Data-based modelling of runoff and chemical tracer concentrations in the Haute-Mentue research catchment (Switzerland)

Iorgulescu, Ion and Beven, K. J. and Musy, A. (2005) Data-based modelling of runoff and chemical tracer concentrations in the Haute-Mentue research catchment (Switzerland). Hydrological Processes, 19 (13). pp. 2557-2573. ISSN 0885-6087

Full text not available from this repository.

Abstract

This paper presents a model for simulating discharge as well as chemical tracer concentration (silica and calcium) in stream flow for the Haute-Mentue research basin (Switzerland). The model structure is based on a parameterization of the three components (acid soil, AS; direct precipitation, DP; deep groundwater, GW) of a hydrochemical mixing model. Each component is modelled through an identical structure consisting of a non-linear gain, expressed by a three-parameter logistic function, and a linear transfer function with two reservoirs (fast/slow) in parallel having a constant partition between them. The model is applied on an information-rich 5-week data set. Extensive Monte Carlo realizations (more than two billion models) have identified a representative sample of behavioural models able to satisfy quite stringent fit criteria on both discharges and tracers. A descriptive statistical analysis of the behavioural. parameter sets reveals significant differences between the components. In particular, the AS contribution is activated for higher catchment storages and shows a steep, almost threshold-like, increase. The partition coefficient (fast/ total) for the three components is ordered as DP>AS>GW. The fast constants of the three components have a similar order of magnitude, but also show DP>AS>GW. The slow time constant of the GW component is almost an order of magnitude higher than that of DP and AS. The latter are of similar magnitude and generate a highly non-linear interflow component.

Item Type: Journal Article
Journal or Publication Title: Hydrological Processes
Uncontrolled Keywords: /dk/atira/pure/subjectarea/asjc/2300/2312
Subjects:
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 129636
Deposited By: ep_importer_pure
Deposited On: 11 Dec 2018 13:30
Refereed?: Yes
Published?: Published
Last Modified: 07 Jan 2020 06:36
URI: https://eprints.lancs.ac.uk/id/eprint/129636

Actions (login required)

View Item View Item