals 177 

within both jökulhlaup and air-fall samples. These were converted into temperatures using the Fe-Ti 178 

oxide geothermobarometer model of Ghiorso and Evans (2008). Measurements were rejected if either 179 

SiO2 exceeded 1 wt.%, as this may reflect mixed analyses with surrounding glass, or if they failed the 180 

equilibrium test of Bacon and Hirschmann (1988). 181 

2.4 Glass H2O content (FTIR) 182 

The glass water contents of five clasts (one air-fall and four jökulhlaup) were measured using Fourier 183 

Transform Infrared Spectroscopy (FTIR). A Thermo Nicolet IR interferometer, with KBr beamsplitter, 184 

Continuum Analytical microscope and MCT-A detector were used at Lancaster University. Each 185 

measurement (including background analyses) constituted 256 spectra collected at 4 cm-1 resolution 186 

over the range 600-5500 cm-1. A minimum of ten measurements were taken per sample with a 187 

100x100 µm aperture.  188 

H2O contents (C) were determined using the Beer-Lambert law (e.g. Stolper, 1982) 189 

𝐶 =
𝑀𝑤𝐴

𝑑𝜌𝜖
 190 

(1) 191 

where Mw is the molecular weight of water (18.02 g mol-1), A is peak height, d is sample thickness (in 192 

cm), ρ is density (2,770 g l-1 estimated using the density calculator of Bottinga and Weill (1970) and a 193 



representative composition of K1918 basalt taken from Óladóttir et al. (2008)), and ε is the absorption 194 

coefficient (l mol-1 cm-1). 195 

Total H2O (H2Ot) concentrations were determined using the absorption peak at 3550 cm-1 and an 196 

absorption coefficient of 63 l mol-1 cm-1 (Dixon et al., 1988). Sample thickness was determined using a 197 

Mitutoyo digital displacement gauge accurate to ±3 μm.  198 

The characteristic double CO3
2- peaks (1515 and 1435 cm-1) and the molecular H2O (H2Om) peak at 199 

1630 cm-1 were indiscernible, suggestive of very low CO2 and H2Om concentrations. As post quenching 200 

hydration favours H2Om (Yokoyama et al., 2008; Denton et al., 2009), it is unlikely that our K1918 201 

samples have undergone this process. 202 

 203 

3 Results 204 

3.1 Overview of clasts 205 

Clasts tend to be brown, black (or a mixture of the two) and contain sparse phenocrysts. The brown 206 

material (e.g. Figs. 2b, 3, 4bii) is clear glass (sideromelane), with few microlites (typically 5-25% for air-207 

fall and < 5 % for jökulhlaup clasts), in contrast to the black (tachylite) material (e.g. Fig. 4aii), which is 208 

relatively microlite-rich (~30-70%), opaque and contains bubbles that are largely obscured in plane-209 

polarised light (ppl) microscopy. Air-fall clasts are typically 40-50% vesicular whilst jökulhlaup clasts 210 

are ~60-75% vesicular, with a large number of small bubbles (Owen et al., 2017) . Bubble and microlite 211 

textures are often locally heterogeneous throughout each clast. The clasts often contain fractures, 212 

connected bubbles and textural evidence of sintering, which are particularly well preserved in the 213 

jökulhlaup samples (see sections below). Note that in this paper, we will use the term ‘sintering’ in 214 

reference to a texture that shows any of the stages of sintering from contact point fusing, to full 215 

coalescence into a solid mass. In addition to the brown and black clasts, there is a small percentage of 216 

pale/clear lithic clasts that are largely void of both phenocrysts and vesicles.  217 

3.2 Fractures 218 

Most clasts contain fractures that have either a ragged, sharp angular appearance (Fig. 2) or a 219 

smoother, more rounded morphology (Fig. 3). Fractures observed are typically millimetric in length 220 

and tens to hundreds of μm wide, however observations were limited by clast size (< 16 mm). It is 221 

common for the fractures to be partially filled by ash particles. Ash also occurs within neighbouring 222 

vesicles connected to the fractures, but tends to be absent from nearby isolated bubbles (e.g. Fig. 2c). 223 

The fracture- and vesicle-occupying particles shall herein be referred to as ‘particles’, and the host as 224 

‘clast’ to avoid confusion. The fracture-hosted particles are typically of μm scale but can reach 250 µm 225 

in the largest fractures. They are predominantly composed of vesicle-free basalt (both sideromelane 226 

and tachylite), but lithics are also present, and some of the larger particles can contain vesicles. The 227 

particles tend to be either angular or well rounded, and sometimes appear welded to nearby surfaces 228 

(Figs. 4, 5a).  229 

 230 



 231 

Figure 2: Images showing an angular fracture containing ash particles within sideromelane. (a) A BSE 232 

mosaic image showing the whole clast - jökulhlaup sample Mul 6 unit 3a-1 8,000-16,000 2a (~5x8 mm). 233 

Rectangles with solid lines highlight the area shown in parts b and c, whilst the dashed line rectangles 234 

outline areas shown in Figures 4b, 5c and 7. Figure 8 features within the area shown by Figure 5c but 235 

is too small to depict here; (b) Photomicrograph in ppl detailing the fracture; (c) Simplified BSE image 236 

showing the same area as b, where bubbles have been coloured black, glass white, the background 237 

(and bubbles connected to the background) grey, and ash particles in red.  238 

 239 



 240 

Figure 3: Photomicrographs in ppl showing a rounded fracture within sideromelane, which contains 241 

ash particles near the clast margin. (a) mosaic overview of the whole clast – jökulhlaup sample Mul 6 242 

unit 4-1 8,000-16,000 4a (~6x9mm); (b) detail of the fracture, showing a transition from angular (left) 243 

to rounded (right) as it approaches the clast margin (far right). The rounded part of the fracture 244 

contains ash particles. 245 

 246 

 247 



 248 

Figure 4: Images of fractures containing partially sintered particles. The ash particles are connected 249 

to the host, and each other, via ‘necks’ of various sizes. The suffix refers to the image type, with (i) 250 

denoting BSE images and (ii) denoting thin section images taken in ppl.  (a) A ~20 μm wide partially 251 

filled fracture within the tachylite part of a jökulhlaup clast - Mul 6 unit 4-1 8,000-16,000 3a (see 252 

Figure 10a for context). Rounded tachylite ash particles have sintered onto the fracture wall with the 253 

boundary marked by a microlite chain; (b) A ~100 μm wide fracture that has almost healed within a 254 

sideromelane jökulhlaup clast - Mul 6 unit 3a-1 8,000-16,000 2a (see Figure 2a for image location). 255 

The fracture is filled with rounded particles, which have sintered to each other and the fracture 256 

walls. The area immediately adjacent to the fracture is less vesicular than the surrounding melt.  257 

As can be seen in Figure 4, the particle-filled fractures, which are fairly evident in the BSE images on 258 

the left, are not at all clear in the ppl images on the right. This is especially true for the tachylite 259 

sample (Fig. 4a) where the opaqueness of the matrix makes the feature (and many of the bubbles) 260 

invisible in ppl (Fig. 4aii). This is not only true for particle filled fractures but also particle filled 261 

bubbles and in fact most examples of sintering.  262 

Particles within fractures and bubbles are noticeably vesicle-poor compared to their host clasts, likely 263 

reflecting their grain size being smaller than the predominant bubble size (Fig. 4ai). Most particles are 264 

in fact void of vesicles. There are, however, some exceptions, for example the larger fracture-filling 265 

particles in Figure 4b share similar bubble contents and textures to the melt immediately surrounding 266 



the fracture. In turn, this area is less vesicular, with typically smaller and less abundant bubbles than 267 

material >100 μm away.  268 

Compositional mapping of a particle-filled fracture (Fig. 5a) shows that most particles have 269 

compositions similar to the surrounding microlite-free host basaltic melt (sideromelane). However, 270 

the fracture also contains a significant percentage of K-rich (blue) particles (Fig. 5a), which are mostly 271 

also Na-rich, although some are Na-poor (Appendix 1; Fig. A1). There is also a large Na-rich phenocryst 272 

(dark green in Fig. 5a) and microlites of this composition within some of the K-rich particles. These 273 

K/Na-rich particles likely represent fragments of silicic glass, alkali feldspar, and albitic plagioclase 274 

from a more evolved magma. Particles are predominantly sub-angular, but a significant proportion, 275 

especially of sideromelane, display rounded morphologies. Some rounded sideromelane particles 276 

have viscously deformed around K-rich particles, whilst others are sintered to the fracture walls, with 277 

the former boundaries expressed by oxide microlite chains (pink in Fig. 5a). Additional microlite chains 278 

occur in the basaltic glass surrounding the fracture, outlining domains that are similar in size and shape 279 

to the particles within the fracture. These microlite chains are S-enriched (Fig. A1). Also present in the 280 

surrounding glass are a few additional K-rich fragments and partially collapsed vesicles.  281 

 282 



 283 

 284 

Figure 5: Compositional maps showing a particle-filled fracture (a), a particle-filled bubble (b), and an 285 

area of extensive particle-bearing microlite chains (c). Colours represent relative element abundances 286 

according to the legend in the bottom left corner (Fe-rich=red, Ca-rich=green, K-rich=blue, Fe and Ca 287 

