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Desynchronization induced by time-varying network
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The synchronous dynamics of an array of excitable oscillators, coupled via a generic graph, is
studied. Non homogeneous perturbations can grow and destroy synchrony, via a self-consistent
instability which is solely instigated by the intrinsic network dynamics. By acting on the char-
acteristic time-scale of the network modulation, one can make the examined system to behave as
its (partially) averaged analog. This result if formally obtained by proving an extended version of
the averaging theorem, which allows for partial averages to be carried out. As a byproduct of the
analysis, oscillation death are reported to follow the onset of the network driven instability.

Natural and artificial systems are often composed of
individual oscillatory units, coupled together so as to
yield complex collective dynamics [1–5]. Weak coupling
of non-linear oscillators leads to synchronization [4], a
condition of utmost coordination which is eventually met
when the parts of a system operate in unison. Syn-
chronization has been addressed theoretically in a wide
range of settings, climbing the hierarchy of complexity
from simple unidirectionally phase forced oscillator, with
a fixed frequency [4] and more recently a time-varying
frequency [6, 7], to large populations of mutually inter-
acting, individually oscillating, entities [2]. The simulta-
neous flashing of fireflies and the rhythmic applause in a
large audience are representative examples both ascrib-
able to the vast and multifaceted realm of synchroniza-
tion phenomena [5]. Synchronisation of self-sustained os-
cillators on complex networks has attracted considerable
interest in the last decade, the emphasis being primar-
ily placed on the pivotal role exerted by the topology
of the graph that shapes the underlying couplings [8, 9].
Other studies elaborated on the effect produced by im-
posing an external perturbation, such as noise [10], a
(fixed-frequency) pacemaker forcing [11, 12], or more re-
cently an external modulation of frequencies [13–15]. De-
lays in the network of couplings have been also enforced
and their impact on the synchronizability property thor-
oughly assessed [16].

At the other extreme entirely, when the coupling
strength is made to increase, oscillations may go ex-
tinct. Oscillation death is observed in particular when an
initially synchronized state evolves torwards an asymp-
totic inhomogeneous steady configuration [17–20], in re-
sponse to an externally injected perturbation [21]. Un-
derstanding the mechanisms that drive the suppression
of the oscillations in spatially extended systems, assim-
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ilated to disordered networks, may prove to be relevant
for e.g. neuroscience applications. The ability of disrupt-
ing synchronous oscillations could be in fact exploited
as a dynamical regulator [22–24], to oppose pathologi-
cal neuronal states that are found to consistently emerge
in Alzheimer and Parkinson diseases. Landscape frag-
mentation and then dispersal among connected patches
sits at the origin of oscillation death in ecology, with its
noteworthy fallout in terms of diversity and stability [25].
To date, oscillation death has been mostly analyzed on
static networks. In many cases of interests [26–28], how-
ever, links are intermittently active and signals can crawl
only when connections are functioning: diseases spread
through physical proximity, pathogens flowing therefore
on dynamic contact graphs; neural and brain networks
can be also represented as time-varying graphs, resources
driven activation playing a role of paramount impor-
tance.

The inherent ability of a network to adjust in time
acts as a veritable non-autonomous drive. In a recent
Letter [29], the process of pattern formation for a mul-
tispecies model anchored on a time-varying network was
analyzed. It was in particular shown that a homogeneous
stable fixed point can turn unstable, upon injection of a
non-homogeneous perturbation, via a symmetry break-
ing instability which is reminiscent of the Turing mech-
anism [30], but solely instigated by the intrinsic network
dynamics. Starting from these premises, the aim of this
work is to extend the theory presented in [29] to the rel-
evant setting where the unperturbed homogeneous solu-
tion typifies as collection of synchronized limit-cycles. In
other words, we will set to analyze how the synchrony of a
large population of non-linear, diffusively coupled oscilla-
tors may be disrupted by network plasticity. Surprisingly,
oscillation death can be induced by a piecewise constant
time-varying network, also when synchrony is guaranteed
on each isolated network snapshot. Our analysis provides
a solid theoretical backup to the work of [31], where the
oscillation death phenomenon is numerically observed on
fast time-varying networks.

