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1. Introduction 

This paper discusses the impact on current distributed systems thinking of 
emerging and future networking technologies. In particular, we believe that future 
distributed systems platforms will be forced to abandon traditional thinking and 
embrace a new asynchronous model to justify their existence in the future. The 
world’s internetworks are already beginning to be affected by the rapid development 
of two highly significant areas of research interest: mobile computing and high speed 
networking. 

Mobile networks offer one of the most diverse and challenging environments in 
which to build distributed systems. A typical network is characterised by 
unpredictable connectivity, increased levels of bit error rate, end-to-end delay and 
jitter, dramatically reduced bandwidth and significantly, increased cost to the end-
user. Furthermore, the diversity of bearer services offer applications little consistency 
in terms of service, for instance, style of interaction (connectionless versus 
connection-oriented), error protection and group support. Examples of such services 
include GSM, DECT and the emerging TETRA standard. 

High speed fibre based networks (such as FDDI and ATM) are being deployed in 
response to the escalating demand for capacity driven by the rapid increase in the 
popularity of the internet. Future gigabit networks (currently under development) will 
offer transfer speeds in excess of many existing internal bus architectures [Boden,95]. 
The deployment of such networks in the near future will raise a great many issues. 
For instance, how to minimise the number of end-to-end delays incurred in 
interactions (latency reduction), how to utilise such a highly parallel network 
(distributed processing) and how to achieve scalability (particularly with respect to 
the predicted demand for more multimedia, e.g. video-on-demand/ conferencing 
applications). 

As with mobile networks, in the future the popularity of consumer network devices 
(descendants of the emerging breed of network computer) will allow users to connect 
and disconnect to this global network at will. Furthermore, the availability of 
advanced integrated networking technologies such as these will enable the 
development of powerful distributed applications that facilitate collaboration, group-
working and the sharing of multimedia data. 

Experience gained during past research has shown that advanced applications (those 
incorporating aspects such as distribution, reliability, sharing of information and 



multimedia data) are particularly difficult to engineer. Such engineering tasks can be 
greatly simplified with the aid of the abstractions and management mechanisms 
provided by distributed systems platforms (for instance, the application of ISIS 
[Birman,90] to group management, or DASH [Anderson,90] to the management of 
continuous media). 

However, in emerging advanced networks (those including mobile elements 
particularly), researchers are finding that the synchronous RPC paradigm, upon which 
most platforms are based, requires adjustment. For instance, to facilitate mobile 
working RPC messages are buffered (Mobile DCE [Schill,95]), delayed (MOST 
[Davies,94]) or queued (Rover [Joseph,95]). 

Future networks will be characterised by thus far unparallelled network and system 
diversity. Multi-service mobile networks based on conventional, nano- and pico-
cellular architectures will deliver a range of data connectivity options which will be 
combined with wired networked infrastructures to form a seamlessly integrated whole 
offering one or more potential networks at any given time. It is the contention of this 
paper that the synchronous RPC paradigm may be unsuitable for many applications in 
emerging and future networks. 

In section 2, we examine a number of the implications of future networks for existing 
distributed systems paradigms. In section 3, the tuple space paradigm is highlighted as 
a suitable mechanism for addressing a number of these problems. In section 4, an 
analysis of the benefits of the asynchronous Tuple Space model is presented. Section 
5 provides a brief overview of our initial work on a new distributed systems platform 
based on the tuple space paradigm. Finally, section 6 presents some concluding 
remarks and pointers for future work. 

2. Existing Philosophies 
One of the most common paradigms for constructing distributed applications is the 

remote procedure call (RPC). RPC provides a natural and semantically familiar 
mechanism to programmers by mimicking as closely as possible the local procedure 
call found in most programming languages. The success of RPC can be seen by its 
inclusion as a primitive in all prevalent distributed systems platforms (e.g. CORBA 
[OMG,91], DCE [OSF,91]) and as a prerequisite in interoperability models such as 
the RM-ODP [ISO,92]. 