-rich=yellow, Ca and K –rich=turquoise, K and Fe –rich=pink and areas rich in Fe, Ca and K=white). (d) 288 

offers an interpretative summary. (a) A ~200 μm wide particle filled fracture within a sideromelane 289 

jökulhlaup clast - Mul 6 unit 3a-1 2,000-4,000 3a. The particles are both basaltic sideromelane and 290 

fragments from a more evolved melt, and have both sub-angular and rounded morphologies. Microlite 291 

chains are present in the surrounding basaltic glass. See Figure 16 for fracture location and ppl/BSE 292 

images; (b) A particle-filled irregularly shaped bubble which appears to be connected to other particle-293 

filled bubbles (e.g. upper right). The host is microlite-rich tachylite from an air-fall clast - Sol 3E 8,000-294 

16,000 3a, but the particles are predominantly sideromelane basalt and K-rich particles from a more 295 



evolved melt. These particles are highly angular and small, and show slight near-horizontal lineation 296 

with larger particles being near the upper and lower bubble walls. There is clear sample preparation 297 

damage to the upper bubble wall as labelled;  (c) An area of extensive microlite chains within a 298 

sideromelane clast from jökulhlaup sample Mul 6 unit 3a-1 8,000-16,000 2a (see Figure 2a for context). 299 

The microlites (pink) occupy the upper right part of the image and coincide with small fragments of 300 

various compositions. The lower left part of the image is void of microlites and particles but contains 301 

near-spherical bubbles. The dashed line rectangles outline areas shown in Figures 8a and 8b. 302 

3.3 Infilled bubbles 303 

Interconnected bubble networks also frequently contain particles (Figs. 5b, 6). As with the fracture-304 

filling particles, these are predominantly angular, but include a significant proportion that are well 305 

rounded and sintered onto bubble walls (Fig. 7).  306 

 307 

 308 

Figure 6: BSE images showing examples (a and b) of particle-rich bubble chains in sideromelane 309 

jökulhlaup clasts. In both examples, the bubble chain appears to widen as it approaches the clast 310 

margin (upper right corner), however, the particles are most abundant at the opposite end. Particles 311 

are predominantly absent from nearby isolated bubbles. (a) is from Mul 6 unit 2-1 8,000-16,000 2a 312 

and (b) is from Mul 6 unit 3a-1 8,000-16,000 3a. 313 
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 315 

Figure 7: Images (a: BSE; b: ppl) showing sintered particles within bubbles in a sideromelane jökulhlaup 316 

sample - Mul 6 3a-2 8,000-16,000 2a (see Figure 2a for context). A round particle (~20 μm) is sintered 317 

to the wall of a large bubble (right side of the image), with a microlite chain marking the boundary. On 318 

the far left of the image is the edge of a bubble with two smaller sintered particles adhered to the 319 

bubble wall. The centre of the image is occupied by an area with a high number density of small 320 

bubbles, which appears flow-banded in part (b) and is outlined by a microlite chain. In the 321 

neighbouring glass beneath, there are partially collapsed vesicles, clearly visible in part (a), which 322 

pinch out into additional microlite chains; these also appear as flow bands in part (b).   323 

 324 

A compositional map was acquired within an irregular, highly deformed particle-filled bubble, which 325 

appears to form part of a series of interconnected bubbles (Fig. 5b). The particles are very small (<<63 326 

μm), generally angular and crudely sorted, with linear bands of finer grains in the bubble centre and 327 

larger particles on either side. The orientation of this band matches the orientation of the main axis 328 

of the bubble. The surrounding tachylite matrix consists of Ca-rich (green) and Fe- and K-rich (pink) 329 

microlites, which are most likely plagioclase, diopsidic pyroxene and Fe/Ti oxides (± orthopyroxene) 330 

typical of mafic magmas and Katla basalts (Lacasse et al., 2007; Budd et al., 2016). This phase 331 

assemblage contrasts with particles inside the bubble, which are predominantly either K-rich (blue) 332 

lithics, more likely belonging to a more evolved melt, or sideromelane (grey) juvenile glass particles. 333 

There are only two significant places where the particles match their host composition and their 334 

geometry suggests they are fragments of broken bubble wall and therefore are most likely a product 335 

of sample preparation (as labelled in Figure 5b). The foreign nature and the apparent sorting and 336 

imbrication of the remaining particles leads us to believe this is a magmatic feature.  337 

3.4 High density microlite chains 338 

The last compositional map (Fig. 5c) focused on an area containing abundant microlite chains within 339 

sideromelane. The microlite chains seem to connect crudely oval vesicles (Figs. 5c, 8), some of which 340 

appear partially collapsed (Fig. 8b). Many of the bubbles are surrounded by microlites (Fig. 8b). Various 341 

Fe-rich (red) and K-rich (blue) phases coincide with the location of microlite chains (Fig. 5c). These 342 

phases have both angular (Fig. 8a) and rounded (Fig 8b) forms, suggesting that they are variably 343 

relaxed particles of a fragmented melt. The Fe-rich fragments (Fig. 5c) are either Fe-sulphides or Fe-Ti 344 



oxides. The K-rich fragments (Fig. 5c) are likely feldspar (both alkali and plagioclase) and silicic glass. 345 

EPMA analyses on select K-rich fragments reveal compositions consistent with dacite and plagioclase 346 

feldspar (see section 3.8). K-rich particles within all the Figure 5 maps are therefore interpreted to be 347 

fragments of silicic glass and/or crystal fragments derived from a more evolved melt. In contrast, the 348 

lower left hand region in Figure 5c is almost devoid of both microlite chains as well as Fe/K-rich 349 

particles and appears more vesicular with relatively large, near spherical bubbles. 350 

 351 

 352 

Figure 8: Images showing dark grey fragments of Si-rich material (revealed to be dacite and 353 

plagioclase feldspar through EPMA spot analyses; see section 3.8 within a basaltic glass (pale grey) 354 

riddled with microlite chains (white lines) and small bubbles (black), some of which appear partially 355 

collapsed. This area has also been mapped compositionally (Fig. 5c) and the whole clast (jökulhlaup 356 

sample Mul 6 unit 3a-1 8,000-16,000 2a) can be seen in Figure 2a. The Si-rich material appears in 357 

both angular (a) and rounded (b) forms. 358 

3.5 Other sintered textures 359 

Sintering can be at times so extensive that it is unclear whether the original void was a bubble or a 360 

fracture (Figs. 9, 10). In total, of the basaltic clasts for which there are BSE images, 12 of the 15 361 

jökulhlaup clasts and 8 of the 9 air-fall clasts, show evidence of particle sintering. 362 

 363 



 364 

Figure 9: Images (in ppl (a) and BSE (b-d)) showing sintered particles within void spaces. The rectangles 365 

indicate areas detailed in other parts of this image as labelled. (a) Mosaic overview of the whole clast 366 

which is a tachylite jökulhlaup sample - Mul 6 unit 4-1 8,000-16,000 2a (~5x11 mm). There is a ~2 mm 367 

sized dark lithic in the upper part of the image and abundant particle filled bubbles, which appear pale 368 

brown in this image and appear to occupy distinct areas; (b) An overview of the upper part of the clast, 369 

with the lithic appearing dark grey in the bottom right hand corner. Bubbles (black) are nearly spherical 370 

on the left, but are significantly more irregular in the centre of the image. Irregular void spaces often 371 

coincide with sintered particles; particularly sintered areas are indicated with arrows; (c) An example 372 

of one of the highly sintered areas in part (b). The void in the image centre contains a large number of 373 

rounded particles; some of which are partially sintered onto the walls and others becoming 374 

indistinguishable from the matrix;  (d) The boundary between the host clast (pale grey, upper right) 375 

and the lithic (dark grey) which contains a highly distorted phenocryst (white). There is a ~20 μm wide 376 

void space between the two enclosing rounded particles of tachylite, which in some cases are sintered 377 

onto the host clast.   378 

 379 



 380 

Figure 10: Examples of sintering within the jökulhlaup clast Mul 6 unit 4-1 8,000-16,000 3a. (a) 381 

Photomicrograph mosaic image in ppl showing an overview of the whole clast (~6x9 mm), which is 382 

mixed tachylite (left) and sideromelane (right). Solid and dashed line rectangles express the areas 383 

shown in other parts of this figure and other figures, respectively, as labelled; (b) a semi-circular 384 

feature with a high abundance of rounded tachylite and sideromelane particles. It is unclear whether 385 

this was once a fracture which has welded shut or whether the whole area shows variably sintered 386 

clasts (i: BSE; ii: ppl); (c): detail of the area outlined in part (b) showing partially collapsed bubbles that 387 

contain rounded, sintered particles with microlite chains extending from the pinched point of each 388 



vesicle. (i: BSE; ii: ppl); Parts d-g show BSE images of the upper part of the clast; (d) overview mosaic 389 

image. The area shows extensive but heterogeneously distributed sintering. Arguably the large dense 390 

areas in the upper left and right-hand corners could represent former large particles spanning several 391 

hundred microns in diameter that have fused with the host. (e) and (f) illustrate the potential lower 392 

boundaries of these larger former particles, with small sintered particles prominent in this void space. 393 

The dashed rectangle in part e outlines the ‘fracture’ shown in Figure 4a. (g) Detail showing the 394 

sintering interface between two rounded particles of tachylite, which is marked by a microlite chain 395 

of oxides.  396 

 397 

3.6 Geothermometry 398 

Fe-Ti oxides yield an average temperature of T=1,045 ± 31 °C (n=45 pairs) for K1918 basalts (Fig. 11). 399 