Consider two different species living on a network that

http://arxiv.org/abs/1802.06580v3
mailto:m.lucas@lancaster.ac.uk
mailto:duccio.fanelli@gmail.com
mailto:timoteo.carletti@unamur.be
mailto:julien.petit@student.unamur.be


evolves over time and denote by xi and yi their respective
concentrations, as seen on node i. The structural prop-
erties of the (symmetric) network are stored in a time-
varying N × N weighted adjacency matrix Aij(t). For
the ease of calculation, we will hereafter assume N con-
stant. Introduce the Laplacian matrix L whose elements
read Lij(t) = Aij(t)−Ki(t)δij , where Ki(t) =

∑

j Aij(t)
stands for the connectivity of node i, at time t. The cou-
pled dynamics of xi and yi, for i = 1, ..., N , is assumed
to be ruled by the following, rather general equations:

ẋi = f(xi, yi) + Dx

N∑

j=1

Lij(t/ǫ)xj ,

ẏi = g(xi, yi) + Dy

N∑

j=1

Lij(t/ǫ)yj,

(1)

where Dx and Dy are appropriate coupling parameters.
Here, f and g are non-linear reaction terms, chosen in
such a way that system (1) exhibits a homogeneous sta-
ble solution (xi, yi) ≡ (x̄(t), ȳ(t)) ∀i which is periodic of
period T . To state it differently, when Dx = Dy = 0, the
above system is equivalent to N identical replica of a two
dimensional deterministic model, which displays a stable
limit-cycle. The homogeneous time-dependent solution
obtained for Dx 6= 0 6= Dy, when setting in phase the
self-sustained oscillations on each node of the collection,
corresponds to the synchronized regime that we shall be
probing in the forthcoming investigation. The parame-
ter ǫ controls the time-scale of the Laplacian dynamics.
We will specifically inspect the case of a network that is
periodically rearranged in time and denote with Ts the
period of the network modulation, as obtained for ǫ = 1.
By operating in this context, we will show that synchro-
nization can be eventually lost when forcing ǫ below a
critical threshold. When successive swaps between two
static network configurations are considered over one pe-
riod Ts (as it is the case, in the example addressed in
the second part of the paper), ǫ sets the frequency of
the blinking. The extension to non-periodic settings is
straightforward, as discussed in details in [29].

To proceed with the analysis we compactify the
notation by introducing the 2N -element vector x =
(x1, . . . , xN , y1, . . . , yN )T . The dynamics of the system
can be hence cast in the form:

ẋ = F(x) + L(t/ǫ)x, (2)

where F(x) = (f(x1, y1), . . . , f(xN , yN ), g(x1, y1), . . . ,
g(xN , yN ))T ; the 2N×2N block diagonal matrix L reads:

L(t) =

(
Dx L(t) 0

0 Dy L(t)

)

. (3)

As mentioned above, the non-linear reaction terms,
now stored in matrix F , are chosen so as to have a stable
limit-cycle in the uncoupled setting Dx = Dy = 0. The
stability of the limit-cycle (x̄(t), ȳ(t)) can be assessed by

means of a straightforward application of the Floquet
theory. To this end, we focus on the two dimensional
system obtained in the uncoupled limit and introduce a
perturbation of the time-dependent equilibrium, namely
δx = (x− x̄, y− ȳ)T . Linearizing the governing equation
yields δẋ = J (t)δx, where J (t) = ∂xF(x) is periodic of
period T . Let us label with Φ(t) a fundamental matrix of
the system. Then, for all t, there exists a non-singular,
constant matrix B such that:

Φ(t + T ) = Φ(t)B. (4)

Moreover, detB = exp
[∫ T

0
trJ (t) dt

]

. The matrix B

depends in general on the choice of the fundamental ma-
trix Φ(t). Its eigenvalues, ρi with i = 1, 2, however, do
not. These are called the Floquet multipliers and yield
the Floquet exponents, defined as µi = T−1 ln ρi. Solu-
tions of the examined linear system can then be written:

x(t) = a1p1(t)eµ1t + a2p2(t)eµ2t, (5)

where the pi(t) functions are T -periodic, and ai are con-
stant coefficients set by the initial conditions. When the
system is linearized about limit-cycles arising from first-
order equations, one of the Floquet exponents is iden-
tically equal to zero, µ1 = 0. The latter is associated
with perturbations along the longitudinal direction of the
limit-cycle: these perturbations are neither amplified nor
damped as the motion progresses. The other exponent,
µ2 takes instead negative real values, if the limit-cycle
is stable, meaning that perturbations in the transverse
direction are bound to decay in time.