The RPC is modelled on a local procedure call within a single process’s address 
space, which by definition does not involve the network. It is considered unlikely that 
a local call will itself fail (although many languages offer exception based 
mechanisms to enable programmers to signal improper use of their code). In contrast, 
RPC requires that the caller (client) contacts the callee (server) and synchronises both 
in passing the arguments to the remote procedure and in returning any results. 

RPC is thus based on the twin assumptions that, both client and server are available 
simultaneously and, that suitable actions can be taken to ensure the completion of the 
RPC should either the client or server fail. Since in real applications few operations 
are idempotent, providing RPC semantics in the presence of failure can be considered 
non-trivial. In conventional distributed systems platforms the conditions which 
constitute RPC failure can be considered sufficiently rare (e.g. network partitioning) 
that the paradigm remains largely successful. 



However, as highlighted earlier, in modern networks comprising dial-up and mobile 
elements these important assumptions are often broken. In an attempt to allow 
conventional platforms to operate in these new environments, researchers have 
concentrated on providing new transparency mechanisms. For example, the work of 
Schill et al. [Schill,95] provides extensions to DCE to enable RPCs to be transparently 
rebound to alternative services (possibly local proxies based on cached data) in the 
event of network failure. In contrast, the MOST architecture [Davies,94] allows RPCs 
to be delayed, but in the event of failure provides mechanisms to enable applications 
to be informed, facilitating application-aware adaptation. The last example to consider 
is MIT’s ROVER architecture [Joseph,95], which provides an object model in which 
RPCs are queued to a stable log in the event of failure (or disconnection) and are 
replayed when connectivity is restored. While the above solutions do, to some extent, 
hide the problems introduced by mobile networking, the mechanisms only function by 
breaking the implicit timeliness of the RPC. 

In very high speed networks the massive bandwidth allows huge quantities of data to 
be shipped very quickly, however, the time taken for the first bit of information 
(regardless of the payload size) will always take the same time. Increases in 
performance can often only be found by optimising the number of end-to-end 
journeys (round trips). For instance, in a file system one might choose to ship an 
entire directory’s contents when a user accesses a single file on the premise that (by 
the principle of locality) the user may wish to access the others also (thus reducing the 
number of round trip times taken to access the files). Since RPC mechanisms are 
based on the frequent exchange of (usually) small data payloads they are not well 
suited to latency critical applications in networks such as these (additional strategies 
involving server replication or proxies is required to achieve the necessary latency 
reduction). 

In addition, the potentially unbounded delay in a given RPC requires that application 
programmers take evasive action to avoid their application’s “locking up” in the face 
of network problems (e.g. event based models or heavy multithreading). This 
increased burden on the programmer is due directly to the synchronous paradigm 
implied by the RPC mechanism. As an alternative to RPC, in the next section we 
consider an asynchronous paradigm based on the concept of the tuple space 
[Gelernter,85a]. 

3. The Tuple Space Paradigm 
The tuple space paradigm was conceived by researchers at Yale [Gelernter,85a] 

and has been extensively researched by the parallel programming community for over 
a decade. Tuples are typed data structures which consist of one or more typed data 
fields. Each data field is said to be an actual, if it contains a value, or a formal, if it 
does not. Collections of (possibly identical) tuples exist in a shared repository called a 
tuple space. Tuples can be dynamically deposited in and removed from the tuple 
space, but may not be altered “in-place”. An amendment to a tuple is thus made by 
withdrawing it from the tuple space, altering its contents and reinserting it 
[Gelernter,85b]. Tuple spaces are shared between collections of processes, all of 
which have access to the tuples contained therein (illustrated in figure 1). 
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Figure 1 - Interaction via the Tuple Space 

The tuple space paradigm was originally embodied in a coordination language called 
Linda. Linda consists of a set of tuple operators embedded in a host language (such as 
C) and does not exist as a standalone computational language in its own right. 