 400 

 401 

 402 

 403 

Figure 11: Magma temperatures plotted against oxygen fugacity, estimated from magnetite and 404 

ilmenite compositions using the model of Ghiorso and Evans (2008). NNO refers to a nickel-nickel 405 

oxide oxygen buffer. Jökulhlaup and air-fall samples are prefixed by “Mul” and “Sol” and are coloured 406 

blue and red respectively. The error bars represent average absolute deviation (44°C and 0.34 log units 407 

for temperature and oxygen fugacity (fO2) respectively), calculated by Blundy and Cashman (2008) for 408 

the Ghiorso and Evans (2008) model. 409 

3.7 FTIR 410 

One air-fall clast was measured and found to have a glass H2O content of 0.08 wt.% (Table 1) consistent 411 

with degassing to atmospheric conditions (e.g. Tuffen and Castro, 2009). K1918 jökulhlaup clasts have 412 

glass H2O contents of 0.15-0.31 wt.% (Table 1), consistent with a pressure elevated beyond 413 



atmospheric, but not equivalent to the full weight of the glacier. Using the pressure-solubility model 414 

VolatileCalc (Newman and Lowenstern, 2002) and assuming a Si-content of 47 wt.% (consistent with 415 

Óladóttir et al. (2008)), 0 ppm of CO2 (as measured) and a temperature of 1,045 °C (estimated using 416 

geothermometry; section 3.6), the jökulhlaup clasts likely quenched under 0.29-1.11 MPa of pressure. 417 

The loading pressure (P in Pa) can be estimated by multiplying gravity (g; 9.81 m s-2) by the density (ρ 418 

in kg m-3) and thickness of the load (h in m).  419 

𝑃 =  𝜌𝑔ℎ 420 

(2) 421 

Thus a 400 m thick glacier (as was inferred to be the ice thickness over the vent in 1918 A.D.; (Sturkell 422 

et al., 2010)), with a density of 917 kg m-3 (Tuffen et al., 2010) would exert a pressure of 3.60 MPa, 423 

approximately four times greater, or more than the jökulhlaup clasts experienced syn-quenching. 424 

There is no systematic variation in H2O content within the stratigraphic section sampled in Figure 1c. 425 

Therefore taking the average jökulhlaup glass H2O content (0.22 wt.%), we can estimate that the 426 

average load during quenching was 0.59 MPa. This equates to approximately 65 m of ice, 60 m of 427 

water, 20 m of solid rock or 10 m of 50% vesicular basalt, assuming densities of 917, 1,000 and 2,770 428 

kg m-3 for ice, water and K1918 basalt respectively, with errors of ~20%. However, natural samples 429 

often experience loading by a combination of materials (Tuffen et al., 2010; Owen et al., 2012; Owen 430 

et al., 2013b; Owen, 2016; Owen et al., in press).  431 

 432 

Table 1: FTIR results showing glass H2O contents for five K1918 clasts. 433 

Environmental 

Setting 

Sample name Mean H2O 

content (wt. %) 

Standard 

deviation 

(wt. %)  

Number of 

successful 

analyses 

Air-fall Sol1A 8,000-16,000 4b 0.08 0.01 11 

Jökulhlaup Mul6 unit 2-1 8,000-16,000 2b 0.22 0.02 9 

Jökulhlaup Mul6 unit 2-1 8,000-16,000 4b 0.21 / 1 

Jökulhlaup Mul6 unit 4-1 8,000-16,000 1b 0.31 0.04 2 

Jökulhlaup Mul6 unit 4-1 8,000-16,000 4b 0.15 0.05 2 

 434 

3.8 Geochemistry 435 

There is strong consistency between the EPMA data gathered at the University of Hawaii, that 436 

gathered at the University of Edinburgh and that already published for Katla (Fig. 12). EPMA data (Fig. 437 

12) shows a bimodal distribution with sideromelane and tachylite clasts having ~47 wt.% SiO2 438 

consistent with K1918 data published by Óladóttir et al. (2008), although the tachylite data is more 439 

scattered, likely due to these clasts being more microlite-rich (e.g. Fig. 4). In addition to the brown 440 

(sideromelane) and black (tachylite) clasts, most samples had a small percentage of clear/pale clasts 441 



which have a trachyte/trachydacite to rhyolite composition consistent with older silicic Katla eruptions 442 

(Lacasse et al., 1995; Newton, 1999; Larsen et al., 2001; Lacasse et al., 2007; Óladóttir et al., 2008). 443 

Sintered sideromelane particles have similar compositions to the larger discrete sideromelane clasts 444 

(Fig. 12). Sintered K-rich particles found within an area of extensive microlite chains within a 445 

sideromelane clast (Fig. 5c) were found to have compositions consistent with plagioclase feldspar and 446 

dacite (Table 2). Although a relatively high Fe content (potentially from crystal contamination) meant 447 

they were excluded form Figure 12, they are also consistent with the published data from older silicic 448 

Katla eruptions.     449 

 450 

 451 

Figure 12: A TAS plot of EPMA glass data from Katla showing published values (black) from K1918 and 452 

older silicic eruptions, as well as data from this study (colour). Clast types have been distinguished by 453 

colour either as brown sideromelane, black tachylite or clear/pale lithics. UoE (open symbols) and UH 454 

(filled symbols) denote the University of Edinburgh and the University of Hawaii respectively, which is 455 

a reference to the institution where the analyses were performed. ‘Sintered particles’ refer to small 456 

sintered particles within larger ‘clasts’. Published K1918 data is from Óladóttir et al. (2008) and Budd 457 

et al. (2016) with the former used to represent K1918 geochemistry for density and solubility-pressure 458 

estimations. Published data of older silicic eruptions is from Lacasse et al. (1995), Newton (1999), 459 

Larsen et al. (2001), Lacasse et al. (2007) and Óladóttir et al. (2008). 460 

 461 

Table 2: EPMA analyses of three particles within the area of extensive microlite chains in Figure 5c 462 

(sample Mul 6 unit 3a-2 8,000-16,000 2a). The analyses are consistent with the compositions of dacite 463 

(top two) and plagioclase feldspar (third analysis).  464 

Field Code Changed



Analysis 
number 

SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Cl TOTAL 
Inferred 
material 

1 63.76 1.85 13.45 7.39 0.16 1.31 4.19 2.09 2.31 0.21 0.08 96.79 dacite 

2 65.70 1.67 14.83 6.66 0.15 1.35 3.64 4.13 2.17 0.21 0.07 100.57 dacite 

3 54.45 0.33 28.60 1.40 0.00 0.29 11.33 4.99 0.23 0.00 0.00 101.63 
plagioclase 

feldspar 

 465 

4. Discussion 466 

4.1 Evidence of gas and ash transport within permeable pathways  467 

Many of the samples contain fractures and/or have connected bubbles, some of which contain small 468 

particles of fragmented material. It is possible for such features to form during poor sample 469 

preparation. Grinding during thin section making may fracture the rock, break thin bubble walls 470 

connecting vesicles and produce small particles which may then lodge in void spaces. It is also possible 471 

for fractures to form during quenching. However, both cooling-contraction cracks and sample 472 

preparation cracks should be brittle as they happen < Tg, whereas most of our observed fractures 473 

show ductile morphologies (Figs. 3b,4,5a), suggesting they experienced temperatures > Tg. Also, we 474 

would expect particles distributed during sample preparation to be random. However, what we have 475 

observed in the K1918 deposits is a very organised distribution of particles throughout the clasts.   476 

Most of the particles are found in fractures and bubbles that are connected, and rarely within isolated 477 

bubbles (Figs. 2-6). When particles do occur in apparently isolated bubbles, they are often in close 478 

proximity to a bubble chain (e.g. Figs. 2c, 6a) and we suspect that they are actually connected in the 479 

third dimension. Figure 9 shows clear areas of infilled bubbles and clear areas with none. These 480 

distribution patterns are hard to explain with poor sample preparation. Furthermore, the particle filled 481 

bubble in Figure 5b seems to show layering parallel to the axial plane of the bubble, consistent with 482 

clastic deposition of particles within a stream of gas, as documented in silicic tuffisite veins where 483 

internal laminae are parallel to fracture walls (Tuffen et al., 2003).  484 

What is more, compositional maps (Fig. 5) reveal that within both fractures (Fig. 5a) and bubbles (Fig. 485 

5b) the phase assemblage and composition of the particles is at least partly distinct from that of the 486 

host, yet consistent with K1918 textures and geochemistry. All three compositional maps in Figure 5, 487 

reveal silicic particles and felsic crystal fragments that have compositions consistent with older silicic 488 

eruptions (Fig. 12). It is most likely that particles introduced through grinding in thin section 489 

preparation would be exclusive to the host. In Figure 5b, there is almost a 100% inconsistency; there 490 

are only a few particles consistent with the composition and textures of the tachylite host, with the 491 

vast majority being particles of silicic and basaltic glass. We hypothesise that based on the tachylite 492 

particles being in close proximity to the host and with a jigsaw like fit, that these particles do represent 493 

poor sample preparation. However, the vast majority of the particles cannot be explained by this and 494 

we speculate that they are a primary feature.  495 

The presence of sintered particles (Figs. 4,5a,7,9,10) is further evidence that particle deposition was a 496 

syn-eruptive process as sintering suggests that some of the particles experienced temperatures > Tg 497 

within the fractures/connected bubbles. Some fractures and particle-particle contacts are almost fully 498 

healed (e.g. Fig. 4b), making it difficult to deduce the original fracture wall or particle boundary (e.g 499 