We now turn to discussing the original system (2). The
reaction parameters are set so to yield a stable limit-cycle
for Dx = Dy = 0. Furthermore, we assume the oscil-
lators to be initially synchronized, with no relative de-
phasing. We then apply a small, nonhomogeneous, hence
node-dependent perturbation and set to explore the con-
ditions which can yield a symmetry breaking instability
of the synchronized regime, from which the oscillation
death phenomenon might eventually emerge. We are in
particular interested in elaborating on the role played
by the non-autonomous network dynamics in seeding the
aforementioned instability. Introduce a small inhomo-
geneous perturbation around the synchronous solution
δx = (x1 − x̄, . . . , xN − x̄, y1 − ȳ, . . . , yN − ȳ)T , and lin-
earize the governing equation (2) so as to yield:

δẋ = [J (t) + L(t/ǫ)]δx. (6)

This is a non-autonomous equation, and it is difficult
to treat it analytically [32], owing in particular to the
simultaneous presence of different periods. To overcome
this limitation, and gain analytical insight into the prob-
lem under scrutiny, we introduce the averaged Laplacian

〈L〉 = 1/Ts

∫ Ts

0 Ldt and define the following system:

ẏ = F(y) + 〈L〉y. (7)
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As we will rigorously show in the following, the stabil-
ity of the synchronous solution of system (2) is eventu-
ally amenable to that of system (7). Stated differently,
assume that an external non-homogeneous perturbation
can trigger an instability in system (7). Then, ǫ∗ ex-
ists such that the original system (2) is also unstable
for 0 < ǫ < ǫ∗. In other words, by tuning sufficiently
small the parameter ǫ, and thus forcing a high frequency
modulation of the network Laplacian, one can yield a
loss of stability of the synchronous solution. Oscillation
death can eventually emerge as a possible stationary sta-
ble attractor of the ensuing dynamics, promoted by the
inherent ability of the network to adjust in time.

As a first step towards proving the results, we shall
rescale time as τ = t/ǫ. Eq. (6) can be hence cast in the
equivalent form:

δx′ = ǫ[(J (ǫτ) + L(τ)]δx, (8)

where the prime denotes the derivative with respect to
the new time variable τ . The partially averaged version
of (8) [or alternatively the linear version of system (7),
after time rescaling], reads δy′ = ǫ[J (ǫτ) + 〈L〉]δy. In
the following, we will show that δy(t) − δx(t) ∈ O(ǫ) for
up to a time τ ∈ O(1/ǫ), provided that δy(0) = δx(0)
and for ǫ < ǫ∗. This conclusion builds on a theorem that
we shall prove hereafter in its full generality, and which
extends the realm of applicability of the usual averaging
theorem. Denote x ∈ R

Ω, and consider the following
equation

ẋ = ǫf1(x, ǫt) + ǫf2(x, t), (9)

where f1(x, t) is T -periodic in t, and f2(x, t) is Ts-
periodic in t. Notice that f1(x, ǫt) is T/ǫ-periodic. It
is assumed that f1 and f2 and their derivative are well
behaved Lipschitz-continuous functions. Observe inci-
dentally that Eq. (8) is recovered by replacing t 7→ τ ,
x 7→ δx, f1(x, ǫt) 7→ J (ǫτ)δx, f2(x, t) 7→ L(τ)δx and
Ω = 2N .

The standard version of the averaging theorem [33]
requires dealing with periodic functions, whose periods
are independent of ǫ. This is obviously not the case for
f1(·, ǫt). To bypass this technical obstacle, we will adapt
the proof in [33] to yield an alternative formulation of
the theorem which allows for partial averaging to be per-
formed. Define:

u(x, t) =

∫ t

0

ds[f2(x, s) − 〈f2〉], (10)

where 〈f2〉 = 1/Ts

∫ Ts

0
f2(x, t) dt is the average of f2 over

its period. Introduce then the near-identity transforma-
tion

x(t) = z(t) + ǫu(z(t), t), (11)

which yields

ẋ = ż + ǫ
∂u

∂z
ż + ǫ

∂u

∂t
. (12)

Moreover, ∂u/∂t (z, t) = f2(z, t)−〈f2〉 by definition of u,
see Eq. (10). Then making use of Eq. (9), it is straight-
forward to get:

≡Γ
︷ ︸︸ ︷
[

1 + ǫ
∂u

∂z

]

ż =ǫ [f1(z + ǫu, ǫt) + f2(z + ǫu, t) − f2(z, t) + 〈f2〉] ,

(13)

Invoking the Lipschitz-continuity of f2 and the bounded-
ness of u yields :

||f2(z + ǫu, ǫt) − f2(z, ǫt)|| ≤ Lǫ||u(z, ǫt)||,

≤ LǫM,
(14)

where L and M are positive constants. Hence:

Γż =ǫf1(z + ǫu, ǫt) + ǫ〈f2〉 + O(ǫ2),

≃ǫf1(z, ǫt) + ǫ〈f2〉.
(15)

We do not know in general if Γ is invertible, but the
identity is and, by continuity, any matrix sufficiently close
to it. Hence, there exists a critical value ǫ∗ ≪ 1 such that
Γ is invertible, if 0 < ǫ < ǫ∗. We will return later on pro-
viding a self-consistent estimate for the critical threshold
ǫ∗. Up to order O(ǫ), we have:

Γ−1 ≃

[

1 − ǫ
∂u

∂z

]

. (16)

Hence finally,

ż ≃ ǫ[f1(z, ǫt) + 〈f2〉]. (17)

In conclusion, system (9) behaves like its partially aver-

aged version (17), for times which grow like 1/ǫ, when
ǫ is made progressively smaller. Back to the examined
model, system (8) stays thus close to its partially aver-
aged homologue:

δy′ = ǫ[J (ǫτ) + 〈L〉]δy, (18)

which, in terms of the original time scale t amounts to:

δẏ = M(t)δy, (19)

where M(t) = J (t)+〈L〉 is a T -periodic 2N×2N matrix.
It is worth emphasising that systems (2) and (19) agree
on times O(1), owing to the definition of the variable
τ . Imagine conditions are set so that an externally im-
posed, non-homogeneous perturbation may disrupt the
synchronous regime, as stemming from Eq. (19). Then,
the same holds when the perturbation is made to act on
system (2), the factual target of our analysis. The onset
of instability of (2) can be hence rigorously assessed by di-
rect inspection of its partially averaged counterpart (7),
which yields the linear problem (19). Patterns estab-
lished at late times can be however different, the agree-
ment between the two systems being solely established
at short times.
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System (19) can be conveniently studied by expand-
ing the perturbation on the basis of the average Lapla-

cian operator, 〈L〉 = 1/Ts

∫ Ts

0 Ldt [34]. Introduce φ(α),

such that
∑N

j=1〈L〉ijφ
(α)
j = Λαφ

(α)
i , where Λα stands

for the eigenvalues of 〈L〉 and α = 1, . . . , N . Note
that the eigenvectors are time-independent, as the av-
eraged network (hence, the Laplacian) is. Write then

δxi(t) =
∑N

α=1 c
x
α(t)φ

(α)
i and δyi(t) =

∑N

α=1 c
y
α(t)φ

(α)
i ,

where cxα and cyα encode the time-evolution of the lin-
ear system [19, 35, 36]. Plugging the above ansatz into
equation (19) yields the following consistency condition:

ċα = Mα(t)cα, (20)

where cα = (cxα, c
y
α)T , and Mα(t) = J(t) +

Λα

(
Dx 0
0 Dy

)

. The fate of the perturbation is deter-

mined upon solving the above 2 × 2 linear system, for
each Λα. To this end, remark that Mα is periodic,
with period T , ∀α. Solving system (20) amounts there-

fore to computing the Floquet exponents µ
(α)
1 and µ

(α)
2 ,

for α = 1, . . . , N . The dispersion relation is obtained

by selecting the largest real part of µ
(α)
i , i = 1, 2, at

fixed α [20]. For undirected networks (Aij = Aji), the
Laplacian is symmetric and the Λα are real and non-
positive [37]. For α = 1 the largest Floquet multiplier
is zero, since the model displays in its a-spatial version
(Λ1 = 0) a stable limit-cycle. We then sort the indices
(α) in decreasing order of the eigenvalues, so that the
condition 0 = Λ1 ≥ Λ2 ≥ ... ≥ ΛN holds. If the disper-
sion relation is negative ∀ Λα with α > 1, the imposed
perturbation fades away exponentially: the synchronous
solution is therefore recovered, for both the average sys-
tem (19), and its original analogue, in light of the above
analysis, and for all ǫ. Conversely, if the dispersion rela-
tion takes positive values, even punctually, in correspon-
dence of specific Λα, belonging to its domain of definition,
then the perturbation grows exponentially in time, for ǫ
smaller than a critical threshold. The initial synchrony
for the original system (2) is hence lost and patterns may
emerge.

To clarify the conclusion reached above, we shall here-
after consider a pedagogical example, borrowed from [29].
Introduce the Brusselator model, a universally accepted
theoretical playground for exploring the dynamics of au-
tocatalytic reactions. This implies selecting f(x, y) =
1− (b + 1)x+ cx2y and g(x, y) = bx− cx2y, where b and
c stand for free parameters. For b > c+ 1, the Brussella-
tor model displays a limit-cycle. Following, [29] we then
consider two networks, made of an even number, N , of
nodes arranged on a periodic ring, and label their associ-
ated adjacency matrices A1 and A2, respectively. Nodes
are connected in pairs, via symmetric edges. When it
comes to the network encoded in A1, the couples are
formed by the nodes labelled with the indexes 2k−1 and
2k for k = 1, 2, ..., N/2 [see panel (a) in Fig. 1]. The net-
work specified via the adjacency matrix A2 links nodes
2k and 2k + 1, with the addition of nodes 1 and N [as

depicted in panel (a) in Fig. 1]. Both networks return
an identical Laplacian spectrum, namely two degenerate
eigenvalues Λ1 = 0 and ΛN = −2, with multiplicity N/2.
The parameters of the Brussellator are set so that the
synchronized solution is stable on each network, taken
independently. This is illustrated in panel (c) of Fig. 1,
where the corresponding dispersion relation (largest real
part of the Floquet multipliers vs. −Λα) is plotted with
black star symbols. Introduce now the time-varying net-
work, specified by the adjacency matrix A(t), defined as:

A(t) =

{
A1 if mod (t, Ts) ∈ [0, γ[,
A2 if mod (t, Ts) ∈ [γ, 1[,

(21)

where γ (resp. 1 − γ) is the fraction of Ts that the net-
work spends in the configuration specified by the ad-
jacency matrix A1 (resp. A2). The average network
is hence characterized by the adjacency matrix 〈A〉 =
γA1 + (1− γ)A2, see panel (b) in Fig. 1. We then set to
consider the stability of the synchronized state in pres-
ence of a time-varying network, and resort to its static,
averaged counterpart. The average network Laplacian
has many more distinct eigenvalues, and these latter fall
in a region where the largest real part of the Floquet ex-
ponents is positive, as can be appreciated in Fig. 1, panel
(c), thus signaling the instability. The solid line stands
for the dispersion relation that is eventually recovered
when the couplings among oscillators extends on a con-
tinuum support and the algebraic Laplacian is replaced
by the usual second order differential operator [19, 20].
Since the dynamics hosted on the average network is un-
stable, the synchrony of the homogenous state can be
broken on the time-varying setting, by properly modu-
lating ǫ below a critical threshold. This amounts in turn
to imposing a fast switching between the two network
snapshots, as introduced above. In Fig. 1, panel (d), the
asymptotic pattern as displayed on a time-varying net-
work, for a sufficiently small ǫ is depicted. The nodes of
the network are colored with an appropriate code cho-
sen so as to reflect the asymptotic value of the density
displayed by the activator species x. A clear pattern is
observed which testifies on the heterogeneous nature of
the density distribution, following the symmetry break-
ing instability seeded by the inherent network dynam-
ics. Interestingly, the equilibrium density, as displayed
on each node of the collection, converges to a constant:
synchronous oscillations, which define the initial homo-
geneous state, are self-consistently damped to yield a sta-
tionary stable, heterogeneous distribution of the concen-
trations. This is the oscillation death phenomenon to
which we made reference above. For the sake of clar-
ity, this effect has been here illustrated with reference
to a specific case study, engineered so as to allow for an
immediate understanding of the key mechanism. The
result reported holds however in general and apply to
other realms of investigation where time-varying network
topology and non-linear reaction terms are complexified
at will.

To shed further light onto the dynamics of the system,
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we introduce the macroscopic indicator

S(ǫ, t) =
1

N
‖x(t) − x̄(t)‖2, (22)

where x̄(t) = (x̄, . . . , x̄, ȳ, . . . , ȳ). S(ǫ, t) enables us to
quantify the, time-dependent, cumulative deviation be-
tween individual oscillators trajectories, and the homo-
geneous synchronized solution. S(ǫ, t) will rapidly con-
verge to zero, if the synchronous state is stable. Con-
versely, it will take non zero, positive values, when the
imposed perturbation destroys the initial synchrony. To
favor an immediate reading of the output quantities, we
set to measure 〈S〉, the average of S(ǫ, t), on one cycle

Ts. In formulae, 〈S〉 = T−1
s

∫ t+Ts

t
S(ǫ, u) du, where t is

larger than the typical relaxation time (transient). In
Fig. 2, main panel, 〈S〉 is plotted against ǫ, normalized
to the value it takes in the limit ǫ → 0, for a choice of
the parameter that corresponds to the dispersion relation
depicted in Fig. 1. A clear, almost abrupt, transition is
seen, for ǫ∗ ≃ 0.25, in qualitative agreement with the
above discussed scenario. For ǫ < ǫ∗, the oscillation are
turned into a stationary stable pattern, as displayed in
the annexed panel. By monitoring S(ǫ, t) for a choice of
ǫ below the critical threshold, one observes regular oscil-
lations that can be traced back to the term x̄ in equa-
tion (22). At variance, synchronous oscillations prove
robust to external perturbation when ǫ > ǫ∗: the order
parameter S(ǫ, t) is identically equal to zero, the two con-
tributions in the argument of the sum on the right hand
side of equation (22) canceling mutually.