The Linda operators perform four fundamental operations :- 

 i. out inserts a tuple, composed of an arbitrary mix of actual and formal 
fields, into a tuple space. This tuple becomes visible to all processes with 
access to that tuple space. 

 ii. in extracts a tuple from a tuple space, with its argument acting as the 
template (anti-tuple), against which to match. Actuals match tuple fields if 
they are of equal type and value; formals match if their field types are 
equal. If all corresponding fields of a tuple match the template the tuple is 
withdrawn and any actuals it contains are assigned to formals in the 
template. Tuples are matched non-deterministically and in operations 
block until a suitable tuple can be found. 

 iii. rd is syntactically and semantically equivalent to in except that a 
matched tuple is not withdrawn from the tuple space and hence remains 
visible to other processes. 

 iv. eval is similar to out, except it creates active rather than passive tuples. 
The tuple is active because separate processes are spawned to evaluate 
each of its fields. The tuple subsequently evolves into a passive tuple 
resident in the tuple space. 

The implications of the tuple space paradigm for future networked environments is 
considered in the next section. 

4. Applying the Tuple Space Paradigm to 
New Domains 

The tuple space paradigm has a number of advantages which we believe suit it to 
operation in emerging and future networked environments. The tuple space model is 
an asynchronous paradigm which enforces no assumptions about timeliness, ordering 
or synchronisation. As long as tuples are unique (can be removed from the tuple space 
only once) the model continues to function. Since the matching of tuples to anti-tuples 
is non-deterministic, strict ordering does not need to be maintained which makes 
scalability easier to achieve. The interaction of processes is mediated through the 
tuple space (termed generative communication), decoupling the traditional client and 



server: any suitable server can generate a tuple of interest to any client (inter-process 
communication thus proceeds anonymously). 

In a large network, operations with the tuple space will take a finite time to propagate 
to interested clients (this is acceptable since the matching of tuples is non-
deterministic and does not imply fairness). Since physically nearer processes are 
likely to be able to respond (exchange tuples) more rapidly than remote processes, the 
model implicitly offers load balancing, improved fault tolerance, higher potential 
service availability and transparent service rebinding. Furthermore, since tuple based 
processes are often based on a producer/ consumer methodology (processes produce 
tuples when results are available which are consumed on-demand by client processes) 
the model may go part way to alleviate problems introduced by the network latency of 
very high speed networks (since the results may have already propagated to the client 
during time when the client is busy processing). 

The space decoupling of the tuple space allows group interactions to be achieved 
transparently. A tuple produced by one process can be read by multiple clients in 
parallel (note that such applications need to be built around the rd primitive). 
Consider for example a groupware application like the shared whiteboard wb 
[Floyd,95]. The whiteboard process could output a tuple describing each drawing 
operation which is then read by the other whiteboard processes and rendered. Contrast 
this approach to existing RPC based paradigms which require group management 
protocols (or group bindings) to achieve a similar effect. Furthermore, new clients 
(whiteboards) can join and leave the tuple space at will. 

A tuple is persistent, that is, resident in the tuple space until it is consumer (in’d). 
The persistence property of tuple spaces decouples processes in time as well as space. 
Unlike RPC, a client and a server are not synchronised by an interaction, the server 
may produce results as they become available and introduce them into the tuple space, 
the result tuples will remain (potentially after the demise of the server) until they are 
consumed by the client when needed at some (perhaps later) time. Processes can 
obviously only take advantage of the time/ space decoupling if they perform a 
function which can take advantage of the generative communication model. In the 
case where only a single server process performs a specific function based on client 
data, little advantage is gained by using the tuple space model. 

A further advantage of the tuple space’s persistence can be seen by once again 
considering the whiteboard example. Since drawing operations (tuples) are persistent, 
late entry into group interactions is possible since the entire group state is 
encapsulated by the tuple space. Explicit additional mechanisms would be required to 
manage the group state in a traditional RPC based application. 

The tuple space can also be used to manage the state of applications. Taken to its 
logical conclusion, locally stateless applications (i.e. state entirely encapsulated by the 
tuple space) can be trivially migrated or (in some cases) replicated without the need 
for conventional checkpointing mechanisms. Furthermore, the tuple space can provide 
a medium through which agent based technologies can be implemented (via active 
tuples and the eval operation or the explicit exchange of mobile code in the tuples 
themselves). 