Fig. 5a). Therefore, fractures may have been wider than currently observed. The presence of K-rich 500 



particles, collapsed vesicles and microlite chains in the host immediately surrounding the fracture in 501 

Figure 5a further supports this notion. This thorough healing and compaction is analogous to welded 502 

rhyolitic tuffisites (Tuffen and Dingwell 2005).  503 

Furthermore, there are textures consistent with clast re-amalgamation; Figures 9 and 10, seem to 504 

show former clasts embedded within larger clasts, with small particles sintered to the former clast 505 

walls and to each other, within boundary zones (Figs. 9d, 10f). This is germane to tuffisite vein interiors 506 

(Saubin et al., 2016) again suggesting larger permeable pathways than the preserved features.  507 

Evidence for volatile transportation can be seen as local heterogeneity in bubble textures. We 508 

speculate that the vesicle-poor area neighbouring the fracture in Figure 4b failed to vesiculate as much 509 

as the surrounding glass due to volatile depletion following diffusive loss into the degassing fracture 510 

(see section 4.6). Similar textures have been observed in rhyolitic Chaitén bombs (Saubin et al., 2016; 511 

Webb et al., 2017). 512 

We therefore hypothesize that bubbles (Figs. 5b,7,9) and fractures (Figs. 2,3,4,5a) have acted as 513 

pathways for the transportation of both juvenile and lithic material, analogous to tuffisite veins in 514 

silicic pyroclastic material (Rust et al., 2004; Saubin et al., 2016). Systematic transport is shown by the 515 

organised distribution of particles and was likely facilitated by gas flow evidenced by diffusive loss 516 

shown by the apparent vesicularity gradient surrounding the fracture in Figure 4b. Ductile fracture 517 

morphologies and sintering suggest that both the fractures and particles within them experienced 518 

temperatures > Tg and thus we believe it to be a syn-eruptive process that likely occurred within the 519 

conduit.  520 

4.2 Evidence of former gas and ash transport within healed permeable pathways  521 

Partially collapsed vesicles surround many of the features of interest e.g. the fracture in Figure 5a, the 522 

vesicles containing sintered particles in Figure 7, the area of intense microlite chains and Si-rich 523 

particles in Figure 8 and the sintered particles in Figure 10c. These collapsed vesicles always transition 524 

into microlite chains (Figs. 5a, 7, 8b and 10c). Furthermore, the bubbles in Figure 8b are surrounded 525 

by microlites. Thus, we believe some of the microlite chains to represent healed vesicles. 526 

Microlite chains also seem to have formed between sintered particles (e.g. Figs. 4ai and 10g). 527 

Arguably, the similarity in size and morphology of the microlite chains in Figure 5a to the intra-fracture 528 

particles could mean that they represent the boundaries of former particles that have since melted 529 

into the surrounding host.  530 

Whether microlite chains represent collapsed vesicles (e.g. Fig. 8b) or the margins of former particles 531 

(e.g. Fig. 10g), they represent healed void-spaces. This is further evidenced by the relatively high S 532 

content (Fig. A1) of the microlite chains surrounding the fracture shown in Figure 5a. Furthermore, it 533 

suggests that these facilitated volatile transport with vapour-phase precipitation occurring on former 534 

fracture/bubble/clast walls. In fact, in compositional maps, the microlite chains often appear similar 535 

in colour to partially exposed bubbles (Fig. 5). The coincidence of these microlite chains with silicic 536 

particles (e.g. Figs. 5c, 8) suggests that these healed voids also transported particles. Thus, we believe 537 

the dense area of microlite chains and foreign particles in Figure 5c to show a healed transport 538 

pathway for a particle-rich fluid phase.   539 



There is an apparent compositional similarity between the matrix delineated by these microlite chains 540 

and the surrounding microlite-free host basalt glass (Fig. 5c). However, the compositional maps shown 541 

in Figures 5a and 5b indicate that basaltic fragments make up the majority of fragmented particles. 542 

Therefore, it is likely that the permeable pathways that carried the K-rich particles in Figure 5c, also 543 

transported basaltic particles. Evidence for this comes from the fragment of anorthitic plagioclase in 544 

Figure 5c; an An-rich plagioclase likely has a mafic source. Apart from the mineral fragment, the basalt 545 

is now indistinguishable from the host and therefore likely juvenile in origin. This suggests that Figure 546 

5c represents a juvenile magma that fragmented (along with a minor percentage of felsic origin) and 547 

was then transported in a permeable pathway, which then collapsed and healed.  Small vesicles then 548 

grew in the scarred remains (Fig. 8).   549 

Microlite chains also often surround fractures/permeable pathways (Figs. 5a, 10) indicating that they 550 

may have partially healed. However, in Figure 5a, there are K-rich particles embedded into the basaltic 551 

glass even beyond the zone of microlite chains surrounding the particle-filled fracture. This is evidence 552 

of near complete healing. The apparent progressive welding around Figure 5a suggests that the 553 

fractures were once considerably wider than they appear in some of the images; this healing of 554 

pathways is akin to tuffisite veins (Tuffen et al., 2003). 555 

4.3 Origin of the basaltic particles 556 

Most of the bubble- fracture- filling particles have compositions consistent with K1918 basalt (Figs. 5 557 

and 12) suggesting that it is juvenile material. This suggests that at least two fragmentation events 558 

were involved in the production of the K1918 clasts: firstly to produce the small particles, which are 559 

now trapped in the clasts, and lastly to produce and expel the clasts that were sampled. Sintering and 560 

healing is apparent between these two events and it is possible that there were further fragmentation 561 

events, however the rapid sintering rates of basalt makes it difficult to deduce how many 562 

fragmentation events occurred in total.  563 

The fact that the first fragmentation event did not expel the particles, suggests that it may have 564 

happened within the conduit, but at shallow level owing to the low H2O contents (Table 1), low 565 

vesicularities of the particles (Figs. 2-10) and incomplete sintering (Figs. 2-10), suggestive of short 566 

residence times (see below). 567 

Some clasts also show evidence of incomplete fragmentation (fracturing without significant 568 

displacement or expulsion) and brittle deformation (Fig. 13). The fragments of glass between the 569 

fractures share similar sizes, morphologies and vesicle textures to the fracture and bubble filling 570 

particles seen throughout the samples (e.g. Figs. 5, 6). This sample therefore represents an inefficient 571 

fragmentation event which failed to expel particles. It is likely linked with one of the early 572 

fragmentation events that produced fragments of glass that then infiltrated the remaining melt 573 

through connected bubbles and fractures.  574 



 575 

Figure 13: A BSE image showing highly fractured sideromelane within jökulhlaup sample Mul 6 unit 4-576 

1 8,000-16,000 1a, which could have acted as a source for small particles that later sintered with 577 

fractures and bubbles elsewhere (e.g. Figs. 5, 6). The dark grey shape at the bottom is a phenocryst. 578 

4.4 Origin of the felsic particles 579 

Although the majority of particles are basalt, every compositional map (Fig. 5) revealed the presence 580 

of some K-rich particles which spot analyses indicated where fragments of feldspar and dacite (Table 581 

2). Clear/pale clasts were also found to have compositions of a more evolved melt consistent with that 582 

of older silicic Katla eruptions (Fig. 12) (Lacasse et al., 1995; Newton, 1999; Larsen et al., 2001; Lacasse 583 

et al., 2007; Óladóttir et al., 2008). In fact, there are extensive silicic outcrops within the Katla caldera, 584 

including some close (<4 km) to the inferred 1918 A.D. vent (Jóhannesson and Sæmundsson, 2014). 585 

We therefore hypothesize that the glassy K-rich particles represent fragments of evolved country rock 586 

(dacite, trachyte/trachydacite and rhyolite) that were mobilised during fragmentation and 587 

incorporated into connected fracture-bubble networks by a mobile fluid phase during ascent. This 588 

possibility was recognised by Budd et al. (2016) who used mineral-melt equilibrium cystallisation 589 

pressures to infer multiple magma storage regions at Katla with the potential for new rising magma 590 

to intersect evolved magma within shallow-storage regions.  591 

4.5 Particle morphology, sintering timescales, and link with composition 592 

The morphology of the silicic particles is generally angular, in contrast to the basaltic particles, which 593 

are more often rounded (Fig. 5a). Within magmatic fractures that appear to have largely healed, the 594 

angular morphology of glassy silicic lithics (Figs. 5c & 8a) is surprising, as surface tension-driven shape 595 

relaxation would occur rapidly at basaltic eruptive temperatures.   596 

We consider two possible explanations for why the silicic particles are generally less deformed than 597 

basalt ones (Fig. 5a). Firstly, even though the Si-rich material was considerably hotter than its usual 598 



eruptive temperature, it would still have had a significantly higher viscosity than the basalt (Fig. 14) 599 

and therefore the timescales for deformation, shape relaxation and sintering would have been 600 

considerably longer (Vasseur et al., 2013). Secondly, being part of the country rock, the silicic material 601 

was likely incorporated at far lower temperatures than the juvenile basalt (1,045 °C), and would thus 602 

have needed to first rise to temperatures >Tg in order to deform, further hindering sintering. 603 