To conclude the analysis, we will provide an approxi-
mate theoretical estimate of the critical threshold ǫ. The
proof of the partial averaging theorem, as outlined above,
assumes an invertible change of coordinates. It is there-
fore reasonable to quantify ǫ∗ by determining the range
ǫ for which the invertibility condition is matched [29]. In
formulae:

ǫ∗ = min{ǫ > 0 : det Γ(ǫ) = 0}. (23)

Using the block structure of ∂u/∂z =
∫ τ

0
[L(t) − 〈L〉] dt,

one gets a more explicit form of the determinant

det(12N+ǫ∂u/∂z) =

det

(

1N + ǫDx

∫ τ

0

[L(t) − 〈L〉] dt

)

× det

(

1N + ǫDy

∫ τ

0

[L(t) − 〈L〉] dt

)

,

(24)

which is zero if either of the determinants is zero. A
straightforward manipulation yields, for the inspected
network model, the following closed expression:

ǫ∗ ≃
1

ΛN
12γ(1 − γ)T

min

[
1

Dx

,
1

Dy

]

, (25)

where ΛN
12 stands for the maximum eigenvalue (in ab-

solute magnitude) of the operator (L1 − L2), with L1

and L2 being the Laplacian matrices associated to the
static networks as specified by the adjacency matrices A1

and A2. Performing the calculation returns ǫ∗ = 0.12,
a coarse approximation of the exact critical value, as de-
termined via direct numerical integration [38].

0 γTs Ts (1+ γ)Ts 2Ts

A(
t) A1 1

23
4
5 6

A2 1
23

4
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4
5 6 ⋯
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1

23

4

5 6
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FIG. 1. Instability in time-varying networks. (a) Dynamics
of A(t), as obtained by alternating two static networks with
adjacency matrices A1 and A2 (see main text for a detail
account of the imposed couplings), over a cycle of time du-
ration Ts. Each network in this illustrative example is made
of N = 6 nodes. (b) The associated time-averaged network
〈A〉 = γA1+(1−γ)A2. (c) Dispersion relation (max (Re µα)
against −Λα) obtained by assuming (i) the averaged network
〈A〉 (red circles), (ii) each static network (black stars) and (iii)
the continuous support case (black curve). The networks are
generated according to the procedure discussed in the main
body of the paper, but assuming now N = 50. Other parame-
ters are set to b = 4.5, c = 2.5, Dx = 2, Dy = 20, Ts = 1, and
γ = 0.3. (d) Asymptotic, stationary stable patterns, obtained
for ǫ = 0.1 < ǫ∗. Shades of grey represent the value of the x

variable.

Finally, we shall inspect how the oscillation death phe-
nomenon is influenced by the strength of the imposed
coupling, here exemplified by the constant Dy, which we
modulate when freezing Dx to a nominal value. In Fig. 3
different attractors, and their associated stability, are de-
picted, for species x, for distinct choices of the control
parameter Dy. Here, the Brussellator model is assumed
as the reference reaction scheme; the network of pair-
wise exchanges (N = 6), as illustrated in the caption of
Fig. 1, is employed. The horizontal straight (red) lines
refer to the limit cycle solution, and identify respectively
the maximum and minimum value, as attained by the
uncoupled oscillators, over one period. The solid trait
marks the stable branch, while the dashed line is asso-
ciated to the unstable solution. The bifurcation point
is calculated analytically, from a linear stability analysis
carried out for the average system (7). Beyond the transi-
tion point, when the homogeneous solution breaks apart,
three stable solutions are shown to exist, corresponding
to distinct values of the concentration x. These latter
branches protrude inside the region where synchronous
oscillations are predicted to be stable: the unstable man-
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FIG. 2. Critical threshold ǫ∗. Average pattern amplitude,
〈S〉, as a function of ǫ, normalized to the amplitude of the pat-
tern referred to the averaged network 〈A〉 = γA1+(1−γ)A2

(as formally recovered in the limit ǫ → 0). Here, N = 50
nodes. Other parameters are set to b = 4.5, c = 2.5, Dx = 2,
Dy = 20, and γ = 0.3. (Insets) Dynamics of x, on each node,
over time. Shades of blue represent the value of x. (Left)
for ǫ = 0.1, the synchronous solution is unstable. After a
transient time, oscillation death is seen, and a heterogeneous
pattern develops. (Right) for ǫ = 0.4, the synchronous so-
lution is stable. S(ǫ, t) is also plotted vs. time for the two
considered settings.

ifolds which delineate the boundaries of the associated
basins of attractions are not displayed for graphic require-
ments. Open (white) circles follow direct integration of
model (1). In the simulations, ǫ is set to 0.1: the slight
discrepancy between predicted and observed value of Dy

(at the onset of the desynchronization) stems from finite
size corrections (the theory formally applies to the ideal-
ized setting ǫ → 0). When synchrony is lost, the system
evolves towards an asymptotic state that displays oscilla-
tion death: each node is associated to a stationary stable
density, which is correctly explained by resorting to the
average model approximation (7). Increasing further the
coupling strength Dy, results in a significant complexi-
fication of the phase space diagram, which considerably
enrich the zoology of the emerging oscillation death pat-
terns, as displayed in Fig. 3 above the supercritical pitch-
fork bifurcations.