5. Implementation 



The viability of a platform based on tuple spaces as a distributed programming 
paradigm will hinge on the efficiency and scalability of the implementation in a 
distributed networked environment. Our initial implementation work is based on the 
Linda model, but includes a range of significant extensions which address the specific 
requirements necessary for operation in mobile environments. In particular, our 
system incorporates the following key extensions: 

• multiple tuple spaces which may be specialised to meet application level 
requirements, e.g. for consistency, security or performance. 

• an explicit tuple type hierarchy with support for dynamic sub-typing. 

• tuples with QoS attributes. 

• a number of system agents that provide services for QoS monitoring, the 
creation of new tuple spaces and the propagation of tuples between tuple-
spaces. 

The current implementation of our platform consists of a small stub library which is 
linked with each application process and a single daemon process, an instance of 
which executes on each participating host. Application requests (i.e. in, out and rd 
operations) are marshalled by the stub library and passed to the daemon process. The 
daemon process collaborates with other instances of itself on remote hosts to provide 
tuple space repositories and matching functions. 

Instances of the daemon process communicate using a protocol called the Distributed 
Tuple Space (DTS) protocol. The DTS protocol maintains distributed local caches of 
tuples and requests (anti-tuples) and ensures that the caches reach eventual 
consistency. 

To achieve scalability, it is essential that a distributed implementation does not apply 
locking strategies for operations which remove tuples and avoids use of algorithms 
which lead to acknowledgement implosion, both of which critically affect 
performance. Our protocol is based on IP multicast and borrows application level 
framing concepts from SRM the scalable multicast transport which underpins wb 
[Floyd,95] and Jetfile [Grönvall,96]. Essentially, each distributed tuple space is 
modelled as a multicast group (see figure 2). 
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Figure 2 - Tuple Spaces are Modelled as Multicast Groups 

Each tuple and anti-tuple is given a unique identifier which comprises a daemon 
identifier and a monotonically increasing integer. All messages in the protocol are 
multicast and it is assumed that the messages will be snooped by all available hosts in 
the multicast group. 

The speed of the in operation governs the overall performance of the tuple space and 
causes the most problems in distributed implementations. The key to the performance 
of our prototype lies in the notion of tuple ownership. Importantly, ownership can be 
transferred to any of the participants of the tuple space and does not solely rest with 
the creator of the tuple. Before a tuple can be removed (by an in operation) the 
ownership of the tuple must be transferred to the performer of the in operation 
(achieved by nomination by the current owner of the tuple or by an explicit protocol 
message). Any user of the tuple space is free to in (remove) any tuples that they 
currently own without consulting any other user. Optimisations can be achieved 
through careful assignment of the tuple ownership. 

We have built an implementation of the Limbo distributed systems platform which 
runs on Linux 2.0 (MULTICAST), SunOS 4.1.4 (MULTICAST-4.1.4) and Solaris 
2.5. All these operating systems offer RFC 1112 compliant IPv4 multicast support, 
which is a prerequisite for running the DTS protocol. The platform consists of less 
than 6000 lines of C code with an executable size of 32117 bytes (Linux). More 
details of the Limbo platform can be found in [Davies,97]. 

6. Concluding Remarks and Future Work 
In the future global internetworks will incorporate a far greater array of network 

services offering a huge range of communications options. The near future will 
witness a massive upturn in the number of mobile elements within the internet. 
Furthermore, the uses to which the networks will be put will escalate in complexity 
due to demand for multimedia data and advanced collaboration. 



We believe current distributed systems paradigms (based on synchronous RPC) will 
not be suitable for these future advanced networks. As an alternative, we propose an 
asynchronous paradigm based on the tuple space coordination model. We believe the 
properties of the tuple space make it a far easier to manage the diversity and 
flexibility of these networks. 

Early investigative work on an efficient and scalable platform based on the tuple 
space paradigm is underway. Initial results indicate that the platform is capable of 
performance of the same order of magnitude as many existing RPC based platforms 
(e.g. COOL [Chorus,96], ANSAware [APM,92]). 

In the future we would like to investigate further how the platform will manage 
disconnection and reconnection (resynchronisation/ reintegration) to the network. In 
addition, we foresee that the platform will be required to operate over multiple 
integrated networks (perhaps many simultaneously) and the architecture for managing 
the transition between networks will require further study. 
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