  604 

 605 

 606 



 607 

Figure 14: viscosity as a function of composition, temperature and H2O content, according to the 608 

viscosity model of Giordano et al. (2008). For the ‘basalt’ and ‘silicic’ composition the analyses that 609 

most closely resembles published data was used (Fig. 12). The red line depicts our inferred eruptive 610 

temperature (1,045 °C). (a) viscosity plotted against temperature, for different compositions (colours) 611 

and H2O contents (line styles); (b) viscosity plotted against H2O concentration for our inferred eruptive 612 

temperature of 1,045 °C.   613 

To investigate these two scenarios, and to produce some crude estimates of heating, relaxing and 614 

sintering timescales, we performed some basic first-order estimations (Appendix 2). The results show 615 

that owing to the small particle size, all of the intravoid particles shown in this study (typically << 100 616 

μm) would have likely reached thermal equilibrium within milliseconds (Fig. A4). The time taken to 617 

heat silicic particles (of this size) to basaltic magmatic temperature therefore seems insignificant.   618 

Our inferred rounding/sintering timescales are only slightly longer (fractions of seconds) than 619 

timescales for thermal equilibrium, but are strongly viscosity-dependent (Vasseur et al., 2013). We 620 

therefore conclude that the rounding/sintering rate is the main process that controlled particle shape. 621 

Even at 1,045 °C, which is significantly higher than its usual eruptive temperature, the viscosity of the 622 

silicic magma will be high enough to extend the rounding/sintering timescale by one or two orders of 623 

magnitude compared to basalt (Fig. A5). Consequently, for particles of comparable size, the basaltic 624 

particles can thoroughly sinter and heal before the silicic particles have relaxed to a rounded shape. 625 

These viscosity-controlled differences in rounding/sintering rate can therefore explain the angularity 626 

of silicic particles within a healed matrix of basalt in Figure 5c, and the apparent deformation of a 627 

basaltic particle around a similarly sized angular silicic particle in Figure 5a. 628 

Estimating exact sintering times is difficult since timescales are extremely sensitive to composition, 629 

H2O content and particle size (Fig. A5). These parameters will also be changing throughout the process, 630 

and it is difficult to deduce the original starting conditions from what is preserved in the samples 631 

(Pope, 2015).   632 

Nevertheless, our basic calculations (Appendix 2) suggest that the sintering times, for the preserved 633 

particles within the fractures/bubbles/voids, was at most a few seconds. Any longer would have likely 634 

resulted in complete healing. For angular clasts, this process would have been even quicker, and/or 635 

the particles were injected below Tg; either way suggests near instantaneous injection, fragmentation 636 

and quenching. The fact that some of the voids contain both angular and rounded particles of similar 637 

sizes (e.g. Fig. 5a) suggest that there was momentarily a stream (albeit very short-lived) of gas and ash 638 

with particles entering the space at slightly different times. 639 

Final quenching was likely closely linked with fragmentation at Katla. Fragmentation may have even 640 

been triggered or enhanced by melt-water interaction. Even if not phreatomagmatic, located under a 641 

glacier, there would have been abundant ice and meltwater present in close proximity to the vent. 642 

FTIR analyses reveal that the jökulhlaup samples quenched under pressures consistent with loading 643 

from ice or water (see section 3.7). The glassy nature of the sideromelane also implies rapid 644 

quenching. 645 



It should be noted that the inferred residence time of variably sintered particles is not necessarily an 646 

indicator of the full duration of void opening. These voids, when first opened, may have been vapour- 647 

rather than particle-filled. Additionally, small (<100 μm) basaltic particles will fully sinter very rapidly 648 

(in fractions of seconds; Fig. A5), after which it will be difficult to recognise the former presence of 649 

particles. Some fractures are neighboured by K-rich fragments, collapsed vesicles and microlite chains 650 

that form crude particle-shaped patterns (Fig. 5a). We hypothesise that these textures represent 651 

former particles that fully annealed to the void walls, and that microlite chains often indicate former 652 

permeable pathways/healed voids (e.g. Figs. 5c, 8; see section 4.2). However, it is difficult to 653 

determine the extent of healed pathways, because chemical diffusion and viscous flow will 654 

homogenise the sintered melt, ultimately leaving little/no trace of the former particle boundaries. For 655 

these reasons, we suggest that the voids were open over seconds, and only the final split seconds of 656 

the void life is preserved within our samples. We hypothesise that the preservation (particularly of 657 

angular particles) was possible due to rapid quenching in water, which must have occurred almost 658 

simultaneously with the final injection of particles. This indicates a very rapid succession of 659 

deformation that was brittle (to form the initial particles), ductile (to sinter the particles) and then 660 

brittle again (to expel and quench the particles).  661 

4.6 Diffusive loss of volatiles through fractures, and timescale for open system degassing 662 

To further investigate the lifetime of the permeable networks we provide estimates of diffusion 663 

timescales (Appendix 3). There are several lines of evidence that permeable networks have facilitated 664 

diffusive loss of volatiles. Firstly, microlite chains and bubble walls are usually S-rich (Figure A.1). These 665 

microlite chains were likely former voids and particle boundaries (see section 4.2), where S-rich gases 666 

circulated and deposited along the suture zones. Secondly, the glass surrounding some of the voids 667 

(e.g. Figure 4b) is noticeably deficient in terms of bubble textures compared to the surrounding melt.  668 

Bubble-poor, fracture-adjacent basaltic glass could indicate diffusive volatile loss into the void-space. 669 

If a low pressure void opens within magma, it will allow volatile escape, drawing H2O out of the melt 670 

through diffusion. Subsequent decompression of the melt during ascent, will then yield lower 671 

vesicularities than surrounding melt which has not experienced diffusive loss (Saubin et al., 2016; 672 

Webb et al., 2017). Furthermore, the vesicularity and bubble size of particles within the Figure 4b 673 

fracture are extremely similar to the glass adjacent to the fracture. This further supports the notion of 674 

diffusive loss and suggests that the glass within and immediately surrounding the fracture was able to 675 

diffuse to a similar H2O concentration which was lower than the host melt, prior to the final 676 

vesiculation event.  677 

Using 1D diffusion calculations to quantify the development of an 80 μm wide H2O depleted zone 678 

(Appendix 3), we estimate that the fracture shown in Figure 4b experienced volatile loss by diffusion 679 

towards the melt-fracture interface for ~40 seconds. This particular fracture has been extensively 680 

healed. We therefore infer that the pre-quenching lifetime of other less-sintered fractures (e.g. Figs. 681 

4a, 5a, 10) was much shorter. Our diffusion timescales are therefore close to timescale estimates for 682 

sintering and residence times of inter-void particles discussed in the previous section. Nevertheless, 683 

there is clearly a range of sintering and quenching timescales preserved within those clasts, as 684 

expected in fragmented magma with a wide range of grainsizes and textures.  685 

4.7 The nature of the void spaces  686 



Small particles occupy many different void spaces e.g. angular fractures (Fig. 2), rounded fractures 687 

(Fig. 3), tuffisite vein-like features (Fig. 4, 5a), bubbles and bubble chains (Figs. 5b, 6, 7) and the 688 

boundary space between sintered clasts (Figs. 9, 10). At times, the sintering is so extensive that it is 689 

difficult to deduce the original void shape (Fig. 9c). For instance, some features could be interpreted 690 

as a vein-like fracture (Fig. 4a) or a boundary zone between clasts (Figs. 10d, 10e). Nevertheless, there 691 

is textural and compositional evidence for gas and particle transfer in fractures, bubble chains and 692 

sintered breccias (often in the same clast; Figures 2a, 10a), and in reality, all are likely to occur, as they 693 

do in rhyolitic magma (Stasiuk et al., 1996; Schipper et al., 2013).  694 

We propose a hypothetical model where localised explosions fragment both the country rock and 695 

some of the juvenile material, which are jetted into fractures, vesicles and mobile breccias, either 696 

moments before or during ejection from the vent (Fig. 15). 697 

 698 

Figure 15: Our interpretative model to explain the various textures seen within the K1918 clasts. In (a) 699 

a vesicular basaltic melt (pale grey) is rising next to older silicic country rock (dark grey) from past Katla 700 

eruptions. A small localised explosion, either caused by magmatic fragmentation, or more likely 701 



phreatomagmatic fragmentation from H2O percolating down through cracked country rock, shatters 702 

both the silicic country rock and the neighbouring basaltic melt. This creates a hot mobile phase of 703 

particles which begin to sinter together (b), infiltrate chains of connected bubbles (c) and infiltrate the 704 

transient fractures formed by the explosion (d). The melt surrounding the blast zone has been 705 

shattered (e) representing an incomplete version of the fragmentation within the blast zone. These 706 

features, would have only existed for, at most, seconds before thorough welding took place. 707 

Preservation requires further fragmentation to expel and quench the clasts into a water-rich 708 

environment, which was perhaps facilitated by meltwater percolating down through cracks in the 709 

damaged magma and wall rock. Parts b, c, d and e represent Figures 10f, 6a, 5a and 13 respectively. 710 