Summing up, we have here considered the synchronous
dynamics of a collection of self-excitable oscillators, cou-
pled via a generic graph. The plasticity of the underlying
network of couplings, i.e. its inherent ability to adjust in
time, may seed an instability which destroys synchrony.
The system endowed with a time-varying network of in-

terlinked connections, behaves as its (partially) averaged
analogue, provided the network dynamics is sufficiently
fast. This result is formally established by resorting to
an extended version of the celebrated averaging theorem,
which allows for partial averages to be performed. In-
terestingly, the network driven instability materializes
in asymptotic, stationary stable patterns. These latter
are to be regarded as a novel evidence for the oscillation
death phenomenon.

10 20 30
Dy

0

1

2

3

x

10 20 30

0.4

0.6

FIG. 3. Phase diagram for the Brusselator model coupled
via time dependent pairwise exchanges, as illustrated in the
caption of Fig. 1, with N = 6. The equilibrium solutions
relative to species x are plotted by varying Dy , at fixed Dx =
2. The stability is computed for the average analogue (7) of
model (1). The horizontal (red, straight) lines refer to the
limit cycle: the maximum and minimum values as attained
by the uncoupled oscillators, over one period, are respectively
displayed. Black lines stand for the fixed points. Dashed
lines refer to the unstable solutions, whereas solid lines implies
stability. White circles are obtained from direct simulations
of model (1) with ǫ = 0.1 and illustrate the oscillation death
phenomenon, as discussed in the main text. The panel on the
right is a zoom of the lower portion of the main plot. The
shaded regions are drawn to guide the reader’s eye across the
different regimes: synchronization, oscillation death with 3-
fixed point pattern, and oscillation death with 6-fixed point
pattern correspond to the region in white, light gray, and dark
gray, respectively. Notice that we chose to display a partial
subset of the complete phase diagram. All stable manifolds
are plotted. A limited subset of the existing unstable branches
is instead shown for graphic requirements.

This work has been funded by the EU as Horizon 2020
research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No 642563.

[1] G. Nicolis and I. Prigogine, Self-organization in nonequi-

librium systems (Wiley, New York, 1977).
[2] Y. Kuramoto, Chemical oscillations, waves, and turbu-

lence (Springer-Verlag, Tokyo, 1984).
[3] A. Goldbeter, Biochemical Oscillations and Cellu-

lar Rhythms (Cambridge University Press, Cambridge,

1997).
[4] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza-

tion: A Universal Concept in Nonlinear Sciences, Vol. 12
(Cambridge University Press, Cambridge, 2003).

[5] S. H. Strogatz, Sync: The emerging science of sponta-

neous order (Penguin UK, 2004).

6



[6] Y. F. Suprunenko, P. T. Clemson, and A. Stefanovska,
Phys. Rev. Lett. 111, 024101 (2013).

[7] M. Lucas, J. Newman, and A. Stefanovska, “Sta-
bilisation of dynamics of oscillatory systems by non-
autonomous perturbation,” (2017), submitted to Phys.
Rev. E.

[8] M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89,
054101 (2002).

[9] A. Arenas, A. Daz-Guilera, J. Kurths, Y. Moreno, and
C. Zhou, Phys. Rep. 469, 93 (2008).

[10] S. H. Strogatz and R. E. Mirollo, J. Stat. Phys. 63, 613
(1991).

[11] H. Kori and A. S. Mikhailov, Phys. Rev. E 74, 066115
(2006).

[12] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).
[13] S. Petkoski and A. Stefanovska, Phys. Rev. E 86, 046212

(2012).
[14] G. Lancaster, Y. F. Suprunenko, K. Jenkins, and A. Ste-

fanovska, Sci. Rep. 6, 29584 (2016).
[15] B. Pietras and A. Daffertshofer, Chaos 26, 103101 (2016).
[16] M. G. Earl and S. H. Strogatz, Phys. Rev. E 67, 036204

(2003).
[17] Z. Hou and H. Xin, Phys. Rev. E 68, 055103 (2003).
[18] W. Zou, X.-G. Wang, Q. Zhao, and M. Zhan, Front.