 711 

4.8 Comparisons with rhyolite-hosted tuffisite veins 712 

Tuffisite veins are the quenched remains of fractures that form in silicic melts, which allowed a 713 

pathway for gas and ash particle transport. As described in the previous section, it is unclear whether 714 

some of the K1918 textural features represent true ‘veins’, bubble chains or inter-clast spaces; we 715 

appear to have a spectrum of void spaces that include all end-members. Nevertheless, these samples 716 

clearly show evidence of permeable pathways for gas and ash particle transport, that heal shut with 717 

time in repeated fragmentation cycles (Fig. 15) analogous to tuffisite veins.  718 

The circulation of gas through a permeable network is clear from S-rich microlite chains (Fig. A1) and 719 

gradients in bubble textures surrounding voids (Fig. 4b). The mobilisation of particles is demonstrated 720 

by the systematic distribution of particles within clasts (Figs. 2c, 6a, 9a) as well as bedding within 721 

bubbles (Fig. 5b), which was also reported in rhyolitic tuffisites from Torfajökull (Tuffen et al., 2003). 722 

Furthermore, foreign particles (silicic particles within basalt (Figs. 5a, b and c) and sideromelane 723 

particles within tachylite (Fig. 5b)) must have been transported to their current location. Transport 724 

clearly happened at magmatic temperatures because numerous particles show evidence of 725 

rounding/sintering, which is also a feature of rhyolitic tuffisites (Tuffen and Dingwell, 2005). 726 

The inter-void particle size in the K1918 clasts (10-200 μm diameter) is similar to those found in 727 

tuffisite veins and, like rhyolitic tuffisites, angular fragments dominate over rounded ones (Tuffen et 728 

al., 2003; Tuffen and Dingwell, 2005). It is difficult to compare the size of the fractures themselves. In 729 

rhyolite tuffisite veins can be > 5 m (Tuffen et al., 2003) or < 100 μm (Saubin et al., 2016). The fractures 730 

we observed tended to be tens of μm in width (Figs. 4 and 5). We suspect that pathways were once 731 

bigger and have narrowed through welding processes (section 4.2) but it is also worth noting that our 732 

observations were limited to small particles (<16,000 μm). This begs the question; were the permeable 733 

pathways in the K1918 basalt limited to a small size, or did significantly larger fractures exist, and have 734 

been destroyed by the explosive nature of this eruption? Indeed the sintered breccia in Figure 10 could 735 

be evidence for a larger scaled feature, as are the xenoliths trapped within clasts (e.g. Fig. 9). Perhaps 736 

the whole conduit was acting as a permeable pathway for fragmentation and sintering.   737 

However, there is one clear difference;  the permeable pathways in the K1918 basalt seem to be much 738 

more transient than rhyolitic tuffisites. Thermal (Appendix 2) and diffusion (Appendix 3) estimates 739 

suggest that the K1918 fractures were open for just seconds before quenching, whereas inferred 740 

tuffisite vein lifetimes in rhyolite span ~103–105 seconds (Castro et al., 2012). This difference can be 741 

explained by the lower melt viscosities and higher H2O diffusivities that will occur in the hotter basaltic 742 



system. Interestingly, however, diffusion distances are similar; typically tens to a few hundred μm 743 

(Castro et al., 2012; Berlo et al., 2013; Saubin et al., 2016).  744 

4.9 Links with eruptive behaviour 745 

In silicic systems, permeable pathways in magma (whether connected bubbles or tuffisite veins) often 746 

serve to enhance magma degassing and outgassing, and may contribute to a transition towards more 747 

effusive activity (Jaupart and Allègre, 1991; Jaupart, 1998). Permeable outgassing is also thought to 748 

occur during subglacial volcanism and contribute towards transitions in eruptive behaviour (Owen et 749 

al., 2013a; Owen et al., 2013b; Owen, 2016). Whilst the K1918 samples show plenty of visual evidence 750 

for permeable pathways (Figs. 2-10), evidence of an effusive phase is lacking from the 1918 A.D. Katla 751 

eruption, although deposits from such a phase could be obscured under the present glacier (Owen, 752 

2016). Nevertheless, the clasts collected were small fragments from the large-volume jökulhlaup 753 

deposit that originated from explosive fragmentation. In rhyolitic melts, tuffisite veins alone are 754 

thought to be inefficient at degassing and outgassing magma, with spacing of < 1mm required to 755 

outgas the magma sufficiently to cause the transition to effusive behaviour (Castro et al., 2012). 756 

Therefore, it is possible that the magmatic fractures observed within the K1918 samples were simply 757 

insufficient to degas the magma efficiently. However, tuffisite veins that intersect permeable foams 758 

are considered a highly efficient mechanism of magma degassing, and may induce a transition to 759 

effusive behaviour, e.g. at Chaitén (Castro et al., 2012; Saubin et al., 2016). A large proportion of 760 

bubbles within the K1918 samples contain ash particles. Therefore, gas was presumably transported 761 

in connected bubbles as well as fractures (e.g. Fig. 6). If exsolved volatiles were able to efficiently 762 

outgas why was the eruptive style so explosive?  763 

One explanation could be the extremely transient nature of the permeable pathways in the basalt. 764 

Simple calculations to estimate sintering (Appendix 2) and diffusion (Appendix 3) timescales suggest 765 

vein lifetimes of seconds or less, approximately five orders of magnitude shorter than in rhyolitic 766 

systems (Fig. A5) (Castro et al., 2012). However, diffusion in basalt would have also been fast, and our 767 

inferred diffusion profile is of similar length scale to those seen in rhyolite (Castro et al., 2012).  768 

An alternative model is that the permeable pathways (fractures and connected bubbles), in the K1918 769 

magma, potentially served as mechanisms for enhancing explosivity rather than to defuse the 770 

eruption. There are two explanations for this: (1) the pathways connected shallow magma to that of 771 

a deeper source, allowing gas to be transported up from depth and thus adding to, rather than 772 

reducing the volatile content of the fragmenting magma (Houghton and Gonnermann, 2008; Castro 773 

et al., 2012); (2) the pathways allowed meltwater (from the overlying melting glacier) to efficiently 774 

infiltrate into the magma column, facilitating fuel coolant interaction (FCI) and thus explosive 775 

fragmentation.  776 

The former, has been used to explain periods of heightened activity at Stromboli where open system 777 

degassing brings high levels of CO2 from a deep magma source (Allard, 2010). However, if this was the 778 

case, one would expect volatiles to diffuse from the fracture into the melt and thus for the magma 779 

adjacent to fractures to be volatile-rich compared to the surrounding melt. We saw no evidence for 780 

this in our samples. In fact, if anything the opposite is true, as there is an apparent bubble-poor zone 781 

around the fracture in Figure 4b.  782 



It is more likely that the permeable pathways served to enhance fragmentation by meltwater 783 

infiltration from the overlying glacier triggering FCIs. Abundant meltwater would have been present 784 

at the time of the eruption and there is evidence that the jökulhlaup samples quenched under loading 785 

from water/ice (section 3.7). The microlite-poor nature of the glass also suggests rapid cooling.  786 

We therefore propose the following hypothesis to explain the sintered permeable pathways (Fig. 15): 787 

1) rising vesicular magma melted overlying ice producing water; 2) As the magma neared the surface 788 

it began to fragment (Fig. 15a). It is difficult to underpin the initial cause of the fragmentation; some 789 

of the clasts are highly vesicular with high bubble number densities which could indicate magmatic 790 

fragmentation but there would have also been abundant meltwater which could have filtered down 791 

to the magma through cracks triggering phreatomagmatic fragmentation. Nevertheless, this 792 

fragmentation event did not expel the melt fragments but instead injected them (Fig. 15b) into 793 

connected bubbles (Fig. 15c) and fractures (Fig. 15d) in the remaining intact melt. The blast also 794 

fragmented country rock which also got incorporated into these permeable pathways; 3) the hot 795 

magma induced sintering of the particles and some of the pathways partially or fully healed; 4) only 796 

seconds (or fractions of seconds) later, a further explosive event expelled the now fully fragmented 797 

magma out of the vent into a watery environment inducing rapid quenching. The cause of this 798 

fragmentation event was likely meltwater infiltrating the now highly fragmented magma through the 799 

permeable pathways created by the first fragmentation event; 5) this explosion likely produced more 800 

small particles and opened further fractures, allowing more meltwater to infiltrate the conduit in a 801 

self-fuelling and repeating process with a cycle of seconds or less.  802 

Repeating fragmentation events (Fig. 15) not only explain the particle filled void spaces but the 803 

apparent clasts welded within clasts (e.g. Fig. 9). Our model (Fig. 15) could also help to explain why 804 

the K1918 eruption was so powerful; magma-water mixing massively promotes fuel coolant 805 

interactions (Zimanowski et al., 1991; Morrissey et al., 2000), and meltwater ingressed within 806 

permeable pathways would have allowed plenty of opportunity for this. It could also explain why the 807 

glacier melted so quickly and produced such a powerful flood; if the under-side of the glacier is 808 

constantly being bombarded with a hot slurry of fine particles there will be both mechanical erosion 809 

as well as rapid thermal melting from the large-surface area to volume ratio.  810 

Finally, our model (Fig. 15) may help to explain why the sintering textures have been preserved so 811 

well, particularly in the jökulhlaup clasts; abundant meltwater, perhaps also within the permeable 812 

pathways would promote rapid quenching. The jökulhlaup samples, unlike the air-fall samples, also 813 

show that they quenched under elevated pressure (section 3.7), which could perhaps be explained by 814 

being emplaced into water, which would ensure the continued quenching of the particles and the best 815 

preservation of features. Note that although there is evidence of sintered particles within the air-fall 816 

samples, all of the best examples of particles sintered within permeable pathways were found in the 817 

jökulhlaup clasts.  818 

4.10 The extent of the permeable network within Katla 1918 pyroclasts 819 

Sintered particles perhaps present the best evidence for clast transportation around the glass 820 

transition and therefore the presence of a permeable network within the K1918 magma. Although 821 

sintering is present in 80% of the K1918 clasts examined, rounded particles only make up a very small 822 

percentage of the bubble and fracture-filling particles, which are predominantly angular (e.g. Figs. 823 

5,6). When particles are angular, infilling could be thought of as an artefact of poor thin section 824 



preparation (e.g. lack of sufficient ultrasonic cleaning to rid the sample surface of adhering ash). 825 

However, the layered structures and exotic compositions, in Figure 5b, consistent with older silicic 826 

Katla magma (Fig. 12 and section 4.2) emphatically indicate that these are primary textures. As the 827 

particles in Figure 5b are almost exclusively angular, this conclusion can potentially be applied to all 828 

infilled bubbles and fractures (regardless of particle morphology) which are found in a significant 829 

proportion of all K1918 clasts (e.g. Fig. 9a).  830 

Similarly, it is easy to quickly dismiss angular fractures as a feature formed through quenching or 831 

sample damage during thin section preparation. However, even the angular fractures contain particles 832 

favourably over nearby isolated bubbles (Figs. 2c, 3b, 6) suggestive of permeable pathways.  833 

Thus we believe that the vast majority of the particles, fractures and connected bubbles seen in the 834 

K1918 pyroclasts to be primary features indicative of the transportation of small particles of juvenile 835 

and lithic material in a mobile fluid phase through a permeable network within the 1918  Katla magma.  836 

4.11 How common are permeable gas and ash transporting pathways within basalt? 837 

Although sintered particles within permeable pathways are common in rhyolite, they are thought to 838 

be exclusive to silicic eruptions, yet particle sintering was found in 80% of the basaltic K1918 clasts 839 

examined. There are three explanations for this absence from the literature: 1) the process that forms 840 

them is extremely rare but there were some conditions specific to the K1918 eruption that allowed 841 

them to be formed; 2) they are commonly created during basaltic eruptions but rarely preserved; near 842 

simultaneous fragmentation and quenching during K1918 allowed this; 3) they are common features, 843 

preserved readily in basaltic samples, but often overlooked, perhaps when observed, mistaken for bad 844 

sample preparation.  845 

We are inclined to think that the latter option is the most likely, based on the high abundance of 846 

sintered/transported particles and permeable pathways within our samples (section 4.10). These 847 

features are difficult to detect in conventional forms of observation (e.g. Fig. 4), requiring high 848 

resolution analytical instruments (e.g. Field-emission microprobes or SEMs) for imaging and 849 

compositional mapping. Most of the features were not obvious or else completely invisible in ppl (e.g. 850 

Fig. 4aii). 851 

Angular bubble-occupying particles are fairly common in natural volcanic samples, as are flowbands. 852 

Careful image comparison has revealed that in the K1918 clasts, flow bands in ppl images tend to 853 

represent microlite chains in BSE images (Figs. 7,10, 16), which in turn we infer to represent healed 854 

void-spaces (e.g. Figs. 5,8,10,16). It therefore seems, at least in K1918 samples, that extensive flow-855 

banding represents (partially) healed fractures which may be filled with sintered particles (e.g. Fig. 856 

16). 857 



 858 

Figure 16: A clast bearing a particle filled sintered fracture which is inconspicuous in ppl, instead 859 

appearing as an area of intensive flow-banding. (a) A ppl overview of jökulhlaup clast Mul 6 unit 3a-1 860 



2,000-4,000 3a (~3 x 3 mm). The clast is predominantly sideromelane but has two dark horizontal 861 

stripes of intensive flowbanding dissecting the sample; (b) Detail of the topmost dark stripe (see Figure 862 

5a for a compositional map of the same area); (bi) a BSE image showing a partially healed fracture full 863 

of sintered particles, surrounded by microlite chains; (bii) a ppl image of the same area showing flow 864 

bands around a feature which is much less obviously a particle filled sintered fracture.  865 

The features described in this paper are extremely widespread; evidence of particle sintering was 866 

present in most clasts, with particularly good examples of fracture and bubble-filled particles present 867 

in jökulhlaup samples. It would be scientifically useful to know whether such ash filled magmatic 868 

fractures and bubbles exist in other basaltic magmas; and if so whether they are exclusive to subglacial 869 

settings. Are they features which are actually common and have simply been overlooked, being merely 870 

attributed to bad sample preparation and/or thought to show flowbanding? Or are they actually a 871 

rare feature, uniquely preserved by the K1918 eruption?  872 

5. Conclusions  873 

We use textures and compositions to infer that fractures and connected bubbles acted as pathways 874 

for gas and ash to be transported within a basaltic melt. Evidence appears primarily in the form of 875 

angular to healed fractures, sintered ash particles, differing compositions between the ash particles 876 

and host, apparent sorting of particles, S precipitation and a zone of low vesicularity surrounding a 877 

partially healed fracture. Silicic particles and mineral fragments that belong to a more evolved melt 878 

suggest that material was incorporated from the country rock, and that both juvenile and lithic 879 

particles were transported through these systems, some of which have partly healed.  880 

There are some similarities between these observed features and rhyolitic tuffisite veins. However, by 881 

comparison, the pathways seem considerably smaller and more transient suggesting extremely rapid, 882 

near simultaneous and successive episodes of brittle-ductile-brittle deformation. These observations 883 

are significant, since it was previously thought that magmatic fractures and permeable gas/ash 884 

networks only formed in high viscosity melts. The presence of such features at Katla could be 885 

explained by rapid quenching which has allowed the preservation of such features. 886 

This discovery challenges our conceptions of magma degassing, fluid and particle transport, and the 887 

rheological properties of basaltic magma. In rhyolitic melts, tuffisite veins can cause a transition to 888 

more effusive activity. The fractures within the Katla basalt do not appear to have significantly 889 

degassed the magma as the clasts are still highly vesicular and erupted explosively. An alternative 890 

explanation is that the fractures served to enhance explosivity by providing pathways by which 891 

meltwater could infiltrate, enhancing both quenching and phreatomagmatic fragmentation. The 892 

discovery of these fractures therefore could have important implications for our understanding of the 893 

way in which basalt fragments. 894 

We propose similar textures could be widespread in basaltic tephras from other settings but have 895 

been largely ignored to date as dismissed as sample preparation artefacts. However, these textures 896 

likely record key phases of magma damage, recycling and preparation for fuel coolant interactions.  897 

 898 
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 908 

APPENDIX 909 

Appendix 1: Compositional maps 910 

As described in the methods, EPMA was used to make compositional (x-ray distribution) maps. Five 911 

spectrometers were used to measure the relative abundance of S, Ca, Fe, K and either Na or F. The 912 

data was used to make single 2D intensity matrices as shown in Figures A1, A2 and A3. These images 913 

were then combined to create the RGB composite image shown in Figure 5. The relative abundance 914 

of all five elements was considered when making compositional interpretations as described in the 915 

text.  916 

 917 

 918 

A1: 2D single intensity matrices for the fracture shown in Figure 5a. Each image represents the 919 

relative abundance of a single element (Na, Fe, S, K or Ca) as indicated by the chemical symbol in the 920 

top left corner of each image. Hot and cold colours represent high and low abundances respectively.  921 



 922 

 923 

Figure A2: 2D single intensity matrices for the particle filled bubble shown in Figure 5b. Each image 924 

represents the relative abundance of a single element (Na, Fe, S, K or Ca) as indicated by the 925 

chemical symbol in the top left corner of each image. Cold and hot colours represent low and high 926 

abundances respectively.  927 

 928 



 929 

Figure A3: 2D single intensity matrices for the area of intensive microlite chains shown in Figure 5c. 930 

Each image represents the relative abundance of a single element (F, Fe, S, K or Ca) as indicated by 931 

the chemical symbol in the top left corner of each image. Cold and hot colours represent low and 932 

high abundances respectively.  933 

Appendix 2: Thermal calculations to estimate sintering timescales 934 

 935 

To estimate sintering timescales we assume a three step process: (1) thermal equilibration, (2) clast 936 

rounding, (3) welding to ‘healed’ state. 937 

The fact that so many of the particles are angular, suggests brittle fragmentation and therefore that 938 

the magma was below Tg. Furthermore, we hypothesise that the more evolved particles represent 939 

older silicic Katla material, which was incorporated into permeable pathways during magma accent, 940 

and therefore presumably entered the system at temperatures closer to ambient. Therefore, for 941 



these particles to sinter, the first step will be for them to gain magmatic temperature i.e. reach 942 

thermal equilibrium. The timescale for thermal equilibrium to be reached (teq in s) can be estimated 943 

using this equation (Wilson and Mouginis-Mark, 2003)  944 

𝑡𝑒𝑞 ~
𝑟2

𝑘
 945 

(3) 946 

where r is particle radius (in m) and κ is thermal diffusivity (in m2 s-1). Thermal diffusivity varies (0.5-947 

2.0 x 10-6 m2 s-1) as a function of temperature and to a lesser effect composition (Vosteen and 948 