Phys. China 4, 97 (2009).
[19] H. Nakao and A. S. Mikhailov, Nat. Phys. 6, 544 (2010).
[20] J. D. Challenger, R. Burioni, and D. Fanelli, Phys. Rev.

E 92, 022818 (2015).
[21] A. Koseska, E. Volkov, and J. Kurths, Phys. Rep. 531,

173 (2013).
[22] M.-Y. Kim, R. Roy, J. L. Aron, T. W. Carr, and I. B.

Schwartz, Phys. Rev. Lett. 94, 088101 (2005).
[23] P. Kumar, A. Prasad, and R. Ghosh, J. Phys. B 41,

135402 (2008).
[24] M. Asllani and T. Carletti, arXiv:1703.06096 (2017).
[25] R. Arumugam, P. S. Dutta, and T. Banerjee, Phys. Rev.

E 94, 022206 (2016).
[26] P. Holme and J. Saramki, Phys. Rep. 519, 97 (2012).

[27] P. Holme, Eur. Phys. J. Bs 88, 234 (2015).
[28] N. Masuda and R. Lambiotte, A Guidance to Temporal

Networks (World Scientific, Singapore, 2016).
[29] J. Petit, B. Lauwens, D. Fanelli, and T. Carletti, Phys.

Rev. Lett. 119, 148301 (2017).
[30] A. M. Turing, Philos. Trans. Royal Soc. B 237, 37 (1952).
[31] Y. Sugitani, K. Konishi, and N. Hara, in Nonlinear Dy-

namics of Electronic Systems: 22nd International Con-

ference, NDES 2014, Albena, Bulgaria, July 4-6, 2014.

Proceedings, Vol. 438 (Springer, 2014) p. 219.
[32] P. E. Kloeden and M. Rasmussen, Nonautonomous Dy-

namical Systems (American Mathematical Society, Prov-
idence, 2011).

[33] F. Verhulst, Nonlinear differential equations and dynam-

ical systems (Springer Science & Business Media, 1990).
[34] The diagonalizability of the Laplacian matrix is a mini-

mal requirement for the analytical treatment to hold true.
This condition is trivially met when the network of cou-
plings is assumed symmetric, as in the example worked
out in the following.

[35] M. Asllani, J. D. Challenger, F. S. Pavone, L. Sacconi,
and D. Fanelli, Nat. Commun. 5, 4517 (2014).

[36] M. Asllani, D. M. Busiello, T. Carletti, D. Fanelli, and
G. Planchon, Phys. Rev. E 90, 042814 (2014).

[37] This condition needs to be relaxed when dealing with di-
rected graphs. The general philosophy of the calculation
remains however unchanged, at the price of some techni-
cal complication as discussed in [35].

[38] As an alternative for computing ǫ∗, assume T and ǫTs

are commensurable (if not, adjust the value of ǫ corre-
spondigly) and define the common period for the reaction
and diffusion parts,

Tc = LCM(T, ǫTs).

Compute the Floquet multipliers for the 2N×2N system
which is periodic with period Tc. Repeating the above
procedure for decreasing values of ǫ (and making sure T

and ǫTs are still commensurable) yields the critical ǫ, i.e.
the largest ǫ for which not all µi’s are negative.

7

http://dx.doi.org/10.1103/PhysRevLett.111.024101
http://dx.doi.org/10.1103/PhysRevLett.89.054101
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1007/BF01029202
http://dx.doi.org/10.1103/PhysRevE.74.066115
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1103/PhysRevE.86.046212
http://dx.doi.org/10.1038/srep29584
http://dx.doi.org/10.1063/1.4963371
http://dx.doi.org/10.1103/PhysRevE.67.036204
http://dx.doi.org/10.1103/PhysRevE.68.055103
http://dx.doi.org/ 10.1007/s11467-009-0009-7
http://dx.doi.org/10.1038/nphys1651
http://dx.doi.org/10.1103/PhysRevE.92.022818
http://dx.doi.org/10.1016/j.physrep.2013.06.001
http://dx.doi.org/ 10.1103/PhysRevLett.94.088101
http://dx.doi.org/10.1088/0953-4075/41/13/135402
https://arxiv.org/abs/1703.06096
http://dx.doi.org/10.1103/PhysRevE.94.022206
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1140/epjb/e2015-60657-4
http://dx.doi.org/10.1103/PhysRevLett.119.148301
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1007/978-3-319-08672-9_27
http://dx.doi.org/10.1038/ncomms5517
http://dx.doi.org/PhysRevE.90.042814