Schellschmidt, 2003; Whittington et al., 2009; Eppelbaum et al., 2014), however, in the interests of 949 

simplicity we will take an ~average value of 1 x 10-6 m2 s-1 which is considered the general thermal 950 

diffusivity for all silicates (Wilson and Mouginis-Mark, 2003) 951 

 952 

 953 

Figure A4: Expected times for particles to meet thermal equilibrium as a function of particle size 954 

Typical intra void particles are <100 μm and therefore would have reached thermal equilibrium in a 955 

matter of milliseconds (Fig. A4). We therefore, deem this process insignificant in effecting the 956 

timescale of sintering.  957 

Many papers discuss the timescales of sintering e.g. (e.g. Uhlmann et al., 1975; Ristić and Milosević, 958 

2006; Pope, 2015), however, these models assume that the starting media consists of spherical 959 

particles. Natural ash particles are not spherical. It seems from our samples that some of the ash 960 

particles have experienced rounding, whereas others have not, therefore, it would be interesting to 961 

estimate the timescale of this rounding/relaxation process that occurs prior to sintering. We are only 962 

aware of one study (Pope, 2015)  that has tried to estimate rounding rates of natural samples 963 

however, this was performed on rhyolitic particles from Cordon Caulle, Chile, and no general 964 

relationships were observed between rounding rate, grain size and temperature. We therefore 965 

turned to the equation used to estimate the rounding rate of vesicles within magma (Gardner et al., 966 

2017):  967 



𝜆 =  
𝜂𝑟

𝜎
 968 

(4) 969 

where λ is the relaxation time (in s) that a non-spherical bubble will take to relax into a spherical 970 

form, η is melt viscosity (in Pa s), r is particle radius (in m) and σ is melt surface tension (in N m-1). 971 

When this equation was applied to the parameters of the particles used by Pope (2015) the 972 

calculated relaxation time was very similar to the timescales of clast rounding observed in their 973 

experiments. Therefore, we will use equation (4) as a proxy for the relaxation/rounding rate of Katla 974 

clasts.  975 

Viscosities were estimated using the model of Giordano et al. (2008) our EPMA data and the 976 

assumption that the magma was 1045 °C. We also modelled typical rhyolite from Chaitén at 800 °C 977 

(Castro and Dingwell, 2009), where tuffisite veins and sintering are common  (Castro et al., 2012; 978 

Berlo et al., 2013; Saubin et al., 2016). Although surface tension (σ) varies as a function of various 979 

magmatic parameters (Bagdassarov et al., 2000; Mangan and Sisson, 2005; Gardner and Ketcham, 980 

2011; Gardner et al., 2013), H2O content is the only parameter considered to have a significant 981 

effect, with melt composition and temperature only playing a very minor role (Walker and Mullins, 982 

1981; Bagdassarov et al., 2000; Gardner et al., 2013; Gardner et al., 2017). We therefore chose a 983 

single value of 0.3 N m-1 for all modelling which is consistent with literature values for relatively dry 984 

silicate melts (Taniguchi, 1988; Phillips et al., 1995; Gardner and Denis, 2004; Sumner et al., 2005).  985 

 986 

 987 

 988 



Figure A5: expected times for particles to round/sinter as a function of particle size and dissolved 989 

H2O content (0.1 -2.0 wt.% as shown in the legend). Note that the rounding timescale and 990 

sinetering/healing timescale were calculated in the same way and therefore have the same value. 991 

Therefore, the combined rounding and sintering rate can be found by simply doubling the values in 992 

this figure. Green and blue lines refer to samples within this study at an assumed temperature of 993 

1045 °C. The orange lines model Chaiten rhyolite at 800 °C (using composition data from Castro and 994 

Dingwell (2009)) where tuffisite veins are often found.  995 

 996 

Once connections are made between particles, the pore spaces can ‘heal’ through viscous flow 997 

(Ristić and Milosević, 2006; Vasseur et al., 2013). The following equation can be used to estimate the 998 

timescale τs of viscous sintering (Vasseur et al., 2013) 999 

𝜏
𝑠= 

𝑅𝑖𝜂
𝛾

 1000 

(5) 1001 

where Ri is the initial radius, η is melt viscosity and γ is the melt-vapour interfacial tension. Note that 1002 

this is essentially the same equation as that for the viscous relaxation of bubbles (Vasseur et al., 1003 

2013). As we are using the latter to estimate the rounding rate of the particles, and because we 1004 

disregard the timescales for thermal equilibrium as being insignificantly small, then our combined 1005 

timescale for the complete sintering of the sub millimetric 1918 A.D. Katla particles to become 1006 

healed glass can be estimated by doubling equation (4) or (5) and thus the values in Figure A5.  1007 

Typically, inter-void particles are approximately ≤ 100 μm in diameter. For basaltic particles with 0.2-1008 

0.3 wt.% H2O (as measured with FTIR) this equates to rounding times of ≤ 0.1 seconds, and thus full 1009 

healing times of approximately ≤ 0.2 seconds. These resultant times, are perhaps a little 1010 

unrealistically short. However, they give an idea of relative differences between particles e.g. it can 1011 

be seen that silicic particles of the same size will take considerably longer to sinter (Figs. A5, A6). 1012 

Furthermore, even if the absolute values were out by a few orders of magnitude (it is difficult to 1013 

suggest reasons for errors larger than this), then it still equates to extremely short residence times 1014 

for the permeable networks and times much shorter than for Chaitén rhyolite at 800 °C (Fig. A5) 1015 

(Castro et al., 2012) where our estimated values closely match observations (Pope, 2015). Thus we 1016 

can be confident that our estimates are reasonable ball park amounts.  1017 

 1018 



 1019 

Figure A6: The compositional map from Figure 5a, with estimated residence times (in seconds), 1020 

assuming low H2O concentrations (consistent with observations) shown in red.  1021 

The thermal estimations can help explain some of the particle morphologies as well as shed insights 1022 

into timescales. For example, our calculations suggest the large rounded basaltic particle in Figure 1023 

A6, had to be hot for at least 0.13 seconds to be deformable, however if it had been at 1045 °C for 1024 

more than 0.26 seconds it would have compleletely annealed with the surrounding melt. The 1025 

angular silicic particle (blue) next to it required ~8 seconds at 1045 °C to relax into a sphere. The fact 1026 

that it has not rounded, therefore suggests a residence time < 8 seconds. The smaller rounded 1027 

basaltic particles require residence times of 0.05-0.1 seconds, whilst the angular clasts must have 1028 

been resident for <0.05 seconds. If we assume that the microlite chains (in pink above the fracture) 1029 

represent the former bounderies of annealed particles then using their approximate dimensions, 1030 

these particles must have been present for more than >0.14 seconds to anneal together. All of this is 1031 

consistent with a fracture opening for a fraction of a second, and having a momentary stream of 1032 

particles before quenching. However, it is impossible to tell the extent of the annealed particles 1033 

bejond the pink microlites (presumably prolonged heating will completely homogenise the melt), 1034 

therefore a more conservative esimate for the lifetime of each permeable network would be on the 1035 

order of a second or so.  1036 

We estimate that the fracture in Figure 5a was open for a slightly longer duration than the 1037 

connected bubbles in Figure 5b where nearly all of the particles are incredibly small (~5 μm) and 1038 

angual. Our thermal calculations suggest that these particles could not have been resident for > 0.05 1039 

seconds suggesting a near instanenous injection and quenching process.  1040 

For Figure 5c, we estimate that the network was permeable for ~ 0.05-0.4 seconds. The first number 1041 

represents the time taken to completely sinter and heal basalt, and the latter is the time required to 1042 

round dacite; both assuming a particle size of ~5 μm which seems to be the approximate average 1043 

size of the remaining silicic particles.  1044 

 1045 

Appendix 3 - Diffusion estimates 1046 



Bubble-poor zones next to voids can be interpreted to show areas of diffusive volatile loss into the 1047 

void-space (Saubin et al., 2016; Webb et al., 2017). The void in Figure 4b shows a clear zone of bubble-1048 

poor glass extending approximately equidistant from the void wall. The average width of the bubble-1049 

poor zone is ~80 μm, which can be inferred to represent the volatile diffusion distance.  The fact that 1050 

these fractures have been preserved, suggests that they formed at a relatively shallow level in the 1051 

conduit, thus is it likely that H2O will be the predominant species that is diffusing.  The diffusivity of 1052 

H2O (D) in m2s-1 for a basaltic melt of 0.2 wt.% H2O (a reasonable assumption given the measured FTIR 1053 

concentrations, and assuming  our interpretation of shallow level is correct) can be expressed with 1054 

the following equation from Zhang and Stolper (1991): 1055 

𝑙𝑛𝐷 =  −(12.49 ± 2.35) − (15200 ± 3900)/𝑇  1056 

(6) 1057 

where T is temperature in Kelvin, inferred to be 1318 K (1045 °C) based on our oxide thermometry 1058 

results. Assuming that the opening of a fracture results in disequilibrium within the melt, the H2O 1059 

diffusion distance (L) in m, is roughly approximated by the following equation from Zhang and Stolper 1060 

(1991): 1061 

𝐿 ≅ 2√𝐷𝑡 1062 

(7) 1063 

where t is time in seconds. Combining equations (6) and (7), we obtain a diffusion time of ~40s for H2O 1064 

to diffuse ~80 μm into the fracture.  1065 
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